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ACCELERATED SCHEMES FOR A CLASS OF VARIATIONAL INEQUALITIES

YUNMEI CHEN*, GUANGHUI LANT AND YUYUAN OUYANGH#

Abstract. We propose a novel method, namely the accelerated mirror-prox (AMP) method, for computing the weak
solutions of a class of deterministic and stochastic monotone variational inequalities (VI). The main idea of this algorithm is
to incorporate a multi-step acceleration scheme into the mirror-prox method. For both deterministic and stochastic Vs, the
developed AMP method computes the weak solutions with optimal rate of convergence. In particular, if the monotone operator
in VI consists of the gradient of a smooth function, the rate of convergence of the AMP method can be accelerated in terms of
its dependence on the Lipschitz constant of the smooth function. For VIs with bounded feasible sets, the estimate of the rate
of convergence of the AMP method depends on the diameter of the feasible set. For unbounded VIs, we adopt the modified
gap function introduced by Monteiro and Svaiter for solving monotone inclusion, and demonstrate that the rate of convergence
of the AMP method depends on the distance from the initial point to the set of strong solutions.

1. Introduction. Let £ be a finite dimensional vector space with inner product (-,-) and norm || - ||,
and Z be a non-empty closed convex set in £. Our problem of interest is to find u* € Z that solves the
following variational inequality (VI) problem:

(F(u),u* —u) <0,Yu € Z, (1.1)
where F' is defined by
F(u) = VG(u) + H(u) + J'(u), Yu € Z. (1.2)

In (1.2), G(:) is a general continuously differentiable function whose gradient is Lipschitz continuous with
constant Lg, i.e.,

0 < Gw) — Gv) — (VG (w),w —v) < L—2G||w —o|]?,Vw,v € Z, (1.3)

H : Z — £ is a monotone operator with Lipschitz constant Ly, that is, for all w,v € Z,
(H(w) — H(v),w —v) 20, and |H(w) — H(v)|« < Lallw -], (1.4)

and J'(u) € 90J(u), where J(-) is a relatively simple and convex function. We denote problem (1.1) by
VI(Z;G,H,J) or simply VI(Z; F).

Observe that u* given by (1.1) is often called a weak solution of VI(Z; F'). A related notion is a strong
solution of VI. More specifically, we say that u* is a strong solution of VI(Z; F) if it satisfies

(F(u"),u* —u) <0,YVu € Z. (1.5)

For any monotone operator F, it is well-known that strong solutions of VI(Z, F') are also weak solutions,
and the reverse is also true under mild assumptions (e.g., when F' is continuous). For example, for F in
(1.2), if J =0, then the weak and strong solutions of VI(Z;G, H,0) are equivalent.

The main goal of this paper is to develop efficient solution methods for solving two types of VlIs, i.e.,
deterministic VIs with exact information about the operator F', and stochastic VIs where the operator F'
contains some stochastic components (e.g., VG and H) that cannot be evaluated exactly. We start by
reviewing some existing methods for solving both these types of problems.
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1.1. Deterministic VI. VI provides a unified framework for optimization, equilibrium and comple-
mentarity problems, and thus has been the focus of many algorithmic studies (see, e.g, [14, 31, 7, 30, 34,
36, 21, 28, 19, 13]). In particular, classical algorithms for VI include, but not limited to, the gradient pro-
jection method (e.g., [32, 4]), Korpelevich’s extragradient method [14], and the proximal point algorithm
(e.g., [18, 31]), etc. (see [10] for an extensive review and bibliography). While these earlier studies on VI
solution methods focused on their asymptotic convergence behavior (see, e.g., [35, 37, 38]), much recent
research effort has been devoted to algorithms exhibiting strong performance guarantees in a finite number
of iterations (a.k.a., iteration complexity) [30, 3, 28, 29, 22, 19, 9]. More specifically, Nemirovski in a seminal
work [21] presented a mirror-prox method by properly modifying Korpelevich’s algorithm [15] and show that
it can achieve an O(1/¢) complexity bound for solving VI problems with Lipschitz continuous operators (i.e.,
smooth VI denoted by VI(Z;0,H,0)). Here ¢ > 0 denotes the target accuracy in terms of a weak solution.
This bound significantly improves the O(1/€?) bound for solving VI problems with bounded operators (i.e.,
nonsmooth VI) (e.g., [3]). Nemirovski’s algorithm was further generalized by Auslender and Teboulle [1]
through the incorporation of a wider class of distance generating functions. Nesterov [28] has also developed
a dual extrapolation method for solving smooth VI which possesses the same complexity bound as in [21].
More recently, Monteiro and Svaiter [19] showed that the the hybrid proximal extragradient (HPE) method
[33], which covers Korpelevich’s algorithm as a special case, can also achieve the aforementioned O(1/¢)
complexity. Moreover, they developed novel termination criterion for VI problems with possibly unbounded
feasible set Z, and derived the iteration complexity associated with HPE for solving unbounded VI problems
accordingly. Monteiro and Svaiter [20] have also generalized the aforementioned O(1/¢) complexity result
for solving VI problems containing a simple nonsmooth component (i.e., VI(Z;0, H, J)).

It should be noted, however, that the aforementioned studies in existing literature do not explore the
fact that the operator F' consists of a gradient component VG (see (1.2)). As a result, the iteration com-
plexity associated with any of these algorithms, when applied to a smooth convex optimization problem
(i.e., VI(Z;G,0,0)), is given by O(1/¢), which is significantly worse than the well-known O(1/4/€) optimal
complexity for smooth optimization [25]. An important motivating question for our study is whether one
can utilize such structural properties of F' in order to further improve the efficiency of VI solution methods.
More specifically, we can easily see that the total number of gradient and/or operator evaluations for solving

VI(Z;G,H,J) cannot be smaller than
L L
O(\/—Gﬁ-—H). (1.6)
€ €

Such a lower complexity bound is derived based on the following two observations:
a). If H =0, VI(Z;G,0,0) is equivalent to a smooth optimization problem min,ecz G(u), and the
complexity for minimizing G(u) cannot be better than O(\/L¢g/€) [25, 26];
b). If G = 0, the complexity for solving VI(Z;0, H,0) cannot be better than O(Ly/€) [24] (see also the
discussions in Section 5 of [21]).
However, the best-known so-far iteration complexity bound for solving VI(Z; G, H,J) is given by [13, 19],
where one needs to run these algorithms

o (M) , (1.7)
€
iterations to compute a weak solution of VI(Z; G, H, J), and each iteration requires the computation of both
VG and H. It is worth noting that better iteration complexity bound has been achieved for a certain special
caseof VI(Z;G, H, J) where the operator H is linear. In this case, Nesterov [27] showed that, by using a novel
smoothing technique, the total number of first-order iterations (i.e., iterations requiring the computation of
V@G, the linear operators H and its conjugate H*) for solving VI(Z; G, H, J) can be bounded by (1.6). This
bound has also been obtained by applying an accelerated primal-dual method recently developed by Chen,
Lan and Ouyang [8]. Observe that the bound in (1.6) is significantly better than the one in (1.7) in terms of
its dependence on L. However, it is unclear whether similar iteration complexity bounds to those in [27, 8]
can be achieved for the more general case when H is Lipschitz continuous.
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1.2. Stochastic VI. While deterministic VIs had been intensively investigated in the literature, the
study of stochastic VIs is still quite limited. In the stochastic setting, we assume that there exists stochastic
oracles SOg and SOy that provide unbiased estimates to the operators VG(u) and H(u) for any test
point u € Z. More specifically, we assume that at the i-th call of SOg and SOy with input z € Z, the
oracles SO and SO g output stochastic first-order information G(z,&;) and H(z, {;) respectively, such that
E[G(z,&)] = VG(2),E[H(x, ;)] = H(x), and

AL E||G(z,&) - VC@)IZ| < o3, E |[H(w,¢) - H@)Z| < o3,
where §; € =, (; € Z are independently distributed random variables. It should be noted that deterministic
VIs are special cases of stochastic VIs with o = oy = 0. To distinguish stochastic VIs from their deter-
ministic counterparts, we will use SVI(Z; G, H, J) or simply SVI(Z; F) to denote problem (1.1) under the
aforementioned stochastic settings.

