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ACCELERATED SCHEMES FOR A CLASS OF VARIATIONAL INEQUALITIES

YUNMEI CHEN∗, GUANGHUI LAN† , AND YUYUAN OUYANG‡

Abstract. We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak
solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is
to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic VIs, the
developed AMP method computes the weak solutions with optimal rate of convergence. In particular, if the monotone operator
in VI consists of the gradient of a smooth function, the rate of convergence of the AMP method can be accelerated in terms of
its dependence on the Lipschitz constant of the smooth function. For VIs with bounded feasible sets, the estimate of the rate
of convergence of the AMP method depends on the diameter of the feasible set. For unbounded VIs, we adopt the modified
gap function introduced by Monteiro and Svaiter for solving monotone inclusion, and demonstrate that the rate of convergence
of the AMP method depends on the distance from the initial point to the set of strong solutions.

1. Introduction. Let E be a finite dimensional vector space with inner product 〈·, ·〉 and norm ‖ · ‖,
and Z be a non-empty closed convex set in E . Our problem of interest is to find u∗ ∈ Z that solves the
following variational inequality (VI) problem:

〈F (u), u∗ − u〉 ≤ 0, ∀u ∈ Z, (1.1)

where F is defined by

F (u) = ∇G(u) +H(u) + J ′(u), ∀u ∈ Z. (1.2)

In (1.2), G(·) is a general continuously differentiable function whose gradient is Lipschitz continuous with
constant LG, i.e.,

0 ≤ G(w) −G(v)− 〈∇G(w), w − v〉 ≤ LG

2
‖w − v‖2, ∀w, v ∈ Z, (1.3)

H : Z → E is a monotone operator with Lipschitz constant LH , that is, for all w, v ∈ Z,

〈H(w) −H(v), w − v〉 ≥ 0, and ‖H(w)−H(v)‖∗ ≤ LH‖w − v‖, (1.4)

and J ′(u) ∈ ∂J(u), where J(·) is a relatively simple and convex function. We denote problem (1.1) by
V I(Z;G,H, J) or simply V I(Z;F ).

Observe that u∗ given by (1.1) is often called a weak solution of V I(Z;F ). A related notion is a strong
solution of VI. More specifically, we say that u∗ is a strong solution of V I(Z;F ) if it satisfies

〈F (u∗), u∗ − u〉 ≤ 0, ∀u ∈ Z. (1.5)

For any monotone operator F , it is well-known that strong solutions of V I(Z, F ) are also weak solutions,
and the reverse is also true under mild assumptions (e.g., when F is continuous). For example, for F in
(1.2), if J = 0, then the weak and strong solutions of V I(Z;G,H, 0) are equivalent.

The main goal of this paper is to develop efficient solution methods for solving two types of VIs, i.e.,
deterministic VIs with exact information about the operator F , and stochastic VIs where the operator F
contains some stochastic components (e.g., ∇G and H) that cannot be evaluated exactly. We start by
reviewing some existing methods for solving both these types of problems.
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1.1. Deterministic VI. VI provides a unified framework for optimization, equilibrium and comple-
mentarity problems, and thus has been the focus of many algorithmic studies (see, e.g, [14, 31, 7, 30, 34,
36, 21, 28, 19, 13]). In particular, classical algorithms for VI include, but not limited to, the gradient pro-
jection method (e.g., [32, 4]), Korpelevich’s extragradient method [14], and the proximal point algorithm
(e.g., [18, 31]), etc. (see [10] for an extensive review and bibliography). While these earlier studies on VI
solution methods focused on their asymptotic convergence behavior (see, e.g., [35, 37, 38]), much recent
research effort has been devoted to algorithms exhibiting strong performance guarantees in a finite number
of iterations (a.k.a., iteration complexity) [30, 3, 28, 29, 22, 19, 9]. More specifically, Nemirovski in a seminal
work [21] presented a mirror-prox method by properly modifying Korpelevich’s algorithm [15] and show that
it can achieve an O(1/ǫ) complexity bound for solving VI problems with Lipschitz continuous operators (i.e.,
smooth VI denoted by V I(Z; 0, H, 0)). Here ǫ > 0 denotes the target accuracy in terms of a weak solution.
This bound significantly improves the O(1/ǫ2) bound for solving VI problems with bounded operators (i.e.,
nonsmooth VI) (e.g., [3]). Nemirovski’s algorithm was further generalized by Auslender and Teboulle [1]
through the incorporation of a wider class of distance generating functions. Nesterov [28] has also developed
a dual extrapolation method for solving smooth VI which possesses the same complexity bound as in [21].
More recently, Monteiro and Svaiter [19] showed that the the hybrid proximal extragradient (HPE) method
[33], which covers Korpelevich’s algorithm as a special case, can also achieve the aforementioned O(1/ǫ)
complexity. Moreover, they developed novel termination criterion for VI problems with possibly unbounded
feasible set Z, and derived the iteration complexity associated with HPE for solving unbounded VI problems
accordingly. Monteiro and Svaiter [20] have also generalized the aforementioned O(1/ǫ) complexity result
for solving VI problems containing a simple nonsmooth component (i.e., V I(Z; 0, H, J)).

It should be noted, however, that the aforementioned studies in existing literature do not explore the
fact that the operator F consists of a gradient component ∇G (see (1.2)). As a result, the iteration com-
plexity associated with any of these algorithms, when applied to a smooth convex optimization problem
(i.e., V I(Z;G, 0, 0)), is given by O(1/ǫ), which is significantly worse than the well-known O(1/

√
ǫ) optimal

complexity for smooth optimization [25]. An important motivating question for our study is whether one
can utilize such structural properties of F in order to further improve the efficiency of VI solution methods.
More specifically, we can easily see that the total number of gradient and/or operator evaluations for solving
V I(Z;G,H, J) cannot be smaller than

O
(

√

LG

ǫ
+

LH

ǫ

)

. (1.6)

Such a lower complexity bound is derived based on the following two observations:
a). If H = 0, V I(Z;G, 0, 0) is equivalent to a smooth optimization problem minu∈Z G(u), and the

complexity for minimizing G(u) cannot be better than O(
√

LG/ǫ) [25, 26];
b). If G = 0, the complexity for solving V I(Z; 0, H, 0) cannot be better than O(LH/ǫ) [24] (see also the

discussions in Section 5 of [21]).

However, the best-known so-far iteration complexity bound for solving V I(Z;G,H, J) is given by [13, 19],
where one needs to run these algorithms

O
(

LG + LH

ǫ

)

, (1.7)

iterations to compute a weak solution of V I(Z;G,H, J), and each iteration requires the computation of both
∇G and H . It is worth noting that better iteration complexity bound has been achieved for a certain special
case of V I(Z;G,H, J) where the operatorH is linear. In this case, Nesterov [27] showed that, by using a novel
smoothing technique, the total number of first-order iterations (i.e., iterations requiring the computation of
∇G, the linear operators H and its conjugate H∗) for solving V I(Z;G,H, J) can be bounded by (1.6). This
bound has also been obtained by applying an accelerated primal-dual method recently developed by Chen,
Lan and Ouyang [8]. Observe that the bound in (1.6) is significantly better than the one in (1.7) in terms of
its dependence on LG. However, it is unclear whether similar iteration complexity bounds to those in [27, 8]
can be achieved for the more general case when H is Lipschitz continuous.
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1.2. Stochastic VI. While deterministic VIs had been intensively investigated in the literature, the
study of stochastic VIs is still quite limited. In the stochastic setting, we assume that there exists stochastic
oracles SOG and SOH that provide unbiased estimates to the operators ∇G(u) and H(u) for any test
point u ∈ Z. More specifically, we assume that at the i-th call of SOG and SOH with input z ∈ Z, the
oracles SOG and SOH output stochastic first-order information G(z, ξi) and H(z, ζi) respectively, such that
E[G(x, ξi)] = ∇G(x),E[H(x, ζi)] = H(x), and

A1. E

[

‖G(x, ξi)−∇G(x)‖2∗
]

≤ σ2
G, E

[

‖H(x, ζi)−H(x)‖2∗
]

≤ σ2
H ,

where ξi ∈ Ξ, ζi ∈ Ξ are independently distributed random variables. It should be noted that deterministic
VIs are special cases of stochastic VIs with σG = σH = 0. To distinguish stochastic VIs from their deter-
ministic counterparts, we will use SV I(Z;G,H, J) or simply SV I(Z;F ) to denote problem (1.1) under the
aforementioned stochastic settings.

