
Noname manuscript No.
(will be inserted by the editor)

Robust Flows over Time: Models and Complexity Results

Corinna Gottschalk1 · Arie M.C.A. Koster2 ·

Frauke Liers3 · Britta Peis1 · Daniel
Schmand1 · Andreas Wierz1

the date of receipt and acceptance should be inserted later

Abstract We study dynamic network flows with uncertain input data under a robust
optimization perspective. In the dynamic maximum flow problem, the goal is to max-
imize the flow reaching the sink within a given time horizon T , while flow requires a
certain travel time to traverse an edge.

In our setting, we account for uncertain travel times of flow. We investigate max-
imum flows over time under the assumption that at most Γ travel times may be pro-
longed simultaneously due to delay. We develop and study a mathematical model for
this problem. As the dynamic robust flow problem generalizes the static version, it is
NP-hard to compute an optimal flow. However, our dynamic version is considerably
more complex than the static version. We show that it is NP-hard to verify feasibility
of a given candidate solution. Furthermore, we investigate temporally repeated flows
and show that in contrast to the non-robust case (that is, without uncertainties) they
no longer provide optimal solutions for the robust problem, but rather yield a worst
case optimality gap of at least T . We finally show that the optimality gap is at most
O(ηk log T), where η and k are newly introduced instance characteristics and provide
a matching lower bound instance with optimality gap Ω(log T) and η = k = 1. The
results obtained in this paper yield a first step towards understanding robust dynamic
flow problems with uncertain travel times.

1 Introduction

Many relevant applications in the context of routing or logistics call for a temporal
component that is part of the input and the actual solution. In classical flow theory,
flow traverses the network in a static fashion, that is, the solutions need to obey capac-
ity restrictions - and possibly additional constraints. In many real-world applications,

1School of Business and Economics, RWTH Aachen University, Germany, E-mail: {gottschalk, peis,
schmand, wierz}@oms.rwth-aachen.de · 2Lehrstuhl II für Mathematik, RWTH Aachen University,
Germany, E-mail: koster@math2.rwth-aachen.de · 3Lehrstuhl Wirtschaftsmathematik, FAU Erlangen-
Nürnberg, Germany, E-mail: frauke.liers@math.uni-erlangen.de

ar
X

iv
:1

60
8.

06
52

0v
2

 [
cs

.D
M

]
 2

4
M

ar
 2

01
7

however, flow takes some time in order to traverse a network edge. Hence, a tempo-
ral dimension has to be introduced into the models. Dynamic flow problems that take
time into account have been studied for more than half a century. Dynamic flow prob-
lems are also referred to as flow over time problems in the literature and in this paper.
Despite the relevance of the topic and the existence of fascinating results, few text-
books cover this topic. We refer to [18] for an introduction to flow over time problems.
Furthermore, real-world applications are often also affected by measurement errors
as well as by a large degree of uncertainty. In such situations, the classical models
are usually highly inaccurate. An application may be distribution networks such as
gas [15] or water networks. In gas networks, for example, the roughness of the pipes
is uncertain due to contamination or aging processes and can only be measured with
large effort. The roughness strongly influences the friction and thus the travel time of
gas along a pipe. As these uncertainties might influence the decision about feasibility
or infeasibility of the corresponding complex optimization tasks, a worst-case robust
perspective is appropriate.

Although relevant applications exist, little is known about flow over time prob-
lems that are protected against uncertain conditions. In this work, we provide a first
step towards studying their properties. We first define an appropriate model for de-
termining robust optimum flows over time subject to uncertain travel times. We start
from the known classical flow over time theory that ignores uncertainties, that is, the
nominal case. Adapting the Γ-robustness model introduced by Bertsimas and Sim
[5] that is often applied to combinatorial optimization problems under uncertainty,
we develop a robust flow over time framework. In this model, the degree of protec-
tion against uncertainties can be controlled by a parameter Γ. For uncertain objective
functions, a robust optimum is a solution with the best guaranteed cost under the as-
sumption that at most Γ many objective function coefficients attain their worst-case
realization. Thus, the value of Γ determines the conservatism of the solution.

Applying this modeling framework for flows over time, we study the following
optimization task. Let a time horizon T and a network with travel times and potential
delays on the edges be given. Maximize the minimum amount of flow that can be
sent through the network within time horizon T under the assumption that at most
Γ edges are delayed. In order to study the problem in its most basic version, we
restrict ourselves to the case in which flow is not allowed to wait at any intermediate
vertex. For example, this is the case in communication, water, or gas networks without
buffer capacities on intermediate vertices. Although the obtained model seems quite
punishing, it is a natural robust counterpart of network flows over time with uncertain
travel times. We provide a formal problem definition in Section 2.

Related Work. The concept of flows over time was introduced in [9]. They also
showed how to find a maximum s-t-flow over time using one minimum-cost flow
computation, thus generalizing the concept of static maximum s-t flows. Detailed in-
troductions to flows over time and further references can be found in the surveys by
Aronson [2] and Skutella [18].

In general, the goal of robust optimization is to find a solution that is feasible and
as good as possible for any input data in a given uncertainty set. For a comprehensive
introduction to robust optimization, we refer to [3]. In this paper, we consider Γ-

2

robustness, a concept introduced by Bertsimas and Sim [5]. Here, the uncertainty
set is determined by Γ: Protection is sought against all scenarios in which the input
deviates from the nominal input data in at most Γ elements simultaneously. In the
context of static network flows, such a scenario could be the failure of at most Γ
edges in a given network. Aneja, Chandrasekaran and Nair [1] showed how to solve
the Γ-robust maximum s-t-flow problem in polynomial time for Γ = 1, even for the
case where the flow is required to be integral. Du and Chandrasekaran [8] claimed that
the Γ-robust maximum s-t-flow problem is NP-hard for Γ > 1. However, Matuschke
et al. [17] recently showed that the proof is incorrect. Personal communication with
Disser and Matuschke [7] indicates that this problem is already NP-hard if Γ is not
bounded by any constant. Still, the complexity of the static Γ-robust flow problem
where Γ is bounded by any constant bigger than 1 is open. Note that in this model, it
is not possible to reroute after the edge failure.

In [4], Bertsimas, Nasrabadi and Stiller investigate several variants of robust flow
problems. As far as we know, [4] is the only work that considers robustness in a flow
over time setting. In particular, they study a so-called adaptive model where rerouting
after edge-failure is allowed within bounds determined by the initial flow and show
that this problem is weakly NP-hard. In contrast, in this paper, rerouting after edge
failures is not permitted and we consider a more general robustness scenario: Besides
total edge failures, the travel time can also increase by a finite amount.

Another problem that is highly related to our work is the network interdiction
problem. In contrast to robust maximum flow problems, where the goal is to find
a flow that is good no matter which scenario of the uncertainty set is realized, the
network interdiction problem takes the opposite perspective: Here, the goal is to find
a set of edges whose deletion minimizes the amount of flow that can be sent in the
remaining network. Wood [19] showed NP-hardness of this problem.

Köhler and Skutella [16] consider a flow over time problem where traffic times
depend on the actual load of an edge. While the resulting flow problem is NP-
hard, in contrast to our model, temporally repeated flows can be used to obtain a
2-approximation.

Our Contribution. First, we discuss generalizations of well-studied concepts for the
nominal maximum flow over time problem towards robustness. For uncertain travel
times, we point out problems with s straightforward generalization of encoding flow
rates on the edges. We show that this concept as well as time-expanded networks are
no longer appropriate. In contrast, we introduce a non-standard, more viable solution
encoding in terms of a path decomposition with associated flow rates and dispatch in-
tervals. We call this concept general solutions (to the robust maximum flow over time
problem). Whereas these two descriptions are equally powerful in the non-robust, i.e.
nominal flow over time case, this is not true for the robust flow over time model. We
also study a robust counterpart of temporally repeated flows due to their simple solu-
tion encoding, computational complexity and optimality in the nominal case [18].

After introduction and discussion of the models, we address the computational
complexity of both solution variants. Our results are summarized in Table 1. The
special case of Γ-robust flow over time with zero travel times and infinite delays

3

Task static robust
max flow

robust max flow over time
general solutions temporally repeated solutions

arbitrary path length T -bounded path length

max, Γ = 1 poly time1 [1] ?1 ? poly time (Prp. 5)

max, Γ bounded ?
at least as hard as
static case2 (Prp. 2)

at least as hard as
static case (Prp. 4) poly time (Prp. 5)

max, Γ arb. NP-hard [7] NP-hard2 (Prp. 2) NP-hard (Prp. 4) poly time (Prp. 5)

feasibility
check poly time NP-hard2 (Thm. 1) poly time poly time

Table 1: An overview of the complexity results from Section 3.
1 If flow rates must be chosen integral, the problem is polynomial time solvable for the static case [1] and
is inapproximable within any factor for general solutions (see Proposition 3).
2 These results do not only hold for arbitrary path lengths, but also for instances with the T -bounded path
length property.

delay restriction lower bound upper bound
∆ ∈ {0,∞} max{T, Γ} (Prp. 7) O(k log T) (Thm. 2)
T -bounded path length max{log T, logΓ} (Prp. 6) O(ηk log T) (Thm. 3)
none max{T, Γ} (Prp. 7) O(ηk log T) (Thm. 3)

Table 2: Outline of the main results regarding optimality gaps of temporally repeated
solutions from Section 4.

on all edges reduces to the static Γ-robust flow problem which searches for an op-
timum static flow which is robust against up to Γ edge failures (cf. related work).
We show in Proposition 2 that our problem contains the static case. Irrespective of
this, our problem for general solutions is considerably more complex. We show by a
reduction from maximum clique that even the verification of feasibility of arbitrary
solution candidates is an NP-hard problem (Theorem 1). By a reduction from the two
edge-disjoint paths problem we show that, again in contrast to the static version, the
optimization problem is inapproximable for Γ = 1, if flow rates are required to be
integral (Proposition 3).

