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Approximating Min-Cost Chain-Constrained Spanning Trées
Reduction from Weighted to Unweighted Probléms

André Linhare$ Chaitanya Swaiy

Abstract

We study themin-cost chain-constrained spanning-tigbreviated MCCST) problem: find a min-
cost spanning tree in a graph subject to degree constrairasnested family of node sets. We devise
thefirst polytime algorithm that finds a spanning tree that (i) vietathe degree constraints by at most
a constant factoand (ii) whose cost is within a constant factor of the optimumewously, only an
algorithm forunweightedCCST was knowr[14], which satisfied (i) but did not yield amgtbounds.
This also yields the first result that obtains@fl )-factor forboththe cost approximation and violation
of degree constraints for any spanning-tree problem wittegs degree bounds on node sets, where an
edge participates in a super-constant number of degreérains.

A notable feature of our algorithm is that weduceMCCST to unweighted CCST (and then uti-
lize [14]) via a novel application dfagrangian dualityto simplify thecost structureof the underlying
problem and obtain a decomposition into certain uniforratsabproblems.

We show that this Lagrangian-relaxation based idea is ingfaglicable more generally and, for any
cost-minimization problem with packing side-constrajniglds a reduction from the weighted to the
unweighted problem. We believe that this reduction is okpehdent interest. As another application
of our technique, we consider thiebudgeted matroid basigroblem, where we build upon a recent
rounding algorithm of([4] to obtain an improvedj(kl's/e)-time algorithm that returns a solution that
satisfies (any) one of the budget constraints exactly angrsn&(1 + ¢)-violation of the other budget
constraints.

1 Introduction

Constrained spanning-tree problems, where one seeks mummicost spanning tree satisfying additional
({0, 1}-coefficient) packing constraints, constitute an impdramd widely-studied class of problems. In
particular, when the packing constraints correspond te+dmtree bounds, we obtain the classioah-
cost bounded-degree spanning t(&#BDST) problem, which has a rich history of study[7] 11} [528,[16]
culminating in the work of [16] that yielded an optimal redfor MBDST. Such degree-constrained network-
design problems arise in diverse areas including VLSI aesighicle routing and communication networks
(see, e.g., the references in[[15]), and their study hasddtig¢ development of powerful techniques in
approximation algorithms.

Whereas théerative rounding and relaxatiotechnique introduced in [16] (which extends the iterative-
rounding framework of[[10]) yields a versatile technique fandling node-degree constraints (even for
more-general network-design problems), we have a ratimitelil understanding of spanning-tree problems
with more-general degree constraints, such as constidintsi(S)| < bg for setsS in some (structured)

*A preliminary version[[1B] will appear in the Proceedingdtud 18th IPCO, 2016.
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family S of node setd A fundamental impediment here is our inability to leveragetechniques in [8, 16].
The few known results yield: (a) (sub-) optimal cost, bsuper-constanadditive- or multiplicative- factor
violation of the degree bounds [3,/1]6, 2]; or (b) a multigtiece O(1)-factor violation of the degree bounds
(whensS is a nested family), buto cost guarante@l4]. In particular, in stark contrast to the results known
for node-degree-bounded network-design problems, tere known algorithm that yields an(1)-factor
cost approximatiorand an (additive or multiplicative)D(1)-factor violation of the degree bounds. (Such
guarantees are only known when each edge participateglindegree constraints|[2]; see however|[17] for
an exception.)

We consider thenin-cost chain-constrained spanning-ti@4CCST) problem introduced by [14], which
is perhaps the most-basic setting involving general degoemds where there is a significant gap in our
understanding vis-a-vis hode-degree bounded problemdCIGST, we are given an undirected connected
graphG = (V, E), nonnegative edge cos{s. }, a nested familys (or chain) of node set$; C S C -+ C
Sy € V, and integer degree boundlss}scs. The goal is to find a minimum-cost spanning tEeuch
that |07(S)| < bg for all S € S, wheredr(S) := T N 4(S). Olver and Zenklusen [14] give an algorithm
for unweighted CCSthat returns a tre@ such that|or(S)| = O(bs) (i.e., there isno bound or:(T)),

and show that, for some > 0, it is NP-complete to obtain an additive- bg)lgogﬂ/' violation of the degree

bounds. We therefore focus on bicritefia, 5)-guarantees for MCCST, where the tfEBeeturned satisfies
c(T) < a-OPT and|or(S)| < B-bgforall S € S.

Our contributions.  Our main result is thérst (O(1), O(1))-approximation algorithm for MCCST. Given
any\ > 1, our algorithm returns a tréBwith ¢(T)) < 52+ OPT and|d7(S)| < 9A-bs forall S € S, using
the algorithm of[[14] for unweighted CCST, denotdd, as a black box (Theorem 3.3). As noted above,
this is also thdirst algorithm that achieves a(rO(l), O(l))—approximation for any spanning-tree problem
with general degree constraints where an edge belongs fmea-sonstant number of degree constraints.

We show in Sectionl4 that our techniques are applicable memerglly. We give aeductionshow-
ing that forany cost-minimization problem with packing side-constrajntsve have an algorithm for the
unweightedproblem that returns a solution with &w(1)-factor violation of the packing constraints and
satisfies a certain property, then one can utilize it to obsa (0(1),O(l))-approximation for the cost-
minimization problem. Furthermore, we show that if the aillpon for the unweighted counterpart satisfies
a stronger property, then we can utilize it to obtaifﬂaO(l))—approximation (Theorem 5.1).