Following the discussion around (1.6) and the complexity theory for stochastic optimization [23, 13], the
total number of gradient and operator evaluations for solving stochastic VI cannot be smaller than

O
(

√

LG

ǫ
+

LH

ǫ
+

σ2
G + σ2

H

ǫ2

)

. (1.8)

The best known complexity bound for computing SV I(Z;G,H, 0) is given by the stochastic mirror-prox
method in [13]. This method requires

O
(

LG + LH

ǫ
+

σ2
G + σ2

H

ǫ2

)

(1.9)

iterations to achieve the target accuracy ǫ > 0 in terms of a weak solution, and each iteration requires the
calls to SOG and SOH . Similar to the deterministic case, the above complexity bound has been improved
for some special cases, e.g., when H = 0 or H is linear. In particular, when H = 0, SV I(Z, F ) is equivalent
to the stochastic minimization problem ofminu∈Z G(u) + J(u), Lan first presented in [16] (see more general
results in [11, 12]) an accelerated stochastic approximation method and showed that the iteration complexity
of this algorithm is bounded by

O
(

√

LG

ǫ
+

σ2
G

ǫ2

)

.

More recently, Chen, Lan and Ouyang [8] presented an optimal stochastic accelerated primal-dual (APD)
method with a better complexity bound than (1.9) for solving SV I(Z;G,H, J) with a linear operator H .

1.3. Contribution of this paper. Our contribution in this paper mainly consists of the following
three aspects. Firstly, we present the accelerated mirror-prox (AMP) method that computes a weak solution
of V I(Z;G,H, J) after incorporating a multi-step acceleration scheme into the mirror-prox method in [21].
By utilizing the smoothness of G(·), we can significantly improve the iteration complexity from (1.7) to (1.6),
while the iteration cost of AMP is comparable to that of the mirror-prox method. Therefore, AMP can solve
VI problems efficiently with big Lipschitz constant LG. To the best of our knowledge, this is the first time
in the literature that such an optimal iteration complexity bound has been obtained for general Lipschitz
continuous (rather than linear) operator H .

Secondly, we develop a stochastic counterpart of AMP, namely stochastic AMP, to compute a weak
solution of SV I(Z;G,H, J), and demonstrate that its iteration complexity is bounded by (1.8) and, similarly
to the stochastic mirror-prox method, each iteration of this algorithm requires the calls to SOG and SOH .
Therefore, this algorithm improves the best-known complexity bounds for stochastic VI in terms of the
dependence on the Lipschitz constant LG. To the best of our knowledge, this is the first time that such an
optimal iteration complexity bound has been developed for SV I(Z;G,H, J) for general Lipschitz continuous
(rather than linear) operator H . In addition, we investigate the stochastic VI method in more details, e.g.,
by developing the large-deviation results associated with the convergence of stochastic AMP.

Finally, for both deterministic and stochastic VI, we demonstrate that the AMP can deal with the case
when Z is unbounded, as long as a strong solution to problem (1.5) exists. We incorporate into AMP the
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termination criterion employed by Monteiro and Svaiter [19, 20] for solving variational and hemivariational
inequalities posed as monotone inclusion problem. In both deterministic and stochastic cases, when Z is
unbounded, the iteration complexity of AMP will depend on the distance from the initial point to the set of
strong solutions.

1.4. Organization of the paper. The paper is organized as follows. We propose the AMP algorithm
and discuss the main convergence results for solving deterministic VI and stochastic VI in Sections 2 and 3
respectively. To facilitate the readers, we present the proofs of the main convergence results in Section 4.
Finally, we make some concluding remarks in Section 5.

2. Accelerated prox-method for deterministic VI. We introduce in this section an accelerated
mirror-prox (AMP) method that computes a weak solution of V I(Z;G,H, J), and discuss its main conver-
gence properties.

Throughout this paper, we assume that the following prox-mapping can be solved efficiently:

P J
z (η) := argmin

u∈Z
〈η, u − z〉+ V (z, u) + J(u). (2.1)

In (2.1), the function V (·, ·) is defined by

V (z, u) := ω(u)− ω(z)− 〈∇ω(z), u− z〉, ∀u, z ∈ Z, (2.2)

where ω(·) is a strongly convex function with convexity parameter µ > 0. The function V (·, ·) is known as
a prox-function, or Bregman divergence [5] (see, e.g., [21, 3, 27, 2] for the properties of prox-functions and
prox-mappings and their applications in convex optimization). Using the aforementioned definition of the
prox-mapping, we describe the AMP method in Algorithm 1.

Algorithm 1 The accelerated mirror-prox (AMP) method for solving a weak solution of V I(Z;G,H, J)

Choose r1 ∈ Z. Set w1 = r1, w
ag
1 = r1.

For t = 1, 2, . . . , N − 1, calculate

wmd
t = (1 − αt)w

ag
t + αtrt, (2.3)

wt+1 = P γtJ
rt

(

γtH(rt) + γt∇G(wmd
t )

)

, (2.4)

rt+1 = P γtJ
rt

(

γtH(wt+1) + γt∇G(wmd
t )

)

, (2.5)

wag
t+1 = (1 − αt)w

ag
t + αtwt+1. (2.6)

Output wag
N+1.

Observe that the AMP method differs from the mirror-prox method in that we introduced two new
sequences, i.e., {wmd

t } and {wag
t } (here “md” stands for “middle”, and “ag” stands for “aggregated”). On

the other hand, the mirror-prox method only had to compute the ergodic mean of the sequence {wt} as
the output of the algorithm (similar to {wag

t }). If αt ≡ 1, G = 0 and J = 0, then Algorithm 1 for solving
V I(Z; 0, H, 0) is equivalent to the prox-method in [21]. In addition, if the distance generating function
w(·) = ‖ · ‖2/2, then iterations (2.4) and (2.5) becomes

wt+1 = argmin
u∈Z

〈γtH(rt), u− rt〉+
1

2
‖u− rt‖2,

rt+1 = argmin
u∈Z

〈γtH(wt+1), u− rt〉+
1

2
‖u− rt‖2,

which are exactly the iterates of the extragradient method in [14]. On the other hand, if H = 0, then
the iterations (2.4) and (2.5) produces the same optimizer wt+1 = rt+1, and Algorithm 1 is equivalent to
a version of Nesterov’s accelerated method for solving minu∈Z G(u) + J(u) (see, for example, Algorithm 1
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in [39]). Therefore, Algorithm 1 can be viewed as a hybrid algorithm of the mirror-prox method and the
accelerated gradient method, which gives its name accelerated mirror-prox method.

In order to analyze the convergence of Algorithm 1, we introduce a notion to characterize the weak
solutions of V I(Z;G,H, J). For all ũ, u ∈ Z, we define

Q(ũ, u) := G(ũ)−G(u) + 〈H(u), ũ− u〉+ J(ũ)− J(u). (2.7)

Clearly, for F defined in (1.2), we have 〈F (u), ũ− u〉 ≤ Q(ũ, u). Therefore, if Q(ũ, u) ≤ 0 for all u ∈ Z, then
ũ is a weak solution of V I(Z;G,H, J). Hence when Z is bounded, it is natural to use the gap function

g(ũ) := sup
u∈Z

Q(ũ, u) (2.8)

to evaluate the quality of a feasible solution ũ ∈ Z. However, if Z is unbounded, then g(z̃) may not be
well-defined, even when z̃ ∈ Z is a nearly optimal solution. Therefore, we need to employ a slightly modified
gap function in order to measure the quality of candidate solutions when Z is unbounded. In the sequel, we
will consider the cases of bounded and unbounded Z separately.

Theorem 2.1 below describes the convergence property of Algorithm 1 when Z is bounded. It should be
noted that the following quantity will be used throughout the convergence analysis of this paper:

Γt =

{

1, when t = 1

(1 − αt)Γt−1, when t > 1,
(2.9)

Theorem 2.1. Suppose that

sup
z1,z2∈Z

V (z1, z2) ≤ Ω2
Z . (2.10)

If the parameters {αt} and {γt} in Algorithm 1 are chosen such that α1 = 1, and

0 ≤ αt < 1, µ− LGαtγt −
L2
Hγ2

t

µ
≥ 0, and

αt

Γtγt
≤ αt+1

Γt+1γt+1
, ∀t ≥ 1, (2.11)

where {Γt} is defined by (2.9). Then,

g(wag
t+1) ≤

αt

γt
Ω2

Z . (2.12)

There are various options for choosing the parameters {αt} and {γt} that satisfy (2.11). In the following
corollary, we give one example of such parameter settings.

Corollary 2.2. Suppose that (2.10) holds. If the parameters {αt} and {γt} in AMP are set to

αt =
2

t+ 1
and γt =

µt

2(LG + LHt)
, (2.13)

then for all u ∈ Z,

Q(wag
t+1, u) ≤

(

4LG

µt(t+ 1)
+

4LH

µt

)

Ω2
Z , (2.14)

where ΩZ is defined in (2.10).

Proof. Clearly, Γt =
2

t(t+ 1)
satisfies (2.9), and

αt

Γtγt
=

2

µ
(LG + LHt) ≤ αt+1

Γt+1γt+1
.
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Moreover,

µ− LGαtγt −
L2
Hγ2

t

µ
= µ− µLG

LG + LHt
· t

t+ 1
− µL2

Ht2

4(LG + LHt)2
≥ µ− µLG

LG + LHt
− µLHt

LG + LHt
= 0.

