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Abstract

The error bound property for a solution set defined by a set-valued mapping refers
to an inequality that bounds the distance between vectors closed to a solution of the
given set by a residual function. The error bound property is a Lipschitz-like/calmness
property of the perturbed solution mapping, or equivalently the metric subregularity
of the underlining set-valued mapping. It has been proved to be extremely useful in
analyzing the convergence of many algorithms for solving optimization problems, as
well as serving as a constraint qualification for optimality conditions. In this paper,
we study the error bound property for the solution set of a very general second-order
cone complementarity problem (SOCCP). We derive some sufficient conditions for error
bounds for SOCCP which is verifiable based on the initial problem data.

Key words: second-order cone complementarity set, complementarity problem, local
error bounds, Lipschitz-like, calmness, metric subregularity, constraint qualifications.
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1 Introduction

In this paper we consider a second-order cone complementarity problem (SOCCP) of finding
z € R™ satisfying the second-order cone complementarity system defined as

K>G(z) LH(2) ek, (1)
F(z) € A, (2)

where A is a closed subset of R, F : R®* — R!, G : R® — R™, H : R® — R™ are continuously
differentiable, a 1 b means that vector a is perpendicular to vector b, K is the Cartesian
product of finitely many second-order cones (also called Lorentz cones), i.e.,
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with K; := {x = (z1,79) € R x R™ ™| 21 > ||z3]|} being the m;-dimensional second-order
cone and m =Y 7, m;.

One of the sources of the second-order cone complementarity system is the Karush-
Kuhn-Tucker (KKT) optimality condition for the second-order cone programming (see e.g.
1, B, B]), and the other is the equilibrium system for a Nash game where the constraints
involving second-order cones (see e.g. [19]).

Let F denote the solution set of an SOCCP which contains all z satisfying the second-
order cone complementarity system ([d)-([2)). In this paper, we study the following error
bound property. We say that the second-order cone complementarity system has a local
error bound at z* € F if there exist a constant x > 0 and U a neighborhood of z* such that

J
d(z,F) <k {dA(F(z)) + ngi(Gi(z),Hi(z))} Vz e U, (3)
i=1

where Q; := {(x,y)|K; 22 L y € K;} is the m;-dimensional second-order cone complemen-
tarity set. The right hand side of the inequality (B]) is a residual function, and hence the
existence of a local error bound enables us to use the residual to measure the distance from
a point z that is sufficiently close to z* to the solution set F. It is easy to verify that the
error bound property at z* is equivalent to the calmness of the set-valued mapping defined
by
o K> (G(z)+a) L (H(z)+p8) ek
Fosm = {e| 5o e }

at (0,0,0,z*) € gphF. Since F(0,0,0) = F, the solution to the second-order cone comple-
mentarity system, the set-valued map F(«, 3,7) is the perturbed solution mapping. Hence,
the calmness property is a Lipschitz-like property of the perturbed solution mapping: there
exist a constant k > 0, U a neighborhood of z*, W a neighborhood of (0,0,0) such that

Flo, 8,7 NU S F +6ll(a, B,0IB - V(e B,7) € W.
Fori=1,...,J, it is easy to verify that
(z,y) € Q <= oz =Ilg,(z — y), (4)
and the following inequality holds:
do,(2,y) < V2| — Tk, (z —y)l, Yo,y €R™,

where Ilx,(z) denotes the metric projection of z onto K;. Therefore, if the error bound
property holds with the residual function da(F(2))+ 3.7, do,(Gi(2), Hi(2)), then the error
bound property also holds with the natural residual function da(F(z)) + 327, [Gi(z) —
I, (Gi(2) — Hi(2)]].

The error bound property and equivalently the calmness property is a very important
property. One of the applications of such a property is the analysis of certain algorithms for
solving the second-order cone complementarity problem. In particular, it has recently been
discovered that the condition that is crucial to the quadratic convergence of the Newton-type
method is not the nonsingularity of the Jacobian per se, but rather one of its consequences—
the error bound property; see [I0]. Another application is the constraint qualification for the
mathematical program with second-order cone complementarity constraints (SOC-MPCC);

see [36].



Although the error bound property is an important property, there are very few results
on sufficient conditions for the existence of error bounds, and these results are abstract and
not easy to verify; see e.g. [0 24] 26, 3T, B2, B3] and references therein. One exception
is the case where all mappings F,G, H are affine, I is polyhedral and A is the union of
finitely many convex polyhedral sets. In this case, the local error bound property holds au-
tomatically following from Robinson’s result on polyhedral multifunctions [29]. This result,
however, depends crucially on the functions F,G, H being affine and the sets K, A being
polyhedral and the union of finitely many convex polyhedral sets, respectively. The second-
order cone, however, is not polyhedral when the dimension is larger than two, and so even
when all the mappings F, G, H are affine and the set A is the union of finitely many convex
polyhedral sets, the local error bound property may not hold without further assumptions if
one of the second-order cones K; has dimension m; > 3. Another easy to verify case is when
the gradient vectors VG;(z*)(i = 1,...,m),VH;(z*)(i = 1,...,m),VF;(z*)(i = 1,...,1)
are linearly independent. But this condition is very strong.

The main goal of this paper is to provide a verifiable sufficient condition for the local error
bound property for the second-order cone complementarity system (IJ)-(2]). Our condition
involves only the first-order and/or the second-order derivatives of the mappings F, G, H
at the point of interest, and is therefore efficiently checkable. The basis of our approach is
the sufficient conditions for metric subregularity recently developed by Gfrerer [12, [13] [14],
Gfrerer and Klatte [I5], Gfrerer and Ye [16]. To use these results, we need to compute the
tangent cones and the directional normal cones to the second-order cone complementarity
set. These results, however, are of independent interest.

We summarize our main contributions as follows:

e We introduce a new concept of inner directional normal cone. A set is said to be
directionally regular if the inner directional normal cone coincides with the directional
normal cone. It describes the variational geometry of a set along some direction. The
directional regularity implies the geometrical derivability. In particular, we show that
a convex set is directionally regular. Some useful calculus rules for the directional
normal cone are derived.

e We establish exact expressions for the tangent cone and the directional normal cone of
the second-order cone complementarity set. Moreover we show that the second-order
cone complementarity set, which is nonconvex, is directionally regular, and hence
both the tangent cone and the directional normal cone commutes with the Cartesian
product of finitely many second-order cone complementarity sets.

e We give sufficient conditions for the existence of error bounds of the second-order
cone complementarity problems. These conditions are verifiable based on the initial
problem data.

We organize our paper as follows. Section 2 contains the preliminaries. In Section 3, we
study certain properties of the directional normal cone introduced by Gfrerer [I3] and in
Section 4 we derive sufficient conditions for the error bound property of a general system
by using directional normal cones. Section 5 is devoted to the formula and the property of
the tangent cone to the second-order complementarity set. In Section 6, we derive the exact
expressions for the directional normal cone for the second-order cone complementarity set.
Finally in Section 7 we present sufficient conditions for error bounds of the second-order
cone complementarity system.



The following notation will be used throughout the paper. We denote by I and O
the identity and zero matrix of appropriate dimensions respectively. For a matrix A, we
denote by AT its transpose. The inner product of two vectors x,y is denoted by z’y or
(x,y). For any z € R™, we denote by |z| the Euclidean norm. For any nonzero vector
z € R™, the notation z stands for the normalized vector ﬁ For a function g : R" — R,
we denote g4 (z) := max{0,¢g(z)}, and if it is vector-valued then the maximum is taken
componentwise. For z = (z1,29) € R x R™~! we write its reflection about the z; axis as
Z := (21,—22). Denote by Rz the set {tz| t € R}. Riz and Ry z where R} := [0, 00)
and Ry := (0,00) are similarly defined. For a set C, denote by intC, clC, bdC, coC,
C¢ its interior, closure, boundary, convex hull, and complement, respectively. The polar
cone of a set C'is C° := {z|zTv < 0,Vv € C} and v° is the polar cone of a vector v. We
denote by dc(z) or d(z,C) the distance from z to C. Given a point z € R™ and ¢ > 0,
B-(z) denotes an open ball centered at z with radius € while B and B denote the open
and the closed unit ball center at the origin of an appropriate dimension, respectively. For
a differentiable mapping H : R™ — R™ and a vector z € R", we denote by VH(z) the
Jacobian matrix of H at z. By o(-), we mean that o(a)/a — 0 as @ — 0. For a set-valued
mapping ® : R® = R™, the graph and domain of ® are denoted by gph® and dom®,
respectively, i.e., gph® := {(z,v) € R" x R™| v € ®(2)} and dom® := {z € R" |P(z) # 0}.
Finally for any mapping ¢ : R" — R™, we denote the active index set at z* € R™ by
I (2*) :=={i € {1,...,m}|pi(z*) = 0}. For simplification of notation, we may write I,(z*)
as I, provided that there is no confusion in the context.

2 Preliminaries

In this section, we gather some preliminaries on variational analysis and second-order cone
which will be used in paper. Detailed discussions on these subjects can be found in [} 6]

[7, 22, 23, 30] and the papers we refer to.
2.1 Background in variational analysis

Let @ : R™ = R™ be a set-valued mapping. We denote by limsup,,_,, ®(z’) and liminf,,_,, ®(2’)
the Painlevé-Kuratowski upper and lower limit, i.e.,

limsup ®(z) := {v € Rm‘ﬂzk — 2,0 — v with v € ®(zy) Vk:} ,
2=z
liminf ®(z) := {v IS Rm‘Vzk — z, v — v with vy € P(2) Vk‘} ,
Z'—z
respectively.

Let C C R™ and z € C. The tangent cone of C' at z is a closed cone defined by

C—
To(z) = lintlisoup TZ = {u e R"

Ity 10, up — u with z+tkuk€C’Vk‘}.

