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Abstract

In this paper, we study the strength of Chvatal-Gomory (CG) cuts and more generally ag-
gregation cuts for packing and covering integer programs (IPs). Aggregation cuts are obtained
as follows: Given an IP formulation, we first generate a single implied inequality using aggre-
gation of the original constraints, then obtain the integer hull of the set defined by this single
inequality with variable bounds, and finally use the inequalities describing the integer hull as
cutting-planes. Our first main result is to show that for packing and covering IPs, the CG and
aggregation closures can be 2-approximated by simply generating the respective closures for each
of the original formulation constraints, without using any aggregations. On the other hand, we
use computational experiments to show that aggregation cuts can be arbitrarily stronger than
cuts from individual constraints for general IPs. The proof of the above stated results for the
case of covering IPs with bounds require the development of some new structural results, which
may be of independent interest. Finally, we examine the strength of cuts based on k different
aggregation inequalities simultaneously, the so-called multi-row cuts, and show that every pack-
ing or covering IP with a large integrality gap also has a large k-aggregation closure rank. In
particular, this rank is always at least of the order of the logarithm of the integrality gap.
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1 Introduction

Cutting-planes are central to state-of-the-art integer programming (IP) solvers [2, [I7]. While
different methods have been developed to generate various families of cutting-planes [18] 23], several
of the most important families are obtained through the aggregation of the original constraints of
the problem. These are special types of what we call aggregation cuts, which are those generated
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as follows: given an IP formulation, we first obtain a single implied inequality by aggregating the
original constraints, and then generate a cut valid for the integer hull of the set defined by this
single inequality together variable bounds.

It is easy to see that Chwvdtal-Gomory (CG) cuts are aggregation cuts: in fact, each CG cut is
precisely the integer hull of the set defined by one aggregated inequality without variable bounds.
Aggregation cuts include many other classes of cuts, such as lifted knapsack covers inequalities [31],
32] and weight inequalities [30]. The set of all aggregation cuts have been studied empirically [11],
but to the best of our knowledge no theoretical study is present.

Given the ubiquity of aggregation cuts, it is important to better understand the role of aggre-
gation in integer programming. Of direct practical importance is to understand which aggregations
are most useful. Another interesting direction, which we pursue here, is to understand in which
cases aggregation is most helpful and what are the limitations of using aggregation-based cuts.

In this paper, we examine the strength of aggregation cuts for packing and covering IPs. Our
main result is that for these classes of problems, even considering all infinitely many aggregations
offers limited help. More precisely, we show that the CG and more generally aggregation closures
can be 2-approximated by simply generating the respective closures for each of the original con-
straints, without using any aggregations. Therefore, for these problems, in order to obtain cuts
that are much stronger than original constraint cuts, one needs to consider more complicated cuts
that cannot be generated through aggregations; see for example the results in [§].

We also examine the strength of cuts based on k different aggregated inequalities simultaneously
(also called multi-row cuts) for packing and covering problems. We show that every packing or
covering IP with a large integrality gap also has a large k-aggregation closure rank; more precisely,
for a fixed k, this rank is always at least of the order of the logarithm of the integrality gap. This
again points to the relative weakness of aggregation cuts for packing or covering problems.

Finally, simple examples show that these results are not true for general IPs, where aggregations
can produce significant benefits. We provide further empirical evidence for this fact based on
randomly generated general IPs and market split instances [7]. From cut selection perspective, the
insight here is that for packing and covering problems, using aggregation cuts may provide limited
benefit over using cuts generated from only the original constraints, while aggregation cuts may
produce significant value for general IPs.

Organization. In Section 2] we provide definitions and statements of all our main results and
discuss them in more detail; we also present results from the computational experiments. In Section
Bl we state some open questions. Finally, in Section [4] and Section [5]l we present the proofs for results
concerning the packing and covering cases, respectively.

2 Definitions and statement of results

2.1 Definitions

For an integer n, we use the notation [n] to describe the set {1,...,n}. For i € [n], we denote by
e; the ith vector of the standard basis of R™. The convex hull of a set S is denoted as conv(S), its
conic hull is denoted as cone(S), and its closed conic hull is donated as clcone(S). For a set S C R"
and a positive scalar o we define a.S := {au|u € S}.

Packing and covering. A packing polyhedron is of the form {x € R} | Az < b} where all the
data (A, b) is non-negative and rational. While polyhedral sets are the main object of study here, we



will also need non-polyhedral ones[] So a packing set is one of the form {x € R} | A’z < b; Vi € I}
where each (A%,b;) € (R2™,Ry) and I is an arbitrary set.

Similarly, a covering polyhedron with bounds is of the form {x € R} | Az > b, < u} where
all the data (A,b,u) is non-negative and rational. We assume a component of w is either finite
and integral, or infinite. If all upper bounds take the value of infinity, then we simply call the
set a covering polyhedron. In the non-polyhedral case, a covering set with bounds has the form
{x € RY | Az > b Vi € I, 2 < u} with (4%,b;) € (RY™,Ry) and u satisfying the same
assumptions as above, but I is an arbitrary set.

Closures. Given a polyhedron @), we are interested in cuts for the pure integer set QQ NZ". We
use C(Q) and Q' to denote the CG closure and the convex hull of integer feasible solutions of @,
respectively (see, e.g., [5] for definitions). Moreover, given a packing polyhedron @ = {z € R |
Az < b}, we define its aggregation closure as

AQ) = () conv({z € Z | AT Az < ATb}).

AERT

Similarly, for a covering polyhedron @ = {z € R} | Az > b, x < u} its aggregation closure is
defined as
AQ) = () conv({z € Z1 | AT Az > AT, z < u}).
AERT

Notice that we leave the bounds of the variables disaggregated, which gives a stronger closure than
if we had just kept the non-negativity inequalities disaggregated. It is clear that all CG cuts are
aggregation-based cuts, namely C(Q) 2 A(Q).

In order to understand the power of aggregations for generating cuts of these families, we define
the 1-row (or non-aggregated) version of these closures. The I-row CG closure 1C(Q) is defined as
the intersection of the CG closures of the individual inequalities defining @), together with variable
bounds; more precisely, for a packing polyhedron Q

16(Q) = [ C{z €RY | A’z < b)),
i€[m]
and for a covering polyhedron with bounds we have

16(Q) = () C{z €RY | A’ > by, < u}),

1€[m]

where A’ denotes the i row of A. The I-row closure 1.A(Q) is defined analogously, simply replacing
the operator C(.) by A(.).
Given a packing polytope ) and a non-negative objective function ¢ € R" , we define

1. maX{CTiE |z € 1C(Q)}

as the optimal value over the closure 1C(Q), and similarly for all the other closures, namely
1A 2A 2€. Moreover, we use z! and 2P to denote the optimal objective function value over Q
and its linear programming (LP) relaxation, respectively. For covering integer sets (with bounds)
“max” is replaced with “min”.

IThis is needed because we do not know whether the aggregation closure is polyhedral.



We can generalize the aggregation closure to consider simultaneously k aggregations, where
k € Z and k > 1. More precisely, for a covering polyhedron @ the k-aggregation closure is defined
as

A@) == () conv({z € Z} | (¥) Az > (W)TbVj € [k], = <u}),
AL ARERT

and the definition is similar for the packing case.

