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Subdi¤erentiation of integral functionals

Emmanuel Giner (*) and Jean-Paul Penot (y) 1

Dedicated to Professor R.T. Rockafellar on the occasion of his eightieth birthday.

Abstract. We examine how the subdi¤erentials of nonconvex integral functionals can be deduced from
the subdi¤erentials of the corresponding integrand or at least be estimated with the help of them. In fact,
assuming some regularity properties of the integrands, we obtain exact expressions for the subdi¤erentials
of the integral functionals. We draw some consequences in terms of duality for such integral functionals,
extending in this way the early work of R.T. Rockafellar to the nonconvex case.
Key words. integral functional, integrand, Legendre function, regularity, subdi¤erential.
Mathematics Subject Classi�cation. 28C99, 49J52, 58Cxx, 46G05

1 Introduction

The word �regularity� has many di¤erent meanings in mathematics. In nonsmooth analysis the concepts
already used by F.H. Clarke [8] (under the term �regularity� we change here into C-D regularity for the
sake of clarity), R.T. Rockafellar [52] (under the terms of �geometric derivability�, �epidi¤erentiability�,
�protodi¤erentiability� in [52] and elsewhere) and J.-P. Penot (under the term of �softness� [41]) can be
completed by a number of di¤erent notions. The purposes of such concepts are twofold. First, for the
functions or the classes of functions that satisfy such regularity, the number of available subdi¤erentials is
reduced, giving more strength to the notion of subdi¤erential. Second, regularity enables to get new properties,
in particular equalities instead of inclusions (see [8] for instance).
Given two subdi¤erentials @A and @B , we suggest to say that a function f is A-B-regular at some point

x of its domain if @Af(x) = @Bf(x). Of course, if f is convex or approximately convex, or of class C1, f is
A-B-regular for all usual subdi¤erentials @A and @B . Since the calculus rules for @A and @B may be di¤erent,
in some cases of interest A-B-regularity can be transferred to new functions build from A-B regular functions
(see [8] for the important case of C-D regularity or Clarke regularity).
In this survey we focus the attention on the application of such ideas to integral functionals, an important

class of functions. Such functions are typically de�ned on an in�nite dimensional space, a Lp space, on the
contrary of functions de�ned as parameterized integrals such as

Ef (x) :=

Z
S

f(s; x)d�(s) x 2 Rd;

where f : S � Rd ! R is such that fx := f(�; x) is integrable on S; for such functions we refer to [8], [28].
We review the extended work of E. Giner, providing simple proofs and completing it in a general approach
encompassing the crucial case of F-I-regularity (F for �rm or Fréchet and I for incident or intermediate or
adjacent) considered in [25]. There it is shown that F-I-regularity can be transferred from an integrand
satisfying a certain growth condition to the corresponding integral functional on some Lebesgue space. In
contrast, it is shown in [31, Thm 4.3] that the integral functional If on L1(S;Rd) associated with an integrand f
is not C�L-regular at any x 2 L1(S;Rd) such that f is not C�D-regular along x (i.e. @Cfs(x(s)) 6= @Dfs(x(s))
a.e.) and produce an example showing that C �D-regularity of f along x does not ensure that If is C � L-
regular at x:
In the sequel (S;S; �) is a �-�nite complete measure space and p 2]1;1[: The case p = 1 and p =1 are

particular enough (see [7], [31] and [43] for the case p = 1 and [25] for the case p = 1), so we discard them
here.
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We also give a glimpse to an analogue of the Fenchel transform which can be used for nonconvex functionals.
Applying it to integral functionals o¤ers a reminiscence of the early work of R.T. Rockafellar on convex integral
functionals [47], [48]. Since here we consider nonconvex integrands and nonconvex integral functionals, we have
to use general subdi¤erentials. Their de�nitions are recalled in the next section. Basic facts about integral
functionals are presented in Section 3. Since calmness plays a crucial role in this study, it is characterized
in Section 4. The main subdi¤erentials of integral functionals are investigated in Sections 5-7 and some
conclusions about A-B regularity are derived in Section 8. We conclude with a section devoted to duality.