For temporally repeated flows, we observe that the computational complexity de-
pends on the actual edge delays. In general, they inherit the same complexity status
as general solutions (Proposition 4). However, if the maximum possible path length
of each path is bounded by the time horizon, the status changes. In fact, we show that
in this case optimal temporally repeated flows can be computed in polynomial time
(Proposition 5). We formalize this concept in Section 3 and call it the T-bounded
path length property. Note that our hardness results for general solutions also hold
for instances with the T -bounded path length property.

Subsequently, we study the quality of temporally repeated solutions, when com-
pared to general solutions (Table 2). Temporally repeated solutions do not only have
benefits with respect to the computational complexity, but also have a simple solution

4

encoding and are very well studied for the nominal case [18]. In the nominal case, it
is well known that temporally repeated flows yield optimal solutions. Under uncer-
tainty, however, we show that temporally repeated flows can inherit a large optimality
gap.

If the delay on all edges is either infinitely large or zero, i.e. ∆ ∈ {0,∞}, we
show that the optimality gap can be as large as max{T, Γ} (Proposition 7). By using
a non-trivial primal-dual fitting approach, we show that it is always upper bounded
by O(k log T) (Theorem 2). Here, k is a parameter that is specific for the instance. It
does not depend on the delay but only on the graph structure, travel times and the time
horizon (The definition of k is formalized in Section 4). Although the instances used
in Proposition 7 have k = T , other classes of instances exist for which the value of k
is very small. For example, acyclic digraphs with the T -bounded path length property
have k = 1.

For instances with the T -bounded path length property, we provide lower bound
examples with an optimality gap of max{log T, logΓ} (Proposition 6). For arbitrary
delays, we prove an upper bound of O(ηk log T) (Theorem 3). Here, η accounts for the
relative amount of flow that can be destroyed by scenarios on single paths in the worst
case. Again, this parameter that is again characteristic for an instance is formalized
in Section 4. This bound is tight for the instance from Proposition 6 as, in this case,
k = η = 1.

Finally, if we fix a graph with travel times and finite delays and let the time hori-
zon tend to infinity, we observe that temporally repeated solutions tend to optimality
(Proposition 8).

Outline. The remainder of this paper consists of three main sections. Section 2 is
devoted to modelling techniques for the robust maximum flow over time problem. It
introduces a model and two solution concepts which we study subsequently. Section 3
provides insight in the computational complexity of both concepts under several per-
spectives. Finally, Section 4 evaluates the solution quality of optimum temporally
repeated flows with respect to their optimality gap to general solutions. The paper is
concluded with final remarks and a discussion of open questions in Section 5.

2 Modeling Techniques for the Robust Maximum Flow over Time Problem

Nominal Maximum Flow over Time Problem. An instance of the nominal maxi-
mum flow over time problem consists of a directed graph G = (V, E) with source and
destination vertices s, d ∈ V and a time horizon T ∈ N. Each edge is equipped with a
capacity u : E → N and a travel time τ : E → N. Flow entering edge e at some time
θ leaves the edge at its head at time θ + τe. We seek to maximize the total amount
of flow sent from s to d within the time horizon. In particular, we use the so-called
continuous time model. For further discussion of the relationship between continuous
and discrete time models, we refer to [14].

In classical flow theory, a solution is encoded by a set of Lebesgue-integrable
functions fe : R → R+ for all e ∈ E describing the rate of flow entering edge e at
time θ ∈ R. We assume fe(θ) = 0 for all e ∈ E and all θ ∈ R \ [0,T). A feasible

5

solution obeys the capacity limit, that is, fe(θ) ≤ ue for all edges and for all θ ∈
[0,T). Depending on the situation to be modeled, waiting at intermediate vertices
may or may not be allowed. For example, if vertices do not have any buffer capacity,
it is impossible to store flow at intermediate vertices. In such situations, strict flow
conservation is required, that is, the total amount of flow leaving a vertex up to any
point in time ξ is exactly the total amount of flow entering that vertex up to the same
time. We have ∑

e∈δ−(v)

∫ ξ−τe

0
fe(θ)dθ =

∑
e∈δ+(v)

∫ ξ

0
fe(θ)dθ

for all ξ ∈ [0,T) and for all v ∈ V \ {s, d}. The objective function value of a flow
f is defined as the total amount of flow reaching vertex d up to time T , that is,∑

e∈δ−(d)

∫ T−τe

0 fe(θ)dθ. Here, we assume that d has no outgoing edges, otherwise, we
would have to subtract the amount of flow leaving d up to time T . We make this as-
sumption throughout this paper. Note that flow that arrives at d after T is allowed but
does not give any contribution to the value of the objective function.

Ford and Fulkerson [9] showed that relaxing strict flow conservation to weak
flow conservation, where flow may wait at intermediate vertices, does not change
the optimal objective function value in the nominal case. That is, they proved that
there always exists an optimal flow over time which never stores flow at intermediate
vertices.

Γ-Robust Flows over Time. In this paper, we assume that the travel times τe are
uncertain and may deviate by a certain delay ∆e ∈ N. We follow the Γ-robust ap-
proach suggested by Bertsimas and Sim [5]: for a given integer Γ ∈ N, we look for
a maximum flow over time that is robust against any possible scenario of up to Γ
edge delays. This situation can be interpreted as a two-player game in which the first
player (the "flow player") decides on a flow over time. Afterwards, the second player
(the "bad adversary") chooses at most Γ edges on which she delays the travel times
from τe to τe + ∆e. The adversary’s goal is to minimize the total throughput, or to
violate the capacity constraints. In the robust setting, it might well be that a nominal
flow without waiting times has to wait in certain scenarios. In situations with im-
plied strict flow conservation, such a flow is no longer feasible. In this paper, we do
not consider such situations, and therefore demand strict flow conservation no matter
how the adversary chooses edges to be delayed. We remark that requiring weak flow
conservation only introduces additional challenges, as it would have to be decided
which flow particles need to wait and which may pass on.

Furthermore, we do not require the network to be empty at time T , i.e. we allow
flow to enter destination d after time T . The flow arriving at d after T is not counted
in the objective function. This yields some freedom in reacting to different possible
scenarios. Otherwise, it would be necessary to ensure additionally that - no matter
which edges the adversary chooses to delay - all flow can reach d by time T . This
would result in a very restrictive model, where we would not be allowed to use any
edges whose travel time may exceed T . Note that the capacity constraints and the
flow conservation constraints are only present up to time T for the same reason. For
example, we also allow a feasible solution to violate the edge capacities after T .

6

Mathematical Model. A solution formulated in terms of flow rates fe(θ) seems to
be unsuitable. There, the actual flow rate at any intermediate edge depends on the
corresponding scenario. As we are interested in solutions that can be described inde-
pendently from the scenario, we formulate solutions in terms of s-d-paths. A nom-
inal flow over time satisfying strict flow conservation can always be described by a
path decomposition (fP)P∈P, where P is the set of s-d-paths and fP : R → R+ with
fP(θ) = 0 for all θ ∈ R \ [0,T − τ(P)). For simplicity reasons, in this paper we only
allow flow on simple paths. The function assigns a flow rate fP(θ) to each point in
time θ that describes the rate at which flow is sent into path P. Note that this path
decomposition is not necessarily unique. Already in the static robust maximum flow
problem, Bertsimas et al. have shown that the robust flow value depends on the path
decomposition [4]. In this work, however, we do not decompose a flow, but rather
define it on the set of all simple paths.

Let S = {z ∈ {0, 1}|E| :
∑

e∈E ze ≤ Γ} denote the set of admissible scenarios, that
is, representing all combinations of at most Γ delays. Here, ze is a decision variable
with ze = 1 if and only if e is delayed. We call a flow over time (fP)P∈P feasible if the
capacity constraints are obeyed under every possible scenario z ∈ S. That is, if∑

P∈P:e∈P

fP(θz,e) ≤ ue ∀e ∈ E, θ ∈ [0,T), z ∈ S,

where
θz,e = θ −

∑
e′∈E:e′<Pe

(τe′ + ∆e′ze′)

denotes the departure time at s of a flow particle on path P which enters edge e at
time θ under scenario z. As usual, {e′ ∈ E : e′ <P e} denotes the set of edges that
need to be traversed on path P before edge e is reached. Note that negative values of
θz,e imply that these flow particles would have started at s before time zero (which is
not possible).

The robust value of a feasible flow over time f = (fP)P∈P is

min
z∈S

∑
P∈P

∫ max{0,T−τ(P)−∆z(P)}

0
fP(ν)dν,

where τ(P) +∆z(P) =
∑

e∈P(τe +∆eze) denotes the travel time on path P in scenario z.

Remark 1 The nominal maximum flow over time problem, that corresponds to Γ = 0,
can be modeled by an auxiliary time-expanded network. This graph contains a vertex
(v, t) for each relevant time t ∈ {0, . . . ,T − 1}. Edges between the vertices (v, t) and
(w, t + τvw) model edges between vertices v and w with travel time τvw in the original
graph. This is not possible in the robust version, since each scenario would induce
a different time-expanded network. Thus, the choice of z defines the topology of the
network, and a straight-forward usage of time-expanded networks cannot be applied
here.

By an averaging argument, we show next that it is sufficient to consider functions
fP which are piecewise constant on all integral unit length intervals.

7

θ

fP(θ)

(a) arbitrary flow

θ

fP(θ)

(b) piecewise constant flow

θ

fP(θ)

(c) temp. repeated flow

Fig. 1: Comparison of different models for flows over time.

Proposition 1 For every solution to the robust maximum flow over time problem
there exists a solution with the same objective function value which consists only
of piecewise constant functions fP whose values change only at integer points.

