Math. Program., Ser. A @ CrossMark
DOI 10.1007/s10107-017-1171-2

FULL LENGTH PAPER

Polynomial combinatorial algorithms
for skew-bisubmodular function minimization

Satoru Fujishige! - Shin-ichi Tanigawa!-2

Received: 23 October 2015 / Accepted: 15 June 2017
© Springer-Verlag GmbH Germany and Mathematical Optimization Society 2017

Abstract Huber et al. (SIAM J Comput 43:1064—1084, 2014) introduced a concept
of skew bisubmodularity, as a generalization of bisubmodularity, in their complexity
dichotomy theorem for valued constraint satisfaction problems over the three-value
domain, and Huber and Krokhin (SIAM J Discrete Math 28:1828-1837,2014) showed
the oracle tractability of minimization of skew-bisubmodular functions. Fujishige et al.
(Discrete Optim 12:1-9, 2014) also showed a min—max theorem that characterizes the
skew-bisubmodular function minimization, but devising a combinatorial polynomial
algorithm for skew-bisubmodular function minimization was left open. In the present
paper we give first combinatorial (weakly and strongly) polynomial algorithms for
skew-bisubmodular function minimization.

Keywords Skew-bisubmodular functions - Submodular functions -
Discrete convexity - Combinatorial algorithms - Strongly polynomial algorithms

Mathematics Subject Classification 90C27 - 52B40 - 68W40

1 Introduction

The concept of bisubmodularity was independently introduced by Bouchet [3] and
Chandrasekaran—Kabadi [5] (also see [1,2,6,7,22]), and has been extensively studied

B Shin-ichi Tanigawa
tanigawa@kurims.kyoto-u.ac.jp

Satoru Fujishige
fujishig@kurims.kyoto-u.ac.jp

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

Centrum Wiskunde & Informatica, Amsterdam, Netherlands

Published online: 22 June 2017 &\ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-017-1171-2&domain=pdf
http://orcid.org/0000-0002-6834-8017

S. Fujishige, S. Tanigawa

in combinatorial optimization as a generalization of submodular functions (see, e.g.,
[4]). As a further generalization of bisubmodularity, the concept of skew-bisubmodular
function was recently introduced by Huber et al. [16] in their complexity dichotomy
theorem for the valued constraint satisfaction problems (VCSPs) over the three-value
domain (cf. [24]).

Let V be a finite nonempty set of z elements and 3"V = {(X,¥Y) | X,Y C V, X N
Y = ¢#}. Leta € (0, 1]. A function f: 3V — Ris called a-bisubmodular [16] if, for
every Z; = (X1, Y1) and Zp = (X3, o) € 3V, f satisfies

F@Zy) + [(Lo) = f(Zy N 1) +af(Zy Up Z2) + (1 —) f(Zy U1 Zy),

where Z1 NZr, = (X1 N X2, Y1 NY2),Z1 Uy Zy = (X1 UX)\(Y1 UYr), (YU
Y2))\(X1 U X3)),and Z; Uy Zp = (X1 U X, (Y1 U TY2)\ (X1 U X2)). Wheno = 1,
1-bisubmodularity is exactly bisubmodularity. A function f:3Y — R is called skew-
bisubmodular[16]ifitis a-bisubmodular for some o € (0, 1]. Huber and Krokhin [15]
pointed out that the minimization of skew-bisubmodular functions is tractable via the
ellipsoid method as in the work by Qi [22] for bisubmodular functions. However,
developing a combinatorial algorithm remains unsolved.

In this paper we give first combinatorial weakly and strongly polynomial algo-
rithms for skew bisubmodular function minimization. In [12] the concept of skew-
bisubmodularity was slightly generalized, and a min—max relation characterizing the
minimum of a (generalized) skew-bisubmodular function was shown by introducing
skew-scaled bisubmodular polyhedra. Building on those polyhedral backgrounds, our
algorithms are adaptations of the combinatorial algorithms for bisubmodular function
minimization by Fujishige and Iwata [9] and McCormick and Fujishige [21], which
are built on the Iwata—Fleischer—Fujishige algorithm [17] for submodular function
minimization. However, a simple adaptation causes several technical problems. Two
major obstacles, which seem worth emphasizing here, are listed below.

1. The Fujishige-Iwata weakly polynomial algorithm [9] makes use of the boundary
operator of skew-symmetric digraphs to describe edge vectors of the associated
bisubmodular polyhedron, and their analysis implicitly relies on the symmetry of
the operator. In the skew-bisubmodular case, the associated polyhedra are scaled
(“skewed”) and the edge vectors are best described by scaled boundary of skew-
symmetric digraphs. This, however, makes the boundary operator asymmetric,
and we cannot directly apply the arguments of [9] and [21]. We will overcome the
difficulty by introducing a new augmentation concept, called augmenting path-
sequence.

2. Given a partition IT = {Xy,..., X;} of V, one can define the aggregation of
a submodular function f:2Y — R as a function f on 2™ defined by f S =
f(Uxes X) for § € TI. This operation can naturally be extended to bisubmodular
functions, and as in the Iwata—Fleischer—Fujishige algorithm [17] for submodular
functions, the McCormick—Fujishige strongly polynomial algorithm [21] makes
use of aggregation as a crucial tool to control the size of entry values of bases
in the intermediate steps. This operation, however, cannot be extended to skew-
bisubmodular functions (at least in an obvious manner). This difficulty will be

@ Springer

Algorithms for skew-bisubmodular function minimization

overcome by introducing a new technique to find a base of the associated poly-
hedron with small duality gap with the aid of the ordinary submodular function
minimization as a subroutine.

Our quest of extending combinatorial algorithms for submodular functions is moti-
vated by questions about the tractability of submodular function minimization defined
on general discrete structures such as semilattices and sets of transversals (see, e.g.,
[10,11,13,14,18-20]), where bisubmodular functions are special cases of submodular
functions on a semilattice [13]. New techniques presented here might also be useful
for other classes of submodular functions.

The rest of the paper is organized as follows. In Sect. 2 we list preliminary facts
on skew-bisubmodular functions given in [12] and introduce necessary notation. In
Sect. 3 we first give a combinatorial weakly polynomial algorithm. In Sect. 4 we give
a combinatorial strongly polynomial algorithm by using the main body of the weakly
polynomial algorithm as a subroutine.

2 Definitions and preliminaries

For each v € V let x, € RY be the characteristic vector of the singleton set {v}, i.e.,
xv(v) = 1 and xy(w) = 0 for w € V\{v}. Each (X,Y) € 3V is called a signed set
and is identified with a {0, £1}-vector D .y xv — D,y Xo-

The original definition of skew-bisubmodular function of Huber et al. [16] was
slightly generalized in [12] as follows.

Leta = (¢F,a”) witha™:V — R.gand @ :V — R.q. For simplicity we
assume

at () > a”(v) MveV)

at ()
a(v)

we have 0 < &% < [forall v € V and hence B > 1. Foreacht € [0, 1), let

at(v)
Vi = [v ev | < t} and define a binary operation U, on 3V by

at(v) —

without loss of generality.! Let 8 = max{ | v € V}. Note that by the assumption

(X1, Y1) Ur (X2, Y2) = (X1 U X2)\A) U (V; N 4), (Y1 UT2)\A)

where A = (X1UX2)N(Y1UY>) (see Fig. 1). Note that V; is monotone nondecreasing
int €[0,1).

The (generalized) skew-bisubmodular function is defined based on binary opera-
tions N and U, (¢ € [0, 1)) on 3V as follows, by generalizing Uy and U, given in the
introduction.

V1t ot (w) < @~ (v) for some v € V, consider a reflection of f by element v given by fV(X,Y) =
FXA\L YU ifv e X, fU(X,Y) = f(X U}, Y\fvh if v € ¥, and fU(X,Y) = f(X,Y)
otherwise. Also consider old & (v) and @~ (v) as new «~ (v) and T (v), respectively.

@ Springer

S. Fujishige, S. Tanigawa

XL O

Fig. 1 The shaded regions correspond to a (X1, Y1) N (X2,Y2),b A = (X1 UXp)N (Y1 UY3),and ¢
(X1, Y1) Up (X2, Y2)

Definition 1 For given V and o, defineaset T = {Z;—Ez; | v e V}U{O, 1} and arrange
the distinct elements of 7 in the increasing order of magnitude as0 =#) <t <t <
- < tp+1 = 1. Then a function f: 3V — Ris called a-bisubmodular if

FX1, YD)+ f(X2, Y2) = [(X1, Y1) N (X2, 12))

p
+ D i — 1) f (X1, Y1) Uy, (X2, Y2))

i=0
for all (X1, Y1), (X2, Y>) € 3V. We assume f (@, #) = 0.

