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Abstract

We give a constant factor approximation algorithm for the Asymmetric Traveling Sales-
man Problem on shortest path metrics of directed graphs with two different edge weights.
For the case of unit edge weights, the first constant factor approximation was given re-
cently by Svensson. This was accomplished by introducing an easier problem called Local-
Connectivity ATSP and showing that a good solution to this problem can be used to obtain
a constant factor approximation for ATSP. In this paper, we solve Local-Connectivity ATSP
for two different edge weights. The solution is based on a flow decomposition theorem for
solutions of the Held-Karp relaxation, which may be of independent interest.

1 Introduction

The traveling salesman problem — one of finding the shortest tour of n cities — is one of the
most classical optimization problems. Its definition dates back to the 19th century and since
then a large body of work has been devoted to designing “good” algorithms using heuristics,
mathematical programming techniques, and approximation algorithms. The focus of this work
is on approximation algorithms. A natural and necessary assumption in this line of work that
we also make throughout this paper is that the distances satisfy the triangle inequality: for any
triple i, j, k of cities, we have d(i, j)+d(j, k) ≥ d(i, k) where d(·, ·) denotes the pairwise distances
between cities. In other words, it is not more expensive to take the direct path compared to a
path that makes a detour.

With this assumption, the approximability of TSP turns out to be a very delicate question
that has attracted significant research efforts. Specifically, one of the first approximation al-
gorithms (Christofides’ heuristic [Chr76]) was designed for the symmetric traveling salesman
problem (STSP) where we assume symmetric distances (d(i, j) = d(j, i)). Several works (see
e.g. [FGM82, AGM+10, GS11, AG15, Sve15]) have addressed the more general asymmetric
traveling salesman problem (ATSP) where we make no such assumption.

However, there are still large gaps in our understanding of both STSP and ATSP. In fact,
for STSP, the best approximation algorithm remains Christofides’ 3/2-approximation algorithm
from the 70’s [Chr76]. For the harder ATSP, the state of the art is a O(log n/ log log n)-
approximation algorithm by Asadpour et al. [AGM+10] and a recentO(poly log log n)-estimation
algorithm1 by Anari and Oveis Gharan [AG15]. On the negative side, the best inapproxima-
bility results only say that STSP and ATSP are hard to approximate within factors 123/122
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1An estimation algorithm is a polynomial-time algorithm for approximating/estimating the optimal value

without necessarily finding a solution to the problem.
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and 75/74, respectively [KLS15]. Closing these gaps is a major open problem in the field of
approximation algorithms (see e.g. “Problem 1” and “Problem 2” in the list of open problems
in the recent book by Williamson and Shmoys [WS11]). What is perhaps even more intriguing
about these questions is that we expect that a standard linear programming (LP) relaxation,
often referred to as the Held-Karp relaxation, already gives better guarantees. Indeed, it is
conjectured to give a guarantee of 4/3 for STSP and a guarantee of O(1) (or even 2) for ATSP.

An equivalent formulation of STSP and ATSP from a more graph-theoretic point of view
is the following. For STSP, we are given a weighted undirected graph G = (V,E,w) where
w : E → R+ and we wish to find a multisubset F of edges of minimum total weight such that
(V, F ) is connected and Eulerian. Recall that an undirected graph is Eulerian if every vertex
has even degree. We also remark that we use the term multisubset as the solution F may use
the same edge several times. An intuitive point of view on this definition is that G represents
a road network, and a solution is a tour that visits each vertex at least once (and may use a
single edge/road several times). The definition of ATSP is similar, with the differences that the
input graph is directed and the output is Eulerian in the directed sense: the in-degree of each
vertex equals its out-degree. Having defined the traveling salesman problem in this way, there
are several natural special cases to consider. For example, what if G is planar? Or, what if all
the edges/roads have the same length, i.e., if G is unweighted?

For planar graphs, we have much better algorithms than in general. Grigni, Koutsoupias
and Papadimitriou [GKP95] first obtained a polynomial-time approximation scheme for STSP
restricted to unweighted planar graphs, which was later generalized to edge-weighted planar
graphs by Arora et al. [AGK+98]. More recently, ATSP on planar graphs (and more generally
bounded genus graphs) was shown to admit constant factor approximation algorithms (first by
Oveis Gharan and Saberi [GS11] and later by Erickson and Sidiropoulos [ES14] who improved
the dependency on the genus).

In contrast to planar graphs, STSP and ATSP remain APX-hard for unweighted graphs
(ones where all edges have identical weight) and, until recently, there were no better algorithms
for these cases. Then, in a recent series of papers, the approximation guarantee of 3/2 was
finally improved for STSP restricted to unweighted graphs. Specifically, Oveis Gharan, Saberi
and Singh [GSS11] first gave an approximation guarantee of 1.5−ǫ; Mömke and Svensson [MS11]
proposed a different approach yielding a 1.461-approximation guarantee; Mucha [Muc12] gave
a tighter analysis of this algorithm; and Sebő and Vygen [SV14] significantly developed the
approach to give the currently best approximation guarantee of 1.4. Similarly, for ATSP, it
was only very recently that the restriction to unweighted graphs could be leveraged: the first
constant approximation guarantee for unweighted graphs was given by Svensson [Sve15]. In
this paper we make progress towards the general problem by taking the logical next step and
addressing a simple case left unresolved by [Sve15]: graphs with two different edge weights.

Theorem 1.1. There is an O(1)-approximation algorithm for ATSP on graphs with two dif-
ferent edge weights.

The paper [Sve15] introduces an “easier” problem named Local-Connectivity ATSP, where
one needs to find an Eulerian multiset of edges crossing only sets in a given partition rather than
all possible sets (see next section for definitions). It is shown that an “α-light” algorithm to this
problem yields a (9 + ε)α-factor approximation for ATSP. For unweighted graphs (and slightly
more generally, for node-induced weight functions2) it is fairly easy to obtain a 3-light algorithm
for Local-Connectivity ATSP; the difficult part in [Sve15] is the black-box reduction of ATSP
to this problem. Note that [Sve15] easily gives an O(wmax/wmin)-approximation algorithm in

2For ATSP, we can think of a node-weighted graph as an edge-weighted graph where the weight of an edge
(u, v) equals the node weight of u.
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general if we take wmax and wmin to denote the largest and smallest edge weight, respectively.
However, obtaining a constant factor approximation even for two different weights requires
substantial further work.

In Local-Connectivity ATSP we need a lower bound function lb : V → R+ on the vertices.
The natural choice for node-induced weights is lb(v) =

∑
e∈δ+(v) w(e)x

∗
e . With this weight

function, every vertex is able to “pay” for the incident edges in the Eulerian subgraph we are
looking for. This choice of lb does not seem to work for more general weight functions, and we
need to define lb more “globally”, using a new flow theorem for Eulerian graphs (Theorem 2.1).
In Section 1.2, after the preliminaries, we give a more detailed overview of these techniques
and the proof of the theorem. Our argument is somewhat technical, but it demonstrates the
potential of the Local-Connectivity ATSP problem as a tool for attacking general ATSP.

Finally, let us remark that both STSP [PY93, BK06] and ATSP [Blä04] have been studied in
the case when all distances are either 1 or 2. That restriction is very different from our setting,
as in those cases the input graph is complete. In particular, it is trivial to get a 2-approximation
algorithm there, whereas in our setting – where the input graph is not complete – a constant
factor approximation guarantee already requires non-trivial algorithms. (In our setting, we can
still think about the metric completion, but it will usually have more than two different edge
weights.)

1.1 Notation and preliminaries

We consider an edge-weighted directed graph G = (V,E,w) with w : E → R+. For a vertex
subset S ⊆ V we let δ+(S) = {(u, v) ∈ E : u ∈ S, v ∈ V \ S} and δ−(S) = {(u, v) ∈ E : u ∈
V \ S, v ∈ S} denote the sets of outgoing and incoming edges, respectively. For two vertex
subsets X,Y ⊆ V , we let δ(X,Y ) = {(u, v) ∈ E : u ∈ X \ Y, v ∈ Y \X}. For a subset of edges
E′ ⊆ E, we use δ+E′(S) = δ+(S)∩E′ and δ−E′(S) = δ−(S)∩E′. We also let C(E′) = (G̃1, . . . , G̃k)
denote the set of weakly connected components of the graph (V,E′); the vertex set V will always
be clear from the context. For a directed graph G̃ we use V (G̃) to denote its vertex set and
E(G̃) the edge set. For brevity, we denote the singleton set {v} by v (e.g. δ+(v) = δ+({v})),
and we use the notation x(F ) =

∑
e∈F xe for a subset F ⊆ E of edges and a vector x ∈ RE. For

a multiset F , we have 1F denote the indicator vector of F , which has a coordinate for each edge
e with value equal to the number of copies of e in F . For the case of two edge weights, we use
0 ≤ w0 < w1 to denote the two possible values, and partition E = E0 ∪ E1 so that w(e) = w0

if e ∈ E0 and w(e) = w1 if e ∈ E1. We will refer to edges in E0 and E1 as cheap and expensive
edges, respectively.