More generally, given a packing set @, its k-aggregation closure A (Q) is defined as the inter-
section of all sets conv({z € Z% | Diz < f; Vj € [k]}) where each of the k rows Diz < f; is a
valid inequality for ) with non-negative coefficients. Similarly, given a covering set with bounds
Q, A(Q) is defined as the intersection of all sets conv({z € Z" | D'z > f; Vj € [k], x < u}) where
each Dix > fj is a valid inequality for @) with non-negative coefficients. Notice that these defini-
tions are independent of the representation of (), and in the polyhedral case a duality argument
shows that they are equivalent to the aggregation-based ones given above.

The k-aggregation closure rank, denoted by rank 4, (@), is defined in the standard way: it is the
minimum number of applications Ag(Ag(... Ax(Q)...)) of A in order to obtain the convex hull
of Q). Notice that if @ is a packing (resp. covering) set, Ak(Q) is a packing (resp. covering) set,
so iterating the closure Ay, is a well-defined operation; we will formally verify this later. Moreover,
since the CG rank is always finite [26], and the aggregation closure of @ is contained in the CG
closure of @), we have that rank 4, (Q) is always finite.

Approximation. Given two packing sets U D V', we say that U is an a-approximation of V if
for all non-negative objective functions ¢ € R’} we have

max{c'z |z € U} < a-max{c'z |z eV}

Notice that since U 2 V, we have a > 1. Similarly, for a covering polyhedron (with bounds) @,
given two covering sets U 2 V' we say that U is an a-approximation of V' if for all ¢ € R} we have

-min{c'z |z € V}.

SRS

min{c'z |z € U} >

2.2 Statement of results
2.2.1 Packing

The following is our main result comparing closures with their 1-row counterparts.

Theorem 1. Consider a packing polyhedron Q). Let M be any of the closures A (aggregation) or
C (CG). Then IM(Q) is a 2-approzimation of M(Q).

Moreover, this bound is tight, namely for every e > 0 there is a packing polyhedron Q) such that
IM(Q) is not a (2 — €)-approxzimation of M(Q).

In the proof of Theorem [Il we introduce a special polyhedral relaxation of the convex hull of a
packing polyhedron Q that we call the pre-processed LP. In this pre-processed LP, we examine if
A;j > b; for some i € [m], j € [n], in which case we set z; to 0. The optimal objective function
value of the pre-processed LP is denoted by 2. Two key arguments of our proof involve this
polyhedral relaxation: (i) in Proposition [3] we prove that both 1-row CG closure and 1-row closure
of @ are contained in the pre-processed LP; (ii) in Proposition @ we show that the pre-processed
LP is a 2-approximation to A(Q); see Figure [Il
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Figure 1: Relations used in the proof of Theorem [l A straight arrow from I to J denotes the
relation I < J, while a dashed arrow shows the existence of a tight example. Proposition numbers
proving the relations are given on the arrows for the ones that are not implied by definitions (“by
defn”).

The key take away of Theorem [I]is that for packing problems one can approximate the CG and
aggregation closure by just considering their 1-row counterpart. We next show that this is not true
in general.

Theorem 2. Let M be any of the closures A (aggregation) or C (CG). Then there is a family
of (non-packing/non-covering) polyhedra for which 1M is an arbitrarily bad approzimation to M,
namely for each o > 0 there is a polyhedron P such that 1LM(P) is not an a-approzimation of
M(P).

The proof of Theorem ] gives a family of polyhedra in R? where ZZLIP can be arbitrarily large,
but the CG rank is one.

On the other hand, we relate the integrality gap to the aggregation-closure rank. While there
are many lower bounds on CG ranks (and reverse CG rank) [4 [6, 22, 25], to the best of our
knowledge there are no results for the aggregation closure. Moreover, our next lower bound adds
to the list of few results [22] 27] that relate integrality gaps to rank.

Theorem 3. Let Q = {x € R | Az < b} be a packing polyhedron with A;; < b; for alli € [m], j €

LP
lo A
[n]. Then, rank 4, (Q) > {%-‘ for k > 1. Moreover, this bound is tight for k = 1, that is,

there is a packing polyhedron Q with ranka, (Q) < O <10g2 (ZZL—IP>>

Theorem Blshows that as long as we use information from a fixed number of constraints, packing
IPs can take many rounds of cuts to obtain the integer hull. We remark that this result actually
holds for packing sets defined by infinitely many inequalities, see the proof of Theorem [3l We also
note that it can be verified that Ay is an admissable cutting-plane operator, and therefore there
exist 0-1 polytopes (with empty integer hulls) with rank Q(2;) [21].

2.2.2 Covering

We show that the 1-row closures also provide a good approximation to the full closures in the case
of covering polyhedra (with bounds).

Theorem 4. Consider a covering polyhedron (with bounds) Q. Let M be any of the closures A
(aggregation) or C (CG). Then 1M(Q) is a 2-approzimation of M(Q).

Moreover, this bound is tight, namely for every € > 0 there is a covering polyhedron (with
bounds) such that IM(Q) is not a (2 — €)-approximation of M(Q).



The key arguments of our proof are presented in Figure Pl As in the packing case, the main
handle to prove this result is a pre-processed version of the LP. For covering polyhedra (i.e., without
bounds), this pre-processing is natural: If A;; > b; for some i € [m], j € [n], since we are interested
only in integer solutions, it is sufficient to replace A;; by b; to obtain a tighter LP. For covering
polyhedra with bounds, the pre-processing LP is heavier and is given by adding all the knapsack-
cover (KC) inequalities [3, B1]. We note that in the absence of bounds, this LP with the KC
inequalities reduces to the pre-processed LP discussed above. The optimal objective function value
of the LP with the KC inequalities is denoted as z%¢.

: Prop 12 !
. P 11 by def :
%zA rop _KC y defn 1A
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Figure 2: Relations used in the proof of Theorem Ml A straight arrow from I to J denotes the
relation I < J, a dashed arrow shows the existence of a tight example, and a snake arrow means
that the ratio could be arbitrarily large. Proposition numbers proving the relations are given on
the arrows for the ones that are not implied by definitions (“by defn”).

Unlike in the packing case, the statement of Theorem M regarding the CG closure actually
requires a different and much more involved proof. In fact, in this case we show that the LP with
the KC inequalities cannot be used to prove this result: there are instances where the CG closure
is arbitrarily weaker than the LP with the KC inequalities (see the snake arrow in Figure [2)), i.e.,
for any L > 0 there exists an instance where Lz¢ < 2KC. Therefore 2€ does not approximate z%¢
well, and hence it does not approximate z* well. We also refer the reader to [I] for other techniques
on approximating fixed rank CG closures for 0-1 covering IPs.

We note that in the proof of Theorem ], we require some preliminary structural results regarding
covering polyhedra with bounds, which may be of independent interest. See Propositions [ZHIO in
Section [B.11

As in the packing case, we can also prove that a large integrality gap implies large rank for the
k-aggregation closure. Interestingly, the denominator of the lower bound scales as loglog k; this is
because the largest integrality gap in a covering problem with m constraints is O(logm) (see [29]).

Theorem 5. Consider a covering polyhedron QQ = {x € R’} | Az > b}, where A and b satisfy
Aij < b; for all i € [m], j € [n]. Then, the rank of the k-aggregation closure of Q) is at least

log, (Zi—lp )
3+log,logs (2k) :

As in the packing case, the proof of Theorem [l shows that this result also holds for covering
sets defined by infinitely many inequalities.