We consider the problem of minimizing an «-bisubmodular function f.

We give some additional definitions and notation, and then review basic facts about
a-bisubmodular functions shown in [12]. Throughout the paper, we prepare the signed
copies v and v~ for each v € V. For any X C V define X* = {v* | v € X} and
X~ = {v~ | v e X}. Every signed set (X, Y) € 3" is identified with X+ U Y~ if it is
clear from the context. A subset Z of V™ U V™ is called consistent if there exists no
v € V such that {v*, v~} € Z. Note that there is a natural bijection between 3" and
the set of all consistent subsets of V™ U V™. For any (X, Y1), (X2, Y») € 3V we say
that (X1, Y1) and (X3, Y») are compatible if X1 N Y, = @ and X, N Y] = @. For any
compatible (X1, Y1) and (X», Y2) we write (X1, Y1) U (X2, Y2) = (X1 U X3, Y1UY>).
Also we write (X1,Y]) C (X2, Y2) if X; € X and Y| C Y. When (X, Y)) C
(X2, Y2), define (X2, Y2)\ (X1, Y1) = (X2\ X1, Y2\Y1).

For any (A, B) € 3V define the contraction fa,B) of f by (A, B) as follows: the
domainof f(4 p)is given by 3V \(AYB) and foreach (X, ¥) € 3V\(AYB) £, 5 (X,Y) =
f((X,Y)U(A, B)) — f(A, B). The contraction f(4,) is a-bisubmodular.

For any (X, Y) € 3" define a vector XEXX,Y) inRY by

X =2 e W —Y a W
veX veY
which can be regarded as a signed «-scaled characteristic vector of signed set (X, Y).

Note that the canonical inner product of x € RY and (‘"X)Y) is given by

@ Springer

Algorithms for skew-bisubmodular function minimization

z(2)
X{(23.411) X{(1.21.0)
z(1)
O
X(0,{1.2}) X{({1142h)

Fig. 2 A simplicial division that determines the convex extension of f

(. %) = Yot @r) = Y e @)

veX veyY
= Z oa’ (v)x(v).
ve(X,Y)

The a-bisubmodular polyhedron associated with an «-bisubmodular function f is
defined by

PY(f) = {x eRY [V(X,Y) e3": <x, ng’y)> < (X, Y)} .
Asignedset (S, T) € 3V with SUT = V is called an orthant. Foreach (S, T) € 3V, f

restricted on 205-1):= {(X,Y) | (X,Y) € (S, T)}is an ordinary submodular function.
Hence, in each orthant (S, T') we have the «-scaled submodular polyhedron given by

Pl 1 () = ¥ e RY [V 1) € (5.7 (v xin) = £ X1

and the a-scaled base polyhedron by

B 1) () = [x € B 1y (1) | (. xs) = £(5. 7))

[Compare them with ordinary submodular polyhedra and base polyhedra (see [8])].
Figures 2, 3 show two-dimensional examples with V' = {1, 2}. Figure 2 gives a
simplicial division of the rectangle (the convex hull of points Xfxx,y) ((X,Y) e 3"y
that determines the convex extension of f. Note that the extension of f is convex
if and only if f is a-bisubmodular [12,15]. Figure 3 shows an example of the o-
bisubmodular polyhedron P*(f), which is the subdifferential of the convex extension

@ Springer

S. Fujishige, S. Tanigawa

X(t2).11)” X{11.210)

X{.{1.21) \ / X{(1y.421)

Fig. 3 An example of the a-bisubmodular polyhedron P (f)

of f at the origin. This can be seen by the defining inequalities for x € P¥(f):

VX, Y) €3V, & y) — X)) = FXY) = FWO, D).
Leto:V — {4, —} beasignfunction. Forany X C V, X|o denotes (X,+, X,-) €

3V with Xo+ =fveX|ow =+}and X,- = {v e X | o(v) = —}. Let
L = (vq,...,v,) be a linear ordering of V with |V| = n. Foreachi = 1,...,n
define L(v;) = {vy, ..., vi}.

For a linear ordering L = (vy, ..., vy) of V and a sign functiono: V — {4, —},

let y € RY be given by

(.)f(L(UiNU) — f(Li-1lo)

y() =0 a"(“i)(v,')

ey

fori = 1,...,n, where we define L(vg) = {J. Then y is an extreme point of P*(f),
which is called the extreme point generated by L and o. Conversely, every extreme
point of P¥(f) can be generated by some L and ¢ through (1). Note that y is determined
by a signed, a-scaled version of the greedy algorithm by (1).

For any x € R define

IXlo:=— > «f@x@+ > o @x®)

veV:x(v)<0 veV:x()>0

= — Z oo’ (v)x(v)

veV:ox(v)<0

= > Ok

veV:ox(v)<0

@ Springer

Algorithms for skew-bisubmodular function minimization

which is an asymmetric norm (positively homogeneous convex function) of x.
The following min—-max theorem characterizing the minimum value of o-
bisubmodular function f was shown in [12].

Theorem 1 For any a-bisubmodular function f:3V — R (with f (@, #) = 0),

max{—||x[lo | x € P*(f)} = min{f (X,) | (X,Y) €3"}.

3 Weakly polynomial algorithm

In this section we describe a weakly polynomial algorithm for minimizing an
a-bisubmodular function f. The algorithm is designed for any real-valued o-
bisubmodular functions, and its main subroutine will be also used for the strongly
polynomial algorithm in the next section.

3.1 Algorithm description

Let Ky +_y- be the complete digraph with vertex set V™ U V ~, where recall that V*
is the positive copy of V and V™ is the negative copy of V.
During the execution of our algorithm we keep the following:

— a positive number §, which will be used as a parameter of the scaling.
— avector x € P¥(f) along with its expression as a convex combination of extreme
points y; of P*(f) indexed by a finite set J, i.e.,

x= My withi; >0(€Jyand Y 24 =1.)
ieJ ieJ
Here each y; is represented by a pair of a linear ordering L; of V and a sign
function o; on V [with which y; is computed by (1)]. It should be noted that each
y; computed as such is an extreme point of P*(f).
— anonnegative function ¥: (VT U V™) x (VT UV™) - Rxy.
Such a function ¥: (VT U V™) x (VT UV™) — Ry is called a flow in Ky+yy-.
The algorithm starts with

— some positive § and x € P*(f), which will be specified later, and

-y =0.
The algorithm is controlled by the scaling parameter §. At each scaling phase with
parameter § we keep ¥ being §-feasible, which by definition satisfies the following
forallu,v e VUV~

- OSW(M,U)E(S,

— Yw,v)=0 or ¥(v,u) =0.
For a flow ¥: (V¥ U V™) x (VU V™) — Rx, define 3,9 € RV by

1 1
St = Z (tloz” (u)Xu B tzom(v) Xv)w(uﬂ’ V™), S

(u™1,v72)

@ Springer

S. Fujishige, S. Tanigawa

where the sum is taken over all arcs (u™, v2) of Ky +_y- with 7, o € {4+, —}. Note
that (3) can also be written as follows.

ay = WO b W

= oﬁ‘(v) a~(v)

where Bl/f(vi) is the ordinary flow boundary (the net out-flow value) of ¥ at vertex
v in Ky +_y- defined by

= Y yow - Y Y (FeViuv)

weVTuv— weVTuv—

(The a-boundary 9,4 of ¥ is sort of signed, inversely «-scaled flow boundary of ¥.)
Then put

=X + 0.

At each phase we try to minimize ||z||,. The gap between |x| and |z|l, can be
estimated by the §-feasible flow v, and it becomes close to zero for small § > 0 since
Y is 6-feasible. We will show that when § becomes small enough, then obtained x
gives a minimizer of f if f is integer-valued.

We now describe the algorithm. Each phase starts by cutting the value of § in half,
and then it modifies 1 to make it §-feasible. This can be done by setting each v (u, v)
to ¢ if the value is more than §.

In order to decrease ||z||, we introduce an auxiliary graph and define augmenting
paths. The auxiliary graph with respect to ¥, denoted by G (), is the subgraph of
Ky+yy- consisting of arcs (u™, v*2) with ¢ (#™, v?2) = 0. Define the following four
disjoint subsets of V¥ U V™.

ot — {v+ eVt |zv) < —a+5(v) } S = {v eV |z(v) < —a_a(v) }

_ _ _ 8
}, T _{v ev Iz(v)za_(v)}.
4)

5+)+ +
T _{v eV |z(v)za+(v)

A simple directed path (dipath) P in G(¥) from ST U T~ to S~ U T is called an
augmenting path. The following procedure Single_Augment(§’, P, ¥) updates the
flow i through a dipath P so that ||z ||, gets smaller. For later use we prepare Procedure
Single_Augment for any dipath P in Ky+_y- (which may not be in G (¢)).