We define ATSP as the problem of finding a connected Eulerian subgraph of minimum
weight. As already mentioned in the introduction, this definition is equivalent to that of visiting
each city exactly once (in the metric completion) since we assume the triangle inequality. The
formal definition is as follows.

ATSP

Given: An edge-weighted (strongly connected) digraph G = (V,E,w).

Find: A multisubset F of E of minimum total weight w(F ) =
∑

e∈F w(e) such that (V, F )
is Eulerian and connected.
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Held-Karp Relaxation. The Held-Karp relaxation has a variable xe ≥ 0 for every edge in
G. The intended meaning is that xe should equal the number of times e is used in the solution.
The relaxation LP(G) is defined as follows:

minimize
∑

e∈E

w(e)xe

subject to x(δ+(v)) = x(δ−(v)) v ∈ V,

x(δ+(S)) ≥ 1 ∅ 6= S ( V,

x ≥ 0.

(LP(G))

The first set of constraints says that the in-degree should equal the out-degree for each vertex,
i.e., the solution should be Eulerian. The second set of constraints enforces that the solution
is connected; they are sometimes referred to as subtour elimination constraints. Finally, we
remark that although the Held-Karp relaxation has exponentially many constraints, it is well-
known that we can solve it in polynomial time either by using the ellipsoid method with a
separation oracle or by formulating an equivalent compact (polynomial-size) linear program.
We will use x∗ to denote an optimal solution to LP(G) of value OPT, which is a lower bound
on the value of an optimal solution to ATSP on G.

Local-Connectivity ATSP. The Local-Connectivity ATSP problem can be seen as a two-
stage procedure. In the first stage, the input is an edge-weighted digraph G = (V,E,w) and the
output is a “lower bound” function lb : V → R+ on the vertices such that lb(V ) ≤ OPT. In the
second stage, the input is a partition of the vertices, and the output is an Eulerian multisubset
of edges which crosses each set in the partition and where the ratio of weight to lb of every
connected component is as small as possible. We now give the formal description of the second
stage, assuming the lb function is already computed.

Local-Connectivity ATSP

Given: An edge-weighted digraph G = (V,E,w), a function lb : V → R+ with lb(V ) ≤
OPT, and a partitioning V = V1 ∪ V2 ∪ . . . ∪ Vk of the vertices.

Find: A Eulerian multisubset F of E such that

|δ+F (Vi)| ≥ 1 for i = 1, 2, . . . , k and max
G̃∈C(F )

w(G̃)

lb(G̃)
is minimized.

Here we used the notation that for a connected component G̃ of (V, F ), w(G̃) =
∑

e∈E(G̃) w(e)

(summation over the edges) and lb(G̃) =
∑

v∈V (G̃) lb(v) (summation over the vertices). We say
that an algorithm for Local-Connectivity ATSP is α-light on G if it is guaranteed, for any
partition, to find a solution F such that for every component G̃ ∈ C(F ),

w(G̃)

lb(G̃)
≤ α.

In [Sve15], lb is defined as lb(v) =
∑

e∈δ+(v) w(e)x
∗
e ; note that lb(V ) = OPT in this case.

We remark that we use the “α-light” terminology to avoid any ambiguities with the concept
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of approximation algorithms (an α-light algorithm does not compare its solution to an optimal
solution to the given instance of Local-Connectivity ATSP).

Perhaps the main difficulty of ATSP is to satisfy the connectivity requirement, i.e., to select
an Eulerian subset F of edges which connects the whole graph. Local-Connectivity ATSP
relaxes this condition – we only need to find an Eulerian set F that crosses the k cuts defined
by the partition. This makes it intuitively an “easier” problem than ATSP. Indeed, an α-
approximation algorithm for ATSP (with respect to the Held-Karp relaxation) is trivially an
α-light algorithm for Local-Connectivity ATSP for an arbitrary lb function with lb(V ) = OPT :
just return the same Eulerian subset F as the algorithm for ATSP; since the set F connects
the graph, we have maxG̃∈C(F ) w(G̃)/ lb(G̃) = w(F )/ lb(V ) ≤ α. Perhaps more surprisingly,

the main technical theorem of [Sve15] shows that the two problems are equivalent up to small
constant factors.

Theorem 1.2 ([Sve15]). Let A be an algorithm for Local-Connectivity ATSP. Consider an
ATSP instance G = (V,E,w), and let OPT denote the optimum value of the Held-Karp relax-
ation. If A is α-light on G, then there exists a tour of G with value at most 5αOPT. Moreover,
for any ε > 0, a tour of value at most (9 + ε)αOPT can be found in time polynomial in the
number n = |V | of vertices, in 1/ε, and in the running time of A.

In other words, the above theorem says that in order to approximate an ATSP instance G, it is
sufficient to devise a polynomial-time algorithm to calculate a lower bound lb and a polynomial
time algorithm for Local-Connectivity ATSP that is O(1)-light on G with respect to this lb
function. Our main result is proved using this framework.

1.2 Technical overview

Singleton partition. Let us start by outlining the fundamental ideas of our algorithm and
comparing it to [Sve15] for the special case of Local-Connectivity ATSP when all partition
classes Vi are singletons. For unit weights, the choice lb(v) =

∑
e∈δ+(v) w(e)x

⋆
e = x⋆(δ+(v)) in

[Sve15] is a natural one: intuitively, every node is able to pay for its outgoing edges. We can
thus immediately give an algorithm for this case: just select an arbitrary integral solution z to
the circulation problem with node capacities 1 ≤ z(δ+(v)) ≤ ⌈x⋆(δ+(v))⌉. Then for any v we
have z(δ+(v)) ≤ x⋆(δ+(v))+1 ≤ 2x⋆(δ+(v)) and hence

∑
e∈δ+(v) w(e)ze ≤ 2 lb(v), showing that

z is a 2-light solution.
The same choice of lb does not seem to work in the presence of two different edge costs.

Consider a case when every expensive edge carries only a small fractional amount of flow. Then∑
e∈δ+(v) w(e)x

⋆
e can be much smaller than the expensive edge cost w1, and thus the vertex v

would not be able to “afford” even a single outgoing expensive edge. To resolve this problem,
we bundle small fractional amounts of expensive flow, channelling them to reach a small set
of terminals. This is achieved via Theorem 2.1, a flow result which might be of independent
interest. It shows that within the fractional Held-Karp solution x⋆, we can send the flow from
an arbitrary edge set E′ to a sink set T with |T | ≤ 8x⋆(E′); in fact, T can be any set minimal
for inclusion such that it can receive the total flow from E′. We apply this theorem for E′ = E1,
the set of expensive edges; let f be the flow from E1 to T , and call elements of T terminals.
Now, whenever an expensive edge is used, we will “force” it to follow f to a terminal in T ,
where it can be paid for. Enforcement is technically done by splitting the vertices into two
copies, one carrying the f flow and the other the rest. Thus we obtain the split graph Gsp and
split fractional optimal solution x⋆sp.

The design of the split graph is such that every walk in it which starts with an expensive edge
must proceed through cheap edges until it reaches a terminal before visiting another expensive
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edge. In our terminology, expensive edges create “debt”, which must be paid off at a terminal.
Starting from an expensive edge, the debt must be carried until a terminal is reached, and no
further debt can be taken in the meantime. The bound on the number of terminals guarantees
that we can assign a lower bound function lb with lb(V ) ≤ OPT such that (up to a constant
factor) cheap edges are paid for locally, at their heads, whereas expensive edges are paid for
at the terminals they are routed to. Such a splitting easily solves Local-Connectivity ATSP
for the singleton partition: find an arbitrary integral circulation zsp in the split graph with an
upper bound zsp(δ

+(v)) ≤ ⌈2x⋆sp(δ
+(v))⌉ on every node, and a lower bound 1 on whichever copy

of v transmits more flow. Note that 2x⋆sp is a feasible fractional solution to this problem. We
map zsp back to an integral circulation z in the original graph by merging the split nodes, thus
obtaining a constant-light solution.