Following the discussion around (1.6) and the complexity theory for stochastic optimization [23, 13], the
total number of gradient and operator evaluations for solving stochastic VI cannot be smaller than

L L 2 2
o<./_c+_H+w>. 1.8
€ € €

The best known complexity bound for computing SVI(Z; G, H,0) is given by the stochastic mirror-prox
method in [13]. This method requires

2 2
O<LG+LH+UG+UH> (1.9)

€ €2

iterations to achieve the target accuracy € > 0 in terms of a weak solution, and each iteration requires the
calls to SOg and SOp. Similar to the deterministic case, the above complexity bound has been improved
for some special cases, e.g., when H = 0 or H is linear. In particular, when H = 0, SVI(Z, F) is equivalent
to the stochastic minimization problem ofmin,cz G(u) + J(u), Lan first presented in [16] (see more general
results in [11, 12]) an accelerated stochastic approximation method and showed that the iteration complexity

of this algorithm is bounded by
L 2
O <\/ ¢y U—§> :
€ €

More recently, Chen, Lan and Ouyang [8] presented an optimal stochastic accelerated primal-dual (APD)
method with a better complexity bound than (1.9) for solving SVI(Z; G, H,J) with a linear operator H.

1.3. Contribution of this paper. Our contribution in this paper mainly consists of the following
three aspects. Firstly, we present the accelerated mirror-prox (AMP) method that computes a weak solution
of VI(Z;G, H,J) after incorporating a multi-step acceleration scheme into the mirror-prox method in [21].
By utilizing the smoothness of G(-), we can significantly improve the iteration complexity from (1.7) to (1.6),
while the iteration cost of AMP is comparable to that of the mirror-prox method. Therefore, AMP can solve
VI problems efficiently with big Lipschitz constant Lg. To the best of our knowledge, this is the first time
in the literature that such an optimal iteration complexity bound has been obtained for general Lipschitz
continuous (rather than linear) operator H.

Secondly, we develop a stochastic counterpart of AMP, namely stochastic AMP, to compute a weak
solution of SVI(Z; G, H, J), and demonstrate that its iteration complexity is bounded by (1.8) and, similarly
to the stochastic mirror-prox method, each iteration of this algorithm requires the calls to SOg and SOy.
Therefore, this algorithm improves the best-known complexity bounds for stochastic VI in terms of the
dependence on the Lipschitz constant Lg. To the best of our knowledge, this is the first time that such an
optimal iteration complexity bound has been developed for SVI(Z; G, H, J) for general Lipschitz continuous
(rather than linear) operator H. In addition, we investigate the stochastic VI method in more details, e.g.,
by developing the large-deviation results associated with the convergence of stochastic AMP.

Finally, for both deterministic and stochastic VI, we demonstrate that the AMP can deal with the case
when Z is unbounded, as long as a strong solution to problem (1.5) exists. We incorporate into AMP the
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termination criterion employed by Monteiro and Svaiter [19, 20] for solving variational and hemivariational
inequalities posed as monotone inclusion problem. In both deterministic and stochastic cases, when Z is
unbounded, the iteration complexity of AMP will depend on the distance from the initial point to the set of
strong solutions.

1.4. Organization of the paper. The paper is organized as follows. We propose the AMP algorithm
and discuss the main convergence results for solving deterministic VI and stochastic VI in Sections 2 and 3
respectively. To facilitate the readers, we present the proofs of the main convergence results in Section 4.
Finally, we make some concluding remarks in Section 5.

2. Accelerated prox-method for deterministic VI. We introduce in this section an accelerated
mirror-prox (AMP) method that computes a weak solution of VI(Z; G, H, J), and discuss its main conver-
gence properties.

Throughout this paper, we assume that the following proz-mapping can be solved efficiently:

P/(n) := arfenéinm, u—z)+V(z,u)+ J(u). (2.1)

In (2.1), the function V(-,-) is defined by
V(z,u) == w(u) —w(z) = (Vw(z),u — z), Yu,z € Z, (2.2)

where w(-) is a strongly convex function with convexity parameter p > 0. The function V(-,-) is known as
a proz-function, or Bregman divergence [5] (see, e.g., [21, 3, 27, 2] for the properties of prox-functions and
prox-mappings and their applications in convex optimization). Using the aforementioned definition of the
prox-mapping, we describe the AMP method in Algorithm 1.

Algorithm 1 The accelerated mirror-prox (AMP) method for solving a weak solution of VI(Z;G, H, J)

Choose r1 € Z. Set wy =11, wy¥ =ry.
Fort=1,2,...,N — 1, calculate

w;”d = (1 — ap)wy? + ayry,

w1 = P17 (v H(re) + mVG(wi*?))
rev1 = P (v H (wig1) + % VG(wi™)),

ag __ ag
wyy = (1 — ar)wy? + arwigs.

Output wy/, ;.

Observe that the AMP method differs from the mirror-prox method in that we introduced two new
sequences, i.e., {w} and {w}?} (here “md” stands for “middle”, and “ag” stands for “aggregated”). On
the other hand, the mirror-prox method only had to compute the ergodic mean of the sequence {w;} as
the output of the algorithm (similar to {w;?}). If oy =1, G = 0 and J = 0, then Algorithm 1 for solving
VI(Z;0,H,0) is equivalent to the prox-method in [21]. In addition, if the distance generating function
w(+) = || - ||?/2, then iterations (2.4) and (2.5) becomes

. 1
wer1 = argmin{y: H (r),u — r¢) + §Hu — 1|2,
ue”z

. 1
repr = argmin{y, H (wi 1), — ) + = ||u — ]|,
ue”z 2

which are exactly the iterates of the extragradient method in [14]. On the other hand, if H = 0, then
the iterations (2.4) and (2.5) produces the same optimizer w41 = r¢11, and Algorithm 1 is equivalent to
a version of Nesterov’s accelerated method for solving min,ecz G(u) + J(u) (see, for example, Algorithm 1
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in [39]). Therefore, Algorithm 1 can be viewed as a hybrid algorithm of the mirror-prox method and the
accelerated gradient method, which gives its name accelerated mirror-prox method.