The inner tangent/derivable cone of C' at z is defined by

ThH(z) == lil?ui]nf ¢z

:{uERn

Vi 1 0, Jup, — u such that z + tpuy € C Vk‘} .



The regular/Fréchet normal cone of C' at z is defined by
Ne(z) = {v ER"| (0,2 — 2) < of||2 — z|)) V' € c}.
The limiting/Mordukhovich normal cone is defined by

Ne(z) = limgupﬁc(z') = {leglo?}z’ v € Ne(z), 2 < z}.
z' =z

Definition 2.1 We say that a set C is geometrically derivable at a point z € C' if the
tangent cone of C' coincides with the inner tangent cone of C at z, i.e., Tc(z) = TH(2).

Let @ : R™ = R™ be a set-valued mapping and (x,y) € gph®. The regular coderivative
and the limiting/Mordukhovich coderivative of ® at (x,y) are the set-valued mappings
defined by

Dra(e.y)(v) = {ueR"|(u-v) € Ngno(ev)}
D*®(x,y)(v) = {ueR”\(u,—v)Enghq>(az,y)},

respectively. We omit y in the coderivative notations if the set-valued map @ is single-valued
at x.

For a single-valued mapping ® : R™ — R™, the B(ouligand)-subdifferential dp® is
defined as

0pP(z) = {klim V&(z)| 2 — 2z, ® is differentiable at zk} .
—00
If @ is a continuously differentiable single-valued map, then
D*®(z) = D*®(z) = {VO(2)"}.
2.2 Background in variational analysis associated with the second-order
cone

Let I be the m-dimensional second-order cone. The topological interior and the boundary
of IC are

intkC = {(21,22) € R x R™ g > ||aa]|}, bdK = {(x1,22) € R x R Yy = ||z},
respectively.

Proposition 2.1 (see e.g. [36, Proposition 2.2]) For any x,y € bdK\{0}, the following
equivalence holds:

2Ty =0 y=ki withk =y, /x1 >0 <y = ki with k € Ry,

For any given nonzero vector z := (21, 2) € R x R™~!, we denote by

1 1
c(z) = 5(1,-2), alz)=501,2)
2 2
the spectral vectors of z, where Z, is any vector w € R™~! with [|w| = 1 if zp = 0.

For z € R™, let IIx(z) be the metric projection of z onto K and I}-(z; k) the directional
derivative of IIx at z in direction h. The following proposition summarizes its formula (see

[25) Lemma 2]).



Proposition 2.2 Let K be the m-dimensional second-order cone. The mapping I (-) is
directionally differentiable at any z € R™ and for any h € R™,

(i) if z € intKC or z € —intK or z € (=K UK)®, then j-(z; h) = VI (2)h;
(i) if z € bdK \ {0}, then (2 h) = h — 2(c1(2)Th)_e1(2);
(iif) if 2 € —bdK \ {0}, then Ij-(2;h) = 2(ca(2)T h)1ea(2);
(iv) if 2 = 0, then Ii(2; h) = Tk (h).

The following proposition summarizes the regular and the limiting coderivatives of the
metric projection operator (see [25, Lemma 1 and Theorems 1 and 2]).

Proposition 2.3 Let K be the m-dimensional second-order cone.
(i) If z € intKC, then ik is differentiable and Vi (z) = I.
(i) If z € —intKC, then Ik is differentiable and VIIk(z) = {O}.
(iii) If z € (K UK)¢, then Il is differentiable and

1 2 IR 2
Vig(2) =1+ —) [+ = | = o= o1l
K(z) 2( ||Z2H) 2 [ 29 —”Z;”zzz;f
(iv) If z € bdC \ {0}, then
Dk (2)(w*) = {a"Ju" — 2" € Ryei(2), (2", c1(2)) = 0},

Dk (2)(u®) = Opllk(z)u” Ufa'u” — o € Ryci(z), (27, e1(2)) = 0},

OpTTx(2) = {I,J+1 {_1 ) T] }

and

(v) If z € —=bdC \ {0}, then

E*H;C(z)(u*) = {z*|z" € Ryca(z), (u* — ", co(2)) > 0},
Dl (2)(u") = 0Opllg(z)u” U{z"[2z" € Rica(2), (u” — 27, c2(2)) = 0},

B 11 2z
=034 &)

and

(vi) If z =0, then
DIk (2)(u*) = {a*|z* €K, u* —z* € K}.
DTl (z)(u*) = 0Oplic(0)u*U{z*|z" € K, u* —z* € K}

O e - e ReE, (07,8 2 0}
el

U J{a"|2" € Rym, (u* — 2%, ) > 0},
neC



where C := {3(1,w)| w € R™ L, ||w|| =1} and

Opllx(0) = {va}U{% [i) 20l + (1w—T2a)wa]

Proposition 2.4 [37, Proposition 2.1] Let (z,y) € Q = {(z,y)|r € K,y € K,2Ty = 0}.
Then

weR™ L Juw| =1, aclo, 1]} .

Fafe.s) = {0l ~ve Dl - p)(-u-v)}

Nole.s) = {0l ~veDMicle —)(-u-0)}

The exact formula of the regular normal cone and limiting normal cone of €2 have been
established in [37].

Proposition 2.5 [37, Theorem 3.1] Let (x,y) be in the m-dimensional second-order cone
complementarity set 2. Then

{(u,v)|lu e R™, v =0} if x =0, y € intk;
{(u,v)|lu =0,v € R™} if z €intkC, y =0;
No(z,y) = {(u,v)|u Lz, v Ly, :1a+yv € Ra} if 2,y € bdK\{0}, 27y = 0;
oLy {(u,v)|u € 9°, v eR_7} if £ =0, yehd\{0};
{(u,v)jlu e R_z,v € £°} if x € bd\{0}, y =0;
[ {(u,v)|lu e =K, ve -K} ifx=0, y=0.

Proposition 2.6 [37, Theorem 3.3] Let (z,y) be in the m-dimensional second-order cone
complementarity set . Then

R {(u,v)|u e R™, v =0} if v =0, y € intk;
No(z,y) = Na(z,y) = ¢ {(u,v)lu=0, veR™} if z €intkC, y =0;
{(w,v)|lu Lz, v Ly, zia+yv € Rz} if x,y € bd\{0}.
For z =0,y € bdK\{0},
No(z,y) ={(u,v)lu € R™, v=0 or uLlg, veR) or (u,7) <0, veR_G}
for z € bdK\{0},y =0,

No(z,y) = {(u,v)|lu =0,v e R™ or weRz, vl & or ueR_z (v,z) <0}

forx=y=0,
No(z,y) = {(u,v)]ue -K,ve-KorueR" v=0o0ru=00veR™
oru€eR_&E veE® or uel,veRE
orul & vl€ ati+(1—a)weRE for someac 0,1, eCY
where

C:={(1,w)| weR™™, |ju|| =1}.



3 Calculus for directional normal cones

Recently a directional version of the limiting normal cone was introduced by Gfrerer [13]
and used to derive sufficient conditions for metric subregularity, which form the basis for
our approach. Since calculus for the directional normal cone is very important and the
existing results are rather rare, in this section, we develop some calculus for the directional
normal cone. First, we recall the definition of a directional normal cone.

Definition 3.1 Given a set C C R", a point z € C and a direction d € R", the limiting
normal cone to C in direction d at z is defined by

Ne(z d) = limsup No(z+td') = {U\Eltk 10, dy, — dy vy — v with v € No(z + trdy), Vk} .
tl0
d'—d

We define the concept of the inner directional normal cone as follows.

Definition 3.2 Given a set C C R", a point z € C and a direction d € R", the inner
limiting normal cone to C' in direction d at z is defined by

Név(z; d) := {v| Vit — 0,3d, — d, v, — v with v, € ]/\70(,2 + trdg), Vk:} )

The following results follow from definition immediately.

Proposition 3.1 For any set C' and any z € C,
domN¢(z;-) = Te(z), domNG(z;-) = Ta(2).
It is easy to see that N/ (2;d) € Neo(z;d) C Ne(z) for any d and Ne(z;0) = Ne(z).

Definition 3.3 Given a subset C' in R™ and z € C,d € R"™, we say that the set C is reqular
at z in direction d if ‘
No(zd) = Ne(z:d). (5)

If the above formula holds for all d, we say that C' is directionally reqular at z. If C is
directionally regular at any point z € C, then we say that C is directionally reqular.

It is clear that set C' is regular in direction d for any d ¢ T-(z), since both sides of (f) are
empty in this case. It follows from Proposition Bl that the directional regularity implies
the geometric derivability.

Corollary 3.1 If the set C' is directionally reqular at z € C, then C is geometrically deriv-
able at z € C.

An important property of the limiting normal cone is that it commutes with the Carte-
sian product (see e.g. [23] Proposition 1.2]): for any sets A1,..., Ay,

Nayxoxap (215, 21) = Nag(21) X -+ x Na,(21).
It is easy to verify that this property holds for the inner directional normal cones, i.e.,
Nihx---XAI((Zh e ,Z[); (dl, . ,d])) = Niﬁ (21; dl) X - X Ni{] (Z]; d[). (6)

For directional normal cones, this kind of property does not come free. Fortunately, it holds
under the directional regularity.



Proposition 3.2 The inclusion
Naxp((w,y); (d,w)) € Na(z;d) x Np(y;w)

holds for any given sets A C R"™, B C R™, any point (x,y) € A x B, and any direction
(d,w) € R™ x R™. Moreover if either A is reqular at x in direction d or B is reqular at y
i direction w, then

Naxp((z,9); (d,w)) = Na(z;d) x Np(y;w).