Thus (2.11) holds. Hence, by applying (2.12) in Theorem 2.1 with the parameter setting in (2.13) and using
(2.10), we obtain (2.14).

Clearly, in view of (2.14), when the parameters are chosen according to (2.13), the number of iterations
performed by the AMP method to find an ǫ-solution of (1.1), i.e., a point w̄ ∈ Z s.t. g(w̄) ≤ ǫ, can be
bounded by

O
(

√

LG

ǫ
+

LH

ǫ

)

.

This bound significantly improves the best-known so-far complexity for solving problem (1.1) (see (1.6)) in
terms of their dependence on the Lipschitz constant LG. Moreover, it should be noted that the parameter
setting in (2.13) is independent of ΩZ , i.e., the AMP method achieves the above optimal iteration-complexity
without requiring any information on the diameter of Z.

Now, we consider the case when Z is unbounded. To study the convergence properties of AMP in
this case, we use a perturbation-based termination criterion recently employed by Monteiro and Svaiter
[19, 20], which is based on the enlargement of a maximal monotone operator first introduced in [6]. More
specifically, we say that the pair (ṽ, ũ) ∈ E × Z is a (ρ, ε)-approximate solution of V I(Z;G,H, J) if ‖ṽ‖ ≤ ρ
and g̃(ũ, ṽ) ≤ ε, where the gap function g̃(·, ·) is defined by

g̃(ũ, ṽ) := sup
u∈Z

Q(ũ, u)− 〈ṽ, ũ− u〉. (2.15)

We call ṽ the perturbation vector associated with ũ. One advantage of employing this termination criterion
is that the convergence analysis does not depend on the boundedness of Z.

Theorem 2.3 below describes the convergence properties of AMP for solving deterministic VIs with
unbounded feasible sets, under the assumption that a strong solution of (1.1) exists. It should be noted that
this assumption does not limit too much the applicability of the AMP method. For example, when J(·) = 0,
any weak solution to V I(Z;F ) is also a strong solution.

Theorem 2.3. Suppose that V (r, z) := ‖z − r‖2/2 for any r, z ∈ Z. Also assume that the parameters
{αt} and {γt} in Algorithm 1 are chosen such that α1 = 1, and for all t > 1,

0 ≤ αt < 1, LGαtγt + L2
Hγ2

t ≤ c2 for some c < 1, and
αt

Γtγt
=

αt+1

Γt+1γt+1
, (2.16)

where Γt is defined in (2.9). Then for all t ≥ 1 there exist vt+1 ∈ E and εt+1 ≥ 0 such that g̃(wag
t+1, vt+1) ≤

εt+1. Moreover, we have

‖vt+1‖ ≤ 2αtD

γt
and εt+1 ≤ 3αt(1 + θt)D

2

γt
. (2.17)

where

D := ‖r1 − u∗‖, θt :=
Γt

2(1− c2)
max

i=1,...,t

αi

γi
. (2.18)

and u∗ is a strong solution of V I(Z;G,H, J).

Below we provide a specific setting of parameters {αt} and {γt} that satisfies condition (2.16).
Corollary 2.4. Suppose that V (r, z) := ‖z − r‖2/2 for any r, z ∈ Z and LH > 0. In Algorithm 1, if

N ≥ 2 is given and the parameters {αt} and {γt} are set to

αt =
2

t+ 1
and γt =

t

3(LG + LHN)
, (2.19)

6



then there exists vN ∈ E such that g̃(wag
N , vN ) ≤ εN ,

‖vN‖ ≤
[

12LG

N(N − 1)
+

12LH

N − 1

]

D, and εN ≤
[

45LG

N(N − 1)
+

45LH

N − 1

]

D2, (2.20)

where u∗ is a strong solution of V I(Z;F ) and D is defined in (2.18).

Proof. Clearly, Γt =
2

t(t+ 1)
satisfies (2.9), and

LGαtγt + L2
Hγ2

t =
2LGt

3(LG + LHN)(t+ 1)
+

L2
Ht2

9(LG + LHN)2
≤ 2LG

3(LG + LHN)
+

LHN

3(LG + LHN)

=
2LG + LHN

3(LG + LHN)
≤ 2

3
=: c2.

We can see that c < 1, and
1

1− c2
= 3. Moreover, when N ≥ 2,

θN−1 =
ΓN−1

2(1− c2)
max

1≤i≤N−1
{αi

Γi
} =

1

(1− c2)N(N − 1)
max

1≤i≤N−1
i =

3

N
≤ 3

2
.

We conclude (2.20) by substituting the values of αN−1, γN−1 and θN−1 to (2.17).

Several remarks are in place for the results obtained in Theorem 2.3 and Corollary 2.4. Firstly, although
the existence of a strong solution u∗ is assumed, no information on either u∗ or D is needed for choosing
parameters αt and γt, as shown in (2.19) of Corollary 2.4. Secondly, both residuals ‖vN‖ and εN in (2.20)
converge to 0 at the same rate (up to a constant 15D/4). Finally, it is only for simplicity that we assume
that V (r, z) = ‖z−r‖2/2; Similar results can be achieved under assumptions that ∇ω is Lipschitz continuous
and that

√

V (·, ·) is a metric.

3. Accelerated prox-method for stochastic VI. In this section, we focus on the SV I(Z;F ), and
demonstrate that the stochastic counterpart of Algorithm 1 can achieve the optimal rate of convergence in
(1.8).

The stochastic AMP is obtained by replacing the operators H(rt), H(wt+1) and ∇G(xmd
t ) in Algorithm

1 by their stochastic counterparts H(rt, ζ2t−1), H(wt+1, ζ2t) and G(wmd
t , ξt) respectively, by calling the

stochastic oracles SOG and SOH . This algorithm is formally described in Algorithm 2.

Algorithm 2 The accelerated mirror-prox (AMP) method for solving a weak solution of SV I(Z;G,H, J)

Modify (2.4) and (2.5) in Algorithm 1 to

wt+1 = P γtJ
rt

(

γtH(rt, ζ2t−1) + γtG(wmd
t , ξt)

)

, (3.1)

rt+1 = P γtJ
rt

(

γtH(wt+1, ζ2t) + γtG(wmd
t , ξt)

)

, (3.2)

It is interesting to note that for any t, there are two calls of SOH but just one call of SOG. However, if
we assume that J = 0 and use the stochastic mirror-prox method in [13] to solve SV I(Z;G,H, 0), for any
t there would be two calls of SOH and two calls of SOG. Therefore, the cost per iteration of AMP is less
than that of the stochastic mirror-prox method.

Similarly to Section 2, we use the gap function g(·) for the case when Z is bounded, and use the modified
gap function g̃(·, ·) for the case when Z is unbounded. For both cases we establish the rate of convergence
of the gap functions in terms of their expectation, i.e., the “average” rate of convergence over many runs of
the algorithm. Furthermore, we demonstrate that if Z is bounded, then we can also establish the rate of
convergence of g(·) in the probability sense, under the following “light-tail” assumption:

A2. For any i-th call on oracles SOH and SOH with any input u ∈ Z,

E[exp{‖∇G(u)− G(u, ξi)‖2∗/σ2
G}] ≤ exp{1}, and E[exp{‖H(u)−H(u, ζi)‖2∗/σ2

H}] ≤ exp{1}.
7



It should be noted that Assumption A2 implies Assumption A1 by Jensen’s inequality.

The following theorem shows the convergence property of Algorithm 2 when Z is bounded.
Theorem 3.1. Suppose that (2.10) holds. Also assume that the parameters {αt} and {γt} in Algorithm

2 satisfy α1 = 1 and

qµ− LGαtγt −
3L2

Hγ2
t

µ
≥ 0 for some q ∈ (0, 1), and

αt

Γtγt
≤ αt+1

Γt+1γt+1
, ∀t ≥ 1, (3.3)

where Γt is defined in (2.9). Then,
(a)Under Assumption A1, for all t ≥ 1,

E
[

g(wag
t+1)

]

≤ Q0(t), (3.4)

where Q0(t) :=
2αt

γt
Ω2

Z +

[

4σ2
H +

(

1 +
1

2(1− q)

)

σ2
G

]

Γt

t
∑

i=1

αiγi
µΓi

. (3.5)

(b)Under Assumption A2, for all λ > 0 and t ≥ 1,

Prob{g(wag
t+1) > Q0(t) + λQ1(t)} ≤ 2 exp{−λ2/3}+ 3 exp{−λ} (3.6)

where Q1(t) := Γt(σG + σH)ΩZ

√

√

√

√

2

µ

t
∑

i=1

(

αi

Γi

)2

+

[

4σ2
H +

(

1 +
1

2(1− q)

)

σ2
G

]

Γt

t
∑

i=1

αiγi
µΓi

. (3.7)

We present below a specific parameter setting of {αt} and {γt} that satisfies (3.3).
Corollary 3.2. Suppose that (2.10) holds. If the stepsizes {αt} and {γt} in Algorithm 2 are set to:

αt =
2

t+ 1
and γt =

µt

4LG + 3LHt+ σ(t+ 1)
√
µt/(

√
2ΩZ)

, (3.8)

where σ :=
√

σ2
H + σ2

G, and ΩZ is defined in (2.10). Then under Assumption A1,

E
[

g(wag
t+1)

]

≤ 16LGΩ
2
Z

µt(t+ 1)
+

12LHΩ2
Z

µ(t+ 1)
+

7(σG + σH)ΩZ
√

µ(t− 1)
=: C0(t). (3.9)

Furthermore, under Assumption A2,

Prob{g(wag
t+1) > C0(t) + λC1(t)} ≤ 2 exp{−λ2/3}+ 3 exp{−λ}, ∀λ > 0,

where

C1(t) :=
6(σG + σH)ΩZ
√

µ(t− 1)
. (3.10)

Proof. It is easy to check that Γt =
2

t(t+ 1)
and

αt

Γtγt
≤ αt+1

Γt+1γt+1
. In addition, in view of (3.8), we

have γt ≤ µt/(4LG) and γ2
t ≤ (µ2)/(9L2

H), which implies

5µ

6
− LGαtγt −

3L2
Hγ2

t

µ
≥ 5µ

6
− µt

4
· 2

t+ 1
− µ

3
≥ 0.