Lemma 1 Let /' be the ﬂow obtamedfrom ¥ by Single_Augment(s’, P,). Then
we have 9, (W' —) = 11 ,1 LRz 12(w) Xw> Where u™ and w® denote the initial
vertex and the terminal vertex of P, respectively.

Proof For any intermediate vertex v™ in P, we have 9, (' —) (v) = _13% +
7:3_(1’;8(1)) = 0. Also, 3, (" — ¥)(u) = ‘Elarfw and 9, (V' — ¥)(w) = —‘[zatz‘sw. O

@ Springer

Algorithms for skew-bisubmodular function minimization

Algorithm 1 Single_Augment(§’, P, ¢)

Input: A simple dipath P in Ky + -, a flow ¥ in Ky, + /-, and 8 € Rog.
1: for each (u™,v™2) € P do

2: i (02, u™) > 0 then

3: if 8’ <y (v®2,u") then

4: Y2, u) =2, ut) -5

S: else

6: Y2, u™) :=0and ¥ (ul,vR2) =8 — Y2, u")
7. else

8: Y@, v2) =Y, v2) 4§

9: return

Using the concept of augmenting path, a presumable algorithm would be
described as follows. First, check whether G (y) has an augmenting path P and call
Single_Augment if such P exists. If there is no augmenting path, then we take the
set W of vertices in G () reachable from ST U T, and we would expect that W
relates ||x||o and the minimum value of f within a tolerance measured by the scaling
parameter 6. The following lemma more explicitly shows how W can be used.

Lemma 2 Suppose that we have a §-feasible flow ¥ in Ky+yy- and a vector x €
PY(f) expressed by (2), and that there is no augmenting path in G(¥). Let W be the
set of vertices in G () reachable from ST UT ™, andlet A={v eV | vt € W}and
B ={v eV |v™ e W} Suppose that the following three conditions are satisfied:

(W1) (A, B) €3V,
(W2) foreachi € J, AU B precedes V\(AU B) in L;, and
(W3) foreachi € J, 0i(v) =+ forallv € A and o;(v) = — forall v € B.

Then ||zlle < 4Bn*8 — f(A, B) and ||x|lo < 6Bn’*8 — f(A, B). Moreover, if § <
1/(6Bn?) and f is integer-valued, then (A, B) is a minimizer of f.

Proof Due to the three conditions, we have (y;, X?A B)) = f(A, B)foralli € J, and
hence (x, XEYA,B)> = f(A, B) by (2). Also note that ST U T~ C W, and hence from
4) z(v) > —8/at(v) forv ¢ A and z(v) < §/a™ (v) for v ¢ B. Therefore we have

lzle ==) et@zm+ Y o @)

veV:z(v)<0 veV:z(v)>0

=Y et Wz) + Y@ ()z(v) + 288

vEA vEB
= —(x, X?A,Bﬁ — (0¥, X?A,Bﬂ +2Bné
< —f(A, B) +2Bn*8 +2pns
< —f(A, B) + 4Bn°s. 5)

IA

Moreover, since z = x + 9, ¥ and || — 3,V |l« < 28128, it follows from (5) that

I¥lle < 1% 4 3oV lle + | — da ¥l < 68178 — f(A, B). 6)

@ Springer

S. Fujishige, S. Tanigawa

Ifs§ < 1/(6,3112), inequality (6) implies (A, B) — (—||x|l¢) < 1. It follows from
Theorem 1 that (A, B) is a minimizer of f if f is integer-valued. O

Hence we now focus on how to achieve the conditions of Lemma 2 for W. It will
turn out that in order to achieve the three conditions for W in Lemma 2 we need
to introduce a stronger augmentation procedure beyond those used in bisubmodular
function minimization [9,21]. This is because of the lack of skew-symmetry of G ().

Remark 1f there exist two dipaths such as

T] %) T
Vg >0 =2,
-t __ ,Ou 02 o1
v, T =Uy, < Uy Uy

then we can compose them so that the a-boundary at vy is equal to zero, and we may
achieve an augmentation. Here, note that if t, = +, to guarantee the §-feasibility of

updated flow i the value of augmentation for the second path should be § x Z;EZS,
1

which may be § x B

For a simple dipath P = (v{', v3*, ..., v;) in G(¥), define P~! = (v, ™, v, """,
. ™), asimple dipath in Ky +,y -, where we do not care about whether P! exists
in G(y) as a dipath. For two dipaths P; and P> in Ky+y- such that the terminal
vertex of P; is the initial vertex of P, let P; o P> denote the concatenation of P; and
P>. We can define the concatenation of more than two dipaths in a natural way since
the binary operation o of concatenation is associative.

LetP = (Py, ..., Py) be a sequence of dipaths in G (y). Suppose that P o P{l o

(=DF!
Pyo---0 P forms

— awalkin Ky+_y- froma vertex in St U T~ toavertex in S~ U T if k is odd, or
— awalkin Ky+_y- from a vertex in ST U T~ toa vertex in S~ U T if k is even.

Then we call P = (P, ..., Px) an augmenting path-sequence. The number k is
called the length of the augmenting path-sequence P. (An augmenting path-sequence
of length one is an augmenting path.) Let v, ™ be the initial vertex of P; and Uir i
be the terminal vertex of Pi(_l)l 1 foreachi = 1,...,k. Then, if i is odd, P; is a
path from v, ‘| to v;’, and otherwise P; is a path from v;’ to v; ;"' Define p(i)
i=12,...,k)by

p(h=1, pli)= (i=2,....k). (7

We augment an appropriate flow value through each path P; of the augmenting path-
sequence P = (Py, ..., Px) so that non-zero «-boundary of the flow changing can
appear only at the initial vertex of P; and the terminal (or initial) vertex of P, when
k is odd (or even). The details of the procedure are given in Augment as follows.

The following lemma shows how we can decrease ||z||, by calling Augment when
we are given an augmenting path-sequence (Py, ..., Px).

@ Springer

Algorithms for skew-bisubmodular function minimization

Algorithm 2 Augment(s, (Py, ..., Py),)

Input: An augmenting path-sequence (P, ..., Py), where P; is a path in G(¥) from v, ti ' to viri for

oddi e {l,..., k} and P; 1sfr0mv’tov ’ lforevenze{l k}.

cp() =1
fori=2,..., k do

o a il (wi_)) .
p(i) = mp(l -1
crc=max{p@) |1 <i <k}
: Single_Augment(%s, P;, W) fori=1,..., k.
: return .

Lemma 3 Let ' be the new flow in Ky +_y- obtained by Augment(8, (Py, ..., P),
V) from r through an augmenting path sequence (Py, ..., Py). Then v/’ is §-feasible

and |zllq decreases by at least 8/ (kB21~Y), where f = max{“_§"§ lve Vi .

Proof Define §; = p(i)§/(km) foreachi = 1,..., k. Then §; < §/k holds for all
i since p(i) < m. Since each arc appears at most k times in total in the augmenting
path-sequence of length k, v/ is §-feasible by the way of computing ¥’ through

Augment($, (P, ..., Pr), ¥). Also observe that from (7) and the definition of 7 we
have
o~ T (v;) .
Siy1 = ——3; ~vVi=1,...,k—1),)
a'i(v;)

81 > kﬂ? Sk > T (Vj € Argmax{p(@i) | i € {1,...,k}}). (9)

Let us evaluate 9,1’ — 3, . By Lemma 1 and (8),

' — 0¥ (=0 —)

k
P ‘L"_18l' r,~8,~
= i =y, — —
z;:(: (Olr""(vil)xv'_l a’f(vi)xv')
1001 RN T S, +Z(_ = T;6; n Ti0i+1
o= (ug) ot (vp) T aup)
7041

= — X — (=D

_To(v) Xvo

Tk Sk
at ()

(10)

Putting 7’ := x + 0,9, we have z(v) = z/(v) for all v € V\{vg, vi} by (10). Observe
also that the sign of z/(vg) is equal to that of z(vg), which is equal to 7p since vy e
StuT™ Slmllarly, the sign of z’(vg) is equal to that of z(vk) which is equal to
(— Dk 11,'k since vk € ST U T~ if k is even and otherwise vk € S~ UT™. Hence,
we get

121l = 1zlle = —le ™™ (w0) e (¥ — ¥) (o) — | ™D % (0 (¥ —) ().