2 Preliminaries on nonsmooth analysis

Let us recall the de�nitions of the subdi¤erentials that will be considered here. We do not look for complete-
ness: we do not consider the cases of the graded subdi¤erentials of Io¤e nor the moderate subdi¤erential of
Michel-Penot ([45]).
For p > 1 and a Banach space X one can de�ne a p-proximal subdi¤erential of a function f : X ! R �nite

at x by setting

x� 2 @P f(x)() lim inf
u!0

1

kukp [f(x+ u)� f(x)� hx
�; ui] > �1:

The case p = 2 is classical, but the general case is adapted to the study of functionals de�ned on an Lp space.
Besides this subdi¤erential, the simplest one, and also the smallest one among classical subdi¤erentials, is

the �rm or Fréchet subdi¤erential denoted by @F f : for f : X ! R �nite at x

x� 2 @F f(x)() 9b : X ! X� : x� = lim
w!x

b(w); f(w)� f(x) � b(w):(w � x):

This de�nition appears as a one-sided version of Fréchet di¤erentiability. It can be shown that this simple
de�nition is equivalent to the more usual condition

x� 2 @F f(x)() lim inf
u!0

1

kuk [f(x+ u)� f(x)� hx
�; ui] � 0:

In �nite dimensions @F f(x) coincides with the directional (or contingent or Dini or Bouligand) subdi¤er-
ential @Df(x) de�ned by

x� 2 @Df(x)() 8u 2 X fD(x; u) := lim inf
(t;v)!(0+;u)

1

t
[f(x+ tv)� f(x)] � hx�; ui:

It can be given a geometric description in terms of the tangent cone (or contingent cone or directional
tangent cone) to the epigraph E of f at z := (x; f(x)) de�ned by

T (E; z) = TD(E; z) = lim sup
t!0+

1

t
(E � z) := fw : lim inf

t!0+
d(w;

1

t
(E � z)) = 0g

= fw : 9(tn)! 0+; (wn)! w; z + tnwn 2 E 8n 2 Ng:

One has fD(x; u) = inffr 2 R : (u; r) 2 T (E; z)g: A similar characterization can be given for the incident
(or intermediate or adjacent) subdi¤erential in terms of the incident cone T I(E; z) to the epigraph E of f at
z := (x; f(x)) via the relation

x� 2 @If(x)() 8u 2 X hx�; ui � f I(x; u) := inffr : (u; r) 2 T I(E; z)g

where T I(E; z) is the incident cone to E at z; or set of velocities of moving points in E :

w 2 T I(E; z) = lim inf
t!0+

1

t
(E � z)() lim

t!0+

1

t
d(z + tw;E) = 0

() 9c : R+ ! E; c(0) = z; c0(0) = w:
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This last equivalence stems from the fact that when "(t) := (1=t)d(z + tw;E) ! 0 as t ! 0+ one can �nd
w(t) 2 B(w; "(t) + t) such that c(t) := z + tw(t) 2 E for t > 0 small enough (or t 2 R+ by taking c(t) = z for
t aloof 0).
The circa-subdi¤erential or Clarke subdi¤erential @Cf(x) is de�ned similarly

x� 2 @Cf(x)() 8u 2 X hx�; ui � fC(x; u) := inffr : (u; r) 2 TC(E; z)g;

where TC(E; z) is the circa-tangent cone or Clarke tangent cone to E at z :

TC(E; z) := lim inf
(t;z0)(2P�E)!(0+;z)

1

t
(E � z0):

Finally, the limiting subdi¤erential of f at x is the set @Lf(x) of weak� limits of sequences (x�n) satisfying
x�n 2 @F f(xn) for some (xn)! x satisfying (f(xn))! f(x): For a slightly more general de�nition, see [33].
All these subdi¤erentials satisfy important common calculus rules (see [29], [44]). As an example, let us

mention that for semi-separable functions one has the following rule.

