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Abstract

The error bound property for a solution set defined by a set-valued mapping refers
to an inequality that bounds the distance between vectors closed to a solution of the
given set by a residual function. The error bound property is a Lipschitz-like/calmness
property of the perturbed solution mapping, or equivalently the metric subregularity
of the underlining set-valued mapping. It has been proved to be extremely useful in
analyzing the convergence of many algorithms for solving optimization problems, as
well as serving as a constraint qualification for optimality conditions. In this paper,
we study the error bound property for the solution set of a very general second-order
cone complementarity problem (SOCCP). We derive some sufficient conditions for error
bounds for SOCCP which is verifiable based on the initial problem data.

Key words: second-order cone complementarity set, complementarity problem, local
error bounds, Lipschitz-like, calmness, metric subregularity, constraint qualifications.

AMS subject classification: 49J53, 90C33.

1 Introduction

In this paper we consider a second-order cone complementarity problem (SOCCP) of finding
z ∈ R

n satisfying the second-order cone complementarity system defined as

K ∋ G(z) ⊥ H(z) ∈ K, (1)

F (z) ∈ Λ, (2)

where Λ is a closed subset of Rl, F : Rn → R
l, G : Rn → R

m, H : Rn → R
m are continuously

differentiable, a ⊥ b means that vector a is perpendicular to vector b, K is the Cartesian
product of finitely many second-order cones (also called Lorentz cones), i.e.,

K := K1 ×K2 × · · · × KJ ,
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with Ki := {x = (x1, x2) ∈ R × R
mi−1| x1 ≥ ‖x2‖} being the mi-dimensional second-order

cone and m =
∑J

i=1mi.
One of the sources of the second-order cone complementarity system is the Karush-

Kuhn-Tucker (KKT) optimality condition for the second-order cone programming (see e.g.
[1, 3, 5]), and the other is the equilibrium system for a Nash game where the constraints
involving second-order cones (see e.g. [19]).

Let F denote the solution set of an SOCCP which contains all z satisfying the second-
order cone complementarity system (1)-(2). In this paper, we study the following error
bound property. We say that the second-order cone complementarity system has a local
error bound at z∗ ∈ F if there exist a constant κ > 0 and U a neighborhood of z∗ such that

d(z,F) ≤ κ

{
dΛ(F (z)) +

J∑

i=1

dΩi
(Gi(z),Hi(z))

}
∀z ∈ U, (3)

where Ωi := {(x, y)|Ki ∋ x ⊥ y ∈ Ki} is the mi-dimensional second-order cone complemen-
tarity set. The right hand side of the inequality (3) is a residual function, and hence the
existence of a local error bound enables us to use the residual to measure the distance from
a point z that is sufficiently close to z∗ to the solution set F . It is easy to verify that the
error bound property at z∗ is equivalent to the calmness of the set-valued mapping defined
by

F(α, β, γ) :=

{
z
∣∣∣ K ∋ (G(z) + α) ⊥ (H(z) + β) ∈ K
F (z) + γ ∈ Λ

}

at (0, 0, 0, z∗) ∈ gphF . Since F(0, 0, 0) = F , the solution to the second-order cone comple-
mentarity system, the set-valued map F(α, β, γ) is the perturbed solution mapping. Hence,
the calmness property is a Lipschitz-like property of the perturbed solution mapping: there
exist a constant κ > 0, U a neighborhood of z∗, W a neighborhood of (0, 0, 0) such that

F(α, β, γ) ∩ U ⊆ F + κ‖(α, β, γ)‖B̄ ∀(α, β, γ) ∈W.

For i = 1, . . . , J , it is easy to verify that

(x, y) ∈ Ωi ⇐⇒ x = ΠKi
(x− y), (4)

and the following inequality holds:

dΩi
(x, y) ≤

√
2‖x−ΠKi

(x− y)‖, ∀x, y ∈ R
mi ,

where ΠKi
(z) denotes the metric projection of z onto Ki. Therefore, if the error bound

property holds with the residual function dΛ(F (z))+
∑J

i=1 dΩi
(Gi(z),Hi(z)), then the error

bound property also holds with the natural residual function dΛ(F (z)) +
∑J

i=1 ‖Gi(z) −
ΠKi

(Gi(z)−Hi(z))‖.
The error bound property and equivalently the calmness property is a very important

property. One of the applications of such a property is the analysis of certain algorithms for
solving the second-order cone complementarity problem. In particular, it has recently been
discovered that the condition that is crucial to the quadratic convergence of the Newton-type
method is not the nonsingularity of the Jacobian per se, but rather one of its consequences–
the error bound property; see [10]. Another application is the constraint qualification for the
mathematical program with second-order cone complementarity constraints (SOC-MPCC);
see [36].
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Although the error bound property is an important property, there are very few results
on sufficient conditions for the existence of error bounds, and these results are abstract and
not easy to verify; see e.g. [9, 24, 26, 31, 32, 33] and references therein. One exception
is the case where all mappings F,G,H are affine, K is polyhedral and Λ is the union of
finitely many convex polyhedral sets. In this case, the local error bound property holds au-
tomatically following from Robinson’s result on polyhedral multifunctions [29]. This result,
however, depends crucially on the functions F,G,H being affine and the sets K,Λ being
polyhedral and the union of finitely many convex polyhedral sets, respectively. The second-
order cone, however, is not polyhedral when the dimension is larger than two, and so even
when all the mappings F,G,H are affine and the set Λ is the union of finitely many convex
polyhedral sets, the local error bound property may not hold without further assumptions if
one of the second-order cones Ki has dimension mi ≥ 3. Another easy to verify case is when
the gradient vectors ∇Gi(z∗)(i = 1, . . . ,m),∇Hi(z

∗)(i = 1, . . . ,m),∇Fi(z∗)(i = 1, . . . , l)
are linearly independent. But this condition is very strong.

The main goal of this paper is to provide a verifiable sufficient condition for the local error
bound property for the second-order cone complementarity system (1)-(2). Our condition
involves only the first-order and/or the second-order derivatives of the mappings F,G,H
at the point of interest, and is therefore efficiently checkable. The basis of our approach is
the sufficient conditions for metric subregularity recently developed by Gfrerer [12, 13, 14],
Gfrerer and Klatte [15], Gfrerer and Ye [16]. To use these results, we need to compute the
tangent cones and the directional normal cones to the second-order cone complementarity
set. These results, however, are of independent interest.

We summarize our main contributions as follows:

• We introduce a new concept of inner directional normal cone. A set is said to be
directionally regular if the inner directional normal cone coincides with the directional
normal cone. It describes the variational geometry of a set along some direction. The
directional regularity implies the geometrical derivability. In particular, we show that
a convex set is directionally regular. Some useful calculus rules for the directional
normal cone are derived.

• We establish exact expressions for the tangent cone and the directional normal cone of
the second-order cone complementarity set. Moreover we show that the second-order
cone complementarity set, which is nonconvex, is directionally regular, and hence
both the tangent cone and the directional normal cone commutes with the Cartesian
product of finitely many second-order cone complementarity sets.

• We give sufficient conditions for the existence of error bounds of the second-order
cone complementarity problems. These conditions are verifiable based on the initial
problem data.

We organize our paper as follows. Section 2 contains the preliminaries. In Section 3, we
study certain properties of the directional normal cone introduced by Gfrerer [13] and in
Section 4 we derive sufficient conditions for the error bound property of a general system
by using directional normal cones. Section 5 is devoted to the formula and the property of
the tangent cone to the second-order complementarity set. In Section 6, we derive the exact
expressions for the directional normal cone for the second-order cone complementarity set.
Finally in Section 7 we present sufficient conditions for error bounds of the second-order
cone complementarity system.
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The following notation will be used throughout the paper. We denote by I and O
the identity and zero matrix of appropriate dimensions respectively. For a matrix A, we
denote by AT its transpose. The inner product of two vectors x, y is denoted by xT y or
〈x, y〉. For any z ∈ R

n, we denote by ‖z‖ the Euclidean norm. For any nonzero vector
z ∈ R

n, the notation z̄ stands for the normalized vector z
‖z‖ . For a function g : Rn → R,

we denote g+(z) := max{0, g(z)}, and if it is vector-valued then the maximum is taken
componentwise. For z = (z1, z2) ∈ R × R

m−1, we write its reflection about the z1 axis as
ẑ := (z1,−z2). Denote by Rz the set {tz| t ∈ R}. R+z and R++z where R+ := [0,∞)
and R++ := (0,∞) are similarly defined. For a set C, denote by intC, clC, bdC, coC,
Cc its interior, closure, boundary, convex hull, and complement, respectively. The polar
cone of a set C is C◦ := {z|zT v ≤ 0,∀v ∈ C} and v◦ is the polar cone of a vector v. We
denote by dC(z) or d(z, C) the distance from z to C. Given a point z ∈ R

n and ε > 0,
Bε(z) denotes an open ball centered at z with radius ε while B and B̄ denote the open
and the closed unit ball center at the origin of an appropriate dimension, respectively. For
a differentiable mapping H : Rn → R

m and a vector z ∈ R
n, we denote by ∇H(z) the

Jacobian matrix of H at z. By o(·), we mean that o(α)/α → 0 as α → 0. For a set-valued
mapping Φ : R

n
⇒ R

m, the graph and domain of Φ are denoted by gphΦ and domΦ,
respectively, i.e., gphΦ := {(z, v) ∈ R

n × R
m | v ∈ Φ(z)} and domΦ := {z ∈ R

n |Φ(z) 6= ∅}.
Finally for any mapping ϕ : R

n → R
m, we denote the active index set at z∗ ∈ R

n by
Iϕ(z

∗) := {i ∈ {1, . . . ,m}|ϕi(z∗) = 0}. For simplification of notation, we may write Iϕ(z
∗)

as Iϕ, provided that there is no confusion in the context.

2 Preliminaries

In this section, we gather some preliminaries on variational analysis and second-order cone
which will be used in paper. Detailed discussions on these subjects can be found in [1, 6,
7, 22, 23, 30] and the papers we refer to.

2.1 Background in variational analysis

Let Φ : Rn ⇒ R
m be a set-valued mapping. We denote by lim supz′→z Φ(z

′) and lim infz′→z Φ(z
′)

the Painlevé-Kuratowski upper and lower limit, i.e.,

lim sup
z′→z

Φ(z) :=
{
v ∈ R

m
∣∣∣∃zk → z, vk → v with vk ∈ Φ(zk) ∀k

}
,

lim inf
z′→z

Φ(z) :=
{
v ∈ R

m
∣∣∣∀zk → z,∃vk → v with vk ∈ Φ(zk) ∀k

}
,

respectively.
Let C ⊆ R

n and z ∈ C. The tangent cone of C at z is a closed cone defined by

TC(z) := lim sup
t↓0

C − z

t
=

{
u ∈ R

n
∣∣∣ ∃ tk ↓ 0, uk → u with z + tkuk ∈ C ∀k

}
.