Proof Let f̃ be a solution to the robust maximum flow over time problem. For every
s-d-path P, we construct the piecewise constant fP : R → R+ as follows. Intuitively,
cut f̃P into unit-intervals [a, a + 1) ⊆ [0,T). This is possible due to the fact that T
is integral. Set the flow rate entering path P during each interval to be the average
observed in the unit interval, that is,

fP(θ) =

a+1∫
a

f̃P(ν)dν for all θ ∈ [a, a + 1),

and zero outside of the interval [0,T), see Figures 1a and 1b for an illustration. This
ensures that f and f̃ have the same objective function value since all limits of the
intervals are integral.

We now argue that all constraints are satisfied. Suppose there is a scenario z ∈ S
and a time θ ∈ [a, a + 1) when f violates the capacity of some edge e ∈ E. Then the
capacity must be violated for all θ ∈ [a, a + 1) since the solution consists of piecewise
constant functions only, and all travel times τe and ∆eze are integral. Therefore, the
solution sends more than ue through this edge in the unit interval. We can conclude
that the original solution sends more than ue through this edge in the unit interval,
too. So there has to be a time θ∗ ∈ [a, a + 1) for which the capacity is violated in the
original solution, which contradicts the feasibility of f̃ . ut

Hence, it is sufficient to consider solutions that can be described by a family of
triples

{(
Pi, f i, [ai, bi)

)}
i=1,...,ω

that describe the rate f i at which flow is sent into path

Pi during the time interval [ai, bi), with ai, bi ∈ N. We call this interval the dispatch
interval. Using Proposition 1 we redefine a solution to the robust maximum flow over
time problem as follows.

Definition 1 A solution to the robust maximum flow over time problem is encoded as
a family of triples

{(
Pi, f i, [ai, bi)

)}
i=1,...,ω

. For each 1 ≤ i ≤ ω, Pi is a simple s-d-path

in G, f i > 0 and ai, bi ∈ {0, . . . ,T } with ai < bi.

8

Temporally Repeated Flows. Temporally repeated flows are a classical solution con-
cept used to solve the nominal maximum flow over time problem to optimality. They
are constructed from a path decomposition x =

∑
P∈P xP of a given static flow x by

sending flow at rate xP along a path P as long as the flow can arrive at the sink d by
time T . Therefore, a temporally repeated flow represented in our model has dispatch
intervals of the form [0,T − τ(P)) for a path P and flow rates fP = xP. A temporally
repeated flow is called feasible, if∑

i:e∈Pi

f i ≤ ue for all edges e ∈ E, (1)

that is, the capacity constraints are satisfied independent of the actual point in time.
Note that this will always be the case, if the temporally repeated flow was constructed
from a feasible static flow.

Equivalently, we can state that a flow
{
(Pi, f i, [ai, bi))

}
) is a feasible temporally

repeated flow if and only if ai = 0 and bi ≥ T − τ(Pi) for all i and (1) holds. Since
the dispatch intervals are fixed by the paths, we will omit them from now on. See
Figure 1 for a graphical comparison between the different flow models.

3 Computational Complexity of the Robust Maximum Flow over Time Problem

General Solutions. The following proposition shows that the robust maximum flow
over time problem is at least as hard as the static counterpart. Recently, Disser and
Matuschke [7] disclosed that they were able to prove NP-hardness of the static coun-
terpart for unbounded Γ. The result, however, is not yet published.

Proposition 2 The robust maximum flow over time problem is at least as hard as the
static robust maximum flow problem.

Proof We will show that the robust maximum flow over time problem can be used to
solve the static robust maximum flow problem.

Let us assume an instance (G = (V, E), s, d, u, Γ) of robust maximum flow is
given. We construct an instance (G = (V, E), s, d, u, τ, ∆, T, Γ) of robust maximum
flow over time as follows. Let T = 1, τ ≡ 0 and ∆ ≡ ∞. Then any feasible solution to
the robust maximum flow problem can be mapped to a solution

{(
Pi, f i, [ai, bi)

)}
i=1,...,ω

of the robust maximum flow over time instance. For every path P with flow rate fP in
the robust maximum flow solution, the over-time solution sends the same amount of
flow during the dispatch interval [0, 1). The worst-case scenario of the robust maxi-
mum flow destroys at most Γ edges and decreases the robust flow value - with respect
to the nominal flow value - by the total flow rate summed among all paths that are
affected by the set of deleted edges. The same interference occurs in the constructed
instance of robust maximum flow over time. If an edge was delayed, the travel time
increases to an arbitrarily large value. Hence, any path using such an edge does not
reach the destination. Thus, the objective function values coincide and an optimal
solution to the robust maximum flow over time instance is also optimal for the robust
maximum flow problem. ut

9

s

s1

s2

d

d1

d2

0,2

1,2

1,2

0,2

0,2

0,2
0,2

0,2

G

[0, 1)

[0, 2)

[0, 1)

Fig. 2: Construction for Proposition 3. Edge labels denote the travel times and possi-
ble delays, respectively. The thick edges depict the possible paths and time intervals
a feasible solution may use.

The following two results show that the temporal component introduces addi-
tional difficulty to the robust problem, as the static counterparts are both polynomially
solvable. First, we show that computing an optimal integral solution in polynomial
time is unlikely and that the problem cannot be approximated.

Proposition 3 The robust maximum flow over time problem is NP-hard, if we require
integral flow rates, that is, f i ∈ Z, even if Γ = 1. Moreover, the problem is inapprox-
imable within any factor.

Proof We will show that robust maximum flow over time with integral flow rates
solves the two edge-disjoint paths problem. An instance of two edge-disjoint paths
consists of a graph G = (V, E) with two designated pairs of vertices (si, di), i = 1, 2
and asks for two edge-disjoint si-di-paths in G. We assume that s1, s2, d1, d2 are pair-
wise disjoint. The problem was shown to be NP-hard by Fortune et al. [10].

We model this task as a robust maximum flow over time problem as follows (see
Figure 2). We introduce two auxiliary vertices s and d and connect s to si and d to di.
Hence, we end up with the graph Ḡ = (V∪{s, d}, E∪{s, s1}∪{s, s2}∪{d1, d}∪{d2, d}).
Let u ≡ 1, ∆ ≡ 2, τe = 0 for all e ∈ E, τ{s,s1} = 0, τ{s,s2} = 1, τ{d1,d} = 1, τ{d2,d} = 0 and
T = 2.

If we solve the robust maximum s-d-flow over time problem, the travel times
ensure that only the following path types can contribute to the objective function
value of any feasible solution:

1) s-d-paths traversing s1 and d1,
2) s-d-paths traversing s1 and d2,
3) s-d-paths traversing s2 and d2.

Let us assume that there are two edge-disjoint paths P1 and P2 in G, that is, a YES-
instance. Then we can construct a solution to robust maximum flow over time which
sends flow along s, s1, P1, d1, d in the interval [0, 1) and along s, s2, P2, d2, d in the
interval [0, 1). Since both paths are disjoint, the total amount of flow reaching the

10

destination is two. Moreover, no scenario can destroy more than one of the two paths,
hence, the robust flow value is equal to one.

Now, let us assume a NO-instance of two edge-disjoint paths. Due to the inte-
grality of the dispatch intervals and flow rates, a solution to robust maximum flow
over time in this network can only consist of at most two different paths. If it uses a
path of type 1) and a path of type 3), both paths have to share some common edge
e∗ ∈ E as we assumed to have a NO-instance of two edge-disjoint paths. The scenario
delaying exactly this edge reduces the flow value to zero. In all other cases, the worst
case scenario may delay the single utilized edge leaving s (resp. entering t) in order
to decrease the robust flow value to zero.

Hence, the instance is a NO-instance if and only if the robust flow value is zero.
Note that in the construction used above, the objective function value is zero for a
NO-instance and one for a YES-instance. Hence, any approximation algorithm would
still distinguish between YES- and NO-instances. ut

The following theorem shows that it is strongly NP-hard to verify feasibility of
robust flow over time solutions in general.

Theorem 1 Deciding feasibility of a given solution f =
{(

Pi, f i, [ai, bi)
)}

i=1,...,ω
is

NP-hard.

Proof We provide a polynomial-time reduction from the clique decision problem,
which is one of Karp’s classical NP-hard problems [13]. We will show that, given
any graph Ḡ = (V̄ , Ē) and some r ∈ N, we can construct a maximum robust flow over
time instance and a corresponding solution f such that the following holds. There is a
clique of size r in Ḡ if and only if f is an infeasible solution for the maximum robust
flow over time instance. Without loss of generality, we assume |Ē| ≥ |V̄ |, r ≥ 3 and
that the vertices in V̄ are numbered from 1, . . . , n. Let m = |Ē|.

We construct a multigraph G = (V, E), with vertices V = {s, d0, d1}∪{v`i , v
r
i : i ∈ V̄}

as illustrated in Figure 3 for the example of Ḡ = K3. V consists of two vertices v`i and
vr

i for each vertex i ∈ V̄ , together with three vertices s, d0 and d1. The edge set E
consists of five types of edges (omitted values for edges e ∈ E are ue = ∞, τe = 0 and
∆e = 0):

1) e = (v`i , v
r
i) for each vertex i ∈ V̄ with ∆e = 2i,

2) (vr
i , d0) for each vertex i ∈ V̄ ,

3) all “backward” edges (vr
i , v

`
j) for i , j ∈ V̄ ,

4) e = (d0, d1) with ue =
(

r
2

)
− 1,

5) e = (s, v`i) for each edge ē ∈ Ē such that i ∈ ē. For ē = {i, j}, set τe = 2m+1−2i−2 j.
These edges can be parallel.

We set T = 2m+1 + 1 and Γ = r. The solution candidate for the feasibility prob-
lem is constructed as follows. We introduce a triple (Pē, f ē, [0, 1)) for each edge
{i, j} = ē ∈ Ē, where Pē = (s, v`i , v

r
i , v

`
j, v

r
j, d0, d1). The edge (s, v`i) is chosen to be

the designated edge for ē of type (5) above.
The following two claims conclude the proof as we will show that a r-clique in Ḡ

exists if and only if the constructed solution is infeasible due to a capacity violation
at time t = 2m+1.