In order to analyze the convergence of Algorithm 1, we introduce a notion to characterize the weak
solutions of VI(Z;G, H, J). For all 4,u € Z, we define

Q(u,u) = G(a) — G(u) + (H(u),t —u) + J(a) — J(u). (2.7)

Clearly, for F defined in (1.2), we have (F(u), @ —u) < Q(u,u). Therefore, if Q(@,u) < 0 for all u € Z, then
@ is a weak solution of VI(Z; G, H,J). Hence when Z is bounded, it is natural to use the gap function

g(u) := sup Q(a,w) (2.8)
uez

to evaluate the quality of a feasible solution & € Z. However, if Z is unbounded, then ¢(Z) may not be
well-defined, even when z € Z is a nearly optimal solution. Therefore, we need to employ a slightly modified
gap function in order to measure the quality of candidate solutions when Z is unbounded. In the sequel, we
will consider the cases of bounded and unbounded Z separately.

Theorem 2.1 below describes the convergence property of Algorithm 1 when Z is bounded. It should be
noted that the following quantity will be used throughout the convergence analysis of this paper:

1, when t =1
I, = (2.9)
(1 —ay)l—1, whent>1,

THEOREM 2.1. Suppose that

sup V(z1,22) < Q%. (2.10)
21,22€4

If the parameters {a:} and {v} in Algorithm 1 are chosen such that oy =1, and

2 .2
Ly Qpqq

«
>0, and t <

V>, 2.11
e~ Digiyesr ( )

0<a <1, p— Laoyy: —

where {T'+} is defined by (2.9). Then,

a (0%
g(wi?y) < ,Y_:Q% (2.12)

There are various options for choosing the parameters {o;} and {7} that satisfy (2.11). In the following
corollary, we give one example of such parameter settings.
COROLLARY 2.2. Suppose that (2.10) holds. If the parameters {a:} and {v+} in AMP are set to

oy = t—|2— . and v = 2(LG+tLHt)’ (2.13)
then for all u € Z,
Qi < (oo + 2 ) oz, (2.14)
where Qz is defined in (2.10).
Proof. Clearly, I'y = nt 3— 0 satisfies (2.9), and
y :z(LG—i—LHt)S Qi1
Tive Ter1ve41
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Moreover,

1 — Loy — L2 42 iy uLa t L3 t? uLa uLpt
I

T ILo+Lupt t+1 ALe+Lpt)? M Le+Lpt Lo+ Lot

Thus (2.11) holds. Hence, by applying (2.12) in Theorem 2.1 with the parameter setting in (2.13) and using
(2.10), we obtain (2.14). O

Clearly, in view of (2.14), when the parameters are chosen according to (2.13), the number of iterations
performed by the AMP method to find an e-solution of (1.1), i.e., a point w € Z s.t. g(w) < ¢, can be

bounded by
L L
oQL£+:g.
€ €

This bound significantly improves the best-known so-far complexity for solving problem (1.1) (see (1.6)) in
terms of their dependence on the Lipschitz constant Lg. Moreover, it should be noted that the parameter
setting in (2.13) is independent of Qz, i.e., the AMP method achieves the above optimal iteration-complexity
without requiring any information on the diameter of Z.

Now, we consider the case when Z is unbounded. To study the convergence properties of AMP in
this case, we use a perturbation-based termination criterion recently employed by Monteiro and Svaiter
[19, 20], which is based on the enlargement of a maximal monotone operator first introduced in [6]. More
specifically, we say that the pair (0,%) € € x Z is a (p, €)-approximate solution of VI(Z; G, H,J) if ||o|| < p
and g(@,0) < e, where the gap function g(-,-) is defined by

g(1,0) := sup Q(@,u) — (U, 4 — u). (2.15)
uc”zZ
We call v the perturbation vector associated with . One advantage of employing this termination criterion
is that the convergence analysis does not depend on the boundedness of Z.

Theorem 2.3 below describes the convergence properties of AMP for solving deterministic VIs with
unbounded feasible sets, under the assumption that a strong solution of (1.1) exists. It should be noted that
this assumption does not limit too much the applicability of the AMP method. For example, when J(-) = 0,
any weak solution to VI(Z; F) is also a strong solution.

THEOREM 2.3. Suppose that V(r,z) := ||z — r||?/2 for any r,z € Z. Also assume that the parameters
{a:} and {v} in Algorithm 1 are chosen such that oy = 1, and for all t > 1,

Qy Oy
- b)
Ft% FtJrl’}/tJrl

0<ar <1, Lgayy: + L%ﬁ < for some ¢ < 1, and (2.16)

where T'y is defined in (2.9). Then for all t > 1 there exist viy1 € € and e,41 > 0 such that G(wiy,,vi41) <
€i41. Moreover, we have

20D 3 (1 + 0;)D?
loge |l < U= and grq1 < M. (2.17)
t
where
I i
D:=|r, —u*||, 6 := —— ma & (2.18)

2(1—¢?) i:l,.?.(,t Vi
and u* is a strong solution of VI(Z;G, H,J).
Below we provide a specific setting of parameters {o;} and {7:} that satisfies condition (2.16).

COROLLARY 2.4. Suppose that V(r,z) := ||z — r||?/2 for any r,z € Z and Ly > 0. In Algorithm 1, if
N > 2 is given and the parameters {a:} and {v:} are set to

2 t

= dyp=——-——— 2.19
o %= ST (219)
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then there exists vy € € such that g(wy,vn) < en,

12Lq 120y 45L¢ 45L

< D, andey < D? 2.20
lovll < | ¥ =y N—l] > 8N—[N(N—U N-1]"" (220)
where u* is a strong solution of VI(Z; F) and D is defined in (2.18).
2
Proof. Clearly, I'y = D satisfies (2.9), and
2Lt L3 ¢? 2L¢q LyN
L + L3t = = < +
CUNT N = LY LyN)(t+1) ' 9(Lg + LuN)2 = 3(Lg + LuN) * 3(Lg + LuN)
- 2L+ LyN - 2 .2
~ 3(Lg+LyN) =3
1
We can see that ¢ < 1, and -2 3. Moreover, when N > 2,
I'n—1 Q; 1 .3 3
= — —_— = = — < —.
On-1 2(1—¢?) 13?2\1}(—1{&} (I1-c2)N(N -1) 1<ien-1' T N =2

We conclude (2.20) by substituting the values of an—_1, YyN—-1 and On_1 to (2.17). 0

Several remarks are in place for the results obtained in Theorem 2.3 and Corollary 2.4. Firstly, although
the existence of a strong solution «* is assumed, no information on either «* or D is needed for choosing
parameters a; and 7, as shown in (2.19) of Corollary 2.4. Secondly, both residuals [|vy| and ey in (2.20)
converge to 0 at the same rate (up to a constant 15D/4). Finally, it is only for simplicity that we assume
that V(r, z) = ||z —r||?/2; Similar results can be achieved under assumptions that Vw is Lipschitz continuous

and that /V(-,-) is a metric.

3. Accelerated prox-method for stochastic VI. In this section, we focus on the SVI(Z; F), and
demonstrate that the stochastic counterpart of Algorithm 1 can achieve the optimal rate of convergence in
(1.8).

The stochastic AMP is obtained by replacing the operators H(r;), H(w;+1) and VG(2™?) in Algorithm
1 by their stochastic counterparts H(r¢, Cor—1), H(wis1,Cor) and G(wi™d, &) respectively, by calling the
stochastic oracles SOg and SOp. This algorithm is formally described in Algorithm 2.

