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TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS

JINYAN FAN, JIAWANG NIE, AND ANWA ZHOU

Abstract. This paper studies tensor eigenvalue complementarity problems.
Basic properties of standard and complementarity tensor eigenvalues are dis-
cussed. We formulate tensor eigenvalue complementarity problems as con-
strained polynomial optimization. When one tensor is strictly copositive, the
complementarity eigenvalues can be computed by solving polynomial optimiza-
tion with normalization by strict copositivity. When no tensor is strictly copos-
itive, we formulate the tensor eigenvalue complementarity problem equivalently
as polynomial optimization by a randomization process. The complementarity
eigenvalues can be computed sequentially. The formulated polynomial opti-
mization can be solved by Lasserre’s hierarchy of semidefinite relaxations. We
show that it has finite convergence for generic tensors. Numerical experiments
are presented to show the efficiency of proposed methods.

1. Introduction

Let R be the real field, Rn be the space of all real n-dimensional vectors, and
Rn×n be the space of all real n-by-n matrices. Denote by Rn

+ the nonnegative
orthant, i.e., the set of vectors in Rn whose entries are all nonnegative.

The classical matrix eigenvalue complementarity problem (MEiCP) is that: for
given two matrices A,B ∈ Rn×n, we want to find a number λ ∈ R and a nonzero
vector x ∈ R

n such that

(1.1) 0 ≤ x ⊥ (λBx −Ax) ≥ 0.

In the above, a ⊥ b means that the two vectors a, b are perpendicular to each other.
For (λ, x) satisfying (1.1), λ is called a complementary eigenvalue of (A,B) and x is
called the associated complementary eigenvector. MEiCPs have wide applications,
such as static equilibrium states of mechanical systems with unilateral friction [34],
the dynamic analysis of structural mechanical systems [23, 24] and the contact
problem in mechanics [25]. The MEiCP (1.1) has at least one solution if xTBx 6= 0
for all x ∈ Rn

+ \ {0} (cf. [16, 36]). When A and B are symmetric, the problem (1.1)

can be reduced to finding a stationary point of the quotient xTAx/xTBx over the
standard simplex. For such cases, nonlinear optimization methods can be applied to
solve MEiCPs (cf. [15, 40]). When A,B are not symmetric, other approaches were
proposed for solving MEiCPs, such as the branch-and-bound technique [14, 16], the
scaling-and-projection and the power iteration [35, 36], semismooth Newton-type
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methods [1, 2]. Most existing methods aim at computing one of the complemen-
tarity eigenvalues. The matrix complementarity problem is NP-hard [14].

Eigenvalues were recently studied for tensors [9, 13, 21, 38]. For an integerm > 0,
an m-th order n-dimensional tensor A is a multi-array indexed as

A := (Ai1,...,im)1≤i1,...,im≤n.

Let Tm(Rn) be the space of all such real tensors. For x := (x1, . . . , xn) ∈ Rn,
denote by Axm−1 the vector in Rn such that, for each i = 1, 2, . . . , n,

(1.2) (Axm−1)i =
n
∑

i2,...,im=1

Ai,i2,...,imxi2 · · ·xim .

Denote by Axm the homogeneous polynomial

Axm =

n
∑

i1,i2,...,im=1

Ai1,i2,...,imxi1xi2 · · ·xim .

Clearly, Axm =
∑n

j=1 xj(Ax
m−1)j . Lim [21] and Qi [38] introduced the notion of

tensor eigenvalues. Generalized eigenvalues can be defined similarly for tensors [9].
For two nonzero tensors A,B ∈ Tm(Rn), if a pair (λ, x) ∈ C × (Cn \ {0}) satisfies
the equation

(1.3) λBxm−1 −Axm−1 = 0,

then λ is called a B-eigenvalue of A and x is the associated B-eigenvector. Such
(λ, x) is called a B-eigenpair. Recently, Cui, Dai and Nie [7] studied B-eigenvalues
of symmetric tensors. They proposed a semidefinite relaxation approach for com-
puting all real B-eigenvalues sequentially, from the largest to the smallest. Each
eigenvalue can be computed by solving a finite hierarchy of semidefinite relaxations.
This approach was originally used for computing the hierarchy of local minimums
for polynomial optimization [33].

Recently, Ling et al. [22] introduced the tensor eigenvalue complementarity prob-
lem (TEiCP): for two given tensorsA,B ∈ Tm(Rn), we want to find a number λ ∈ R

and a nonzero vector x ∈ Rn such that

(1.4) 0 ≤ x ⊥ (λBxm−1 −Axm−1) ≥ 0.

For such a pair (λ, x), λ is called a complementary eigenvalue of (A,B) and x
is called the associated complementary eigenvector. For convenience, the com-
plementary eigenvalues and eigenvectors are respectively called C-eigenvalues and
C-eigenvectors. The above (λ, x) is called a C-eigenpair. Clearly, when m = 2,
the TEiCP is reduced to the classical matrix eigenvalue complementarity problem.
TEiCPs have wide applications such as higher-order Markov chains [26], magnetic
resonance imaging [39]. We refer to [5, 22] for more applications of TEiCPs.

In the existing references (cf. [22]), C-eigenvalues defined as in (1.4) are also
called Pareto-eigenvalues. Indeed, Ling et al. [22] considered more general tensor
eigenvalue complementarity problems, where the conditions x ≥ 0 and λBxm−1 −
Axm−1 ≥ 0 are replaced by

x ∈ K, λBxm−1 −Axm−1 ∈ K∗.

Here, K is a closed convex cone and K∗ is the dual cone. In [22], it was shown that
the TEiCP has at least one solution, under the assumption that Bxm 6= 0 for all
x ∈ R

n
+ \ {0}. They also gave an upper bound for the number of C-eigenvalues, for
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nonsingular tensor pairs (A,B) (see §3.1 for the definition). Moreover, a scaling-
and-projection algorithm was given for solving TEiCPs. Recently, Chen et al. [5]
have further new work on TEiCPs. When the tensors are symmetric, they reformu-
lated the problem as nonlinear optimization and then proposed a shifted projected
power method. Chen and Qi [4] reformulated the TEiCP as a system of nonlin-
ear equations and proposed a damped semi-smooth Newton method for solving it.
Some properties of Pareto-eigenvalues are further studied in [42]. Generally, the
tensor eigenvalue complementarity problem is difficult to solve. It is also NP-hard,
since the TEiCP includes the MEiCP as a special case.

Contributions In this paper, we study how to solve TEiCPs. Our aim is to
compute all C-eigenvalues, if there are finitely many ones. We formulate TEiCPs
equivalently as polynomial optimization problems, and then solve them by Lasserre
type semidefinite relaxations. Throughout the paper, a property is said to be
generically true in a tensor space if it holds in an open dense subset of that space,
in the Zariski topology. For such a property, a tensor in that open dense set is
called a generic tensor.

First, we study properties of generalized eigenvalues of tensor pairs. For non-
singular tensor pairs, it is known that the number of eigenvalues is finite (cf. [9]).
For generic tensors, we show a further new result: for each eigenvalue, there is a
unique eigenvector, up to scaling. Thus, the number of normalized eigenvectors
is also finite. Similarly, for generic tensors, we can also show that the number of
C-eigenvalues and C-eigenvectors (up to scaling) are finite. These results are given
in Section 3.

Second, we show how to solve tensor eigenvalue complementarity problems when
the tensor B is strictly copositive (i.e., Bxm > 0 for all x ∈ Rn

+ \ {0}). For such
cases, the complementarity eigenvectors can be normalized such that Bxm = 1.
Then, we formulate the problem as constrained polynomial optimization. The
complementarity eigenvalues can be computed sequentially, from the smallest to
the biggest. Each of them can be solved by a sequence of semidefinite relaxations.
We prove that such sequence has finite convergence for generic tensors, subject to
that B is strictly copositive. This will be shown in Section 4.

Third, we study how to solve tensor eigenvalue complementarity problems when
B is not not copositive. For such tensors, a C-eigenvector x may not be normalized
as Bxm = 1. Thus, we formulate TEiCPs as polynomial optimization in a different
way. By a randomization process, the complementarity eigenvectors are classified
in two cases. For each case, the TEiCP is equivalently formulated as a polynomial
optimization problem. The C-eigenvectors can be computed in order, by choosing
a randomly chosen objective. Each of them can be computed by a sequence of
semidefinite relaxations. For generic tensors, we show that it converges in finitely
many steps. The results are shown in Section 5.

In Section 6, we present numerical experiments for solving tensor eigenvalue
complementarity problems. Some preliminaries in polynomial optimization and
moment problems are given in Section 2.

2. Preliminaries

Notation The symbol N (resp., R, C) denotes the set of nonnegative integers
(resp., real, complex numbers). For integer n > 0, [n] denotes the set {1, . . . , n}.
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For two vectors a, b ∈ Rn, a ◦ b denotes the Hadamard product of a and b, i.e.,
the product is defined componentwise. For x = (x1, . . . , xn) and α = (α1, . . . , αn),
denote the monomial power

xα := xα1

1 · · ·xαn

n .

The symbol [x]d denotes the following vector of monomials

[x]Td = [ 1 x1 · · · xn x21 x1x2 · · · · · · xd1 xd−1
1 x2 · · · · · · xdn ],

The symbol R[x] := R[x1, . . . , xn] denotes the ring of polynomials in x := (x1, . . . , xn)
and with real coefficients. The ring C[x] := C[x1, . . . , xn] is similarly defined over
the complex field. The deg(p) denotes the degree of a polynomial p. The cardi-
nality of a set S is denoted as |S|. For t ∈ R, ⌈t⌉ (resp., ⌊t⌋) denotes the smallest
integer not smaller (resp., the largest integer not bigger) than t. For a matrix A,
AT denotes its transpose. For a symmetric matrix X , X � 0 (resp., X ≻ 0) means
X is positive semidefinite (resp., positive definite). For a vector u, ‖u‖ denotes its
standard Euclidean norm. The ei denotes the standard i-th unit vector in Nn.

2.1. Polynomial optimization. In this section, we review some basics in poly-
nomial optimization. We refer to [17, 18, 20] for more details.