Proposition 1 Let W; X be normed spaces, g : W ! R1 := R [ f1g; h : X ! R1; B 2 L(W;X),
f :W �X ! R1 given by f(w; x) := g(w) + h(Bw + x): Then

(w�; x�) 2 @f(w; x), 9u� 2 @g(w);9x� 2 @h(Bw + x); (w�; x�) = (u� +B>x�; x�):

These subdi¤erentials also have di¤erent properties and it can be sensible to try to combine them, at least
for some functions that are regular enough. While the �elementary subdi¤erentials�have nice properties in
terms of order, the subdi¤erentials @C and @L are more e¢ cient in terms of calculus rules. Still, the latter
enjoy some order properties (see [36]) and the former dispose of some calculus rules such as

@(f + g)(x) � @f(x)� @(�g)(x)

where, for A; B � X� one sets A�B := fx� 2 X� : x� +B � Ag:
The proofs below use the following geometric properties whose proofs are simple consequences of the

de�nitions.

Lemma 2 (a) If A : X ! Y is a continuous linear map between two normed spaces and x is a point of a
subset E of X, then one has

A(T I(E; x)) � T I(A(E); Ax);
A(TD(E; x)) � TD(A(E); Ax):

If E := A�1(F ) and if A is open from X onto Y these inclusions are equalities.
(b) If A is open from E onto A(E) at x, in the sense that for any sequence (yn) of A(E) with limit Ax

there exists a sequence (xn)! x in E such that Axn = yn for all n, then

A(TC(E; x)) � TC(A(E); Ax):

If moreover A is open from X onto Y and if x 2 E := A�1(F ) then A(TC(E; x)) = TC(F;Ax):

Similar results are valid when A is replaced with a di¤erentiable (resp. circa-di¤erentiable i.e. strictly
di¤erentiable) map. They imply the next composition rules.

Lemma 3 If U , V are normed spaces and if h : U ! V is di¤erentiable at a point u of U then, for g : V ! R
�nite at h(u) and f := g � h; for all u0 2 U one has

gI(h(u); h0(u)u0) � f I(u; u0);
gD(h(u); h0(u)u0) � fD(u; u0);

hence h0(u)>(@Ig(h(u))) � @If(u) and h0(u)>(@Dg(h(u))) � @Df(u). If U and V are Banach spaces and if h
is continuously di¤erentiable (or just circa-di¤erentiable) at u with h0(u)(U) = V; equality holds.
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3 Preliminaries about integral functionals

In the sequel E is a separable Banach space and (S;S; �) is a �-�nite complete measure space. Let us recall
that the (upper) integral of a measurable function u : S ! R is de�ned by

I(u) :=

Z
ud� := inff

Z
S

y(s)ds : y 2 L1(S); u(�) � y(�) a.e.g

=

Z
max(u; 0)d��

Z
max(�u; 0)d�:

Since we adopt the convention (+1) + (�1) = +1; (+1)� (+1) = (+1) + (�1); we have the following
useful observation.

Lemma 4 For a measurable function u : S ! R one has I(�u) = �I(u) whenever I(u) <1 or I(�u) <1:

Proof. Assume that I(u) < +1: Then, for u+ := max(u; 0) we have I(u+) < +1: For u� := (�u)+ we
have I(u) = I(u+) � I(u�): Thus, when I(u�) is �nite we have I(�u) = I(u�) � I(u+) = �I(u) and when
I(u�) = +1 we have I(u) = �1 and I(�u) = +1. �
Given an integrand f : S �E ! R1; setting f � x := f(�; x(�)), the associated integral functional F := If

is de�ned by

F (x) := If (x) := I(f � x) := inff
Z
S

y(s)d�(s) : y 2 L1(S); y � f � x a.e.g:

Throughout we assume that f is a normal integrand in the sense that for a.e. s 2 S the function fs := f(x; �)
is lower semicontinuous and the multimap s � E(s) := epi fs is measurable so that for all x 2 Lp(S;E) the
function f �x is measurable, (see [27], [50], [52]). The de�nition of If can be reformulated in geometric terms
using the linear map

A : Lp(S;E)� L1(S)! Lp(S;E)� R (1)

de�ned by A(x; y) := (x;
R
S
y(s)ds) for (x; y) 2 Lp(S;E)� L1(S).