The inner tangent/derivable cone of C at z is defined by

T iC(z) := lim inf
t↓0

C − z

t
=

{
u ∈ R

n
∣∣∣ ∀tk ↓ 0,∃uk → u such that z + tkuk ∈ C ∀k

}
.
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The regular/Fréchet normal cone of C at z is defined by

N̂C(z) :=
{
v ∈ R

n | 〈v, z′ − z〉 ≤ o(‖z′ − z‖) ∀z′ ∈ C
}
.

The limiting/Mordukhovich normal cone is defined by

NC(z) := lim sup

z′
C
→z

N̂C(z
′) =

{
lim
i→∞

vi| vi ∈ N̂C(zi), zi
C→ z

}
.

Definition 2.1 We say that a set C is geometrically derivable at a point z ∈ C if the
tangent cone of C coincides with the inner tangent cone of C at z, i.e., TC(z) = T iC(z).

Let Φ : Rn ⇒ R
m be a set-valued mapping and (x, y) ∈ gphΦ. The regular coderivative

and the limiting/Mordukhovich coderivative of Φ at (x, y) are the set-valued mappings
defined by

D̂∗Φ(x, y)(v) :=
{
u ∈ R

n|(u,−v) ∈ N̂gphΦ(x, y)
}
,

D∗Φ(x, y)(v) :=
{
u ∈ R

n|(u,−v) ∈ NgphΦ(x, y)
}
,

respectively. We omit y in the coderivative notations if the set-valued map Φ is single-valued
at x.

For a single-valued mapping Φ : R
n → R

m, the B(ouligand)-subdifferential ∂BΦ is
defined as

∂BΦ(z) =

{
lim
k→∞

∇Φ(zk)| zk → z,Φ is differentiable at zk

}
.

If Φ is a continuously differentiable single-valued map, then

D̂∗Φ(z) = D∗Φ(z) = {∇Φ(z)T }.

2.2 Background in variational analysis associated with the second-order

cone

Let K be the m-dimensional second-order cone. The topological interior and the boundary
of K are

intK = {(x1, x2) ∈ R× R
m−1|x1 > ‖x2‖}, bdK = {(x1, x2) ∈ R× R

m−1|x1 = ‖x2‖},
respectively.

Proposition 2.1 (see e.g. [36, Proposition 2.2]) For any x, y ∈ bdK\{0}, the following
equivalence holds:

xT y = 0 ⇐⇒ y = kx̂ with k = y1/x1 > 0 ⇐⇒ y = kx̂ with k ∈ R++.

For any given nonzero vector z := (z1, z2) ∈ R× R
m−1, we denote by

c1(z) =
1

2
(1,−z̄2), c2(z) =

1

2
(1, z̄2)

the spectral vectors of z, where z̄2 is any vector w ∈ R
m−1 with ‖w‖ = 1 if z2 = 0.

For z ∈ R
m, let ΠK(z) be the metric projection of z onto K and Π′

K(z;h) the directional
derivative of ΠK at z in direction h. The following proposition summarizes its formula (see
[25, Lemma 2]).
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Proposition 2.2 Let K be the m-dimensional second-order cone. The mapping ΠK(·) is
directionally differentiable at any z ∈ R

m and for any h ∈ R
m,

(i) if z ∈ intK or z ∈ −intK or z ∈ (−K ∪K)c, then Π′
K(z;h) = ∇ΠK(z)h;

(ii) if z ∈ bdK \ {0}, then Π′
K(z;h) = h− 2(c1(z)

Th)−c1(z);

(iii) if z ∈ −bdK \ {0}, then Π′
K(z;h) = 2(c2(z)

Th)+c2(z);

(iv) if z = 0, then Π′
K(z;h) = ΠK(h).

The following proposition summarizes the regular and the limiting coderivatives of the
metric projection operator (see [25, Lemma 1 and Theorems 1 and 2]).

Proposition 2.3 Let K be the m-dimensional second-order cone.

(i) If z ∈ intK, then ΠK is differentiable and ∇ΠK(z) = I.

(ii) If z ∈ −intK, then ΠK is differentiable and ∇ΠK(z) = {O}.

(iii) If z ∈ (−K ∪ K)c, then ΠK is differentiable and

∇ΠK(z) =
1

2
(1 +

z1
‖z2‖

)I +
1

2

[
− z1

‖z2‖
z̄T2

z̄2 − z1
‖z2‖

z̄2z̄
T
2

]
.

(iv) If z ∈ bdK \ {0}, then

D̂∗ΠK(z)(u
∗) = {x∗|u∗ − x∗ ∈ R+c1(z), 〈x∗, c1(z)〉 ≥ 0},

D∗ΠK(z)(u
∗) = ∂BΠK(z)u

∗ ∪ {x∗|u∗ − x∗ ∈ R+c1(z), 〈x∗, c1(z)〉 ≥ 0},

and

∂BΠK(z) =

{
I, I +

1

2

[
−1 z̄T2
z̄2 −z̄2z̄T2

]}
.

(v) If z ∈ −bdK \ {0}, then

D̂∗ΠK(z)(u
∗) = {x∗|x∗ ∈ R+c2(z), 〈u∗ − x∗, c2(z)〉 ≥ 0},

D∗ΠK(z)(u
∗) = ∂BΠK(z)u

∗ ∪ {x∗|x∗ ∈ R+c2(z), 〈u∗ − x∗, c2(z)〉 ≥ 0},

and

∂BΠK(z) =

{
O,

1

2

[
1 z̄T2
z̄2 z̄2z̄

T
2

]}
.

(vi) If z = 0, then

D̂∗ΠK(z)(u
∗) = {x∗| x∗ ∈ K, u∗ − x∗ ∈ K}.

D∗ΠK(z)(u
∗) = ∂BΠK(0)u

∗ ∪ {x∗|x∗ ∈ K, u∗ − x∗ ∈ K}
∪

⋃

ξ∈C

{x∗|u∗ − x∗ ∈ R+ξ, 〈x∗, ξ〉 ≥ 0}

∪
⋃

η∈C

{x∗|x∗ ∈ R+η, 〈u∗ − x∗, η〉 ≥ 0},

6



where C := {1
2 (1, w)| w ∈ R

m−1, ‖w‖ = 1} and

∂BΠK(0) = {O, I}∪
{
1

2

[
1 wT

w 2αI + (1− 2α)wwT

]∣∣∣∣ w ∈ R
m−1, ‖w‖ = 1, α ∈ [0, 1]

}
.

Proposition 2.4 [37, Proposition 2.1] Let (x, y) ∈ Ω := {(x, y)|x ∈ K, y ∈ K, xT y = 0}.
Then

N̂Ω(x, y) =

{
(u, v)| − v ∈ D̂∗ΠK(x− y)(−u− v)

}
,

NΩ(x, y) =

{
(u, v)| − v ∈ D∗ΠK(x− y)(−u− v)

}
.

The exact formula of the regular normal cone and limiting normal cone of Ω have been
established in [37].

Proposition 2.5 [37, Theorem 3.1] Let (x, y) be in the m-dimensional second-order cone
complementarity set Ω. Then

N̂Ω(x, y) =





{(u, v)|u ∈ R
m, v = 0} if x = 0, y ∈ intK;

{(u, v)|u = 0, v ∈ R
m} if x ∈ intK, y = 0;

{(u, v)|u ⊥ x, v ⊥ y, x1û+ y1v ∈ Rx} if x, y ∈ bdK\{0}, xT y = 0;
{(u, v)|u ∈ ŷ◦, v ∈ R−ŷ} if x = 0, y ∈ bdK\{0};
{(u, v)|u ∈ R−x̂, v ∈ x̂◦} if x ∈ bdK\{0}, y = 0;
{(u, v)|u ∈ −K, v ∈ −K} if x = 0, y = 0.

Proposition 2.6 [37, Theorem 3.3] Let (x, y) be in the m-dimensional second-order cone
complementarity set Ω. Then

NΩ(x, y) = N̂Ω(x, y) =





{(u, v)|u ∈ R
m, v = 0} if x = 0, y ∈ intK;

{(u, v)|u = 0, v ∈ R
m} if x ∈ intK, y = 0;

{(u, v)|u ⊥ x, v ⊥ y, x1û+ y1v ∈ Rx} if x, y ∈ bdK\{0}.

For x = 0, y ∈ bdK\{0},

NΩ(x, y) = {(u, v)|u ∈ R
m, v = 0 or u ⊥ ŷ, v ∈ Rŷ or 〈u, ŷ〉 ≤ 0, v ∈ R−ŷ};

for x ∈ bdK\{0}, y = 0,

NΩ(x, y) = {(u, v)|u = 0, v ∈ R
m or u ∈ Rx̂, v ⊥ x̂ or u ∈ R−x̂, 〈v, x̂〉 ≤ 0};

for x = y = 0,

NΩ(x, y) = {(u, v)| u ∈ −K, v ∈ −K or u ∈ R
m, v = 0 or u = 0, v ∈ R

m

or u ∈ R−ξ, v ∈ ξ◦ or u ∈ ξ◦, v ∈ R−ξ

or u ⊥ ξ, v ⊥ ξ̂, αû+ (1− α)v ∈ Rξ, for some α ∈ [0, 1], ξ ∈ C}

where
C := {(1, w)| w ∈ R

m−1, ‖w‖ = 1}.
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3 Calculus for directional normal cones

Recently a directional version of the limiting normal cone was introduced by Gfrerer [13]
and used to derive sufficient conditions for metric subregularity, which form the basis for
our approach. Since calculus for the directional normal cone is very important and the
existing results are rather rare, in this section, we develop some calculus for the directional
normal cone. First, we recall the definition of a directional normal cone.

Definition 3.1 Given a set C ⊆ R
n, a point z ∈ C and a direction d ∈ R

n, the limiting
normal cone to C in direction d at z is defined by

NC(z; d) := lim sup
t↓0

d′→d

N̂C(z+td
′) =

{
v|∃tk ↓ 0, dk → d, vk → v with vk ∈ N̂C(z + tkdk), ∀k

}
.

We define the concept of the inner directional normal cone as follows.

Definition 3.2 Given a set C ⊆ R
n, a point z ∈ C and a direction d ∈ R

n, the inner
limiting normal cone to C in direction d at z is defined by

N i
C(z; d) :=

{
v| ∀tk → 0,∃dk → d, vk → v with vk ∈ N̂C(z + tkdk), ∀k

}
.

The following results follow from definition immediately.

Proposition 3.1 For any set C and any z ∈ C,

domNC(z; ·) = TC(z), domN i
C(z; ·) = T iC(z).

It is easy to see that N i
C(z; d) ⊆ NC(z; d) ⊆ NC(z) for any d and NC(z; 0) = NC(z).

Definition 3.3 Given a subset C in R
n and z ∈ C, d ∈ R

n, we say that the set C is regular
at z in direction d if

NC(z; d) = N i
C(z; d). (5)

If the above formula holds for all d, we say that C is directionally regular at z. If C is
directionally regular at any point z ∈ C, then we say that C is directionally regular.

It is clear that set C is regular in direction d for any d /∈ TC(z), since both sides of (5) are
empty in this case. It follows from Proposition 3.1 that the directional regularity implies
the geometric derivability.

Corollary 3.1 If the set C is directionally regular at z ∈ C, then C is geometrically deriv-
able at z ∈ C.