An ideal I in R[x] is a subset of R[x] such that I ·R[x] ⊆ I and I + I ⊆ I. For a
tuple h = (h1, . . . , hm) in R[x], denote the ideal

I(h) := h1 · R[x] + · · ·+ hm · R[x].

The k-th truncation of the ideal I(h), denoted as Ik(h), is the set

(2.1) h1 · R[x]k−deg(h1) + · · ·+ hm · R[x]k−deg(hm).

In the above, R[x]t is the set of polynomials in R[x] with degrees at most t. Clearly,
I(h) = ∪k∈NIk(h).

A polynomial ψ is said to be a sum of squares (SOS) if ψ = q21 + · · · + q2k for
some q1, . . . , qk ∈ R[x]. The set of all SOS polynomials in x is denoted as Σ[x]. For
a degree m, denote the truncation

Σ[x]m := Σ[x] ∩ R[x]m.

For a tuple g = (g1, . . . , gt), its quadratic module is the set

Q(g) := Σ[x] + g1 · Σ[x] + · · ·+ gt · Σ[x].

The k-th truncation of Q(g) is the set

(2.2) Qk(g) := Σ[x]2k + g1 · Σ[x]d1
+ · · ·+ gt · Σ[x]dt

where each di = 2k − deg(gi). Note that Q(g) = ∪k∈NQk(g).
The set I(h) + Q(g) is said to be archimedean if there exists N > 0 such that

N − ‖x‖2 ∈ I(h) +Q(g). For the tuples h, g as above, denote

(2.3) E(h) := {x ∈ R
n | h(x) = 0}, S(g) := {x ∈ R

n | g(x) ≥ 0}.

Clearly, if I(h) + Q(g) is archimedean, then the set E(h) ∩ S(g) is compact. On
the other hand, if E(h) ∩ S(g) is compact, then I(h) + Q(g) can be forced to be
archimedean by adding the polynomial M − ‖x‖2 to the tuple g, for sufficiently
large M .

If f ∈ I(h) + Q(g), then f ≥ 0 on the set E(h) ∩ S(g). Conversely, if f > 0
on E(h) ∩ S(g) and I(h) + Q(g) is archimedean, then f ∈ I(h) + Q(g). This is
called Putinar’s Positivstellensatz (cf. [37]) in the literature. Interestingly, when f
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is only nonnegative on E(h)∩S(g), we also have f ∈ I(h)+Q(g), if some standard
optimality conditions hold (cf. [30]).

2.2. Moment and localizing matrices. For α = (α1, . . . , αn), denote |α| :=
α1 + . . .+ αn and

N
n
d := {α ∈ N

n : |α| ≤ d}.

Let RN
n

d be the space of real vectors indexed by α ∈ Nn
d . A vector in RN

n

d is called

a truncated multi-sequence (tms) of degree d. For y ∈ RN
n

d , define the operation

(2.4)
〈

∑

α∈Nn

d

pαx
α1

1 · · ·xαn

n , y
〉

:=
∑

α∈Nn

d

pαyα.

(In the above, each pα is a coefficient.) We say that y admits a representing measure
supported in a set T if there exists a Borel measure µ such that its support, denoted
as supp(µ), is contained in T and

yα =

∫

T

xαdµ ∀α ∈ N
n
d .

For a polynomial q ∈ R[x]2k, the k-th localizing matrix of q, generated by a tms

y ∈ RN
n

2k , is the symmetric matrix L
(k)
q (y) satisfying

vec(p1)
T
(

L(k)
q (y)

)

vec(p2) = 〈qp1p2, y〉,

for all p1, p2 ∈ R[x] with deg(p1), deg(p2) ≤ k − ⌈deg(q)/2⌉. In the above, vec(pi)
denotes the coefficient vector of the polynomial pi. When q = 1 (the constant one

polynomial), L
(k)
q (y) becomes a moment matrix and is denoted as

(2.5) Mk(y) := L
(k)
1 (y).

When q = (q1, . . . , qr) is a tuple of r polynomials, then we denote

(2.6) L(k)
q (y) :=

(

L(k)
q1

(y), . . . , L(k)
qr

(y)
)

.

We refer to [8, 10, 32] for localizing and moment matrices.
Let h = (h1, . . . , hm) and g = (g1, . . . , gt) be two polynomial tuples. In appli-

cations, people are often interested in whether or not a tms y ∈ RN
n

2k admits a
representing measure whose support is contained in E(h) ∩ S(g), as in (2.3). For
this to be true, a necessary condition (cf. [8, 10]) is that

(2.7) Mk(y) � 0, L(k)
g (y) � 0, L

(k)
h (y) = 0.

However, the above is typically not sufficient. Let

d0 = max {1, ⌈deg(h)/2⌉, ⌈deg(g)/2⌉}.

If y satisfies (2.7) and the rank condition

(2.8) rankMk−d0
(y) = rankMk(y),

then y admits a measure supported in E(h) ∩ S(g) (cf. [8]). In such case, y admits
a unique finitely atomic measure on E(h)∩S(g). For convenience, we just call that
y is flat with respect to h = 0 and g ≥ 0 if (2.7) and (2.8) are both satisfied.

For t ≤ d and w ∈ RN
n

d , denote the truncation of w:

(2.9) w|t = (wα)α∈Nn

t
.
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For two tms’ y ∈ RN
n

2k and z ∈ RN
n

2l with k < l, we say that y is a truncation
of z (equivalently, z is an extension of y), if y = z|2k. For such case, y is called
a flat truncation of z if y is flat, and z is a flat extension of y if z is flat. Flat
extensions and flat truncations are very useful in solving polynomial optimization
and truncated moment problems (cf. [28, 31, 32]).

3. Properties of tensor eigenvalues

This section studies some properties of standard eigenvalues and complementar-
ity eigenvalues, for generic tensor pairs.

3.1. Tensor eigenvalues and eigenvectors. For two given tensorsA,B ∈ Tm(Cn),
a number λ ∈ C is called a generalized eigenvalue of the pair (A,B) if there exists
a vector x ∈ Cn \ {0} such that

(3.1) Axm−1 − λBxm−1 = 0.

If so, such x is called a generalized eigenvector, associated with λ, of the pair (A,B).
We refer to Ding and Wei [9] for generalized tensor eigenvalues. For convenience,
we just call that the above λ (resps., x) is an eigenvalue (resp., eigenvector) of
(A,B), and (λ, x) is called an eigenpair.

Tensor eigenvalues are closely related to the notion of resultant, denoted as Res,
for tuples of homogeneous polynomials. For a tuple f = (f1, . . . , fn) of n homoge-
neous polynomials in x := (x1, . . . , xn), its resultant is the polynomial Res(f), in
the coefficients of f , such that Res(f) = 0 if and only if the homogeneous equation

f1(x) = · · · = fn(x) = 0

has a nonzero solution in Cn. The Res(f) is an irreducible polynomial, and is
homogeneous in the coefficients of each fi. We refer to Cox, Little and O’Shea
[6] for resultants. For a tensor F ∈ Tm(Cn), Fxm−1 is a tuple of n homogeneous
polynomials of degree m− 1. For convenience, denote the resultant:

(3.2) R(F) := Res(Fxm−1).

Clearly, λ is an eigenvalue of (A,B) if and only if

R(A− λB) = 0.

Note that R(A−λB) is a polynomial in λ and its degree is n(m− 1)n−1. As in [9],
(A,B) is called a nonsingular tensor pair if the equation

Axm−1 = Bxm−1 = 0

has the only zero solution. Clearly, if R(B) 6= 0 then (A,B) is nonsingular.

Theorem 3.1. Let A,B ∈ Tm(Cn) and D := n(m− 1)n−1.

(i) ([9, Theorem 2.1]) If R(B) 6= 0, then (A,B) has D eigenvalues, counting
multiplicities.

(ii) If A,B are generic tensors in Tm(Cn), then (A,B) has D distinct eigen-
values. Moreover, for each eigenvalue, there is a unique eigenvector, up to
scaling.

Proof. (i) This item can be found in Theorem 2.1 of Ding and Wei [9]. If R(B) 6= 0,
then (A,B) is a nonsingular tensor pair.
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(ii) The resultant R(F) is an irreducible polynomial in the entries of F . The
hypersurface

H = {F ∈ Tm(Cn) : R(F) = 0}

is irreducible in the space Tm(Cn). Its minimum degree defining polynomial is
R(F), with the degree D. The hypersurface H is smooth, except a subset E ⊆ H

whose dimension is smaller than that of H . For generic A,B, the line

L = {A− λB : λ ∈ C}

does not intersect the set E . That is, L intersects H only at smooth points of H

(i.e., the intersection is transversal). This implies that for all λ satisfying

φ(λ) := R(A− λB) = 0,

we have φ′(λ) 6= 0. The roots of φ are all simple. Therefore, (A,B) has D distinct
eigenvalues, when A,B are generic tensors in Tm(Cn).

Let X be the determinantal projective variety

X =
{

x ∈ P
n−1 : rank

[

Axm−1 Bxm−1
]

< 2
}

.

(The P
n−1 is the projective space of equivalent classes of vectors in C

n. ) Clearly,
if R(B) 6= 0, then (λ, x) is an eigenpair of (A,B) if and only if x ∈ X . When
A,B are generic, we have R(B) 6= 0, and the set X is zero-dimensional (i.e., X is
a finite set), and its cardinality is equal to the number D. This can be implied by
Propositions A.5, A.6 of [27].

When A,B are generic tensors, (A,B) has D distinct eigenvalues. For each
eigenvalue, there is at least one eigenvector. This implies that there is a unique
eigenvector up to scaling. �

3.2. Combinatorial eigenvalues and eigenvectors. First, we give the defini-
tion of combinatorial eigenvalues for tensor pairs. Recall the Hadamard product ◦
as in §2.

Definition 3.2. Let A,B ∈ Tm(Cn) be tensors. If there exist a number λ ∈ C and
a vector x ∈ Cn \ {0} such that

(3.3) x ◦ (Axm−1 − λBxm−1) = 0,

then λ (resp., x) is called a combinatorial eigenvalue (resp., combinatorial eigen-
vector) of the pair (A,B). Such (λ, x) is called a combinatorial eigenpair.