11

v1 v2

v3

e1

e2 e3
s d0 d1

v`1 vr
1

v`2 vr
2

v`3 vr
3

∆ = 2

∆ = 4

∆ = 8

u = 2

P
1 , τ = 10

P3, τ
= 4

P
2 , τ = 6

Fig. 3: Construction from Theorem 1 for the example of Ḡ = K3. The graph Ḡ is on
the left and the corresponding robust flow over time instance with T = 2m+1 + 1 = 17
and Γ = r is on the right hand side.

Claim: The constructed solution obeys the capacity constraints for every point
in time t < 2m+1.

For the proof, observe that only the edge (d0, d1) has finite capacity and that only
edges (v`i , v

r
i) can be delayed. Hence, it is sufficient to argue that its capacity cannot

be exceeded unless t = 2m+1. For any point in time t < 2m+1, a path can only contribute
to the capacity violation if it was delayed at most once. If it had been delayed twice,
it would have had a total travel time of 2m+1−2i−2 j + 2i + 2 j = 2m+1 by construction.

Now, let us consider some edge (v`i , v
r
i) and assume that it was delayed. Then all

paths which cross that edge and have no other delayed edge, will have a total travel
time of 2m+1 − 2 j for some j , i. By construction, at most Γ = r many edges are
delayed. We conclude that at most r paths can have the same travel time, which in
particular, are strictly fewer than

(
r
2

)
paths for r ≥ 3.

We now observe that for {i, j} , {i′, j′}, 2i + 2 j , 2i′ + 2 j′ and that 2i , 2i′ + 2 j′ for
all i, i′, j′. Therefore, less than

(
r
2

)
paths can arrive at d0 at any point in time before

2m+1 and thus, the capacity cannot be violated.

Claim: There is a scenario in which the solution violates the capacity constraint
for t = 2m+1 and edge e = (d0, d1) if and only if there is a clique of size r in Ḡ.

In order to prove the claim, we will show that a clique C of size r in Ḡ proves that
the solution f is infeasible. Let us select a scenario z ∈ S with z(v`i ,v

r
i) = 1 if and only

if i ∈ C. Now, for each path Pē there are three possible situations:

1. The path contains no delayed edge, then τ(Pē) = 2m+1 − 2u − 2v < 2m+1. Hence, it
does not contribute to the capacity of edge (d0, d1) at time 2m+1.

2. If the path is delayed exactly once, the same argument holds and τ(Pē) < 2m+1.
3. Finally, if the path is delayed exactly twice, τ(Pē) = 2m+1 and the path contributes

to the capacity.

Consequently, a path Pē contributes to the capacity violation at edge (d0, d1) if and
only if it was delayed twice. Due to the construction of z, this is the case if and only
if both endpoints of ē and thus ē itself was part of the clique. Since the clique consists
of

(
r
2

)
edges, the edge capacity is violated.

12

On the other hand, if the solution is infeasible, there exists a scenario z ∈ S such
that at least

(
r
2

)
paths are delayed exactly twice. Since Γ = r, this is only possible if

the delayed paths form a r-clique in Ḡ. ut

Temporally Repeated Flows. Next, we discuss the computational complexity of tem-
porally repeated flows, which were introduced in Section 2. We observe that comput-
ing optimal temporally repeated flows is an NP-hard task in general.

Proposition 4 In general, the problem of computing an optimal robust temporally
repeated flow is at least as hard as the static robust maximum flow problem.

Proof We consider again the construction in the proof of Proposition 2. Recall that
we had T = 1. In Proposition 1, we showed that it suffices to consider flows with
integer dispatch intervals. Therefore, the dispatch interval for any path is [0, 1) and
there is an optimal flow over time in this network that is a temporally repeated flow.

ut

There are situations in which an optimal temporally repeated flow can be com-
puted efficiently. The following Proposition 5 considers instances whose longest ro-
bust path length does not exceed the time horizon for any possible scenario z ∈ S.
That is, we say an instance has the T-bounded path length property if and only if

max
P∈P,z∈S

{τ(P) + ∆z(P)} ≤ T.

This ensures that we can write down an LP model for the problem whose pricing
problem is tractable. That means, we can solve the dual separation problem effi-
ciently: given a dual solution, decide whether the solution is feasible and, if not,
return a violated dual inequality. This concludes that the LP can also be solved in
polynomial time due to [11].

Proposition 5 An optimal robust temporally repeated flow can be computed in poly-
nomial time for instances with the T-bounded path length property.

Proof For ease of notation, we denote the set of all feasible temporally repeated flows
by F = {x ∈ R|P|+ :

∑
P:e∈P xP ≤ ue,∀e ∈ E}. We can formulate the problem as follows:

max
x∈F

min
z∈S

∑
P∈P

(T − τ(P) − ∆z(P)) xP


where, as before, S = {z ∈ {0, 1}E |

∑
e∈E ze ≤ Γ}, and ∆z(P) =

∑
e∈P ze∆e. The

variables xP denote the flow rate at which flow is sent into path P ∈ P and the
ze variables model the decision on which edge the travel time increases. Note that
the additional assumption on the maximal path length makes sure that the objective
coefficients of all paths in all scenarios can never be negative.

Each flow x ∈ F induces a load of xe =
∑

P∈P:e∈P xP on each edge e ∈ E. Thus,
the term

∑
P∈P ∆z(P)xP can be rewritten as

∑
e∈E ∆ezexe. As a consequence we can

reformulate the objective function of the problem above as:

max
x∈F

∑
P∈P

(T − τ(P)) xP −max
z∈S

∑
e∈E

∆ezexe

 .
13

Let us consider the inner problem maxz∈S
∑

e∈E ∆ezexe for a fixed flow x ∈ F .
Since the linear inequality system {

∑
e∈E ze ≤ Γ, 0 ≤ ze ≤ 1∀e ∈ E} is totally unimod-

ular, we might as well replace max{
∑

e∈E ∆ezexe : z ∈ S} by its linear relaxation

max
z∈[0,1]|E|

∑
e∈E

∆ezexe :
∑
e∈E

ze ≤ Γ

 .
By strong LP duality (using γ0 as dual variable for the GUB constraint and γe for the
upper variable bounds), the objective function value of this inner problem coincides
with the objective function value of the dual problem

min
γ∈R|E|+1

+

γ0Γ +
∑
e∈E

γe

s.t. γ0 + γe ≥ ∆e

∑
P∈P:e∈P

xP ∀e ∈ E.

As a consequence, we can reformulate the problem to compute an optimal temporally
repeated flow as:

max
x∈R|P|+ , γ∈R|E|+1

+

∑
P∈P

xP(T − τ(P)) − γ0Γ −
∑
e∈E

γe

s.t.
∑

P∈P:e∈P

xP ≤ ue ∀e ∈ E

γ0 + γe ≥ ∆e

∑
P∈P:e∈P

xP ∀e ∈ E.

We denote the dual variables for capacity constraints by α ∈ R|E|+ and the dual vari-
ables for scenarios by β ∈ R|E|+ and obtain the following dual:

min
α, β∈R|E|+

∑
e∈E

αeue

s.t.
∑
e∈P

αe +
∑
e∈P

βe∆e ≥ T −
∑
e∈P

τe ∀P ∈ P∑
e∈E

βe ≤ Γ

βe ≤ 1 ∀e ∈ E.

The pricing problem for path variables xP corresponds to separating the inequalities∑
e∈P(αe + βe∆e) ≥ T −

∑
e∈P τe for all paths P ∈ P. By moving

∑
e∈P τe to the left

hand side, it can be solved as a shortest path problem with cost ce = αe + βe∆e + τe,
which can be solved in polynomial time. Since the ellipsoid method requires only
a polynomial time separation oracle in order to run in polynomial time [11], this
concludes that the LP can also be solved in polynomial time. ut

Note that, in general, checking whether the longest path length exceeds the time
horizon is NP-hard. Still, whenever the time horizon is sufficiently large, the T -
bounded path property is certainly fulfilled.

14

4 Bounds on the Solution Quality of Temporally Repeated Flows

In the remainder of the paper, we turn our focus on the solution quality of tempo-
rally repeated flows compared to a general solution. For any given instance I of the
robust maximum flow over time problem, let f OPT

TR be the value of an optimal tempo-
rally repeated and f OPT be the value of an optimal general solution. We call the ratio
f OPT/ f OPT

TR the optimality gap of I and provide general upper and lower bounds on
the optimality gap.

4.1 Lower Bounds

The next two propositions provide lower bounds on the worst case optimality gap
and show that the class of temporally repeated flows is not necessarily optimal for
the robust maximum flow over time problem, even for Γ = 1. Proposition 7 presents
a family of instances with optimality gap Ω(T + Γ). For instances with T -bounded
path length, the following Proposition 6 yields a gap ofΩ(log T +logΓ). Both families
of instances are depicted in Figure 4.

Proposition 6 The optimality gap of temporally repeated flows can beHT andHΓ+1
for instances satisfying the T-bounded path length property. Here, Hr ∈ Ω(log r) is
the r-th harmonic number, i.e.Hr =

∑r
i=1

1
i .

Proof For fixed r ∈ N, we construct an instance Ir with graph Gr = (V, Er) as follows
(see Figure 4a). The vertex set always consists of three vertices V = {s, v, d}. The
edge set consists of a designated edge e∗ = (v, d) and a set of r parallel edges ei =

(s, v), i = 0, . . . , r − 1. We set τe∗ = ∆e∗ = 0, τei = i, ∆ei = r − i, Γ = r − 1,T = r.
All edges have unit capacity. For the sake of notation, we use Pi to denote the unique
s-d-path which contains edge er−i−1. A combination of the two claims below yields
an optimality gap ofHr = Ω(log r). Note that r = Γ + 1 = T .