Therefore the first relation in (3.3) holds with constant q = 5/6. In view of Theorem 3.1, it now suffices to
show that Q0(t) ≤ C0(t) and Q1(t) ≤ C1(t). Observe that αt/Γt = t, and γt ≤ (

√
2µΩZt)/(σt

3/2), thus using

the fact that
∑t

i=1

√
i ≤

∫ t+1

0

√
tdt = 2

3 (t+ 1)3/2, we obtain

t
∑

i=1

αiγi
Γi

≤
t
∑

i=1

√
2µΩZ i

2

σi3/2
=

√
2µΩZ

σ

t
∑

i=1

√
i ≤

√
2µΩZ

3σ
(t+ 1)3/2.
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Using the above inequality, (2.10), (3.5), (3.7), (3.8), and the fact that
√
t+ 1/t ≤ 1/

√
t− 1 and

∑t
i=1 i

2 ≤
t(t+ 1)2/3, we have

Q0(t) =
4Ω2

Z

µt(t+ 1)

(

4LG + 3LHt+ σ(t + 1)
√

2µt/ΩZ

)

+
4σ2

µt(t+ 1)

t
∑

i=1

αiγi
Γi

≤ 16LGΩ
2
Z

µt(t+ 1)
+

12LHΩ2
Z

µ(t+ 1)
+

2
√
2σΩZ√
µt

+
8σΩZ

√

2(t+ 1)

3
√
µt

≤ C0(t),

and

Q1(t) =
2(σG + σH)

t(t+ 1)
ΩZ

√

√

√

√

2

µ

t
∑

i=1

i2 +
8σ2

µt(t+ 1)

t
∑

i=1

αiγi
Γi

≤ 2
√
2(σG + σH)ΩZ√

3µt
+

8σΩZ

√

2(t+ 1)

3
√
µt

≤ C1(t).

In view of (1.8), (3.9) and (3.10), we can clearly see that the stochastic AMP method achieves the
optimal iteration complexity for solving the SVI problem. More specifically, this algorithm allows LG to be
as large as O(t3/2) without significantly affecting its convergence properties.

In the following theorem, we demonstrate the convergence properties of Algorithm 2 for solving the
stochastic problem SV I(Z;G,H, J) when Z is unbounded. It seems that this case has not been well-studied
previously in the literature.

Theorem 3.3. Suppose that V (r, z) := ‖z − r‖2/2 for any r ∈ Z and z ∈ Z. If the parameters {αt}
and {γt} in Algorithm 1 are chosen such that α1 = 1, and for all t > 1,

0 ≤ αt < 1, LGαtγt + 3L2
Hγ2

t ≤ c2 < q for some c, q ∈ (0, 1), and
αt

Γtγt
=

αt+1

Γt+1γt+1
, (3.11)

where Γt is defined in (2.9). Then for all t ≥ 1 there exists a perturbation vector vt+1 and a residual εt+1 ≥ 0
such that g̃(wag

t+1, vt+1) ≤ εt+1. Moreover, for all t ≥ 1, we have

E[‖vt+1‖] ≤
αt

γt
(2D + 2

√

D2 + C2
t ), (3.12)

E[εt+1] ≤
αt

γt

[

(3 + 6θ)D2 + (1 + 6θ)C2
t

]

+
18α2

tσ
2
H

γ2
t

t
∑

i=1

γ3
i , (3.13)

where u∗ is a strong solution of V I(Z;G,H, J),

θ = max{1, c2

q − c2
} and Ct =

√

√

√

√

[

4σ2
H +

(

1 +
1

2(1− q)

)

σ2
G

] t
∑

i=1

γ2
i . (3.14)

Below we give an example of parameters αt and γt that satisfies (3.11).
Corollary 3.4. Suppose that there exists a strong solution of (1.1). If the maximum number of

iterations N is given, and the stepsizes {αt} and {γt} in Algorithm 2 are set to

αt =
2

t+ 1
and γt =

t

5LG + 3LHN + σN
√
N − 1/D̃

, (3.15)

where σ is defined in Corollary 3.2, then there exists vN ∈ E and εN > 0, such that g̃(wag
N , vN ) ≤ εN ,

E[‖vN‖] ≤ 40LGD

N(N − 1)
+

24LHD

N − 1
+

σ(8D/D̃ + 5)√
N − 1

, (3.16)
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and

E[εN ] ≤ 90LGD
2

N(N − 1)
+

54LHD2

N − 1
+

σD√
N − 1

(

18D

D̃
+ (19 +

18

N
)
D̃

D

)

. (3.17)

Proof. Clearly, Γt =
2

t(t+ 1)
satisfies (2.9). Moreover, in view of (3.15), we have

LGαtγt + 3L2
Hγ2

t ≤ 2LG

5LG + 3LHN
+

3L2
HN2

(5LG + 3LHN)2
=

10L2
G + 6LGLHN + 3L2

HN2

(5LG + 3LHN)2
<

5

12
<

5

6
,

which implies that (3.11) is satisfied with c2 = 5/12 and q = 5/6. Observing from (3.15) that γt = tγ1,
setting t = N − 1 in (3.14) and (3.15), we obtain

αN−1

γN−1
=

2

γ1N(N − 1)
and C2

N−1 = 4σ2
N−1
∑

i=1

γ2
1 i

2 ≤ 4σ2γ2
1N

2(N − 1)

3
. (3.18)

Applying (3.18) to (3.12) we have

E[‖vN‖] ≤ 2

γ1N(N − 1)
(4D + 2CN−1) ≤

8D

γ1N(N − 1)
+

8σ
√

3(N − 1)

≤ 40LGD

N(N − 1)
+

24LHD

N − 1
+

σ(8D/D̃ + 5)√
N − 1

.

In addition, using (3.13), (3.18), and the facts that θ = 1 in (3.14) and
∑N−1

i=1 γ3
i = N2(N − 1)2/4, we have

E[εN−1] ≤
2

γ1N(N − 1)
(9D2 + 7C2

N−1) +
72σ2

H

γ2
1N

2(N − 1)2
· γ

3
1N

2(N − 1)2

4

≤ 18D2

γ1N(N − 1)
+

56σD̃

3
√
N − 1

+
18σ2

HD̃

σN
√
N − 1

≤ 90LGD
2

N(N − 1)
+

54LHD2

N − 1
+

σD√
N − 1

(

18D

D̃
+ (19 +

18

N
)
D̃

D

)

.

Observe that we need to choose a parameter D̃ for the stochastic unbounded case, which is not required
for the deterministic case (see Corollary 2.4). Note that the value of D will be very difficult to estimate
for the unbounded case and hence one often has to resort to a suboptimal selection for D̃. For example, if
D̃ = 1, then the RHS of (3.16) and (3.17) will become O(LGD/N2+LHD/N+σD/

√
N) and O(LGD

2/N2+
LHD2/N + σD2/

√
N), respectively.

4. Convergence analysis. In this section, we focus on proving the main convergence results in Section
2 and 3, namely, Theorems 2.1, 2.3, 3.1 and 3.3.

4.1. Convergence analysis for deterministic AMP. In this section, we prove Theorems 2.1 and
2.3 in Section 2, which state the main convergence properties of Algorithm 1 for solving the deterministic
problem V I(Z;G,H, J).

To prove the convergence of the deterministic AMP, first we present some technical results. Propositions
4.1 and 4.2 describe some important properties of the prox-mapping P J

r (η) in iterations (2.4) and (2.5) of
Algorithm 1. Proposition 4.3 provides a recursion property of function Q(·, ·) defined in (2.7). With the help
of Propositions 4.1, 4.2 and 4.3, we can estimate a bound on Q(·, ·) in Lemma 4.4.