An important property of the limiting normal cone is that it commutes with the Carte-
sian product (see e.g. [23, Proposition 1.2]): for any sets A1, . . . , AI ,

NA1×···×AI
(z1, . . . , zI) = NA1(z1)× · · · ×NAI

(zI).

It is easy to verify that this property holds for the inner directional normal cones, i.e.,

N i
A1×···×AI

((z1, . . . , zI); (d1, . . . , dI)) = N i
A1

(z1; d1)× · · · ×N i
AI

(zI ; dI). (6)

For directional normal cones, this kind of property does not come free. Fortunately, it holds
under the directional regularity.
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Proposition 3.2 The inclusion

NA×B((x, y); (d,w)) ⊆ NA(x; d)×NB(y;w)

holds for any given sets A ⊆ R
n, B ⊆ R

m, any point (x, y) ∈ A × B, and any direction
(d,w) ∈ R

n × R
m. Moreover if either A is regular at x in direction d or B is regular at y

in direction w, then

NA×B((x, y); (d,w)) = NA(x; d)×NB(y;w).

If A and B are regular in directions d,w respectively, then A × B is regular in direction
(d,w).

Proof. Note that

NA×B((x, y); (d,w)) = lim sup
t↓0

(d′,w′)→(d,w)

N̂A×B

(
(x, y) + t(d′, w′)

)

= lim sup
t↓0

(d′,w′)→(d,w)

N̂A(x+ td′)× N̂B(y + tw′)

⊆ lim sup
t↓0

d′→d

N̂A(x+ td′)× lim sup
t↓0

w′→w

N̂B(y + tw′)

= NA(x; d) ×NB(y;w).

Conversely, take (p, q) ∈ NA(x; d)×NB(y;w). Without loss of generality, assume that A is
regular at x in direction d. Since q ∈ NB(y;w), there exists tn ↓ 0 and wn → w and qn → q
such that qn ∈ N̂B(y + tnwn). Since p ∈ NA(x; d) and A is regular at x in direction d, for
the above tn there exist dn → d and pn → p such that pn ∈ N̂A(x+ tndn). So

(pn, qn) ∈ N̂A(x+ tndn)× N̂B(y + tnwn) = N̂A×B((x, y) + tn(dn, wn)).

By definition, this means that (p, q) ∈ NA×B((x, y); (d,w)).
Now suppose that A and B are regular in direction d,w respectively. Then

NA×B((x, y); (d,w)) ⊆ NA(x; d)×NB(y;w)

= N i
A(x; d)×N i

B(y;w)

= N i
A×B((x, y); (d,w)).

Therefore A×B is regular in direction (d,w).

Proposition 3.3 Let (z1, . . . , zI) ∈ A1 × · · · ×AI and (d1, . . . , dI) be given. Then

TA1×···×AI
(z1, . . . , zI) ⊆ TA1(z1)× · · · × TAI

(zI), (7)

NA1×···×AI

(
(z1, . . . , zI); (d1, . . . , dI)

)
⊆ NA1(z1; d1)× · · · ×NAI

(zI ; dI), (8)

and equality holds if all except at most one of Ai for i = 1, . . . , I are directionally regular
at zi.
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Proof. By Corollary 3.1, the directional regularity implies the geometric derivability. Then
the tangent set formula follows from applying [16, Proposition 1]. The directional normal
cone formula follows from Proposition 3.2.

In the rest of this section we will study some calculus rule of the directional normal
cone, and in the mean time examine the directional regularity.

Proposition 3.4 If C ⊆ R
n is a closed cone, then

N i
C(0; d) = NC(0; d) = NC(d), ∀d ∈ R

n.

Proof. Since C is a cone, we have TC(0) = C. If d 6∈ C, then

N i
C(0; d) =NC(0; d) = NC(d) = ∅.

If d ∈ C, then

NC(0; d) = lim sup
t↓0

d′→d

N̂C(td
′) = lim sup

d′→d

N̂C(d
′) = NC(d).

Now we show that N i
C(0; d) = NC(0; d). It suffices to show NC(0; d) ⊆ N i

C(0; d). Take

v ∈ NC(0; d). Then there exists ηn ↓ 0 and dn → d and vn → v with vn ∈ N̂C(ηndn). For
any tn ↓ 0, take dn and vn above, then dn → d and vn → v with vn ∈ N̂C(ηndn) = N̂C(dn) =
N̂C(tndn). Hence v ∈ N i

C(0; d).

We next show that any convex set is regular along any direction.

Proposition 3.5 Any closed convex set A is directionally regular.

Proof. Since N i
A(z; d) ⊆ NA(z; d) for any z and d, it suffices to prove NA(z; d) ⊆ N i

A(z; d)
for any d ∈ TA(z). Take w ∈ NA(z; d) with d ∈ TA(z). Then there exists ηk ↓ 0, dk → d
and wk → w with wk ∈ N̂A(z + ηkdk). Since A is convex, it follows that

〈wk, z′ − z − ηkdk〉 ≤ 0, ∀z′ ∈ A. (9)

In particular, taking z′ = z in the above, we have

〈wk, dk〉 ≥ 0. (10)

Let tn ↓ 0. Then since ηk ↓ 0, for each fixed n, there exists k(n) satisfying k(n) ≥ n
and ηk(n) < tn. Hence k(n) → ∞ as n → ∞. For simplicity, denote by dn := dk(n) and
wn := wk(n). Since {dn} and {wn} are subsequences of {dk} and {wk} respectively, we have
dn → d and wn → w. Hence for all z′ ∈ A we have

〈wn, z′ − z − tndn〉 = 〈wk(n), z′ − z − tndk(n)〉
= 〈wk(n), z′ − z − ηk(n)dk(n)〉+ 〈wk(n), ηk(n)dk(n) − tndk(n)〉
≤ 〈wk(n), ηk(n)dk(n) − tndk(n)〉
≤ 0,

where the first inequality comes from (9) and the second inequality follows from (10). So
wn ∈ NA(z + tndn) = N̂A(z + tndn). By the definition of the inner limiting normal cone,
we have w ∈ N i

A(z; d). This completes the proof.

Based on (6), Propositions 3.3 and 3.5, we can obtain the following results.
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Corollary 3.2 Let Ai be given for i = 1, . . . , I.

(i) If Ai is regular at zi ∈ Ai in direction di for i = 1, . . . , I, then A1×· · ·×AI is regular
at (z1, . . . , zI) in direction (d1, . . . , dI). Moreover, (8) holds as an equation.

(ii) If Ai is directionally regular at zi ∈ Ai for i = 1, . . . , I, then A1 × · · · × AI is di-
rectionally regular at (z1, . . . , zI). Moreover (7) and (8) holds as an equation for all
di.

(iii) If Ai is closed and convex for i = 1, . . . , I, then A1 × · · · ×AI is directionally regular.
Moreover (7) and (8) holds as an equation for all zi ∈ Ai and di.

Corollary 3.2 (iii) extends the result given in [15, Lemma 1], where each Ai is assumed
to be a polyhedral convex set. In Section 6, we will show that the second-order cone
complementarity set, although it is a nonconvex set, is directionally regular.

4 Sufficient conditions for the error bound property via di-

rectional normal cones

Consider a general system in the form: P (z) ∈ D, where P : Rl → R
s and D ⊆ R

s is closed.
We say that the system P (z) ∈ D has a local error bound at z such that P (z) ∈ D, or the
set-valued mapping M(z) := P (z) −D is metrically subregular at (z, 0) ∈ gphM , if there
exist a neighborhood V of z and a positive number κ > 0 such that

dM−1(0)(z
′) ≤ κdD(P (z

′)), ∀z′ ∈ V.

It is easy to see that M is metrically subregular at (z, 0) if and only if its inverse set-valued
mapping M−1 is calm at (0, z) ∈ gphM−1, i.e., there exist a neighborhood W of 0, a
neighborhood V of z and a positive number κ > 0 such that

M−1(w) ∩ V ⊆M−1(0) + κ‖w‖B̄, ∀w ∈W.

The metric subregularity is obviously weaker than the metric regularity (or the pseudo
Lipschitz continuity) which ensures the existence of a neighborhoodW of 0, a neighborhood
V of z and a positive number κ > 0 such that

M−1(w) ∩ V ⊆M−1(w′) + κ‖w − w′‖B̄, ∀w,w′ ∈W.

While the term for the calmness of a set-valued map was first coined in [30], it was
introduced as the pseudo-upper Lipschitz continuity in [35], taking into the account that it
is weaker than both the pseudo-Lipschitz continuity of Aubin [2] and the upper Lipschitz
continuity of Robinson [27, 28]. More information and discussion on metric regularity and
the related concept can be found in [21].

Recall that the following well-known criteria for metric regularity of the set-valued map-
ping M or the Aubin property of its inverse mapping M−1(w) = {z ∈ R

l|P (z)−w ∈ D}.

Theorem 4.1 (see e.g. [30]) Consider the system P (z) ∈ D, where P is smooth and D
is closed. Then the set-valued map M(z) := P (z) −D is metrically regular at (z, 0) if and
only if the no nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at z,
i.e.,

∇P (z)Tλ = 0, λ ∈ ND(P (z)) =⇒ λ = 0. (11)
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While following [34], the condition (11) is called NNAMCQ, there are other terminologies
in the literature; e.g., generalized MFCQ (GMFCQ) in [11] and Mordukhovich criterion in
[15]. This condition is a necessary and sufficient condition for metric regularity and hence
may be too strong for metric subregularity.

By using the directional normal cone instead of the limiting normal cone, the following
sufficient conditions for metric subregularity have been introduced.

Theorem 4.2 ([15, Corollary 1]) Let P (z) ∈ D with P smooth. The set-valued mapping
M(z) := P (z)−D is metrically subregular at (z, 0) if the first-order sufficient condition for
metric subregularity (FOSCMS) holds: for every 0 6= w such that ∇P (z)w ∈ TD(P (z)) one
has

∇P (z)Tλ = 0, λ ∈ ND(P (z);∇P (z)w) =⇒ λ = 0.

Let us discuss the relation between FOSCMS and NNAMCQ. FOSCMS can be rewritten
equivalently as

∇P (z)Tλ = 0, λ ∈
⋃

w∈Γ

ND(P (z);∇P (z)w) =⇒ λ = 0, (12)

where Γ := {w 6= 0|∇P (z)w ∈ TD(P (z))}. Noth that FOSCMS holds automatically if
Γ = ∅, i.e.,

∇P (z)w ∈ TD(P (z)) =⇒ w = 0. (13)

According to the graphical derivative criterion for strong metric subregularity [8], condition
(13) is equivalent to saying that the set-valued map M(z) = P (z)−D is strongly metrically
subregular (or equivalently its inverse is isolatedly calm) at (z, 0).

Theorem 4.3 Let M(z) := P (z) −D and (z, 0) ∈ gphM . FOSCMS at z is equivalent to
NNAMCQ at z under one of the following assumptions:

(i) ∇P (z) does not have full column rank;

(ii) D is a closed and convex set and there exists w 6= 0 such that ∇P (z)w ∈ TD(P (z)).