For convenience of writing, the combinatorial eigenvalues (resp., eigenvectors,
eigenpairs) defined in (3.3) are called CB-eigenvalues (resp., CB-eigenvectors, CB-
eigenpairs). In particular, C-eigenvalues (resp., C-eigenvectors, C-eigenpairs) as in
(1.4) are also CB-eigenvalues (resp., CB-eigenvectors, CB-eigenpairs).

For a subset J = {i1, . . . , ik} ⊆ [n], denote xJ = (xi1 , . . . , xik ). For a tensor
F ∈ Tm(Cn), let FJ be the principal sub-tensor of F corresponding to the set J ,
i.e., FJ is a tensor in Tm(Ck) indexed by (j1, . . . , jm) such that

(FJ)j1,...,jm = Fj1,...,jm , j1, . . . , jm ∈ J.

Similar to Fxm−1, FJ(xJ )
m−1 is defined to be the k-dimensional vector, indexed

by j ∈ J such that

(3.4)
(

FJ(xJ )
m−1

)

j
=

∑

i2,...,im∈J

Fj,i2,...,imxi2 · · ·xim .
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Like (3.2), let RJ(F) be the resultant of the homogeneous tuple FJ(xJ )
m−1

(3.5) RJ(F) := Res
(

FJ(xJ )
m−1

)

.

When (A,B) is a nonsingular tensor pair, Ling et al. [22, Theorem 4.1] gave
an upper bound for the number of C-eigenvalues. We give a similar result for
CB-eigenvalues. Furthermore, we also give upper bound for the number of CB-
eigenvectors (up to scaling), for generic tensors A,B. Thus, the number of C-
eigenvectors (up to scaling) can also be bounded.

Theorem 3.3. Let A,B ∈ Tm(Cn).

(i) If RJ(B) 6= 0 for each ∅ 6= J ⊆ [n], then (A,B) has at most nmn−1 CB-
eigenvalues.

(ii) If A,B are generic tensors in Tm(Cn), then, for each CB-eigenvalue, there
is a unique CB-eigenvector (up to scaling).

Proof. (i) This can be done by following the approach in the proof of Theorem 4.1
of [22]. Suppose λ is a CB-eigenvalue, with the CB-eigenvector u 6= 0 such that

u ◦ (Aum−1 − λBum−1) = 0.

Let J = {j : uj 6= 0}, a nonempty set. Then, the above implies that

AJ (uJ)
m−1 − λBJ(uJ)

m−1 = 0.

So, λ is an eigenvalue of the sub-tensor pair (AJ ,BJ). By Theorem 3.1(i), (AJ ,BJ)
has at most |J |(m− 1)|J|−1 eigenvalues. By enumerating all possibilities of J , the
number of CB-eigenvalues of (A,B) is at most the number

n
∑

|J|=1

(

n

|J |

)

|J |(m − 1)|J|−1 = nm
n−1

.

(ii) When A,B are generic in the space Tm(Cn), for each ∅ 6= I ⊆ [n], the subpair
(AI ,BI) is also generic in Tm(C|I|). Hence, (AI ,BI) has a unique eigenvector (up
to scaling) for each eigenvalue, by Theorem 3.1(ii). For each CB-eigenpair (λ, u)
of (A,B), we showed in the item (i) that λ is an eigenvalue of the sub-tensor pair
(AJ ,BJ) with the eigenvector uJ , with the index set J = {j : uj 6= 0}.

Suppose v is another CB-eigenvector associated to λ. Let I = {j : vj 6= 0}.
Clearly, λ is also an eigenvalue of the sub-tensor pair (AI ,BI). We show that
I = J . Define the set

V = {C ∈ Tm(Cn) : RI(CI) = RJ (CJ) = 0}.

The polynomial RI(CI) is irreducible in the entries of the subtensor CI . The same is
true forRJ (CJ). When I 6= J , the dimension of the set V is at most dim

(

Tm(Cn)
)

−
2. When A,B are generic tensors, the line in the space Tm(Cn)

L = {A− λB : λ ∈ C}

does not intersect V . Therefore, if I 6= J , then λ cannot be a common eigenvalue of
the two different sub-tensor pairs (AI ,BI) and (AJ ,BJ). Hence, I = J and uJ , vJ
are both eigenvectors of (AJ ,BJ). By Theorem 3.1(ii), u is a scaling of v. �
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4. TEiCPs with strict copositivity

In this section, we discuss how to compute C-eigenvalues of a tensor pair (A,B)
when B is strictly copositive. Note that B ∈ Tm(Rn) is said to be copositive (resp.,
strictly copositive) if Bxm ≥ 0 (resp., Bxm > 0) for all x ∈ Rn

+ \ {0}. Recall that
(λ, x) is a C-eigenpair of (A,B) if x is a nonzero vector and

0 ≤ x ⊥ (λBxm−1 −Axm−1) ≥ 0.

Any positive scaling of such x is also a C-eigenvector. When B is strictly copositive,
we can always scale x such that Bxm = 1. Under this normalization, the C-eigenpair
(λ, x) satisfies

0 = xT (λBxm−1 −Axm−1) = λBxm −Axm = λ−Axm.

So, we get λ = Axm. The C-eigenvalues of (A,B) can be found by solving the
polynomial system

(4.1)

{

Bxm = 1, x ◦ ((Axm)Bxm−1 −Axm−1) = 0,
x ≥ 0, (Axm)Bxm−1 −Axm−1 ≥ 0,

where ◦ denotes the Hadamard product of two vectors. If we define

a(x) := x ◦ Axm−1, b(x) := x ◦ Bxm−1.

Then, it clearly holds that

x ◦ (λBxm−1 −Axm−1) = λb(x) − a(x).

The polynomial system (4.1) can be rewritten as

(4.2)

{

Bxm = 1, (Axm)b(x) − a(x) = 0,
x ≥ 0, (Axm)Bxm−1 −Axm−1 ≥ 0.

When B is strictly copositive, the solution set of (4.2) is compact, because {x ∈ Rn :
Bxm = 1, x ≥ 0} is compact. The tensor pair (A,B) has at least one C-eigenvalue
when B (or −B) is strictly copositive (cf. [22, Theorem 2.1]). Moreover, under some
generic conditions on B, (A,B) has finitely many C-eigenvalues (cf. Theorem 3.3).
They can be ordered monotonically as

(4.3) λ1 < λ2 < · · · < λN .

For convenience, denote the polynomial tuples

(4.4)















f0 = Axm,

p =
(

Bxm − 1, (Axm)b(x) − a(x)
)

,

q =
(

x, (Axm)Bxm−1 −Axm−1
)

.

4.1. The first C-eigenvalue. The first eigenvalue λ1 equals the optimal value of
the optimization problem

(4.5)

{

λ1 = min f0(x)
s.t. p(x) = 0, q(x) ≥ 0.

We apply Lasserre type semidefinite relaxations [17] to solve (4.5). For the orders
k = m,m+ 1, . . ., the k-th Lasserre relaxation is

(4.6)











ν1,k := min 〈f0, y〉

s.t. 〈1, y〉 = 1, L
(k)
p (y) = 0,

Mk(y) � 0, L
(k)
q (y) � 0, y ∈ RN

n

2k .
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In the above, 〈1, y〉 = 1 means that the first entry of y is one, and the matrices

Mk(y), L
(k)
p (y), L

(k)
q (y) are defined as in (2.5)-(2.6). Its dual problem is

(4.7)

{

ν̃1,k := max γ
s.t. f0 − γ ∈ I2k(p) +Qk(q).

Suppose y1,k is an optimizer of (4.6). If, for some t ∈ [m, k], the truncation ŷ =
y1,k|2t (see (2.9)) satisfies

(4.8) rankMt−m(ŷ) = rankMt(ŷ),

then ν1,k = λ1 and we can get rankMt(ŷ) global optimizers of (4.5) (cf. [28]).

4.2. The second and other eigenvalues. We discuss how to compute λi for
i = 2, . . . , N . Suppose λi−1 is already computed. We need to determine the next
C-eigenvalue λi. Consider the optimization problem

(4.9)

{

min f0(x)
s.t. p(x) = 0, q(x) ≥ 0, f0(x)− λi−1 − δ ≥ 0.

The optimal value of (4.9) is equal to λi if

(4.10) 0 < δ < λi − λi−1.

Similarly, Lasserre type semidefinite relaxations can be applied to solve (4.9). For
the orders k = m,m+ 1, . . ., the k-th Lasserre relaxation is

(4.11)











νi,k := min 〈f0, z〉

s.t. 〈1, z〉 = 1, L
(k)
p (z) = 0,Mk(z) � 0,

L
(k)
q (z) � 0, L

(k)
f0−λi−1−δ(z) � 0, z ∈ RN

n

2k .

The dual problem of (4.11) is

(4.12)

{

ν̃i,k := max γ
s.t. f0 − γ ∈ I2k(p) +Qk(q, f0 − λi−1 − δ).

Suppose yi,k is an optimizer of (4.11). If a truncation ŷ = yi,k|2t satisfies (4.8) for
some t ∈ [m, k], then νi,k = λi and we can get optimizers of (4.9) (cf. [28]).

In practice, the existence of λi is usually not known in advance. Even if it exists,
its value is typically not available. So, we need to determine the value of δ satisfying
(4.10). Consider the polynomial optimization problem:

(4.13)

{

τ := max f0(x)
s.t. p(x) = 0, q(x) ≥ 0, f0(x) ≤ λi−1 + δ.

Its optimal value τ can be computed by Lasserre relaxations like (4.11)-(4.12). As
in Proposition 4.5, δ satisfies (4.10) if and only if τ = λi−1. When τ = λi−1, λi
does not exist if and only if (4.11) is infeasible for some k.

4.3. An algorithm for computing C-eigenvalues. Assume that the tensor B
is strictly copositive. So, the C-eigenvectors can be normalized as Bxm = 1. We
propose an algorithm to compute the C-eigenvalues sequentially, from the smallest
one λ1 to the biggest one λN . Since B is strictly copositive, λ1 always exists [22].
We assume there are finitely many C-eigenvalues.