Algorithm 2 The accelerated mirror-prox (AMP) method for solving a weak solution of SVI(Z; G, H, J)
Modify (2.4) and (2.5) in Algorithm 1 to

wisr =PI (0 H(re, Cormr) + 1 G(wi™, &) (3.1)
rev1r = P2 (v H(wirr, Go) + nG(wi, &), (3:2)

It is interesting to note that for any ¢, there are two calls of SOy but just one call of SO¢. However, if
we assume that J = 0 and use the stochastic mirror-prox method in [13] to solve SVI(Z; G, H,0), for any
t there would be two calls of SO and two calls of SOg. Therefore, the cost per iteration of AMP is less
than that of the stochastic mirror-prox method.

Similarly to Section 2, we use the gap function g(-) for the case when Z is bounded, and use the modified
gap function g(-,-) for the case when Z is unbounded. For both cases we establish the rate of convergence
of the gap functions in terms of their expectation, i.e., the “average” rate of convergence over many runs of
the algorithm. Furthermore, we demonstrate that if Z is bounded, then we can also establish the rate of
convergence of g(-) in the probability sense, under the following “light-tail” assumption:

A2. For any i-th call on oracles SOy and SOy with any input u € Z,

Elexp{[[VG(u) — G(u, &) /0 }] < exp{1}, and Efexp{||H (u) — H(u,G)|2/o%}] < exp{1}.
7



It should be noted that Assumption A2 implies Assumption A1l by Jensen’s inequality.

The following theorem shows the convergence property of Algorithm 2 when Z is bounded.
THEOREM 3.1. Suppose that (2.10) holds. Also assume that the parameters {a;} and {y:} in Algorithm
2 satisfy a; =1 and

3L~} Q41

qu — Lgogys — >0 for some q € (0,1), and a < , YVt > 1, (3.3)

Ty Fiv1ve41

where T'y is defined in (2.9). Then,
(a) Under Assumption A1, for all t > 1,

E [g(wi{1)] < Qo(t), (3.4)

t

2000 { 9 ( 1 ) 2} i

where Qu(t) == —O% + |40z + [ 1+ ox| T —_— 3.5
R (e o S

(b) Under Assumption A2, for all X >0 and t > 1,

Prob{g(w?,) > Qo(t) + AQ1(t)} < 2exp{—A\?/3} + 3exp{—A} (3.6)

t 2 t
2 o 1 ;i
2y (@ 4g2+(1+7)g2}r |
NZ<F‘) [ " 2(1—¢q)) © t; pl

i=1 v

where Q1(t) :=Ti(og +om)lz

We present below a specific parameter setting of {a;} and {v;} that satisfies (3.3).
COROLLARY 3.2. Suppose that (2.10) holds. If the stepsizes {cau} and {y:} in Algorithm 2 are set to:

ut

T M S L It ot + 1) (V) (3.8)
where 0 1= \/m, and Qz is defined in (2.10). Then under Assumption A1,
E [g(uif))] < 2ocek 4 2L 7("6";@"_’??2 —Colt). (39)
Furthermore, under Assumption A2,
Prob{g(wy?,) > Co(t) + AC1(t)} < 2exp{—A?/3} + 3exp{—A}, VA >0,
where
Cut) = Sloe £ o)z (3.10)

pu(t—1)
2 Qi Q1

and
t(t+1) Five 7 Tegayen
have v < ut/(4Lg) and v¢ < (u?)/(9L%), which implies

Proof. It is easy to check that T'y =

. In addition, in view of (3.8), we

5 BLEY, e pt 2 p

oML - >
6 CMNT T 56 T4 ty1 3°

Therefore the first relation in (3.3) holds with constant ¢ = 5/6. In view of Theorem 3.1, it now suffices to
show that Qo(t) < Co(t) and Qi (t) < Cy(t). Observe that a /Ty = t, and v < (\/2uQzt)/(ot?/?), thus using
the fact that Y\_ Vi < fg“ Vitdt = 2(t 4+ 1)%/2, we obtain

o t .9 t
Z Qi Z V20071°  2p8d Z\/%S \/23qu (t+ 132,
g
=1 =1

‘ | i3/2 o
=1
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Using the above inequality, (2.10), (3.5), (3.7), (3.8), and the fact that /T + 1/t <1/y/T—1 and S_, i <
t(t+1)2/3, we have

403,
pt(t+1)
16Lc0% N 120592 N 2v/200 7 N SJQZ\/2(t+ 1)
Topt(t+1)  op(t+1) Vit 3y/nt

)= e (s St o 1) 500

=1

< Co(t),

- 2V2(0G + ou)Qz N 80Q7/2(t + 1)
- Vaut 3/t

< Ci(?).

In view of (1.8), (3.9) and (3.10), we can clearly see that the stochastic AMP method achieves the
optimal iteration complexity for solving the SVI problem. More specifically, this algorithm allows L¢g to be
as large as O(t3/ %) without significantly affecting its convergence properties.

In the following theorem, we demonstrate the convergence properties of Algorithm 2 for solving the
stochastic problem SVI(Z; G, H,J) when Z is unbounded. It seems that this case has not been well-studied
previously in the literature.

THEOREM 3.3. Suppose that V(r,z) := ||z —r||?/2 for any r € Z and z € Z. If the parameters {cu}
and {y:} in Algorithm 1 are chosen such that oy =1, and for all t > 1,

Oy
9
Ft% R

0<a; <1, Lgayy +3L57; < ¢ < q for some ¢,q € (0,1), and (3.11)

where Ty is defined in (2.9). Then for allt > 1 there exists a perturbation vector viy1 and a residual €441 > 0
such that g(wffl, Vi41) < €i41. Moreover, for all t > 1, we have

Efflvssa] < %(20 +2,/D? +CP), (3.12)

t

Elersq] < 2t [(3+60)D* + (1+60)C7] + 18atUH Z (3.13)
Tt

where u* is a strong solution of VI(Z;G, H, J),

c? 1
9:max{1,q_c2} and Ot: |:4U%I+ <1+m) Ué:| Z”yf (314)

i=1

Below we give an example of parameters o and ; that satisfies (3.11).
COROLLARY 3.4. Suppose that there exists a strong solution of (1.1). If the mazimum number of
iterations N is given, and the stepsizes {a:} and {v:} in Algorithm 2 are set to
t

5LG +3LyN +oNVN —1/D’

(3.15)

= — d =
(6% t+1an Yt

where o is defined in Corollary 3.2, then there exists vy € € and ey > 0, such that g(wy,vn) < en,

40LgD  24LyD  o(8D/D +5)
N(N-1) " N-1 N-1
9

Efllvnll] < (3.16)



and

90LeD?* | 54LyD* | oD (18D 18. D
E < — 194+ —)—=|. 3.17
S R 1\ b T ND (3:17)
2
Proof. Clearly, I'y = D satisfies (2.9). Moreover, in view of (3.15), we have
2La 3L3 N? 10L% +6LgLyN +3LEN? 5 5
I 32,2 < H _ G H 2 _2°
GO H O = 5T SN | (5L + 3LaN)? (5L + 3LaN)? RETIN

which implies that (3.11) is satisfied with ¢ = 5/12 and q¢ = 5/6. Observing from (3.15) that v = ty1,
settingt = N — 1 in (3.14) and (3.15), we obtain