Proof. (i). If ∇P (z) does not have full column rank, then there exists w̄ 6= 0 such that
∇P (z)w̄ = 0. So Γ 6= ∅. Since

ND(P (z);∇P (z)w̄) = ND(P (z); 0) = ND(P (z)),

we have ⋃

w∈Γ

ND(P (z);∇P (z)w) = ND(P (z)).

It follows that FOSCMS and NNAMCQ are equivalent by comparing the conditions (11)
and (12).

(ii). Suppose that D is a closed and convex set and there exists w 6= 0 such that
∇P (z)w ∈ TD(P (z)). Then FOSCMS means (12) holds. Since the directional normal cone is
in general a subset of the limiting normal cone, it is clear that NNAMCQ implies FOSCMS.
Conversely assume that FOSCMS holds. Take λ satisfying∇P (z)Tλ = 0 and λ ∈ ND(P (z)).
Note that 〈λ,∇P (z)w〉 = 〈∇P (z)Tλ,w〉 = 0. Hence λ ∈ ND(P (z)) ∩ (∇P (z)w)⊥, which
means that λ ∈ ND(P (z);∇P (z)w) by [14, Lemma 2.1]. The FOSCMS at z then ensures
λ = 0. Hence NNAMCQ holds at z.
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Remark 4.1 The assumptions (i) or (ii) given in Theorem 4.3 cannot be omitted. For
example, when ∇P (z) has full column rank and D is nonconvex with Γ 6= ∅, FOSCMS may
be strictly weaker than NNAMCQ; see Example 4.1 below.

Example 4.1 Consider the optimization problem:

min z1 + z2
s.t. (z1, z2) ∈ K

(z1, z2) ∈ Ω,

where K := {(z1, z2) ∈ R
2|z1 ≥ |z2|} and Ω := {(z1, z2) ∈ R

2|z1 ≥ 0, z2 ≥ 0, z1z2 = 0}.
Denote by P (z) = (z, z) and D = K × Ω. The optimal solution is z∗ = (0, 0). It is clear
that

{w 6= 0|∇P (z∗)w ∈ TD(P (z
∗))} = {w 6= 0|(w,w) ∈ D} = {(w1, w2)|w1 > 0, w2 = 0},

∇P (z∗) has a full column rank and D is nonconvex. By virtue of Proposition 3.4, since D
is a cone we have ND((0, 0);∇P (z∗)w) = ND(∇P (z∗)w), and hence the condition

∇P (z∗)Tλ = 0, λ ∈ ND(P (z
∗);∇P (z∗)w) = ND(∇P (z∗)w) = NK(w1, w2)×NΩ(w1, w2)

with w1 > 0, w2 = 0 takes the form

λK + λΩ = 0, (λK, λΩ) ∈ {(0, 0)} × ({0} ×R),

which implies that (λK, λΩ) = (0, 0). Hence FOSCMS holds at z∗.
On the other hand,

∇P (z∗)Tλ = 0, λ = (λK, λΩ) ∈ ND(P (z
∗))

takes the form
λK + λΩ = 0, (λK, λΩ) ∈ −K ×NΩ(0, 0).

Take λK = (−1, 0) and λG = (1, 0). Then λK ∈ −K and λΩ ∈ NΩ(0, 0). Hence NNAMCQ
does not hold at z∗.

It is interesting to note that each of the set-valued mappings for the two split systems
M1(z) := (z1, z2)−K and M2(z) := (z1, z2)−Ω are both metrically regular at (z∗, 0), but the
one for the whole system M(z) = (z, z)−K×Ω is only metrically subregular (not metrically
regular) at (z∗, 0).

In many situations, the constraint system P (z) ∈ D can be split into subsystems P1(z) ∈
D1, P2(z) ∈ D2 such that one subsystem can be checked to have error bound property easily.
In Klatte and Kummer [21, Theorem 2.5], it is shown that if both M−1

1 and M−1
2 are calm

at (0, z∗) and M2 is pseudo-Lipschitz continuous at (z∗, 0), then checking the calmness of
the intersection M−1(α, β) := M−1

1 (α) ∩M−1
2 (β) at (0, 0, z∗) can be reduced to checking

the calmness of H(β) := M−1
1 (0)∩M−1

2 (β) at (0, z∗). In Example 4.1, both M−1
1 and M−1

2

are calm at (0, z∗) and M2 can be checked to be pseudo-Lipschitz continuous at (z∗, 0) by
using Mordukhovich criterion, and H(β) = {z|z ∈ K, z − β ∈ Ω} is calm at (0, z∗) as a
polyhedral multifunction. This ensures the calmness of M−1, or equivalently, the metric
subregularity of the whole system M(z) = P (z)−D.

In [16, Theorem 2], the first order sufficient condition for metric subregularity for a
split system with product of two sets is given. When one of the subsystem is known to be
metrically subregular, the condition given in [16, Theorem 2] is completely verifiable using
the initial data of the problem. We now extend this result to the product of finitely many
sets.
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Theorem 4.4 Let P (z∗) ∈ D and assume that P and D can be written in the form

P (z) = (P1(z), P2(z), . . . , PI(z)), D = D1 ×D2 × · · · ×DI ,

where Pi : R
n → R

si are smooth and Di ⊆ R
si, i = 1, 2, . . . , I, are closed such that the

set-valued map M1(z) := P1(z)−D1 is metrically subregular at (z∗, 0). Further assume that
for every 0 6= w such that ∇Pi(z∗)w ∈ TDi

(Pi(z
∗)), i = 1, 2, . . . , I, one has

∇P1(z
∗)Tλ1 +

I∑

i=2

∇Pi(z∗)Tλi = 0,

λi ∈ NDi
(Pi(z

∗);∇Pi(z∗)w) ∀i = 1, 2, . . . , I





=⇒ λi = 0 ∀i = 2, . . . , I. (14)

Then the set-valued mapping M(z) := P (z)−D is metrically subregular at (z∗, 0). Moreover,
if all Di except at most D1 are directionally regular at Pi(z

∗), then (14) is equivalent to that
for every w 6= 0 such that ∇P (z∗)w ∈ TD(P (z

∗)), one has





∇P1(z
∗)Tλ1 +

I∑

i=2

∇Pi(z∗)Tλi = 0,

λ1 ∈ ND1(P1(z
∗);∇P1(z

∗)w),
(λ2, . . . , λI) ∈ ND2×···×DI

(
(P2(z

∗), . . . , PI(z
∗));∇P2(z

∗)w, . . . ,∇PI(z∗)w
)

(15)

=⇒ λi = 0 ∀i = 2, . . . , I.

Proof. Let w 6= 0 satisfying ∇P (z∗)w ∈ TD(P (z
∗)) such that (15) holds. Then by

Proposition 3.3, we have ∇Pi(z∗)w ∈ TDi
(Pi(z

∗)), and λi ∈ NDi
(Pi(z

∗);∇Pi(z∗)w) for
i = 1, 2, . . . , I. Since (14) holds at z∗, it follows that λi = 0 for i = 2, . . . , I. Applying
[16, Theorem 2], we have that the set-valued mapping M(z) := P (z) − D is metrically
subregular at (z∗, 0). Moreover suppose that all Di except at most D1 are directionally
regular at Pi(z

∗). Then by Proposition 3.3,

TD(P (z
∗)) = TD1(P1(z

∗))× · · · × TDI
(PI(z

∗)),

ND2×···×DI

(
(P2(z

∗), . . . , PI(z
∗));∇P2(z

∗)w, . . . ,∇PI(z∗)w
)

= ND2(P2(z
∗);∇P2(z

∗)w) × · · · ×NDI
(PI(z

∗);∇PI(z∗)w),

and hence the two conditions are equivalent.

5 Expressions for tangent cones

In order to use the sufficient conditions for metric subregularity in terms of directional nor-
mal cones, one needs to derive the formula for the tangent cone involved. In this section we
derive the exact expressions for the tangent cone of the second-order cone complementarity
set. Moreover we show that it is geometrically derivable.

The following formula for the tangent cone of the second-order cone is well-known.

Proposition 5.1 [3, Lemma 25] Let K be the m-dimensional second-order cone.

TK(x) =





R
m if x ∈ intK

K if x = 0
d ∈ R

m : −d1 + x̄T2 d2 ≤ 0 if x ∈ bdK \ {0}



 .
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Let K be the m-dimensional second-order cone and

Ω = {(x, y) | K ∋ x ⊥ y ∈ K} (16)

be the corresponding second-order cone complementarity set. In what follows we show that
the set Ω is geometrically derivable and give a characterization in terms of the metric pro-
jection operator. The characterization of the tangent cone was also given in [20, Proposition
3.1].

Proposition 5.2 The set Ω is geometrically derivable, and for any (x, y) ∈ Ω,

TΩ(x, y) = T iΩ(x, y) =
{
(d,w) |Π′

K(x− y; d− w) = d
}
.

Proof. Since T iΩ(x, y) ⊆ TΩ(x, y), it suffices to prove

TΩ(x, y) ⊆ Υ(x, y) ⊆ T iΩ(x, y),

where Υ(x, y) := {(d,w) |Π′
K(x− y; d− w) = d}. Take (d,w) ∈ TΩ(x, y). Then by defini-

tion, there exist tn ↓ 0 and (dn, wn) → (d,w) such that (x, y) + tn(dn, wn) ∈ Ω. By (4), we
have

ΠK(x+ tndn − y − tnwn) = x+ tndn = ΠK(x− y) + tndn.

Hence

Π′
K(x− y; d− w) = lim

tn↓0

ΠK(x+ tndn − y − tnwn)−ΠK(x− y)

tn
= d.

Therefore TΩ(x, y) ⊆ Υ(x, y). Now take (d,w) ∈ Υ(x, y). Then for any given tn ↓ 0

ΠK(x− y + tn(d− w))−ΠK(x− y) = tnΠ
′
K(x− y; d− w) + o(tn) = tnd+ o(tn),

i.e.,
ΠK(x− y + tn(d− w)) = ΠK(x− y) + tnd+ o(tn).

Hence
(
ΠK(x− y) + tnd+ o(tn),ΠK(x− y) + tnd+ o(tn)− (x− y + tn(d− w))

)
∈ Ω

⇐⇒
(
x+ tnd+ o(tn), y + tnw + o(tn)

)
∈ Ω.

This means (d,w) ∈ lim inf
tn↓0

Ω− (x, y)

tn
. Hence Υ(x, y) ⊆ T iΩ(x, y).

With the above result, an explicit expression of tangent cone TΩ is also given in [20,
Theorem 3.1]. However, in that explicit formula, for the case where x − y /∈ K ∪ K◦, the
directional derivative of the projection operator is involved. In the hope that only the
initial data on x, y is used, we next provide another explicit expression for TΩ(x, y) without
involving Π′

K(x− y).
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Theorem 5.1 Let Ω be defined as in (16). Then for any (x, y) ∈ Ω,

T iΩ(x, y) = TΩ(x, y)

=





(d,w)

∣∣∣∣∣∣∣∣∣∣∣∣

d = 0, w ∈ R
m, if x = 0, y ∈ intK;

d ∈ R
m, w = 0, if x ∈ intK, y = 0;

x1ŵ − y1d ∈ Rx, d ⊥ y, w ⊥ x, if x, y ∈ bdK\{0};
d = 0, w ∈ TK(y) or d ∈ R+ŷ, w ⊥ ŷ, if x = 0, y ∈ bdK\{0};
d ∈ TK(x), w = 0 or d ⊥ x̂ , w ∈ R+x̂, if x ∈ bdK\{0}, y = 0;
d ∈ K, w ∈ K, d ⊥ w, if x = 0, y = 0.