Arbitrary partitions. Let us now turn to the general case of Local-Connectivity ATSP,
where the input is an arbitrary partition V = V1 ∪ . . . ∪ Vk. For unit weights this is solved
in [Sve15] via an integer circulation problem on a modified graph. Namely, an auxiliary node
Ai is added to represent each partition class Vi, and one unit of in- and outgoing flow from
Vi is rerouted through Ai. In the circulation problem, we require exactly one in- and one
outgoing edge incident to Ai to be selected. When we map the solution back to the original
graph, there will be one incoming and one outgoing arc from every set Vi (thus satisfying the
connectivity requirement) whose endpoints inside Vi violate the Eulerian condition. In [Sve15]
every Vi is assumed to be strongly connected, and therefore we can “patch up” the circulation
by connecting the loose endpoints by an arbitrary path inside Vi. This argument easily gives a
3-light solution.

Let us observe that the strong connectivity assumption is in fact not needed for the result in
[Sve15]. Indeed, given a component Vi which is not strongly connected, consider its decompo-
sition into strongly connected (sub)components, and pick a Ui ⊆ Vi which is a sink (i.e. it has
no edges outgoing to Vi \ Ui). We proceed by rerouting 1 unit of flow through a new auxiliary
vertex just as in that algorithm, but we do this for Ui instead. This guarantees that Ui has at
least one outgoing edge in our solution, and that edge must leave Vi as well.

Our result for two different edge weights takes this observation as the starting point, but the
argument is much more complicated. We will find an integer circulation in a graph based on
the split graph Gsp, and for every 1 ≤ i ≤ k, there will be an auxiliary vertex Ai representing a
certain subset Ui ⊆ Vi. These sets Ui will be obtained as sink components in certain auxiliary
graphs we construct inside each Vi. This construction is presented in Section 3.2; we provide a
roadmap to the construction at the beginning of that section.

2 The Flow Theorem

In this section we prove our main flow decomposition result. As indicated in Section 1.2, we
will use it to channel the flow from the expensive edges E1 to a small set of terminals T (where
|T | ≤ 8w(E1)). We will use the theorem stated below by moving the tail of every edge in E1

to a new vertex s. If w(E1) ≥ 1, then the constraints of the Held-Karp relaxation guarantee
condition (1). The details of the reduction are given in Lemma 3.4.

Theorem 2.1. Let D = (V ∪ {s}, E) be a directed graph, let c : E → R+ be a nonnegative
capacity vector, and let s be a source node with no incoming edges, i.e., δ−(s) = ∅. Assume that
for all ∅ 6= S ⊆ V we have

c(δ−(S)) ≥ max{1, c(δ+(S))}. (1)
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Consider a set T ⊆ V such that there exists a flow f ≤ c of value c(δ+(s)) from the source s to
the sink set T , and T is minimal subject to this property.3 Then |T | ≤ 8c(δ+(s)).

The proof of this theorem can be skipped on first reading, as the algorithm in Section 3 only
uses it in a black-box manner.

Proof. Fix a minimal set T and denote k = |T |. Our goal is to prove that k ≤ 8c(δ+(s)). We
know that there exists a flow of value c(δ+(s)) from s to T . For any such flow f we define
its imbalance sequence to be the sequence of values z(t) = f(δ−(t)) − f(δ+(t)) ∈ R+ for all
t ∈ T sorted in non-increasing order. We select the flow f which maximizes the imbalance
sequence (lexicographically). We write T = {t1, . . . , tk} so that z(t1) ≥ z(t2) ≥ . . . ≥ z(tk);
denote zi = z(ti) for brevity. By minimality of T we have z(tk) > 0. The following is our main
technical lemma.

Lemma 2.2. Let ℓ be the number of t ∈ T with z(t) ≥ 1
4 , i.e., z1 ≥ ... ≥ zℓ ≥

1
4 > zℓ+1 ≥ ... ≥

zk. Then we have

1

4
(k − ℓ) ≤

ℓ∑

i=1

zi.

In other words, the number of terminals with small imbalance is not much more than the sum
of large imbalances.

Assuming this lemma, the main theorem follows immediately, since we have 1
4k = 1

4ℓ+
1
4(k−

ℓ) ≤
∑ℓ

i=1 zi +
∑ℓ

i=1 zi ≤ 2c(δ+(s)), i.e., k ≤ 8c(δ+(s)).

The remainder of this section is devoted to the proof of the technical lemma. Let us first
give an outline. We analyze the residual capacity (with respect to f) of certain cuts that must
be present due to the lexicographic property. First of all, there must be a saturated cut (that is,
one of 0 residual in-capacity) A ⊆ V containing all large terminals (i.e., those with imbalance
at least 1/4) but no small ones (Claim 3). Next, consider an arbitrary small terminal i. Also
by the maximality property, it is not possible to increase the value of zi to 1/4 by rerouting
flow from other small terminals to i. Hence there must be a cut Bi, disjoint from A, which
contains ti as the only terminal and has residual in-capacity less than 1/4−zi in D\A (Claim 4).
As an illustration of the argument, let us assume that these sets Bi are pairwise disjoint. It
follows from (1) that the residual in-capacity of Bi is at least 1 − zi (Claim 2). Hence every
set Bi must receive 3/4 units of its residual in-capacity from A. On the other hand, (1) upper-
bounds the residual out-capacity of A by 2

∑ℓ
i=1 zi (Claim 1). These together give a bound

3
4(k − ℓ) ≤ 2

∑ℓ
i=1 zi. Recall however that we assumed that all sets Bi are disjoint. Since these

sets may in fact overlap, the proof needs to be more careful: instead of sets Bi, we argue with
the sets Bi \ (∪j 6=iBj) (nonempty as containing ti), and the union of pairwise intersections B∗;
thus instead of 3/8, we get a slightly worse constant 1/4.

Proof of Lemma 2.2. First note that the claim is trivial if ℓ = k, so assume ℓ < k. For an
arc e = (u, v), we let ←−e = (v, u) denote the reverse arc. We define the residual graph Df =
(V ∪ {s}, Ef ) with Ef = {e ∈ E : f(e) < c(e)} ∪ {e :←−e ∈ E, f(←−e ) > 0}. The residual capacity
for the first set of arcs is defined as cf (e) = c(e)− f(e), and for the second set as cf (e) = f(←−e ).
For any set X ⊆ V , and a disjoint Y ⊆ V , let δ−f (X), δ+f (X) and δf (X,Y ) denote the capacities

3That is, the maximum flow value from s to any proper subset T ′ ( T is smaller than c(δ+(s)).
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of the respective cuts in the residual graph Df of f , i.e.,

δ−f (X) =
∑

e∈δ−(X)

cf (e) = c(δ−(X)) − f(δ−(X)) + f(δ+(X)),

δ+f (X) =
∑

e∈δ+(X)

cf (e) = c(δ+(X)) − f(δ+(X)) + f(δ−(X)),

δf (X,Y ) =
∑

e∈δ(X,Y )

cf (e) = c(δ(X,Y ))− f(δ(X,Y )) + f(δ(Y,X)).

The next two claims derive simple bounds from (1) on the residual in-and out-capacities of cuts.

Claim 1. If X ⊆ V , then δ−f (X) + 2
∑

t∈T∩X z(t) ≥ δ+f (X).

Proof.

δ−f (X)− δ+f (X) = c(δ−(X)) − c(δ+(X)) − 2
(
f(δ−(X))− f(δ+(X))

)

= c(δ−(X)) − c(δ+(X)) − 2
∑

t∈T∩X

z(t) ≥ −2
∑

t∈T∩X

z(t).

The equality is by flow conservation. The inequality is by (1). The claim follows.

Claim 2. Consider X ⊆ V such that X ∩ T = {ti} for some 1 ≤ i ≤ k. Then δ−f (X) ≥ 1− zi.

Proof.

δ−f (X) = c(δ−(X)) −
(
f(δ−(X))− f(δ+(X))

)
≥ 1− zi.

Here we used (1) and the flow conservation f(δ−(X)) − f(δ+(X)) = zi (as the single sink
contained in X is ti).

The next claim shows that the large terminals can be separated from the small ones by a
cut of residual in-degree 0. This follows from the lexicographically maximal choice, and is not
a particular property of the threshold 1/4 (it remains true if we replace ℓ by any 1 ≤ j ≤ k).

Claim 3. There exists a set A ⊆ V with A ∩ T = {t1, ..., tℓ} (i.e., A contains exactly the large
terminals) such that δ−f (A) = 0, and δ+f (A) ≤ 2

∑ℓ
i=1 zℓ.

Proof. If ℓ = 0, then we can choose A = ∅. So assume 0 < ℓ < k. Consider the maximum flow
in the residual graph Df from the source set {tℓ+1, ..., tk} to the sink set {t1, ..., tℓ}. If its value
is positive, then there exists a path P in Df from ti to tj for some i > ℓ and j ≤ ℓ (without loss
of generality it contains no other terminals). Set ε = min{z(ti),min(u,v)∈P cf (u, v)} > 0. Then
the s-T flow f ′ = f + ε · 1P has a lexicographically larger imbalance sequence than f because
zi is increased without decreasing any other of the large imbalances, a contradiction. So there
must be a cut A ⊆ V with A ∩ T = {t1, ..., tℓ} and δ−f (A) = 0.4 The second part follows by the
first via Claim 1.