We believe that our reductions are of independent interas$tvéll be useful in other settings as well.
Demonstrating this, we show an application to fAbudgeted matroid basisroblem, wherein we seek to
find a basis satisfyindg: budget constraints. Grandoni et all [9] devisedr&t**/9)-time algorithm that
returned g1,1 +¢,...,1 + €)-solution: i.e., the solution satisfies (any) one budgestaint exactly and
violates the other budget constraints bl & ¢)-factor (if the problem is feasible). Very recently, Bansat
Nagarajanl]4] improved the running timen& (*"*/<) but return only g1+¢,...,1+¢)-solution. Applying
our reduction (to the algorithm in[4]), we obtain thest of both worldswe return a1,1 +¢,...,1+ ¢)-
solution inn®*"*/9)time (Theoreni 5J7).

The chief novelty in our algorithm and analysis, and the kegarlying idea, is an unorthodox use of
Lagrangian duality Whereas typically Lagrangian relaxation is used to drappla@ating constraints and
thereby simplify the constraint structure of the undeidyproblem, in contrast, we use Lagrangian duality
to simplify thecost structureof the underlying problem by equalizing edge costs in cegabproblems. To
elaborate (see Sectibn B.1), the algorithm in [14] for uglved CCST can be viewed as taking a solution
to the natural linear-programming (LP) relaxation for MCIC8onverting it to another feasible solutiah
satisfying a certain structural property, and exploitihig property to round’ to a spanning tree. The main

1Such general degree constraints arise in the context ohfjritin trees[I], whereS consists of all node sets, which turn out
to be a very useful tool in devising approximation algorighfor asymmetric TSP



bottleneck here in handling costs (as also noted ih [14Pasd z’ could be much larger that1z since the
conversion ignores the.s and works with an alternate “potential” function.

Our crucial insight is thatve can exploit Lagrangian duality to obtain perturbed edgnests{cé’*}
such that the change in perturbed cost due to the conversiocegs is boundedLoosely speaking, if
the conversion process shifts weight frarpto z., then we ensure thaﬂ* = cii* (see Lemma_3]5); thus,

(¥ )Tz = (¢¥")T2'! The perturbation also ensures that applyifg; to ' yields a tree whose perturbed cost
is equal to(c¥" )Tz’ = (¢¥")Tz. Finally, we show that for an optimal LP solutiari, the “error” (c¥" — ¢)Tz*
incurred in working with the” -cost isO( OPT); this yields the(O(1), O(1))-approximation.

We extend the above idea to an arbitrary cost-minimizatimblpm with packing side-constraints as
follows. Letz* be an optimal solution to the LP-relaxation, aéfdbe the polytope obtained by dropping the
packing constraints. We observe that the same Lagrangialiydbased perturbation ensures that all points
on the minimal face o containingz* have the same perturbed cost. Therefore, if we have an tigori
for the unweighted problem that round$ to a pointz on this minimal face, then we again obtain that
(¢¥")T2 = (¢v")Tz*, which then leads to afO(1), O(1))-approximation (as in the case of MCCST).

Related work. Whereas node-degree-bounded spanning-tree problemsbbeavewidely studied, rela-
tively few results are known for spanning-tree problemshwiéneral degree constraints for a familyof
node-sets. With the exception of the result(ofl [14] for urgied CCST, these other results [3[ 11, 6, 2]
all yield a tree of cost at most the optimum with @fil) additive- or multiplicative- factor violation of the
degree bounds. Both][3] andl [2] obtain additive factors tesative rounding and relaxation. The factor
in [3]is (r — 1) for an arbitraryS, wherer is the maximum number of degree constraints involving areedg
(which could be|V| even whenS is a chain), while[[2] yields a®(log |V|) factor whenS is a laminar
family (the factor does not improve whehis a chain). The dependent-rounding techniqueslin/[1, &l de
treeT satisfying|dr(9)| < min{O(lolg‘)i‘éS'g')bs, (1+ €)bs + O(22lE) 1 for all § € S, for any familys.

For MBDST, Goemans [8] obtained the fil(s’l)(l), O(l))—approximation; his result yields a tree of cost
at most the optimum and at mos® violation of the degree bounds. This was subsequently iagatdo an
(optimal) additive+1 violation by [16]. Zenklusen [17] considers an orthogonaheralization of MBDST,
where there is a matroid-independence constraint on thesddgident to each node, and obtains a tree of
cost at most the optimum and “additivé)(1) violation (defined appropriately) of the matroid consttsin
To our knowledge, this is the only prior work that obtains @l )-approximation to both the cost and
packing constraints for a constrained spanning-tree pmbihere an edge participatesditil) packing
constraints (albeit this problem is quite different fronasping tree with general degree constraints).

Finally, we note that our Lagrangian-relaxation basedrtighe is somewhat similar to its use in [11].
However, whereas [11] uses this to reduce uniform-degre®&Bto the problem of finding an MST of
minimum maximum degree, which is anothegightedoroblem, we utilize Lagrangian relaxation in a more
refined fashion to reduce the weighted problem tairtg/eighteccounterpart.