If A and B are regular in directions d,w respectively, then A x B is reqular in direction

(d,w).
Proof. Note that

NAXB((‘Tay);(CLw)) - IIH;ISUP NAXB((x7y) +t(d,7w/))
(d,w")—(d,w)

=  limsup Na(z +td) x Np(y + tw')
t10
(d'w')—(d,w)

C limsup N4(z + td') x limsup Np(y + tuw')
tL0 t10
d'—d w/ —w

= Na(z:d) x Ng(y; w).

Conversely, take (p,q) € Na(x;d) x Np(y;w). Without loss of generality, assume that A is
regular at x in direction d. Since q € Np(y;w), there exists t,, | 0 and w,, — w and ¢, — ¢
such that ¢, € Np(y + tpw,). Since p € Ny(x;d) and A is regular at z in direction d, for
the above t,, there exist d,, — d and p, — p such that p, € NA(x + tndy). So

(pna Qn) € NA(.’L’ + tndn) X NB(y + tnwn) = ﬁAxB((xyy) + tn(dnawn))

By definition, this means that (p,q) € Naxp((z,y); (d,w)).
Now suppose that A and B are regular in direction d,w respectively. Then

Naxp((z,y); (d,w)) € Na(z;d) x Np(y;w)
= Ni(z;d) x Ni(y;w)
= Nip((@,9); (dw)).

Therefore A x B is regular in direction (d,w). ®
Proposition 3.3 Let (21,...,27) € Ay x -+ X A and (dy,...,dr) be given. Then

Tayxxa; (Z1-021) CTa (21) X -+ x Ty, (21), (7)

ffAlX,”XAJ((zl,...,Z[);(dl,...,d[)) g;PJAl(zl;dl) X oo X.A[4I(Z[;d[), (8)

and equality holds if all except at most one of A; fori = 1,...,1 are directionally reqular
at z;.



Proof. By Corollary Bl the directional regularity implies the geometric derivability. Then
the tangent set formula follows from applying [16, Proposition 1]. The directional normal
cone formula follows from Proposition [ |

In the rest of this section we will study some calculus rule of the directional normal
cone, and in the mean time examine the directional regularity.

Proposition 3.4 If C CR"” is a closed cone, then

N&(0;d) = No(0;d) = No(d), Vd € R™.
Proof. Since C is a cone, we have T¢(0) = C. If d ¢ C, then
N&(0;d) =Ne(0;d) = Ne(d) = 0.
If d € C, then
N¢(0;d) = limsup Ne(td') = limsup Ne(d') = Ne(d).
2, #a

Now we show that N/ (0;d) = N¢(0;d). It suffices to show N¢(0;d) € NG(0;d). Take
v € N¢(0;d). Then there exists 7, | 0 and d, — d and v, — v with v, € ]Vc(nndn). For
any t, | 0, take d,, and v;, above, then d,, — d and v, — v with v, € Nc(nndn) = ]vc(dn) =
Ne(tndy,). Hence v € NL(0;d). m

We next show that any convex set is regular along any direction.
Proposition 3.5 Any closed convex set A is directionally reqular.

Proof. Since Ni(z;d) C Na(z;d) for any z and d, it suffices to prove N4(z;d) € N (2;d)
for any d € Tu(z). Take w € Ny(z;d) with d € T4(z). Then there exists n | 0, dy — d
and wy — w with wg € Ng(z + ngdy). Since A is convex, it follows that
(wy, 2" — 2z —nrdg) <0, V'€ A. 9)
In particular, taking 2’ = z in the above, we have
(wg, dg) > 0. (10)

Let ¢, | 0. Then since n; | 0, for each fixed n, there exists k(n) satisfying k(n) > n
and 7,y < t,. Hence k(n) — oo as m — oo. For simplicity, denote by dy, := dj(,) and
Wy, = Wy(n)- Since {d,} and {w,} are subsequences of {dy} and {wy} respectively, we have
d, — d and w,, — w. Hence for all 2’ € A we have

(W, 2 — 2 —tpd,) = <wk( )2 = 2 = tndym))
= (Wm)s 2 = 2 = M) @rn)) + (Wrn)s Me(n) Do) — tndi(n))
< (wy ) Ak(n) — tndi(n))
< 0,

where the first inequality comes from () and the second inequality follows from ([I0). So
wy, € Na(z + tpd,) = Na(z + tndy,). By the definition of the inner limiting normal cone,
we have w € N’ (z;d). This completes the proof. m

Based on (@), Propositions and B3], we can obtain the following results.
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Corollary 3.2 Let A; be given fori=1,... 1.

(i) If A; is reqular at z; € A; in direction d; fori=1,...,1, then Ay X --- X Ay is reqular
at (z1,...,21) in direction (dy,...,dr). Moreover, (8) holds as an equation.

(ii) If A; is directionally regular at z; € A; for i = 1,...,1, then Ay X --- x Ay is di-

rectionally reqular at (z1,...,zr). Moreover (1) and (8) holds as an equation for all
d;.
(iii) If A; is closed and convex fori=1,...,1, then Ay x --- x Ay is directionally regular.

Moreover (1) and (8) holds as an equation for all z; € A; and d;.

Corollary (iii) extends the result given in [I5, Lemma 1], where each A; is assumed
to be a polyhedral convex set. In Section 6, we will show that the second-order cone
complementarity set, although it is a nonconvex set, is directionally regular.

4 Sufficient conditions for the error bound property via di-
rectional normal cones

Consider a general system in the form: P(z) € D, where P : R! — R® and D C R® is closed.
We say that the system P(z) € D has a local error bound at z such that P(z) € D, or the
set-valued mapping M (z) := P(z) — D is metrically subregular at (z,0) € gphM, if there
exist a neighborhood V' of z and a positive number x > 0 such that

dp-1(0)(2') < kdp(P(2')), V' e V.

It is easy to see that M is metrically subregular at (z,0) if and only if its inverse set-valued
mapping M~! is calm at (0,z) € gphM !, i.e., there exist a neighborhood W of 0, a
neighborhood V of z and a positive number x > 0 such that

MY w) NV € M~Y0) + sljw||B, Ywe W.

The metric subregularity is obviously weaker than the metric regularity (or the pseudo
Lipschitz continuity) which ensures the existence of a neighborhood W of 0, a neighborhood
V of z and a positive number x > 0 such that

MY w)nV C M~ w') + k|lw —o'|B, Yw,w' € W.

While the term for the calmness of a set-valued map was first coined in [30], it was
introduced as the pseudo-upper Lipschitz continuity in [35], taking into the account that it
is weaker than both the pseudo-Lipschitz continuity of Aubin [2] and the upper Lipschitz
continuity of Robinson [27] 28]. More information and discussion on metric regularity and
the related concept can be found in [21].

Recall that the following well-known criteria for metric regularity of the set-valued map-
ping M or the Aubin property of its inverse mapping M~ (w) = {z € R!|P(z)—w € D}.

Theorem 4.1 (see e.g. [30]) Consider the system P(z) € D, where P is smooth and D
is closed. Then the set-valued map M (z) := P(z) — D is metrically regular at (z,0) if and
only if the no nonzero abnormal multiplier constraint qualification (NNAMCQ) holds at z,
1.€.,

VP(z)'A=0, A€ Np(P(z)) = A=0. (11)

11



While following [34], the condition (IIJ) is called NNAMCQ), there are other terminologies
in the literature; e.g., generalized MFCQ (GMFCQ) in [II] and Mordukhovich criterion in
[15]. This condition is a necessary and sufficient condition for metric regularity and hence
may be too strong for metric subregularity.

By using the directional normal cone instead of the limiting normal cone, the following
sufficient conditions for metric subregularity have been introduced.

Theorem 4.2 ([15, Corollary 1]) Let P(z) € D with P smooth. The set-valued mapping
M(z) := P(z) — D is metrically subregular at (z,0) if the first-order sufficient condition for
metric subregularity (FOSCMS) holds: for every 0 # w such that VP(z)w € Tp(P(z)) one
has

VP(z)'A=0, A € Np(P(2); VP(z)w) = X=0.

Let us discuss the relation between FOSCMS and NNAMCQ. FOSCMS can be rewritten
equivalently as

VP(2)"A=0, Xe | Np(P(2); VP(2)w) = A =0, (12)
wel

where I' := {w # 0|VP(z)w € Tp(P(z))}. Noth that FOSCMS holds automatically if
I'=40,ie.,
VP(z)w € Tp(P(z)) = w = 0. (13)

According to the graphical derivative criterion for strong metric subregularity [§], condition
(13 is equivalent to saying that the set-valued map M (z) = P(z)— D is strongly metrically
subregular (or equivalently its inverse is isolatedly calm) at (z,0).

Theorem 4.3 Let M(z) := P(z) — D and (2,0) € gphM. FOSCMS at z is equivalent to
NNAMCQ at z under one of the following assumptions:

(i) VP(z) does not have full column rank;

(ii) D is a closed and convex set and there exists w # 0 such that VP(z)w € Tp(P(z)).

Proof. (i). If VP(z) does not have full column rank, then there exists w # 0 such that
VP(z)w =0. So T # (). Since

Np(P(z); VP(z)w) = Np(P(z);0) = Np(P(2)),

we have

U Np(P(2); VP(2)w) = Np(P(2)).

wel
It follows that FOSCMS and NNAMCQ are equivalent by comparing the conditions (ITI)
and ([12).

(ii). Suppose that D is a closed and convex set and there exists w # 0 such that
VP(z)w € Tp(P(z)). Then FOSCMS means ([I2)) holds. Since the directional normal cone is
in general a subset of the limiting normal cone, it is clear that NNAMCQ implies FOSCMS.
Conversely assume that FOSCMS holds. Take ) satisfying VP(2)T A\ = 0 and A € Np(P(2)).
Note that (\, VP(2)w) = (VP(2)T\,w) = 0. Hence A € Np(P(z)) N (VP(z)w)t, which
means that A\ € Np(P(z); VP(z)w) by [14, Lemma 2.1]. The FOSCMS at z then ensures
A = 0. Hence NNAMCQ holds at z. [ |
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Remark 4.1 The assumptions (i) or (ii) given in Theorem [-3 cannot be omitted. For
example, when V P(z2) has full column rank and D is nonconver with T' # 0, FOSCMS may
be strictly weaker than NNAMCQ); see Example [{.1] below.