Claim 4. For any ℓ+1 ≤ i ≤ k (i.e., ti is a small terminal) there exists a set Bi ⊆ V \A such
that Bi ∩ T = {ti} and δ−f (Bi)− δf (A,Bi) <

1
4 − zi.

4Note that s /∈ A since Df contains a path from tk to s.
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Proof. If k = ℓ+ 1, then we can choose Bk = V \ A; we have δ−f (Bk)− δf (A,Bk) = 0 since all
arcs leaving the source s are saturated. So assume k− ℓ ≥ 2. Consider the maximum flow from
the source set {tℓ+1, ..., tk} \ {ti} to the sink ti in the graph Df \ (A ∪ {s}).

If its value is at least 1
4 − zi, then we will get a contradiction by increasing the imbalance

of ti to at least 1
4 without changing any of the large imbalances. Namely, let g be a flow from

{tℓ+1, ..., tk} \ {ti} to ti of value
1
4 − zi. Consider the vector f + g. There are two possible cases:

• If f + g is still an s-T flow, i.e., if for all j we have g(δ+(tj)) − g(δ−(tj)) ≤ z(tj), then it
has a lexicographically larger imbalance sequence than f , a contradiction.

• Otherwise pick the maximum α > 0 such that f + αg is still an s-T flow, i.e., for all j we
have α (g(δ+(tj))− g(δ−(tj))) ≤ z(tj), with equality for some j. This means that f + αg
is an s-T flow where at least one terminal tj has zero imbalance, i.e., it can be removed
from the set T , contradicting its minimality.

So there must be a cut Bi ⊆ V \ (A ∪ {s}) such that Bi ∩ T = {ti} and

1

4
− zi > δf (V \ (A ∪ {s} ∪Bi), Bi) = δ−f (Bi)− δf (A,Bi)− δf (s,Bi).

The claim follows by δf (s,Bi) = 0, which holds since all edges in δ+(s) are saturated in f .

The argument uses the bound δ+f (A) ≤ 2
∑ℓ

i=1 zℓ and the fact that all the Bi’s must receive
a large part of their residual in-degrees from A. Since the sets Bi overlap, we have to take their
intersections into account. Let us therefore define

B⋆ :=
⋃

i,j>ℓ,i 6=j

(Bi ∩Bj) ⊆ V \ (A ∪ {s})

as the set of vertices contained in at least two sets Bi. Let α
⋆ := δf (A,B

⋆), αi := δf (A,Bi \B
⋆),

and βi := δf (B
⋆, Bi \B

⋆) for each ℓ+ 1 ≤ i ≤ k.

Claim 5. For each ℓ+ 1 ≤ i ≤ k we have 3
4 < αi + βi.

Proof. Note that (Bi \B
⋆)∩ T = {ti}, and thus δ−f (Bi \B

⋆) ≥ 1− zi by Claim 2. From this we
can see

1− zi ≤ δ−f (Bi \B
⋆)

≤
(
δ−f (Bi)− δf (A,Bi)

)
+ δf (A,Bi \B

⋆) + δf (B
⋆, Bi \B

⋆)

<
1

4
− zi + αi + βi,

where the second inequality follows because an edge entering Bi \ B
⋆ either enters Bi from

outside of A, or enters Bi \B
⋆ from B⋆, or enters Bi \B

⋆ from A.

For the residual in-degree of the set B⋆, we apply the trivial bound

δ−f (B
⋆) ≤ δf (A,B

⋆) +

k∑

i=ℓ+1

(
δ−f (Bi)− δ(A,Bi)

)
≤ α⋆ +

1

4
(k − ℓ).

The last estimate is by the choice of the sets Bi in Claim 4. For the residual out-degree, we get

δ+f (B
⋆) ≥

k∑

i=ℓ+1

βi >
3

4
(k − ℓ)−

k∑

i=ℓ+1

αi,
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using Claim 5. Applying Claim 1 to B⋆ and noting that B⋆ ∩ T = ∅ gives δ−f (B
⋆) ≥ δ+f (B

⋆).
Putting Claim 3 and the above two bounds together, we conclude that

2
ℓ∑

i=1

zi ≥ δ+f (A) ≥ α⋆ +
k∑

i=ℓ+1

αi ≥
1

2
(k − ℓ). (2)

Lemma 2.2 now follows.

3 Algorithm for Local-Connectivity ATSP

We prove our main result in this section. Our claim for ATSP follows from solving Local-
Connectivity ATSP:

Theorem 3.1. There is a polynomial-time 100-light algorithm for Local-Connectivity ATSP on
graphs with two edge weights.

Together with Theorem 1.2, this implies our main result:

Theorem 3.2. For any graph with two edge weights, the integrality gap of its Held-Karp relax-
ation is at most 500. Moreover, we can find an 901-approximate tour in polynomial time.

The factor 500 comes from 5 ·100. In Theorem 1.2, we select ε such that (9+ε) ·100 ≤ 901. Our
proof of Theorem 3.1 proceeds as outlined in Section 1.2. In Section 3.1, we give an algorithm
for calculating lb and define the split graph which will be central for finding light solutions. In
Section 3.2, we then show how to use these concepts to solve Local-Connectivity ATSP for any
given partitioning of the vertices.

Recall that the edges are partitioned into the set E0 of cheap edges and the set E1 of
expensive edges. Set x⋆ to be an optimal solution to the Held-Karp relaxation. We start by
noting that the problem is easy if x⋆ assigns very small total fractional value to expensive
edges. In that case, we can easily reduce the problem to the unweighted case which was solved
in [Sve15].

Lemma 3.3. There is a polynomial-time 6-light algorithm for Local-Connectivity ATSP for
graphs where x⋆(E1) < 1.

Proof. If x⋆(E1) = 0, then just apply the standard 3-light polynomial-time algorithm for un-
weighted graphs [Sve15]. So suppose that 0 < x⋆(E1) < 1. Then clearly the graph (V,E0) is
strongly connected, i.e. every pair of vertices is connected by a directed path of cheap edges
(of length at most n− 1). Thus each expensive edge (u, v) can be replaced by such a u-v-path
P (u, v). Let us obtain a new circulation x′ from x⋆ by replacing all expensive edges in this way,
i.e.,

x′ = x⋆|E0
+

∑

(u,v)∈E1

x⋆(u,v) · 1P (u,v).

To bound the cost of x′, note that x⋆(E0) = x⋆(E)− x⋆(E1) > n− 1 > (n− 1)x⋆(E1) and thus

w(x′) ≤ w0 · x
⋆(E0) + (n− 1)w0 · x

⋆(E1) ≤ 2w0 · x
⋆(E0) ≤ 2w(x⋆).

By construction, x′ is a feasible solution for the Held-Karp relaxation and supp(x′) ⊆ E0.
Therefore we can use it in the standard 3-light polynomial-time algorithm for the unweighted
graph (V,E0). Together with the bound w(x′) ≤ 2w(x⋆) this gives a 6-light algorithm.

For the rest of this section, we thus assume x⋆(E1) ≥ 1. Our objective is to define a function
lb : V → R+ such that lb(V ) ≤ OPT = w(x⋆) and then show how to, given a partition
V = V1∪ ...∪Vk, find an Eulerian set of edges F which crosses all Vi-cuts and is O(1)-light with
respect to the defined lb function.
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3.1 Calculating lb and constructing the split graph

First, we use our flow decomposition technique to find a small set of terminals T such that it
is possible to route a certain flow f from endpoints of all expensive edges to T . Next, we use f
and T to calculate the function lb and to construct a split graph Gsp, where each vertex of G is
split into two.

Finding terminals T and flow f . We use Theorem 2.1 to obtain a small-enough set of
terminals T and a flow f which takes all flow on expensive edges to this set T . More precisely,
we have the following corollary of Theorem 2.1.

Lemma 3.4. There exist a vertex set T ⊆ V and a flow f : E → R+ from source set {tail(e) :
e ∈ E1} to sink set T of value x⋆(E1) such that:

• |T | ≤ 8x⋆(E1),

• f ≤ x⋆,

• f saturates all expensive edges, i.e., f(e) = x⋆e for all e ∈ E1,

• for each t ∈ T , f(E0 ∩ δ+(t)) = 0 and f(δ−(t)) > 0.

Moreover, T and f can be computed in polynomial time.

Proof. We construct G′ to be G with a new vertex s, where the tail of every expensive edge
is redirected to be s. Formally, V (G′) = V ∪ {s} and E(G′) = E0 ∪ {(s,head(e)) : e ∈ E1}.
The capacity vector c is obtained from x⋆ by just following this redirection, i.e., for any edge
e′ ∈ E(G′) we define c(e′) = x⋆e, where e ∈ E(G) is taken to be the preimage of e′ in G.