2.2.3 Computational experiments

Theorem [2] shows that for general IPs (not packing or covering problems), the 1-row version of the
closures may not provide an approximation to the full closure, thus indicating the usefulness of
aggregation-based cuts. In order to understand this phenomenon, we conduct an empirical study
using CG cuts. Experimenting with CG cuts is convenient due to the availability of reasonably
robust CG cut separating algorithm [I0]. We use IBM ILOG Cplex 12.6 as the LP/MILP solver.
We study two classes of instances: random instances and the so-called market split instances.

Random instances. We generate instances of the following form:

max{ ij\Aa::b, Ogazgu},
jeln]
where
1. We consider instances with n € {10,12,14, 16} variables and m = |n/2] equality constraints.

2. We choose M = 50 and set u; = M/2 for all j € [n].

3. For any i € [m],j € [n], we let A;; = 0 with probability 0.5. Otherwise, we set A;; to an
integer in {—M, ..., M} with equal probability.

4. We construct b by first generating a binary solution # uniformly at random, and then letting
b= Az.

2LP

For each n € {10,12,14,16}, we generate 100 instances and discard the ones with T <2, after
which we obtain 75, 83, 84, 84 instances, respectively. The results of this experiment is given in
Figure 3l where each circle corresponds to a single instance. We observe that for the majority of the
instances, the ratio z'¢/2€ is significantly larger than 2. The arithmetic and geometric means of
the ratio for different values of n are 11.46,12.80,13.92,15.16 and 5.68, 7.46, 8.51,9.94, respectively.

n
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Figure 3: Multiplicative gap between 1-row CG closure and CG closure of randomly generated
instances



Market split instances. This type of instances, also known as market share instances, are
formulated in [7] and consist of a class of small 0-1 IPs that are very difficult for branch-and-cut
solvers. We use the following parameters:

1. We consider instances with m = 2 equality constraints and n = 10(m — 1) variables.
2. We take uj =1 for all j € [n].

3. For any i € [m],j € [n], we let A;; to be an integer drawn uniformly from {0,...,D — 1},
where D = 50.

4. We set b; = [> 7 A;j/2], for all i € [m].

It has been argued in [7] that most of those instances are infeasible. In this setting, we want to
check how often 1-row CG closure detects infeasibility in comparison to the regular CG closure.
We generated 100 instances, among which only 10 were feasible. The results of this experiment are
presented in the table below. As seen in the table, aggregation-based cuts are significantly better

l-row CG CG # instances

feasible infeasible 50
infeasible infeasible 40
feasible feasible 10

than 1-row cuts in proving infeasibility.

3 Some open questions

Many interesting open questions can be pursued as future research. The first one is a structural
question: Is the aggregation closure a polyhedron? For covering and packing IPs, if the constraint
matrix A defining the LP relaxation is dense (i.e., every entry of A is positive), then we can
show that the closure is polyhedron, see Appendix [Al However, the question remains open for the
general case. Another question is to understand if we can restrict the set of aggregation multipliers
to generate cuts for general IPs based on the sign pattern of the constraint matrix A to approximate
the overall aggregation closure well.

4 Packing problems

In this section we present the proof for the statements regarding packing problems.

A crucial tool to analyze the infinite intersections arising in the aggregation closures is the follow-
ing alternative characterization of a-approximation, which is well-known in the covering polyhedral
case [14]; a quick proof is presented in Appendix

Proposition 1. Consider two packing sets U OV in R™. Then U is an a-approzimation of V if
and only if U C V.

The usefulness of this characterization comes from the following: since set containment is pre-
served under intersections, if U; is an a-approximation of V; for all i € I (an arbitrary set), then
Nicr Ui € Nier@Vi = a( ;e Vi and thus (,c; U; is an a-approximation of (;c; V;. The equality
in this argument follows from this simple observation (with ¢(S) = a.S).



Observation 1. Let ¢ : R™ — R" be a bijective map, let {S*};icr be a collection of subsets in R

and let ¢(S) := {¢(z) |z € S}. Then ¢ (Nicr S*) = Nies ¢(5Y).
We also note the following.
Proposition 2. Let Q be a packing set. Then, Q! is also a packing set.

The proof of Proposition 2 is given in Appendix [C|

4.1 Proof of Theorem [I]

Upper bound. We show the first part of the theorem. That is, consider a non-negative objective
function ¢ € R™; we need to show that 2™ < 22M for the closures M € {A,C}.

Let @ = {z € R} | Az < b} be a packing polyhedron. As mentioned in the introduction, a
main handle to prove the result is to look at a pre-processed LP of (), which sets to 0 variables
that have too large left-hand-side coefficients. More precisely, let S be the set of indices j where
A;j; > b; for some ; the pre-processed LP is then

LP*(Q) ={z €R} | Az <b, z; =0Vj e S}
As seen in Figure [, we prove z'M < 2:M by showing the following chain of inequalities:

The first inequality z'4 < 2!¢ follows trivially by definition. The inequality 2?4 < z¢ is also
obvious. It remains to show that z€ < 2LP" < 24,

We first show that the 1-row CG closure already captures the power of the pre-processed LP.

Proposition 3. z!¢ < 2LF7,

Proof. Suppose A;; > b; for some i € [m], j € [n]; it is sufficient to show that the inequality 2; <0
is valid for 1C(Q). Consider the i*" constraint and the following CG cut generated from it:

| A b;
< —0.
Z L‘lijJ = {AUJ !

k=1

Observe that, over R’!, this inequality dominates the inequality z; < 0. ]

We now show that the pre-processed LP gives a 2-approximation to the aggregation closure
(and hence to the CG closure).

Proposition 4. 2" < 224,

Proof. We begin with a preliminary result.

Claim 1 Consider a single-constraint packing polyhedron P! := {z € R" |a"z < by} and the
related polyhedron P? := {z € R |a'z < by, x; = 0 Vj € S} where S D {j|a; > by}. Then
P2 C2(PY.

Proof. If S = [n], then the result is trivially true. Otherwise, consider a cost function ¢ € R}
and let =* be a maximizer of ¢ over P2. Notice z* simply sets the coordinate not in S with largest
ratio ¢;/a; to value by/aj. So rounding down z* gives a point in (P')! with c-value at least half



that of 2*. This implies that P? is a 2-approximation for (Pl)l , and so Proposition [ gives the
desired inclusion P? C 2(P')!, which follows from the fact that (P') is a packing polyhedron (by
Proposition ). ¢

Let S := {j| A;; > b; for some i € [m],j € [n]}. For A € R, let Q) = {z € R? | AT Az < \Tb}
and (LP*(Q))y = {z € RT|ATAzx < A\Th, ; = 0,Vj € S}. Using Claim 1 we have that for any
AERT

LP*(Q) € (LP*(Q))x C2(Qx)". (1)
Taking intersection over all A € R} we obtain that
LPQ)C () 2(@)" =2 [ (@ =24(Q),
AER™ AER™
where the first equation uses Observation [II Then from Proposition [l we have that LP*(Q) is a

2-approximation for A(Q). O

Tight instances. To prove the second part of the theorem, it suffices to show that there are
instances where the 1-row closure, which is the strongest 1-row closure we consider, is at most
roughly a 2-approximation of the CG closure, the weakest closure we consider.