.

Proof. Note that ΠK(x−y) is continuously differentiable at x−y, provided that x = 0 and
y ∈ intK, or x ∈ intK and y = 0, or x, y ∈ bdK\{0} with xT y = 0. Hence D∗ΠK(x− y) =
∇ΠK(x− y) in the above cases, which in turn implies

Π′
K(x− y; d− w) = d ⇐⇒ D∗ΠK(x− y)(d− w) = d ⇐⇒ (w,−d) ∈ NΩ(x, y),

where the second equivalence is due to Proposition 2.4. By the expression of the limiting
normal cone in Proposition 2.6, we have the following conclusions.

Case 1: If x = 0 and y ∈ intK, then w ∈ R
m and d = 0.

Case 2: If x ∈ intK and y = 0, then d ∈ R
m and w = 0.

Case 3: If x, y ∈ bdK\{0} with xT y = 0, then

x1ŵ − y1d ∈ Rx, d ⊥ y, w ⊥ x.

Case 4: If x = 0 and y ∈ bdK\{0}, since by Proposition 5.2, (d,w) ∈ TΩ(x, y) is equivalent
to saying that Π′

K(x− y; d−w) = d. According to the formula of directional derivative for
ΠK in Proposition 2.2(iii), we have (d,w) ∈ TΩ(x, y) if and only if

1

2

(
d1 − w1 − ȳT2 d2 + ȳT2 w2

)

+

[
1

−ȳ2

]
=

[
d1
d2

]
. (17)

We now claim that the set of solutions to equation (17) is

{
(d,w) | d = 0, w ∈ TK(y) or d ∈ R+ŷ, w ⊥ ŷ

}
. (18)

By definition of the tangent cone, (d,w) ∈ TΩ(x, y) if and only if there exists (dn, wn) →
(d,w) and tn → 0 with tn ≥ 0 satisfying (tndn, y + tnwn) = (x, y) + tn(dn, wn) ∈ Ω, i.e.,

tndn ∈ K, y + tnwn ∈ K, tndn ⊥ y + tnwn,

which implies
d ∈ K, w ∈ TK(y), d ⊥ y.

Note that d ∈ K and 〈y, d〉 = 0 implies that either d = 0 or d ∈ R++ŷ. If d = 0, then (17)
takes the form as

1

2

(
− w1 + ȳT2 w2

)

+

[
1

−ȳ2

]
=

[
0
0

]
,

16



which implies −w1 + ȳT2 w2 ≤ 0, i.e., w ∈ TK(y) by the formula of tangent cone of K in
Proposition 5.1. If d ∈ R++ŷ, then d = τ ŷ = τ(y1,−y2) for some τ > 0. Hence

ȳT2 d2 = ȳT2 (−τy2) = −τ‖y2‖ = −τy1 = −d1.

It then follows from (17) that

d1 =
1

2

(
d1 − w1 − ȳT2 d2 + ȳT2 w2

)

+

=
1

2

(
2d1 − w1 + ȳT2 w2

)

+

,

which implies −w1 + ȳT2 w2 = 0, i.e., w ⊥ ŷ. Thus, (d,w) satisfies (18).
Conversely, if d = 0 and w ∈ TK(y), then −w1+ ȳ

T
2 w2 ≤ 0 by Proposition 5.1, and hence

(d1 − w1 − ȳT2 d2 + ȳT2 w2)+ = (−w1 + ȳT2 w2)+ = 0,

which implies that (17) holds, i.e., (d,w) ∈ TΩ(x, y). For the other case, if d ∈ R++ŷ and
w ⊥ ŷ, then d = τ ŷ for some τ > 0 and w1 = ȳT2 w2. Therefore

1

2

(
d1 − w1 − ȳT2 d2 + ȳT2 w2

)

+

[
1

−ȳ2

]
=

1

2

(
d1 − ȳT2 d2

)

+

[
1

−ȳ2

]

= d1

[
1

−ȳ2

]

=

[
d1
d2

]
,

where the second equation is due to d1 − ȳT2 d2 = d1 + τ ȳT2 y2 = d1 + τ‖y2‖ = d1 + τy1 = 2d1
and the third equation comes from −d1ȳ2 = −τy1ȳ2 = −τy2 = d2. This means that (17)
holds, i.e., (d,w) ∈ TΩ(x, y). In summary, we have shown that

TΩ(x, y) =
{
(d,w)

∣∣ d = 0, w ∈ TK(y) or d ∈ R+ŷ, w ⊥ ŷ
}
.

Case 5: If x ∈ bdK\{0} and y = 0, by symmetry to Case 4, we have

TΩ(x, y) =
{
(d,w)

∣∣ d ∈ TK(x), w = 0 or d ⊥ x̂, w ∈ R+x̂
}
.

Case 6: If x = 0 and y = 0, then Π′
K(0;h) = ΠK(h) by Proposition 2.2(iv). It follows from

Proposition 5.2 that

(d,w) ∈ TΩ(x, y) ⇐⇒ ΠK(d− w) = d ⇐⇒ −w ∈ NK(d) ⇐⇒ (d,w) ∈ Ω,

i.e., TΩ(x, y) = Ω. In fact, this case can also be obtained by noting that Ω is a cone.

When m = 1, 2, the tangent cone TΩ have simpler expression given below. For example,
when m = 1, the second-order cone complementarity set Ω is reduced to the vector comple-
mentarity set {(a, b) ∈ R

2|a ≥ 0, b ≥ 0, ab = 0}, and hence bdK\{0} is empty; when m = 2,
the condition x1ŵ − y1d ∈ Rx can be dropped.
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Corollary 5.1 Let Ω be defined as in (16). If m = 1, then

TΩ(x, y) =



(d,w)

∣∣∣∣∣∣

d = 0, if x = 0, y > 0
w = 0, if x > 0, y = 0
d ≥ 0, w ≥ 0, d ⊥ w, if x = 0, y = 0



 .

If m = 2, then

TΩ(x, y) =





(d,w)

∣∣∣∣∣∣∣∣∣∣∣∣

d = 0, w ∈ R
2, if x = 0, y ∈ intK

d ∈ R
2, w = 0, if x ∈ intK, y = 0

d ⊥ y, w ⊥ x, if x, y ∈ bdK\{0}
d = 0, w ∈ TK(y) or d ∈ R+ŷ, w ⊥ ŷ, if x = 0, y ∈ bdK\{0}
d ∈ TK(x), w = 0 or d ⊥ x̂ , w ∈ R+x̂, if x ∈ bdK\{0}, y = 0
d ∈ K, w ∈ K, d ⊥ w, if x = 0, y = 0





.

Proof. If m = 1, then K = R+, and hence bdK\{0} = ∅. Thus the desired result follows.

If m = 2, we show that the condition x1ŵ − y1d ∈ Rx is implied by d ⊥ y and w ⊥ x in
the case of x, y ∈ bdK\{0} and xT y = 0. In fact, if x1 = x2 > 0, then y1 = −y2, and hence
w1 + w2 = 0 and d1 − d2 = 0. Thus

x1

[
w1

−w2

]
− y1

[
d1
d2

]
= x1

[
w1

w1

]
− y1

[
d1
d1

]
=
x1w1 − y1d1

x1

[
x1
x2

]
.

Similarly, if x1 = −x2, then y1 = y2, and hence d1 + d2 = 0 and w1 − w2 = 0. Thus

x1

[
w1

−w2

]
− y1

[
d1
d2

]
= x1

[
w1

−w1

]
− y1

[
d1
−d1

]
=
x1w1 − y1d1

x1

[
x1
−x1

]
=
x1w1 − y1d1

x1

[
x1
x2

]
.

6 Expressions for directional normal cones

In order to use FOSCMS for the second-order cone complementarity system, one needs to
derive the exact formula for the directional normal cone of the second-order cone comple-
mentarity set. Moreover these results are of their own interest.

By formulating the vector complementarity set as the union of finitely many polyhedral
convex sets, the formula of the directional normal cone of the vector complementarity set is
given in [14, Lemma 4.1]. In contrast to the vector complementarity set, the second-order
cone complementarity set cannot be represented as the union of finitely many polyhedral
convex sets. In the following theorem we derive an explicit expression for the directional
normal cone for the m-dimensional second-order cone complementarity set Ω defined as in
(16). Note that in the case where m = 1, bdK\{0} = ∅ and hence the formula we derived
reduced to the one given in [14, Lemma 4.1] for this case.

Theorem 6.1 The second-order cone complementarity set is directionally regular. For any
(x, y) ∈ Ω and (d,w) ∈ TΩ(x, y) = T iΩ(x, y), the directional normal cone can be calculated
as follows.
Case 1: x = 0, y ∈ intK,

NΩ

(
(x, y); (d,w)

)
= NΩ(x, y) = R

m × {0}.
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Case 2: x ∈ intK, y = 0,

NΩ

(
(x, y); (d,w)

)
= NΩ(x, y) = {0} × R

m.

Case 3: x, y ∈ bdK\{0},
NΩ

(
(x, y); (d,w)

)
= NΩ(x, y).

Case 4: x ∈ bdK\{0}, y = 0,

NΩ

(
(x, y); (d,w)

)
=



(u, v)

∣∣∣∣∣∣

u = 0, v ∈ R
m if d ∈ intTK(x), w = 0

NΩ(x, y) if d ∈ bdTK(x), w = 0
u ∈ Rx̂, v ⊥ x̂ if d ⊥ x̂, w ∈ R+x̂\{0}



 .

Case 5: x = 0, y ∈ bdK\{0},

NΩ

(
(x, y); (d,w)

)
=



(u, v)

∣∣∣∣∣∣

u ∈ R
m, v = 0 if d = 0, w ∈ intTK(x)

NΩ(x, y) if d = 0, w ∈ bdTK(x)
v ∈ Rŷ, u ⊥ ŷ if d ∈ R+ŷ\{0}, w ⊥ ŷ



 .

Case 6: x = 0, y = 0,
NΩ

(
(x, y); (d,w)

)
= NΩ(d,w).

Here the formula of the tangent cone and the normal cone of Ω are given as in Theorem
5.1 and Proposition 2.6 respectively.

Proof. In Cases 1-3, since it always has

N i
Ω

(
(x, y); (d,w)

)
⊆ NΩ

(
(x, y); (d,w)

)
⊆ NΩ(x, y),

it suffices to show that
NΩ(x, y) ⊆ N i

Ω

(
(x, y); (d,w)

)
. (19)

For any (u, v) ∈ NΩ(x, y), in order to show that (u, v) ∈ N i
Ω

(
(x, y); (d,w)

)
, for any sequences

tn ↓ 0, we need to find (dn, wn) → (d,w) and (un, vn) → (u, v) satisfying (un, vn) ∈
N̂Ω(x+ tnd

n, y + tnw
n).