Clearly c(δ+(s)) = x⋆(E1), and s ∈ V (G′) has no incoming edges. To see that condition (1)
of Theorem 2.1 is satisfied, recall that for every ∅ 6= S ( V (G) we have x⋆(δ+(S)) = x⋆(δ−(S)) ≥
1; redirecting the tail of some edges to s can only reduce the outdegree or increase the indegree
of S, i.e., c(δ−(S)) ≥ x⋆(δ−(S)) = x⋆(δ+(S)) ≥ c(δ+(S)). This gives condition (1) for all
sets S ( V (G′) − s; for S = V (G′) − s, note that c(δ−(S)) = x⋆(E1) ≥ 1 = max{1, 0} =
max{1, c(δ+(S))} since we assumed that x⋆(E1) ≥ 1.

From Theorem 2.1 we obtain a vertex set T with |T | ≤ 8x⋆(E1) and a flow f ′ : E(G′)→ R+

from s to T of value x⋆(E1) with f ′ ≤ c. We can assume f ′(δ+(t)) = 0 for all t ∈ T : in a
path-cycle decomposition of f ′ we can remove all cycles and terminate every path at the first
terminal it reaches. The flow f is obtained by mapping f ′ back to G, i.e., taking each f(e) to
be f ′(e′), where e′ is the image of e. Note that f ′ must saturate all outgoing edges of s, so f
saturates all expensive edges. For the last condition, the part f(E0 ∩ δ+(t)) = 0 is implied by
f ′(δ+(t)) = 0, and for the part f(δ−(t)) > 0, note that if f(δ−(t)) = 0, then we could have
removed t from T .

Note that such a set T can be found in polynomial time: starting from T = V (for which
the required flow exists: consider f ′ = c|δ+(s), the restriction of c to δ+(s)), we remove vertices
from T one by one until we obtain a minimal set T such that there exists a flow of value x⋆(E1)
from s to T .

Definition of lb. We set lb : V → R+ to be a scaled-down variant of lb : V → R+ which is
defined as follows:

lb(v) :=

{
w0 · x

⋆(δ−(v)) if v /∈ T,

w0 · x
⋆(δ−(v)) + w1 · ⌈f(δ

−(t))⌉ if v ∈ T.
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The definition of lb is now simply lb(v) = lb(v)/10. The scaling-down is done so as to satisfy
lb(V ) ≤ OPT (see Lemma 3.5). Clearly we have lb(v) ≥ w0 for all v ∈ V and lb(t) ≥ w1+w0 ≥
w1 for terminals t ∈ T .

The intuition behind this setting of lb is that we want to pay for each expensive edge e ∈ E1

in the terminal t ∈ T which the flow f “assigns” to e. Indeed, in the split graph we will reroute
flow (using f) so as to ensure that any path which traverses e must then visit such a terminal t
to offset the cost of the expensive edge. As for the total cost of lb, note that if we removed the
rounding from its definition, then we would get lb(V ) ≤ 2OPT, since

w0 ·
∑

v∈V

x⋆(δ−(v)) + w1 ·
∑

v∈T

f(δ−(t)) = w0 · x
⋆(E0) + w0 · x

⋆(E1) + w1 · x
⋆(E1) ≤ 2w(x⋆)

(here we used that f is of value x⋆(E1) =
∑

t∈T f(δ−(t))). So, similarly to the 3-light algorithm
for unweighted metrics in [Sve15], the key is to argue that rounding does not increase this cost
too much. For this, we will take advantage of the small size of T . Details are found in the proof
of the following lemma.

Lemma 3.5. lb(V ) ≤ 10 ·OPT .

Proof. The bound follows from elementary calculations:

lb(V ) = w0 ·
∑

v∈V

x⋆(δ−(v)) + w1 ·
∑

t∈T

⌈f(δ−(t))⌉

≤ w0 ·
∑

v∈V

x⋆(δ−(v)) + w1 ·
∑

t∈T

(
f(δ−(t)) + 1

)

≤ w0 · x
⋆(E) + w1 · (x

⋆(E1) + |T |)

≤ w(x⋆) + w1 · 9x
⋆(E1)

≤ 10w(x⋆)

(recall that |T | ≤ 8x⋆(E1) by Lemma 3.4).

Construction of the split graph. The next step is to reroute flow so as to ensure that all
expensive edges are “paid for” by the lb at terminals. To this end, we define a new split graph
and a split circulation on it (see also Fig. 1 for an example).

Definition 3.6. The split graph Gsp is defined as follows. For every v ∈ V we create two
copies v0 and v1 in V (Gsp). For every cheap edge (u, v) ∈ E0:

• if x⋆(u, v) − f(u, v) > 0, create an edge (u0, v0) in E(Gsp) with x⋆sp(u, v) = x⋆(u, v) −
f(u, v),

• if f(u, v) > 0, create an edge (u1, v1) in E(Gsp) with x⋆sp(u, v) = f(u, v).

For every expensive edge (u, v) ∈ E1 we create one edge (u0, v1) in E(Gsp) with x⋆sp(u, v) =
f(u, v). Finally, for each t ∈ T we create an edge (t1, t0) in E(Gsp) with x⋆sp(t

1, t0) = f(δ−(t)).
The new edges are weighted as follows: images of edges in E0 have weight w0, the images

of edges in E1 have weight w1, and the new edges (t1, t0) have weight 0. Let us denote the new
weight function by wsp.

Vertices v0 will be called free vertices and vertices v1 will be called debt vertices. Edges
entering a free vertex will be called free edges, and those entering a debt vertex will be called
debt edges.
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A fundamental consequence of our construction is the following.

Fact 3.7. Consider any path P in Gsp such that the first edge of P is a debt edge and the
last one is a free edge or an expensive edge. Then P must go through a terminal, i.e., it must
contain an edge (t1, t0) for some t ∈ T . �

We also have the following two properties by design.

Fact 3.8. The vector x⋆sp : E(Gsp)→ R+ is a circulation in Gsp.

Proof. Intuitively, this is because our rerouting corresponds to taking every path v0, v1, ..., vk in
a path-cycle decomposition of f (where (v0, v1) is an expensive edge and vk ∈ T is a terminal)
and, rather than placing it on the “free level” in Gsp (i.e., mapping it to v00, v

0
1 , ..., v

0
k), instead

routing it as follows: v00, v
1
1 , v

1
2 , ..., v

1
k−1, v

1
k, v

0
k. We can think of the edge (v00 , v

1
1) as incurring a

debt, and of the edge (v1k, v
0
k) as discharging this debt.

Now we proceed to give a formal proof. For all v ∈ V we will prove that x⋆sp(δ
+(v0)) =

x⋆sp(δ
−(v0)) and x⋆sp(δ

+(v1)) = x⋆sp(δ
−(v1)).

Suppose v = t ∈ T . Then x⋆sp(δ
−(t1)) = f(δ−(t)). Also x⋆sp(δ

+(t1)) = x⋆sp(t
1, t0) = f(δ−(t))

because of the property that f(E0 ∩ δ+(t)) = 0. For t0 we have

x⋆sp(δ
−(t0)) = f(δ−(t)) + (x⋆ − f)(E0 ∩ δ−(t))

= f(E1 ∩ δ−(t)) + x⋆(E0 ∩ δ−(t))

= x⋆(δ−(t))

and

x⋆sp(δ
+(t0)) = (x⋆ − f)(E0 ∩ δ+(t)) + x⋆(E1 ∩ δ+(t))

= x⋆(E0 ∩ δ+(t)) + x⋆(E1 ∩ δ+(t))

= x⋆(δ+(t))

where the second inequality again follows by f(E0∩ δ
+(t)) = 0. This implies that x⋆sp(δ

−(t0)) =
x⋆(δ−(t)) = x⋆(δ+(t)) = x⋆sp(δ

+(t0)).
We turn to the case v /∈ T . Note that since all expensive edges are saturated by f , and their

tails are exactly the sources of f , we have

f(E0 ∩ δ+(v)) = f(E0 ∩ δ−(v)) + x⋆(E1 ∩ δ−(v)). (3)

Since the left hand side is equal to x⋆sp(δ
+(v1)) and the right hand side is x⋆sp(δ

−(v1)), we have
proved our claim for v1. For v0, note that the incoming edges of v0 are all cheap, and the
incoming flow is

x⋆sp(δ
−(v0)) = (x⋆ − f)(E0 ∩ δ−(v)).