@ Springer

S. Fujishige, S. Tanigawa

Combining this with (10) and (9), we have
8 — 8 < — (# + ﬂk%]) g (if k is even)

P TN (ﬁ,—il n _ﬁk}jﬂ) 5 (if k is odd)

@ (vg)

12 lle = llzlle =

for some j with 1 < j < k. Note that min{;j — 1,k — j} < k/2 — 1 if k is even and
min{j — 1,k —j+ 1} <k/2—-1/2 = [k/2] — 1 if k is odd. Hence, we get

/
o — lIZ z -
Izlle = lI2"lla P

O

Lemma 3 implies that the value of augmentation may be exponentially small, which
causes a trouble in constructing a polynomial algorithm. However, fortunately we can
show a crucial fact that it suffices to consider augmenting path-sequences of length
at most four. Our algorithm checks whether G () has an augmenting path-sequence
of length k < 4. If there exists such an augmenting path-sequence, the algorithm
calls Augment to update 1. On the other hand, if there exists no augmenting path-
sequence of length k < 4, then we compute the set W of vertices in G (i) reachable
from ST U T~ [by dipaths in G(¥)].

Let R be the set of vertices in G(¥) from which we can reach some vertex in
{(v7T e VT UV~ | v® € W}. We then have the following.

Lemma4 G () has an augmenting path-sequence of length k < 4 if one of the
following three holds:

i) WNR#U;
(i) W is not consistent,
(iii) R is not consistent.

Proof (ii): Suppose that there is a vertex v € V with {v*, v=} € W. Then there are a
path Py from ST U T~ to v and a path P, from ST U T~ to v™, so that (P, P,) is
an augmenting path-sequence of length 2.

(1): This follows from (ii) since a vertex that is reachable from W N R is still
contained in W.

(iii): Suppose that there is a vertex v € V with {v™, v™} C R. Then there are a
path P, from v to a vertex u™ withu~" € W and a path P3 from v to a vertex w®
with w™" € W. Hence there are a path P; from ST U7~ tou~ ™" and a path P4 from
ST UT™ tow™ ™. Observe that (Py, P2, P3, P4) is an augmenting path-sequence of
length 4. O

It follows from Lemma 4 (ii) that if there is no augmenting path-sequence of length
k < 4, then W satisfies condition (W1) of Lemma 2. If W violates (W2) or (W3), we
call procedure Double_Exchange or Tail_Exchange defined below to improve the
situation. These two procedures are direct adaptations of those devised for bisubmod-
ular function minimization in [9], where Double_Exchange originally appeared in
[17].

@ Springer

Algorithms for skew-bisubmodular function minimization

Suppose that we are given an expression (2) for current x € P, (f), where recall
that each extreme point y; (i € J) of Py (f) is generated by a linear ordering L; and a
sign function o; on V. We say that a triple (i, u, v) withi € J and u, v € V is active
if
(a) u immediately succeeds v in L; and
(b) u%®@ ¢ W and v%™ ¢ W, or u®™ ¢ R and v € R.

If such an active triple exists, we perform procedure Double_Exchange(i, u, v).

Algorithm 3 Double_Exchange(i, u, v)

Input: An active triple (i, u, v)

L1 := f(Li\[}lop) = f(Li@)loy) + 0 () V) y; (v)
2: s := min{4, A;¢} (where A; is as given in (2))

3: if s < Ajt then

4: k :anew index

50 J:=JU{k}

6: A=A —s/t

T xjii=s/t

8 k=i

9: Ly:=1L;

10: o} :=o0;

11: Update L; to be the linear ordering obtained from L; by interchanging u and v.

[\e)

oy e v 0; () Xu _ o (W) xv
Vi =i +t (a"ii(“)(u) ot‘;i(v)(v))

e o Wxu o (WX
13:x:=x+s (a"i(“)(u) a"i(”(u))

14: if s > % ® % (v)) then

15: w(vffi(v)’ uoiy . — g — 1//(,40,’(14), poi (V)
160 Y@, i) =0

17: else

18: (O, oWy = @i o)y _

We now give the detail of procedure Double_Exchange(i, u, v). Given an active
triple (i, u, v), let L} be the linear ordering obtained from L; by interchanging u and
v, and let ylf be the extreme point associated with L; and o;. Then the vector

0i () ——s—xu — 0i (V)

oCi (u)() m)(v

is an edge vector of the edge of P*(f) connecting adjacent y; and y/ unless y; = y..
The number ¢ defined in Line 1 of Double_Exchange(i, u, v) is nothing but the one
satisfying

yl-'=yi+t<m()————xu — 0i (v)

1
o (v) X”) '

If £ # 0, A;y; is updated to (A; — $)y; + §y; with s defined in Line 2, and v is updated
so that z does not change, as will be shown in the following lemma.

@i)

@ Springer

S. Fujishige, S. Tanigawa

We say that Double_Exchange(i, u, v) is saturating if s = X;t holds at Line 2,
and otherwise non-saturating.

Lemma 5 Vector 7 remains the same by Double_Exchange(i, u, v). Moreover, a
new vertex joins W or R after non-saturating Double_Exchange(, u, v),

Proof Letz, x and v be those obtained before performing Double_Exchange(i, u, v)
and let 7/, x” and ¥’ be the new ones obtained after Double_Exchange(i, u, v). Then,

1
Xu — 01’@)va> .

Also, 1//(u""(”), v%i) is decreased by s, where in effect, if s > ¥ (u” W) oi)y,
the flow value ¥ (1% ™ v% () is put to be zero and ¥ (v7 ¥, 4% ®)) of the reversed

arc (v"i(”), u"i(”)) is increased from zero to s — W(u""(“), v"i(”)), to keep ¥ > 0.
Therefore,

/ — . —_—

1 1
aaw/_aaw = — (G,() (71(14)() Gi(v)O[‘TT)(U)XU)

due to definition (3) of d,. This implies 7’ = x’ + 9, ¥ = x + 9, = z.

To see the second statement, suppose Double_Exchange(i, u, v) is non-saturating.
Then s = & holds at Line 2. Hence ¥ (1% ®), v% (")) = 0 holds at Line 16, and a new
arc (u% (u), v%®)) emerges in updated G (). If u®™ e W and v% ™ ¢ W, v @ is
newly included in W, while if u%® ¢ R and v%") € R, then u® ™ is newly included
in R. O

A pair (i,v) of i € J and v € V is called active if v is the last element in L; and
v%® e R.If such an active pair exists, we perform Tail_Exchange(i, v).

Given an active pair (i, v), let o/ be the sign function obtained from o; by changing
the sign of o;(v), and let y! be the extreme point associated with L; and o/. Then ¢
computed in Line 2 of Tail_Exchange is determined so that the following relation
holds:

1 1
¥) = 3 (v) + 10/ (v) (aa,-’(w + a—a;w)) Xo-
We say that Tail_Exchange(i, v) is saturating if s = A;t holds at Line 3, and
otherwise non-saturating.

Lemma 6 Vector 7 remains the same by Tail_Exchange(i, v). Moreover, a new
augmenting path-sequence of length four appears as a result of non-saturating

Tail_Exchange(i, v).

Proof The first claim can be checked in the same manner as in the proof of Lemma 5.

To see the second claim, let (i, v) be the active pair on which Tail_Exchange is
performed with t:= o; (v). If the present Tail_Exchange(i, v) is non-saturating, then
we have s = § at Line 3. Also, in the case of non-saturating Tail_Exchange(i, v),

@ Springer

Algorithms for skew-bisubmodular function minimization

Algorithm 4 Tail_Exchange(i, v)
Input: An active pair (7, v)
1: 0; (v) := —0;(v)

i (v 7; (v) =0 (v)
2 1= OV o) = V() | o)) — TR)
3: s := min{8, At}

4:if s < A;t then

5: k :anew index

6: J:=JU{k}

T =X — s/t

8 A=/t

9 k=i

10 Lp:=1L;

11: o} :=0; and o} (v) := —ak(v)

12: y; == y; +toi(v)(EAM) + P (U))Xu

13: x —x+sol(v)(5) + ()(*UIW)X”

14: if s > ¢ (0% (V) =0 (V) then

15 Y oW, U"i(”)) =5 — P % W) o))
16: YW y=oi®).=¢

17: else

18: Y @Oi®W y=0iW) = y oW y=oi)y _

Y (v™T, v") = 0 holds at Line 16, which means that a new arc (v™7, v") emerges in
updated G (). Hence, in the resulting G (), we have {v—, vT} € R. This implies
that G (¥) has an augmenting path-sequence of length at most four by Lemma 4 (iii).