First, we compute λ1 by solving semidefinite relaxations (4.6)-(4.7). After getting
λ1, we solve (4.11)-(4.12) for λ2. If λ2 does not exist, then λ1 is the biggest C-
eigenvalue and we stop; otherwise, we continue to determine λ3. Repeating this
procedure, we can get all the C-eigenvalues of (A,B).



TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS 11

Algorithm 4.1. For two tensors A,B ∈ Tm(Rn) with B strictly copositive, com-
pute a set Λ of all C-eigenvalues and a set U of C-eigenvectors, for the pair (A,B).
Let U := ∅, Λ := ∅, i := 1, k := m.

Step 1. Solve (4.6) with the order k for an optimizer y1,k.
Step 2. If (4.8) is satisfied for some t ∈ [m, k], then update U := U ∪ S, with S

a set of optimizers of (4.5); let λ1 = ν1,k, Λ := {λ1}, i := i + 1 and go to
Step 3. If such t does not exist, let k := k + 1 and go to Step 1.

Step 3. Let δ = 0.05, and compute the optimal value τ of (4.13). If τ > λi−1, let
δ := δ/2 and compute τ again. Repeat this, until we get τ = λi−1. Let
k := m.

Step 4. Solve (4.11) with the order k. If it is infeasible, then (4.2) has no further
C-eigenvalues, and stop. Otherwise, compute an optimizer yi,k for (4.11).

Step 5. If (4.8) is satisfied for some t ∈ [m, k], then update U := U ∪ S where S is
a set of optimizers of (4.9); let λi = νi,k, Λ := Λ ∪ {λi}, i := i + 1 and go
to Step 3. If such t does not exist, let k := k + 1 and go to Step 4.

The semidefinite relaxation (4.6) can be solved by the software GloptiPoly 3

[12] and SeDuMi [41]. When (4.8) holds, it can be shown that λi,k = λi, and
we can get a set of optimizers of (4.5), (4.9). Such optimizers are the associated
eigenvectors for the C-eigenvalue λi. In Steps 2 and 5, the method in Henrion and
Lasserre [11] can be used to compute the set S.

4.4. Properties of relaxations. First, we discuss when Algorithm 4.1 has finite
convergence. For the polynomial tuple p, denote the sets

(4.14) VC(p) := {u ∈ C
n | p(u) = 0}, VR(p) := VC(p) ∩ R

n.

Theorem 4.2. Let A,B ∈ Tm(Rn). Suppose B is strictly copositive. Then, we
have the properties:

(i) The smallest C-eigenvalue λ1 of (A,B) always exists. Moreover, if the set
VR(p) is finite, then for all k sufficiently large,

ν1,k = ν̃1,k = λ1

and the condition (4.8) must be satisfied.
(ii) For i ≥ 2, suppose λi exists and 0 < δ < λi − λi−1. If the set VR(p) is

finite, then for all k sufficiently large,

νi,k = ν̃i,k = λi

and the condition (4.8) must be satisfied.

Proof. (i) Since B is strictly copositive, (A,B) has at least one C-eigenvalue (cf. [22,
Theorem 2.1]). So, λ1 always exists. If VR(p) is finite, the equation p(x) = 0 has
finitely many real solutions. Thus, when the relaxation order k is sufficiently large,
we must have ν1,k = ν̃1,k = λ1 and the flat truncation condition (4.8) must be
satisfied. This can be implied by Proposition 4.6 of [19] and Theorem 1.1 of [29].

(ii) If 0 < δ < λi − λi−1 holds, the optimal value of (4.9) is equal to λi. When
VR(p) is finite, the equation p(x) = 0 has finitely many real solutions. The conclu-
sion can be implied by Proposition 4.6 of [19] and Theorem 1.1 of [29]. �

Remark 4.3. In Theorem 4.2, if VR(p) is not a finite set, ν1,k and ν̃1,k may not
have finite convergence to λ1, but the asymptotic convergence can be established.
When B is strictly copositive, the set {x ∈ R

n : Bxm = 1, x ≥ 0} is compact, say,
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contained in the ball {x ∈ Rn : M − xTx ≥ 0}, where M > 0 is a sufficiently large
number. If we add M − xTx to the polynomial tuple q, then ν1,k and ν̃1,k have
asymptotic convergence to λ1. This is because such Q(q) is archimedean, and the
asymptotic convergence can be implied by the results in [17].

However, interestingly, the set VR(p) is finite for generic tensors A,B.

Proposition 4.4. Let p be as in (4.4). If A,B are generic tensors, then VC(p) and
VR(p) are finite sets.

Proof. The equation p(x) = 0 implies that

Bxm = 1, a(x)− (Axm)b(x) = x ◦ (Axm−1 − (Axm)Bxm−1) = 0.

So, x must be a nonzero vector. Let J = {j : xj 6= 0}. Then we get

AJ(xJ )
m−1 − (Axm)BJ (xJ )

m−1 = 0.

Hence, xJ is an eigenvector of the sub-tensor pair (AJ ,BJ). When A,B are generic,
such x must be finitely many, by Theorem 3.3(ii). The conclusion holds over the
complex field. So, VC(p), as well as VR(p), is finite, for generic A,B. �

The existence of λi and the relation (4.10) can be checked as follows.

Proposition 4.5. Let A,B ∈ Tm(Rn). Suppose B is strictly copositive. Let Λ be
the set of all C-eigenvalues of (A,B). Assume Λ is finite. Let λi be the i-th smallest
C-eigenvalue of (A,B), and λmax be the maximum of them. For all i ≥ 2 and all
δ > 0, we have the following properties:

(i) If (4.11) is infeasible for some k, then Λ ∩ [λi−1 + δ,∞) = ∅.
(ii) If Λ ∩ [λi−1 + δ,∞) = ∅ and VR(p) is finite, then (4.11) must be infeasible

for some k.
(iii) If τ = λi−1 and λi exists, then δ satisfies (4.10).
(iv) If τ = λi−1 and (4.11) is infeasible for some k, then λi does not exist.

Proof. Since B is strictly copositive, every C-eigenvector x can be scaled such that
Bxm = 1.

(i) Note that, for every eigenpair (λ, u) of (A,B) with λ ≥ λi−1 + δ, the tms
[u]2k (see the notation in §2) is always feasible for (4.11). If (4.11) is infeasible for
some k, then (A,B) clearly has no C-eigenvalues ≥ λi−1 + δ.

(ii) Suppose (A,B) has no C-eigenvalues ≥ λi−1 + δ and VR(p) is finite. The
feasible set of (4.9) is empty. By the Positivstellensatz (cf. [3, Theorem 4.4.2]), we
have

−2 = φ+ ψ, φ ∈ I(p), ψ ∈ Pr(q, f0 − λi−1 − δ),

where Pr(q, f0 − λi−1 − δ) denotes the preodering generated by the tuple (q, f0 −
λi−1 − δ). (We refer to [3] for preorderings.) Since VR(p) is finite, the ideal I(p)
is archimedean. (This is because −‖p‖2 belongs to I(p) and the set {x ∈ Rn :
−‖p‖2 ≥ 0} is compact.) So, I(p) +Q(q, f0 − λi−1 − δ) is also archimedean. Note
that 1 + ψ is strictly positive on {x ∈ Rn : p = 0, q ≥ 0, f0 − λi−1 − δ ≥ 0}. By
Putinar’s Positivstellensatz (cf. [37]), 1 + ψ ∈ I(p) +Q(q, f0 − λi−1 − δ). Thus, we
get

−1 = φ+ σ, φ ∈ I2k(p), σ ∈ Qk(q, f0 − λi−1 − δ)

where σ = 1+ψ and k is sufficiently large. This implies that (4.12) has an improving
direction and it is unbounded from the above. By weak duality, the relaxation (4.11)
must be infeasible, for k big enough.
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(iii) If τ = λi−1, then the maximum C-eigenvalue, which is less than or equal to
λi−1 + δ, is still λi−1. So, if λi exists, we must have λi > λi−1 + δ, i.e., (4.10) is
satisfied.

(iv) When (4.11) is infeasible for some k, (A,B) has no C-eigenvalues ≥ λi−1+δ.
So, if τ = λi−1, λi−1 is the maximum C-eigenvalue, and λi does not exist. �

5. Solving general TEiCPs

In this section, we discuss how to compute complementarity eigenvalues of (A,B)
for generic tensors A,B ∈ Tm(Rn). Recall that λ is a C-eigenvalue of (A,B) if there
exists a nonzero vector x ∈ R

n such that

0 ≤ x ⊥ (λBxm−1 −Axm−1) ≥ 0.

5.1. Polynomial optimization reformulations. As in §4, we still denote

a(x) := x ◦ Axm−1, b(x) := x ◦ Bxm−1.

If we normalize x to have unit length, then (λ, x) is a C-eigenpair of (A,B) if and
only if it is a solution of the polynomial system

(5.1)

{

xTx = 1, λb(x) − a(x) = 0,
x ≥ 0, λBxm−1 −Axm−1 ≥ 0.

When b(x) 6= 0, the equation a(x) − λb(x) = 0 holds if and only if

rank
[

a(x) b(x)
]

≤ 1,

which is equivalent to that

a(x)ib(x)j − b(x)ia(x)j = 0 (1 ≤ i < j ≤ n).(5.2)

Suppose (5.1) has finitely many real solutions. For a generic vector ξ ∈ Rn, we
have ξT b(x) 6= 0 for all x satisfying (5.1) and

(5.3) λ =
ξTa(x)

ξT b(x)
.

The C-eigenvalues of (A,B) can be computed in two cases.
Case I: ξT b(x) > 0. In this case, the system (5.1) is equivalent to

(5.4)

{

xTx = 1, a(x)ib(x)j − b(x)ia(x)j = 0 (1 ≤ i < j ≤ n),
x ≥ 0, ξT b(x) ≥ 0,

(

ξTa(x)Bxm−1 − ξT b(x)Axm−1
)

≥ 0.