As for outgoing flow, v0 is also the tail of all expensive edges whose tail in G was v, i.e.,

x⋆sp(δ
+(v0)) = (x⋆ − f)(E0 ∩ δ+(v)) + x⋆(E1 ∩ δ+(v))

= x⋆(δ+(v)) − f(E0 ∩ δ+(v))

= x⋆(δ−(v)) − f(E0 ∩ δ−(v))− x⋆(E1 ∩ δ−(v))

= x⋆(E0 ∩ δ−(v))− f(E0 ∩ δ−(v))

= (x⋆ − f)(E0 ∩ δ−(v))

= x⋆sp(δ
−(v0)),

where the third equality is by (3).
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Figure 1: An example of the construction of Gsp and x⋆sp from G,x⋆ and f .
Here x⋆ is 1/3 for the expensive edges (depicted as thick) and 2/3 for the
remaining (cheap) edges; the set T of terminals of the flow f is depicted in
black.

Fact 3.9. For each proper subset U ⊂ V we have x⋆sp(δ
−({v0, v1 : v ∈ U})) = x⋆sp(δ

+({v0, v1 :
v ∈ U})) ≥ 1. In other words, the image of every cut in G is still crossed by at least one unit
of x⋆sp.

Proof. This follows since x⋆(δ+(U)) = x⋆(δ−(U)) ≥ 1, and contracting all pairs v0, v1 would
yield back G and x⋆.

3.2 Solving Local-Connectivity ATSP

Now our algorithm is given a partition V = V1∪ ...∪Vk of the original vertex set. The objective
is to output a set of edges F which crosses all Vi-cuts and is O(1)-light with respect to our lb
function.

We are aiming for a similar construction as in the unit-weight case: based on the split graph
Gsp, we construct an integer circulation problem with an auxiliary vertex Ai representing a
certain subset Ui ⊆ Vi for every 1 ≤ i ≤ k. We then map its solution back to the original
graph and patch up the loose endpoints inside every Ui by a path. However, we have to account
for the following difficulties: (i) an edge leaving Ui should also leave Vi; (ii) debt should not
disappear inside Ui: if the edge entering it carries debt but the edge leaving does not, we must
make sure this difference can be charged to a terminal in Ui; (iii) the path used inside Ui must
pay for all expensive edges it uses.

All three issues can be appropriately tackled by defining an auxiliary graph inside Vi. Edges
of the auxiliary graph represent paths containing one expensive edge and one terminal (which
can pay for themselves); however, these paths may not map to paths in the split graph. We
select the subset Ui ⊆ Vi as a sink component in the auxiliary graph. For convenience, Figs. 2
and 3 give an overview of the different steps, graphs and flows used by our algorithm.

Construction of auxiliary graphs and modification of split graph. Our first step is to
construct an auxiliary graph for each component Vi. The strong-connectivity structure of this
graph will guide our algorithm.

Definition 3.10. The auxiliary graph Gaux
i is a graph with vertex set Vi and the following edge

set: for u, v ∈ Vi, (u, v) ∈ E(Gaux
i ) if any of the following three conditions is satisfied:

• there is a cheap edge (u, v) ∈ E0 ∩G[Vi] inside Vi, or

14



name graph circulation integral obtained from the previous by

x⋆ G yes no solving LP (Section 1.1)
x⋆sp Gsp yes no splitting (Definition 3.6)

x′sp G′
sp yes no redirecting edges to Ai

y′sp G′
sp yes yes rounding to integrality (Lemma 3.12)

ysp Gsp no yes redirecting edges back from Ai

y G no yes mapping back to G
F G yes yes adding walks Pi

Figure 2: This table summarizes the various circulations and pseudo-flows
that appear in our algorithm, in order.

• there is a u-v-path in G[Vi] whose first edge is expensive and all other edges are cheap,
and v ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux

i ) a postpaid edge – or

• there is a u-v-path in G[Vi] whose last edge is expensive and all other edges are cheap, and
u ∈ T is a terminal – we then call the edge (u, v) ∈ E(Gaux

i ) a prepaid edge.

Define the preimage of such an edge (u, v) ∈ E(Gaux
i ) to be a shortest path inside Vi as above

(in the first case, a single edge).

Now, for each i consider a decomposition of Gaux
i into strongly connected components.5 Let

Ui ⊆ Vi be the vertex set of a sink component in this decomposition. That is, there is no edge
from Ui to Vi \ Ui in the auxiliary graph Gaux

i . Note that Gaux
i is constructed based only on

the original graph G and not the split graph Gsp. However, we will solve Local-Connectivity
ATSP by solving an integral circulation problem on G′

sp: a modification of the split graph Gsp,
described as follows.

For each i, define U sp
i = {v0, v1 : v ∈ Ui} ⊆ V (Gsp) to be the set of vertices in the split graph

corresponding to Ui. (Note that U sp
i may not be strongly connected in Gsp.) We are going to

reroute part of the x⋆sp flow going in and out of U sp
i to a new auxiliary vertex Ai. While the

3-light algorithm for unit-weight graphs rerouted flow from all boundary edges of a component
Ui (see Section 1.2), here we will be more careful and choose only a subset of boundary edges
of U sp

i to be rerouted.
To this end, select a subset of edges X−

i ⊆ δ−(U sp
i ) with x⋆sp(X

−
i ) = 1/2 such that either

all edges in X−
i are debt edges, or all are free edges. This is possible since x⋆sp(U

sp
i ) ≥ 1 by

Fact 3.9.6

We define the set of outgoing edges X+
i ⊆ δ+(U sp

i ) to be, intuitively, the edges over which
the flow that entered U sp

i by X−
i exits U sp

i . That is, consider an arbitrary cycle decomposition
of the circulation x⋆sp, and look at the set of cycles containing the edges in X−

i . We define X+
i

as the set of edges on these cycles that first leave U sp
i after entering U sp

i on an edge in X−
i ;

clearly, x⋆sp(X
+
i ) = 1/2.7

Let gi denote the flow on these cycles connecting the heads of edges in X−
i and the tails of

edges in X+
i . We will use the following claim later in the construction.

Fact 3.11. Assume all edges in X−
i are debt edges but e ∈ X+

i is a free edge or an expensive
edge. Then there exists a path in Gsp[Ui] between a vertex t0 (for some terminal t ∈ T ) and the
tail of e, made up of only cheap edges.

5Note that we decompose the vertex set Vi, but with respect to the edge set E(Gaux
i ), not E(G[Vi]).

6To obtain exactly 1/2, we might need to break an edge up into two copies, dividing its x⋆
sp-value between

them appropriately, and include one copy in X−
i but not the other; we omit this for simplicity of notation, and

assume there is such an edge set with exactly x⋆
sp(X

−
i ) = 1/2.

7Again, we might need to split some edges into two copies.
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Figure 3: An illustration of the different graphs and flows (restricted to a
single component Vi) used in our algorithm for Local-Connectivity ATSP. The
black vertices depict terminals. In the split graphs, we depict debt vertices
by squares and free vertices by circles.

Proof. Consider the cycle in the cycle decomposition that contains e; it enters Ui on a debt
edge. Using Fact 3.7, this cycle fragment must contain an edge of the form (t1, t0); pick the last
such edge. All edges that follow are free and cheap.

We now transform Gsp into a new graph G′
sp and x⋆sp into new circulation x′sp as follows.

For every set Vi in the partition we introduce a new auxiliary vertex Ai and redirect all edges
in X−

i to point to Ai and those in X+
i to point from Ai. We further subtract the flow gi inside

U sp
i ; hence the resulting vector x′sp will be a circulation, with x′sp(δ

−(Ai)) = 1/2. If X−
i is a set

of free edges, then we will say that Ai is a free vertex, otherwise we say that it is a debt vertex.

Transforming x′sp into an integral flow and obtaining our solution F . In the next step
we round x′sp to integrality while respecting degrees of vertices:

Lemma 3.12. There exists an integral circulation y′sp on G′
sp satisfying the following condi-

tions:

• y′sp(δ
−(v)) ≤ ⌈2x⋆sp(δ

−(v))⌉ for each v ∈ V (Gsp),
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• y′sp(δ
−(Ai)) = 1 for each i.

Such a circulation y′sp can be found in polynomial time.

Proof. The bounds are integral, and there exists a fractional circulation which satisfies them,
namely 2x′sp.

We will now transform y′sp into an Eulerian set of edges F in the original graph G. We can
think of this as a three-stage process.

First, we map all edges adjacent to the auxiliary vertices Ai back to their preimages in Gsp,
obtaining from y′sp an integral pseudo-flow ysp in Gsp. (We use the term pseudo-flow as now,
some vertices may not satisfy flow conservation.)

Second, we contract the two copies v0 and v1 of every vertex v ∈ V , thus mapping all edges
back to their preimages in G. (We remove all edges (t1, t0) for t ∈ T .) This creates an integral
pseudo-flow y in G.