Example 4.1 Consider the optimization problem.:

min  z1 + 29
st. (z1,22) €K
(Zl, ZQ) € Q,

where K = {(z1,22) € R%|z1 > |22|} and Q = {(z1,22) € R%|z; > 0,29 > 0,2129 = 0}.
Denote by P(z) = (z,2) and D = K x Q. The optimal solution is z* = (0,0). It is clear
that

{w #O0|VP(z*)w € Tp(P(z%))} = {w # 0|(w,w) € D} = {(w1, ws)|w; > 0,we = 0},

VP(z*) has a full column rank and D is nonconvex. By virtue of Proposition[3.4), since D
is a cone we have Np((0,0); VP(z*)w) = Np(VP(z*)w), and hence the condition

VP(z*)TA =0, A& Np(P(z*); VP(z*)w) = Np(VP(z*)w) = Nic(wy, wa) x No(wy,ws)
with wy > 0,we = 0 takes the form
M4 =0, (W07 € {(0,0)} x ({0} xR),

which implies that (N, X\?) = (0,0). Hence FOSCMS holds at z*.
On the other hand,

VP()TA=0, A=\ 2% e Np(P(z)

takes the form
M2 =0, (W5 A%) e —K x Nq(0,0).

Take \N* = (—=1,0) and \¢ = (1,0). Then \* € —K and A € Ng(0,0). Hence NNAMCQ
does not hold at z*.

It is interesting to note that each of the set-valued mappings for the two split systems
M (z) := (21, 22) — K and My(z) := (21, 22) —Q are both metrically reqular at (2*,0), but the
one for the whole system M(z) = (z,z) — K x Q is only metrically subregular (not metrically
regular) at (z*,0).

In many situations, the constraint system P(z) € D can be split into subsystems P (z) €
Dy, Py(z) € D9 such that one subsystem can be checked to have error bound property easily.
In Klatte and Kummer [2I, Theorem 2.5], it is shown that if both M; ! and M, ! are calm
at (0,2*) and Mj is pseudo-Lipschitz continuous at (z*,0), then checking the calmness of
the intersection M~ (a, B) := M; (o) N My (B) at (0,0,2*) can be reduced to checking
the calmness of H(B) := M;'(0)N My *(B) at (0,2*). In Example ], both M; ! and M, *
are calm at (0,z*) and Mj can be checked to be pseudo-Lipschitz continuous at (z*,0) by
using Mordukhovich criterion, and H(f5) = {z]z € K,z — f € Q} is calm at (0,z*) as a
polyhedral multifunction. This ensures the calmness of M ™!, or equivalently, the metric
subregularity of the whole system M (z) = P(z) — D.

In [I6l, Theorem 2|, the first order sufficient condition for metric subregularity for a
split system with product of two sets is given. When one of the subsystem is known to be
metrically subregular, the condition given in [I6], Theorem 2] is completely verifiable using
the initial data of the problem. We now extend this result to the product of finitely many
sets.
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Theorem 4.4 Let P(z*) € D and assume that P and D can be written in the form
P(Z) = (Pl(z),Pg(z),. .. ,PI(Z))7 D =Dy xDyx---X Dy,

where P; : R™ — R% are smooth and D; C R%, ¢ = 1,2,...,1, are closed such that the
set-valued map My (z) := Py (z) — Dy is metrically subregular at (z*,0). Further assume that
for every 0 # w such that VP;(z*)w € Tp,(P;(z*)), i =1,2,...,1, one has

I
VP(z)TA 4+ VPN =0,
=2
Noe Np, (Pi(2*); VPi(z)w) Vi=1,2,...,1

— \N=0 Vi=2,...,1. (14)

Then the set-valued mapping M (z) := P(z)—D is metrically subregular at (z*,0). Moreover,
if all D; except at most Dy are directionally regular at P;(2*), then (I4) is equivalent to that
for every w # 0 such that VP(z*)w € Tp(P(z*)), one has

I
VP(z) A 4+ > VPN =0,
=2 (15)
Ae NDl(Pl(Z*);Vpl(Z*)’w),
(A%, M) € Npyoxn, (P2(2%), ..., Pr(2%)); VP (25w, ..., VP (2 )w)
—= N=0Vi=2,...,1.
Proof. Let w # 0 satisfying VP(z*)w € Tp(P(z*)) such that (&) holds. Then by
Proposition B3l we have VP;(z*)w € Tp,(P;(z*)), and X' € Np,(Pi(z*); VP;(z*)w) for
i =1,2,...,1. Since (Id) holds at z*, it follows that A = 0 for i = 2,...,I. Applying
[16, Theorem 2], we have that the set-valued mapping M(z) := P(z) — D is metrically
subregular at (z*,0). Moreover suppose that all D; except at most D; are directionally
regular at P;(z*). Then by Proposition B3]
Tp(P(*)) = Tp, (PL(*)) x -+ x Tp, (Pi(")),
ND2><~~~><D1 ((PQ(Z*), N ,P](Z*)); VPQ(Z*)ZU, N ,VP](Z*)ZU)
= Np,(P2(2"); VPy(z")w) x - -+ X Np,(Pr(2*); VP (2" )w),

and hence the two conditions are equivalent. B

5 Expressions for tangent cones

In order to use the sufficient conditions for metric subregularity in terms of directional nor-
mal cones, one needs to derive the formula for the tangent cone involved. In this section we
derive the exact expressions for the tangent cone of the second-order cone complementarity
set. Moreover we show that it is geometrically derivable.

The following formula for the tangent cone of the second-order cone is well-known.

Proposition 5.1 [3, Lemma 25] Let KC be the m-dimensional second-order cone.
R™ it z € intlC

Ti(x) = K if x=0
deR™: —dy +70dy <0 if z € bdK \ {0}
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Let K be the m-dimensional second-order cone and
Q={(z,y)[K>z LyeK} (16)

be the corresponding second-order cone complementarity set. In what follows we show that
the set Q2 is geometrically derivable and give a characterization in terms of the metric pro-
jection operator. The characterization of the tangent cone was also given in [20, Proposition
3.1].

Proposition 5.2 The set Q) is geometrically derivable, and for any (x,y) € €2,
To(z,y) = Th(w,y) = {(d,w) M (z — y;d —w) = d} .
Proof. Since T¢(z,y) C To(x,y), it suffices to prove
Ta(z,y) € T(z.y) C Th(z,y),

where Y(z,y) := {(d,w) | j-(x — y;d — w) = d}. Take (d,w) € To(x,y). Then by defini-
tion, there exist t,, | 0 and (d,,w,) — (d,w) such that (z,y) + t,(d,,w,) € Q. By @), we
have
i (x +thdy, —y — thwy) =z + tpd, =l (z —y) + thd,.
Hence I ' d ; I
Wi(z —y;d — w) = lim k@t tn "_y_t nn) — (@ = y)

Therefore To(z,y) C Y(z,y). Now take (d,w) € T(z,y). Then for any given ¢, | 0

=d.

Hic(z —y + tp(d — w)) — Hic(x — y) = tylljc(x — y;d — w) + o(t,) = tad + o(ty),

ie.,
Oi(z —y+tp(d—w)) =g (z — y) + tpd + o(ty).

Hence
<H;C(x —y) +thd+ o(ty), U (z —y) + tnd + o(tn) — (. —y + tn(d — w))> XY

— <a: + tnd +o(ty),y + thw + O(tn)> €.

Q- ,
This means (d,w) € liminf # Hence Y(z,y) C T4 (xz,y). N

tnd0 n

With the above result, an explicit expression of tangent cone Ty is also given in [20),
Theorem 3.1]. However, in that explicit formula, for the case where z —y ¢ K U K°, the
directional derivative of the projection operator is involved. In the hope that only the
initial data on x,y is used, we next provide another explicit expression for Tq(x,y) without
involving I} (z — y).
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Theorem 5.1 Let 2 be defined as in (16]). Then for any (z,y) € L,

d=0, weR™ if =0, y € intk;
deR™ w=0, if z€intlkC, y=0;
i —ydeRey, dLly, wlx, if z,y € bdKC\{0};

=V a0, we k) or deRyg, w g, it o =0, yebdR\{0);

deTi(z), w=0ord Lz, ,weRyz, if z€bdl\{0}, y=0;
dek, wek, dL w, if t=0, y=0.

Proof. Note that I (x —y) is continuously differentiable at x —y, provided that = 0 and
y € intk, or x € intkC and y = 0, or 2,y € bdK\{0} with 27y = 0. Hence D*II(x —y) =
Vi (z — y) in the above cases, which in turn implies

i(z —y;d —w) =d < D'lUg(z—y)(d—w)=d < (w,—d) € No(z,y),

where the second equivalence is due to Proposition 2.4. By the expression of the limiting
normal cone in Proposition 2.6l we have the following conclusions.

Case 1: If x =0 and y € intKC, then w € R™ and d = 0.
Case 2: If x € intKC and y = 0, then d € R™ and w = 0.
Case 3: If ,y € bdK\{0} with 27y = 0, then
1w —yd € Rx, d Ly, wlx.
Case 4: If x = 0 and y € bdKC\{0}, since by Proposition 5.2 (d,w) € To(z,y) is equivalent

to saying that IIj-(x — y;d — w) = d. According to the formula of directional derivative for
IIx in Proposition 22(iii), we have (d,w) € Tq(z,y) if and only if

1 T T 1 | _|d
§<d1—w1—y2d2+y2wQ>+[_y2}—[d2]. (17)

We now claim that the set of solutions to equation (I7)) is
{(d,w)|d:0, w € Tx(y) or d € Ryy, wJ_g}}. (18)
By definition of the tangent cone, (d,w) € Tq(x,y) if and only if there exists (d,,w,) —
(d,w) and t,, — 0 with t,, > 0 satisfying (t,dn,y + thwy) = (x,y) + tp(dn, wy) € Q, ie.,
thd, €K, y+tybw, €K, tpd, L y—+thwy,

which implies
de kK, welk(y), dLluy.