Note that (5.4) does not use λ directly. For generic (A,B), (5.4) has finitely many
solutions. Once a solution x is found, the C-eigenvalue λ can be computed by (5.3).
The system (5.4) can be solved as a polynomial optimization problem. Generate a
random polynomial f(x) ∈ R[x]2m. Consider the optimization problem

(5.5)

{

min f(x)
s.t. h(x) = 0, g(x) ≥ 0,

where the polynomial tuples h, g are given as

(5.6)







h(x) =
(

xTx− 1,
(

a(x)ib(x)j − b(x)ia(x)j
)

1≤i<j≤n

)

,

g(x) =
(

x, ξT b(x), ξTa(x)Bxm−1 − ξT b(x)Axm−1
)

.

Clearly, x satisfies (5.4) if and only if x is feasible for (5.5).
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Case II: ξT b(x) < 0. In this case, the system (5.1) is equivalent to

(5.7)

{

xTx = 1, a(x)ib(x)j − b(x)ia(x)j = 0 (1 ≤ i < j ≤ n),
x ≥ 0, −ξT b(x) ≥ 0, ξT b(x)Axm−1 − ξT a(x)Bxm−1 ≥ 0.

Like (5.4), the system (5.7) does not use λ directly. Once a point x satisfying (5.7)
is obtained, the C-eigenvalue λ can be obtained by (5.3). Clearly, x satisfies (5.7)
if and only if it is feasible for the optimization problem

(5.8)

{

min f(x)
s.t. h(x) = 0, g̃(x) ≥ 0,

where h is the same as in (5.6) while the tuple g̃ is given as

(5.9) g̃(x) =
(

x, −ξT b(x), ξT b(x)Axm−1 − ξT a(x)Bxm−1
)

.

The feasible sets of (5.5) and (5.8) are compact, since they are contained in the
unit sphere. However, they are possibly empty.

The C-eigenpairs (λ, x) satisfying (5.1) can be found by computing feasible points
of the optimization problems (5.5) and (5.8). When the number of C-eigenvectors
(normalized to have unit lengths) is finite, we can compute all the feasible points
of (5.5) and (5.8). In the following subsections, we show how to do this.

5.2. Compute C-eigenvectors. Assume that there are finitely many C-eigenvectors
(normalized to have unit lengths) for the tensor pair (A,B). We propose an algo-
rithm for computing all of them.

5.2.1. C-eigenpairs for case I.
We discuss how to compute the C-eigenvectors satisfying (5.4). Assume the

feasible set of (5.5) is nonempty and finite. When it is generically chosen, f achieves
different values at different feasible points of (5.5), say, they are monotonically
ordered as

(5.10) f
(1)
1 < f

(1)
2 < · · · < f

(1)
N1
.

We aim to compute the C-eigenvectors, along with the values f
(1)
i , in the order

i = 1, . . . , N1. Choose a number ℓi such that

(5.11) f
(1)
i−1 < ℓi < f

(1)
i .

(For the case i = 1, f
(1)
0 can be chosen to be any value smaller than f

(1)
1 .) Note

that f
(1)
i is equal to the optimal value of

(5.12)

{

min f(x)
s.t. h(x) = 0, g(x) ≥ 0, f(x) − ℓi ≥ 0.

We apply Lasserre type semidefinite relaxations to solve (5.12). For the orders
k = m,m+ 1, . . ., the k-th Lasserre relaxation is

(5.13)











µ1,k := min 〈f, y〉

s.t. 〈1, y〉 = 1, L
(k)
h (y) = 0, Mk(y) � 0,

L
(k)
g (y) � 0, L

(k)
f−ℓi

(y) � 0, y ∈ RN
n

2k .

(See §2.2 for the notation in the above.) The dual problem of (5.13) is

(5.14)

{

µ̃1,k := max γ
s.t. f − γ ∈ I2k(h) +Qk(g, f − ℓi),
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where I2k(h) and Qk(g, f − ℓi) are defined as in (2.1)-(2.2). By weak duality, it can
be shown that (cf. [17])

µ̃1,k ≤ µ1,k ≤ f
(1)
i , ∀ k ≥ m.(5.15)

Moreover, both {µ1,k} and {µ̃1,k} are monotonically increasing.
When (5.4) has a solution, the semidefinite relaxation (5.13) is always feasible.

Suppose yi,k is an optimizer of (5.13). If for some t ∈ [m, k], the truncation ŷ :=
yi,k|2t satisfies the rank condition

(5.16) rankMt−m(ŷ) = rankMt(ŷ),

then one can show that µ1,k = µ̃1,k = f
(1)
i and we can get rankMt(ŷ) optimizers of

(5.12) (cf. [28]). The method in [11] can be applied to compute the minimizers of
(5.12). Interestingly, we will show that the rank condition (5.16) must be satisfied,
for generic tensors A,B (cf. Theorem 5.2).

5.2.2. C-eigenpairs for case II.
Now we show how to find the C-eigenvectors satisfying (5.7). The computation

is similar to the case I. Assume the feasible set of (5.8) is nonempty and finite.
Order its objective values monotonically as

(5.17) f
(2)
1 < f

(2)
2 < · · · < f

(2)
N2
.

We compute the C-eigenvectors and the value f
(2)
i in the order i = 1, . . . , N2.

Choose a number ℓ̃i such that

(5.18) f
(2)
i−1 < ℓ̃i < f

(2)
i .

(For i = 1, choose f
(2)
0 to be any value smaller than f

(2)
1 .) Note that f

(2)
i is equal

to the minimum value of

(5.19)

{

min f(x)

s.t. h(x) = 0, g̃(x) ≥ 0, f(x) − ℓ̃i ≥ 0.

For an order k ≥ m, the k-th Lasserre relaxation (cf. [17]) for solving (5.19) is

(5.20)











µ2,k := min 〈f, z〉

s.t. 〈1, z〉 = 1, L
(k)
h (z) = 0, Mk(z) � 0,

L
(k)
g̃ (z) � 0, L

(k)

f−ℓ̃i
(z) � 0, z ∈ RN

n

2k .

Its dual optimization problem is

(5.21)

{

µ̃2,k := max γ

s.t. f − γ ∈ I2k(h) +Qk(g̃, f − ℓ̃i).

Suppose zi,k is an optimizer of (5.20). If for some t ∈ [m, k], the truncation
ẑ := zi,k|2t satisfies the rank condition

(5.22) rankMt−m(ẑ) = rankMt(ẑ),

then µ2,k = µ̃2,k = f
(2)
i and we can get rankMt(ẑ) optimizers of (5.19) (cf. [28]).

We will show that the condition (5.22) must be satisfied for generic tensors A,B
(cf. Theorem 5.2).
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5.2.3. An algorithm for computing C-eigenpairs.
In practice, the f, ℓi, ℓ̃i need to be chosen properly. We propose to choose f in

the form as

(5.23) f = [x]Tm(RTR)[x]m,

where R is a random square matrix. For f as in (5.23), we almost always have

f
(1)
1 > 0, f

(2)
1 > 0.

Thus, we can choose

(5.24) f
(1)
0 = f

(2)
0 = −1, ℓ1 = ℓ̃1 = 0.

In the computation of f
(1)
i , f

(2)
i , suppose the values of f

(1)
i−1, f

(2)
i−1 are already

computed. In practice, for δ > 0 small enough, we can choose

ℓi = f
(1)
i−1 + δ, ℓ̃i = f

(2)
i−1 + δ,

to satisfy (5.11) and (5.18). Such value of δ can be determined by solving the
following maximization problems:

(5.25)

{

θ1 = max f(x)

s.t. h(x) = 0, g(x) ≥ 0, f(x) ≤ f
(1)
i−1 + δ,

(5.26)

{

θ2 = max f(x)

s.t. h(x) = 0, g̃(x) ≥ 0, f(x) ≤ f
(2)
i−1 + δ.

Their optimal values can be computed by Lasserre type semidefinite relaxations.

When h(x) = 0 has finitely many real solutions, we must have θ1 = f
(1)
i−1 and

θ2 = f
(2)
i−1, for δ > 0 sufficiently small. For such case, the relations (5.11) and (5.18)

will be satisfied. This is justified by Lemma 5.6.
Note that f achieves only finitely many values in the feasible sets of (5.5), (5.8),

when (A,B) has finitely many normalized C-eigenvectors.

Algorithm 5.1. For two given tensors A,B ∈ Tm(Rn), compute a set Λ of C-
eigenvalues, and a set U of C-eigenvectors, for the pair (A,B).

Step 0. Choose f as in (5.23), with R a random square matrix. Choose a random

vector ξ ∈ Rn. Let U = ∅, i = 1, k = m, ℓ1 = 0, ℓ̃1 = 0.
Step 1. Solve (5.13) for the order k. If it is infeasible, then (5.4) has no further

C-eigenvectors (except those in U); let k = m, i = 1 and go to Step 4.
Otherwise, compute an optimizer yi,k for (5.13).

Step 2. If (5.16) is satisfied for some t ∈ [m, k], then update U := U ∪ S, where
S is a set of optimizers of (5.12); let i := i + 1 and go to Step 3. If such t
does not exist, let k := k + 1 and go to Step 1.

Step 3. Let δ = 0.05, and compute the optimal value θ1 of (5.25). If θ1 > f
(1)
i−1,

let δ := δ/2 and compute θ1 again. Repeat this process, until θ1 = f
(1)
i−1 is

met. Let ℓi := f
(1)
i−1 + δ, k = m, then go to Step 1.

Step 4. Solve (5.20) for the order k. If it is infeasible, then (5.7) has no further
C-eigenvectors (except those in U) and go to Step 7. Otherwise, compute
an optimizer zi,k for it.

Step 5. Check whether or not (5.22) is satisfied for some t ∈ [m, k]. If yes, update
U := U ∪ S, where S is a set of optimizers of (5.19); let i := i + 1 and go
to Step 6. If no, let k := k + 1 and go to Step 4.



TENSOR EIGENVALUE COMPLEMENTARITY PROBLEMS 17

Step 6. Let δ = 0.05, and compute the optimal value θ2 of (5.26). If θ2 > f
(2)
i−1, let

δ := δ/2 and compute θ2 again. Repeat this process, until we get θ2 = f
(2)
i−1.

Let ℓ̃i = f
(2)
i−1 + δ, k = m, and go to Step 4.

Step 7. Let Λ := {ξTa(u)/ξT b(u) : u ∈ U}.