Claim: There exists a solution to Ir with objective function value 1.

For each i = 0, . . . , r − 1, we send one unit of flow along path Pi in the time interval
[0, 1). The flow of each path reaches the designated edge e∗ during the time interval
[i, i + 1), or if the path was delayed, during [r, r + 1) which exceeds the time horizon.
Since the time intervals do not overlap during the time horizon, there will be no
collisions. Furthermore, the total flow sent in the nominal setting is equal to the time
horizon T = r. Since the total flow sent along each path is equal to 1, any scenario
can destroy at most Γ = (r − 1) units of flow, thus leaving a remaining flow of 1.

Claim: An optimal temporally repeated flow can send at mostH−1
r units of flow.

Let us assume that x∗ is an optimal temporally repeated flow with flow rate x∗Pi on
path Pi. For ease of notation, we use x∗i = x∗Pi in the remainder of the proof. Since the
flow is temporally repeated,

∑
x∗i ≤ 1 holds. Without loss of generality, we can as-

sume equality. Otherwise, we could increase some variable x∗i by a sufficiently small
positive amount ε without decreasing the robust flow value (Note that any scenario
can destroy at most the additional flow that would be sent by increasing the variable

15

s v d

T = 3, Γ = 2

0,0

0,3

1,2

2,1

(a)
Instance I3 from Proposition 6. Edge labels de-
note the travel times and possible delays, re-
spectively.

s v1 v2 d

0,∞

1,∞

2,∞

0, 0

0,∞

1,∞

2,∞

T = 3, Γ = 2

(b)
Instance I3 from Proposition 7. Edge labels de-
note the travel times and possible delays, re-
spectively.

Fig. 4: Instances showing an optimality gap for temporally repeated flows.

by ε). In the following, we claim that the optimal temporally repeated flow is of the
following form:

x∗0 = 2x∗1, x∗1 =
3x∗2
2
, . . . , x∗r−2 =

rx∗r−1

r − 1
.

First, let us assume that the solution is of such form. Then, by substituting, we get
x∗i = x∗0/i+1 and

∑
x∗i = 1 implies that x∗0 ≤ (

∑r
i=1 1/i)−1.

Also note that the objective function coefficient of path Pi is T − τer−i−1 = r − (r −
i − 1) = i + 1 for all i = 0, . . . , r − 1. Hence, x∗ satisfies for every i, j,

x∗i (T − τer−i−1) =
x∗0(i + 1)

i + 1
= x∗0 =

x∗0(j + 1)
j + 1

= x∗j(T − τer− j−1).

In other words, destroying any set of edges of cardinality Γ results in the same objec-
tive function value. Hence, in every scenario, one of the r paths remains unharmed,
yielding an objective function value of x∗0 ≤ (

∑
i 1/i)−1.

Now, let us assume that the solution is not of such form. Then, there exist two
indices ` = arg mini=0,...,r−1 xi(T − τer−i−1) and k = arg maxi=0,...,r−1 xi(T − τer−i−1) with
x`(T − τer−`−1) < xk(T − τer−k−1). The worst case scenario will delay all edges except
for e`. Averaging the flow shows that it was not optimal: Decreasing the flow on all
edges with weighted flow value equal to xk(T − τer−k−1) and increasing the flow on
all edges with weighted flow value equal to x`(T − τer−`−1) would strictly increase the
robust flow value. ut

Proposition 7 There are instances for robust maximum flow over time whose gap
between an optimal temporally repeated flow and an optimal flow is T and Γ + 1.

Proof For fixed r ∈ Z+, we construct an instance Ir with graph Gr = (V, Er) as follows
(see Figure 4b). The vertex set always consists of four vertices V = {s, v1, v2, d}. The
edge set consists of a designated edge e∗ = (v1, v2) and two sets of r parallel edges
e1

i = (s, v1) and e2
i = (v2, d), i = 0, . . . , r − 1. We set τe∗ = ∆e∗ = 0, τe1

i
= τe2

i
= i, ∆e1

i
=

∆e2
i

= ∞, Γ = r − 1,T = r. All edges have unit capacity. Combination of the two
claims below yields an optimality gap of Ω(r).

16

Claim: There exists a solution to Ir with objective function value 1.

We define r paths Pi = {e1
i , e
∗, e2

r−i−1} and dispatch a single unit of flow in the interval
[0, 1) into each. The flow is clearly feasible and has a nominal objective function
value of r. Moreover, any r − 1 attacked edges can destroy at most r − 1 units of flow,
hence, yielding a flow value of at least 1.

Claim: An optimal temporally repeated flow can send at most 1/r units of flow.

We start by defining a temporally repeated flow with robust solution value 1/r and
show the optimality of this flow. Let xi = 1/r for all paths Pi, 0 ≤ i ≤ r − 1.

We will argue that x is optimal with robust function value 1/r. Let us check the
objective value contribution in detail. Each path Pi, i = 0, . . . , r − 1 contributes

T − τe1
i
− τe2

r−i−1
= r − i − (r − i − 1) = 1

to the objective. Hence, sending a flow value xi = 1/r on all r paths yields an objective
function value of 1/r independent of which Γ = r − 1 edges between s and v1 are
destroyed. Note that attacking different edges does not make any sense for this type
of solution.

Now, we show that any feasible temporally repeated flow different than x yields a
smaller objective function value. Let x′ be a different solution, i.e. there is some path
Pi that has flow rate x′i < 1/r. We will show that this solution has objective value at
most x′i .

More precisely, we will show that there is a scenario which leaves only the path
Pi intact. We will use the scenario z ∈ S with ze1

j
= 1 for all 0 ≤ j < i, ze2

j
= 1 for

all 0 ≤ j < r − i − 1 and zero otherwise. The total number of edges destroyed by z is
r−1. In the following, we show that in this scenario only Pi with x′i < 1/r contributes
to the objective function value.

If any other path P , Pi should survive the scenario, it must avoid all edges
affected by z. P can neither contain edges from {e1

1, . . . , e
1
i−1} nor from {e2

1, . . . , e
2
r−i−2}.

Let us consider the path length of such a path P. The only possibility to achieve a path
length smaller than T = r is to use edges e1

i and e2
r−i, i.e. P = Pi. We conclude that

the objective value is at most x′i < 1/r, which proves the optimality of x and finishes
the proof of the claim. ut

4.2 Asymptotic Optimality

Although the gaps seem large, they appear only if the time horizon is relatively short,
when compared to the travel times. An asymptotic bound shows that the optimality
gap diminishes as the time horizon increases.

Proposition 8 For instances of the maximum robust flow over time problem with
∆e < ∞ for all e ∈ E, temporally repeated flows tend to optimality for T → ∞, if all
other parameters are fixed.

Proof Let (G, s, t, u, ∆, Γ) with ∆e < ∞ for all e ∈ E be an instance of robust max
flow over time, with values that do not depend on the time horizon T . If we denote

17

the optimal objective function value of a temporally repeated flow by f OPT
TR (T) and the

value of a general flow by f OPT(T) for time horizon T , then for every ε > 0 we show
that there exists a T ′ ∈ R such that f OPT(T)/ f OPT

TR (T) ≤ 1 + ε for all T ≥ T ′. Since ∆
is supposed to be a constant, we can assume that the choice of any scenario destroys
at most a value of λ∗ = Γmaxe∈E ∆eue. For sufficiently large T , any optimal nominal
temporally repeated flow will send a flow value of at least F∗(T) − λ∗, where F∗(T)
is the nominal optimal value for time horizon T . Moreover, as temporally repeated
flows are optimal in the nominal case, we can deduce f OPT ≤ F∗(T). Thus,

f OPT(T)
f OPT
TR (T)

≤
F∗(T)

F∗(T) − λ∗
,

which tends to one as T tends to infinity. ut

4.3 Upper Bounds

In the remainder of this section, we prove an upper bound on the gap between the ob-
jective function values of optimal general solutions and optimal temporally repeated
flows. This gap depends on some graph parameter k introduced below. Note that flow
sent along a particular path P ∈ P only has a chance to reach the destination if each
edge e ∈ P is reached by the flow within interval Ie,P := [τ<e(P),T − τ≥e(P)], where
τ<e(P) =

∑
e′∈E:e′<Pe τ(e′) is the time required for a flow particle on path P to reach

edge e. We call an instance of maximum flow over time k-coverable if for each edge
e ∈ E it is possible to select k points in time to cover all intervals {Ie,P}P∈P:e∈P. The
same definition holds for the robust counterpart. Note that this definition only de-
pends on the graph G, the vertices s, d, the travel times τ and the time horizon T .
Denote these k points in time by te

1, . . . t
e
k. We also call these points witnesses of edge

e. That is, we define for each edge e ∈ E the interval graph He whose vertex set cor-
responds to the intervals {Ie,P}P∈P:e∈P two of which are linked by an edge if and only
if the associated intervals overlap. Then the instance is k-coverable if and only if the
vertices of each of the interval graphs He can be covered by not more than k cliques.
Since the clique-covering-number equals the maximum cardinality of a stable set by
Dilworth’s Theorem [6], we define

Definition 2 An instance of maximum robust flow over time is k-coverable if and
only if the maximum size of a stable set in all of the associated interval graphs He, e ∈
E, is at most k.

For example, an instance satisfying maxP∈P τ
<e(P) + maxP∈P τ

≥e(P) ≤ T for all
e ∈ E is 1-coverable: for an edge e, select te

1 ∈ [maxP∈P τ
<e(P),T − maxP∈P τ

≥e(P)].
This inequality is fulfilled in directed acyclic graphs whose longest path length does
not exceed the time horizon, i.e. where maxP∈P τ(P) ≤ T . Note that maximum robust
flow over time instances on a directed acyclic graph with the T -bounded path length
property, i.e. with maxP∈P,z∈S τ(P) + ∆z(P) ≤ T , are also 1-coverable.