N-1

aN-1 2 2 2 2 _ 40°iN?(N —1)
= and Cx_, = 4o ¢ < . 3.18
Applying (3.18) to (3.12) we have
2 8D 8o
El|lon]]] € —=——<AD+2Cn_1) < +

el = S xS SR D T A oD

40LeD  24LyD  o(8D/D +5)

“ N(N-1) N-1 N—-1

In addition, using (3.13), (3.18), and the facts that 0 =1 in (3.14) and Zfi}l v = N%(N —1)%/4, we have

2 72072 YIN?(N —1)?
Elen_1] € ——c——(9D? + 7C3 " L
vl = SN O TN ey T
__ 18D? N 560D 1802, D _ 90LgD* | 54LyD? oD (18D . 19+ g) D
“mNWN-1) 3/N-1 oNYyN-1~ N(N-1) N-1 N—-1\ D N’D )"

d

Observe that we need to choose a parameter D for the stochastic unbounded case, which is not required
for the deterministic case (see Corollary 2.4). Note that the value of D will be very difficult to estimate
for the unbounded case and hence one often has to resort to a suboptimal selection for D. For example, if
D = 1, then the RHS of (3.16) and (3.17) will become O(LgD/N?+ Ly D/N+0D//N) and O(LgD?/N?+
Ly D?/N + 0D?/v/N), respectively.

4. Convergence analysis. In this section, we focus on proving the main convergence results in Section
2 and 3, namely, Theorems 2.1, 2.3, 3.1 and 3.3.

4.1. Convergence analysis for deterministic AMP. In this section, we prove Theorems 2.1 and
2.3 in Section 2, which state the main convergence properties of Algorithm 1 for solving the deterministic
problem VI(Z;G,H, J).

To prove the convergence of the deterministic AMP, first we present some technical results. Propositions
4.1 and 4.2 describe some important properties of the prox-mapping P/ (n) in iterations (2.4) and (2.5) of
Algorithm 1. Proposition 4.3 provides a recursion property of function Q(-, -) defined in (2.7). With the help
of Propositions 4.1, 4.2 and 4.3, we can estimate a bound on Q(,-) in Lemma 4.4.

PROPOSITION 4.1. For all r,{ € &, if w = P/((), then for all u € Z, we have

Cw—u)y+ J(w) — J(u) <V(r,u) = V(r,w) — V(w,u). (4.1)
Proof. See Lemma 2 in [11] for the proof. O

The following proposition is a slight extension of Lemma 6.3 in [13]. In particular, when J(-) = 0, we
can obtain (4.5) and (4.6) directly by applying (4.4) to (6.8) in [13], and the results when J(-) # 0 can be

10



easily constructed from the proof of Lemma 6.3 in [13]. We provide the proof here only for the integrity of
this proposition.
PROPOSITION 4.2. Giwen r,w,y € Z and 1,9 € € that satisfies

w = P (n), (4.2)
y =P/ (),
and
[0 = nll7 < L2|lw —r||* + M?, (4.4)
then for all u € Z we have
po L 2 M?
— — < — -z == — — 4.5
(B =)+ 1 (w) = ) < V) = Vi) = (5= 2 ) I = wlP + 5 - (45)
and
L? M?
Viy,w) < FV(T, w) + o (4.6)
Proof. Applying Proposition 4.1 to (4.2) and (4.3), for all u € Z we have
myw—u)y+ J(w) — J(u) <V(ru) = V(r,w) —V(w,u), (4.7)
Specifically, letting w =y in (4.7) we have
(n,w—y) + J(w) = J(y) <V(r,y) = V(r,w) = V(w,y). (4.9)

Adding inequalities ({.8) and (4.9), then
W,y —u) + (n,w—y) + J(w) = J(u) <V(r,u) = V(y,u) = V(r,w) = V(w,y),
which is equivalent to
(W, w—u)+ J(w) = J(u) < (@ —nw—y)+V(ru) = V(yu) - V(w) - V(wy).

Applying Schwartz inequality and Young’s inequality to the above inequality, and using the well-known result
that

%Hz —ull* < V(u,2),Yu, z € Z, (4.10)
we obtain
(P, w—u) + J(w) — J(u)
m
19 = nllllw =yl + V(r,u) = V(y,u) = V(r,w) = Sllw - ylI?

IN

(4.11)

IN

1 % %
9 =0l + S llw —yl* + V(r,u) = Viy,u) = V(r,w) = Sllw -yl
20 2 2
1
= EH'& - 77”5 + V(T7 ’U,) - V(yu u) - V(’I", ’U})

The result in (4.5) then follows immediately from above relation, (4.10) and (4.4).
Moreover, observe that by setting u=w and u =y in (4.8) and (4.11) respectively, we have

W0,y —w) +J(y) — J(w) < V(r,w) = V(r,y) = V(y,w),
(w—y)+J(w) = J(y) < illﬁ —nll2+V(r,y) = V(r,w).

11



Adding the two inequalities above, and using (4.10) and (4.4), we have
1 L? M? L? M?
0< —|—n?-V < r—w|)P+=—-V <=V — -V
< gt =l = Vi, w) < ool —wli®+ 5= = Vi w) < Z5Vnw) + 557 = Vig,w),
thus (4.6) holds. O

PROPOSITION 4.3. For any sequences {r;};>1 and {w;}1>1 C Z, if the sequences {w;?} and {w™?} are
generated by (2.3) and (2.6), then for allu € Z,

Q(w?j:lvu) - (1 - at)Q(w?gvu)

) (4.12)
< (VG(w*), w1 — u)

— 7“,g||2 + ap(H(wigq), wep1 — u) + o (wiy1) — arJ (u).

G
2

Proof. Observing from (2.3) and (2.6) that wy, — w™ = ay(wiy1 —11). This observation together with
the convexity of G(-), then imply that for allu € Z,

G(wify) < Gwi™) + (VG(wi), wify —wi) + —Ilwm —wj||?
= (1= ay) [G(w™) + (VG (w]""), w?g - w)]

Laa?
+ o [Gw) + (VG (w] ), u — wi)] + ar (VG (w]), wip1 — u) + G2 Llwega — el

< (1= a)G(w!?) + a;G(u) + o (VG (w™ ), wiy 1 — u)

—T‘t||2.

GQ
2
Applying (2.6) and (2.7) to the above inequality, and using the fact that H(-) is monotone, we have
Q(wgilvu) - (1 - at)Q(w?gvu)
= Guwify) = (1 = a)G(wi?) — G (u) + (H (), wiyy —u) — (1 — o) (H (u), w) — u)
) — (1 a) J(wi) — and(w)
< Gwly) = (1= ) G(wi?) — e G(u) + au(H (u), wisr — u) + apd (wiga) — e (u)

A

< a(VG(w), wiy1 — u)

— 7“,g||2 + ap(H(wiy1), wepr — u) + apJ(wiy1) — o J (u).

The following lemma estimates a bound on Q(w;’ fll, u), and will be used in the proof of both Theorems
2.1 and 2.3.