O

Moreover, we have the following.

Lemma 7 Let W be the set of vertices in G() reachable from ST™UT ~. Suppose that
there is no augmenting path-sequence of length k < 4 and there is neither an active
triple nor an active pair. Then, letting A = {v € V | vF € W}and B = {v € V |
v~ € W}, (A, B) together with L; and o; for all i € J satisfies the three conditions
(W1), (W2) and (W3) in Lemma 2.

Proof Ttfollows from the present assumption and (ii) in Lemma4 that there isnov € V
with {v", v~} € W, which means that condition (W1) holds, i.e., (A, B) € 3V,

Condition (W2) of Lemma 2 easily follows as there is no active triple.

To see that condition (W3) of Lemma 2 is satisfied, suppose to the contrary that
there are i € J and v € V such that v™°®) € W. Then v%®) € R. Since there is no
active triple, there should hold u%) ¢ R for the element u next to v in L;. Hence,
continuing this argument, we conclude that w® ™) e R for the last element w in L;.
However, this implies that (i, w) is an active pair, which contradicts the assumption,
so that condition (W3) of Lemma 2 holds. O

Summarizing the discussion so far, we are now ready to describe the whole algo-
rithm, weakly-ABSFM(f). The main body of the algorithm will also be used in the
strongly polynomial time algorithm given in the next section, and hence we shall
refer to it as REFINE. An iteration of the while-loop in REFINE (i.e., lines 3-21)
corresponds to a scaling phase with a scaling parameter § discussed above.

@ Springer

S. Fujishige, S. Tanigawa

Algorithm 5 weakly-ABSFM (f)

1: Lo : alinear ordering on V
2: oq : a sign function on V

3: x : an extreme point of P¥(f) generated by L(and oy
4: J={1,yp=x, 0 =1Ly =0
.5 lxlle
5: 6= fn?
P |
6: ¢ = &pnZ
7: return REFINE (f, x, 6, ¢)

Algorithm 6 REFINE (f, x, 5, ¢)

Input: an a-bisubmodular function f, apointx € P¥(f) along with its expression as a convex combination
of extreme points of P¥(f) asin (2), and § > ¢ > 0.

1: ¢ :=0

2: while § > ¢ do

3 §:=6/2

4: forall @™, v2)e VTUV™ x VT UV~ do

5: Y™, v2) :=8if Y™, v2) >§

6: repeat

7: StT:={t eVt | x) + duv () < —a;‘(v)}

8: T =" eV | x(v) + d¥(v) > afs(v)}

9: W : the set of vertices reachable from ST U 77~ in G(y)

10: R : the set of vertices from which we can reach {v™F € VT UV~ | vT € W}
11: A={eV|vtew)

12: B:={veV]|v €W}

13: if 3(Py, ..., Py) : an augmenting path-sequence of length k& < 4 then

14: Augment (8, (P1, ..., Pr), V)

15: Reduce x (i.e., express x as a convex combination of at most | V| + 1 extreme points)
16: else

17: Compute the set Q of active pairs and active triples in G (/).

18: if O # ¢ then

19: Take (i, u,v) € Qor (i,v) € Q.

20: Double_Exchange (i, u, v) or Tail_Exchange (i, v).

21: until faugmenting path-sequence of length at most four and Q = ¢
22: return (A, B) and x

Although the above algorithm checks the existence of augmenting path-sequences
of length at most four, according to the correctness proof it actually works even if
allowable sequences are restricted to those of length two or four.

3.2 Analysis

We still assume that f is real-valued. Lemmas 8—10 and Theorem 2 hold for real-valued
f.

Lemma 8 At the end of each scaling phase of REFINE, we have (A, B) € 3", and
zi=x 4 0,V satisfies ||z]la < 4Bn*8 — f(A, B) and ||x|lo < 68n*5 — f(A, B).

Proof The present lemma follows from Lemmas 2 and 7. O

@ Springer

Algorithms for skew-bisubmodular function minimization

Lemma 9 Suppose that x € P*(f) and § > 0 satisfy ||x|lo + f(A, B) < 6/31128
for some (A, B) € 3V. Then each scaling phase of REFINE(f, x, 8, {) carries out
O(B%n?) augmentations.

Proof Observe first that, at the beginning of a scaling phase (before reducing & by
half),

Izlle + f(A, B) < 6n°B8 (11)

for some (A, B) € 3V . Indeed, if the scaling phase is the initial phase of the algorithm,
then (11) follows from the lemma assumption and x = z. Otherwise by Lemma 8
the pair (A, B) obtained at the end of the previous scaling phase satisfies ||z]q <
6n2Bs — f(A, B).

Now the first step of the scaling phase reduces 8 by half, and hence ||z|lo < 12n285—
f(A, B) for the new §.

At the end of the scaling phase we have ||z]l, > —(z, X?A,B)) > —(x, XEIA,B)) —
2Bn28 > —f(A, B) — 2Bn?s. Therefore, | z|lo decreases by at most 148n28. Since
Izl decreases by at least §/(48) by each Augment through an augmenting path-
sequence of length k < 4, the number of augmentations is bounded by O(82n?).

O

Lemma 10 REFINE carries out saturating Double_Exchange O(n3) times, non-
saturating Double_Exchange O(n) times, saturating Tail_Exchange 0(n?) times,
and non-saturating Tail_Exchange at most once, between consecutive augmenta-
tions.

Proof We should remark that, due to Reduce, |J| = O(n) holds after every augmen-
tation.

By Lemma 6, the algorithm carries out non-saturating Tail_Exchange at most once
between augmentations. By Lemma 5, W U R becomes larger after a non-saturating
Double_Exchange. Hence non-saturating Double_Exchange is performed at most
2n times. Since new L; and oy arise only as a result of non-saturating Dou-
ble_Exchange, |J| = O(n) holds between augmentations.

Notice that, if Double_Exchange(i, u, v) for an active triple (i, u, v) is performed
and is saturating, then triple (i, u, v) never becomes active again till the next augmen-
tation. This means that saturating Double_Exchange is performed O(n?) times since
|J| = O(n). Similarly, saturating Tail_Exchange is performed O(n?) times between
augmentations. O

Theorem 2 Let f:3Y — R be an a-bisubmodular function with f(#, %) =0, y €
PY(f), and 8 > ¢ > 0. If

Iyl + £(S, T) < 6Bn%s

for some (S, T) € 3V, then REFINE (f, v, 8, ¢) outputs (A, B) € 3V and x € P*(f)
such that

Ixlle + f(A, B) < 68n¢

@ Springer

S. Fujishige, S. Tanigawa

with O(B8%n° log %) function evaluations and arithmetic operations.

Proof The algorithm has O(log g) scaling phases. In each scaling phase, by Lemma 9,

the algorithm carries out Augment and Reduce O(%n?) times. Each Reduce takes
O(n?) running time, while each Augment requires O(n) running time. By Lemma 10,
between consecutive augmentations the algorithm carries out Double_Exchange and
Tail_Exchange O(n?) times. Since |J| = O(n), the total running time for updating
S+, T, A, B, and Q between consecutive augmentations is O(n3). Therefore, the
number of function evaluations and arithmetic operations is bounded as stated in the
present theorem.

Moreover, by Lemma 8 we have ||x|, < 681n%¢ — f(A, B) at the end. O

Now we assume that f is integer-valued.

Theorem 3 Let f:3Y — 7 be an a-bisubmodular function with f (@, %) = 0. Then
weakly-ABSFM (f) finds a minimizer of f in O(B%n> log BnM) function evaluations
and arithmetic operations, where M = max{f(X,Y) | (X,Y) € 3"}.

Proof Atthe end of the algorithm, we have || x|, < 6Bn*¢ — f(A,B) < 1—f(A, B)
by Theorem 2. The present theorem follows from Theorem 1 since f is integer-valued.
O

4 Strongly polynomial algorithm

In this section we show how to make the weakly polynomial algorithm given in the
previous section strongly polynomial for real-valued «-bisubmodular functions.

Let us consider an a-bisubmodular function f:3Y — R as before. As in the bisub-
modular function minimization, the algorithm tries to collect two types of information:
elements which are not included in any minimizer of f and pairs of elements for which
every minimizer containing one always contains the other. This information will be
stored in a set U, of excluded elements and a conditioning graph H = (W, C), which
will be explained in the next subsection. A key parameter that controls the next pro-
cedure in the algorithm is §1, which is defined based on the marginal gain of f on the
strongly connected components of H. By definition §; is nonnegative, and we show
that, if §; = 0, then a signed set that corresponds to a maximal consistent ideal in H
is a minimizer of f. On the other hand, if 6; > 0, H can be updated (by adding a
new arc or deleting at least one node) by using REFINE given in the last section. A
detailed description will be given in Sect. 4.3.