Proposition 4.1. For all r, ζ ∈ E, if w = P J
r (ζ), then for all u ∈ Z, we have

〈ζ, w − u〉+ J(w) − J(u) ≤ V (r, u)− V (r, w) − V (w, u). (4.1)

Proof. See Lemma 2 in [11] for the proof.

The following proposition is a slight extension of Lemma 6.3 in [13]. In particular, when J(·) = 0, we
can obtain (4.5) and (4.6) directly by applying (4.4) to (6.8) in [13], and the results when J(·) 6≡ 0 can be

10



easily constructed from the proof of Lemma 6.3 in [13]. We provide the proof here only for the integrity of
this proposition.

Proposition 4.2. Given r, w, y ∈ Z and η, ϑ ∈ E that satisfies

w = P J
r (η), (4.2)

y = P J
r (ϑ), (4.3)

and

‖ϑ− η‖2∗ ≤ L2‖w − r‖2 +M2, (4.4)

then for all u ∈ Z we have

〈ϑ,w − u〉+ J(w)− J(u) ≤ V (r, u)− V (y, u)−
(

µ

2
− L2

2µ

)

‖r − w‖2 + M2

2µ
, (4.5)

and

V (y, w) ≤ L2

µ2
V (r, w) +

M2

2µ
. (4.6)

Proof. Applying Proposition 4.1 to (4.2) and (4.3), for all u ∈ Z we have

〈η, w − u〉+ J(w)− J(u) ≤ V (r, u)− V (r, w)− V (w, u), (4.7)

〈ϑ, y − u〉+ J(y)− J(u) ≤ V (r, u)− V (r, y)− V (y, u), (4.8)

Specifically, letting u = y in (4.7) we have

〈η, w − y〉+ J(w)− J(y) ≤ V (r, y)− V (r, w) − V (w, y). (4.9)

Adding inequalities (4.8) and (4.9), then

〈ϑ, y − u〉+ 〈η, w − y〉+ J(w) − J(u) ≤ V (r, u)− V (y, u)− V (r, w) − V (w, y),

which is equivalent to

〈ϑ,w − u〉+ J(w)− J(u) ≤ 〈ϑ− η, w − y〉+ V (r, u)− V (y, u)− V (r, w) − V (w, y).

Applying Schwartz inequality and Young’s inequality to the above inequality, and using the well-known result
that

µ

2
‖z − u‖2 ≤ V (u, z), ∀u, z ∈ Z, (4.10)

we obtain

〈ϑ,w − u〉+ J(w) − J(u)

≤ ‖ϑ− η‖∗‖w − y‖+ V (r, u)− V (y, u)− V (r, w) − µ

2
‖w − y‖2

≤ 1

2µ
‖ϑ− η‖2∗ +

µ

2
‖w − y‖2 + V (r, u)− V (y, u)− V (r, w)− µ

2
‖w − y‖2

=
1

2µ
‖ϑ− η‖2∗ + V (r, u)− V (y, u)− V (r, w).

(4.11)

The result in (4.5) then follows immediately from above relation, (4.10) and (4.4).
Moreover, observe that by setting u = w and u = y in (4.8) and (4.11) respectively, we have

〈ϑ, y − w〉+ J(y)− J(w) ≤ V (r, w) − V (r, y)− V (y, w),

〈ϑ,w − y〉+ J(w) − J(y) ≤ 1

2µ
‖ϑ− η‖2∗ + V (r, y)− V (r, w).
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Adding the two inequalities above, and using (4.10) and (4.4), we have

0 ≤ 1

2µ
‖ϑ− η‖2∗ − V (y, w) ≤ L2

2µ
‖r − w‖2 + M2

2µ
− V (y, w) ≤ L2

µ2
V (r, w) +

M2

2µ
− V (y, w),

thus (4.6) holds.

Proposition 4.3. For any sequences {rt}t≥1 and {wt}t≥1 ⊂ Z, if the sequences {wag
t } and {wmd

t } are
generated by (2.3) and (2.6), then for all u ∈ Z,

Q(wag
t+1, u)− (1− αt)Q(wag

t , u)

≤αt〈∇G(wmd
t ), wt+1 − u〉+ LGα

2
t

2
‖wt+1 − rt‖2 + αt〈H(wt+1), wt+1 − u〉+ αtJ(wt+1)− αtJ(u).

(4.12)

Proof. Observing from (2.3) and (2.6) that wag
t+1 −wmd

t = αt(wt+1 − rt). This observation together with
the convexity of G(·), then imply that for all u ∈ Z,

G(wag
t+1) ≤ G(wmd

t ) + 〈∇G(wmd
t ), wag

t+1 − wmd
t 〉+ LG

2
‖wag

t+1 − wmd
t ‖2

= (1− αt)
[

G(wmd
t ) + 〈∇G(wmd

t ), wag
t − wmd

t 〉
]

+ αt

[

G(wmd
t ) + 〈∇G(wmd

t ), u− wmd
t 〉

]

+ αt〈∇G(wmd
t ), wt+1 − u〉+ LGα

2
t

2
‖wt+1 − rt‖2

≤ (1− αt)G(wag
t ) + αtG(u) + αt〈∇G(wmd

t ), wt+1 − u〉+ LGα
2
t

2
‖wt+1 − rt‖2.

Applying (2.6) and (2.7) to the above inequality, and using the fact that H(·) is monotone, we have

Q(wag
t+1, u)− (1− αt)Q(wag

t , u)

= G(wag
t+1)− (1− αt)G(wag

t )− αtG(u) + 〈H(u), wag
t+1 − u〉 − (1 − αt)〈H(u), wag

t − u〉
+ J(wag

t+1)− (1− αt)J(w
ag
t )− αtJ(u)

≤ G(wag
t+1)− (1− αt)G(wag

t )− αtG(u) + αt〈H(u), wt+1 − u〉+ αtJ(wt+1)− αtJ(u)

≤ αt〈∇G(wmd
t ), wt+1 − u〉+ LGα

2
t

2
‖wt+1 − rt‖2 + αt〈H(wt+1), wt+1 − u〉+ αtJ(wt+1)− αtJ(u).

The following lemma estimates a bound on Q(wag
t+1, u), and will be used in the proof of both Theorems

2.1 and 2.3.
Lemma 4.4. Suppose that the parameters {αt} in Algorithm 1 satisfies α1 = 1 and 0 ≤ αt < 1 for all

t > 1, and let the sequence {Γt} be defined in (2.9). Then the iterates {rt}, {wt} and {wag
t } of Algorithm 1

satisfy

1

Γt
Q(wag

t+1, u) ≤ Bt(u, r[t])−
t
∑

i=1

αi

2Γiγi

(

µ− LGαiγi −
L2
Hγ2

i

µ

)

‖ri − wi+1‖2, ∀u ∈ Z, (4.13)

where Bt(u, r[t]) :=
t
∑

i=1

αi

Γiγi
(V (ri, u)− V (ri+1, u)). (4.14)

Proof. First, it follows from Proposition 4.2 applied to iterations (2.4) and (2.5) with r = rt, w =
wt+1, y = rt+1, ϑ = γtH(rt) + γt∇G(wmd

t ), η = γtH(wt+1) + γt∇G(wmd
t ), J = γtJ , L = LHγt and M = 0

that for any u ∈ Z,

γt〈H(wt+1) +∇G(wmd
t ), wt+1 − u〉+ γtJ(wt+1)− γtJ(u)

≤ V (rt, u)− V (rt+1, u)−
(

µ

2
− L2

Hγ2
t

2µ

)

‖rt − wt+1‖2.
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Now applying the above inequality to (4.12), we have

Q(wag
t+1, u)− (1 − αt)Q(wag

t , u) ≤ αt

γt
[V (rt, u)− V (rt+1, u)]−

αt

2γt

(

µ− LGαtγt −
L2
Hγ2

t

µ

)

‖rt − wt+1‖2.

(4.15)

Dividing both sides of the above inequality by Γt, we have

1

Γt
Q(wag

t+1, u)−
1− αt

Γt
Q(wag

t , u)

≤ αt

Γtγt
[V (rt, u)− V (rt+1, u)]−

αt

2Γtγt

(

µ− LGαtγt −
L2
Hγ2

t

µ

)

‖rt − wt+1‖2.

Using the facts that α1 = 1, and that
1− αt

Γt
=

1

Γt−1
, t > 1, due to (2.9), we can apply the above inequality

recursively to obtain (4.13).

We are now ready to prove Theorem 2.1, which provides an estimate of the gap function of deterministic
AMP when Z is bounded. This result follows immediately from Lemma 4.4.

Proof of Theorem 2.1. In view of (2.11) and (4.13), to prove (2.12) it suffices to show that Bt(u, r[t]) ≤
αt

Γtγt
Ω2

Z for all u ∈ Z. In fact, since the sequence {ri}t+1
i=1 is in the bounded set Z, applying (2.10) and (2.11)

to (4.14) we have

Bt(u, r[t]) =
α1

Γ1γ1
V (r1, u)−

t−1
∑

i=1

[

αi

Γiγi
− αi+1

Γi+1γi+1

]

V (ri+1, u)−
αt

Γtγt
V (rt+1, u)

≤ α1

Γ1γ1
Ω2

Z −
t−1
∑

i=1

[

αi

Γiγi
− αi+1

Γi+1γi+1

]

Ω2
Z =

αt

Γtγt
Ω2

Z , ∀u ∈ Z

(4.16)

thus (2.12) holds.