Since the in- and out-degree of Ai were exactly 1 in y′sp, now (in y) in each component Ui

there is a pair of vertices ui, vi which are the head and tail, respectively, of the mapped-back
edges adjacent to Ai. These are the only vertices where flow conservation in y can be violated.8

As the third step, to repair this, we route a walk Pi from ui to vi, as described below. Our
Eulerian set of edges F ⊆ E which we finally return is the integral pseudo-flow y plus the union
(over i) of all such walks Pi, i.e., 1F = y +

∑
i 1Pi .

It remains to describe how we route these paths. Fix i. Recall that Ui is strongly connected
in Gaux

i . We distinguish two cases:

• If Ai is a free vertex or the edge exiting Ai in y′sp (in G′
sp) is a debt edge, then select a

shortest ui-vi-path in Gaux
i , map each edge of this path to its preimage path (see Defini-

tion 3.10) and concatenate them to obtain a ui-vi-walk Pi in Vi.
9

• If Ai is a debt vertex but the edge exiting Ai in y′sp (in G′
sp) is a free edge, then by Fact 3.11

there is a terminal t inside Ui, with a path from t to vi using only cheap edges.10 Proceed
as above to obtain a ui-t-walk and then append this cheap t-vi-path to it, obtaining a
ui-vi-walk Pi in Vi.

This concludes the description of the algorithm. In Sections 3.2.1 and 3.2.2 we prove that
the returned Eulerian set of edges F has the properties we desire, i.e.,

Lemma 3.13. For every connected component G̃ of (V, F ) we have w(G̃) ≤ 10 · lb(G̃).

Lemma 3.14. For every component Vi we have |δ+F (Vi)| ≥ 1.

Lemmas 3.5 and 3.13 together prove that our algorithm is 100-light with respect to lb.

3.2.1 Bounding the cost – proof of Lemma 3.13

For this section, let us fix G̃ to be a connected component of (V, F ). We want to prove the
following lightness claim: w(G̃) ≤ 10 · lb(G̃).

Intuitively, our solution is cheap because we built the split graph Gsp so as to ensure that
any circulation in Gsp which roughly respects the degree bounds given by x⋆sp has low cost, and

8It is violated unless ui = vi.
9Note that this walk may exit Ui, but it will stay inside Vi.

10Map the path given by Fact 3.11 from Gsp to G.
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because our pseudoflow y is not too far from being a circulation (in particular, the cost of walks
Pi can be accounted for). We make this argument precise below.

First, recall that the edges in F are edges in the integral pseudo-flow y and the edges of the
walks P1, P2, . . . , Pk. For a walk Pi, we write Pi ⊆ G̃ if Pi is contained in G̃ (note that a walk
is either contained in or disjoint from G̃ because G̃ is a connected component of (V, F )). Hence

w(G̃) =
∑

e∈E(G̃)

yew(e) +
∑

i:Pi⊆G̃

w(Pi). (4)

We start by analyzing the first term:
∑

e∈E(G̃)
yew(e). Recall that y is obtained by mapping

ysp from Gsp to G. Let G̃sp denote the pre-image of G̃ in Gsp. It will be convenient to define
the debt of ysp as the number of “unpaid” expensive edges in this component:

debt =
∑

e∈E(G̃sp):wsp(e)=w1

ysp(e)−
∑

t∈V (G̃)∩T

ysp(t
1, t0).

That is, the debt of ysp on G̃sp is the difference between the ysp-flow on all expensive edges inside

G̃sp (those edges “incur debt”) and the ysp-flow on all edges (t1, t0) inside G̃sp (those edges
“discharge debt”). Note also that, by the definition of y from ysp,

∑
e∈E(G̃sp):wsp(e)=w1

ysp(e) =∑
e∈E(G̃):w(e)=w1

y(e).

By the construction of Gsp we have the following upper bound on debt.

Lemma 3.15. Let e−i and e+i be the incoming and outgoing edges of Ai in y′sp. For any i,
define

bad(i) =

{
1 if e−i is a debt edge and e+i is a free edge,

0 otherwise.

Then

debt ≤
∑

i:Pi⊆G̃

bad(i)

Moreover, if ysp is a circulation, then debt = 0.

Proof. In Gsp, the only edges of the form (u0, v1) are the expensive edges, and the only edges
of the form (u1, v0) are edges (t1, t0) with t ∈ T . Hence, if ysp is a circulation, then

∑

e∈E(G̃sp):wsp(e)=w1

ysp(e) = ysp(δ
−({v1 : v ∈ V (G̃)}))

= ysp(δ
+({v1 : v ∈ V (G̃)})) =

∑

t∈V (G̃)∩T

ysp(t
1, t0),

which shows that debt = 0 in this case.
Now, if ysp is not a circulation, then one can imagine transforming it into one by connecting

the “dangling” endpoints of e−i and e+i in Gsp using a new “virtual” edge for each i; this edge
would be from a debt vertex to a free vertex if and only if e−i is a debt edge and e+i is a free edge.
Hence, by the calculations above, debt is upper-bounded by the number of such new edges in
our component. (We do not have equality as the new edges may also be introduced from free
vertices to debt vertices.)
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Using the above lemma, degree bounds and basic calculations, we upper-bound the term∑
e∈E(G̃)

yew(e):

Lemma 3.16. We have
∑

e∈E(G̃) yew(e) ≤ 6 lb(G̃).

Proof. We begin by writing:

∑

e∈E(G̃)

yew(e) ≤ w0

∑

e∈E(G̃)

ye + w1

∑

e∈E(G̃sp):wsp(e)=w1

ysp(e)

= w0

∑

e∈E(G̃)

ye + w1


debt+

∑

t∈V (G̃)∩T

ysp(t
1, t0)




= w0

∑

v∈V (G̃)

y(δ−(v)) + w1

∑

t∈V (G̃)∩T

y′sp(t
1, t0) + w1 · debt .

We bound the first term. Note that for each v ∈ V we have y(δ−(v)) = ysp(δ
−({v0, v1}))

and x⋆(δ−(v)) = x⋆sp(δ
−({v0, v1})). Lemma 3.12 guarantees that y′sp(δ

−(vj)) ≤ ⌈2x⋆sp(δ
−(vj))⌉

for j ∈ {0, 1}. This implies that y′sp(δ
−({v0, v1})) ≤ 2x⋆(δ−(v)) + 2, because:

• If v ∈ T , then v1 has only one outgoing edge in Gsp, which goes to v0, and thus for any cir-
culation c in Gsp we have c(δ−({v0, v1})) = c(δ−(v0)). It follows that y′sp(δ

−({v0, v1})) =
y′sp(δ

−(v0)) ≤ ⌈2x⋆sp(δ
−(v0))⌉ ≤ 2x⋆sp(δ

−(v0))+1 = 2x⋆sp(δ
−({v0, v1}))+1 = 2x⋆(δ−(v))+1.

• If v 6∈ T , then there are no edges between v0 and v1 in Gsp, and thus for any circu-
lation c in Gsp we have c(δ−({v0, v1})) = c(δ−(v0)) + c(δ−(v1)). It similarly follows
that y′sp(δ

−({v0, v1})) = y′sp(δ
−(v0)) + y′sp(δ

−(v1)) ≤ ⌈2x⋆sp(δ
−(v0))⌉ + ⌈2x⋆sp(δ

−(v1))⌉ ≤
2x⋆sp(δ

−(v0)) + 2x⋆sp(δ
−(v1)) + 2 = 2x⋆sp(δ

−({v0, v1})) + 2 = 2x⋆(δ−(v)) + 2.

As ysp is the same as y′sp except for the edges redirected from the auxiliary vertices in Gsp

(which may increase the in-degree of a vertex by at most 1),

y(δ−(v)) = ysp(δ
−({v0, v1})) ≤ y′sp(δ

−({v0, v1})) + 1 ≤ 2x⋆(δ−(v)) + 3 ≤ 5x⋆(δ−(v)),

where we used x⋆(δ−(v)) ≥ 1 for the last inequality. Therefore

w0

∑

e∈E(G̃)

ye = w0

∑

v∈V (G̃)

y(δ−(v)) ≤ 5 · w0

∑

v∈V (G̃)

x⋆(δ−(v)).

We bound the second term similarly:

y′sp(t
1, t0) = y′sp(δ

−(t1)) ≤ ⌈2x⋆sp(δ
−(t1))⌉ ≤ 2⌈x⋆sp(δ

−(t1))⌉ = 2⌈f(δ−(t))⌉.