4.1 Conditioning graph

The algorithm keeps U. € V and a digraph H = (W, C) on W:=(V\U)*T U
(V\U.)~. The set U. denotes a set of elements which are currently known to be
included in none of the minimizers of f, while H denotes the diagram of logical

implications such that

(u?,v") € C implies that every minimizer of f containing u° contains v*. (12)

@ Springer

Algorithms for skew-bisubmodular function minimization

Since elements of U. do not affect the set of minimizers, we may always update
V <« V\U,, and omit to mention U, if it is clear from the context.

Initially we have a conditioning graph H = (W, C) with C = . Assuming that
H keeps property (12) we can impose extra properties of H. The following lemma,
which is a generalization of [21, Lemma 2.1], is used to ensure those properties.

Lemma 11 For any distinct u,v € V, if every minimizer of fyo contains v', then
o

every minimizer of f containing v=" contains u=°.
Proof Suppose to the contrary that there exists a minimizer (X, Y) of f that contains
v~ " but not u?. Let (S, T) be a minimizer of f,o. Then we have u®, v’ € (S, T),
due to the assumption.

Note that © is contained in (S, T) U, (X, Y) foralli =0, ..., p, and hence

f8T) = fU(S, 1)U, (X,Y)) (Vi=0,...,p). 13)

On the other hand, v* is not contained in (S, T') U, (X, Y) for any i such that 0 <
ti < Z;EZ) (Note that i = 0 is always among those is.) For such i the inequality (13)

holds with strict inequality by the assumption. Hence we have

p
f(8,. 1) < Z(ml —) f((S, T) U, (X, Y)). (14)

i=0

By the «-bisubmodularity of f we have

14
FET) + fX,Y) = f((S.TYN X, V) + D (i1 — 1) f((S. T) Uy, (X, V).
i=0
(15)

It follows from (14) and (15) that f(X,Y) > f((S,T) N (X, Y)), which contradicts
that (X, Y) is a minimizer of f. O

For a vertex v? in H, let R(v?) be the set of vertices reachable from v° in H. We
say that H is skew-symmetric if (u®,v°) € C implies (v °,u" ") € C foru # v.
Starting from C = {J, the algorithm will insert new arcs in H keeping the skew-
symmetry. More specifically, Algorithm 17 given in Sect. 4.3 has two possible cases
for the update of H:

Case 1: (Line 12-13) It finds an element u" that is contained in every minimizer of
fr(p), where D is a strongly connected component in /4, R(D) denotes the set of
vertices reachable from some vertex in D, and fg(p) denotes the contraction of
f by R(D). This implies that every minimizer of fyo also contains u® for every
v? € D by (12). Thus every minimizer of f containing v’ contains u?, and we

can add (v, u") to C. By Lemma 11, we can also add (u=%, v™7) to C to keep

the skew-symmetry of H.

@ Springer

S. Fujishige, S. Tanigawa

Case 2: (Line 14-16) It finds a set F of elements that are not contained in any minimizer
of f. We can add (u",u~") to C for each u™ € F. (Clearly H is still skew-
symmetric).

Since H is skew-symmetric, we have the following implication:

If (u°,v") € Cand (u"?,u’) € C, then no minimizer of f contains v~ ".

Indeed, by the skew-symmetry of H, (u®, v*) € C implies (v~ %, u~?) € C and hence
any minimizer containing v~ would contain u~?, contradicting (u~?, u°) € C.Thus
we may further perform the following update keeping (12):

- If (", v’) e Cand (u"",u") € C,thenadd (v=7, v?) to C (if it does not exist).

— If R(u")isnotconsistent(i.e.,Jv € V with{v™, v™} € R(u?)),thenadd (u%, u~7)
to C (if it does not exist).

- If W, u"") € Cand (u™",u") € C, then delete u from the ground set (i.e., add
u to U, and update V).

In total, every time H gets new arcs, the algorithm performs the above update of H
so that it satisfies the following four extra properties:

H is skew-symmetric.
If R(u") is not consistent, (u*,u~") € C.
Thereisnou € V with (u*, u™ "), ™", u") € C.

If (u",u") € C, then (v 7,v%) € C forevery v° € R(u").

(16)

4.2 Parameter §;

In the subsequent discussion, we shall assign a label i for each strongly connected
component H; in H. For each component H;, the vertex set and the edge set of H; are
denoted by W; and C;, respectively, and the set of vertices that are reachable from W;
in H is denoted by D;. We set

I:={i : D, is consistent}.

We say that Z C W is an ideal of H = (W, C) if there is no arc (1, v*) € C
leaving Z. It is known that the collection Z(H) of all consistent ideals of H (regarded
as signed subsets of V) is closed with respect to binary operations N and Uy, i.e.,
Z(H) is a signed ring family. However, % (H) may not be closed with respect to U,
in general.

We say (X, Y) € 3" (orits corresponding Xt U Y ™) spans Vif X UY = V. We
remark the following.

Lemma 12 Any maximal consistent ideal of H spans V.

Proof Let Uy = {v° € W: (v™7,v?) € C}. By (16), Uy is consistent and there is no
arc from Uy to W\ Uj.

@ Springer

Algorithms for skew-bisubmodular function minimization

We show that, if a consistent ideal U does not span V, then it is not maximal.
Suppose that U does not span V. Then we can take u* € W\(U U U~). We claim
that U U R(u") is a larger consistent ideal. If u™ € Uy, then the claim holds since
UNUy =%and Ru®) C Uy (as there is no arc from Uy to W\Up). Otherwise,
U UR(u") becomes consistent because there is no arc from W\(U UU ™) to U~ since
otherwise U cannot be ideal due to the skew-symmetry of H. O

For each i € I, let f;:2%i — R be the minor fD W obtained from f by the
restriction to D; and the contraction by D;\W;. We define § 1 by

81 =r§1€a;<{ﬁ(Wi) —eréivr;i{ﬁ(X)}} (17)

It should be noted that we always have §; > 0 and thatif §; = 0, then W; is aminimizer
of fi foralli e I.

It should also be noted here that f; is a submodular (set) function on 2% with
fi(@, %) = 0. Thus we can employ a submodular function minimization algorithm to
compute a minimizer of each f; and hence §; can be computed in time proportional
to that required for a single submodular function minimization with an underlying set
of size |V| = n.

Let B(f;) be the base polyhedron associated with f;. That is,

B(f):={x eRY VX CW;: Y wx(v) < fi(X), Y 1x(v) = fi(W))

vteX vteW;

Applying an existing algorithm for the ordinary submodular function minimization
(e.g., [23]), we have the following.

Lemma 13 For eachi € I, there exists x; € B(f;) such that x; is a maximizer of

x € B(fi)

max Z Tx(v)

vTeW;:tx(v)<0

and

% () <0 forallv® € M;
' >0 forallv® € W;\M;

where M; is any minimizer of f;. Moreover, a submodular function minimization
algorithm can compute such x; € B(f;), togetherwith an expressionx; =y _;_ 7 AiYis
a convex combination of extreme bases y; € Bw.(f;) (j € J;), each corresponding
to a linear ordering L j|o; of W;, where |J;| < |W;].

@ Springer

S. Fujishige, S. Tanigawa

4.3 Algorithm description

We now give an algorithm description. In order to understand the whole picture of
the algorithm, we also state key lemmas, whose proofs will be given in the next
subsections.

The algorithm first computes §; defined in the last subsection, and decides the next
procedure depending on whether §; = 0 or §; > 0. If 67 = 0, we have the following.

Lemma 14 Suppose 81 = 0. Then, any consistent ideal of H that spans V is a
minimizer of f.

Hence, in this case, we can output a minimizer of f by computing a maximal consistent
ideal of H by Lemma 12. On the other hand, if §; > 0, then we further split the case
into two subcases as follows.

Let i* € I be a maximizer of (17), let f* = fp,, be the contraction of f by D;x,
and let V* C V be the ground set of f*. For 8§ > 0 we call (X,Y) € 3V" 8-highly
negative for f*if f*(X,Y) < —48. The following lemma is adapted from [21, Lemma
3.8].

Lemma 15 Let i* € I be a maximizer of (17). Suppose that §| > 0 and that there is
no 81-highly negative element for f*. Then there exists no minimizer (X, Y) of f such
that (X,Y) 2 W;x.

On the other hand, if there is a §;-highly negative element, we have the following.