More vividly, let us consider the graphs in Figure 4. The graph in (a) has k = 1, as
its longest path length does not exceed the time horizon. The graph in (b) has k = 2,

18

as can be seen by considering the edge e∗ = (v1, v2) and the following three paths. Let
P1 be the path with the top edge from s to v1 and the bottom edge from v2 to d. It has
interval Ie∗,P1 = [0, 1]. P2 with both middle edges has Ie∗,P2 = [1, 2]. Finally, P3 with
the first bottom edge and the last top edge has Ie∗,P3 = [2, 3]. A minimum covering of
these intervals can be achieved by choosing te∗

1 = 1, te∗
2 = 2. Hence, k is at least two.

One can easily check that the remaining intervals do not change this. Moreover, one
can observe that all remaining edges are 1-coverable.

It is shown in [12] that a stable set of maximum cardinality in an interval graph, in
general, can be found by a simple greedy approach: sweep from right to left through
the whole domain, in our case [0,T], and, iteratively, select the interval with right-
most left endpoint. Remove this interval together with all intersecting intervals from
the list, until no intervals are remaining. In this work, we do not discuss the complex-
ity status of computing k in detail. We only note that the greedy approach described
above is, in general, certainly not strongly polynomial as it depends on the time hori-
zon T and on the number of s-d paths in the given graph.

Next, we prove upper bounds on the optimality gap of temporally repeated flows.
Since the proofs are rather technical, we distinguish between the case ∆e ∈ {0,∞} for
all e ∈ E and the case ∆e ∈ Z+. The former turns out to be simpler and is covered in
Theorem 2, the latter is covered in Theorem 3 and builds upon the former.

Theorem 2 Let a k-coverable instance with ∆e ∈ {0,∞} for all e ∈ E be given.
Then, an optimal temporally repeated solution is an O(k log T)-approximation for
the robust maximum flow over time problem.

Additionally, we derive an upper bound for general instances. Let ∆̄z(P) denote
the effective amount of flow cut off by scenario z ∈ S on path P, that is, ∆̄z(P) =

min{∆z(P),T − τ(P)}. Then we define

η = max
P∈P,z:∆̄z(P)<T−τ(P)

T − τ(P)
T − τ(P) − ∆̄z(P)

,

or η = 1, if no such path exists. The value can be interpreted as follows. If η = 1,
the total contribution of flow on a path P in a temporally repeated solution is either
xP(T − τ(P)), or zero, depending on whether or not the path is attacked by the worst-
case scenario. If η is large, the ratio between the contribution of path P, if P is not
attacked, and the non-zero contribution for some scenarios might be as large as η. We
will see that this ratio makes it harder to estimate the loss in the proof of Theorem 3.

Theorem 3 Let a k-coverable instance with ∆ ∈ Z+ be given. Then, an optimal tem-
porally repeated solution is an O(ηk log T)-approximation for the robust maximum
flow over time problem.

The proof strategy of both theorems is the same and can be viewed as a dual
fitting approach. We present primal-dual pairs (P), (D) modeling robust temporally
repeated flows and (P’), (D’) modeling general solutions to the robust flow over time
problem. It is clear by strong duality that opt(P) = opt(D) and opt(P′) = opt(D′).
Hence, in order to prove a bound on the optimality gap, it suffices to show opt(D′) ≤

19

αopt(D), where α ≥ 1 is the upper bound on the optimality gap from Theorem 2 and
3, respectively. With this factor, we conclude

opt(P′) = opt(D′) ≤ αopt(D) = αopt(P)⇔
f OPT

f OPT
TR

=
opt(P′)
opt(P)

≤ α. (2)

We bound the factor α via a geometric box interpretation of solutions in the dual
problems. From an optimal solution of (D), we construct a feasible solution of (D’),
guaranteeing that the objective function values differ by at most the factor of α.

In the remainder, we prove Theorems 2 and 3. We start by introducing the LP
models. (P) is a model for temporally repeated flows with corresponding dual (D).
Without the constraints for scenarios z, (P) models (nominal) temporally repeated
flows. The variable λ corresponds to the amount of flow that is lost due to the actions
of the adversary.

max
x∈R|P|+ , λ∈R+

∑
P∈P

(T − τ(P))xP − λ (P)

s.t.
∑
P∈P:
e∈P

xP ≤ ue ∀e ∈ E

∑
P∈P:

z∩P,∅

∆̄z(P)xP − λ ≤ 0 ∀z ∈ S

The corresponding dual with variables αe and βz is:

min
α∈R|E|+ , β∈R|S|+

∑
e∈E

ueαe (D)

s.t.
∑
z∈S

βz ≤ 1∑
e∈P

αe +
∑
z∈S:

z∩P,∅

∆̄z(P)βz ≥ T − τ(P) ∀P ∈ P

Now, we present a model (P’) for general robust solutions. We introduce variables
xi

P which correspond to the flow rate sent into path P in the dispatch interval [i, i + 1).
Here, we implicitly use the fact that we can restrict to integer dispatch intervals, as
shown in Proposition 1. As before, λ is the loss incurred after the adversary acts.
For ease of notation, we assume that all variables with a negative index in (P’) are
omitted, e.g. a variable x−5

P is assumed to be excluded from the model. This can also
be seen as having variables xi

P for all i ∈ Z and forcing xi
P = 0 for all i < 0 or

i ≥ T − τ(P). We use the notation ∆<e
z (P) =

∑
e′∈P:e′<Pe ∆e′ = ze′ to denote the delay

on path P induced by scenario z until edge e.

max
x, λ≥0

∑
P∈P

∑
0≤i<T−τ(P)

xi
P − λ (P’)

s.t.
∑
P∈P:
e∈P

xt−τ<e(P)−∆<e
z (P)

P ≤ ue ∀e ∈ E,∀0 ≤ t < T,∀z ∈ S

20

0

αt
e

t

tmin tmaxt∗

τ<e(P) T − τ≥e(P)

T − τ(P)

(
1 − β∗(P)

) α∗e
α∗(P)

Fig. 5: Illustration of the box model with three boxes. The height profile is a solution
constructed for the proof of Theorem 2.

∑
P∈P

∑
i≥T−τ(P)−∆z(P)

xi
P − λ ≤ 0 ∀z ∈ S

The corresponding dual with variables αt
e(z) and βz is:

min
α, β≥0

∑
e∈E

ue

∑
0≤t<T

∑
z∈S

αt
e(z) (D’)

s.t.
∑
z∈S

βz ≤ 1∑
e∈P

∑
z∈S

α
i+τ<e(P)+∆<e

z (P)
e (z) +

∑
z∈S(i,P)

βz ≥ 1 ∀P ∈ P,∀0 ≤ i < T − τ(P).

By S(i, P) we denote for a path P and time i the set of scenarios for which flow on
path P sent into the network at time i will not reach the destination, that is, S(i, P) =

{z ∈ S : i ≥ T − τ(P) − ∆z(P)}. In other words, these are the scenarios for path P
which prevent flow sent at time i from contributing to the objective.

Graphical Interpretation of (D). The remaining proofs in this section rely on the
following graphical interpretation of the duals (D) and (D’). We consider an optimal
solution (α∗, β∗) ∈ (D) and interpret the dual constraints and variables of (D) as boxes
in a two-dimensional space [0,T] × [0, 1] as follows (see Figure 5): Let us consider
the dual constraint for a path P ∈ P and assume ∆̄z(P) ∈ {0,T − τ(P)} for all z ∈ S,
that is, P only contains edges that have a very large value for ∆, or zero. The general
case is discussed in the proof of Theorem 3.

We can regard the dual constraint of such a path P as a set of boxes

Be
P =

[
τ<e(P),T − τ≥e(P)

]
×

[
0,

(
1 − β∗(P)

) α∗e
α∗(P)

]
, e ∈ P,

21

where α∗(P) =
∑

e∈P α
∗
e and β∗(P) =

∑
z∈S:z∩P,∅ β

∗
z . Each box Be

P starts at the earliest
possible arrival of flow at edge e traveling along path P and ends at the latest rea-
sonable departure time from edge e. As soon as we consider the total area covered
by the boxes of a path P, the connection between the boxes and their dual constraint
becomes evident.∑

e∈P

vol(Be
P) =

∑
e∈P

(T − τ(P))
(
1 − β∗(P)

) α∗e
α∗(P)

= T − τ(P) −
∑
z∈S:

z∩P,∅

β∗z ∆̄z(P)

Here we used that ∆̄z(P) = T − τ(P) for z ∩ P , ∅ as ∆e ∈ {0,∞}. The sum of
volumes of all boxes of a path is equal to the corresponding right hand side value
of its dual constraint in (D) (assuming all terms involving β∗ are moved to the right
hand side). Furthermore, the volume of Be

P is a lower bound for the value of α∗e for
all edges e ∈ P. This can be seen by considering the dual constraint for path P in (D),
multiplying it by α∗e and rearranging the terms to have vol(Be

P) as the right hand side
value.

α∗(P) =
∑
e′∈P

α∗e′ ≥ (1 − β∗(P)) (T − τ(P))

⇔ α∗eα
∗(P) ≥ α∗e (1 − β∗(P)) (T − τ(P))

⇔ α∗e ≥
α∗e

α∗(P)
(1 − β∗(P)) (T − τ(P)) = vol(Be

P). (3)

In the following, we will use the area covered by boxes in order to construct a feasible
solution for (D’) and use the volume of the boxes in order to estimate the total cost of
the solution.