2 An LP-relaxation for MCCST and preliminaries

We consider the following natural LP-relaxation for MCCShroughout, we use to index the edges of
the underlying grapli = (V, E). Fora setS C V, let E(S) denote{uv € E : u,v € S}, andd(S) denote



the edges on the boundary 8f For a vector: € R¥ and an edge-séft, we usez(F) to denote} . . ze.

min Z Cele (P)
st. z(E(9) <[S]-1  V#SCV (1)
2(E) = V] -1 )

:U(é(S)) < bg vSeS 3)

x> 0. (4)

For anyz € RZ, letsupp(z) := {e : z. > 0} denote the support af. It is well known that the polytope,
Pst(G), defined by[(lL),[(R), and14) is the convex hull of spanninggrefG. We call points in Br(G)
fractional spanning treesWe refer to[(1L),[(R) as thepanning-tree constraintsWe will also utilize (B, ),
the modified version of{P) where we replafé (3) witf¥(5)) < Abg for all S € S, whereX > 1. Let
OPT(\) denote the optimal value @B, ), and letOPT := OPT'(1).

Preliminaries. A family £ C 2" of sets is daminar familyif forall A, B € £,we haved C BorB C A
or AN B = (). As is standard, we say that € £ is a child of L € £ if L is the minimal set ofZ such
thatA C L. ForeachL € L, let G£ = (VF, E£) be the graph obtained frofL, E(L)) by contracting the
children of L in £; we drop the superscrigt whenZ is clear from the context.

Givenz € Pst(G), define alaminar decompositiorC of = to be a (inclusion-wise) maximal laminar
family of sets whose spanning-tree constraints are tight abz(£(A4)) = |A| — 1 forall A € £. Note
thatV € £ and{v} € L forallv € V. Alaminar decomposition can be constructed in polytimén@s
network-flow techniques). Foradyc L, Ietxf, or simplyzx, if £ is clear from context, denoterestricted
to Er,. Observe that, is a fractional spanning tree 6f;,.

3 An LP-rounding approximation algorithm

3.1 Anoverview

We first give a high-level overview. Clearly, ifl(P) is inféale, there is no spanning tree satisfying the
degree constraints, so in the sequel, we assumelthat (Rjsiblie We seek to obtain a spanning tiée
of costc(T) = O(OPT) such thator(S)| = O(bg) for all S € S, wheredr(S) is the set of edges df
crossings.

In order to explain the key ideas leading to our algorithm fingt briefly discuss the approach of Olver
and Zenklusen [14] for unweighted CCST. Their appro@gioresthe edge cost$c. } and instead starts
with a feasible solution: to (B) that minimizes a suitable (linear) potential funetidhey use this potential
function to argue that i is a laminar decomposition af, then(z, £) satisfies a key structural property
calledrainbow freenessExploiting this, they give a rounding algorithm, herebfereed to asdoz, that for
everyL € L, roundsz, to a spanning tre&}, of G, such thatdr, (S)| = O(z.(6(5))) forall S € S, so
that concatenating thg;,s yields a spanning treg of G satisfying|éz(S)| = O(z(5(S))) = O(bs) for all
S € S (Theoreni 3.R). However, as already noted in [14], a fundaahebstacle towards generalizing their
approach to handle the weighted version (i.e., MCCST) isitharder to achieve rainbow freeness, which
is crucial for their rounding algorithm, one needsattandon the cost functionhand work with an alternate
potential function

We circumvent this difficulty as follows. First, we note thhe algorithm in[[14] can be equivalently
viewed as rounding aarbitrary solution z to (B) as follows. Letl be a laminar decomposition af.
Using the same potential-function idea, we can conved another solution’ to (B) that admits a laminar



decomposition.’ refining £ such that«’, £’) satisfies rainbow freeness (see Lenima 3.1), and then round
2’ using Apz. Of course, the difficulty noted above remains, since theertowainbow freeness (which
again ignores: and uses a potential function) does not yialty bounds on the cost'z’ relative tocTx.

We observe however that there is one simple property (*) undigch one can guarantee théty’ = Tz,
namely, if for everyL € £, all edges insupp(z) N E1, have the same cost. However, it is unclear how to
utilize this observation since there is no reason to expectrstance to have this rather special property:
for instance, all edges @f could have very different costs!

Now let 2* be an optimal solution td_{P) (we will later modify this sonteat) and be a laminar
decomposition ofc*. The crucial insight that allows us to leverage property &)d a key notable aspect
of our algorithm and analysis, is thahe can leverage Lagrangian duality to suitably perturb duge
costs so that the perturbed costs satisfy property Mpre precisely, letting/* € }Rﬁ denote the optimal
values of the dual variables corresponding to constraBjisif(we define the perturbed cost of edgéo
bec! = c. + Y sesces(s) Ve thenthe ¢¥"-cost of all edges imupp(«*) N Ey, are indeed equal, for
everyL € L (Lemmal[35). In essence, this holds because foreany supp(z*), by complementary
slackness, we have, = (dual contribution ta’ from (1),(2)) — 256826’65(5) ys. Since any two edges
e, f € supp(z*) N E, appear in thesame sets of, one can argue that the dual contributions: tand f
from (@), (2) areequal and thusc” = ¢ .