Lemma 16 Suppose that §1 > 0 and that there exists a 61-highly negative element for
f*. Let x be the output of REFINE for f* = fp,, with$ =61 and ¢ = 81/(128n3).
Then there existu € V* and t € {—, +} such that

T 81
o' (u)x(u) < - (18)

Moreover, if u® satisfies (18), then u® is contained in every minimizer of f*.

Hence, from Lemmas 15 and 16, after applying REFINE for f* = fp, with
8 =8y and ¢ = 8;/(68n>) we can determine one of the following two:

(I) There exists no minimizer of f that contains elements of W;x.
(II) There exists some j € I'\{i*} such that every minimizer of f containing W;=
contains W;.

Now we are ready to describe our algorithm strongly-ABSFM (f).
For Line 9 of strongly-ABSFM (f) we have the following.

Lemma 17 There is an algorithm that computes y* € PY(f*) with ||y*|lo +
F*5(S,T) < 2n8; for some (S, T) € 3V", along with the expression of y* as a
convex combination of extreme points of P*(f*), in O(n®> + SFM(n)) time, where
SFM (n) denotes the complexity of ordinary submodular function minimization with
the underlying set of size n.

Assuming the correctness of above lemmas, we now have the following theorem.

@ Springer

Algorithms for skew-bisubmodular function minimization

Algorithm 7 strongly-ABSFM (f)

1: Initialize H = (W, C) to be the graphon W = VT UV~ with no arc, and Ue = #.
2: while Ug # V do

3: Compute §;

4: if 5 = 0 then

5: Compute any maximal consistent ideal of H and return the corresponding signed set of 3V,
6: else

7. i* := a maximizer of (17) for §;.

8: Let f* = I, and let V* C V be the ground set of f*.

9: Compute y* € P¥(f*) with ||y*|lo + f*(S, T) < 2n8; for some (S, T) € 3V,
10: REFINE(f*, y*,8 = 81, ¢ = 81/(128n3)).
11: Let (S, T') and x be the output of REFINE.

12: if there are u € V* and T € {—, +} with ta" (u)x(u) < —%‘ then
13: Add arcs from W;x tou® in H.

14: else

15: Compute the set F of vertices from which we can reach W;x in H.
16: Foreach u® € F,add (u®,u"%)to H.

17: Update Ue and H so that it satisfies (16).

Theorem 4 Let f:3V — R with f(,%) = 0. strongly-ABSFM (f) returns a
minimizer of f in O(n*(n>EOB2 log Bn + SFM(n))) time, where EQ denotes the
oracle time for the function evaluation of f.

Proof The correctness follows from the above arguments.

Let us check the time complexity. The number of while-loop iterations is O(n2)
since in each iteration the algorithm adds a new arc or delete at least one node.

In each iteration of the while-loop the running time of SFM(n) is required for
computing 81 and y* with additional O(n?) time, while each REFINE (f*, y*, 81, 81/
(128n%)) requires O(n>EOB? log Bn) time. o

Thus the remaining two subsections are devoted to giving the missing proofs.

4.4 Concatenating linear orderings and proof of Lemma 17

Before going to the proofs of the lemmas, we give a technique for concatenating the
linear orderings on strongly connected components given in Lemma 13 to be linear
orderings of the whole set.

Choose any maximal chain

¢ 0,9) =(S0.To) & S (S, To). 19)

of consistent ideals of H. By Lemma 12, (S, T;) spans V. Here, note that for each
¢ =1,..., k there uniquely exists i¢ € I such that (S¢, To)\(Se—1, Tg—1) = Wj,.

By Lemma 13 we have extreme bases y; € B(f;) corresponding to linear orderings
Ljloj (j € Ji) of W; and positive numbers A; (j € J;) with }°;.; 4; = 1. Those
linear orderings can be concatenated to be linear orderings L;] |o(; (g € Q) of (Sk, Ty)
with the index set Q such that

@ Springer

S. Fujishige, S. Tanigawa

Z :U«q)A’q e PY(f),
qeQ

where), is the extreme base of P*(f) generated by L; |oé and p4 is a positive scaler
for each g € Q satisfying

A= Z rg (1 <VL<kVjeld,) (20)

q:L;|a(} coincides with Lj|oj on W,

. . . . S
The following procedure gives an explicit construction of such Ly |oy, and pg.

P) Let J, = U]ézl‘]i(’ where we assume J;, s are disjoint. Let Q = ¢J.

Repeat the following until J, = ¢.

1. Find j, € Jysuchthat A; =min{A; | j € Ji}. Suppose j. € J;,.

2. Putpu;, =Aj, and Q < Q U {j}.

3. For each £ € {1,...,k}\{ix} choose one j, € J;,. Also, put j;, = j, for
L=i*

4. Foreach ¢ € {1, ..., k} do:
Mjo <= Aje = Aj
if ;, =0then J; < Jo\{j¢} and J; < J:\{je}.

5. Let L’j*|o]’.* be a signed linear ordering of V such that L, |oj, (¢ =1,...,k)
appear in L’/.* |U’.*, each as an interval, in the order of £.

Note that, since) ;. M= 1 for each £ and the procedure decreases) ;. g, M by
the same amount for all £ at Line 4, J;, becomes empty for some £ if and only if J;,
becomes empty for all £. In other words, J;, # ¥ for all £ at Line 3, and the procedure
works in O(n?) time.

Suppose that we are given (L’ ,oé) (g € Q) and gy (g € Q) by procedure (P).
For each ¢ € Q let y, be the base of B(f 7)) determined by (L/,, 0,), and define
y € RV by

Y= gy Q1)
qeQ

Lemma 18 Let x; (i € I) be given as in Lemma 13 and let y be defined by (21). Then
forallt =1, ..., kandv® € W;, we have

Ty(v) < 75, (V).

Proof Consider f((SSZ_’IT‘}Z_I). This is submodular on W;,. Moreover, since (D;,\W;,) €

(S¢—1, Tr—1), we have f((ssf_’ln%[_l) < fi, by the submodularity of f¢-70) Therefore,

for each linear ordering L j|o; of W;,, we have ty;(v) < 7x;(v), where y; and x;
are bases of B(f((SSf:IT‘}(_I)) and B(f;,) generated by L ;|o;, respectively. Therefore,
by (20), we have

@ Springer

Algorithms for skew-bisubmodular function minimization

Txi, (v) = Z rjtxj(v) > Z Z qTy;(v)

je],-z jEJie q:Lﬁllc(; coincides with L j|o; on W"z
=) 1gTye(v) = Ty(v)
qeQ
forall¢{ =1,...,kand v" € W,,. O

From y, let us further define € R" by

y) = y) (Yo" € (Sk, Ti)). (22)

ot (v)
Lemma 19 Let y be defined by (22). Then y € B?Sk»Tk)(f)'

Proof Since B‘("Sk 1) (f) is obtained from B(f %+ 7)) by appropriate scaling, the state-
ment follows from Lemma 18. O

For proving Lemma 17, we need one more technical lemma.

Lemma 20 Let y be defined by (22). Then for each £ =1, ..., k we have

PR HOMN ORI

vTeW;, :tH(v)>0

Proof Denote x;, by x for simplicity in the present proof. Since x € B(f;,), we have

> () = fi, (W) (23)

UTEVV,'(Z

On the other hand, due to the min—max relation for the submodular function mini-
mization,

Yo () = fi (M), (24)

v’eWiZ:rx(u)<0

where M;, is a minimizer of f;,. It follows from (23) and (24) that

Yo wx) = £fi,(Wi) — fi,(M;) <61

vteW;, Tx(v)>0

Also, by Lemma 18, t3(v) > 0 holds only if tx(v) > 0 for each v* € W;,.
Therefore we get

Z taty(v) < Z x(v) < 4.

vTeW;, Ty (v)>0 vTeW;, tx(v)>0

O

@ Springer

S. Fujishige, S. Tanigawa

Now we are ready to prove Lemma 17.

Proof of Lemma 17 We can assume that the maximal chain % in (19) contains
(S¢, Ty) = Dj« for some £ € {1,...,k}. Let y be defined by (22). Then we have
f(Dix) = (¥, Xgi*). Hence, putting (S}, T}) := (St, Tx)\D;+ and letting y* be the
restriction of y on (S}, T})), by Lemma 19 we have y* € By T,)(f*) and
k> "k
Yo TaHw) = £ (S TY).

vTe(S,,T))
Therefore,

ST+ 1y le = XS TH - Y. et @i+ Y o« @I
veV*:3(v)<0 veV*:y(v)>0
= f*(Sp, T) — > Ta" §(v)
vTe(S,, T)):tH(v)<0
+ Z Ta"H(v)

vTE(S,, Tty (v)>0
=2 Z T H(v)
vTe(S;, T}):ty(v)>0

< 2néy,

where the last inequality follows from Lemma 20 and recall that V* = S, UT/. O

4.5 Proofs of Lemmas 14, 15, and 16

Proof of Lemma 14 Since §; = 0, we see that for all i € I W; is a minimizer of f;.
Hence we have a base x; € B(f;) such that tx; (1) <0 (Yu® € W;) by Lemma 13.