Proposition 5. For every e > 0 there exists an instance where Z:—? >2—e.

Proof. Consider the following family of packing IPs

maximize =z + X9

subject to x1 + Mxy < M (2)
Mz 4+ 29 <M (3)
x>0 (4)
z € 72,

where M is an integer with ]\{ > 1.
1
We show that limp/ o Ze — 2. Observe that the set {z € Rﬁ_ |21 + M2y < M} and the set
{z € R2 | M2y + 22 < M} are integral. Therefore, 21 = 2L7 or equivalently 24 = ﬁ—ﬂfl
On the other hand, since (2) and (B) imply that the inequality z1 + zo < ﬁ—ﬂfl is valid for
@, we have that z; + x9 < 1 is a valid CG cut for Q. Therefore, we obtain C(Q) C {(z1,z2) €

R? |21 4+ 22 < 1}. Thus € = 1. O

4.2 Proof of Theorem
Let k € Z and k > 2 and consider the following IP:

max x1 -+ o

st Kz — (k— 1)y < k? (5)
—kr14+ a0 < —k+1 (6)
T1,T2 Z 0. (7)

To prove the theorem, it suffices to show that as k goes to infinity, the ratios ZZLCC and Z;—f also go

o . . 14
to infinity. In fact, since 2z < 21€ and 24 < 2¢, we just need to show that o = 0.

10



1-row closure. We verify that the point (2 — %,k‘) belongs to the original 1-row cut closure.
Consider the following cases:

1. Integer hull of (5) and (7): The points (1,0) and (k, k?) are valid integer points and (2— 1, k)
is a convex combination of these points.

2. Integer hull of (B) and (7): The points (1,1) and (2, k+1) are valid integer points and (2— £, k)
is a convex combination of these points.

Since (2 — %, k) belongs to the 1-row closure, by inspecting its objective value we obtain that
ZA>2+k— 1.

CG closure. To upper bound the optimal value of the CG closure, we explicitly construct one
CG cut. Consider the aggregation of the LP inequalities %X(ﬂ) + kgl x @) =z <2-— %, which
gives the CG cut z1 < 1.

We can compute an upper bound on z¢ by computing the optimal value subject to this CG
cut and (@), namely max{x + zo|2x1 < 1, —kz1 + 29 < =k + 1,21 > 0,20 > 0} = 2: (1,1) is a
feasible primal solution and (k4 1,1) is a dual feasible solution with same objective function value.
Therefore, we have z¢ < 2.

Putting these bounds together obtain that Z:—CA = % +1- ﬁ, which goes to infinity as k — oo.

This concludes the proof of the theorem. O

4.3 Proof of Theorem [3

A key result we use is given in Proposition [6] below, which provides a bound on the integrality gap
as a function of the number of inequalities. Note that since we do not make any assumptions on
the coefficients of the constraint matrix of the packing polyhedron, we obtain better coefficients
than those obtainable by using randomized rounding arguments; see for example [2§].

Proposition 6. Consider a packing IP of the following form max{c'z | Dz < f, x € 71} where
D is a k x n non-negative matriz such that D;; < f; for all i € [k] and j € [n] and ¢ € RT. Then
P < (k+1)2.

Proof. If the LP has unbounded value, then the IP also has unbounded value [20], and there is
nothing to prove.
Assume the LP has bounded value, and let zF be an optimal solution of the LP. Let

where 2 is obtained by rounding down %" componentwise. Then, & belongs to the feasible region

of the packing problem, and hence 2! > ¢' 7.

Let ¢maq € argmax;{c;}. Since e; for all j € [n] belongs to the feasible region, 2l > ¢paz. Thus,
2l > max{c"Z, maz }-

Now, observe that

LLP Ta 4 cTaF
2~ max{c"Z, caz }
ezl
<1+

max{c'Z, cmaz}

11



Since there are k constraints D'z < f;, at most k components of z¥ can be non-zero. In other
words, at most k components of 2" can be non-zero. Also, each entry of z is strictly less than 1.

Hence, ¢ 2 < ¢pazk, and therefore
LP
Cmazk
— < — <1+k.
z max{c' Z, ¢paz}

O

Lower bound on rank. We actually prove Theorem [3] for the more general case of packing sets
containing all the basis vectors e;’s; notice that for a packing polyhedron @ = {z € R} | Az < b},
containing all basis vectors e;’s is equivalent to the condition A;; < b; for all 7, j.

So let ) be a non-empty packing set containing all the basis vectors e;’s. Given a matrix
(D, f) € RF*" x R¥ we say that it is a k-vi for Q if (D, f) is non-negative and the inequalities
D'z < f; are valid for Q. We denote the polyhedral outer-approximation {x € R% | Dz < f} of @
by P(p, ). Then by definition

An(Q) = N (P, (8)

(D,f) is a k-vi for Q

Let Qf be the ¢ k-aggregation closure of Q.
Claim 1 Q°C (k+1) Q.

Proof. Consider a k-vi (D, f) for Q*. Clearly P(p,p) is a packing polyhedron, and since Pp r) 2
AR(QY) 2 @', all basis vectors e; belong to Pyp j). Therefore, D;; < f; for all i € [k], j € [n],
and so by Proposition ] we obtain that P(p sy is a (k + 1)-approximation of (P(p ;))’. Hence,
Proposition [ gives

Q' C Py C(k+1)(Ppyp).

So taking intersection over all k-vi’s and using Observation [I, we have that

Q' C ﬂ (k+1)(Pp.g))"
(D,f) is k-vi for Q¢

= (k+1) N (Pw,p)!
(D, f) is k-vi for Q*
=(k+1) Q"

where the last equality follows from (8]). This concludes the proof. <

Finally, suppose the rank of k-aggregation is ¢ and let z° be the optimal objective function
value over the i closure. Since all of these closures are packing sets, Claim 1 and Proposition [J
guarantee that z° < (k + 1)z, Therefore,

ZLP ZLP Zl t—1

Z ¢

log, (ZZL—IP)

logy(k+1) |’

This implies the inequality

t =ranky, (Q) >

which is the required result.
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Tight example. We now show that there is a packing integer set ) with rank 4, (Q) < O (log2 (ZZL—IP)) .

Let K, be a complete graph with node set [n], and let @ be the standard edge-relaxation of the
stable set polytope:

FSTAB(K,) ={z € R} |z; +x; <1Vi,jec[n], i <j}

If our objective is to maximize 2ue[n} Ty, then we obtain 2/ = 1 and 2/ = n/2 because the
optimal vertex of FSTAB(K,,) is the vector with all entries equal to 1/2. Consider now the clique
inequality Zve[n Z, < 1, which defines a facet of the stable set polytope. We only need to show

that the CG rank of the clique inequality is upper bounded by O <log2 <ZZL—IP)) = [logy(n — 1)].
The latter is a well-known fact [15].

5 Proofs for covering problems

We now provide additional definitions and proofs of the statements presented in the introduction
regarding covering problems: in Subsection [5.2lwe prove Theorem Ml the main result of this section,
and in Subsection [5.3] we prove Theorem Bl Before proving these results we need to develop some
general results concerning covering sets with bounds.