Now since(z*, £*) satisfies (*) with the perturbed cost4’, we can conver{z*, £*) to (2/,£') sat-
isfying rainbow freeness without altering the perturbedtcand then round’ to a spanning tre& us-
ing Aoz. This immediately yieldgor(S)| = O(bg) for all S € S. To bound the cost, we argue that
o(T) <V (T)=3", cé’*az: = cTx* +3 ge 5 bsys (Lemme3.6), where the last equality follows from com-
plementary slackness. (Note that the perturbed costs atkardy in the analysis.) Howevey, ¢ s bsys
need not be bounded in termsd@fc*. To fix this, we modify our starting solution*: we solve(B,) (which
recall is [P) with inflated degree bounfisbs }), whereX > 1, to obtainz*, and use this* in our algorithm.
Now, lettingy* be the optimal dual values corresponding to the inflatedesdegonstraints, a simple duality
argument shows thaf ¢ bsys < LELW=0PTA) (| emmal3Y), which yields(T) = O(OPT) (see
Theoreni 3.B).

A noteworthy feature of our algorithm is the rather uncoriagal use of Lagrangian relaxation, where
we use duality to simplify theost structurgas opposed to the constraint-structure) of the underlgnog-
lem by equalizing edge costs in certain subproblems. Thistout to be the crucial ingredient that allows us
to utilize the algorithm ofl[14] for unweighted CCSiB a black boxvithout worrying about the difficulties
posed by (the move to) rainbow freeness. In fact, as we sh@eadtion$ ¥ and| 5, this Lagrangian-relaxation
idea is applicable more generally, and yields a novel récludtom weighted problems to their unweighted
counterparts. We believe that this reduction is of indepahéhterest and will find use in other settings as
well; indeed, we demonstrate another application of ouasde Sectiof 5]2.

3.2 Algorithm detailsand analysis

To specify our algorithm formally, we first define the rainbfneeness property and state the main result
of [14] (which we utilize as a black box) precisely.

For an edge, defineS, := {S € S : e € 4(5)}. Note thatS, could be empty. We say that two edges
e, f € Eform arainbowif S. C Sy orSy C S.. (This definition is slightly different from the one in [14#
that we allowS, = Sy.) We say thatz, £) is arainbow-free decompositiaifi £ is a laminar decomposition
of z and for every seL € £, no two edges ofupp(z) N Er, form a rainbow. (Recall that';, = (Vz,, EL)
denotes the graph obtained fr((m, E(L)) by contracting the children df.) The following lemma shows
that one can convert an arbitrary decompositien.) to a rainbow-free one; we defer the proof to the
Appendix. (As noted earlier, this lemma is used to equiviteriew the algorithm in[[14] as a rounding
algorithm that rounds an arbitrary solutierto (B).)



Lemma 3.1. Letz € Psy(G) and £ be a laminar decomposition af. We can compute in polytime a
fractional spanning tree’ € Ps1(G) and a rainbow-free decompositidn’, £’) such that: (i)supp(z’) C
supp(z); (i) £ C £'; and (i) 2/(6(S)) < z(§(S)) forall S € S.

Theorem 3.2 ([14]). There is a polytime algorithmdoz, that given a fractional spanning treé € Pst(G)
and a rainbow-free decompositidn’, L), returns a spanning tre@;, C supp(z’) of G, for everyL € £’
such that the concatenatidfi of the T.s is a spanning tree off satisfying|dr(S)| < 92/(5(9)) for all
Ses.

We can now describe our algorithm quite compactly. Let 1 be a parameter.

1. Compute an optimal solutiari* to (B, ), a laminar decompositiof of z*.

2. Apply Lemmd 3.1l tdx*, £) to obtain a rainbow-free decompositién’, £').

3. Apply Aoz to the input(z/, £') to obtain spanning tre€EX of G5’ for every L € L£'. Return the
concatenatiorf” of all the TF's.

Analysis. We show that the above algorithm satisfies the following gogse.

Theorem 3.3. The above algorithm run with parametgr> 1 returns a spanning tre&' satisfyinge(7") <
ﬁ - OPT and|dp(S)| < 9\bg forall S € S.

The bound or}ér(S)| follows immediately from Lemma_3.1 and Theoréml3.2 siméeand hencer’
obtained in step 2, is a feasible solution(#,). So we focus on boundingT"). This will follow from
three things. First, we define the perturbéd-cost precisely. Next, Lemnia 3.5 proves the key result
that for everyL € £, all edges insupp(z*) N Er, have the same perturbed cost. Using this it is easy to
show thate(T') < ¢ (T') = 3, ¢/ &t = OPT(X\) + A Y gcs bsyly (Lemma3.8). Finally, we show that
S ges syl < ZLOPTR) (| emma[3.Y), which yields the bound stated in Theoferh 3.3.

To define the perturbed costs, we consider the Lagrangianofi@, ) obtained by dualizing the (in-
flated) degree constraini{4(S)) < Abg forall S € S:

ma (gxy) = mm)(Zcexe+2(w<5<s>>—Abs>ys)>. (LD

s
yeRS zePsT(G) NV Ses

Fory € RS, letGy  (z) := 3", cee + Y ges(#(0(5)) — Abg)ys = Y. clae — XY ges bsys denote the
objective function of the LP that defings(y), wherect := c. + 3 gcs.ces(s) Ys-

Let y* be an optimal solution t¢ (CF). Ourperturbed costare{cg*}. We prove the following prelimi-
nary lemma, then proceed to show that the perturbed cogtfygatoperty (*).

Lemma3.4. We haveyy (y*) = Gy (z*) = OPT(A).