Case 1. x = 0, y ∈ intK. Since (u, v) ∈ NΩ(x, y), (d,w) ∈ TΩ(x, y), then by Theorem 5.1,
d = 0, w ∈ R

m and by Proposition 2.6, u ∈ R
m, v = 0. By letting

(un, vn) := (u, v) = (u, 0) and (dn, wn) := (d,w) = (0, w),

we have y + tnw
n ∈ intK for n sufficiently large, and hence

(un, vn) = (u, 0) ∈ N̂Ω(0, y + tnw) = N̂Ω(x+ tnd
n, y + tnw

n).

Hence (19) holds.
Case 2. x ∈ intK, y = 0. This case is symmetric to Case 1 and we omit the proof.
Case 3. x, y ∈ bdK\{0}. Then x− y ∈ (−K ∪ K)c. Since (d,w) ∈ TΩ(x, y) = T iΩ(x, y), by
definition of the inner tangent cone, for any tn ↓ 0, there exists (dn, wn) → (d,w) such that
(x, y) + tn(d

n, wn) ∈ Ω. We now construct a sequence (un, vn) such that (un, vn) → (u, v)
and (un, vn) ∈ N̂Ω(x+ tnd

n, y + tnw
n). By Proposition 2.1, y = kx̂ with k = y1/x1. Hence

x1 − y1 = (1− k)x1, x2 − y2 = (1 + k)x2. By Proposition 2.3(iii), the metric projection ΠK

is differentiable at x− y and

∇ΠK(x− y) =
1

2

[
1 x̄T2
x̄2 I + 1−k

1+k (I − x̄2x̄
T
2 )

]
=

1

2

{[
1 x̄T2
x̄T2 I

]
+

1− k

1 + k

[
0 0
0 I − x̄2x̄

T
2

]}
.
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By [4, Lemma 1], the eigenvalue values of the matrix are 0, 1 and 1/1 + k with multiplicity
n− 2 .

Case 3(i): If k 6= 1, then the eigenvalue of the matrix I − 2∇ΠK(x − y) is 1,−1, k−1
k+1 .

So I − 2∇ΠK(x − y) is invertible. Since ΠK is continuously differentiable at x − y, I −
2∇ΠK(x+ tnd

n − y − tnw
n) is also invertible for sufficiently large n. Let

α(n) :=

(
I−2∇ΠK(x+tnd

n−y−tnwn)
)−1(

∇ΠK(x+tnd
n−y−tnwn)−∇ΠK(x−y)

)
(−u−v).

Then α(n) → 0 as n→ ∞. Note that

(
I − 2∇ΠK(x+ tnd

n − y − tnw
n)

)
α(n) =

(
∇ΠK(x+ tnd

n − y − tnw
n)−∇ΠK(x− y)

)
(−u− v)

i.e.,

α(n)

=

(
∇ΠK(x+ tnd

n − y − tnw
n)−∇ΠK(x− y)

)
(−u− v) + 2∇ΠK(x+ tnd

n − y − tnw
n)α(n)

= ∇ΠK(x+ tnd
n − y − tnw

n)(−u− v + 2α(n)) −∇ΠK(x− y)(−u− v)

= ∇ΠK(x+ tnd
n − y − tnw

n)(−u− v + 2α(n)) − (−v),

where the last step is due to −v = ∇ΠK(x−y)(−u−v) since (u, v) ∈ NΩ(x, y) by Proposition
2.4. Hence

−v + α(n) = ∇ΠK(x+ tnd
n − y − tnw

n)(−u+ α(n)− v + α(n)).

Let (un, vn) := (u− α(n), v − α(n)). Then

(un, vn) → (u, v) and − vn ∈ D̂∗ΠK(x+ tnd
n − y − tnw

n)(−un − vn).

By Proposition 2.4 (un, vn) ∈ N̂Ω(x+ tnd
n, y + tnw

n). Hence (19) holds.
Case 3(ii): If k = 1, then the eigenvalue of I − 2∇ΠK(x − y) is 1,−1, k−1

k+1 = 0 and
hence the matrix I − 2∇ΠK(x − y) is not invertible and the construction of (un, vn) in
case 3(i) fails. Note that in this case the eigenvalue of the matrix I − 3∇ΠK(x − y) is
1,−2,−1

2 . So I − 3∇ΠK(x − y) has inverse. We then construct the sequence by taking
(un, vn) := (u− 2α(n), v − α(n)) with

α(n) :=

(
I−3∇ΠK(x+tnd

n−y−tnwn)
)−1(

∇ΠK(x+tnd
n−y−tnwn)−∇ΠK(x−y)

)
(−u−v),

and the desired result follows similarly.
Case 4. x ∈ bdK\{0} and y = 0. Since (d,w) ∈ TΩ(x, y), by Theorem 5.1, there are three
possible cases: w = 0, d ∈ intTK(x), w = 0, d ∈ bdTK(x), or d ⊥ x̂, w ∈ R+x̂ \ {0}.

Subcase 4.1. w = 0 and d ∈ intTK(x). Since (d,w) ∈ TΩ(x, y) = T iΩ(x, y), then for
any tn ↓ 0, there exists (dn, wn) → (d,w) such that (x, y) + tn(d

n, wn) ∈ Ω. In this case
x̄T2 d2− d1 < 0. Hence ‖x2+ tndn2‖ = ‖x2‖+ tnx̄T2 dn2 + o(tn) < x1+ tnd

n
1 for sufficiently large

n. So x+ tnd
n ∈ intK. It follows that

N̂Ω

(
x+ tnd

n, tnw
n
)
= {(u, v)|u = 0, v ∈ R

m}.
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Hence
NΩ((x, y); (d, 0)) = N i

Ω((x, y); (d, 0)) = {(u, v)|u = 0, v ∈ R
m}.

Subcase 4.2. w = 0 and d ∈ bdTK(x). In this case, it suffices to show

NΩ(x, y) ⊆ N i
Ω

(
(x, y); (d,w)

)
.

By Proposition 2.6, for any (u, v) ∈ NΩ(x, y), there are three possible cases: u = 0, v ∈ R
m

or u ∈ Rx̂, v ⊥ x̂ or u ∈ R−x̂, 〈v, x̂〉 ≤ 0.
Subcase 4.2(i). u = 0 and v ∈ R

m. Since d ∈ bdTK(x), we have x1d1 − xT2 d2 = 0 by the

formula for the tangent cone. For tn ↓ 0, let η(tn) := ‖x2 + tnd2‖−‖x2‖− tnx̄
T
2 d2, w

n := 0,
and

dn :=

{
(d1 + 2|η(tn)|/tn, d2), if η(tn) 6= 0
(d1 + tn, d2), otherwise.

If η(tn) 6= 0, then

x1 + tnd
n
1 = x1 + tnd1 + 2|η(tn)| > ‖x2‖+ tnx̄

T
2 d2 + η(tn) = ‖x2 + tnd

n
2‖;

otherwise

x1 + tnd
n
1 = x1 + tnd1 + t2n = ‖x2‖+ tnx̄

T
2 d2 + t2n > ‖x2 + tnd2‖.

Hence x + tnd
n ∈ intK and y + tnw

n = 0. This ensures (u, v) ∈ N̂Ω(x + tnd
n, 0) =

N̂Ω(x+ tnd
n, y + tnw

n). So (u, v) ∈ N i
Ω((x, y); (d,w)).

Subcase 4.2(ii). u ∈ Rx̂ and v ⊥ x̂. In this case, u2 = −u1x̄2 and v1 − x̄T2 v2 = 0. This is
equivalent to

{
u1 = v1 − x̄T2 (u2 + v2)
u2 = −u1x̄2

⇐⇒
{
u1 = v1 − x̄T2 (u2 + v2)
2u2 = −(u1 + v1)x̄2 + (v1 − u1)x̄2

⇐⇒
{
u1 = v1 − x̄T2 (u2 + v2)
2u2 = −(u1 + v1)x̄2 + (u2 + v2)

T x̄2x̄2

⇐⇒ 2u =

[
1 −x̄T2

−x̄2 x̄2x̄
T
2

]
(u+ v)

⇐⇒ v =

(
I +

1

2

[
−1 x̄T2
x̄2 −x̄2x̄T2

])
(u+ v).

The following argument is similar to Case 3. Let

M := I +
1

2

[
−1 x̄T2
x̄2 −x̄2x̄T2

]
.

First note that I − 2M = −I+
[

1 −x̄T2
−x̄2 x̄2x̄

T
2

]
has the eigenvalue 1 and −1 with multiplicity

n− 1. Hence it is invertible. For any tn ↓ 0, take dn = (dn1 , d
n
2 ) with

dn1 :=
‖x2 + tnd2‖ − ‖x2‖

tn
, dn2 := d2, and w

n := tn(x̂+ tnd̂n).
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So dn → d and wn → 0. Then (x + tnd
n, tnw

n) ∈ Ω with x + tnd
n, tnw

n ∈ bdK\{0}. Let
zn := x+ tnd

n − tnw
n. Then zn → x and

∇ΠK(z
n) = I +

1

2


 −1

(zn2 )
T

‖zn2 ‖
zn2

‖zn2 ‖
−I + zn1

‖zn2 ‖
(I − zn2

‖zn2 ‖
(zn2 )

T

‖zn2 ‖
)


 −→ I +

1

2

[
−1 x̄T2
x̄2 −x̄2x̄T2

]
=M.

Hence I − 2∇ΠK(x+ tnd
n − tnw

n) is inverse as n is large enough. Let

α(n) :=

(
I − 2∇ΠK(x+ tnd

n − tnw
n)

)−1(
∇ΠK(x+ tnd

n − tnw
n)−M

)
(−u− v).

Then
(
I − 2∇ΠK(x+ tnd

n − tnw
n)

)
α(n) =

(
∇ΠK(x+ tnd

n − tnw
n)−M

)
(−u− v).

Hence

α(n) = (∇ΠK(x+ tnd
n − tnw

n)−M)(−u− v) + 2∇ΠK(x+ tnd
n − tnw

n)α(n)

= ∇ΠK(x+ tnd
n − tnw

n)(−u+ α(n)− v + α(n))−M(−u− v).

This together with v =M(u+ v) yields

−v + α(n) = D∗ΠK(x+ tnd
n − tnw

n)(−u+ α(n)− v + α(n)).

So (u− α(n), v − α(n)) ∈ N̂Ω(x+ tnd
n, y + tnw

n). Thus (u, v) ∈ N i
Ω((x, y); (d,w)).

Subcase 4.2(iii). u ∈ R−x̂ and 〈v, x̂〉 ≤ 0. For any tn ↓ 0, let wn := 0 and dn = (dn1 , d
n
2 )

with dn1 := ‖x2+tnd2‖−x1
tn

and dn2 := d2. Then dn → d, wn → w, and x + tnd
n ∈ bdK\{0}.