5.1 Properties of covering sets with bounds

We start by showing that adding non-negative directions to a covering polyhedron with bounds
still leaves it as a covering polyhedron (possibly with bounds); in fact, adding all the non-negative
directions is a natural way of removing the upper bounds.

Given a covering polyhedron with bounds of the form P = {z € R} | Az > b, < u} with
A,b > 0, we refer to Ax > b as the covering inequalities of P.

Proposition 7. Consider a covering polyhedron with bounds P = {x € R} | Az > b, x < u}.
Then, for any subset {e;};cs of the canonical vectors we have that P+ cone({e;};cs) is a covering
polyhedron with bounds. In particular, P+ R’ is a covering polyhedron.

Moreover, each covering inequality of P+ cone({e;};cs) is a conic combination of one covering
inequality of P with the bounds x; < u; for j € J.

Proof. Notice it suffices to show that for a single e;, P + cone(e;) is a covering polyhedron with
bounds (the general statement follows by the repeated application of this result).

So consider one such e;. For every inequality Alx > b; of the system Az > b, let Alz > b; be the
sum of A’z > b; and —Ajjxy > AZ]uJ Note that A > 0 and A,] = 0. Let Az > b be the system
comprising all such inequalities Aiz > b;. Let 4 be the vector obtained from u by replacmg u; with
0o. We define the covering polyhedron with bounds P = {z € R | Az > b, Az > b, © < i}. By
construction, each covering inequality of P is a conic combination of one covering inequality of P
with the bound z; < u;. In the remainder of the proof we show P + cone(e;) = P.

Since each inequality valid for P is also valid for P and the recession cone of P contains e; (A
and A are non-negative and i; = 00), we have P 4 cone(e;) C P.

We now show the reverse inclusion P + cone(e;) 2 P. Let ¢"z > ¢ be a valid inequality for
P + cone(e;). Equivalently, ¢z > ¢ is a valid inequality for P with ¢;j > 0. As a consequence,
there exist nonnegative multipliers p;, d;,v; such that

m n n m n
c= Z ,uiAi + Z Set — Z%ei and 0 < g := Z,uibi — Z Vi
i=1 i=1 i=1 i=1

i=1
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Without loss of generality we can assume that at least one among d0; and v; equals zero. In the
latter case, the inequality ¢’z > § is trivially valid for 15, thus we now assume ¢; = 0 and ~; > 0.
Since ¢; > 0, we have ¢; = > " pia;; — v > 0.

Let £k € {1,...,m} be the smallest index such that Zle piAi; > ;. In this way ~v; —

Zf;ll piAij > 0. This allows us to define non-negative multipliers \;, A, for i =1,...,m:
0 i ifi=1,... k-1
kel B e I T
No= Q- DAy T
i 0 ifi=k+1,...,m.

It can be verified that:
c= f: )\ZAZ + in: /\QAZ + Zn: 5i€i — Zn:%'ei and &g = f: Nib; + f: )\;i)l — Zn:’}/zuz
i=1 i=1 i=1 i=1 i=1 i=1 i=1
i#] i#j

This implies that ¢z > § is valid for P.
This shows that every valid inequality for P + cone(e;) is valid for P, hence P 4 cone(e;) 2
and we conclude the proof of the proposition.

0 =

Next, we show that the integer hull of a covering polyhedron with bounds is also a covering
polyhedron with bounds.

Proposition 8. Let Q = {x € Z% | Ax > b, x < u} be a non-empty covering polyhedron with
bounds (recall that u is integral or infinite). Then its integer hull Q' is a covering polyhedron with
bounds. Moreover, Q' has the same upper bounds as Q, namely Q' = {z € RY | Az >V, o <u}
for some (A')b).

Proof. We assume that Q! is non-empty, otherwise the result can be easily verified. Let 7'z > 7o
be a facet-defining inequality for Q. It suffices to show that either (m,my) > 0, or that this
inequality is equivalent to an upper bound constraint x; < u; for some j and u;.

First, suppose m > 0. Then 7y must be non-negative, since otherwise the fact that Q! C R%
would imply that the face of Q! induced by 7"z > 7 is empty, contradicting that it is a facet.

Now consider the case where 7 has at least one negative coordinate, say m; < 0. If all other
components of 7 are equal to 0, then 7'z > m is equivalent to an upper bound constraint:

Wszﬂo = ijjZﬂ'Q = Ll'j__—ﬂ—o,
Ty
where the sign/sense reversal in the last equivalence happens because 7; is negative. Thus, to
conclude the proof it suffices to consider the case where 7w has support of size at least 2.

We show that this case actually leads to a contradiction. The idea is to use the following property
that can be immediately verified: if Z,7 are integer points in @, then the point Z obtained by
taking Z and replacing its j* component by max{Z;,y;} also belongs to Q!. Moreover, if Ui > T
we have that 7'z < 7' Z; we will use this to contradict the validity of 7"z > 7.

To make this precise, since 7'z > 7 is facet-defining, let Z',...,z" be affinely independent
integer points in Q' that satisfy the equality 7'z = 7. Let M = max; i; be the maximum value in
the ™ coordinate of these points. Observe that at least one of the points Z* has the j* coordinate
strictly smaller than M: otherwise all points Z' would satisfy the linearly independent inequalities

7'z = 1 and x; = M (the linear independence comes from the fact 7 has support of size at
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least 2) and thus would lie in an (n — 2)-dimensional space, contradicting that they are n affinely
independent points.
Thus, without loss of generality assume that :i]l =M > :i? Construct the point z by taking the

1 721 _

vector Z2 and replacing its j* coordinate by max{:i], e

Q' but

:i]l As mentioned earlier, Z belongs to

Tz < Tz = o,

thus contradicting the validity of 7"z > my. This concludes the proof that Q' is a covering set.

To see that the upper bounds in Q' are the same as those in Q, let Q7 = {z € RY | Az >
b, x <u'} be a covering-with-bounds description of this set with minimal «’ (i.e. there is no other
valid upper bound that is pointwise smaller than u’). Recall that u is the vector of upper bounds in
Q, which is an integral vector. Since @/ C @ C [0,u], the minimality of u’ guarantees that v’ < u.
But since @ is non-empty, it contains the point u, and so does the integer hull Q'; thus, ' > w.
This concludes the proof. O

We also remark the following equivalent definition of a-approximation, similar to that for the
packing case; the first part of the statement follows directly from the definition of a-approximation,
and the second follows from Proposition [7] combined with Lemma 23 of [19].

Proposition 9. Consider two covering sets U 2 V. Then U is an a-approzimation of V iff U+R"
is an a-approximation of V 4+ R’t. Moreover, this happens iff é(U +R%Y) C (V+RY).

Finally, we need the following property, which states that for covering polyhedra with the same
upper bounds we can commute adding R’} and taking intersections.

Proposition 10. Let {Q'};cr be a (possibly infinite) family of covering polyhedra with bounds such
that all upper bounds are the same, namely Q" = {zx € R" | G(i)z > ¢(i), © < u} for alli € I
(where G(i) € R""™", g(i) € R ). Then

@ +R}) = <ﬁ Qi> +RTL.

el 1€l

Proof. The direction “D” is straightforward, so we prove the direction “C”. Consider a point
T € ﬂieI(Qi +R"), so we can write x = ¢' + 7' for ¢* € Q' and r* > 0. The idea is that if we push
all the ¢"’s coordinates as high as possible (correcting appropriately the r*’s) we can actually get
the same point in all the Q*’s.