The Lasserre type semidefinite relaxations (5.13) and (5.20) can be solved by the
software GloptiPoly 3 [12] and SeDuMi [41]. In Step 2 and Step 5, the method in
Henrion and Lasserre [11] can be used to compute optimizers of (5.12). The same
is true for (5.19) and its Lasserre relaxation (5.20).

5.3. Properties of the relaxations. First, we prove that Algorithm 5.1 converges
in finitely many steps for generic tensors A,B. Let T1, T2 be the feasible sets of
(5.12) and (5.19), respectively. Let VR(h) be defined as in (4.14).

Theorem 5.2. Let A,B ∈ Tm(Rn) be two tensors. Let h, g, g̃ be the polynomial
tuples as in (5.6), (5.9), constructed from A,B and a vector ξ ∈ Rn. Then, for all

ℓi, ℓ̃i satisfying (5.11) and (5.18), we have the following properties:

(i) The relaxation (5.13) is infeasible for some order k if and only if the feasible
set T1 of (5.12) is empty.

(ii) Suppose T1 6= ∅. If VR(h) is a finite set, then for k sufficiently large, the
rank condition (5.16) must be satisfied and

µ1,k = µ̃1,k = f
(1)
i .

(iii) The relaxation (5.20) is infeasible for some order k if and only if the feasible
set T2 of (5.19) is empty.

(iv) Suppose T2 6= ∅. If VR(h) is a finite set, then for k sufficiently large, the
rank condition (5.22) must be satisfied and

µ2,k = µ̃2,k = f
(2)
i .

Proof. (i) “only if” direction: If the relaxation (5.13) is infeasible for some order k,
then the feasible set of (5.12) must be empty. This is because, if otherwise (5.12)
has a feasible point, say, u, then the tms [u]2k (see the notation in §2) generated
by u must be feasible for (5.13).

“if” direction: Since T1 = ∅, by the Positivstellensatz (cf. [3, Theorem 4.4.2]),
we have

−2 = φ+ ψ, φ ∈ I(h), ψ ∈ Pr(g, f − ℓi).

Here, Pr(g, f − ℓi) is the preordering of the tuple (g, f − ℓi). (We refer to [3] for
preorderings.) Note that the sum 1 + ψ is strictly positive on {x ∈ Rn : h =
0, g ≥ 0, f − ℓi ≥ 0}. The ideal I(h) is archimedean, because 1 − ‖x‖2 ∈ I(h). So,
I(h) + Q(g, f − ℓi) is also archimedean. By Putinar’s Positivstellensatz, 1 + ψ ∈
I(h) +Q(g, f − ℓi). This implies that

−1 = φ+ σ, φ ∈ I2k(h), σ ∈ Qk(g, f − ℓi),

where σ = 1 + ψ and k is sufficiently large. So, the dual optimization problem
(5.14) has an improving direction and it is unbounded from the above. By weak
duality, the optimization (5.13) must be infeasible.

(ii) When the set VR(h) is finite, the Lasserre’s hierarchy (5.13)-(5.14) must have
finite convergence, and the condition (5.16) must be satisfied, when k is sufficiently
large. This can be implied by Theorem 1.1 of [29] and Proposition 4.6 of [19].
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(iii)-(iv): These two items can be proved exactly in the same way as for (i)-(ii).
The proof is omitted here, for cleanness of the paper. �

Remark 5.3. In Theorem 5.2(ii), (iv), if VR(h) is not finite, then we can only get
the asymptotic convergence

lim
k→∞

µ1,k = lim
k→∞

µ̃1,k = f
(1)
i , lim

k→∞
µ2,k = lim

k→∞
µ̃2,k = f

(2)
i .

This is because VR(h) is contained in the unit sphere {x ∈ Rn : xTx = 1} and
the ideal I(h) is archimedean. The asymptotic convergence can be implied by [17].
However, the set VR(h) is finite for generic tensors A,B, as shown below.

Proposition 5.4. Let h be as in (5.6). If A,B are generic tensors, then VC(h)
and VR(h) are finite sets.

Proof. By the construction of h as in (5.6), h(x) = 0 if and only if

(5.27) xTx− 1 = 0, rank
[

a(x) b(x)
]

≤ 1.

Let J = {j : xj 6= 0}. We claim that b(x) 6= 0. Suppose otherwise b(x) = 0, then

BJ(xJ )
m−1 = 0.

(See §3.2 for the notation BJ .) Since xJ is a nonzero vector, we get RJ (B) = 0.
This is impossible, when B is a generic tensor. Thus, in (5.27), b(x) 6= 0 and there
exists λ such that

a(x)− λb(x) = 0.

Thus, we get that

x ◦ (Axm−1 − λBxm−1) = a(x) − λb(x) = 0.

This implies that x is a C-eigenvector, associated to λ. By Theorem 3.3, there are
finitely many normalized C-eigenvetors, when A,B are generic. Therefore, h(x) = 0
has finitely many complex solutions, for generic A,B. So, both VC(h) and VR(h)
are finite. �

Proposition 5.5. Let T1 (resp., T2) be the feasible set of (5.12) (resp., (5.19)).
For all ξ ∈ Rn, we have the properties:

(i) If T1 = ∅, then there is no C-eigenvector x satisfying (5.4) and f(x) ≥ ℓi.

(ii) If T2 = ∅, then there is no C-eigenvector x satisfying (5.7) and f(x) ≥ ℓ̃i.
(iii) For the case i = 1, if T1 = ∅ then the set (5.4) is empty; if T2 = ∅ then

the set (5.7) is empty. Thus, if T1 = T2 = ∅, then the pair (A,B) has no
C-eigenpairs.

Proof. For every C-eigenpair (λ, x), it holds that a(x) − λb(x) = 0, so

ξT a(x)− λξT b(x) = 0.

If ξT b(x) > 0, x satisfies (5.4). If ξT b(x) < 0, x satisfies (5.7). If ξT b(x) = 0, then
ξTa(x) = 0 and x satisfies both (5.4) and (5.7).

(i) Every C-eigenvector x satisfying (5.4) and f(x) ≥ ℓi belongs to the set T1.
So, if T1 = ∅, then no C-eigenvector x satisfies (5.4) and f(x) ≥ ℓi.

(ii) The proof is same as for the item (i).
(iii) For the case i = 1, the set T1 is same as (5.4), and T2 is same as (5.7),

because ℓ1 ≤ f
(1)
1 and ℓ̃1 ≤ f

(2)
1 . So, if T1 = ∅, then (5.4) is empty; if T2 = ∅, then

(5.7) is empty. If T1 = T2 = ∅, then (5.4) and (5.7) are both empty, i.e., (A,B) has
no C-eigenpairs. �
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Lemma 5.6. Assume that VR(h) is a finite set. Let θ1, θ2 be as in (5.25), (5.26).

Then, for δ > 0, ℓi = f
(1)
i−1 + δ satisfies (5.11) if and only if θ1 = f

(1)
i−1, and

ℓ̃i = f
(2)
i−1 + δ satisfies (5.18) if and only if θ2 = f

(2)
i−1.

Proof. Since VR(h) is a finite set, (5.5) has finitely many objective values on its
feasible set, and they can be ordered as in (5.10). The optimal value θ1 of (5.25) is

the maximum objective value of (5.5) that is less than or equal to f
(1)
i−1 + δ. Then,

(5.11) is satisfied if and only if θ1 = f
(1)
i−1. The proof is same for the case of ℓ̃i. �

6. Numerical Experiments

In this section, we present numerical experiments for solving tensor eigenvalue
complementarity problems. The Lasserre type semidefinite relaxations are solved by
the software GloptiPoly 3 [12] and SeDuMi [41]. The experiments are implemented
on a laptop with an Intel Core i5-2520M CPU (2.50GHz) and 8GB of RAM, using
Matlab R2014b. We display 4 decimal digits for numerical numbers.

We use I to denote the identity tensor (i.e., Ii1···im = 1 if i1 = · · · = im, and
Ii1···im = 0 otherwise). When B is strictly copositive. Algorithm 4.1 is applied to
solve the TEiCP; otherwise, Algorithm 5.1 is used.

Example 6.1. (i) ([22, Example 5.1]). Consider the tensors A,B ∈ T4(R2) given
as

A(:, :, 1, 1) =

(

0.8147 0.5164
0.5164 0.9134

)

, A(:, :, 1, 2) =

(

0.4218 0.8540
0.8540 0.9595

)

,

A(:, :, 2, 1) =

(

0.4218 0.8540
0.8540 0.9595

)

, A(:, :, 2, 2) =

(

0.6787 0.7504
0.7504 0.3922

)

,

B(:, :, 1, 1) =

(

1.6324 1.1880
1.1880 1.5469

)

, B(:, :, 1, 2) =

(

1.6557 1.4424
1.4424 1.9340

)

,

B(:, :, 2, 1) =

(

1.6557 1.4424
1.4424 1.9340

)

, B(:, :, 2, 2) =

(

1.6555 1.4386
1.4386 1.0318

)

.

The tensor B is strictly copositive, beause all its entries are positive. By Algo-
rithm 4.1, we get three C-eigenpairs (λi, ui):

λ1 = 0.4678, u1 = (0.8328, 0.0585),
λ2 = 0.4848, u2 = (0.2577, 0.6538),
λ3 = 0.4991, u3 = (0.8847, 0.0000).