LEMMA 4.4. Suppose that the parameters {a:} in Algorithm 1 satisfies a; =1 and 0 < oy < 1 for all
t > 1, and let the sequence {T't} be defined in (2.9). Then the iterates {ri},{w:} and {w;?} of Algorithm 1
satisfy

1 ag i Ly} 2
F—tQ(’thrl, ) < Bt u T[t] Z Hn— LGai”yi - T ||7"Z - wi+1|| y Yu € Z, (413)

t
where By (u, Z V(ri,u) = V(rig1,u)). (4.14)

f)/z

Proof. First, it follows from Proposition 4.2 applied to iterations (2.4) and (2.5) with r = ry,w =
w1,y = re1,9 = Y H (1) + % VG(wi),n = veH (wi1) + % VG(wi),J = v J, L = Luy, and M =0
that for any u € Z,

Ve (H (wig1) + VG(w), wir — u) + 7S (wig1) — 7 (u)

L2 2
< V(ry,u) = V(rg,u) — (g - g:t ) [re — wer ]
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Now applying the above inequality to (4.12), we have

mwhw—u—me,>sgwmw%vm%w%§i

L2 2
(M — Leowy — IZ% > 7 — wea ||
(4.15)

Dividing both sides of the above inequality by I'y, we have
1 1-— Qg

Q0 - L Qiw
oy Q L%I'Vtz 2
< 1% —v - -L — ZHYE ) i, — .
< P W) = Ve, = 5 (0= oo = 208 ) =
l—at - 1

Using the facts that oy = 1, and that

= , t>1, due to (2.9), we can apply the above inequality
Iy i

recursively to obtain (4.13). O

We are now ready to prove Theorem 2.1, which provides an estimate of the gap function of deterministic
AMP when Z is bounded. This result follows immediately from Lemma 4.4.
Pmof of Theorem 2.1. In view of (2.11) and (4.13), to prove (2.12) it suffices to show that By(u,rp) <

Q2 for allu € Z. In fact, since the sequence {r;}; +1 is in the bounded set Z, applying (2.10) and (2.11)

Ft%
to (4.14) we have
N el o a
Bi(u, i) = —2V (r1,u) — { L N V(i u) — =V (g, u
#(u, 7e)) T (r1,u) ; Fivi Tiv1vita o) Teve et (4.16)
t—1 |

ar a; Q41 2
_ 02 _ I s S Yo A Q , Yue Z
“Iim 7 Z [Fz‘%‘ Fi+1'7i+1} o Ft%

i=1
thus (2.12) holds. O

In the remaining part of this subsection, we will focus on proving Theorem 2.3, which summarizes the
convergence properties of deterministic AMP when Z is unbounded.

Proof of Theorem 2.3. By the assumption that V(r,z) := ||z — r||?/2 for all v,z € Z, and applying the
last relation of (2.16) to (4.14), we obtain

Bi(u,rpy) =

ull* =

o, I e = ull?.

2I‘ 2I‘
Applying this and the second relation of (2.16) to (4.13) and noting that u = 1, we have

t

¢ (673
< L —ul2 - £ —ul* - — 1—c?) |Jri — wira]®. 4.17
Quity,w) < gl = ull® = 5 regs 7y 2o (1= ) i = wisa (4.17)

The first two terms in (4.17) can be rewritten as

1 1
5”7"1 - u||2 - §||Tt+1 - U||2 = §||7”1||2 - §||Tt+1||2 —(ri — i1, w)

. (4.18)
= §||7"1 —wit|I” — §||7"t+1 — w12+ (= rea, wify — ).
Then, the combination of (4.17) and (4.18) yields
a a
Q(wtfla u) — Z<7"1 = Tt+1, wt+1 u)
(4.19)

(074 (6%
< —2 71— wid, ||* — o “lreer — wid ||? - —t (1-¢% E 7 — wi1]]® =: ers1.
Tt
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«
Therefore, if we set vi11 1= —t(rl —7Te41), then QWi |, u) — (vig1, wi | —u) < epqr for allu € Z. It should
Tt

be noted that e,41 > 0 holds trivially by letting u = wy{, in (4.19). Hence we have §(wy,,vi41) < €441 and
it suffices to estimate the bound of ||viy1|| and e441.

If there exists a strong solution u* of VI(Z;G, H,J), then by (1.2), (1.5), (2.7) and the convexity of G
and J, we have Q(wy{,u*) > (VF(u*),wi{, —u*) > 0. This observation together with (4.17) imply that

¢
re = w*||? = |Iresr — w))* — Z (1—=¢*)|Iri — wiga||* > 0.
i—1

By the above inequality and the definition of D in (2.18), we have the following two inequalities:

[re41 —u™|| <D, (4.20)

t
D2
> i = wiga|? < (4.21)
=1

By (4.20) and the definition of vit+1, we have

« 2
1l < = (Ir = w*|| + repr — ') < =D,
Yt Vi

hence the first relation in (2.17) holds.
To finish the proof, it now suffices to estimate a bound for ;. Firstly we explore the definition of the
aggregate point wy{,. By (2.6) and (2.9), we have

1 1

Qg
ag ag
w = w,”? + —w vt > 1.
T, t+1 T, , t T, t+1,

Using the assumption that wi’ = wy, we obtain

t

a Q
wity =Ty T, Withs (4.22)
i=1 "
where by (2.9) we have
.
I, ; T 1. (4.23)
Therefore, w}, is a convex combination of iterates wo, ... ,wip1. Using (2.18), (4.19), (4.20) and (4.21),

we conclude that

t

« a I «;
fp1 < — |11 — wi? || < 2t ! Z — 1 = Wit )
Yt Ve i i

t

t
3atft (07 2 2 2 3at 2 Qg 2
< ) o ¥ s <22t lop2 4T il s
<2, ;%(Hﬁ wH® + v — w7+ [lri — wiga [I7) < 2, +T max %;Hﬁ Wi1]|
3at(1+9t)D2
= ")/t .
a
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4.2. Convergence analysis for stochastic AMP. In this section, we prove the convergence results
of the stochastic AMP method presented in Section 3, namely, Theorems 3.1 and 3.3.

Throughout this section, we will use the following notations to describe the inexactness of the first order
information from SOy and SOg. At the t-th iteration, letting H(r¢, Cor—1), H(we i1, (o) and G(w™?, &) be
the outputs of the stochastic oracles, we denote

Aﬁ_l = H(re, Cor—1) — H(re), A?} = H(wes1,Cot) — H(wi1) and AtG = g(wl”d,{t) - VG (wl”d). (4.24)

To start with, we present a technical result to obtain a bound on Q(w}: il? u) for all u € Z. The following
lemma is analogous to Lemma 4.4 for deterministic AMP, and will be applied in the proof of Theorems 3.1
and 3.3.