Let zn := x̂+ tnd̂n and

un :=
u1
x1
zn and vn := v − tn

〈v̂, dn〉
‖zn‖

zn

‖zn‖ .

Then vn → v and un → u1
x1
x̂ = u, where u1

x1
≤ 0 and u = u1

x1
x̂ is due to u ∈ R−x̂. Note that

un ∈ R−z
n and

〈vn, zn〉 = 〈v, zn〉 − tn〈v̂, dn〉 = 〈v̂, x+ tnd
n〉 − tn〈v̂, dn〉 = 〈v, x̂〉 ≤ 0.

This means (un, vn) ∈ N̂Ω(ẑn, 0) = N̂Ω(x+ tnd
n, y + tnw

n). So (u, v) ∈ N i
Ω((x, y); (d,w)).

Subcase 4.3. d ⊥ x̂ and w ∈ R+x̂\{0}. In this case, we will show that

N i
Ω((x, y); (d,w)) = NΩ((x, y); (d,w)) = {(u, v)| u ∈ Rx̂, v ⊥ x̂}.

Take (u, v) ∈ NΩ((x, y); (d,w)). Then there exist sequences tn ↓ 0, (dn, wn) → (d,w), (un, vn) →
(u, v) such that (un, vn) ∈ N̂Ω(x + tnd

n, tnw
n). Since x ∈ bdK\{0} and w 6= 0, for n suffi-

ciently large, 0 6= x + tnd
n ∈ K and 0 6= tnw

n. It follows that x + tnd
n, tnw

n ∈ bdK\{0}.
Hence, by Proposition 2.6,

un ⊥ x+ tnd
n, vn ⊥ tnw

n, (x+ tnd
n)1ûn + (tnw

n)1v
n ∈ R[x+ tnd

n].
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Taking the limits yields u ⊥ x, v ⊥ w, û ∈ Rx, which together with w ∈ R+x̂\{0} implies
that v ⊥ x̂, u ∈ Rx̂. Hence

NΩ((x, y); (d,w)) ⊆ {(u, v)| u ∈ Rx̂, v ⊥ x̂}.
Conversely, let u ∈ Rx̂ and v ⊥ x̂. Similarly to Subcase 4.2(ii), we can prove (u, v) ∈

N i
Ω((x, y); (d,w)). The only change is to take wn := w1

x1
(x̂ + tnd̂n) instead of wn = tn(x̂ +

tnd̂n). Since w = τ x̂ for some τ > 0, we have w2 =
w1
x1

(−x2), and hence wn = w1
x1
(x̂+tnd̂n) →

w1
x1
x̂ = w.

Case 5. x = 0 and y ∈ bdK/{0}. The result follows by a symmetric analysis of Case 4.
Case 6. If x = 0 and y = 0, then (d,w) ∈ TΩ(x, y) = Ω. Using Proposition 3.4 yields

N i
Ω((x, y); (d,w)) = NΩ((x, y); (d,w)) = NΩ(d,w).

7 Sufficient conditions for error bounds of the second-order

cone complementarity system

In this section, we give verifiable sufficient conditions for the error bound property of the
second-order cone complementarity system (1)-(2). First by applying Theorem 4.1 we have
the following sufficient conditions based on the limiting normal cones.

Theorem 7.1 Given a point z∗ ∈ F . The system (1)-(2) has a local error bound at z∗ if
the NNAMCQ holds at z∗:

∇F (z∗)TλF +
J∑

i=1

{
∇Gi(z∗)TλGi +∇Hi(z

∗)TλHi
}
= 0,

λF ∈ NΛ(F (z
∗)), (λG, λH) ∈ NΩ(G(z

∗),H(z∗))





=⇒ (λF , λG, λH) = 0.

Here the exact expression for the limiting normal cone of Ω can be found in Proposition 2.6.

By applying Theorems 4.2 and 4.4 respectively, we obtain the sufficient conditions in
Theorems 7.2 and 7.3 based on directional limiting normal cone immediately. According to
the relationship between the limiting normal cone and the directional limiting normal cone
NC(z; d) ⊆ NC(z), the sufficient condition based on the directional limiting normal cone is
in general weaker than the one based on the limiting normal cone given in Theorem 7.1.
In fact Example 4.1 shows that it is possible that the NNAMCQ does not hold while the
sufficient condition in terms of the directional limiting normal cone holds. Note that in the
following theorem, the formula of the tangent cone and the directional normal cone for a
second-order cone complementarity set can be found in Theorems 5.1 and 6.1, respectively.
Moreover, the equivalence of the two conditions are due to the directional regularity of the
second-order cone complementarity set proved in Theorem 6.1.

Theorem 7.2 Given a point z∗ ∈ F . Suppose that for every 0 6= w ∈ R
n with ∇F (z∗)w ∈

TΛ(F (z
∗)), (∇Gi(z∗)w,∇Hi(z

∗)w) ∈ TΩi
(Gi(z

∗),Hi(z
∗)), i = 1, . . . , J , one has

∇F (z∗)TλF +

J∑

i=1

{
∇Gi(z∗)TλGi +∇Hi(z

∗)TλHi
}
= 0,

λF ∈ NΛ(F (z
∗);∇F (z∗)w),

(λGi , λ
H
i ) ∈ NΩi

(
(Gi(z

∗),Hi(z
∗)); (∇Gi(z∗)w,∇Hi(z

∗)w)

)
, i = 1, . . . , J





=⇒ (λF , λG, λH) = 0,
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or equivalently for every 0 6= w ∈ R
n with ∇F (z∗)w ∈ TΛ(F (z

∗)), (∇G(z∗)w,∇H(z∗)w) ∈
TΩ(G(z

∗),H(z∗)) one has

∇F (z∗)TλF +∇G(z∗)TλG +∇H(z∗)TλH = 0,
λF ∈ NΛ(F (z

∗);∇F (z∗)w),
(λG, λH) ∈ NΩ

(
(G(z∗),H(z∗)); (∇G(z∗)w,∇H(z∗)w)

)





=⇒ (λF , λG, λH) = 0.

Then the system (1)-(2) has a local error bound at z∗.

Theorem 7.3 Given a point z∗ ∈ F . Suppose that the set-valued mapping M(z) := F (z)−
Λ is metrically subregular at (z∗, 0). Further assume that for every 0 6= w ∈ R

n with
∇F (z∗)w ∈ TΛ(F (z

∗)), (∇Gi(z∗)w,∇Hi(z
∗)w) ∈ TΩi

(Gi(z
∗),Hi(z

∗)), i = 1, . . . , J , one has

∇F (z∗)TλF +
J∑

i=1

{
∇Gi(z∗)TλGi +∇Hi(z

∗)TλHi
}
= 0,

λF ∈ NΛ(F (z
∗);∇F (z∗)w),

(λGi , λ
H
i ) ∈ NΩi

(
(Gi(z

∗),Hi(z
∗)); (∇Gi(z∗)w,∇Hi(z

∗)w)

)
, i = 1, . . . , J





=⇒ (λG, λH) = 0,

or equivalently for every 0 6= w ∈ R
n with ∇F (z∗)w ∈ TΛ(F (z

∗)), (∇G(z∗)w,∇H(z∗)w) ∈
TΩ(G(z

∗),H(z∗)) one has

∇F (z∗)TλF +∇G(z∗)TλG +∇H(z∗)TλH = 0,
λF ∈ NΛ(F (z

∗);∇F (z∗)w),
(λG, λH) ∈ NΩ

(
(G(z∗),H(z∗)); (∇G(z∗)w,∇H(z∗)w)

)





=⇒ (λG, λH) = 0.

Then the system (1)-(2) has a local error bound at z∗.

In order to use Theorem 7.3, the set-valued mappingM(z) := F (z)−Λ should satisfy the
metric subregularity. For convenience, we summarize some prominent sufficient conditions
for the case of an equality and inequality system in the following theorem. It is well known
that in Theorem 7.4 (ii)=⇒(iii)⇐⇒(iv)=⇒ (v) or (vi), (i)=⇒ (v) and (i)=⇒ (vi).

Theorem 7.4 (Sufficient conditions for MS for the equality and inequality system)
Let z∗ be a feasible point to the system g(z) ≤ 0, h(z) = 0, where g : Rn → R

p, h : Rn → R
q

are differentiable. Then the set-valued mapping M(z) := (g(z), h(z)) −R
p
− × {0}q is metri-

cally subregular at (z∗, 0) under one of the following conditions.

(i) Linearity constraint qualification (Linear CQ) holds: h, g are affine.

(ii) Linear independence constraint qualification (LICQ) holds: {∇gi(z∗),∇hj(z∗)|i ∈
Ig, j = 1, . . . , q} are linearly independent.

(iii) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at z∗: {∇hi(z∗)|i =
1, . . . , q} are linearly independent and there exists d ∈ R

n such that ∇hi(z∗)d = 0 for
all i = 1, . . . , q and ∇gi(z∗)d < 0 for all i ∈ Ig.

(iv) NNAMCQ holds at z∗:

∇g(z∗)Tλg +∇h(z∗)Tλh = 0, λg ≥ 0, 〈λg, g(z∗)〉 = 0 (20)

=⇒ (λg, λh) = 0.

24



(v) Quasinormality holds at z∗ ([17, Corollary 5.3]):

{
(20) and there exists a sequence {zk} converging to z∗ such that for each k,
λgi > 0 =⇒ gi(z

k) > 0, λhi 6= 0 =⇒ λhi hi(z
k) > 0

=⇒ (λg, λh) = 0.

(vi) The relaxed constant positive linear dependence condition (RCPLD) holds at z∗ ([18,
Theorem 4.2]): Let J ⊆ {1, . . . , q} and {∇hj(z∗)|j ∈ J } be a basis for span{∇hj(z∗)|j =
1, . . . , q}. There exists δ > 0 such that

– {∇hj(z)}qj=1 has the same rank for each z ∈ Bδ(z
∗);

– for each I ⊆ Ig, if {∇gi(z∗),∇hj(z∗)|i ∈ I, j ∈ J } is positively linear dependent,
then {∇gi(z),∇hj(z)|i ∈ I, j ∈ J } is linear dependent for each z ∈ Bδ(z

∗).

(vii) There are no nonzero direction in the linearized cone ([15, Corollary 1]):

∇gi(z∗)d ≤ 0, i ∈ Ig,∇hi(z∗)d = 0, i = 1, . . . , q =⇒ d = 0.

(viii) Second-order sufficient condition for metric subregularity (SOSCMS) ([15, Corollary
1]): For every 0 6= w ∈ R

n with ∇gi(z∗)w ≤ 0 for i ∈ Ig and ∇hi(z∗)w = 0 for
i = 1, . . . , q, one has

∇g(z∗)Tλg +∇h(z∗)Tλh = 0, λg ≥ 0, 〈λg, g(z∗)〉 = 0
wT∇2((λg)T g)(z∗)w + wT∇2((λh)Th)(z∗)w ≥ 0

}
=⇒ (λg, λh) = 0.

The following example shows that if there exists 0 6= w ∈ R
n with ∇gi(z∗)w ≤ 0 for

i ∈ Ig and ∇hi(z∗)w = 0 for i = 1, . . . , q, then SOSCMS is weaker than NNAMCQ, or
equivalently MFCQ.