Note that d € K and (y,d) = 0 implies that either d =0 or d € Ry ;9. If d = 0, then (I7)

takes the form as
(o) [ 5, ]= 6]
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which implies —w; + g2 we < 0, ie., w € Ti(y) by the formula of tangent cone of K in
Proposition 511 If d € Ry ¢, then d = 79 = 7(y1, —y2) for some 7 > 0. Hence

gads =93 (—7y2) = —T|yell = —7y1 = —di.

It then follows from (I7) that

1 1
dy = §<d1 —wy — J3 do —I—@7gw2> = §<2d1 —wy —I—@7gw2> ;

+ +

which implies —w; + ¢ wy = 0, i.e., w L §. Thus, (d,w) satisfies (IF).
Conversely, if d = 0 and w € Ti(y), then —w; —1—372Tw2 < 0 by Proposition 5.1l and hence

(dy — wy — §a da + Ja wa) 4 = (—wy + 3 we)+ = 0,

which implies that (I7)) holds, i.e., (d,w) € To(z,y). For the other case, if d € Ry ¢ and
w L 9, then d = 7 for some 7 > 0 and w; = ¥4 wy. Therefore

1 1 1 1
oot [ ] = 4, [
2(1 1y22y22+_y2 21?422+_y2
o[
Y2
I
= lal|
where the second equation is due to dy — ¥4 da = dy + 793 y2 = dy + 7l|ye|| = d1 +7y1 = 2d;
and the third equation comes from —dyy2 = —Ty152 = —Ty2 = da. This means that (I7])

holds, i.e., (d,w) € To(z,y). In summary, we have shown that

To(z,y) = {(d,w)|d =0, w € Tx(y) or d € Ry.g, w L j}.

Case 5: If z € bdKC\{0} and y = 0, by symmetry to Case 4, we have

To(z,y) = {(d,w)|d € Tic(z), w=0o0rd L 2, weRz}.

Case 6: If = 0 and y = 0, then II}-(0; h) = IIx(h) by Proposition 2Z2(iv). It follows from
Proposition that

(d,w) € To(z,y) <= lx(d—w)=d <= —-we Ng(d) <= (d,w)e,

ie, To(xz,y) = Q. In fact, this case can also be obtained by noting that 2 is a cone.  ®

When m = 1, 2, the tangent cone T have simpler expression given below. For example,
when m = 1, the second-order cone complementarity set €2 is reduced to the vector comple-
mentarity set {(a,b) € R%|a > 0,b > 0,ab = 0}, and hence bdK\{0} is empty; when m = 2,
the condition z;w — y1d € Rx can be dropped.

17



Corollary 5.1 Let Q be defined as in {I4). If m = 1, then

d=0, ifx=0, y>0
To(z,y) =4 (d,w)| w=0, ifx>0,y=0
d>0, w>0,dlLw, ifz=0 y=0
If m = 2, then
d=0, weR?, if =0, y€intkC
deR? w=0, if x €intkC, y =0
dly, wlz, if z,y € bdKC\{0}

Ta(@,y) = | (dw) d=0, weTk(y) ordeRyy, wly, ifx=0,yebdl\{0}

deTk(x), w=0o0rdlz,weRiz, if ze€bdl\{0}, y=0
dek, welk, d_L w, ifx=0, y=0

Proof. If m =1, then K =R, and hence bdK\{0} = (). Thus the desired result follows.

If m = 2, we show that the condition z1w — y1d € Rz is implied by d L y and w L x in
the case of z,y € bdK\{0} and 7y = 0. In fact, if 2; = 29 > 0, then y; = —y2, and hence
w1 4+ we = 0 and dy — dy = 0. Thus

e | ] fwn| o dn|  mwn —dy [
Plews) T de) T ] TV ] T T T

Similarly, if 1 = —z9, then y; = yo, and hence di + ds = 0 and wy — we = 0. Thus

G _y dy _ W _y dy lewl—yldl x1 lewl—yldl 1
U —wy ' dy o '—d x1 —x] T Ta|’

6 Expressions for directional normal cones

In order to use FOSCMS for the second-order cone complementarity system, one needs to
derive the exact formula for the directional normal cone of the second-order cone comple-
mentarity set. Moreover these results are of their own interest.

By formulating the vector complementarity set as the union of finitely many polyhedral
convex sets, the formula of the directional normal cone of the vector complementarity set is
given in [I4, Lemma 4.1]. In contrast to the vector complementarity set, the second-order
cone complementarity set cannot be represented as the union of finitely many polyhedral
convex sets. In the following theorem we derive an explicit expression for the directional
normal cone for the m-dimensional second-order cone complementarity set €2 defined as in
([IG). Note that in the case where m = 1, bdK\{0} = () and hence the formula we derived
reduced to the one given in [I4) Lemma 4.1] for this case.

Theorem 6.1 The second-order cone complementarity set is directionally reqular. For any
(z,y) € Q and (d,w) € To(x,y) = Tj(z,y), the directional normal cone can be calculated
as follows.

Case 1: © =0,y € intlC,

No((x,y); (d,w)) = Na(z,y) = R™ x {0}.
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Case 2: ¢ € intK,y =0,
No((x,y); (d,w)) = Na(z,y) = {0} x R™
Case 3: z,y € bdKC\{0},
Case 4: x € bdK\{0},y =0,
u=0,v e R™ if d € intTk(z),w =0
No((z,y); (d.w)) = { (u,v) | No(z,y) if d € bdTi(z),w =0
weRzE, vli ifdlzweRiz\{0}
Case 5: x =0,y € bdK\{0},
ueR™v=0 if d=0,w € intTi(x)
Na((@,y); (dw)) = { (u,0)| Na(z.y) if d = 0,w € b (x)
veERy, uly ifdeRig\{0},w Ly
Case 6: =0,y =0,
NQ(($7y); (d7w)) = Nﬂ(d7w)

Here the formula of the tangent cone and the normal cone of € are given as in Theorem
[5.1 and Proposition respectively.

Proof. In Cases 1-3, since it always has
N§((2,9); (d,w)) € Na((z,y); (d,w)) € No(z,y),

it suffices to show that '

Na(2,y) € No((z,y); (d,w)). (19)
For any (u,v) € No(z,y), in order to show that (u,v) € N§,((z,y); (d,w)), for any sequences
tn, 4 0, we need to find (d",w") — (d,w) and (u",v") — (u,v) satisfying (u",0v") €
Ng(x + tpd™, Yy + t,w™).
Case 1. z =0, y € intK. Since (u,v) € Nqo(z,y), (d,w) € To(z,y), then by Theorem BT,
d=0,w € R™ and by Proposition 2.6l v € R™,v = 0. By letting

(u",0") = (u,v) = (u,0) and (d",w") := (d,w) = (0,w),
we have y + t,w" € intKC for n sufficiently large, and hence
(u",0") = (u,0) € NQ(O, Y+ thw) = Ng(a: + tpd",y + tyw").

Hence (I9) holds.

Case 2. z € int/C, y = 0. This case is symmetric to Case 1 and we omit the proof.

Case 3. z,y € bdK\{0}. Then z —y € (-K UK)*. Since (d,w) € To(x,y) = TH(z,y), by
definition of the inner tangent cone, for any t, | 0, there exists (d",w") — (d,w) such that
(z,y) + t,(d”,w™) € Q. We now construct a sequence (u",v™) such that (u™,v"™) — (u,v)
and (u™,v") € No(x + tnd™,y + tyw™). By Proposition LI} y = k# with k = y1 /1. Hence
x1—y1 = (1 —k)xy,x9 —y2 = (1 + k)zo. By Proposition 2.3|(iii), the metric projection ITx
is differentiable at x — y and

11 zd L[t z1 1-%k7o 0
Vie(@ =9) =3 |4, I+};—’,§(I—x2x§)]_§{[x§ I}+1+k[0 I—:cga;TH'
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By [4, Lemma 1], the eigenvalue values of the matrix are 0,1 and 1/1 + k with multiplicity
n—2.

Case 3(i): If k # 1, then the eigenvalue of the matrix I — 2VIIg(z — y) is 1, —1, 'E—I}
So I — 2VIIg(x — y) is invertible. Since Il is continuously differentiable at = — y, I —
2V (x + t,d™ — y — tyw™) is also invertible for sufficiently large n. Let

-1
a(n) = <I—2VH;C(x+tnd"—y—tnw")> <VH;C(x+tnd"—y—tnw")—VH;dx—y)) (—u—w).
Then a(n) — 0 as n — co. Note that

<I — 2VIk(x + tpd" —y — tnw")>a(n) = <VH;¢($ +tpd" —y —tyw™) — VIg(x — y)> (—u—v)
a(n)
= <VH;¢($ +tpd" —y — tyw") — VI (z — y)> (—u —v) + 2V (z + t,d" — y — tyw™)a(n)
= Vlk(z + tad" —y — taw")(—u — v + 2a(n)) = VIl (z — y)(—u — v)
= Vlk(z + t,d" -y — taw")(—u — v + 2a(n)) — (-v),

where the last step is due to —v = VI (x—y)(—u—v) since (u,v) € No(x,y) by Proposition
24 Hence

—v+a(n) = Vllg(z + tp,d” —y — thw")(—u + a(n) — v + a(n)).
Let (u™,v") := (u— a(n),v — a(n)). Then
(u",v") = (u,v) and — o™ € Dlx(x + tpd” — y — tpw™)(—u™ — v™).