LEMMA 4.5. Suppose that the parameters {ca.} in Algorithm 1 satisfies a7 =1 and 0 < ay < 1 for all
t > 1, and let the sequence {1} be defined in (2.9). Then the iterates {ri},{w:} and {w;?} generated by
Algorithm 2 satisfy

1 a @ 3L2v;
F—tQ(wtfl, u) < Bi(u,ry Z (qu — Laoyy; — H7 > 7 — wita]® + ZA , Yu e Z, (4.25)

where Bi(u, ) is defined in (4.14), and

3aivi
2/LFZ'

i 1 —q)pay o i i
Aulu) = 3000 gz oy 2) - O 2 S AR AL ). (426)

2T
Proof. Observe from (4.24) that

1H (wesr, Gor) = Hre, Corm )2 < (1H (i) = H(r) | + 1A% + [|AZ1),)?
< 3(I1H (wegr) — Hr) |12 + I1AHIZ + AT 12) (4.27)
< 3 (Lillwepr — rell> + | AFIZ + 1A% 112) .
Applying Proposition 4.2 to (3.1) and (3.2) withr = ry,w = Wei1,y = req1,9 = %7—[(7“,5,@“2,5 1) +7G (W &),

n = HH(Wit1,Cr) + G (W &), J = wd, L? = 3L%~? and M? = 342(||A%)? + ||A2t Y12), and using
(4.27) we get that for any u € Z,

Ye(H(wes1, Cor) + G(wi™, &), wepn — u) + e (w) — 1 (w)

3L2 2
< V(rg,u) — V(rger,u) — (g - 212%

37
) Ire = wera | + 55 (||A 7+ 1A% ).
Applying (4.24) and the above inequality to (4.12), we have
Q(wgflvu) - (1 - o‘t)Q(w?ga u)

ar(H(wii1, Cor) + Gw, &), wip1 — ) + ap (W) — apd (u) +
— at<AH + AG,le —u)

Lga%
2

IN

Jwepr — 7|

o o
% (V(re,u) = V(repr,u) — ™

— a(AF + AG, w1 —u).

3L3;

IN

3oy
(u Lear - )Hn—umﬂﬁ+ O (A% + |AZ2)

2p

Dividing the above inequality by T+ and using the definition of A¢(u) in (4.26), we obtain

1 a 1-— (673
FtQ(wt—zlv u) — T,

Qg
Virg,u) —V(rgg,u)) —
Ft%( (re,u) = V(repn,w)

Q(w;?,u)

<

3L2 2
s (a0 = Zoarn = 20 ) i — w2+ Asfo)
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1- 1
Noting the fact that oy = 1 and ar_ ,
Iy Tiq

and using the definition of Bi(-,-) in (4.14), we conclude (4.25). O

t > 1, due to (2.9), applying the above inequality recursively

We still need the following technical result to prove Theorem 3.1.
LEMMA 4.6. Suppose that the sequences {0;} and {v:} are positive sequences. For any wy € Z and any
sequence {A'} C &, if we define w{ = wy and

wi,; = argmin —vi{AY u) + V(w?,u), Vi>1, (4.28)
uez
then
t } t g,
S 0(-ALul —u) <Y ,Y—Z_(V(wf,u) w?, ) + Z O A 12, Vu e Z. (4.29)
i=1 i=1 "

Proof. Applying Proposition 4.1 with r = w}, w = w{, ;, ¢ = —vi A" and J = 0, we have
—yi{ AL wl g —u) < V(wd,u) — V(w! ,wlyy) — V(wgy,,u), Yu€ Z.

On the other hand, by Schwartz inequality, Young’s inequality and (4.10) we have
; ; v; 2 M 2 o 2
=A% wi —wiyy) < il Al lwy — wiy, || < ﬁllﬁill* + 5 llwi —wi|” < ﬁllﬁill* + V(wi, wiiy)-

Adding the two inequalities above and multiplying them by 6;/v;, we obtain

7 v 1’% 9 v
—0; (A", wi —u) < HA H2 ” (V(w yu) — V(wi+17u))'

Summing from ¢ =1 to t, we conclude (4.29). O

We are now ready to prove Theorem 3.1.
Proof of Theorem 3.1. Firstly, applying (3.3) and (4.16) to (4.25) in Lemma 4.5, we have

1 a
F—tQ(wtjl, u) < 5 2+ ZA , Yu e Z. (4.30)

Letting wy = wi, defining wy,; as in (4.28) with A" = A3 + Al for all i > 1, it follows from (4.14)
and Lemma 4.6 with 6; = «; /T; that

t
(673 i (67387 1‘
=Y SHAH + Al wy —u) < By(u,ufy +Z B T 1A% + 85|12, Vue Z (4.31)

=1

Noting that by (4.26)

t t t
(07} (0% — .
> A AR+ AW —u) + D= [—7)|Tz—wz+1| — (AG Wi —14)
i=1 =1 . =T 2
i 3a”y LIV LI
+) = (IAFIZ + 1A%7112) (AL —wl) = > AR wi —w)),
i=1 2y o I P T;

applying (4.31) and the Young’s inequalily to above equation, we conclude that

t

> Ai(u) < Bi(u, why) + Uy, (4.32)

=1

16



where
t

Qi | A 2i m 3am ; i
Uri= D o 18K + A ||2+Z G||2+Z AR + 1A% 12)
i=1
. R (4.33)
- —%<A6,Ti—w ZF_ AF wip1 — wy).
i=1 " i=1
Applying (4.16) and (4.32) to (4.30), we have
1 2
T, = Q(wify, u) < at 92 + U, Vu e Z,
or equivalently,
2
g(wi?) < %QQZ + DU (4.34)
t

Now it suffices to bound Uy, in both expectation and probability.

We prove part (a) first. By our assumptions on SO¢g and SOp and in view of (3.1), (3.2) and (4.28),
during the i-th iteration of Algorithm 2, the random noise A%} is independent of wiy1 and w?, and AL
is independent of r; and wY, hence E[(AL,r; — Z>] = E[(A% w;yq — w”}] = 0. In addition, Assumption

A1 implies that E[||AL||2] < o, E[|AT 2] < 0% and E[|A%||2] < 0%, where AL, A3 and A% are
independent. Therefore, taking expectation on (4.33) we have
t t
Qi am 30@% i i
E[U;]<E|> T, (IAFI? + A2 +Z o AGlIE +Z [ABIE + 1A% 712)
i=1

t
Q% 2 1 2
_ so +(1+7)0 ]
;uﬂ[ " 2(1—q)) ¢
(4.35)

Taking expectation on both sides of (4.34), and using above estimation on E[U], we obtain (3.4).

Neat we prove part (b). Observing that the sequence {{AL,r; —wY)}i>1 is a martingale difference and
hence satisfies the large-deviation theorem (see, e.g., Lemma 2 of [17]), therefore using Assumption A2 and
the fact that

Elexp{u(ail7 (AG, i — wi))?/2(0caily 'Q02)*}] < Elexp{ull Ag2lri — w?|* /20407 }]
< Elexp{[|AG|1Z} /0] < exp{1},
we conclude from the large-deviation theorem that

t
Prob Z%( ic;,ri—wf)>)\agQZ

i=1 "

i)Q < exp{—)\?/3}. (4.36)

By similar argument we also have

t
Prob Z <AH,’U}1+1 ;)> > Aoy

ill

i(azf < exp{-)?/3}. (4.37)

2
I

In addition, letting S; = «;7v;/(ul;) and S = 22:1 Si, by Assumption A2 and the convezity of exponen-
tial functions, we have

[exp{ ZSHA /o Hsza[%Zsiexp{maz/oé}]Sexp{1}7
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therefore by Markov’s inequalily we have

PTOb{(l + 2(11—q)> Z J%HA 2> (1+ \)og ( 1—q )Z l%} <exp{—\}. (4.38)

i=1 i=1

Using similar arguments, we also have

t
30 | A 2i—1 2 S 30k Qi
_ < — .
Prob{; ||A 17> 1+ 3= ;un < exp{—A}, (4.39)
5o 502 < i
Pmb{Z Sr I > (1+/\)THZM?Z}S6XP{—>\}- (4.40)
i—1 i—1 7

Using the fact that | A% + AZ~1|2 < 2||A% |2 + |AZ 12, we conclude from (4.34)—(4.40) that (3.6) holds.
a

In the remaining part of this subsection, we will focus on proving Theorem 3.3, which describes the rate
of convergence of Algorithm 2 for solving SVI(Z;G, H,J) when Z is unbounded.