Proof. For anyy € RS, we haveg, (y) + A > ges bsys =

(miangace st. 2(E(S) <[S|-1W£SCV, x(E)=|V|-1, z> o) _

@)
(max— Z (IS| = Dps st — Z ps <cf Yee E, pus>0 V(Z)#SQV)
0#£SCV 0#£SCV:
ecE(S)
(D)\,y)



where the second equality follows sin@, , ) is the dual of(B, ,). It follows that

gA(y") = maxga(y) = max — Y (S| = Dus =AY bsys (D)
yeRrs 0£SCV Ses
S.t. — Z ug—Zysgce Vee E
0£SCV: SeS:
ecE(S) e€s(S)
y>0, pus=>0 v #SCV.

Notice that[(D) is the dual of([B) ), henceg, (y*) = OPT(\). Moreover, it also follows thaj is an optimal
solution to iff there existsii = (ji5)p2scv such that(/i, ) is an optimal solution td (§).

So lety* be such thatu*, y*) is an optimal solution tg (). It follows thatz* and (u*, y*) satisfy
complementary slackness. So we have thatfif > 0 thenz*(E(S)) = [S| — 1, and ifz} > 0 then

— D 0£SCViecE(S) S — Dosesiees(s) Y5 = Cer OF equivalentlyc? = — D_0£sCViec(s) Mg Therefore,
Goyr (%) =D 2t =N bgys = Z<— > ME) zi =AY bsys
e Ses e 0£SCV:ecE(S) Ses
— Y et (B(S) — A Y bsy
0£SCV Ses
— 3 (81— Dk — A bsyt = a(v). 0
0£SCV Ses

Lemma3.5. ForanyL € £, all edges obupp(z*) N Er, have the same’” -cost.

Proof. Consider any two edges f € supp(z*) N E. Suppose for a contradiction thaf’ < c%". Obtain

& from 2* by increasingr; by e and decreasing’ by e (soZ. = 7, for all ¢ ¢ {e, f}). Using the same
argument as in the proof of LemrhaB.1, one can showithaPst(G) for a sufficiently smalk > 0. Since
< cii*, we havegy (y*) < Gy y+(2) < Gy (2¥) = ga(y*), where the last equality follows from Lemma
[3.4, and we obtain a contradiction. O

Lemma3.6. We have:(T) < 3, ¢ ot = 3, cett + A Y ges by

Proof. Observe that(T) < ¢ (T) sincec, < ¢/ forall e € E asy* > 0. We now bound" (T). To
keep notation simple, we usg;, = (V,, E1) andx’ to denoteG4 and(z*)% (which recall isz* restricted
to E£) respectively, and’, = (V}, ) andz? to denoteG%” and(z*)5' respectively.

We havec? (T') = >, ., ¢V (T'N Ey) since the set§E} e, partition E. Fix L € £. Note that
x; is a fractional spanning tree 6f;, = (V, Er) since for any) # Q C Vi, if R is the subset of/
corresponding t@), and A, ..., A, are the children of. whose corresponding contracted nodes li©in
we havez; (EL(Q)) = 2*(E(R)) — Zlex*(E(Ai)) < R\(AU...UA)|+k-1=|Q| -1
with equality holding wher) = V. Note thatl’ N Ey, is a spanning tree afr;, sinceT is obtained by
concatenating spanning trees for the grafifi$, } 1./, andL’ refinesL. Also, all edges ofupp(z*) N EL,

have the same’"-cost by Lemm&315. So we havé (TN EL) =Y cp, ¢/ x*. It follows that

& (T) = Z Yt = Z(cemz + Z yfng)
e

e SeS:e€d(S)
= cert+ Y ysa(6(S)) =) el + A bsyi. O
e Ses e SeS



« _ OPT(1)—OPT(\
Lemma3.7. We havey ¢ ¢ bsyl < %

Proof. By Lemmd3.#, we have that
OPT(A) = ga(y") = Gy (27).

Using Lemmd_ 34 again, now with = 1, and sincey* is a feasible solution t¢LD, ), we obtain that
OPT(1) = max,cps 91(y) > g1(y*). Note that the objective functions of the LPs definingy*) and
gx(y*) differ by a constantG, ,« () — Gy y+(z) = (A — 1) D g bsys for all 2 € Pst(G). Sincez* is an
optimal solution tomin, cpg (i) Gry+ (), it is also an optimal solution tmin,epg () G1,+ (). It follows
that

OPT(1) = gi(y*) = Gy (27) -

Therefore,OPT (1) — OPT(X) > Gy y+(2%) — Gy = (27) = (A = 1) X g5 bsys. O

Proof of Theorerh 313As noted earlier, the bounds @Sﬁ(S) foIIow immediately from Lemma&_3]1 and
Theoren{3: for any € S, we haveld(S)| < 92/(6(S)) < 92%(6(S)) < 9Abg. The bound or(T)
follows from Lemma$ 3]6 arld 3.7 sind€, c.x} = OPT (). O

4 A reduction from weighted to unweighted problems

We now show that our ideas are applicable more generallyysahd bicriteria approximation algorithms
for any cost-minimization problem with packing side-coastts, provided we have a suitable approxima-
tion algorithm for theunweightedcounterpart. Thus, our technique yieldsealuctionfrom weighted to
unweighted problems, which we believe is of independetr&st.