In the remaining part of this subsection, we will focus on proving Theorem 2.3, which summarizes the
convergence properties of deterministic AMP when Z is unbounded.

Proof of Theorem 2.3. By the assumption that V (r, z) := ‖z − r‖2/2 for all r, z ∈ Z, and applying the
last relation of (2.16) to (4.14), we obtain

Bt(u, r[t]) =
αt

2Γtγt
‖r1 − u‖2 − αt

2Γtγt
‖rt+1 − u‖2.

Applying this and the second relation of (2.16) to (4.13) and noting that µ = 1, we have

Q(wag
t+1, u) ≤

αt

2γt
‖r1 − u‖2 − αt

2γt
‖rt+1 − u‖2 − αt

2γt

t
∑

i=1

(

1− c2
)

‖ri − wi+1‖2. (4.17)

The first two terms in (4.17) can be rewritten as

1

2
‖r1 − u‖2 − 1

2
‖rt+1 − u‖2 = 1

2
‖r1‖2 −

1

2
‖rt+1‖2 − 〈r1 − rt+1, u〉

=
1

2
‖r1 − wag

t+1‖2 −
1

2
‖rt+1 − wag

t+1‖2 + 〈r1 − rt+1, w
ag
t+1 − u〉.

(4.18)

Then, the combination of (4.17) and (4.18) yields

Q(wag
t+1, u)−

αt

γt
〈r1 − rt+1, w

ag
t+1 − u〉

≤ αt

2γt
‖r1 − wag

t+1‖2 −
αt

2γt
‖rt+1 − wag

t+1‖2 −
αt

2γt
(1− c2)

t
∑

i=1

‖ri − wi+1‖2 =: εt+1.
(4.19)
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Therefore, if we set vt+1 :=
αt

γt
(r1 − rt+1), then Q(wag

t+1, u)−〈vt+1, w
ag
t+1 −u〉 ≤ εt+1 for all u ∈ Z. It should

be noted that εt+1 ≥ 0 holds trivially by letting u = wag
t+1 in (4.19). Hence we have g̃(wag

t+1, vt+1) ≤ εt+1 and
it suffices to estimate the bound of ‖vt+1‖ and εt+1.

If there exists a strong solution u∗ of V I(Z;G,H, J), then by (1.2), (1.5), (2.7) and the convexity of G
and J , we have Q(wag

t+1, u
∗) ≥ 〈∇F (u∗), wag

t+1 − u∗〉 ≥ 0. This observation together with (4.17) imply that

‖r1 − u∗‖2 − ‖rt+1 − u∗‖2 −
t
∑

i=1

(

1− c2
)

‖ri − wi+1‖2 ≥ 0.

By the above inequality and the definition of D in (2.18), we have the following two inequalities:

‖rt+1 − u∗‖ ≤D, (4.20)

t
∑

i=1

‖ri − wi+1‖2 ≤ D2

1− c2
. (4.21)

By (4.20) and the definition of vt+1, we have

‖vt+1‖ ≤ αt

γt
(‖r1 − u∗‖+ ‖rt+1 − u∗‖) ≤ 2αt

γt
D,

hence the first relation in (2.17) holds.

To finish the proof, it now suffices to estimate a bound for εt. Firstly we explore the definition of the
aggregate point wag

t+1. By (2.6) and (2.9), we have

1

Γt
wag

t+1 =
1

Γt−1
wag

t +
αt

Γt
wt+1, ∀t ≥ 1.

Using the assumption that wag
1 = w1, we obtain

wag
t+1 = Γt

t
∑

i=1

αi

Γi
wi+1, (4.22)

where by (2.9) we have

Γt

t
∑

i=1

αi

Γi
= 1. (4.23)

Therefore, wag
t+1 is a convex combination of iterates w2, . . . , wt+1. Using (2.18), (4.19), (4.20) and (4.21),

we conclude that

εt+1 ≤ αt

2γt
‖r1 − wag

t+1‖2 ≤
αtΓt

2γt

t
∑

i=1

αi

γi
‖r1 − wi+1‖2

≤ 3αtΓt

2γt

t
∑

i=1

αi

γi
(‖r1 − u∗‖2 + ‖ri − u∗‖2 + ‖ri − wi+1‖2) ≤

3αt

2γt

(

2D2 + Γt max
i=1,...,t

αi

γi

t
∑

i=1

‖ri − wi+1‖2
)

≤ 3αt(1 + θt)D
2

γt
.
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4.2. Convergence analysis for stochastic AMP. In this section, we prove the convergence results
of the stochastic AMP method presented in Section 3, namely, Theorems 3.1 and 3.3.

Throughout this section, we will use the following notations to describe the inexactness of the first order
information from SOH and SOG. At the t-th iteration, letting H(rt, ζ2t−1), H(wt+1, ζ2t) and G(wmd

t , ξt) be
the outputs of the stochastic oracles, we denote

∆2t−1
H := H(rt, ζ2t−1)−H(rt), ∆2t

H := H(wt+1, ζ2t)−H(wt+1) and ∆t
G := G(wmd

t , ξt)−∇G(wmd
t ). (4.24)

To start with, we present a technical result to obtain a bound on Q(wag
t+1, u) for all u ∈ Z. The following

lemma is analogous to Lemma 4.4 for deterministic AMP, and will be applied in the proof of Theorems 3.1
and 3.3.

Lemma 4.5. Suppose that the parameters {αt} in Algorithm 1 satisfies α1 = 1 and 0 ≤ αt < 1 for all
t > 1, and let the sequence {Γt} be defined in (2.9). Then the iterates {rt}, {wt} and {wag

t } generated by
Algorithm 2 satisfy

1

Γt
Q(wag

t+1, u) ≤ Bt(u, r[t])−
t
∑

i=1

αi

2Γiγi

(

qµ− LGαiγi −
3L2

Hγ2
i

µ

)

‖ri − wi+1‖2 +
t
∑

i=1

Λi(u), ∀u ∈ Z, (4.25)

where Bt(u, r[t]) is defined in (4.14), and

Λi(u) :=
3αiγi
2µΓi

(

‖∆2i
H‖2∗ + ‖∆2i−1

H ‖2∗
)

− (1− q)µαi

2Γiγi
‖ri − wi+1‖2 −

αi

Γi
〈∆2i

H +∆i
G, wi+1 − u〉. (4.26)

Proof. Observe from (4.24) that

‖H(wt+1, ζ2t)−H(rt, ζ2t−1)‖2∗ ≤
(

‖H(wt+1)−H(rt)‖∗ + ‖∆2t
H‖∗ + ‖∆2t−1

H ‖∗
)2

≤ 3
(

‖H(wt+1)−H(rt)‖2∗ + ‖∆2t
H‖2∗ + ‖∆2t−1

H ‖2∗
)

≤ 3
(

L2
H‖wt+1 − rt‖2 + ‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗

)

.

(4.27)

Applying Proposition 4.2 to (3.1) and (3.2) with r = rt, w = wt+1, y = rt+1, ϑ = γtH(rt, ζ2t−1)+γtG(wmd
t , ξt),

η = γtH(wt+1, ζ2t) + γtG(wmd
t , ξt), J = γtJ , L

2 = 3L2
Hγ2

t and M2 = 3γ2
t (‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗), and using

(4.27) we get that for any u ∈ Z,

γt〈H(wt+1, ζ2t) + G(wmd
t , ξt), wt+1 − u〉+ γtJ(w) − γtJ(u)

≤ V (rt, u)− V (rt+1, u)−
(

µ

2
− 3L2

Hγ2
t

2µ

)

‖rt − wt+1‖2 +
3γ2

t

2µ
(‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗).

Applying (4.24) and the above inequality to (4.12), we have

Q(wag
t+1, u)− (1 − αt)Q(wag

t , u)

≤ αt〈H(wt+1, ζ2t) + G(wmd
t , ξt), wt+1 − u〉+ αtJ(wt+1)− αtJ(u) +

LGα
2
t

2
‖wt+1 − rt‖2

− αt〈∆2t
H +∆t

G, wt+1 − u〉

≤ αt

γt
(V (rt, u)− V (rt+1, u))−

αt

2γt

(

µ− LGαtγt −
3L2

Hγ2
t

µ

)

‖rt − wt+1‖2 +
3αtγt
2µ

(

‖∆2t
H‖2∗ + ‖∆2t−1

H ‖2∗
)

− αt〈∆2t
H +∆t

G, wt+1 − u〉.