For a multimap M : S � E with nonempty values, we denote by Lp(M) the set of measurable selections
of M that are in Lp(S;E) :

Lp(M) := fx 2 Lp(S;E) : x(�) 2M(�) a.e.g:
Similarly, if M : S � E �R is a multimap, we denote by Lp;1(M) the set of measurable selections of M that
are in Lp(S;E)� L1(S) :

Lp;1(M) := f(x; y) 2 Lp(S;E)� L1(S) : (x(�); y(�)) 2M(�) a.e.g:

Lemma 5 If S is �-�nite, for any integrand f one has

epi If = A(Lp;1(epi f)):

Proof. Clearly, for all (x; y) 2 Lp;1(epi f) we have A(x; y) 2 epi If : Conversely, let (x; r) 2 epi If ; so that
I(f � x) � r: Then, either I(f � x) = �1 or f � x is integrable. In both cases we can �nd some u 2 L1(S)
satisfying f � x � u and

R
u � r: Taking z 2 L1(S) such that z � 0 and

R
z = r �

R
u and setting v := u+ z;

we get (x; v) 2 Lp;1(epi f) and A(x; v) = (x; r): �
The following result is of crucial importance.

Lemma 6 ([27], [49], [50], [52, Thm 14.60]) Let f : S � E ! R be a normal integrand such that dom If is
nonempty. Then

inff
Z
S

f(s; x(s))d�(s) : x 2 Lp(S;E)g =
Z
S

inf
e2E

f(s; e)d�(s):

Moreover,when this common value is not �1; x 2 Lp(S;E) is a minimizer of If if, and only if, for a null
set N of S; x(s) is a minimizer of fs := f(s; �) for all s 2 SnN:
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An application of this result to in�mal convolution is noteworthy. Here the in�mal convolution of two
functions f , g : E ! R1 is the function

f � g : e 7! infff(e0) + g(e00) : e0 + e00 = eg:

Corollary 7 Let h; k : S �E ! R be normal integrands such that f : S �E ! R de�ned by fs := hs � ks is
a normal integrand. Then, for w 2 dom If one has If (w) = (Ih � Ik)(w): Moreover, the in�mal convolution
Ih � Ik is exact at w 2 dom If if and only if for a.e. s 2 S the in�mal convolution of hs and ks is exact.

Proof. This follows from the lemma since

(Ih � Ik)(w) := inff
Z
S

[h(s; x(s)) + k(s; w(s)� x(s))]d�(s) : x 2 Lp(S;E)g

and infe2E [h(s; e) + k(s; w(s)� e)] = f(s; w(s)): �
As an application, we obtain the following regularization property. In the case p = 2; such a regularization

is known as the Moreau regularization or the Moreau envelope.

Proposition 8 Let f : S � E ! R be a normal integrand and let r > 0; w 2 Lp(S;E): Assume that there
exists some u 2 Lp(S;E) such that If (u) + 1

r kw � uk
p
p <1: Then one has

(If �
1

r
k:kpp)(w) =

Z
S

(fs �
1

r
k:kpE)(w(s))d�(s):

In other terms, the regularized function of If for the kernel given by the p-th power of the norm on
Lp(S;E) is the integral functional of the regularized integrand by the p-th power of the norm on E. In view
of this proposition and of the results in [34] one can connect the subdi¤erentials of If with the subdi¤erentials
of the envelope of If ; taking into account the statements of Section 8. This task is outside the scope of the
present survey.
The following lemma gives the �avor of our aims. Here we use the Fenchel-Moreau subdi¤erential albeit

h is not necessarily convex. In particular, if k : E ! R is positively homogeneous, we have e� 2 @k(0) if and
only if he�; ei � k(e) for all e 2 E and k(0) = 0. In fact, if e� 2 @k(0) we must have k(0) 2 R, hence k(0) = 0
since k(0) 2 f0;1;�1g; then he�; ei � k(e) for all e 2 E. Conversely, when this property holds and k(0) = 0
we have e� 2 @k(0):