By Proposition B4l (u”, v™) € No(x + tod™, y + t,w™). Hence ([T) holds.

Case 3(ii): If k& = 1, then the eigenvalue of I — 2VIlx(x — y) is 1, —1, ],z—jr} = 0 and
hence the matrix I — 2VIIx(xz — y) is not invertible and the construction of (u",v") in
case 3(i) fails. Note that in this case the eigenvalue of the matrix I — 3VIIx(z — y) is
1, -2, —%. So I — 3VIlg(x — y) has inverse. We then construct the sequence by taking

(u™, ") = (u —2a(n),v — a(n)) with

a(n) = (I—3VH;¢(az+tnd"—y—tnw")> - <VH;C(x+tnd"—y—tnw")—VH;dx—y)) (—u—v),

and the desired result follows similarly.
Case 4. z € bdK\{0} and y = 0. Since (d, w) € To(z,y), by Theorem (.11, there are three
possible cases: w = 0,d € intTi(x), w =0,d € bdTi(x), or d L z,w € Ryz \ {0}.

Subcase 4.1. w = 0 and d € intT(z). Since (d,w) € To(z,y) = TjH(z,y), then for
any t, | 0, there exists (d",w"™) — (d,w) such that (z,y) + t,(d",w™) € Q. In this case
73dy —dy < 0. Hence || +tndy|| = ||z2|| + taZ2 d3 + o(tn) < x1 +t,d} for sufficiently large
n. So x + t,d" € intkC. It follows that

No (2 4 tpd”, taw™) = {(u,v)|u = 0,v € R™}.
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Hence
No((a,9): (d,0)) = Niy((2,9): (d: 0)) = {(u,v)lu = 0,0 € R™}.

Subcase 4.2. w = 0 and d € bdT)(z). In this case, it suffices to show
Na(z,y) € Nj((z,y); (d,w)).

By Proposition [26] for any (u,v) € Nq(z,y), there are three possible cases: v = 0,v € R™
oru€Re, v lzorueR_z (v,z) <O0.
Subcase 4.2(i). u = 0 and v € R™. Since d € bdTx(z), we have x1d; — 21 dy = 0 by the

formula for the tangent cone. For t,, | 0, let n(t,,) := ||z2 + tnda|| — ||22|| — tn@2 da, w™ := 0,
and
o (2 e, () £0
‘ (dy + tn, d2), otherwise.

If n(t,) # 0, then
21+ tad} = x1 + tody + 20n(tn)] > |||l + taZ3 do + n(tn) = |22 + tads |
otherwise
o1+ tpdt = x1 + tody + 12 = ||ao|| + taZl do + 12 > ||lzo 4 tads].

Hence z + t,d” € intK and y + t,w™ = 0. This ensures (u,v) € No(z + t,d™,0) =
No(z + tod™, y + tyw™). So (u,v) € N ((z,y); (d,w)).
Subcase 4.2(ii). v € R# and v L &. In this case, uy = —u1Z2 and vy — igvg = 0. This is
equivalent to

{ Uy = vy — jg(UQ + ’Ug)

_ -7
up = v — T (ug + v2)
U2 = —UITY

2ug = —(u1 + Ul)fg + (’Ul — ul)jg

_ . _ =T
{ up = v1 — Ty (ug + v2)

2uy = —(U1 + Ul):ig + (UQ + UQ)Tﬂ_ngg
1 -zl
= 2u= [—xz xga:ﬂ (u+v)
1[-1 7
= v= <I—|— 3 |:1'2 —xy:ﬂ) (u+v).

The following argument is similar to Case 3. Let

1= T
Mi=T+-= [1 $2T] .
T2 —I2T5
1 —zF
~Ty ToZd
n — 1. Hence it is invertible. For any ¢, | 0, take d" = (df,d3) with

First note that I —2M = —1 + [ ] has the eigenvalue 1 and —1 with multiplicity

o w2+ tada]l — |22
1=
ty

, dy :=da, and w" = t, (T + tng’;)
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So d" — d and w"™ — 0. Then (z + t,d", t,w") € Q with x + t,d", t,w™ € bdK\{0}. Let
2" = x4+ t,d" — t,w™. Then 2" — z and

(Zz)
1| -1 P 1[-1  ZF
VI(") =T+5 | =T —>I+§[x iy
b L+ (- ) 2 T

[E]] [ES ||Z§|I

|-

Hence I — 2V (z + t,d"™ — t,w™) is inverse as n is large enough. Let

a(n) = (1 OV + tad” — tnw")> o <VH;¢($ Ftpd® — byw™) — M> (—u— ).
Then
<1 OV (i + tad” — tnw")>a(n) - <VH;¢($ tnd — ™) — M> (—u— ).

Hence
an) = (Vlg(z +t,d" — t,w™) — M)(—u —v) + 2V (z + t,d" — t,w™)a(n)
= Vlg(z +t,d" —t,w")(—u+a(n) —v+a(n)) — M(—u —v).
This together with v = M (u + v) yields
—v+a(n) = D'l (z + t,d" — t,w")(—u+ a(n) — v + a(n)).

So (u — a(n),v — a(n)) € No(z + tod™,y + tyw™). Thus (u,v) € N (2, y); (dyw)).

Subcase 4.2(iii). v € R_Z and (v,&) < 0. For any t, | 0, let w" := 0 and d" = (d},d})
with df .= 228 B2 444 qp .= dy. Then d” — d, w" — w, and & + t,d" € bdK\{0}.
Let 2" := a2 + tng; and

Then v"™ — v and u"™ —> x—u Where <Oandu— 1:2'18 due to u € R_z. Note that
u™ € R_z"™ and

(0", 2" = (v, 27) — tn(B,d") = (0,2 + td™) — tn(0,d") = (v,3) < 0.

This means (u”,v") € No(z7,0) = No(z + tod™,y + taw™). So (u,v) € Ny ((z,9); (d, w)).
Subcase 4.3. d L & and w € Ry#\{0}. In this case, we will show that

Ny ((z,y); (d,w)) = Na((z,9); (d,w)) = {(u,v)| u € RE, v L &}.
Take (u,v) € No((7,y); (d,w)). Then there exist sequences t,, | 0, (d", w") — (d,w), (u",v") —
(u,v) such that (u™,v") € No(x + t,d", t,w™). Since x € bdK\{0} and w # 0, for n suffi-

ciently large, 0 # = + t,d"™ € K and 0 # t,w"™. It follows that x + t,d", t,w" € bdK\{0}.
Hence, by Proposition 2.6],

u L+t dh, 0" Lt,w”, (z+ tnd")laﬁ + (tpw™)10" € Rz + t,d"].
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Taking the limits yields v L z,v L w, 4 € Rz, which together with w € R 2\{0} implies
that v L Z,u € Rz. Hence

Nq((z,y); (d,w)) C {(u,v)| uw € Rz,v L &}.

Conversely, let u € Rz and v L #. Similarly to Subcase 4.2(ii), we can prove (u,v) €
N4 ((z,9); (d,w)). The only change is to take w™ := (2 + tpd) instead of w" =, (2 +
tngﬁ) Since w = 7 for some 7 > 0, we have wy = 1 (—x2), and hence w" = Z’—:(a@—ktnﬁ) —
2L = w.
€T
Case 5. 2 = 0 and y € bdK/{0}. The result follows by a symmetric analysis of Case 4.
Case 6. If x =0 and y = 0, then (d,w) € To(z,y) = Q. Using Proposition B.4] yields

|

7 Sufficient conditions for error bounds of the second-order
cone complementarity system

In this section, we give verifiable sufficient conditions for the error bound property of the
second-order cone complementarity system (II)-(2]). First by applying Theorem 1] we have
the following sufficient conditions based on the limiting normal cones.

Theorem 7.1 Given a point z* € F. The system (1)-(2) has a local error bound at z* if
the NNAMCQ holds at z*:

J
VEE)N 4+ {VGi(2")"AC + VH (") "M} =0, .
N € NAF(=)). (AGAF) € No(G(*), H(2)

Here the exact expression for the limiting normal cone of Q can be found in Proposition [2.0

(AE NG A = .

By applying Theorems and [£.4] respectively, we obtain the sufficient conditions in
Theorems and based on directional limiting normal cone immediately. According to
the relationship between the limiting normal cone and the directional limiting normal cone
Nec(z;d) € Ne(z), the sufficient condition based on the directional limiting normal cone is
in general weaker than the one based on the limiting normal cone given in Theorem [7.1l
In fact Example 1] shows that it is possible that the NNAMCQ does not hold while the
sufficient condition in terms of the directional limiting normal cone holds. Note that in the
following theorem, the formula of the tangent cone and the directional normal cone for a
second-order cone complementarity set can be found in Theorems [5.1] and [6.], respectively.
Moreover, the equivalence of the two conditions are due to the directional regularity of the
second-order cone complementarity set proved in Theorem [G.11

Theorem 7.2 Given a point z* € F. Suppose that for every 0 # w € R™ with VF(z*)w €
TA(F(2%)), (VGi(z")w, VH;(z")w) € To,(Gi(2"), Hi(2%)),i =1,...,J, one has
J
VF()TA + 3 {VGi(z) A + VH; (") "A} =0,
i=1 F \G \H
M€ Np(F(2); VE(2%)w), = (A7, A7, A7) =0,

177
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or equivalently for every 0 # w € R™ with VF(z*)w € Tp(F(z*)), (VG(z*)w, VH(z*)w) €
To(G(z*), H(z*)) one has
VE()TA + VG(2z*)TNE + VH(z*) TN\ =0,
M€ Np(F(2%); VE(z*)w),

— (A, 0G0 = 0.
(ACAH) € Ng <(G(z*),H(z*)); (VG(z*)w, VH(Z*)U)))

Then the system (1)-(2) has a local error bound at z*.