The computation takes about 2 seconds.
(ii) ([22, Example 5.2]). Consider the tensors A,B ∈ T4(R3) given as:

A(:, :, 1, 1) =





0.6229 0.2644 0.3567
0.2644 0.0475 0.7367
0.3567 0.7367 0.1259



 , A(:, :, 1, 2) =





0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725



 ,

A(:, :, 1, 3) =





0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711



 , A(:, :, 2, 1) =





0.7563 0.5878 0.5406
0.5878 0.1379 0.0715
0.5406 0.0715 0.3725



 ,

A(:, :, 2, 2) =





0.7689 0.3941 0.6034
0.3941 0.3577 0.3465
0.6034 0.3465 0.4516



 , A(:, :, 2, 3) =





0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608



 ,

A(:, :, 3, 1) =





0.0657 0.4918 0.9312
0.4918 0.7788 0.9045
0.9312 0.9045 0.8711



 , A(:, :, 3, 2) =





0.8077 0.4910 0.2953
0.4910 0.5054 0.5556
0.2953 0.5556 0.9608



 ,

A(:, :, 3, 3) =





0.7581 0.7205 0.9044
0.7205 0.0782 0.7240
0.9044 0.7240 0.3492



 , B(:, :, 1, 1) =





0.6954 0.4018 0.1406
0.4018 0.9957 0.0483
0.1406 0.0483 0.0988



 ,

B(:, :, 1, 2) =





0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665



 , B(:, :, 1, 3) =





0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390



 ,

B(:, :, 2, 1) =





0.6730 0.5351 0.4473
0.5351 0.2853 0.3071
0.4473 0.3071 0.9665



 , B(:, :, 2, 2) =





0.3608 0.3914 0.5230
0.3914 0.6822 0.5516
0.5230 0.5516 0.7091



 ,
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B(:, :, 2, 3) =





0.4632 0.2043 0.2823
0.2043 0.7282 0.7400
0.2823 0.7400 0.9369



 ,B(:, :, 3, 1) =





0.7585 0.6433 0.2306
0.6433 0.8986 0.3427
0.2306 0.3427 0.5390



 ,

B(:, :, 3, 2) =





0.4632 0.2043 0.2823
0.2043 0.7282 0.7400
0.2823 0.7400 0.9369



 , B(:, :, 3, 3) =





0.8200 0.5914 0.4983
0.5914 0.0762 0.2854
0.4983 0.2854 0.1266



 .

The tensor B is also strictly copositive, beause all its entries are positive. By
Algorithm 4.1, we get three C-eigenpairs (λi, ui):

λ1 = 1.5520, u1 = (0.2201, 0.1572, 0.8680),
λ2 = 2.3562, u2 = (0.0000, 0.0312, 1.5404),
λ3 = 2.7583, u3 = (0.0000, 0.0000, 1.6765).

The computation takes about 15 seconds.

Example 6.2. ([5, §5]). Consider the tensors A,B ∈ T6(R4) with B = I (the
identity tensor) and A listed as in Table 1. Note that A is a symmetric tensor,
i.e., Ai1i2i3i4i5i6 = Aj1j2j3j4j5j6 whenever (i1, i2, i3, i4, i5, i6) is a permutation of
(j1, j2, j3, j4, j5, j6). So, only its upper triangular entries are listed. The tensor B

Table 1. The symmetric tensor A ∈ T6(R4) in Example 6.2.

A111111 = 0.5000, A111112 = -0.2369, A111113 = 0.1953, A111114 = -0.2691,

A111122 = 0.0835, A111123 = -0.2016, A111124 = -0.0441, A111133 = 0.0567,

A111134 = -0.2784, A111144 = 0.2321, A111222 = -0.1250, A111223 = 0.0333,

A111224 = 0.0235, A111233 = 0.0093, A111234 = -0.0304, A111244 = -0.0167,

A111333 = 0.1028, A111334 = -0.0385, A111344 = 0.0068, A111444 = 0.1627,

A112222 = -0.1002, A112223 = 0.0733, A112224 = 0.0607, A112233 = -0.1125,

A112234 = 0.0096, A112244 = -0.0810, A112333 = -0.0299, A112334 = 0.0153,

A112344 = 0.0572, A112444 = 0.0251, A113333 = 0.1927, A113334 = -0.1024,

A113344 = -0.0885, A113444 = 0.0289, A114444 = -0.0668, A122222 = -0.2707,

A122223 = -0.1066, A122224 = -0.1592, A122233 = 0.0805, A122234 = -0.0540,

A122244 = -0.0434, A122333 = -0.0048, A122334 = -0.0118, A122344 = 0.0196,

A122444 = -0.0585, A123333 = -0.0442, A123334 = -0.0618, A123344 = 0.0318,

A123444 = 0.0332, A124444 = -0.2490, A133333 = 0.1291, A133334 = 0.0704,

A133344 = -0.0032, A133444 = 0.0270, A134444 = 0.0232, A144444 = -0.3403,

A222222 = -0.6637, A222223 = 0.2191, A222224 = 0.3280, A222233 = 0.1834,

A222234 = 0.0627, A222244 = 0.0860, A222333 = 0.1590, A222334 = -0.0217,

A222344 = 0.1198, A222444 = -0.1674, A223333 = 0.0549, A223334 = -0.0868,

A223344 = 0.0043, A223444 = 0.0101, A224444 = -0.0307, A233333 = -0.3553,

A233334 = 0.0207, A233344 = 0.1544, A233444 = -0.1707, A234444 = -0.3557,

A244444 = -0.1706, A333333 = 0.7354, A333334 = -0.3628, A333344 = -0.2650,

A333444 = -0.0479, A334444 = -0.0084, A344444 = -0.0559, A444444 = 0.6136.
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is strictly copositive. We apply Algorithm 4.1 and get fifteen C-eigenpairs (λi, ui):

λ1 = −12.7096, u1 = (0.7814, 0.7331, 0.7630, 0.8654),
λ2 = −9.3276, u2 = (0.7414, 0.8448, 0.1123, 0.8819),
λ3 = −6.9921, u3 = (0.0000, 0.5798, 0.8395, 0.9214),
λ4 = −4.8469, u4 = (0.7907, 0.0000, 0.8629, 0.8365),
λ5 = −3.1530, u5 = (0.1704, 0.0000, 0.9300, 0.8406),
λ6 = −0.9797, u6 = (0.0000, 0.8032, 0.0000, 0.9492),
λ7 = −0.0933, u7 = (0.4471, 0.0000, 0.0186, 0.9987),
λ8 = 0.3394, u8 = (1.0000, 0.0000, 0.0000, 0.1880),
λ9 = 0.6136, u9 = (0.0000, 0.0000, 0.0000, 1.0000),
λ10 = 0.9215, u10 = (0.5942, 0.5831, 0.9856, 0.0000),
λ11 = 1.7772, u11 = (0.9431, 0.0000, 0.0000, 0.8165),
λ12 = 3.0313, u12 = (0.0000, 0.9338, 0.8342, 0.0887),
λ13 = 3.1009, u13 = (0.0000, 0.9239, 0.8504, 0.0000),
λ14 = 3.3208, u14 = (0.0000, 0.9619, 0.7672, 0.4016),
λ15 = 4.5057, u15 = (0.8754, 0.0000, 0.9051, 0.0000).

The computation takes about 16083 seconds.

Example 6.3. ([4, §5]) Consider the tensors A,B ∈ T6(R4) with B = I and A
listed as in Table 2. The tensor A is symmetric, so only the upper triangular entries
are listed. The tensor B is copositive. We apply Algorithm 4.1 and get only one

Table 2. The symmetric tensor A ∈ T6(R4) in Example 6.3.

A111111 = 0.1197, A111112 = 0.4859, A111113 = 0.4236, A111114 = 0.1775,

A111122 = 0.4639, A111123 = 0.4951, A111124 = 0.5322, A111133 = 0.4219,

A111134 = 0.4606, A111144 = 0.4646, A111222 = 0.4969, A111223 = 0.4649,

A111224 = 0.5312, A111233 = 0.5253, A111234 = 0.4635, A111244 = 0.4978,

A111333 = 0.5562, A111334 = 0.5183, A111344 = 0.4450, A111444 = 0.4754,

A112222 = 0.4992, A112223 = 0.5420, A112224 = 0.4924, A112233 = 0.5090,

A112234 = 0.4844, A112244 = 0.5513, A112333 = 0.5040, A112334 = 0.4611,

A112344 = 0.4937, A112444 = 0.5355, A113333 = 0.4982, A113334 = 0.4985,

A113344 = 0.4756, A113444 = 0.4265, A114444 = 0.5217, A122222 = 0.2944,

A122223 = 0.5123, A122224 = 0.4794, A122233 = 0.5046, A122234 = 0.4557,

A122244 = 0.5332, A122333 = 0.5161, A122334 = 0.5236, A122344 = 0.5435,

A122444 = 0.5576, A123333 = 0.5685, A123334 = 0.5077, A123344 = 0.5138,

A123444 = 0.5402, A124444 = 0.4774, A133333 = 0.6778, A133334 = 0.4831,

A133344 = 0.5030, A133444 = 0.4865, A134444 = 0.4761, A144444 = 0.3676,

A222222 = 0.1375, A222223 = 0.5707, A222224 = 0.5440, A222233 = 0.5135,

A222234 = 0.5770, A222244 = 0.6087, A222333 = 0.5075, A222334 = 0.4935,

A222344 = 0.5687, A222444 = 0.5046, A223333 = 0.5226, A223334 = 0.4652,

A223344 = 0.5289, A223444 = 0.4810, A224444 = 0.5310, A233333 = 0.6187,

A233334 = 0.5811, A233344 = 0.4811, A233444 = 0.4883, A234444 = 0.4911,

A244444 = 0.4452, A333333 = 0.1076, A333334 = 0.6543, A333344 = 0.4257,

A333444 = 0.5786, A334444 = 0.5956, A344444 = 0.4503, A444444 = 0.3840.

C-eigenpair:

λ1 = 515.4181, u1 = (0.7909, 0.7957, 0.7941, 0.7941).

The computation takes about 140 seconds.

Example 6.4. Consider the tensors A,B ∈ T3(Rn) given as:

Aijk =
(−1)j

i
+

(−1)k

j
+

(−1)i

k
, B = I.



22 JINYAN FAN, JIAWANG NIE, AND ANWA ZHOU

By Algorithm 4.1, for n = 3, we get seven C-eigenpairs (λi, ui):

λ1 = −8.7329, u1 = (0.8432, 0.2568, 0.7266),
λ2 = −8.1633, u2 = (0.8529, 0.0000, 0.7241),
λ3 = −3.1458, u3 = (0.9982, 0.1768, 0.0000),
λ4 = −3.0000, u4 = (1.0000, 0.0000, 0.0000),
λ5 = −1.2863, u5 = (0.0000, 0.3171, 0.9893),
λ6 = −1.0000, u6 = (0.0000, 0.0000, 1.0000),
λ7 = 2.1458, u7 = (0.3491, 0.9856, 0.0000).