More explicitly, define the point ¢ € R" as follows: if z; is at most the upper bound u;, set
qj = x;, else set ¢; = u; (so ¢ = min{z,u}). We claim that ¢ belongs to Q° for all i. First, since
¢' < x and ¢* < u, we have that ¢' < g; therefore, since ¢* satisfies the covering constraints of @,
so does ¢q. Moreover, g < u, so ¢ also satisfies the upper bound constraints of Q*; thus ¢ € Q*. We
then get that the point ¢+ (x —¢) belongs to ([;; Q") +R". This shows the desired inclusion and
concludes the proof. O

We can now start the proof of Theorem [l

5.2 Proof of Theorem @

A central object for our proof are the knapsack-cover inequalities [31]. Consider a covering poly-
hedron with bounds @ = {z € R} | Az > b, « < u}. A knapsack-cover (KC) inequality is
generated as follows: Consider a single row A’z > b; of this problem; given a subset S C [n] of
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the variables, the corresponding KC inequality is given by >_ i¢s flijaz]— >b— > jes u;A;i;, where
flij =min{A4;;,b; — > jes u;jA;;}. Notice that the KC inequalities are indeed valid for ). Again, we
use KC(Q) to denote the KC closure (namely the set obtained by adding all the KC inequalities
to the linear relaxation of @), and for a given objective function we use ¢ to denote the optimal
value of optimizing this function over KC(Q).

We break down the proof of Theorem [ by first comparing 1.A(Q) versus .A(Q); we then compare

1C(Q) versus C(Q), which is significantly more involved.

5.2.1 Proof for aggregation closure

Upper bound. Observe that the 1-row closure is at least as strong as the K C' closure by con-
struction of the KC inequalities. We need the following result, which states that for a 1-row covering
polyhedron with bounds, the KC closure is a 2-approximation of the integer hull.

Theorem 6 ([3]). Consider a 1-row covering polyhedron with bounds Q = {x € Z% | ax > b, v <
u}. Then the KC closure KC(Q) is a 2-approzimation of the integer hull Q.

Since the aggregation closure is the intersection of the integer hull of multiple 1-row covering
polyhedra, we leverage the theorem above to show that the KC closure is also a 2-approximation
for the aggregation closure of a multi-row covering polyhedron.

Proposition 11. For every covering polyhedron with bounds Q we have that the KC closure KC(Q)
is a 2-approximation of the aggregation closure A(Q).

Proof. Let Q@ = {z € R" | Az > b, x < u} and consider Q) = {z € R? | AT Az > \Tb, x < u} for
some A € R . First we connect the KC closure of ) with the KC closure of the 1-row covering set
@\, proving the intuitive fact that KC(Q) C KC(Q»).

For that, consider a KC inequality

ke = {3 (\TA)z; > ATb— S (T A)ju,)
¢S jes

for Q, and let k¢; = {Ej¢5 flijxj > bi_ZjeS Ajju;} be the corresponding KC inequality for the ith
row of P. We show that kc is dominated by the inequalities kc;’s, namely kc "R D (), (ke; NRY).
Consider the aggregation >, Aikc; = 3 46(32; Nidij)z; > ATb — Zjes()\TA)juj; it suffices to
show that this dominates kc. The RHS’s are the same, so it suffices to compare LHS’s. Since
Aij = min{Aij, b; — ZjeS Aijuj}, it follows that Zz /\21212] < min{zi /\iAij, ATh— ZjeS(/\TA)juj}v
which is exactly the j*' entry in the LHS of kc. This proves that KC(Q) € KC(Q»).

Employing the alternative definition of a-approximation given by Proposition [@ with Theorem
[6, we get that for every A

(KC(Q) +RY) C (KC(Qx) +R%) C S (Q +RY).

N =

From Proposition B we have that Q§ is a covering polyhedron with bounds, and that the upper
bounds are that same as in (), which are the upper bounds of (). Since all these bounds are the
same, we can take intersection of the last displayed inequality over all \’s and used the commuta-
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tivity from Proposition [I0] to obtain that

(KCQ)+RY) € ) %(th) opdTl

AERT

1 1
02N @ = 5( N eh)+r

AERT AERT

The right-hand side of this expression is exactly %(A(Q) + R’ ), thus employing Proposition [ once
again we get that the KC closure KC(Q) is a 2-approximation for the aggregation closure A(Q).
This concludes the proof. O

Hence, we obtain that 1.4(Q) is a 2-approximation to A(Q).

Tight examples. We next exhibit an instance where 1.4 is not better than a 2-approximation

of A.

.. ) . A c
Proposition 12. Let € > 0. There exists an instance where ZZI—A >2—¢€and ZZT > 2 —e.

Proof. Let n = min{2, [1]}. Consider the following instance

n
min E x]
i=1

s.t. x; + Z 2x; > 2, Vi € [n],
Jen\{i}
T € Zi.

We show that Zzl—f: > 2 — e and ZZTCC > 2 — ¢ for this instance.

1. M = 21€ = 22 Observe that the set {z € R |z; + > jefn\(iy 2% = 2} is integral. Thus,
214 = 21€ and each is equal to the LP relaxation. Adding all these constraints we obtain

2n
22 g 9)

On the other hand, setting z; = 52, we obtain a feasible solution. Thus, 2! = 21¢ = 2.

2. 224 > 2 and 2¢ > 2: Since @) is a valid inequality, we obtain the CG cut » jem] i 2 2. Thus
2¢ > 2 and since 24 > 2€ we obtain 24 > 2.

Thus, ;—Sf >2— % and ZZI—CC >2— %; and our choice of n completes the proof. O

5.2.2 Proof for CG closure
We start by considering the case of covering polyhedra without bounds.

Proposition 13. Consider a covering polyhedron without bounds P and a mon-negative function
ceRY. Then z1€ > %zc.
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Proof. Consider a covering polyhedron P = {x € R} | Az > b, > 0}. Let C(P) = {z| A’z > V'}
be the CG closure of P (i.e., CG closure is a rational polyhedron [26]). Without loss of generality we
assume that the entries of A’, )’ are non-negative integers and each CG cut is obtained by rounding
up the entries of the constraint AT Az > \Tb for some \ € R7. Let (o YTz > B be an inequality
of the system A’z > b. We show that (a/)"x > /2 is a I-tow CG cut for P. The theorem then
follows by linear programming duality.

If inequality (a’)"2 > B’ is one inequality of the original system Az > b, x > 0 we are done,
thus we assume that o’z > ' is a non-trivial CG inequality for Az > b, x > 0. This in particular
implies 8 > 1. The strict inequality o’z > ' — 1 is valid for P. If 3/ > 2, then 8/ — 1 > /2,
thus (a/) "o > B’/2 is valid for P and so it is trivially a 1-row CG cut for P. Thus we now assume
g =1.

Let A € R7 be the vector of multipliers corresponding to the CG cut (a/)'z > #, ie., a’ =
[ATA], and 8 = [ATh]. Since ATb > 0, there exists i € [m] with \;b; > 0. Then (/)72 > 8’ is
implied by the l-row CG cut 37 [AjA;j]2; > [Aib;| = 1 because [ATA] > [\ A7Y. O

Proposition 14. For a covering polyhedron with bounds and a non-negative function ¢ € R?, we
have 21€¢ > %zc.