Lemma 9 Given a normal integrand h : S�E ! R that is positively homogeneous in its second variable, for
hs := h(s; �) one has

x� 2 @Ih(0), x� 2 Lq(@h(0)) := fx� 2 Lq(S;E�) : x�(s) 2 @hs(0) a.e.g:

Proof. Since Ih is positively homogeneous when hs is positively homogeneous for all s 2 S; when x� 2
@Ih(0) we have Ih(0) = 0; hence 0 2 dom If for f given by f(s; e) := h(s; e) � hx�(s); ei and since 0 is a
minimizer of If ; 0 is a minimizer of fs and, for any measurable subset A of S we have

0 = inf
x2Lp(S;E)

(Ih(1Ax)� hx�; 1Axi) = inf
x2Lp(S;E)

Z
A

(h(s; x(s))� hx�(s); x(s)i)d�(s)

so that x�(s) � h(s; �) a.e.
Conversely, if x� 2 Lq(@h(0)) we have h(s; 0) = 0 a.e. and the relation x�(s) � h(s; �) a.e. implies that

hx�; ui � Ih(u) for all u 2 Lp(S;E); hence x� 2 @Ih(0). �
Let us say that an integrand f : S �E ! R satis�es the growth condition (G) if there exist a 2 L1(S;R),

b 2 R+ and a null set N � S such that

(G) f(s; e) � a(s)� b kekp 8(s; e) 2 (SnN)� E:
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This condition is equivalent to the following one:
(G�) for all z 2 Lp(S;E) there exist some az 2 L1(S;R), bz 2 R+ and a null set N � S such that

(Gz) f(s; e) � az(s)� bz ke� z(s)kp 8(s; e) 2 (SnN)� E:

The equivalence is a consequence of the relation ke� z(s)kp � 2p�1 kekp + 2p�1 kz(s)kp, changing bz into
2p�1bz and az(s) into az(s)� 2p�1bz kz(s)kp to pass from the second form to the �rst one, the reverse being
obtained by taking z = 0. Similarly, condition (G) is equivalent to the existence of some z 2 Lp(S;E),
az 2 L1(S;R), bz 2 R+ and a null set N � S such that relation (G�) holds.

Lemma 10 Let f be a normal integrand satisfying condition (G). Then If is lower semicontinuous on its
domain in Lp(S;E):

Proof. Given x 2 Lp(S;E) and a sequence (xn) ! x in Lp(S;E); we can �nd a subsequence (xk(n)) such
that (If (xk(n)))! lim infn If (xn) and (xk(n))! x a.e. Then Fatou�s lemma ensures that

lim inf
n

Z
S

[f � xk(n) + b


xk(n)

p � a]d� � Z

S

[f � x+ b kxkp � a]d�:

Since (
R
S



xk(n)

p d�)! R
S
kxkp d� we obtain that lim infn If (xn) � If (x): �

Integral functionals enjoy some properties of convex functions.

Proposition 11 ([2, Prop. 2]) If (S;S; �) has no atom and if f is convex in its second variable, If is
continuous on the whole of Lp(S;E) whenever it is continuous at some point of Lp(S;E):

Proposition 12 ([21]) If (S;S; �) has no atom and if f is a (possibly nonconvex in its second variable)
normal integrand, then If is Lipschitzian on bounded sets whenever it is Lipschitzian around some point of
Lp(S;E).

Proposition 13 ([16]) If (S;S; �) has no atom and if f is a (possibly nonconvex in its second variable)
normal integrand, then any local minimizer of If is a global minimizer.

We also have a kind of duality result. We give a simpli�ed version which is su¢ cient for our needs, but the
result holds for a �nite set of integral constraints (see [4, Cor. 5.7] and its references). Such a result evokes a
duality result in terms of the Lagrangian `s(e; y) := js(e) + ygs(e):

Proposition 14 Let g : S � E ! R; j : S � E ! R be measurable integrands and let b; m 2 R, p 2 [1;1[.
Assume there exists some u0 2 Lp(S;E) such that Ij(u0) < +1 and Ig(u0) � 0: Then the following assertions
are equivalent:
(a) Ij(u) � m for all u 2 Lp(S;E) satisfying �1 < Ig(u) � 0;
(b) there exists y 2 R+ and a 2 L1(S) such that I(a) � m and j(s; e) + yg(s; e) � a(s) for all e 2 E and

a.e. s 2 S.