Now, let (A, B) be an arbitrary consistent ideal of H that spans V. Then there is
a maximal chain & of consistent ideals of H whose last element is (A, B), and let
y € B(f“B)) be the vector constructed in (21) in Sect. 4.4 with respect to chain %'.
Then by Lemma 18 we have

y(w) <txi(v) <0 Vo' e ATUB™.

This means that {v € V : y(v) <0} € Aand {v € V : y(v) > 0} C B. Therefore,
setting y as in (22), we get

Sle = > of@iw— Y o @Hw

ueV:y(u)<0 ueV:y(u)>0
=Y at@iw) = Y amIw) = (5, x5 = F(A, B).
ucA ueB

@ Springer

Algorithms for skew-bisubmodular function minimization

where the last equation follows from Lemma 19. It follows from Theorem 1 that (A, B)
is a minimizer of f. O

Proof of Lemma 15 Let M;+ be a minimizer of fjx, and let E;« = M U (Djx\ Wj=).
Since §; > 0, we have E;+ # D;=. Also, by the assumption we have
fAXY) > =8 (VX ¥)e3"),
which is rewritten as
FUX,Y)U D) — f(Dix) > f(Ei») — f(Dix) (V(X,Y) € V¥).
Hence f((X,Y)UD;x) > f(Ejx)forall (X,Y) € 3V". This implies thatany (X, Y) €
3V with (X, Y) D D;+ D W;« is not a minimizer of f. O
In order to prove Lemma 16, we need one more extra lemma.

Lemma 21 For a given x € PY(f) suppose that we have ||x|lqo < —f(X,Y) +y
for some (X,Y) € 3V and y > 0. If ta® (u)x(u) < —y holds for some u € V and
T € {4, —}, then every minimizer of f contains u’.

Proof Let (S, T) be any minimizer of f, and suppose that u* is not contained in
(S, 7). LetZ={v" e VTUV~ :0x(v) <0}. Then u® € Z\(ST UT™). By using
the assumption of the present lemma, we have

v

Y = lxlle + FOXLY) = lxlle + f(S, T) = llxlle + (x, X5, 7))

= — Z oa®Vx(v) + Z oa”Vx(v)

vezZ v eStuT—

= Z —0a® Wy (v) + Z oa®x(v).

V0 eZ\(STUT ™) V0 e(STUT-\Z

By the definition of Z, each term in the summations is nonnegative. Therefore, by
u® € Z\(StUT7), we get y > —ta’x(u), contradicting the assumption of the
present lemma. O
Proof of Lemma 16 By Theorem 2, REFINE(f*, §, 81, 125#) outputs (A, B) € 3"
and x € RV with [|x|lo < 6,3n2(12‘j31n3) — f*(A,B) < % — f*(A, B).

Let (X, Y) € 3" be a §;-highly negative element for f*. Since x € P*(f*), we
have

>t = (v xiy) S ST < -6

uteX+tuy-

Hence there is u* € X+ U Y~ such that ta® (u)x (1) < ‘Sn—‘

Now, since || x]|o < ‘;—‘ — f*(A, B), Lemma 21 implies that u* is contained in every

minimizer of f*. O

This completes the proofs of all the lemmas stated in Sect. 4.3.

@ Springer

S. Fujishige, S. Tanigawa

Acknowledgements We thank an anonymous referee for careful reading of an earlier version of this paper
and for providing helpful comments. The present research was supported by JSPS KAKENHI Grant No.
JP25280004. The second author was supported by JSPS Postdoctoral Fellowships for Research Abroad.
The authors would like to acknowledge the support by the Hausdorff Trimester Program on Combinatorial
Optimization of the Hausdorff Research Institute, the University of Bonn, where this work was partially
carried out.

References

—_

w

W

10.

11.

12.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

. Ando, K., Fujishige, S.: On structures of bisubmodular polyhedra. Math. Progr. 74, 293-317 (1996)
. Ando, K., Fujishige, S., Naitoh, T.: A characterization of bisubmodular functions. Discrete Math. 148,

299-303 (1996)

. Bouchet, A.: Greedy algorithm and symmetric matroids. Math. Progr. 38, 147-159 (1987)
. Bouchet, A., Cunningham, W.H.: Delta-matroids, jump systems, and bisubmodular polyhedra. SIAM

J. Discrete Math. 8, 17-32 (1995)

. Chandrasekaran, R., Kabadi, S.N.: Pseudomatroids. Discrete Math. 71, 205-217 (1988)
. Dress, A., Havel, T.: Some combinatorial properties of discriminants in metric vector spaces. Adv.

Math. 62, 285-312 (1986)

. Dunstan, ED.J., Welsh, D.J.A.: A greedy algorithm for solving a certain class of linear programmes.

Math. Progr. 5, 338-353 (1973)

. Fujishige, S.: Submodular Functions and Optimization, 2nd edn. Elsevier, Amsterdam (2015)
. Fujishige, S., Iwata, S.: Bisubmodular function minimization. SIAM J. Discrete Math. 19, 1065-1073

(2005)

Fujishige, S., Kirdly, T., Makino, K., Takazawa, K., Tanigawa, S.: Minimizing submodular functions
on diamonds via generalized fractional matroid matchings. EGRES Technical Reports, No. 2014-14
(2014)

Fujishige, S., Tanigawa, S.: A min—max theorem for transversal submodular functions and its impli-
cations. STAM J. Discrete Math. 28, 1855-1875 (2013)

Fujishige, S., Tanigawa, S., Yoshida, Y.: Generalized skew bisubmodularity: a characterization and a
min—-max theorem. Discrete Optim. 12, 1-9 (2014)

. Hirai, H.: Discrete convexity and polynomial solvability in minimum 0-extension problems. Math.

Progr. Ser. A 155, 1-55 (2016)

Huber, A., Kolmogorov, V.: Towards minimizing k-submodular functions. In: Proceedings of the 2nd
International Symposium on Combinatorial Optimization, pp. 451-462 (2012)

Huber, A., Krokhin, A.: Oracle tractability of skew bisubmodular functions. SIAM J. Discrete Math.
28, 1828-1837 (2014)

Huber, A., Krokhin, A., Powell, R.: Skew bisubmodularity and valued CSPs. SIAM J. Comput. 43,
1064-1084 (2014)

Iwata, A., Fleischer, L., Fujishige, S.: A combinatorial strongly polynomial algorithm for minimizing
submodular functions. J. ACM 48, 761-777 (2001)

Kolmogorov, V.: Submodularity on a tree: unifying L¥-convex and bisubmodular functions. In: Pro-
ceedings of the 36th International Symposium on Mathematical Foundations of Computer Science.
LNCS 6907, pp. 400411 (2011)

Krokhin, A., Larose, B.: Maximizing supermodular functions on product lattices, with application to
maximum constraint satisfaction. SIAM J. Discrete Math. 22, 312-328 (2008)

Kuivinen, F.: On the complexity of submodular function minimisation on diamonds. Discrete Optim.
8, 459-477 (2011)

McCormick, S.T., Fujishige, S.: Strongly polynomial and fully combinatorial algorithms for bisub-
modular function minimization. Math. Progr. Ser. A 122, 87-120 (2010)

Qi, L.: Directed submodularity, ditroids and directed submodular flows. Math. Progr. 42, 579-599
(1988)

Schrijver, A.: A combinatorial algorithm minimizing submodular functions in strongly polynomial
time. J. Combin. Theory Ser. B. 80, 346-355 (2000)

Zivny, S.: The Complexity of Valued Constraint Satisfaction Problems. Springer, Berlin (2012)

@ Springer

	Polynomial combinatorial algorithms for skew-bisubmodular function minimization
	Abstract
	1 Introduction
	2 Definitions and preliminaries
	3 Weakly polynomial algorithm
	3.1 Algorithm description
	3.2 Analysis

	4 Strongly polynomial algorithm
	4.1 Conditioning graph
	4.2 Parameter δ1
	4.3 Algorithm description
	4.4 Concatenating linear orderings and proof of Lemma 17
	4.5 Proofs of Lemmas 14, 15, and 16

	Acknowledgements
	References