Theorem 7.3 Given a point z* € F. Suppose that the set-valued mapping M (z) := F(z) —
A is metrically subregular at (2*,0). Further assume that for every 0 # w € R™ with
VFE(z*)w € TaA(F(2%)), (VGi(z*)w, VH;(z*)w) € To,(Gi(z*), Hi(z*)),i =1,...,J, one has

J
1=1 G \H

(AE AT € Ng, <(G,~(z*),Hi(z*)); (VG,-(z*)w,VHi(z*)w)>,i =1,...,J

or equivalently for every 0 # w € R™ with VF(z*)w € Ty(F(z*)), (VG(z*)w, VH(z*)w) €
To(G(2*), H(z*)) one has
VE()TAN + VG()TNE + VH(2*)TAH =0,
M€ Npo(F(2*); VE(2*)w),

— (XY ) = 0.
(AC A1) € Ng <(G(z*),H(z*)); (VG(z*)w, VH(Z*)U)))

Then the system (1)-(2) has a local error bound at z*.

In order to use Theorem[T3] the set-valued mapping M (z) := F'(z)— A should satisfy the
metric subregularity. For convenience, we summarize some prominent sufficient conditions
for the case of an equality and inequality system in the following theorem. It is well known
that in Theorem [T4] (ii)==(iii)<=(iv)= (v) or (vi), (i)== (v) and ()= (vi).

Theorem 7.4 (Sufficient conditions for MS for the equality and inequality system)
Let z* be a feasible point to the system g(z) < 0,h(z) =0, where g : R® = RP, h : R" — RY
are differentiable. Then the set-valued mapping M (z) = (g(z),h(z)) —R” x {0}4 is metri-
cally subregular at (z*,0) under one of the following conditions.

(i) Linearity constraint qualification (Linear CQ) holds: h,g are affine.

(ii) Linear independence constraint qualification (LICQ) holds: {Vgi(z*), Vh;(z*)|i €
I, =1,...,q} are linearly independent.

(iii) The Mangasarian-Fromovitz constraint qualification (MFCQ) holds at z*: {Vh;(z*)|i =
1,...,q} are linearly independent and there exists d € R™ such that Vh;(z*)d =0 for
alli=1,...,q and Vg;(z*)d <0 for alli € I,.

(iv) NNAMCQ holds at z*:
Vg(z*)TN + Vh(z")TA =0, A >0,(\,g(2*)) =0 (20)
— (M, 2\ = 0.
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(v) Quasinormality holds at z* ([17, Corollary 5.3]):

M > 0= gi(2F) > 0,\l #£0 = \eh;(2F) > 0

— (M, ) =o.

{ @0) and there exists a sequence {zF} converging to z* such that for each k,

(vi) The relaxed constant positive linear dependence condition (RCPLD) holds at z* ([18,
Theorem 4.2]): Let J C {1,...,q} and {Vh;(z*)|j € T} be a basis for span{Vh;(z*)|j =
1,...,q}. There exists 6 > 0 such that

— {Vh;(2)}i_, has the same rank for each z € B;(2*);
— for eachZ C Iy, if {Vygi(2*),Vh;(z*)|i € Z,5 € T} is positively linear dependent,
then {Vgi(z),Vh;(2)li € Z,j € J} is linear dependent for each z € Bs(z*).

(vii) There are no nonzero direction in the linearized cone ([13, Corollary 1]):

Vgi(2*)d <0,i € I, Vhi(2*)d =0,i=1,...,g = d =0.

(viii) Second-order sufficient condition for metric subreqularity (SOSCMS) ([15, Corollary
1]): For every 0 # w € R"™ with Vg;(z* )w < 0 for i € I, and Vhi(z*)w = 0 for
i=1,...,q, one has

Vg(z*)TA + Vh(z)TAP =0, M >0,(N,g(z*)) =0

wTv2(()\g)Tg)(Z*)w + wTV2(()\h)Th)(Z*)'w >0 } - ()\g’)\h) =0.

The following example shows that if there exists 0 # w € R"™ with Vg;(z*)w < 0 for
i € Iy and Vhi(z*)w = 0 for ¢ = 1,...,¢q, then SOSCMS is weaker than NNAMCQ, or
equivalently MFCQ.

Example 7.1 Let g1(2) = 21 — 23, ga(2) = 22 — 29, and h(z) = z;. At 2 = (0,0), consider
M1V g1 (2) + N2V ga(2) + N'Vh(z) =0

with A9',\92 > 0. Then we can take (AN, \92, \") = (1,0, —1) # (0,0,0). So MFCQ fails at
z = (0,0). Let w satisfying Vh(z)w = 0. Then wy = 0, and hence from

N2 g1 (2)w 4 A2 V2 ge(2)w > 0,

we have —2)\9111)% >0, so A9 < 0 and hence A9 = 0. Consequently, \9> = 0 and \" = 0.
So SOSCMS holds at z = (0,0).

Our sufficient condition Theorem [.3] provides a sufficient condition for metric subreg-
ularity for the very general system (I)-(2]). There may exist more than one way to split
a system and this provides flexibility in using Theorem For example, suppose that a
second-order cone complementarity system consists only (I]). Suppose some of the subsys-
tems, without loss of generality,

(GZ(Z),HZ(Z)) € QZ’, L= 1, o, S,
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where s < J is metric subregular at (2*,0). Then one can split the original system () as
Ki>Gi(z) LHi(z) e Ky i=s+1,...,J,
F(z) € A, (21)
where
F(2):=(G1(2),H1(2)) x -+ x (Gs(2), Hs(2)) and A:=Qq x -+ x Qq,

and use Theorem [(.3l In particular, since K; with m; = 1 is the set of nonnegative reals
R, ; with m; = 1 is equal to the vector complementarity cone © := {(x,y) € R?|z >
0, > 0,27y = 0}. Without loss of generality, assuming m; = 1 for i = 1,...,s, then the
system F'(z) € A given in (2I]) is then equal to the vector complementarity system

F(z) € ©°%

where ©° := {(a,b) € R*|a > 0,b > 0,a’b = 0}. We now summarize some prominent
sufficient conditions for metric subregularity for the vector complementarity system in the
following theorem.

Theorem 7.5 (Sufficient conditions for MS for a complementarity system) Let z*
be a feasible point to the vector complementarity system g(z) < 0,h(z) = 0,0 < ¢(z) L
P(z) > 0, where g : R — RP, h: R" - RY, ¢ : R” — R%, ¢ : R" — R® are continuously
differentiable. Then, the set-valued mapping M (2) := (g(2), h(2), ¢(2),¢(2))—R? x{0}4xO*
is metrically subregular at (2*,0) under one of the following conditions:

(i) Linearity CQ holds: g,h, o, are affine.

(i) MPEC LICQ holds: {Vg;(z*)(i € 15), Vhi(z*)(i = 1,...,q),Vi(2")(i € I), Vs (2*)(i €
Iy)} are linearly independent.

(iii) MPEC NNAMCQ holds at z*:

V(2 )N + Vh(z)TN 4V ()TN + Vi (2*)TAY =0, (22)
N> 0,0 =0,V & 1, \) = 0,Vi & Iy, \ =0, Vidly, (23)
either \? < 0,V <0 or ANV =0 VieI,N1y (24)

= (N, \ 020 = 0.
(iv) MPEC quasi-normality holds at z*:

@2) — @4) and there exists a sequence {2} converging to z* such that for each k,
M > 0= Mgi(2F) > 0,\F #£ 0 = Mok (2F) > 0,
A? 40 = Mahi(2F) < 0,07 # 0 = Aihi(2F) <0,

= (A, N 020 = 0.
(v) There is no nonzero direction in the MPEC linearized cone: LMPEC(2*) = {0} where

Vgi(z*)w <0,i € I, Vhi(z")w =0,i=1,...,q
LMPEC() = Qw| V(2" )w =0,i € I§, Viyi(z*)w = 0,i € I§
0< V(b,(z*)w 1L Vzp,(z*)w >0 i€ I¢ N [1/1
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(vi) The set-valued mapping My (z) := (g9(2), h(z)) —RY. x {0} is metrically subregular at
(2*,0) and for every 0 # w € LMPEC(2*), one has
@) - @3) and (\),\]) € No(Vei(=")w, Vbi(z")w) Vi € I, NI, (25)
— (X%, \¥) =0,
where No(x,y) is given in (20).
(vii) The set-valued mapping M1 (z) = (g(z), h(2)) —R” x {0}9 is metrically subregular at
(2*,0) and for every 0 # w € LMPEC(2*), one has
@3) and wT V2L (25, X9, A N2 A w > 0 = (A2, \Y) =0,
where

LO(z, N9, N X2 %) = g(2)T A9 + h(2)T A" 4+ ¢(2)T A + (2)T AV,

Proof. (i) follows from the corollary in [29, page 210]. (ii) is stronger than (iii), which
is further stronger than (iv). (iv) follows from [I7, Theorem 5.2]. (v) is the trivial case of
(vi). (vi) and (vii) follow from [I4, Theorem 2.6] and the well-known fact that the limiting
normal cone of the complementarity cone © is equal to

u=20 ifx>0
No(z,y) = { (u,v) €ER?*| v =0 ify>0 . (26)
either u <0, v <Qoruv =0 ifz=y=0

We now consider the following SOCCP

K>G(2) L H(z) € K, (27)
9(z) <0,h(z) = 0,0 < ¢(z) Ly(z) >0, (28)

where the second-order cone complementarity system (27)) is defined as in () and g : R™ —
RP A:R" -R? ¢:R" - R* ¢ :R* - R* G:R* - R™ H:R" — R™ are continuously
differentiable. Let the linearized cone of the system (27)-(28]) be

Vgi(z )w <0,i € I, Vhi(z* )w =0,i=1,...,q

Voi(z*)w = 0,1 € Ii,Vwi(z*)w =0,i € I

0< V(bl(z*)w 1L Vw,(z*)w >0 1€ I¢ N [¢ ’
(VGi(z*)w, VH;(z*)w) € Ta,(Gi(z*), Hi(z¥)),i =1,...,J

£(2%)

where To, can be calculated as in Theorem B.Il Based on the results we obtained, we now
derive a sufficient condition for error bounds for the system (27))-(28]) that are explicitly
verifiable based on the initial data.