Corollary 15 When (S;S; �) is �-�nite, under the assumptions of the proposition, given b; m 2 R the
following assertions are equivalent:
(a) �1 < Ig(u) � b =) I�j(u) � m for all u 2 Lp(S;E);
(b) there exists y 2 R+ and a 2 L1(S) such that I(a) � yb�m and j(s; e) + yg(s; e) � a(s) for all e 2 E

and a.e. s 2 S.

Using Lemma 4, the implication (a))(b) of the corollary is a consequence of the corresponding implication
of Proposition 14 by changing m into �m and g into g � bv; where v 2 L1(S) is nonnegative and

R
S
v = 1.

The reverse implication is immediate.
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4 Calmness

Let us recall a classical result showing that calmness as de�ned in the following statement can be formulated
in various equivalent ways.

Lemma 16 (Nemeth) For F : X ! R �nite at x in a normed space X the following conditions are equivalent
and are satis�ed whenever @DF (x) is nonempty:
(a) F is calm at x: there exist r 2 P :=]0;1[ and c 2 R+ such that

8w 2 B(x; r) F (w)� F (x) � �c kw � xk ;

(b) there exists c 2 R+ such that FD(x; v) � �c kvk for all v 2 X;
(c) for all v 2 X one has FD(x; v) > �1;
(d) one has FD(x; 0) = 0:

Proof. The implications (a))(b))(c))(d) are obvious. Suppose (a) does not hold: there exists a sequence
(xn) such that rn := kxn � xk � n�2 and F (xn) � F (x) � �n2rn: Then, setting tn := nrn and vn :=
t�1n (xn � x) one has (vn)! 0 and t�1n (F (x+ tnvn)� F (x)) � �n; so that FD(x; 0) = �1 and (d) does not
hold.
If @DF (x) is nonempty we have FD(x; 0) � hx�; 0i = 0 for any x� 2 @DF (x) and since FD(x; 0) 2 f0;�1g;

we have FD(x; 0) = 0: �
For the study of the directional subdi¤erential of an integral functional we need the following observation

required by the fact that in general I�f does not coincides with �If :

Lemma 17 Let f : S�E ! R be a measurable integrand and let x 2 Lp(S;E) be such that f �x is integrable.
Then If is calm at x if, and only if I�f is quiet at x in the sense that Jf := �I�f is calm at x:

Proof. Since Jf � If and Jf (x) = If (x); If is calm at x whenever Jf is calm at x: Let us prove the
converse. Assume If is calm at x; so that there exist c > 0 and r > 0 such that

If (w)� If (x) � �c kw � xkp 8w 2 Lp(S;E) such that kw � xkp < r: (2)

Without loss of generality we assume that x = 0 and f �x = 0: Given w 2 Lp(S;E) such that kw � xkp < r; let
Sw := fs 2 S : f(s; w(s)) � 0g: Then k1Swwkp < r and �(f �w)� := inf(f �w; 0) = 1Sw(f �w) = f � (1Sww);
so that relation (2) yields Z

S

�(f � w)� =
Z
S

f � (1Sww) � �c k1Swwkp > �cr:

It follows that (f � w)� is integrable, hence that J((f � w)�) = I((f � w)�) and

Jf (w) � J((f � w)�) = I((f � w)�) � �c k1Swwkp � �c kwkp :

Thus Jf is calm at x = 0: �
For a function F : X ! R1 on a normed space X; a su¢ cient condition for calmness at x 2 domF is

given in the following lemma.