In a k-coverable instance, every box Be
P intersects at least one of the lines te

i×[0, 1].
Recall that te

i are the witnesses of edge e, that is, the points used in order to cover the
interval graph in the definition of k-coverability. In the interval graph He, we had
intervals Ie,P := [τ<e(P),T − τ≥e(P)] for path P. Note that this is exactly the shadow
of box Be

P on the horizontal t-axis.
For the remainder of this part, we will restrict all arguments to boxes which inter-

sect a specific line t∗ = te
i × [0, 1]. That is, we will consider only boxes {Be

P : τ<e(P) ≤
t∗ ≤ T − τ≥e(P)}. Afterwards, in the proofs of the theorems, we will do a summation
over all lines te

i . A box may intersect multiple lines - and thus be considered multiple
times - but this does not harm the approximation guarantee. In particular, we assume
that no box starts after, respectively ends before, t∗. By tmin and tmax we denote the
earliest and latest points on [0,T] covered by any of the considered boxes (see Fig-
ure 5). That is, tmin = min{τ<e(P) : τ<e(P) ≤ t∗ ≤ T − τ≥e(P)} and tmax is defined
analogously.

Construction of a feasible solution for (D’). Let us examine feasible values for the
dual variables αt

e(z) in (D’) which can be constructed from the graphical interpretation
of (α∗, β∗).

First, let us see how αt
e(z) can be set in order to become feasible for the constraints

induced by a single path P. We set αt
e(z) = 0 for all z , ∅. Setting these variables

22

to a positive value would be hard to analyze. But in order to become feasible, we set
αt

e(∅) to the height of box Be
P in each slice (t, t + 1). This results in αt

e(∅) being the
height of Be

P, if τ<e(P) ≤ t < T − τ≥e(P), or zero otherwise. Then

∑
e∈P

∑
z∈S

α
i+τ<e(P)+∆<e

z (P)
e (z) =

∑
e∈P

1 − ∑
z∈S(i,P)

β∗z

 α∗e
α∗(P)

= 1 −
∑

z∈S(i,P)

β∗z .

That means, if we had only a constraint for a single path, the solution would be
feasible. But we have many paths and the height of their boxes Be

P differs.
Hence, if we set αt

e(∅) to the maximal height of all boxes Be
P intersecting slice

(t, t + 1), we obtain a feasible solution (α, β∗) ∈ (D′). Formally, the solution can be
described as

αt
e(∅) = max

P∈Pt
e


1 − ∑

z∈S(t,P)

β∗z

 α∗e
α∗(P)

 ,
where Pt

e = {P : e ∈ P ∧ τ<e(P) ≤ t < T − τ≥e(P)} describes the set of paths which
can utilize edge e at time t. And αt

e(z) = 0 for all other variables. The height profile
in Figure 5 depicts this solution.

The constructed solution is feasible for (D’). We will now analyze its total cost.
Intuitively, we argue as follows:

The sum of dual variables,
∑

0≤t<T α
t
e(∅) for any fixed edge e is equal to the area

covered by the union of all boxes Be
P induced by paths P ∈ P such that e ∈ P. Thus, in

order to prove the O(k log T)-approximation factor for Theorem 2, we will show that,
for any fixed edge e ∈ E, the total area covered by the union of all boxes is bounded
by O(k log T) times the area of the largest box. Recall that (3) implies that the value
of α∗e in the temporally repeated solution is lower bounded by the area of the largest
box. With this, we can estimate the total solution cost of (α, β∗) in terms of (α∗, β∗).

Proof (Proof of Theorem 2) In order to prove the theorem, we will show opt(D′) ≤
O(k log T)opt(D), which is sufficient in combination with (2). Therefore, we will
use the argumentation from the preceding paragraphs, in particular, we will use the
constructed solution αt

e(z). We will show

∑
0≤t<T

∑
z∈S

αt
e(z) = vol


⋃
P∈P:
e∈P

Be
P

 ≤
k∑

i=1

vol

 ⋃
P∈Pti

e

Be
P

 ≤ O(k log T)α∗e ∀e ∈ E. (4)

Recall that (α∗, β∗) was an optimum solution to (D). Thus, result (4) then will prove

opt(D′) ≤
∑
e∈E

ue

∑
0≤t<T

∑
z∈S

αt
e(z) ≤ O(k log T)

∑
e∈E

ueα
∗
e = O(k log T)opt(D).

Without loss of generality, we can assume
∑

z∈S β
∗
z = 1. For the remainder of the

proof, we will consider the graphical interpretation of the duals from the preceding
paragraphs and fix an edge e ∈ E and witness at t∗ = te

i . For ease of notation, we
use P to denote the set Pt∗

e of all paths whose boxes intersect t∗. If a path intersects
multiple witnesses, we consider it multiple times.

23

0

1
αt

e

t

tmaxt∗ t∗
+

tmax−
t∗

2

P1

t∗
+

tmax−
t∗

4

P2,3

t∗
+

tmax−
t∗

8

Fig. 6: Illustration of the proof of Theorem 2. The interval [t∗, tmax] contains three
boxes (orange,blue,green). The total area is covered by copies of Pi, i ≥ 1, the copies
are black (slightly moved up/down to distinguish different copies). The box used
in iteration 2 and 3 is the same, moved to a different offset. We also assume that
tmax−t∗

8 ≤ α∗e, hence, the final box is just the slice of height [0, 1]. The height profile of
the solution is depicted in red.

We will show that the total volume of the union of the boxes intersecting t∗ can
be bounded by O(log T)α∗e. Summation over te

i with i ≤ k yields the result.
Since every box Be

P for path P ∈ P intersects the point t∗, it is easy to see that
the sets of paths P` = {P ∈ P : T − τ≥e(P) ≥ t∗ + (tmax − t∗)2−`} are monotonically
increasing, that is, Pi ⊆ Pi+1. The set P` contains all rectangles covering some area
to the right of the line t∗ + (tmax − t∗)2−`.

Now, let us consider the set P1 and pick the path P1 ∈ P
1 whose box B1 is the

highest among all candidates, that is,

P1 = arg max
P∈P1

1 − ∑
z∈S(t∗,P)

β∗z

 α∗e
α∗(P)

.

B1 has the largest height among all boxes which intersect the interval [t∗ + (tmax −

t∗) 1
2 , tmax]. Furthermore, it has a total width exceeding the width of the interval, as it

contains both, t∗ and t∗+(tmax−t∗) 1
2 . Hence, we can take a copy of B1, shift it such that

it starts at t∗+(tmax−t∗)/2 and cover the total area of the interval [t∗+(tmax−t∗)/2, tmax].
An example is given in Figure 6.

Analogously, we can proceed with increasing ` in order to pick a path P` ∈ P
`

whose box B` covers the interval [t∗ + (tmax − t∗)2−`, t∗ + (tmax − t∗)2−`+1]. As soon as
t∗ + (tmax − t∗)2−` ≤ α∗e, we can stop as the remaining area in the interval [t∗, t∗ + α∗e]
is at most α∗e. The total area consumption of chosen boxes is bounded by O(log T)α∗e
as the length of the remaining interval to be covered is divided by two in each step.

24

In summary, we have just shown that the total area covered by boxes in the interval
[t∗, tmax] can be bounded. By symmetry, the same arguments also hold for the area
covered by boxes in the interval [tmin, t∗]. Here, we shift boxes to the left instead of
to the right. So the total area covered by boxes that intersect t∗ can be bounded by
2 · O(log T)α∗e. Recall P = ∪1≤i≤k{P ∈ P : P ∩ te

i , ∅}, hence,

vol


⋃
P∈P:
e∈P

Be
P

 ≤
k∑

i=1

vol

 ⋃
P∈Pti

e

Be
P

 ≤ k∑
i=1

2 · O(log T)α∗e = O(k log T)α∗e

holds, which concludes the proof. ut

Since we restricted the preceding argumentation only to the case when ∆ ∈ {0,∞},
we will now generalize it towards arbitrary delays in the proof of Theorem 3.

Proof (Proof of Theorem 3) We begin the proof by generalizing the box model to
general scenarios. Let us fix a path P. Again, we want to construct geometric objects
Be

P such that
∑

e∈P vol(Be
P) equals the right hand side value of the dual constraint of

path P in (D) (assuming that all terms involving β are moved to the right hand side).
Therefore, let us start with the following boxes

B̂e
P =

[
τ<e(P),T − τ≥e(P)

]
×

[
0,

α∗e
α∗(P)

]
.

Let us also fix an edge e ∈ P and order the scenarios zi, 1 ≤ i ≤ ` with β∗zi
> 0 such

that ∆̄zi (P) ≥ ∆̄zi+1 (P) for all 1 ≤ i < `. For each 1 ≤ i ≤ `, we cut out a section of
box Be

P of height β∗zi
starting at the top right boundary of the box. That is, for each

scenario, define the following rectangles

Ae
zi

=
[
T − τ≥e(P) − ∆̄zi (P),T − τ≥e(P)

]
×


1 − i∑

j=1

β∗z j

 α∗e
α∗(P)

,

1 − i−1∑
j=1

β∗z j

 α∗e
α∗(P)


and cut these out of B̂e

P. So we end up with a polygon Be
P = B̂e

P \
(⋃`

i=1 Ae
zi

)
(see the

box shaped as a staircase in Figure 7). Also note that the boxes A do not overlap -
except for their boundaries - and are always contained in B̂e

P. Hence, it is simple to
compute the total volume of the polygons of any path.∑

e∈P

vol(Be
P) =

∑
e∈P

 α∗e
α∗(P)

(T − τ(P)) −
∑̀
i=1

vol(Azi)


=

∑
e∈P

 α∗e
α∗(P)

(T − τ(P)) −
∑̀
i=1

∆̄zi (P)β∗zi

α∗e
α∗(P)


= T − τ(P) −

∑
z∈S:

z∩P,∅

∆̄z(P)β∗z .

Analogously to (3) we can deduce that α∗e ≥ vol(Be
P) holds for all P and e ∈ P, in

other words, the volume of polygons is again a lower bound on the variables of the
dual temporally repeated solution.

25

0

αt
e

t

Az1

Az2

Az3

βz1 (P) α∗e
α(P)

∆̄z1 (P)

βz2 (P) α∗e
α(P)

∆̄z2 (P)

βz3 (P) α∗e
α(P)

∆̄z3 (P)

Fig. 7: Illustration of the box model for arbitrary values of ∆. The boundary of the
polygon Be

P is drawn in solid blue. The corresponding rectangular box B̄e
P from the

proof of Theorem 3 is drawn red, dashed.