To demonstrate this, we first isolate the key properties efrtunding algorithm3 used above for
unweighted CCST that enable us to use it as a black box torobtai result for MCCST; this will yield
an alternate, illuminating explanation of Theorem 3.3. é\itiat3 is obtained by combining the procedure
in Lemmal3.1 and4doz (TheorenT3.R). First, we of course utilize thaitis an approximation algorithm
for unweighted CCST, so it returns a spanning ffesuch thatidér(S)| = O(z*(6(S))) for all S € S.
Second, we exploit the fact th&treturns a tred’ that preserves tightness of all spanning-tree constraints
that are tight atz*. This is the crucial property that allows us to boun@’), since this implies (as we
explain below) that? (T') = >, ¢?" ¥, which then yields the bound of(T) as before. The equality
follows because the set of optimal solutions to thethR,cp (o) Ga 4+ (7) is a face of Br(G); thusall
points on theminimalface of Rr(G) containingz* are optimal solutions to this LP, and the stated property
implies that the characteristic vector Bflies on this minimal face. In other words, whilész proceeds
by exploiting the notions of rainbow freeness and laminaiodgposition, these notions are not essential to
obtaining our resultanyrounding algorithm for unweighted CCST satisfying the abtwo properties can
be utilized to obtain our guarantee for MCCST.

We now formalize the above two properties for an arbitrargtgeninimization problem with packing
side-constraints, and prove that they suffice to yield atbita guarantee. Consider the following abstract
problem, wheré? C R’ is a fixed polytope: given € R}, A € RS’:X", andb € R, find

min ¢’z s.t. zisanextreme point P, Az <b. Q"

Observe that we can cast MCCST as a special case’d, (§ taking? = Pst(G) (whose extreme points
are spanning trees a¥), c to be the edge costs, antl: < b to be the degree constraints. Moreover,
by taking P to be the convex hull of a bounded set € Z : Cx < d} we can use] (B) to encode a
discrete-optimization problem.



We say that3 is aface-preserving rounding algorithifFPRA) for unweighted@ if given any point

x € P, Bfinds in polytime an extreme poittof P such that:

(P1) 2 belongs to the minimal face @ that contains.

We say thai3 is a5-approximation FPRAwheres > 1) if we alsohave:
(P2) Az < pAx.

Let (RY) denote the LRuin{cTz : « € P, Az < \b}; note that(R]) is the LP-relaxation of (B).
Letopt()\) denote the optimal value ¢RY), and letopt := opt(1). We say that an algorithm is(@1, p2)-
approximation algorithm fo if it finds in polytime an extreme poirit of P such that™z < p;opt and
Az < pab.

Theorem 4.1. Let B be as-approximation FPRA for unweight@. Then, given any > 1, one can
obtain a(2;, 8))-approximation algorithm fo{Q”) using a single call td3.

Proof sketch.We dovetail the algorithm for MCCST and its analysis. We dimgpmpute an optimal so-
lution z* to (Rf) and round it to an extreme poirt of P using B. By property (P2), it is clear that
Az < B(Az*) < BAb.

Fory € R, definec’ := ¢ + ATy. To bound the cost, as before, we consider the Lagrangiamoflua
(RY) obtained by dualizing the side-constraints < \b.

— mi (T — T
;Ielﬂ%%g(hx( ) = 2116171317-[>\7y(x)), where H, ,(z) := (¢)Tx — AyTb.

Lety" = argmax,cpm hx(y). We can mimic the proof of Lemnfia 3.4 to show thatis an optimal solution
tomingep Hy 4+ (). The set of optimal solutions to this LP is a facefdfSo all points on the minimal face
of P containingz™ are optimal solutions to this LP. By property (Pz)belongs to this minimal face and so
is an optimal solution to this LP. S@¥" )& = (¢¥ )Ta* = cTa* + (y*)TAz* = opt(\) + A(y*)Th, where
the last equality follows by complementary slackness. Algothe same arguments as in Lemimd 3.7, we
have(y*)Th < HH—0PtA) gince: < ", we haverTs < (¢¥")T# < 125 - opt. O

5 Towardsa (1, O0(1))-approximation algorithm for (QF)

A natural question that emerges from Theoréms 3.3 and 4.4éther one can obtain(a, O(l)) -approximation,
i.e., obtain a solution ofost at mosbpt that violates the packing side-constraints by an (mutigtlie)
O(1)-factor. Such results are known for degree-bounded spgrtné® problems with various kinds of
degree constraints [[8, 16] [3,117], so, in particular, it iture to ask whether such a result also holds
for MCCST. (Note that for MCCST, the dependent-roundinghiegues in [[1/ 8] yield a tred" with
¢(T) < OPT and|or(S)| < min{O( loglg()lg‘SI bs, (1 + €)bs + O(l"g'S')} forall S € S.) We show
that our approach is versatile enough to erJd such a gusggmbvided we assume a stronger property from
the rounding algorithn8 for unwelghted-.

Let A; denote the-th row of A4, fori = 1,...,m. We say thai3 is an(«, 3)-approximation FPRAor
unweighted@ if in additionto properties (P1) and (P2), it satisfies:
(P3) it rounds a feasible solutianto (RY,) to an extreme point of P satisfyingAl# > > A for everys

such thatdz = ab;.

(For MCCST, property (P3) requires thiat-(S)| > bg for every setS € S whose degree constraint (in
([B.)) is tight at the fractional spanning tree)

Theorem 5.1. Let B be an («, 3)-approximation FPRA for unweightef@”). Then, one can obtain a
(1, a3)-approximation algorithm fo{Q”) using a single call td5.