Plugging both in we get:

∑

e∈E(G̃)

yew(e) ≤ 5 · w0

∑

v∈V (G̃)

x⋆(δ−(v)) + 2 · w1

∑

t∈(G̃)∩T

⌈f(δ−(t))⌉ + w1 · debt

≤ 5 ·


w0

∑

v∈V (G̃)

x⋆(δ−(v)) + w1

∑

t∈V (G̃)∩T

⌈f(δ−(t))⌉


 +w1 · debt

= 5 lb(G̃) + w1 · debt .
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(For the final equality, recall the definition of the function lb.) We will be done if we show that
w1 · debt ≤ lb(G̃). By Lemma 3.15 we have debt ≤

∑
i:Pi⊆G̃

bad(i). Whenever bad(i) = 1,

Fact 3.7 implies that Pi contains a terminal, and so lb(Pi) ≥ w1. Consequently,

w1 · debt ≤
∑

i:Pi⊆G̃,bad(i)=1

w1 ≤
∑

i:Pi⊆G̃,bad(i)=1

lb(Pi) ≤ lb(G̃).

In the last inequality we used that the different Pi’s are disjoint subsets of G̃ (each Pi is contained
in Vi). The statement follows.

It remains to argue that the cost of the walks Pi can be accommodated.

Lemma 3.17. For every i we have w(Pi) ≤ 4 · lb(Pi).

Proof. This holds because in Pi, each vertex has low indegree and expensive edges can be offset
against terminals. Concretely, we have the following two claims:

Claim 6. For each v ∈ V (Pi) we have |δ−Pi
(v)| ≤ 4. (In particular, |E(Pi)| ≤ 4|V (Pi)|.)

Proof. This follows from the fact that we select a shortest ui-vi-path (or ui-t-path) in Gaux
i (see

Definition 3.10). This implies that each vertex v appears as an internal vertex on at most one
preimage path of a prepaid edge (otherwise we could shortcut the path in Gaux

i ). Same applies
for postpaid edges. And similarly, each v appears as head of at most one preimage path of any
kind (single cheap edge, prepaid or postpaid). This means that v has indegree at most 3 on the
walk created from preimages of edges in Gaux

i . The path from t to ui can contribute a fourth
incoming edge.

Claim 7. The number of expensive edges on Pi is at most twice the number of terminals on Pi,
i.e., |E1 ∩ E(Pi)| ≤ 2 · |T ∩ V (Pi)|.

Proof. Expensive edges appear only in preimage paths of prepaid or postpaid edges, one per
such preimage path, and such a path also contains a terminal (as its head or tail). A terminal
can only appear as head of one prepaid and as tail of one postpaid edge (otherwise, again, we
could shortcut the path in Gaux

i ).

Having these two claims, we can bound the cost:

w(Pi) ≤ w0 · |E(Pi)|+ w1 · |E1 ∩ E(Pi)|

≤ w0 · 4|V (Pi)|+ w1 · 2|T ∩ V (Pi)|

≤ 4 (w0 · |V (Pi)|+ w1 · |T ∩ V (Pi)|)

≤ 4 · lb(Pi).

Now we have all the tools needed to prove our lightness claim, i.e., to upper-bound (4) by
10 · lb(G̃):

w(G̃) =
∑

e∈E(G̃)

yew(e) +
∑

i:Pi⊆G̃

w(Pi)

≤ 6 · lb(G̃) +
∑

i:Pi⊆G̃

4 · lb(Pi)

≤ 6 · lb(G̃) + 4 · lb(G̃)

= 10 · lb(G̃),

where line 2 is by Lemmas 3.16 and 3.17, and in line 3 we use that all walks Pi are disjoint and
in G̃. This completes the proof of Lemma 3.13. �
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3.2.2 Crossing the cuts – proof of Lemma 3.14

In this section we prove that our solution F ⊆ E crosses each component Vi. Let us recall that
Ui is a sink strongly-connected component of the graph Gaux

i , so there is no edge in Gaux
i from

Ui to Vi \Ui. However, there can be such edges in G and therefore it might not be the case that
the edge in F which leaves Ui also leaves Vi. We will however argue that F does contain some
edge leaving Vi. Assume towards a contradiction that this is not true, i.e., that Vi is a union of
connected components of the graph (V, F ).

Fix i. Consider the (only) edge in y′sp (in G′
sp) with tail Ai; let esp be its image in ysp (in

Gsp) and e its image in y (in G). We have esp ∈ X+
i ; the tail of e is vi ∈ Ui, and the head of e

is in Vi \ Ui (since we assumed that no edge of F leaves Vi).
The following claim is the first, simplest example of how we use the structure of Gaux

i to
reason about our solution F .

Claim 8. Any edge from Ui to Vi \ Ui in G is expensive. (Therefore e is expensive, and esp is
a debt edge.)

Proof. If there was such a cheap edge, it would also appear in Gaux
i . However, there is no edge

in Gaux
i from Ui to Vi \ Ui.

Define (Vi \ Ui)
sp = {v0, v1 : v ∈ Vi \ Ui} ⊆ V (Gsp). We can now start traversing ysp inside

(Vi \ Ui)
sp like an Eulerian graph (since ysp satisfies flow conservation in (Vi \ Ui)

sp), starting
from esp, until we return to U sp

i .

Claim 9. We will not reach a terminal before returning to U sp
i . (Therefore we will return on

a debt edge e′sp.)

Proof. If there was a terminal t ∈ T ∩ (Vi \Ui) such that there is a path from head(esp) (a debt
vertex) to t1 in Gsp[Vi], then (assuming without loss of generality that there is no other terminal
on this path) all edges of this path are cheap. Therefore e together with the image of this path
in G would give rise to a postpaid edge (tail(e), t) from Ui to Vi \ Ui in Gaux

i , a contradiction.
Since head(esp) is a debt vertex and we do not visit a terminal, we will return on a debt edge.

Now we distinguish two cases. Suppose that the debt edge e′sp on which we return to U sp
i is

not the image in Gsp of the (only) edge in y′sp (in G′
sp) with head Ai. This means that we can

keep following y inside U sp
i until we exit U sp

i again via some edge e′′sp (maybe e′′sp = esp). By
Claim 8, e′′sp is expensive. So we have followed a path (a segment of y) which contains a debt
edge and later an expensive edge; this means (see Fact 3.7) that it must also contain a terminal
in between. Pick the last such terminal t; then the segment of y between t0 and tail(e′′sp) must
consist of cheap (free) edges. This gives rise to a prepaid edge (t,head(e′′sp)) from Ui to Vi \ Ui

in Gaux
i , a contradiction.
So suppose instead that the debt edge e′sp on which we return to U sp

i is, in fact, the image in

Gsp of the (only) edge in y′sp (in G′
sp) with head Ai. This means that e′sp ∈ X−

i . Recall that by

definition, X−
i consists only of debt or only of free edges, and therefore every edge in X−

i must
be a debt edge. By Fact 3.11, Gsp[Ui] contains a path from a terminal t0 via cheap edges to the
expensive edge esp. Again, the image of this path in G gives rise to a prepaid edge (t,head(esp))
from Ui to Vi \ Ui in Gaux

i , a contradiction. This concludes the proof of Lemma 3.14. �

21



Acknowledgment

An earlier version of this paper has appeared in the proceedings of IPCO 2016 (the 18th Con-
ference on Integer Programming and Combinatorial Optimization). This work has been pub-
lished in Mathematical Programming Series B. The final publication is available at Springer via
http://dx.doi.org/10.1007/s10107-017-1195-7.

References

[AG15] Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows and
asymmetric TSP. In Proceedings of the 56th Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS). IEEE, 2015.

[AGK+98] Sanjeev Arora, Michelangelo Grigni, David R. Karger, Philip N. Klein, and Andrzej
Woloszyn. A polynomial-time approximation scheme for weighted planar graph
TSP. In Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA 1998, pages 33–41, 1998.

[AGM+10] Arash Asadpour, Michel X. Goemans, Aleksander Madry, Shayan Oveis Gharan,
and Amin Saberi. An O(log n/ log log n)-approximation algorithm for the asymmet-
ric traveling salesman problem. In Proceedings of the Twenty-First Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2010, pages 379–389, 2010.

[BK06] Piotr Berman and Marek Karpinski. 8/7-approximation algorithm for (1, 2)-TSP.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA, pages 641–648, 2006.
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[SV14] András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for
the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs.
Combinatorica, 34(5):597–629, 2014.

[Sve15] Ola Svensson. Approximating ATSP by relaxing connectivity. In Proceedings of the
56th Annual IEEE Symposium on Foundations of Computer Science (FOCS), 2015.
URL: http://arxiv.org/abs/1502.02051.

[WS11] David P. Williamson and David B. Shmoys. The Design of Approximation Algo-
rithms. Cambridge University Press, 2011.

23

http://arxiv.org/abs/1502.02051

	Végh_Constant factor approximation_2017_cover
	Végh_Constant factor approximation_2017_author