Note that the preceding construction of a feasible solution for (D’) used only
variables αt

e(∅). Hence, the solution constructed therein is not only feasible if ∆e ∈

{0,∞}, but also for general ∆e ∈ Z+ by the same arguments. Fix a path P and set αt
e(∅)

to the height of polygon Be
P in the slice (t, t + 1). This time, note that the height of a

polygon corresponding to a specific path P and an edge e ∈ P may differ depending
on the actual slice. Then the solution is feasible as the height of polygons in slice
(t, t + 1) is, by construction, equal to α∗e

α∗(P)

(
1 −

∑
z∈S(t,P) β

∗
z

)
.

It remains to prove that the total cost of the constructed solution α is bounded by
the total cost of the temporally repeated solution times at most a factor O(ηk log T).
Unfortunately, the staircase structure of Be

P prevents us from covering the area as in
the proof of Theorem 2. If we take a copy and shift it to the left, the area to the left of
t∗ will not necessarily be covered.

Therefore, we will use the following strategy. In a first step, we will replace all
polygons Be

P from the temporally repeated solution by rectangles B̄e
P. This will cost

at most a factor η. The polygons will be replaced in such a way that the height profile
with respect to Be

P is contained in the height profile with respect to B̄e
P. Afterwards,

we can apply exactly the same proof as in Theorem 2. The proof will be concluded.
The replacement is done as follows. Fix a path P and e ∈ P and consider the

polygon Be
P. We want to replace it by a rectangle B̄e

P that contains the polygon.
Therefore, let h =

α∗e
α∗(P)

(
1 −

∑
z∈S:∆̄z(P)=T−τ(P) β

∗
z

)
be the highest point of the poly-

gon. We will replace Be
P by the rectangle B̄e

P =
[
τ<e(P),T − τ≥e(P)

]
× [0, h]. Clearly,

it contains the polygon. The factor we lose can be bounded as follows. We use
S1 = {z ∈ S : ∆̄z(P) = T − τ(P)} and S2 = S \ S1 to partition the scenarios.
The first set contains all scenarios that destroy the entire flow on path P, the latter
contains scenarios that destroy only a smaller amount.

vol(B̄e
P)

vol(Be
P)

=

α∗e
α∗(P) (T − τ(P))

(
1 −

∑
z∈S1

β∗z
)

α∗e
α∗(P)

(
T − τ(P) −

∑
z∈S β

∗
z ∆̄z(P)

)
26

=
(T − τ(P))

(
1 −

∑
z∈S1

β∗z
)

T − τ(P) −
∑

z∈S1
β∗z (T − τ(P)) −

∑
z∈S2

β∗z ∆̄z(P)

=
(T − τ(P))

(
1 −

∑
z∈S1

β∗z
)

(T − τ(P))
(
1 −

∑
z∈S1

β∗z
)
−

∑
z∈S2

β∗z ∆̄z(P)

≤
(T − τ(P))

(
1 −

∑
z∈S1

β∗z
)

(T − τ(P))
(
1 −

∑
z∈S1

β∗z
)
−maxz∈S2 {∆̄z(P)}

∑
z∈S2

β∗z

=
T − τ(P)

T − τ(P) −maxz∈S2 {∆̄z(P)}
≤ η.

The last equality is due to
∑

z∈S2
β∗z = 1 −

∑
z∈S1

β∗z . The proof is concluded since

opt(D′) ≤
∑
e∈E

ue

∑
0≤t<T

∑
z∈S

αt
e(z) ≤ η

∑
e∈E

ue

∑
0≤t<T

∑
z∈S

ᾱt
e(z) ≤ O(ηk log T) · opt(D).

ut

5 Open Problems

In this work, we provided a first step towards modeling and solving robust flow over
time problems. We have shown that temporally repeated flows under the presence
of uncertainty are no longer optimal. We provided lower and upper bounds on the
optimality gap. Moreover, we have shown that the relation between delays, the time
horizon and the longest path length has a strong impact on the complexity status. We
have shown that, for instances with T -bounded path length, an optimum temporally
repeated solution can be computed in polynomial time.

Clearly, many interesting questions remain open. We want to point out a few of
these explicitly which may inspire follow-up work.

In our opinion, one of the biggest questions is clearly the complexity status of
robust maximum flow over time if Γ is bounded by a constant, even for Γ = 1. Since
the static counterpart is solvable in polynomial time for Γ = 1, it is interesting to see
if the complexity status changes already due to the introduction of travel times. The
same question could be asked for temporally repeated solutions. Although we were
able to show that temporally repeated solutions can be computed in polynomial time
if the instance has T -bounded path length, we were not able to provide insight for the
case in which this setting is not true.

A related question is the following. Note that Proposition 5 implies that, for
T -bounded instances, there always exists an optimum temporally repeated solution
which utilizes at most 2|E| paths. This is due to the number of constraints in the
reformulated LP which we solve. It would be interesting to understand if, for gen-
eral instances or even for general solutions, there always exists an optimum solution
which utilizes only a polynomial number of paths. The LP formulations used in Sec-
tion 4 contain an exponential number of variables and constraints. Hence, it is unclear
whether there always exists a basic feasible solution which is not of exponential size.

27

If one could show that there are instances for which every optimum solution is of ex-
ponential size, one should also ask if the gap between polynomial size solutions and
exponential size solutions can be bounded and if such solutions can also be computed
in polynomial time.

The optimality gaps provided in Section 4 are not necessarily tight. We have seen
that for k = η = 1 in T -bounded instances, the lower bound from Proposition 6
and the upper bound from Theorem 3 coincide up to constant factors. Apart from
that, larger gaps remain. It would be interesting to close these gaps, for example
by constructing instances for k-coverable instances with k > 1 matching the upper
bound from the Theorem. This is especially interesting for instances with ∆ ∈ {0,∞}
as discussed in Theorem 2. Here, the gap between our lower and upper bounds is even
bigger. Moreover, it would be interesting to see if the dependency on η in Theorem 3
is necessary. In the proof strategy we used, we were not able to remove it, although
our lower bound instances always satisfied η = 1 and we were not able to construct
gap instances with η > 1.

As mentioned before, the model studied here is a natural formulation for robust
flow over time problems under uncertain travel times, using the well-established Γ-
robustness model. Due to the worst-case nature of the models introduced here, the
resulting robust counterpart is quite restrictive and in general yields conservative so-
lutions. However, its study is interesting in order to understand robust flow over time
problems. Based upon the results obtained here, more advanced and potentially less
conservative models could also be studied in the future.

Acknowledgments

We thank the reviewers for their very careful reading of the manuscript and their
valuable comments. We thank the DFG for their support within Project B06 in CRC
TRR 154.

References

1. Aneja, Y.P., Chandrasekaran, R., Nair, K.: Maximizing residual flow under an arc destruction. Net-
works 38(4), 194–198 (2001)

2. Aronson, J.E.: A survey of dynamic network flows. Annals of Operations Research 20(1), 1–66 (1989)
3. Ben-Tal, A., El Ghaoui, L., Nemirovski, A.: Robust optimization. Princeton University Press (2009)
4. Bertsimas, D., Nasrabadi, E., Stiller, S.: Robust and adaptive network flows. Operations Research

61(5), 1218–1242 (2013)
5. Bertsimas, D., Sim, M.: Robust discrete optimization and network flows. Mathematical Programming

Series B 98, 49 – 71 (2003)
6. Dilworth, R.P.: A decomposition theorem for partially ordered sets. Annals of Mathematics 51, 161–

166 (1950)
7. Disser, Y., Matuschke, J.: (2015). Private communication
8. Du, D., Chandrasekaran, R.: The maximum residual flow problem: NP-hardness with two-arc destruc-

tion. Networks 50(3), 181–182 (2007)
9. Ford Jr, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Operations

Research 6(3), 419–433 (1958)
10. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism problem. Theoretical

Computer Science 10(2), 111–121 (1980)

28

11. Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica 1(2), 169–197 (1981)

12. Gupta, U.I., Lee, D.T., Leung, J.T.: Efficient algorithms for interval graphs and circular-arc graphs.
Networks 12(4), 459–467 (1982)

13. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations,
pp. 85–103. Springer (1972)

14. Koch, R., Nasrabadi, E., Skutella, M.: Continuous and discrete flows over time. a general model based
on measure theory. Mathematical Methods of Operations Research 73(3), 301–337 (2011)

15. Koch, T., Hiller, B., Pfetsch, M.E., Schewe, L.: Evaluating gas network capacities. SIAM (2015)
16. Köhler, E., Skutella, M.: Flows over time with load-dependent transit times. SIAM Journal of Opti-

mization 15(4), 1185–1202 (2005)
17. Matuschke, J., McCormick, T.S., Oriolo, G., Peis, B., Skutella, M.: http://materials.dagstuhl.
de/files/15/15412/15412.JannikMatuschke.ExtendedAbstract.pdf (2015)

18. Skutella, M.: An introduction to network flows over time. In: W.J. Cook, L. Lovász, J. Vygen (eds.)
Research Trends in Combinatorial Optimization, pp. 451–482. Springer (2009)

19. Wood, R.K.: Deterministic network interdiction. Mathematical and Computer Modelling 17(2), 1–18
(1993)

29

http://materials.dagstuhl.de/files/15/15412/15412.JannikMatuschke.ExtendedAbstract.pdf
http://materials.dagstuhl.de/files/15/15412/15412.JannikMatuschke.ExtendedAbstract.pdf

	1 Introduction
	2 Modeling Techniques for the Robust Maximum Flow over Time Problem
	3 Computational Complexity of the Robust Maximum Flow over Time Problem
	4 Bounds on the Solution Quality of Temporally Repeated Flows
	5 Open Problems