Proof. For a covering polyhedron with bounds P, let P = P + R%. By applying Proposition [
recursively, P is a covering polyhedron with bounds. Moreover, each covering inequality of P is a
conic combination of one covering inequality of P with the bounds x < w.

We will argue bounds on the ratio between

X =min{c'z:zeC(P)} and 2'¢=min{c'z:z e 1C(P)}
by using known bounds on the ratio between covering problems
2 =min{c'z:2eC(P)} and ¢ =min{c'z:z € 1C(P)}.

We will show 2¢ < z€ and 2'¢ > z!¢. Together with a bound of 2 on the ratio for covering
problems from Proposition [I3] this implies the same bound on the ratio for covering problems with
bounds:

¢ Z
2ie =z =2
Claim 1 2! > z1¢,
Proof. We only need to show that
1C(P) C 1C(P). (10)

since the relation (I0) directly implies
¢ =min{c"z: z € 1C(P)} > min{c'z : x € 1C(P)} = z'€.

By Proposition [T, every constraint of P is a conic combination of a single covering constraint and
one bound constraint. Therefore it follows from the definition of 1C(P) that 1C(P) C 1C(P). This

shows ([I0). ¢
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Claim 2 We have 2¢ < €.

Proof. Since ¢ > 0, to prove 2¢ < zC it is sufficient to show that
C(P)+R7% D C(P). (11)
In fact, relation (IIJ) directly implies
2 =min{c"z: 2 € C(P)} =min{c z: 2 € C(P) + R"} < min{c'z:x € C(P)} = €.
In order to prove relation (IIJ), we prove that
C(P) + cone(e;) 2 C(P + cone(e;)). (12)

In fact, by Proposition[d, P+ cone(e;) is also a covering polyhedron with bounds. Therefore we can
apply relation (I2) recursively (for example, for j # j', we have C(P)+cone(e;)+cone(e; ) 2 C(P+
cone(e;))+cone(ej) D C(P+cone(e;)+cone(ej))), and we obtain C(P)+ R’ O C(P+R") = C(P),
thus ().

If P = P + cone(ej), then ([I2)) follows easily, therefore we now assume that u; is finite, and
therefore by assumption integral. By definition,

C(P)=Pn{x:a'z>[p], where a'x > § valid for P, a € Z"}.
We show that all inequalities with a; < 0 can be dropped from such definition. More precisely:
C(P)=Pn{z:a"z>[B], where a'z > § valid for P, a € Z", a; > 0}.

Let a'x > B be valid for P, with a € Z™ and aj < 0. Now consider the inequality (a)Tx > p
obtained as the sum of ax > 8 and —a;jr; > —a;u;. Note that a' € Z™ and a;- = 0. We next verify
that (a/)Tz > f' is valid for P. In particular, if & := (#;,2_) € P (here the subscript _ denotes
all components other than j), then (uj,Z_) € P and therefore, ali_ + aju; > 3. Equivalently,
alz_ > pB—ajujor (d)'d=ad_>p—aju;=p.

Moreover, note that (a’) "2 > [3'] cuts from P at least all the points cut by (a)" 2z > [5]. To see
this, suppose & = (2;,#_) € P is separated by (a)"z > [8]. Then a'2_ + aju; <ald_ +ajz; <
[8], since a; < 0 and #; € P. Equivalently, (¢/)'% = ald_ < [B] — aju; = [B — aju;] = [B7,
since aju; € Z.

Therefore

C(P)=Pn{x|ax > [F], where ax > f3 valid for P, a € Z", aj > 0}
= Pn{x|ax > [F], where ax > [ valid for P + cone(e;), a € Z"}
= P NC(P + cone(e;))
= {z|z; <u;} NC(P + cone(e;)),

where the last equation follows from the fact that if y € (P +conv(z;))N{z|z; < u;}, theny € P.
Thus we obtain

C(P) + cone(e;) = ({z : xj < u;} NC(P + cone(e;))) + cone(e;).
Finally, we show that

({z:x; <uj}NC(P + cone(ej))) + cone(e;) 2 C(P + cone(e;)), (13)
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to complete the proof.

First we verify that if & := (2_,%;) € C(P + cone(e;)) and Z; > u;, then (Z_,u;) € C(P +
cone(e;)). Assume by contradiction that ¢ x_ + c;z; > § be a valid inequality for P + cone(e;)
with ¢ € Z" such that ¢ #_ +cju; < [§]. We will show that the point (#_,4;) also does not belong
to C(P + cone(e;)) to obtain a contradiction. Note first that cf2_ + c;z; > 6 is a valid inequality
for P with ¢; > 0. Therefore cla_ >6— cju; is a valid inequality for P. However since the 4t
component of ¢ := (c_,0) is non-negative, we have that c'z_ > § — cju; is a valid inequality for
P + cone(e;). In other words, clz_ > [§ — cju;] = [0] — cju; is a CG inequality for P + cone(e;).
However note that this CG inequality separates the point (Z_,Z;).

Now let & := (£_,2;) € C(P + cone(e;)). If ; < wj, then clearly & € ({z : z; < u;j} NC(P +
cone(e;))) + cone(e;). In Z; > uj, then based on the above discussion (Z_,u;) € C(P + cone(e;)).
In other words, (Z_,u;) € ({ : z; < u;j} NC(P + cone(e;))). Thus

&= (2_,uj) + (0,2; —uj) € ({z:z; <uj} NC(P + cone(e;))) + cone(e;),
completing the proof.

Therefore we have proven the claim by showing (12). <

This concludes the proof of Proposition 14l O

Tight examples. We need to show that for there is an instance where ZZ% > 2—¢. But the proof
of Proposition [[2] already shows that this happens for the instance given by (3.
We next show that z¢ can be arbitrarily bad in comparison to z%¢.

Proposition 15. z€ can be arbitrarily bad in comparison to 25 for 0-1 covering problems.

Proof. Consider the problem

min x,
stx1+...Tp_1+NnTH >N
x € {0,1}".

It is straightforward to verify that the CG closure of this problem should be obtained by just adding
the inequality [1/n]z1 +...[1/n]zp—1 + 2, > 1 =), 2; > 1. So optimizing over the CG closure
gives value 1/n. But the 1-row-aggregated closure gives the integer hull, so optimizing over it gives
value 1. O

5.3 Proof of Theorem

We use the following result on bounds of integrality gap of covering IPs as a function of the number
of constraints.

Theorem 7 ([29]). Consider a covering IP of the following form: min{c'z | Dz > f, z € Z"},
where D € RT” such that Dy < f; for alli € [k], j € [n], and c € R}. Therg, 2l < 8logy(2k)2P.

2The constant 8 can be easily verified using the proof techniques in [29).
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Lower bound on rank. We will prove Theorem [ for a more general non-empty covering set
Q= {z €R" | Az > b;, i € I}, where T is an arbitrary index set and 0 < A; < b; for all i € Z.
We will call a covering set with these properties a well-behaved covering set.