Dividing the above inequality by Γt and using the definition of Λt(u) in (4.26), we obtain

1

Γt
Q(wag

t+1, u)−
1− αt

Γt
Q(wag

t , u)

≤ αt

Γtγt
(V (rt, u)− V (rt+1, u))−

αt

2Γtγt

(

qµ− LGαtγt −
3L2

Hγ2
t

µ

)

‖rt − wt+1‖2 + Λt(u).
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Noting the fact that α1 = 1 and
1− αt

Γt
=

1

Γt−1
, t > 1, due to (2.9), applying the above inequality recursively

and using the definition of Bt(·, ·) in (4.14), we conclude (4.25).

We still need the following technical result to prove Theorem 3.1.
Lemma 4.6. Suppose that the sequences {θt} and {γt} are positive sequences. For any w1 ∈ Z and any

sequence {∆t} ⊂ E, if we define wv
1 = w1 and

wv
i+1 = argmin

u∈Z
−γi〈∆i, u〉+ V (wv

i , u), ∀i > 1, (4.28)

then

t
∑

i=1

θi〈−∆i, wv
i − u〉 ≤

t
∑

i=1

θi
γi
(V (wv

i , u)− V (wv
i+1, u)) +

t
∑

i=1

θiγi
2µ

‖∆i‖2∗, ∀u ∈ Z. (4.29)

Proof. Applying Proposition 4.1 with r = wv
i , w = wv

i+1, ζ = −γi∆
i and J = 0, we have

−γi〈∆i, wv
i+1 − u〉 ≤ V (wv

i , u)− V (wv
i , w

v
i+1)− V (wv

i+1, u), ∀u ∈ Z.

On the other hand, by Schwartz inequality, Young’s inequality and (4.10) we have

−γi〈∆i, wv
i − wv

i+1〉 ≤ γi‖∆i‖∗‖‖wv
i − wv

i+1‖ ≤ γ2
i

2µ
‖∆i‖2∗ +

µ

2
‖wv

i − wv
i+1‖2 ≤ γ2

i

2µ
‖∆i‖2∗ + V (wv

i , w
v
i+1).

Adding the two inequalities above and multiplying them by θi/γi, we obtain

−θi〈∆i, wv
i − u〉 ≤ θiγi

2µ
‖∆i‖2∗ +

θi
γi
(V (wv

i , u)− V (wv
i+1, u)).

Summing from i = 1 to t, we conclude (4.29).

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Firstly, applying (3.3) and (4.16) to (4.25) in Lemma 4.5, we have

1

Γt
Q(wag

t+1, u) ≤
αt

Γtγt
Ω2

Z +

t
∑

i=1

Λi(u), ∀u ∈ Z. (4.30)

Letting wv
1 = w1, defining wv

i+1 as in (4.28) with ∆i = ∆2i
H + ∆i

G for all i > 1, it follows from (4.14)
and Lemma 4.6 with θi = αi/Γi that

−
t
∑

i=1

αi

Γi
〈∆2i

H +∆i
G, w

v
i − u〉 ≤ Bt(u,w

v
[t]) +

t
∑

i=1

αiγi
2µΓi

‖∆2i
H +∆i

G‖2∗, ∀u ∈ Z. (4.31)

Noting that by (4.26)

t
∑

i=1

Λi(u) = −
t
∑

i=1

αi

Γi
〈∆2i

H +∆i
G, w

v
i − u〉+

t
∑

i=1

αi

Γi

[

− (1− q)µ

2γi
‖ri − wi+1‖2 − 〈∆i

G, wi+1 − ri〉
]

+
t
∑

i=1

3αiγi
2µΓi

(

‖∆2i
H‖2∗ + ‖∆2i−1

H ‖2∗
)

−
t
∑

i=1

αi

Γi
〈∆i

G, ri − wv
i 〉 −

t
∑

i=1

αi

Γi
〈∆2i

H , wi+1 − wv
i 〉,

applying (4.31) and the Young’s inequality to above equation, we conclude that

t
∑

i=1

Λi(u) ≤ Bt(u,w
v
[t]) + Ut, (4.32)
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where

Ut :=

t
∑

i=1

αiγi
2µΓi

‖∆2i
H +∆i

G‖2∗ +
t
∑

i=1

αiγi
2(1− q)µΓi

‖∆i
G‖2∗ +

t
∑

i=1

3αiγi
2µΓi

(

‖∆2i
H‖2∗ + ‖∆2i−1

H ‖2∗
)

−
t
∑

i=1

αi

Γi
〈∆i

G, ri − wv
i 〉 −

t
∑

i=1

αi

Γi
〈∆2i

H , wi+1 − wv
i 〉.

(4.33)

Applying (4.16) and (4.32) to (4.30), we have

1

Γt
Q(wag

t+1, u) ≤
2αt

γtΓt
Ω2

Z + Ut, ∀u ∈ Z,

or equivalently,

g(wag
t ) ≤ 2αt

γt
Ω2

Z + ΓtUt. (4.34)

Now it suffices to bound Ut, in both expectation and probability.
We prove part (a) first. By our assumptions on SOG and SOH and in view of (3.1), (3.2) and (4.28),

during the i-th iteration of Algorithm 2, the random noise ∆2i
H is independent of wi+1 and wv

i , and ∆i
G

is independent of ri and wv
i , hence E[〈∆i

G, ri − wv
i 〉] = E[〈∆2i

H , wi+1 − wv
i 〉] = 0. In addition, Assumption

A1 implies that E[‖∆i
G‖2∗] ≤ σ2

G, E[‖∆2i−1
H ‖2∗] ≤ σ2

H and E[‖∆2i
H‖2∗] ≤ σ2

H , where ∆i
G, ∆

2i−1
H and ∆2i

H are
independent. Therefore, taking expectation on (4.33) we have

E[Ut] ≤ E

[

t
∑

i=1

αiγi
µΓi

(

‖∆2i
H‖2 + ‖∆i

G‖2∗
)

+

t
∑

i=1

αiγi
2(1− q)µΓi

‖∆i
G‖2∗ +

t
∑

i=1

3αiγi
2µΓi

(

‖∆2i
H‖2∗ + ‖∆2i−1

H ‖2∗
)

]

=
t
∑

i=1

αiγi
µΓi

[

4σ2
H +

(

1 +
1

2(1− q)

)

σ2
G

]

.

(4.35)

Taking expectation on both sides of (4.34), and using above estimation on E[Ut], we obtain (3.4).
Next we prove part (b). Observing that the sequence {〈∆i

G, ri − wv
i 〉}i≥1 is a martingale difference and

hence satisfies the large-deviation theorem (see, e.g., Lemma 2 of [17]), therefore using Assumption A2 and
the fact that

E[exp{µ(αiΓ
−1
i 〈∆i

G, ri − wv
i 〉)2/2(σGαiΓ

−1
i ΩZ)

2}] ≤ E[exp{µ‖∆i
G‖2∗‖ri − wv

i ‖2/2σ2
GΩ

2
Z}]

≤ E[exp{‖∆i
G‖2∗}/σ2

G] ≤ exp{1},

we conclude from the large-deviation theorem that

Prob







t
∑

i=1

αi

Γi
〈∆i

G, ri − wv
i 〉 > λσGΩZ

√

√

√

√

2

µ

t
∑

i=1

(

αi

Γi

)2






≤ exp{−λ2/3}. (4.36)

By similar argument we also have

Prob







t
∑

i=1

αi

Γi
〈∆2i

H , wi+1 − wv
i 〉 > λσHΩZ

√

√

√

√

2

µ

t
∑

i=1

(

αi

Γi

)2






≤ exp{−λ2/3}. (4.37)

In addition, letting Si = αiγi/(µΓi) and S =
∑t

i=1 Si, by Assumption A2 and the convexity of exponen-
tial functions, we have

E

[

exp

{

1

S

t
∑

i=1

Si‖∆i
G‖2∗/σ2

G

}]

≤ E

[

1

S

t
∑

i=1

Si exp
{

‖∆i
G‖2∗/σ2

G

}

]

≤ exp{1},
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therefore by Markov’s inequality we have

Prob

{

(

1 +
1

2(1− q)

) t
∑

i=1

αiγi
µΓi

‖∆i
G‖2∗ > (1 + λ)σ2

G

(

1 +
1

2(1− q)

) t
∑

i=1

αiγi
µΓi

}

≤ exp{−λ}. (4.38)

Using similar arguments, we also have

Prob

{

t
∑

i=1

3αiγi
2µΓi

‖∆2i−1
H ‖2∗ > (1 + λ)

3σ2
H

2

t
∑

i=1

αiγi
µΓi

}

≤ exp{−λ}, (4.39)

Prob

{

t
∑

i=1

5αiγi
2µΓi

‖∆2i
H‖2∗ > (1 + λ)

5σ2
H

2

t
∑

i=1

αiγi
µΓi

}

≤ exp{−λ}. (4.40)

Using the fact that ‖∆2i
H +∆2i−1

G ‖2∗ ≤ 2‖∆2i
H‖2∗ + ‖∆2i−1

G ‖2∗, we conclude from (4.34)–(4.40) that (3.6) holds.