Theorem 7.6 Given a point z* € F. Suppose that the complementarity system (28) is
metrically subregular at (z*,0). Further assume that either L(z*) = {0}, or L(z*) # {0}
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and for every 0 # w € L(z*) one has

V()TN + Vh(z )TAh+v¢( TN + w( DTN 4 VG ()TN + VH(z) A =0,

A > 0N =0V ig I\ =0VidlIy \ =0Vid Iy,
(A2, \Y) € No(Vy(z*)w, Vi (z*)w )Vze[d)ﬂlw,

(NG AH) € Ng, ((Gi(z*), H;(z%)); (VG (z*)w, VHi(z*)w)>, Vi=1,...,J,
— (XY ) =,

where Ng(-) is given in (20) and Ngq,((z,y);(d,w)) can be calculated as in Theorem [G 1l
Then the system (27)-(28) has a local error bound at z*. That is, there exist a constant
k>0 and 6 > 0 such that

d(z, F) < & {Hh(Z)H +llg+ ()1 + Zd@(@( ) + Zda ))} Vz € Bs(2").

Proof. To prove the result, we take F'(2) := (g(2), h(2),¢(2),9(2)) and A := R” x{0}4x©*
and apply Theorem Since the sets R” | {0}9 are convex and ©°¢ is directionally regular,
we have

Ta(F(27)) = Tre (9(27)) X Tyoya (h(27)) x Tos (4(2"), ¥(27)),

NA(F(2); VE (2" )w)

= Ngr (9(27); Vg(z7)w) x Nyoya (h(27); VA(2")w) x Nes ((¢(27), (27)); (Vo (2" )w, V(2 )w)),
Ne: ((6(2"),9(2)); (Vo(z")w, Vo(")w)) = Iy Ne((¢i(2"), i(27)); (Voi(2")w, Vi (2" )w)).

Moreover by Proposition 3.4 and Theorem [61] for all w such that (V¢;(z*)w, Vi (z*)w) €
To(pi(2*),1i(2*)), we have

No((¢i(27),1i(27)); (Vi (2")w, Vi (2*)w))
R x {0} if ¢;(2*) = 0,9;(2*) > 0,
{0} x R 16(:1) > 0.34(7) —0.
No (Vi (z*)w, Vb (z5)w)  if ¢;(2*) = 0,1;(2%) =

By using the tangent cone formula in Corollary [5.1] and the limiting normal cone formula
in (26), we derive the result. m

Acknowledgments. The authors are grateful to the two anonymous referees for their
helpful comments and suggestions.
References

[1] F. ALIZADEH AND D. GOLDFARB, Second-order cone programming, Math. Program.,
95(2003), pp. 3-51.

[2] J.-P. AUBIN, Lipschitz behavior of solutions to convex minimization problems, Math.
Oper. Res., 9(1984), pp. 87-111.

28



[3]

[4]

[11]

[12]

[13]

[14]

[15]

[16]

J.F. BoNNANS AND H. RAMREZ C., Perturbation analysis of second-order cone pro-
gramming problems, Math. Program., 104(2005), pp. 205-227.

J.-S. CHEN, X. CHEN AND P. TSENG, Analysis of nonsmooth vector-valued functions
associated with second-order cone, Math. Program., 101(2004), pp. 95-117.

J.-S. CHEN AND P. TSENG, An unconstrained smooth minimization reformulation
of the second-order cone complementarity problem, Math. Program., 104(2005), pp.
293-327.

F.H. CLARKE, Optimization and Nonsmooth Analysis, Wiley-Interscience, New York,
1983.

F.H. CLARKE, YU. S. LEDYAEV, R.J. STERN AND P.R. WOLENSKI, Nonsmooth
Analysis and Control Theory, Springer, New York, 1998.

A.L. DoNTCHEV AND R.T. ROCKAFELLAR, Implicit Functions and Solution Map-
pings, Springer, Heidelberg, 2014.

M.J. FABIAN, R. HENRION, A.Y. KRUGER AND J.V. OUTRATA, Error bounds: nec-
essary and sufficient conditions, Set-Valued Var. Anal., 18(2010), pp. 121-149.

F. FAccHINEI, A. FISCHER AND M. HERRICH, An LP-Newton method: nonsmooth

equations, KKT systems, and nonisolated solutions, Math. Program., 146(2014), pp.
1-36.

M.L. FLEGEL, C. KANZOW AND J.V. OUTRATA, Optimality conditions for disjunctive

programs with application to mathematical programs with equilibrium constraints, Set-
Valued Anal., 15(2007), pp. 139-162.

H. GFRERER, First order and second order characterizations of metric subregularity
and calmness of constraint set mappings, STAM J. Optim., 21(2011), pp. 1439-1474.

H. GFRERER, On directional metric reqularity, subreqularity and optimality conditions
for nonsmooth mathematical programs, Set-Valued Var. Anal., 21(2013), pp. 151-176.

H. GFRERER, Optimality conditions for disjunctive programs based on generalized dif-
ferentiation with application to mathematical programs with equilibrium constraints,
SIAM J. Optim., 24(2014), pp. 898-931.

H. GFRERER, D. KLATTE, Lipschitz and Holder stability of optimization problems and
generalized equations, Math. Program., 158(2016), pp. 35-75.

H. GFRERER AND J.J. YE, New constraint qualifications for mathematical programs
with equilibrium constraints via variational analysis, SIAM J. Optim., 27(2017), pp.
842-865.

L. Guo, J.J. YE AND J. ZHANG, Mathematical programs with geometric constraints

in Banach spaces: enhanced optimality, exact penalty, and sensitivity, SIAM J. Optim.,
23(2013), pp. 2295-2319.

L. Guo, J. ZHANG AND G.-H. LIN, New results on constraint qualifications for non-

linear extremum problems and extensions, J. Optim. Theory Appl., 163(2014), pp.
737-754.

29



[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]

32]

[33]

[34]

S. HAavAsHI, N. YAMASHITA AND M. FUKUSHIMA, Robust Nash equilibria and second-
order cone complementarity problems, J. Nonl. Conv. Anal., 6(2005), pp. 283-296.

Y. JIANG, Y.J. L1iu AND L.W. ZHANG, Variational geometry of the complementarity
set for second order cone, Set-Valued Var. Anal., 23(2015), pp. 399-414.

D. KraTrTE AND B. KUMMER, Nonsmooth Equations in Optimization: Regularity,
Calculus, Methods and Applications, Kluwer Academic Publishers, 2002.

M.S. LoBO, L. VANDENBERGHE, S. BOYD AND H. LEBRET, Applications of second-
order cone programming, Linear Algebra Appl., 284(1998), pp. 193-228.

B.S. MORDUKHOVICH, Variational Analysis and Generalized Differentiation, Vol. I:
Basic Theory, Vol. II: Applications, Springer, Berlin, 2006.

K.F. NG AND X.Y. ZHENG, Global error bounds with fractional exponents, Math.
Program., 88(2000), pp. 357-370.

J.V. OUTRATA AND D.F. SUN, On the coderivative of the projection operator onto the
second-order cone, Set-Valued Anal., 16(2008), pp. 999-1014.

J.S. PANG, Error bounds in mathematical programming, Math. Program., 79(1997),
pp. 299-332.

S.M. ROBINSON, Stability theory for systems of inequality constraints, part I: linear
systems, STAM J. Numer. Anal., 12(1975), pp. 754-769.

S.M. ROBINSON, Stability theory for systems of inequality constraints, part II: differ-
entiable nonlinear systems, STAM J. Numer. Anal., 13(1976), pp. 497-513.

S.M. ROBINSON, Some continuity properties of polyhedral multifunctions, Math. Pro-
gram. Stud., 14(1981), pp. 206-214.

R.T. ROCKAFELLAR AND R. J-B. WETS, Variational Analysis, Springer, Berlin, 1998.

Z.L. Wu anD J.J. YE, Sufficient conditions for error bounds, SIAM J. Optim.,
12(2001), pp. 421-435.

Z.L. Wu AND J.J. YE, On error bounds for lower semicontinuous functions, Math.
Program., 92(2002), pp. 301-314.

Z.L. Wu AND J.J. YE, First-order and second-order conditions for error bounds,
STAM J. Optim., 14(2003), pp. 621-645.

J.J. YE, Constraint qualification and necessary optimality conditions for optimization
problems with variational inequality constraints, STAM J. Optim., 10(2000), pp. 943-
962.

J.J. YE AND X.Y. YE, Necessary optimality conditions for optimization problems with
variational inequality constraints, Math. Oper. Res., 22(1997), pp. 977-997.

J.J. YE AnND J.C. ZHOU, First-order optimality conditions for mathematical programs
with second-order cone complementarity constraints, SIAM J. Optim., 26(2016), pp.
2820-2846.

30



[37] J.J. YE anD J.C. ZHOU, Ezact formula for the prozimal /reqular/limiting normal cone
of the second-order cone complementarity set, Math. Program., 162(2017), pp. 33-50.

31



	1 Introduction
	2 Preliminaries
	2.1 Background in variational analysis
	2.2 Background in variational analysis associated with the second-order cone

	3 Calculus for directional normal cones
	4 Sufficient conditions for the error bound property via directional normal cones
	5 Expressions for tangent cones
	6 Expressions for directional normal cones
	7 Sufficient conditions for error bounds of the second-order cone complementarity system