Given a matrix (D, f) € R¥*" x RF, we say that it is k-vi for Q if (D, f) is non-negative
and the k inequalities D'z > f; are valid for Q. We denote the polyhedral outer-approximation
{x € R | Dx > f} of Q by Pp s). Then by definition

Ar(Q) = N (P,

(D,f) is a k-vi for Q

It will be important to show that if @ is well-behaved, then so is the closure Ax(Q). For that
we need the following observation.

Claim 1 Consider a well-behaved covering set @ and let a'z > B be a valid inequality for it.
Then, there exists a valid inequality &'z > 3 for Q with the following properties: (i) a; < o for
all j € [n] (ii) B > B (iii) &; < B for all j € [n].

Proof. As Q # (), by the generalized Farkas Lemma (Theorem 3.1 in [I3]), o'z > 3 is a valid
inequality for @ if and only if

(5] ealeome({[ 5]} o {9 Teien} o [T sem)))

where cl and 0 stands for the closure and the vector of zeros in R™, respectively. We also let

o afeme({ [ ve2))). ([ 5] 0[] 50

Note that F' = cl(G + H). We will show that G + H is closed, thereby implying that F' = G + H.

For that, notice that the cones G and H are positively semi-independent, that is if ¢ € G and
h € H satisfy g + h = [0,0], then ¢ = h = [0,0]: To see this, consider a vector [a,—b] € H, so a
and b are non-negative, such that [—a, b] belongs to G. Since A is non-negative for all i € Z, this
implies that a = 0. Furthermore, as @ is non-empty and the inequality —a'z > b is valid for Q,
we obtain b = 0, which concludes the argument.

Hence, by a result in [12], G 4+ H is closed, and so F' = G + H. This implies that if 'z > 3 is
a valid inequality for @, then

Q@ e 0 €j .
= ~ : > ;>
3] (3] om 2] somzvse
WhereA[d, B] € G. Note that &'z > § is a valid inequality for Q. Moreover, (&, B] € G implies that
&; < B for all j € [n]. Also, all the other conditions of the claim are satisfied which completes the

proof. ©

Claim 2 If @ is a well-behaved covering set, then Ax(Q) is also a well-behaved covering set.

Proof. Given (D, f) a k-vi for Q, let (D, f) be obtained as in Claim 1. Then, by the previous
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claim, (ﬁ, f ) is a k-vi for ). Observe that by construction of (ZA), f ) we have Pp s 2 P( b.j)’ and
therefore (Pip, f))! 2 (P(f) f))l. Hence
AR(Q) = m (P(Df))l' (14)

(D,f) is a k-vi for T

To show that Ax(Q) is well-behaved, it suffices to show that (P( D, f))l is of the form {z € R’ |
Riz > s;, i € [m/]}, where 0 < R;; < s; for all j € [n], i € [m/]. Since the recession cone of
P( b.f) is R, and P( b.f) is a polyhedron, by Theorem 6 in [9], (P( D, f))l is a rational polyhedron
with the same recession cone as P( D.f) Hence, R is non-negative. Moreover, we may take the

inequalities Rz > s;, i € [m/] to be the facet-defining inequalities that satisfy at n 4 1 affinely
independent integer points at equality. To show R; ;j+ < s; for some j* € [n], observe that in
particular there exists an integer point & among these n + 1 affinely independent ones satisfying
Zj+ > 1 and ) i€ R;ji; = s; (else all these points would satisfy the additional equation z; = 0
and live in an (n — 2)-dimensional space, contradicting their affine independence). This implies
R; j+ = M < s ©

ij*

Let Q° be the ¢*" k-aggregation closure of Q.
. ¢ 1 ¢
Claim 3 Q g WQ +1.

Proof. By the previous claim, Q° is a well-behaved covering set. For every (D, f) k-vi for Q°,
by Theorem [7] we have

By Observation [Il we have that

1
& g [V Pop)
8log,(2k) (D,f) is k-vi for Q°

__ 1 041
8log,(2k) ’

where the last equality follows from (I4). <
Using an argument similar to the proof of Theorem Bl (employing now Proposition [d]), we obtain

. . log, (ZTIP)
that the rank of the k-aggregation closure is at least ngz(%) .

Acknowledgements. Santanu S. Dey would like to acknowledge the support of the NSF grant
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A Polyhedrality of aggregation closure for dense IPs

We prove the result for the case of covering IPs and a similar proof can be given for the packing
case.

Proposition 16. Let Q = {z € R’} | Az > b} be a covering polyhedron with A € Z"*", b € 77,
Aij > 1 for alli € [m], j € [n], and b; > 1 for all i € [m]. Then, Ak(Q) is a polyhedron.

Proof. The intercept of the hyperplane corresponding to the i*" constraint, A’z > b;, of the j* co-

ordinate axis is j:j . It is straightforward to verify that the intercept of any aggregated constraint on

the j*™ coordinate axis belongs to the set [minie[m] Ab_;v max;e ) jz_j]. Let M = maX;c[m), je[n] .
and let = [0, M|" N Z.

Based on the above observation, the set of integer points contained in {z € R’} | (AT Az >
(M) Th, £ € [k]} is of the form SU (Z" \ T) where S C T. Since T is a finite set, this completes the
proof as the number of distinct integer hulls obtained from k-aggregations is finite. O

B Proof of Proposition (1l

Given a convex set C' C R", its support function §*(. | C) is defined by §*(c | C') = sup{c’z | = € C}.
Consider packing sets U DO V. Since U and V are closed, from Corollary 13.1.1 of [24] we have
that U D oV iff

sup (0*(c |U) = 6"(c | aV)) <0. (15)

ceR™
Since U is a packing set we have the following property. Consider a vector ¢ € R™, let I be the
index of its negative components, and let ¢ be obtained by changing the components of ¢ in I to
0. Then 6*(c | U) = 6*(¢ | U): the direction “<” follows from U C R ; the direction “>" holds
because for every point x € U, if we construct & by changing the components in I of  to 0 then
# € U and ¢'# = é''z. Since the same holds for aV, we have that in equation (5] we can take the
supremum over only non-negative ¢’s, and hence it holds iff for all c € R, 6*(c | U) < 6*(c | aV).
But since 6*(c | aV) = ad*(c | V) (Corollary 16.1.1 of [24]), this happens iff for all ¢ € R,
0 (c|U) < ad*(c| V). This concludes the proof.

C Proof of Proposition 2

Let @ = {z € R? | A'w < b; Vi € I}. We assume that for all j € [n], there exists i € I with
Aj; > 0. Otherwise, we can project out the 4% variable and continue with the argument as the ;™
variable is allowed to take any value. Therefore, @ is a bounded set and Q! is a polyhedron. Let
QI ={z ¢ R" | Cx < d}. We next argue that C' and d are non-negative to complete the proof.
Note that since 0 € @), d > 0. The fact that we can take C > 0 follows from the following claim.

Claim. Let C'z < d; be a facet-defining inequality for Q' and Cij+ < 0 for some 7 and j*. Define
a vector ¢ as ¢;» = 0 and ¢; = Cj; for all other j. Then éx < d; is valid for Qr.

Proof. Assume by contradiction that there exists £ € @ N Z"™ such that Z;LZI ¢;&; > d;. Since

Q is a packing set, we have that & € Q NZ", where T is defined as &; = Z; for all j € [n]\ {j*} and
@3 =0. Then d; < Y0, ¢85 = Y0, ¢;%; = > i, Cy;&j < d;, a contradiction. ©
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