Example 7.1 Let g1(z) = z1 − z22 , g2(z) = z21 − z2, and h(z) = z1. At z = (0, 0), consider

λg1∇g1(z) + λg2∇g2(z) + λh∇h(z) = 0

with λg1 , λg2 ≥ 0. Then we can take (λg1 , λg2 , λh) = (1, 0,−1) 6= (0, 0, 0). So MFCQ fails at
z = (0, 0). Let w satisfying ∇h(z)w = 0. Then w1 = 0, and hence from

λg1wT∇2g1(z)w + λg2wT∇2g2(z)w ≥ 0,

we have −2λg1w2
2 ≥ 0, so λg1 ≤ 0 and hence λg1 = 0. Consequently, λg2 = 0 and λh = 0.

So SOSCMS holds at z = (0, 0).

Our sufficient condition Theorem 7.3 provides a sufficient condition for metric subreg-
ularity for the very general system (1)-(2). There may exist more than one way to split
a system and this provides flexibility in using Theorem 7.3. For example, suppose that a
second-order cone complementarity system consists only (1). Suppose some of the subsys-
tems, without loss of generality,

(Gi(z),Hi(z)) ∈ Ωi, i = 1, . . . , s,
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where s ≤ J is metric subregular at (z∗, 0). Then one can split the original system (1) as

Ki ∋ Gi(z) ⊥ Hi(z) ∈ Ki i = s+ 1, . . . , J,

F (z) ∈ Λ, (21)

where

F (z) := (G1(z),H1(z)) × · · · × (Gs(z),Hs(z)) and Λ := Ω1 × · · · × Ωs,

and use Theorem 7.3. In particular, since Ki with mi = 1 is the set of nonnegative reals
R+, Ωi with mi = 1 is equal to the vector complementarity cone Θ := {(x, y) ∈ R

2|x ≥
0, y ≥ 0, xT y = 0}. Without loss of generality, assuming mi = 1 for i = 1, . . . , s, then the
system F (z) ∈ Λ given in (21) is then equal to the vector complementarity system

F (z) ∈ Θs,

where Θs := {(a, b) ∈ R
2s|a ≥ 0, b ≥ 0, aT b = 0}. We now summarize some prominent

sufficient conditions for metric subregularity for the vector complementarity system in the
following theorem.

Theorem 7.5 (Sufficient conditions for MS for a complementarity system) Let z∗

be a feasible point to the vector complementarity system g(z) ≤ 0, h(z) = 0, 0 ≤ φ(z) ⊥
ψ(z) ≥ 0, where g : Rn → R

p, h : Rn → R
q, φ : Rn → R

s, ψ : Rn → R
s are continuously

differentiable. Then, the set-valued mappingM(z) := (g(z), h(z), φ(z), ψ(z))−R
p
−×{0}q×Θs

is metrically subregular at (z∗, 0) under one of the following conditions:

(i) Linearity CQ holds: g, h, φ, ψ are affine.

(ii) MPEC LICQ holds: {∇gi(z∗)(i ∈ Ig),∇hi(z∗)(i = 1, . . . , q),∇φi(z∗)(i ∈ Iφ),∇ψi(z∗)(i ∈
Iψ)} are linearly independent.

(iii) MPEC NNAMCQ holds at z∗:

∇g(z∗)Tλg +∇h(z∗)Tλh+∇φ(z∗)Tλφ +∇ψ(z∗)Tλψ = 0, (22)

λg ≥ 0, λgi = 0,∀i 6∈ Ig, λ
φ
i = 0,∀i 6∈ Iφ, λψi = 0, ∀i 6∈ Iψ, (23)

either λφi < 0, λψi < 0 or λφi λ
ψ
i = 0 ∀i ∈ Iφ ∩ Iψ (24)

=⇒ (λg, λh, λφ, λψ) = 0.

(iv) MPEC quasi-normality holds at z∗:





(22)− (24) and there exists a sequence {zk} converging to z∗ such that for each k,
λgi > 0 ⇒ λgi gi(z

k) > 0, λhi 6= 0 ⇒ λhi hi(z
k) > 0,

λφi 6= 0 ⇒ λφi φi(z
k) < 0, λψi 6= 0 ⇒ λψi ψi(z

k) < 0,

=⇒ (λg, λh, λφ, λψ) = 0.

(v) There is no nonzero direction in the MPEC linearized cone: LMPEC(z∗) = {0} where

LMPEC(z∗) :=



w

∣∣∣∣∣∣

∇gi(z∗)w ≤ 0, i ∈ Ig,∇hi(z∗)w = 0, i = 1, . . . , q
∇φi(z∗)w = 0, i ∈ Icψ,∇ψi(z∗)w = 0, i ∈ Icφ
0 ≤ ∇φi(z∗)w ⊥ ∇ψi(z∗)w ≥ 0 i ∈ Iφ ∩ Iψ



 .
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(vi) The set-valued mapping M1(z) := (g(z), h(z)) −R
p
− × {0}q is metrically subregular at

(z∗, 0) and for every 0 6= w ∈ LMPEC(z∗), one has

(22)− (23) and (λφi , λ
ψ
i ) ∈ NΘ(∇φi(z∗)w,∇ψi(z∗)w) ∀i ∈ Iφ ∩ Iψ (25)

=⇒ (λφ, λψ) = 0,

where NΘ(x, y) is given in (26).

(vii) The set-valued mapping M1(z) := (g(z), h(z)) −R
p
− × {0}q is metrically subregular at

(z∗, 0) and for every 0 6= w ∈ LMPEC(z∗), one has

(25) and wT∇2
zL

0(z∗, λg, λh, λφ, λψ)w ≥ 0 =⇒ (λφ, λψ) = 0,

where

L0(z, λg, λh, λφ, λψ) := g(z)Tλg + h(z)Tλh + φ(z)Tλφ + ψ(z)T λψ.

Proof. (i) follows from the corollary in [29, page 210]. (ii) is stronger than (iii), which
is further stronger than (iv). (iv) follows from [17, Theorem 5.2]. (v) is the trivial case of
(vi). (vi) and (vii) follow from [14, Theorem 2.6] and the well-known fact that the limiting
normal cone of the complementarity cone Θ is equal to

NΘ(x, y) =



(u, v) ∈ R

2

∣∣∣∣∣∣

u = 0 if x > 0
v = 0 if y > 0
either u < 0, v < 0 or uv = 0 if x = y = 0



 . (26)

We now consider the following SOCCP

K ∋ G(z) ⊥ H(z) ∈ K, (27)

g(z) ≤ 0, h(z) = 0, 0 ≤ φ(z) ⊥ ψ(z) ≥ 0, (28)

where the second-order cone complementarity system (27) is defined as in (1) and g : Rn →
R
p, h : Rn → R

q, φ : Rn → R
s, ψ : Rn → R

s, G : Rn → R
m, H : Rn → R

m are continuously
differentiable. Let the linearized cone of the system (27)-(28) be

L(z∗) :=




w

∣∣∣∣∣∣∣∣

∇gi(z∗)w ≤ 0, i ∈ Ig,∇hi(z∗)w = 0, i = 1, . . . , q
∇φi(z∗)w = 0, i ∈ Icψ,∇ψi(z∗)w = 0, i ∈ Icφ
0 ≤ ∇φi(z∗)w ⊥ ∇ψi(z∗)w ≥ 0 i ∈ Iφ ∩ Iψ
(∇Gi(z∗)w,∇Hi(z

∗)w) ∈ TΩi
(Gi(z

∗),Hi(z
∗)), i = 1, . . . , J




,

where TΩi
can be calculated as in Theorem 5.1. Based on the results we obtained, we now

derive a sufficient condition for error bounds for the system (27)-(28) that are explicitly
verifiable based on the initial data.

Theorem 7.6 Given a point z∗ ∈ F . Suppose that the complementarity system (28) is
metrically subregular at (z∗, 0). Further assume that either L(z∗) = {0}, or L(z∗) 6= {0}
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and for every 0 6= w ∈ L(z∗) one has





∇g(z∗)Tλg +∇h(z∗)Tλh+∇φ(z∗)Tλφ +∇ψ(z∗)Tλψ +∇G(z∗)TλG +∇H(z∗)TλH = 0,

λg ≥ 0, λgi = 0 ∀ i 6∈ Ig, λφi = 0 ∀i 6∈ Iφ, λ
ψ
i = 0 ∀i 6∈ Iψ,

(λφi , λ
ψ
i ) ∈ NΘ(∇φi(z∗)w,∇ψi(z∗)w) ∀i ∈ Iφ ∩ Iψ,

(λGi , λ
H
i ) ∈ NΩi

(
(Gi(z

∗),Hi(z
∗)); (∇Gi(z∗)w,∇Hi(z

∗)w)

)
, ∀i = 1, . . . , J,

=⇒ (λG, λH) = 0,

where NΘ(·) is given in (26) and NΩi
((x, y); (d,w)) can be calculated as in Theorem 6.1.

Then the system (27)-(28) has a local error bound at z∗. That is, there exist a constant
κ > 0 and δ > 0 such that

d(z,F) ≤ κ

{
‖h(z)‖ + ‖g+(z)‖ +

s∑

i=1

dΘ(φi(z), ψi(z)) +

J∑

i=1

dΩi
(Gi(z),Hi(z))

}
,∀z ∈ Bδ(z

∗).

Proof. To prove the result, we take F (z) := (g(z), h(z), φ(z), ψ(z)) and Λ := R
p
−×{0}q×Θs

and apply Theorem 7.3. Since the sets Rp−, {0}q are convex and Θs is directionally regular,
we have

TΛ(F (z
∗)) = TRp

−
(g(z∗))× T{0}q (h(z

∗))× TΘs(φ(z∗), ψ(z∗)),

NΛ(F (z
∗);∇F (z∗)w)

= N
R
p
−
(g(z∗);∇g(z∗)w)×N{0}q (h(z

∗);∇h(z∗)w)×NΘs((φ(z∗), ψ(z∗)); (∇φ(z∗)w,∇φ(z∗)w)),

NΘs

(
(φ(z∗), ψ(z∗)); (∇φ(z∗)w,∇φ(z∗)w)

)
= Πsi=1NΘ((φi(z

∗), ψi(z
∗)); (∇φi(z∗)w,∇φi(z∗)w)).

Moreover by Proposition 3.4 and Theorem 6.1, for all w such that (∇φi(z∗)w,∇ψi(z∗)w) ∈
TΘ(φi(z

∗), ψi(z
∗)), we have

NΘ((φi(z
∗), ψi(z

∗)); (∇φi(z∗)w,∇φi(z∗)w))

=





R× {0} if φi(z
∗) = 0, ψi(z

∗) > 0,
{0} × R if φi(z

∗) > 0, ψi(z
∗) = 0,

NΘ(∇φi(z∗)w,∇ψi(z∗)w) if φi(z
∗) = 0, ψi(z

∗) = 0.

By using the tangent cone formula in Corollary 5.1 and the limiting normal cone formula
in (26), we derive the result.
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