In the remaining part of this subsection, we will focus on proving Theorem 3.3, which describes the rate
of convergence of Algorithm 2 for solving SV I(Z;G,H, J) when Z is unbounded.

Proof the Theorem 3.3. Let Ut be defined in (4.33). Firstly, applying (3.11) and (4.32) to (4.25) in
Lemma 4.5, we have

1

Γt
Q(wag

t+1, u) ≤ Bt(u, r[t])−
αt

2Γtγt

t
∑

i=1

(

q − c2
)

‖ri − wi+1‖2 + Bt(u,w
v
[t]) + Ut, ∀u ∈ Z. (4.41)

In addition, applying (3.11) to the definition of Bt(·, ·) in (4.14), we obtain

Bt(u, r[t]) =
αt

2Γtγt
(‖r1 − u‖2 − ‖rt+1 − u‖2) (4.42)

=
αt

2Γtγt
(‖r1 − wag

t+1‖2 − ‖rt+1 − wag
t+1‖2 + 2〈r1 − rt+1, w

ag
t+1 − u〉). (4.43)

By using similar argument and the fact that wv
1 = w1 = r1, we have

Bt(u,w
v
[t]) =

αt

2Γtγt
(‖r1 − u‖2 − ‖wv

t+1 − u‖2) (4.44)

=
αt

2Γtγt
(‖r1 − wag

t+1‖2 − ‖wv
t+1 − wag

t+1‖2 + 2〈r1 − wv
t+1, w

ag
t+1 − u〉). (4.45)

We then conclude from (4.41), (4.43) and (4.45) that

Q(wag
t+1, u)− 〈vt+1, w

ag
t+1 − u〉 ≤ εt+1, ∀u ∈ Z, (4.46)

where

vt+1 :=
αt

γt
(2r1 − rt+1 − wv

t+1), and (4.47)

εt+1 :=
αt

2γt

(

2‖r1 − wag
t+1‖2 − ‖rt+1 − wag

t+1‖2 − ‖wv
t+1 − wag

t+1‖2 −
t
∑

i=1

(

q − c2
)

‖ri − wi+1‖2
)

+ ΓtUt.

(4.48)

It is easy to see that the residual εt+1 is positive by setting u = wag
t+1 in (4.46). Hence g̃(wag

t+1, vt+1) ≤ εt+1.
To finish the proof, it suffices to estimate the bounds for E[‖vt+1‖] and E[εt+1].

Since Q(wag
t+1, u

∗) ≥ 0, letting u = u∗ in (4.41), we conclude from (4.42) and (4.44) that

2‖r1 − u∗‖2 − ‖rt+1 − u∗‖2 − ‖wv
t+1 − u∗‖2 −

t
∑

i=1

(

q − c2
)

‖ri − wi+1‖2 +
2Γtγt
αt

Ut ≥ 0,
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and using the definition of D in (2.18), we have

‖rt+1 − u∗‖2 + ‖wv
t+1 − u∗‖2 +

t
∑

i=1

(

q − c2
)

‖ri − wi+1‖2 ≤ 2D2 +
2Γtγt
αt

Ut. (4.49)

In addition, applying (3.11) and the definition of Ct in (3.14) to (4.35), we have

E[Ut] ≤
t
∑

i=1

αtγ
2
i

Γtγt

[

4σ2
H +

(

1 +
1

2(1− q)

)

σ2
G

]

=
αt

Γtγt
C2

t . (4.50)

Combining (4.50) and (4.49), we have

E[‖rt+1 − u∗‖2] + E[‖wv
t+1 − u∗‖2] +

t
∑

i=1

(

q − c2
)

E[‖ri − wi+1‖2] ≤ 2D2 + 2C2
t . (4.51)

We are now ready to prove (3.12). Observing from the definition of vt+1 (4.47) and the definition of D in
(2.18) that ‖vt+1‖ ≤ αt

γt

(2D+ ‖wv
t+1−u∗‖+ ‖rt+1−u∗‖), applying Jensen’s inequality and (4.51), we obtain

E[‖vt+1‖] ≤
αt

γt
(2D +

√

E[(‖rt+1 − u∗‖+ ‖wv
t+1 − u∗‖)2])

≤ αt

γt
(2D +

√

2E[‖rt+1 − u∗‖2 + ‖wv
t+1 − u∗‖2]) ≤ αt

γt
(2D + 2

√

D2 + C2
t ).

Our remaining goal is to prove (3.13). By applying Proposition 4.2 to (3.1) and (3.2) with r = rt, w =
wt+1, y = rt+1, ϑ = γtH(rt, ζ2t−1) + γtG(wmd

t , ξt), η = γtH(wt+1, ζ2t) + γtG(wmd
t , ξt), J = γtJ , L = 3L2

Hγ2
t

and M2 = 3γ2
t (‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗) and using (4.27) and (4.6), we have

1

2
‖rt+1 − wt+1‖2 ≤ 3L2

Hγ2
t

2
‖rt − wt+1‖2 +

3γ2
t

2
(‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗)

≤ c2

2
‖rt − wt+1‖2 +

3γ2
t

2
(‖∆2t

H‖2∗ + ‖∆2t−1
H ‖2∗),

where the last inequality is from (3.11). Now using (4.22), (4.23), (4.48), the inequality above, and applying
Jensen’s inequality, we have

εt+1 − ΓtUt ≤
αt

γt
‖r1 − wag

t+1‖2 =
αt

γt

∥

∥

∥

∥

∥

r1 − u∗ +

t
∑

i=1

αi

Γi
(u∗ − ri+1) +

t
∑

i=1

αi

Γi
(ri+1 − wi+1)

∥

∥

∥

∥

∥

≤ 3αt

γt

[

D2 + Γt

t
∑

i=1

αi

Γi

(

‖ri+1 − u∗‖2 + ‖wi+1 − ri+1‖2
)

]

≤ 3αt

γt

[

D2 + Γt

t
∑

i=1

αi

Γi

(

‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2 + 3γ2
i (‖∆2i

H‖2∗ + ‖∆2i−1
H ‖2∗)‖

)

]

.

(4.52)

Noting that by (3.14) and (4.49)

Γt

t
∑

i=1

αi

Γi
(‖ri+1 − u∗‖2 + c2‖wi+1 − ri‖2) ≤ Γt

t
∑

i=1

αiθ

Γi
(‖ri+1 − u∗‖2 + (q − c2)‖wi+1 − ri‖2)

≤ Γt

t
∑

i=1

αiθ

Γi
(2D2 +

2Γiγi
αi

Ui) = 2θD2 + 2θΓt

t
∑

i=1

γiUi,

and that by (3.11)

Γt

t
∑

i=1

3αiγ
2
i

Γi
(‖∆2i

H‖2∗ + ‖∆2i−1
H ‖2∗) = Γt

t
∑

i=1

3αtγ
3
i

Γtγt
(‖∆2i

H‖2∗ + ‖∆2i−1
H ‖2∗) =

3αt

γt

t
∑

i=1

γ3
i (‖∆2i

H‖2∗ + ‖∆2i−1
H ‖2∗),
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we conclude from (4.50), (4.52) and Assumption A1 that

E[εt+1] ≤ ΓtE[Ut] +
3αt

γt

[

D2 + 2θD2 + 2θΓt

t
∑

i=1

γiE[Ui] +
6αtσ

2
H

γt

t
∑

i=1

γ3
i

]

≤ αt

γt
C2

t +
3αt

γt

[

(1 + 2θ)D2 + 2θΓt

t
∑

i=1

αi

Γi
C2

i +
6αtσ

2
H

γt

t
∑

i=1

γ3
i

]

.

Finally, observing from (3.14) and (4.23) that Γt

t
∑

i=1

αi

Γi
C2

i ≤ C2
t Γt

t
∑

i=1

αi

Γi
= C2

t , we conclude (3.13) from

the above inequality.

5. Conclusion. We present in this paper a novel accelerated mirror-prox (AMP) method for solving a
class of deterministic and stochastic variational inequality (VI) problems. The basic idea of this algorithm
is to incorporate a multi-step acceleration scheme into the mirror-prox method in [21, 13]. For both the
deterministic and stochastic VI, the AMP achieves the optimal iteration complexity, not only in terms of
its dependence on the number of the iterations, but also on a variety of problem parameters. Moreover,
the iteration cost of the AMP is comparable to, or even less than that of the mirror-prox method in that it
saves one compuation of ∇G(·). To the best of our knowledge, this is the first algorithm with the optimal
iteration complexity bounds for solving the deterministic and stochastic VIs of type (1.2). Furthermore, we
show that the developed AMP scheme can deal with the situation when the feasible region is unbounded,
as long as a strong solution of the VI exists. In the unbounded case, we adopt the modified termination
criterion employed by Monteiro and Svaiter in solving monotone inclusion problem, and demonstrate that
the rate of convergence of AMP depends on the distance from the initial point to the set of strong solutions.
Specially, in the unbounded case of the deterministic VI, the AMP scheme achieves the iteration complexity
without requiring any knowledge on the distance from the initial point to the set of strong solutions.
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