Proof the Theorem 3.53. Let Uy be defined in (4.33). Firstly, applying (3.11) and (4.32) to (4.25) in
Lemma 4.5, we have

t
(6%
> " (g— ) Iri — wira|* + Bi(w,whyy) + Us, Yu € Z. (4.41)

1
—Q(w?,,u) < Bi(u,ry) —
Qwy{y,u) < Be(u, ) o, 2

Iy

In addition, applying (3.11) to the definition of Bi(-,-) in (4.14), we obtain

Qi
Bu(w.rig) = (=l = ey = ) (4.42)
(677 a a a
= (Iry = wif 17 = lresr — widy |12+ 2(r1 — rgr, wid ) —u)). (4.43)
2Ty

By using similar argument and the fact that wi = wy = r1, we have

Qi

B (u, wy) = (I = ull? = [Jwpyy = ul?) (4.44)
21 v
at v a v a,
= s (lr1 — wt+1||2 - ||wt+1 - wt£1||2 +2(r1 — Wiy, wtil —u)). (4.45)

We then conclude from (4.41), (4.43) and (4.45) that

Q(wify,u) — (Vey1, widy —u) < epqr, Yu € Z, (4.46)
where
Vg1 ::%(27‘1 —Tir1 — Wiy ), and (4.47)
t
o <2||n w1~ s — w1~ b — w1 = 3 (0= ) i - wan) A
- (4.48)

It is easy to see that the residual e,41 is positive by setting u = wy, in (4.46). Hence g(wy{,, vip1) < €pq1-
To finish the proof, it suffices to estimate the bounds for El||vit1]|] and Eleri1].
Since Q(wy{,,u*) >0, letting u = u* in (4.41), we conclude from (4.42) and (4.44) that

t

2l = w|* = flreps = w7l = lwp — o) =) (¢ = ) llri — wisa | +
i=1

2I°
tVt 0, >0,
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and using the definition of D in (2.18), we have

¢
20y

e =+ ek =2+ 3 (g = ) s = wial? < 207 + 222, (4.49)
i=1
In addition, applying (3.11) and the definition of Cy in (3.14) to (4.35), we have
é ayy? 1 o
E[U] < L {402+<1+7>02]_ ~ (7 4.50
0 ; Toye |1 2(0-q)) “] T * (4.50)
Combining (4.50) and (4.49), we have
t
Elllrer — w 1% + Elllwyy —w*lP1+ Y (a = &) Elllri — wira|*] < 2D + 2CF. (4.51)

i=1

We are now ready to prove (3.12). Observing from the definition of vi11 (4.47) and the definition of D in
(2.18) that [[vis1 | < (2D + |[wiy g — u*|| + [Ire41 — u*[]), applying Jensen’s inequality and (4.51), we obtain

at v *
Elllvesll] < §(2D + \/E[(Ilrm —url| + flwpyy —ut])?])

« «
< —:(w + \/21E[||7a,5+1 — |2 + Jwpy, —ur|?]) < 75(2D +24/D2 4+ C?).

Our Temaining goal is to prove (3.13). By applying Proposition 4.2 to (3. 1) and (3 2) with r = ry,w =
W1,y = 7“t+1, = WH(re, Cor—1) + 1G(wi &), n = i H(wirr, Car) + 1G (Wi, &), J = v, L = 3L3n7
and M? = 372(||A%)12 + |AY12) and using (4.27) and (4. 6) we have

1 312,72
sl =t l? < 22 Iy 2+ 2 A2 + 183 2)

2
< Sl —wea|? + 3i<||A2t||2+ 1AZ-1)2)
=9 +1 2 H % H */)»

where the last inequality is from (3.11). Now using (4.22), (4.23), (4.48), the inequality above, and applying
Jensen’s inequality, we have

t t
o a * Qi oy @
ery1 — U < 7—t||7“1 —wi P == — w4+ F—(U — i)+ Y F—(Tz+1 — Wi+1)
¢ =1 =1t
3a "
< 7: D?+ T, ; 1“_: (Irier = w12 + [Jwita = risa[|?) (4.52)
t
3a * 71—
< 7: DX 41y o o (Irivs = w4 Allwign = mill* + 392 (|AFZ + AL )||)]
i=1""
Noting that by (3.14) and (4.49)
' o t
L) g (lriss = w'lf? + llwigr = 7il|?) Z —u* | + (¢ = A)wirs = ril?)
i=1 " i=1
t
;0 2Ty
<T —(2D* + —U;) = 20D* + 20T Ui
= t; Fi ( + a; ) + t;7 )
and that by (3.11)
t t
F)/z i— at’}/z i— 3at i—
Z (IAFIZ + IAFHIE) Z (IAZIZ + 1AFHE) Z% IAZIZ + IAE ),
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we conclude from (4.50), (4.52) and Assumption A1 that

t t
3 6ay0?
Elers1] < TE[UY] + % D 4 20D% + 2601, S 7 E[U;] + % S
¢ i=1 LA
o 3a Ly 602 o
< P+ |(1420)D7 + 20T, Y S0P+ Y TR
Ve Ve — T Vo =

¢ ¢
Finally, observing from (3.14) and (4.23) that th %Cf < Cfl"tz % = C?, we conclude (3.13) from
=1t =1
the above inequality.
|

5. Conclusion. We present in this paper a novel accelerated mirror-prox (AMP) method for solving a
class of deterministic and stochastic variational inequality (VI) problems. The basic idea of this algorithm
is to incorporate a multi-step acceleration scheme into the mirror-prox method in [21, 13]. For both the
deterministic and stochastic VI, the AMP achieves the optimal iteration complexity, not only in terms of
its dependence on the number of the iterations, but also on a variety of problem parameters. Moreover,
the iteration cost of the AMP is comparable to, or even less than that of the mirror-prox method in that it
saves one compuation of VG(+). To the best of our knowledge, this is the first algorithm with the optimal
iteration complexity bounds for solving the deterministic and stochastic VIs of type (1.2). Furthermore, we
show that the developed AMP scheme can deal with the situation when the feasible region is unbounded,
as long as a strong solution of the VI exists. In the unbounded case, we adopt the modified termination
criterion employed by Monteiro and Svaiter in solving monotone inclusion problem, and demonstrate that
the rate of convergence of AMP depends on the distance from the initial point to the set of strong solutions.
Specially, in the unbounded case of the deterministic VI, the AMP scheme achieves the iteration complexity
without requiring any knowledge on the distance from the initial point to the set of strong solutions.
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