When n = 4, we get seven C-eigenpairs (λi, ui):

λ1 = −8.3411, u1 = (0.8498, 0.0000, 0.7253, 0.1674),
λ2 = −8.1633, u2 = (0.8529, 0.0000, 0.7241, 0.0000),
λ3 = −3.0413, u3 = (0.9996, 0.0000, 0.0000, 0.1043),
λ4 = −3.0000, u4 = (1.0000, 0.0000, 0.0000, 0.0000),
λ5 = −1.0971, u5 = (0.0000, 0.0000, 0.9960, 0.2284),
λ6 = −1.0000, u6 = (0.0000, 0.0000, 1.0000, 0.0000),
λ7 = 6.6817, u7 = (0.4382, 0.7963, 0.0000, 0.7434).

For n = 3, the computation takes about 21 seconds; for n = 4, it takes about 138
seconds. When n = 5, thirteen C-eigenvalues are obtained. The computer is out of
memory for computing the resting C-eigenvalues.

Example 6.5. Consider the tensors A,B ∈ T5(Rn) such that

Ai1···i5 =
(

5
∑

j=1

(−1)j+1 exp(ij)
)−1

, B = I.

By Algorithm 4.1, for n = 3, we get only one C-eigenpair:

λ1 = 2.4335, u1 = (0.7526, 0.6080, 0.9245).

When n = 4, we get only one C-eigenpair:

λ1 = 5.4419, u1 = (0.7391, 0.6412, 0.7719, 0.8313).

When n = 5, we get only one C-eigenpair:

λ1 = 8.8555, u1 = (0.7347, 0.6513, 0.7212, 0.7404, 0.7585).

For n = 3, the computation takes about 7 seconds; for n = 4, it takes about 44
seconds; for n = 5, it takes about 2662 seconds.

In the following examples, the tensor B is not strictly copositive. So, Algo-
rithm 5.1 is applied.

Example 6.6. Consider the tensors A,B ∈ T3(Rn) given as:

Aijk = tan(i−
j

2
+
k

3
), Bijk =

(−1)j

i
+

(−1)k

j
+

(−1)i

k
.

By Algorithm 5.1, for n = 3, we get two C-eigenpairs (λi, ui):

λ1 = −4.0192, u1 = (0.5171, 0.8559, 0.0000),
λ2 = −0.3669, u2 = (1.0000, 0.0000, 0.0000).

When n = 4, we get two C-eigenpairs (λi, ui):

λ1 = −0.8408, u1 = (0.7095, 0.4519, 0.0000, 0.5407),
λ2 = −0.2332, u2 = (0.9962, 0.0000, 0.0000, 0.0874).
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When n = 5, we get six C-eigenpairs (λi, ui):

λ1 = −13.3912, u1 = (0.0000, 0.0000, 0.0000, 0.3370, 0.9415),
λ2 = −4.1204, u2 = (0.0000, 0.0398, 0.0000, 0.0470, 0.9981),
λ3 = −0.8408, u3 = (0.7095, 0.4519, 0.0000, 0.5407, 0.0000),
λ4 = −0.8216, u4 = (0.7004, 0.4548, 0.0000, 0.5501, 0.0068),
λ5 = −0.4376, u5 = (0.6150, 0.1435, 0.4245, 0.3803, 0.5257),
λ6 = −0.2332, u6 = (0.9962, 0.0000, 0.0000, 0.0874, 0.0000).

For n = 3, the computation takes about 2 seconds; for n = 4, it takes about 9
seconds; for n = 5, it takes about 3003 seconds.

Example 6.7. Consider the tensors A,B ∈ T4(Rn) such that

Ai1i2i3i4 = 1
10 (i1 + 2i2 + 3i3 + 4i4 −

√

i21 + i22 + i23 + i24),
Bi1i2i3i4 = arctan(i1i2i3i4).

We apply Algorithm 5.1 to compute the C-eigenpairs. When n = 3, we get three
C-eigenpairs (λi, ui):

λ1 = 0.8706, u1 = (1.0000, 0.0000, 0.0000),
λ2 = 0.9780, u2 = (0.6209, 0.0000, 0.7839),
λ3 = 1.3163, u3 = (0.0000, 0.0000, 1.0000).

When n = 4, we also get three C-eigenpairs (λi, ui):

λ1 = 0.8706, u1 = (1.0000, 0.0000, 0.0000, 0.0000),
λ2 = 1.0698, u2 = (0.7850, 0.0000, 0.0000, 0.6195),
λ3 = 1.7455, u3 = (0.0000, 0.0000, 0.0000, 1.0000).

When n = 5, we also get three C-eigenpairs (λi, ui):

λ1 = 0.8706, u1 = (1.0000, 0.0000, 0.0000, 0.0000, 0.0000),
λ2 = 1.1536, u2 = (0.8527, 0.0000, 0.0000, 0.0000, 0.5224),
λ3 = 2.1787, u3 = (0.0000, 0.0000, 0.0000, 0.0000, 1.0000).

For n = 3, the computation takes about 6 seconds; for n = 4, it takes about 35
seconds; for n = 5, it takes about 716 seconds.

Example 6.8. Consider the tensors A,B ∈ T4(Rn) such that

Ai1i2i3i4 = (1 + i1 + 2i2 + 3i3 + 4i4)
−1, Bi1i2i3i4 = tan(i1) + · · ·+ tan(i4).

Algorithm 5.1 is applied. When n = 3, 4, 5, the relaxations (5.13) and (5.20) for
the order k = 4 are both infeasible, so there are no C-eigenvalues. For n = 3, the
computation takes about 2 seconds; for n = 4, it takes about 8 seconds; for n = 5,
it takes about 43 seconds.

Example 6.9. Consider two randomly generated tensors A,B ∈ T3(R5):

A(:, :, 1) =











0.0195 −0.8385 −0.5971 −0.9968 0.8617
1.2397 1.8190 0.3261 −1.0365 −0.6295

−0.1187 0.2297 1.5407 −1.0985 0.1256
1.3101 −0.9982 1.1868 0.2386 2.4171
1.4264 2.4354 −0.4358 −1.4201 0.5474











,

A(:, :, 2) =











1.0276 −1.0345 −0.6651 −0.7659 0.1898
0.3746 0.6527 −1.1189 0.8586 0.8419
0.8412 0.8611 0.0405 −0.3752 −0.2802
0.0881 −1.3853 1.8775 0.2183 0.1735
0.7881 0.5900 0.0509 −0.7750 0.0494











,
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A(:, :, 3) =











−0.5525 −0.2713 −0.3630 0.8350 −0.0891
0.2359 −1.8207 0.6906 −1.7055 −1.2772
2.0821 −1.3487 −0.4501 0.8657 1.4453

−0.7056 0.2588 −0.5409 −0.6727 −1.7967
0.7374 0.3692 −0.8594 0.7489 0.3929











,

A(:, :, 4) =











0.4575 0.3137 0.4335 0.9388 0.0927
−0.0042 1.6425 0.8085 −1.5722 −0.9639
−0.1085 −0.0514 −1.3662 0.3091 −3.1922
−1.2807 −0.2399 −1.1180 −1.2672 0.2671
−1.0279 −0.9839 −0.3586 0.7765 0.4211











,

A(:, :, 5) =











2.0504 0.4528 −1.7698 −2.5073 −0.1142
−0.0395 0.3460 −0.1017 −1.5303 0.1027
−0.4152 −1.2332 −0.1069 −1.2440 1.6888
−0.8989 −0.3438 −2.5825 −0.4245 −0.8625
−1.6842 −0.7582 −1.7254 −0.1353 −0.0564











,

B(:, :, 1) =











0.1278 −1.2405 −1.5521 −0.3097 0.4371
1.0476 −1.1941 −0.1954 −1.3133 0.3712

−0.8638 0.4681 0.1090 0.8267 −0.7007
−1.6955 1.0037 0.9138 −0.0934 −0.1997
−0.5110 −0.2755 −0.8768 −0.3897 −0.2546











,

B(:, :, 2) =











0.1286 0.5255 0.3809 0.1088 −1.2674
0.2852 −1.1047 −0.8320 0.9058 −2.3433

−1.5964 0.3327 0.1657 0.2164 0.4927
−0.9393 −0.9674 −0.4843 0.4749 0.4720
−0.6881 1.7844 2.0353 0.5464 0.7580











,

B(:, :, 3) =











0.4473 0.8023 2.1941 1.7633 −2.0100
0.8716 0.1619 0.0832 1.0375 1.0234

−0.4001 1.0824 0.4427 1.6162 0.1706
−0.2331 0.2375 −0.0875 −0.5156 −1.0727
0.6626 0.1542 0.3014 1.1429 −0.1337











,

B(:, :, 4) =











−0.4009 0.8938 0.5559 0.8235 0.3279
−0.9912 0.3709 0.4380 −0.2003 −0.4898
−0.5454 2.6579 1.1804 1.3327 −0.2990
0.5980 1.1167 0.6838 −0.4269 0.2665
0.7989 −0.5784 −1.1768 −1.1067 0.1850











,

B(:, :, 5) =











−0.3332 0.3925 1.5851 −0.2666 −0.4003
0.8811 0.4142 −0.7639 0.6644 0.0389
0.4362 0.3792 1.5087 −0.6220 −0.4257
2.3515 −0.7528 0.9182 −1.3888 0.0862
0.8837 −0.6053 2.6629 −1.9644 −0.9562











.

By Algorithm 5.1, we get five C-eigenpairs (λi, ui):

λ1 = −0.3593, u1 = (0.1195, 0.2810, 0.9522, 0.0000, 0.0000),
λ2 = 0.0717, u2 = (0.8084, 0.0000, 0.3062, 0.4481, 0.2278),
λ3 = 0.2998, u3 = (0.0000, 0.9292, 0.3696, 0.0000, 0.0000),
λ4 = 0.8616, u4 = (0.7547, 0.0000, 0.3079, 0.3919, 0.4267),
λ5 = 2.1402, u5 = (0.7067, 0.3554, 0.3536, 0.2436, 0.4358).

The computation takes about 995 seconds.
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[14] J. J. Júdice, I. M. Ribeiro and H. D. Sherali, The eigenvalue complementarity problem,

Comput. Optim. Appl., 37 (2007), pp 139–156.
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