Proof. We show that applying the algorithm from Theorem] 4.1 with= « yields the claimed result. It
is clear that the extreme poitit returned satisfiesiz < a8b. As in the proof of Theorerh 4.1, let*

be an optimal solution tmaxycrm hx(y) (WhereA = a). In Lemma 3.6 and the proof of Theoréml4.1,
we use the weak boundz < (c¥")T#. We tighten this to obtain the improved bound &ii. We have
i = (V)& — (y*)TAz, and

yrAla* _

WAz = > A= Y, = Y whi= )
i: ATz*=Ab; i: ATz =\b; i: ATa*=Ab;

The first and last equalities above follow becayse> 0 implies thatA]z* = A\b;. The inequality follows
from property (P3). Thus, following the rest of the argunseantthe proof of Theorem 4.1, we obtain that

i< (& )a— (y)Tb=cTa* + (A —1)(y")Th < opt(1). O

5.1 Obtaining an additive approximation for and cost at most opt via an FPRA with
two-sided additive guar antees

We now present a variant of Theoréml5.1 that shows that we daieve cost at mosipt and additive
approximation for the packing side constraints using an ARRh two-sidedadditive guarantees. We
give an application of this result in Sectibn15.2, where wikizet it to obtain improved guarantees for the
k-budgeted matroid basis problem.

Theorem 5.2. Let B be an FPRA for unweightefQ”) that givenz € P returns an extreme poirit of P
such thatdr — A < A% < Az + A, whereA € R’ may depend onl andc (but not onb). Using a single
call to B, we can obtain an extreme pointof P such thatc™s < opt and Az < b+ 2A.

The above result is obtained via essentially the same angisnas those in Theorers 4.1 5.1. For
avectorA € R, let (WR) denote the LRnin{cTz : 2 € P, Az < b+ A}. Let( denote the all-zeros
vector, and note thet?) is the LP-relaxation of (8). Letopt(A) denote the optimum value ¢W?%),

and letopt := opt(0). The Lagrangian dual @iV ) obtained by dualizing the side-constrairts < b+ A
is
max (m(y) = min %,y(x)), (LDA)

where®a ,(z) == (¢¥)Tz —yT(b+ A). (Recall that? := c+ ATy.) Letz* be an optimal solution tON%)
andy* = argmax,cpm ©oa(y). We have the following variants of Lemmasi3.4 3.7.

Lemma5.3. We havepa (y*) = ®a - (2*) = opt(A).
Proof. This follows by mimicking the arguments used in the proof efmd 3.4. O
Lemma5.4. We have(y*)TA < opt(0) — opt(A).
Proof. We mimic the proof of Lemma3.7. By Lemrha b.3, we have that
opt(A) = pa(y") = Py (z7)

and opt(0) = max, cgs v5(y) = ¢5(y*). Note that®g; . (z) — ®ay+(z) = (y*)TA, which is inde-
pendent ofz. So sincez* is an optimal solution taningep ®a (), it is also an optimal solution to
mingep @5 . (). It follows that

opt(0) > p(y") = By, ().
Hence,opt(0) — opt(A) > D« (T%) — oy (2¥) = (y*)TA. O
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Proof of Theorerh 512The algorithm simply computes an optimal solutiohto (W7 ), and rounds it to an
extreme point of P using algorithm53.

It is clear thatdz < Az* + A < (b+ A) + A = b+ 2A. Next we argue that™@ < opt. We have
i = ()& — (y*)T A%, and

WAE= > yAl® = D yiAlaT - A

’i:AIZ’*:bZ‘-l-AZ' ’i:AISE*:bi-l-AZ'
* *
= Z yibi = (y*)Tb.
Z':A;!-:B*:bi—i-Ai

By Lemmal5.B,2* is an optimal solution taningep ¥ 4+ (x). So all points on the minimal face ¢
containingz* are optimal solutions to this LP. In particular, sirebelongs to this minimal face (by property
(P1)), z is an optimal solution to this LP. This observation, alonghwihe inequality above, yielddz <
(¥ )Tz* — (y*)Tb = opt(A) + (y*)TA. Finally, using LemmaB5]4 yields z < opt(0) as required. [

5.2 Application to k-budgeted matroid basis

Here, we seek to find a basisof a matroid)M = (U, 7) satisfyingk budget constraint§d; (S) < B;}1<i<k,
whered;(S) := " .5 di(e). Note that this can be cast a special cask &l)(@hereP = P(M) is the basis
polytope of M, the objective function encodes a chosen budget constsagtthek-th budget constraint),
andAzx < bencodes the remaining budget constraints. We show thatdunigues, combined with a recent
randomized algorithm of [4], yields a (randomized) aldumtthat, for any > 0, returns inn@*"*/¢) time

a basis that (exactly) satisfies the chosen budget cortsteaid violates the other budget constraints by
(at most) a(1 + ¢)-factor, wheren := |U]| is the size of the ground-set @f. This matchegshe current-
best approximation guarantee [of [9] (who give a determimigorithm)andthe current-best running time
of [4].

Theorem 5.5 ([4]). For some constantz > 0, there exists a randomized FPRBgy, for unweighted
(QPM)) that rounds any: € P(M) to an extreme poini of P(M) such thatdz — vVEA < Ai <
Ax + I/\/EA, whereA = (maxlgjgn aij)lgigk—l = (maxeeU di(e))lgigk_l.

Lemmab5.6. There exists a polytime randomized algorithm that finds #stfasef M such thatd,(S) < By,
andd;(S) < B; + 2vvVkmax.cy d;(e) forall 1 <i < k — 1, or determines that the instance is infeasible.

Proof. As explained above, we cast the problem as a special c@b}b@sing thek-th budget constraint
as the objective function, and the remaining budget conssras packing side-constraints. If the LP-
relaxation of@ is infeasible, then the budgeted-matroid-basis instamdafeasible. Otherwise, the
above guarantee follows by applying Theotleni 5.2 with theritlym B=Bgy. O

Using ideas from[[4], we combine the algorithm from Lemimd Wwifh a partial enumeration step as

follows. We say an element € U is heavyif the inequalityd;(e) > ﬁBi holds for at least one index

i € {1,...,k}. Let H denote the set of all heavy elements. We state our algoritlowb Lete > 0 be a
parameter.

1. Forevery sefl C H of size|H| < 222 we do the following.

(a) Let M’ be the matroid obtained from/ by contracting the elements @ and deleting the
elements offf \ H. N

(b) Compute residual budget®f := B; — d;(H), fori € {1,...,k}.

(c) Run the algorithm from Lemnia 5.6 on matrdi¢t’ with budgets{ B, }1<;<.
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(d) If the algorithm succeeds (that is, if the LP that it atpésnto solve is feasible), then I&t be
the set of elements returned, and fet= H U T. If S is a basis ofi, dp(S) < By, and
d;(S) < (1+e¢)B;foralll <i < k—1,then returnS.
2. If step 1 does not return any sgtthen return that the instance is infeasible.

Theorem 5.7. The algorithm above, run with parametet> 0, finds inn®®*' /<) time a basisS of M such
thatdy(S) < By andd;(S) < (1+¢€)B; forall 1 <i < k— 1, or determines that the instance is infeasible.
Proof. Note that the number of iterations is at masts— = nOt"*/9. Since steps 1(a)-1(d) run in
poly(n) time, the overall running time is°*'*/¢) as claimed.

If the instance is infeasible, then any outcome of the allyori(infeasible, or a basiS) is correct.
(Note that due to the verification done at the end of step K, setS returned must have the required
properties.) So assume that the instance is feasible, arfff lbe a basis of\/ that exactly satisfies all
the budget constraints. We argue that in this case the #igodoes indeed return a basis with the desired
properties. Lefd* := S*N H be the set of heavy elements tltdtcontains. Note that since a heavy element
uses up at least one budget to an extent greater;uﬁﬁg and since5™ satisfies all thé: budget constraints,

we must haveH*| < —&— = % Note that at the iteration correspondingffo: H* (if the algorithm

2vVk
reaches it), the set* \ H* is feasible for the residual problem (with a matrdiff and residual budgets
{B!} defined in steps 1(a) and 1(b)). Further, note that this seta@rtifies that the resulting s€tsatisfies
di(S) = di(H*)+dp(T) < dp(H*)+dp(S*\ H*) = di(S*) < By. Finally, foreveryi € {1,...,k—1},
we have

di(S) = di(H*) + di(T) < d;(H*) + B + 2vVk mUa\};Idi(e)
ec

< B; + 20Vk i = (14 €)B;,

€
——B
2Vk

and so the set will pass the verification done at step 1(d) and will be resarby the algorithm. O
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A Proof of Lemma3.1

This follows from essentially the same potential-functaagument as used in [[14] to obtain a rainbow-free
solution. Sort the edges efipp(x) in increasing order ofS.| breaking ties arbitrarily. Letq,es, ..., ek
denote this ordering. Leb € R be any weight function such that,, < we, < -+ < we, (€.9.,we; = i

for all 7). Letz’ be an optimal solution to the following LP. (Note that the L#slvariables z. }.c, and
that the{z. }.c g values are fixed.)

min Zweze (P
st. z€Pst(G), z =0 Ve ¢ supp(z)
2(6(5)) < x(8(5)) vSeS
z(E(L)) =|L| -1 VL e L.

Properties (i) and (iii) hold by construction. Since we ®the spanning-tree constraints corresponding to
sets inL to be tight, we can start with and extend it to obtain a laminar decompositi@rof 2’ that refines
L, so (ii) holds.
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It remains to show thatz’, £’) is a rainbow-free decomposition. Consider anyset £’ and any two
edges, f € supp(x’)ﬂEf', and suppose that f form a rainbow. Let, < wy, SO we must havs, C S;.
Now perturbz’ by addinge to x/, (the argument below will show that, < 1) and subtracting from :c’f
wheree > 0 is chosen to be suitably small; let be this perturbed vector. Clearly,” z” < w”z’, so if
we show that:” is feasible to[(R’), then we obtain a contradiction. Clearlypp(z”) C supp(x). Since
S. C Sy itfollows thatz” (6(S)) < z(6(S)) forall S € S. Also,z” (E(L)) = 2/(E(L)) = |L| — 1 for all
LelL.

Finally, we show that” € Pst(G) for a sufficiently smalk > 0. (Hencez, < 2/ <1.) ForACV
such thatr'(E(A)) < |A| — 1, we obtainz” (E(A)) < |A| — 1 by takinge > 0 suitably small; forA with
2'(E(A)) = |A| — 1, we obtainz” (E(A)) = |A| — 1 since the spanning-tree constraints forlalt £’ are
tight at (' and)z” and these span all other tight spanning-tree constraints. O
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