Lemma 18 For a function F : X ! R1 on a normed space X; a su¢ cient condition for calmness at
x 2 domF is the existence of some c1 and cp in R+, p 2 [1;1[ such that

(DF ) F (x+ u)� F (x) � �c1 kuk � cp kukp 8u 2 X: (3)

Conversely, if F satis�es the growth condition

(GF ) there exist a; b 2 R+ such that F (�) � a� b k�kp

calmness of F at x 2 domF entails condition (DF ).
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Proof. Since for u 2 rBX we have F (x+u)�F (x) � �(c1+ cprp�1) kuk ; condition (DF ) implies calmness
of F at x:
Conversely, if F is calm at x and if c 2 R+, r 2 P are such that

(C) F (x+ u)� F (x) � �c kuk 8u 2 rBX ;

then, under the following growth condition (Gx) in which b0; bp 2 R+,

(Gx) F (v) � �b0 � bp kv � xkp 8v 2 X;

setting v := x+ u, we see that (DF ) is satis�ed with cp = bp; c1 = max(r�1(b0 + F (x))+; c): Since condition
(GF ) is equivalent to (Gx), the converse assertion is established. �
Thus, the integral functional If associated to an integrand f : S � E ! R1 is calm at x 2 Lp(S;E)

whenever there exist a 2 Lq(S), b 2 R+ and a null set N such that

(Dx) fs(x(s) + e)� fs(x(s)) � �a(s) kek � b kekp 8(s; e) 2 (SnN)� E: (4)

That follows from Hölder�s inequality.
For p = 1; condition (4) is a necessary and su¢ cient condition for calmness of F := If at x: the necessity

of this condition is an easy consequence of Lemma 6 (see [21, Cor. 3.7]). It is a global calmness condition.
As in [7], [43], we see that the case p = 1 is a special case.
The following characterization of calmness on Lp(S;E) for p > 1 is more subtle.

Theorem 19 ([21]) Suppose (S;S; �) has no atom and f : S � E ! R is a measurable integrand. Let
x 2 Lp(S;E) be such that f � x := f(�; x(�)) 2 L1(S): Then the following assertions are equivalent:
(a) F := If is calm at x on X := Lp(S;E);
(b) the integrand f is p-calm at x in the sense that
(Cp) there exist c > 0, a null set N of S, an interval R :=]0; r] with r > 0 and families (yr)r2R in

R+, (ar)r2R in L1(S) such that I(ar) � yrr
p � cr and f(s; x(s) + e) � f(s; x(s)) � ar(s) � yr kekp for all

(r; s; e) 2 R� (SnN)� E:
When (S;S; �) is �-�nite, condition (Cp) can be written:
(C�p) there exist c > 0, a null set N of S, an interval R :=]0; r] with r > 0 and families (yr)r2R in R+,

(br)r2R in L1(S); z 2 L1(S); z � 0 such that I(z) = 1, I(br) � �c and f(s; x(s) + e)� f(s; x(s)) + yr kekp �
rbr(s) + r

pyrz(s) for all (r; s; e) 2 R� (SnN)� E:

Proof. The p-calmness condition (Cp) is su¢ cient to ensure calmness of F at x since by Hölder�s inequality
it implies that for u 2 Lp(S;E) satisfying kukp = r � r one has

If (x+ u)� If (x) � I(ar)� yrrp � �cr = �c kukp :

Let us prove that (Cp) is necessary. Let us assume that for some c; r 2 P :=]0;1[ we have If (x + u) �
If (x) � �c kukp for all u 2 rBX . In Corollary 15, let us de�ne integrands g and j by g(s; e) := kekp ;
j(s; e) := f(s; x(s) + e)� f(s; x(s)) and set b := rp with r 2 R :=]0; r]; m := cr; so that, by Lemma 17,

Ig(u) � rp =) I�j(u) � cr:

Corollary 15 yields yr 2 R+, ar 2 L1(S), and a null set N of S such that I(ar) � yrr
p � cr and ar(s) �

j(s; e) + yrg(s; e) for all (s; e) 2 (SnN)� E: That means that

f(s; x(s) + e)� f(s; x(s)) � ar(s)� yr kekp for all (r; s; e) 2 R� (SnN)� E:

Thus (Cp) is satis�ed.
When (S; S; �) is �-�nite we can pick z 2 L1(S) such that I(z) = 1 and z � 0: It su¢ ces to set br :=

r�1ar � rp�1yrz to obtain (C�p). Conversely, when (C�p) holds, setting ar := rbr + rp�1yrz we obtain (Cp).�
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Remark. Since condition (D) implies calmness of If ; one may guess that it implies (Cp). That is the case, as
one can see by using the inequality a(s) kek � 1

q ja(s)j
q
+ 1
p kek

p
; taking r = 1, ar(s) := � 1

q ja(s)j
q, yr := b+ 1

p ,
since for c = min( 1q kak

q
q ; b+

1
p ) one has I(ar) � yrr

p � cr for r 2]0; 1]: �
On the other hand, the following criterion entails condition (DF ), hence p-calmness. It is slightly more gen-

eral than a criterion in [25] since it involves the Fréchet subdi¤erential rather than the Clarke subdi¤erential;
on the other hand it is restricted to the class of Asplund spaces.

Criterion 20 If E is an Asplund space (resp. a general Banach space) and if the following condition holds,
then condition (D) is satis�ed at x 2 dom If : there exist a 2 Lq(S;R); a null set N; and c 2 R+ such that for
all (s; e) 2 (SnN)� E; e� 2 @F fs(e) (resp. e� 2 @Cfs(e)) one has

ke�k � a(s) + c kekp�1 :

The proof is an easy consequence of the Mean Value Inequality ([45, Thm 4.89]).

5 The case of the �rm subdi¤erential

We need a preliminary result about Nemytskii operators in a form slightly more precise than the classical
result of Krasnoselskii (see [32], [46]).
Let us consider the following growth condition in which p; q 2]1;1[, E, F are Banach spaces and g :

S � E ! F is a measurable map:
(N) there exist a 2 Lq(S;R), z 2 Lp(S;E), b 2 R+ and a null set N � S such that

8(s; e) 2 (S nN)� E kg(s; e)k � a(s) + b ke� z(s)kp=q :

Proposition 21 For a measurable map g : S � E ! F satisfying the growth condition (N) the following
assertions hold:
(a) for all u 2 Lp(S;E) the map v := g � u := g(�; u(�)) belongs to Lq(S; F );
(b) if for some u 2 Lp(S;E) and all s 2 SnN the map gs := g(s; �) is continuous at u(s); then the Nemytskii

map G : Lp(S;E)! Lq(S; F ) given by G(u) = g(�; u(�)) is continuous at u:

Proof. Condition (N) implies that a is nonnegative. Clearly, for u 2 Lp(S;E) the map v := g�u := g(�; u(�))
is measurable and satis�es for s 2 SnN

kg(s; u(s))kq �
���a(s) + b ku(s)� z(s)kp=q���q � 2q�1a(s)q + 2q�1bq ku(s)� z(s)kp :

Integrating, for v := g � u := g(�; u(�)), we getZ
S

kv(s)kq d�(s) � 2q�1 kakqq + 2
q�1bq ku� zkpp <1

so that v 2 Lq(S; F ):
Given u 2 Lp(S;E) and a sequence (un) ! u in Lp(S;E), we pick a subsequence (uk(n)) such that

uk(n+1) � uk(n)

 � 2�n. Then (un)! u a.e. and there exists some h 2 Lp(S;R) such that



uk(n)(s)� z(s)

 �
h(s) a.e. for all n (see [46]). Using assumption (N), we get

kg(s; un(s))� g(s; u(s))kq � 2q�1 kg(s; un(s))kq + 2q�1 kg(s; u(s))kq

� 2q�1(2qa(s)q + 2q�1bq(kun(s)� z(s)kp + ku(s)� z(s)kp))
� 22q�1a(s)q + 22q�1bqh(s)p:

Observing that (g(s; un(s))) ! g(s; u(s)) a.e. and applying the dominated convergence theorem, we obtain
that (g�uk(n))! g�u in Lq(S; F ). Since (un) is any sequence converging to u; we obtain that G is continuous
at u. �
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Theorem 22 Suppose that for p 2]1;1[; x 2 Lp(S;E), the integrand f satis�es condition (DF ) in relation
(4). Then, setting q := (1 � 1=p)�1, denoting by Lq(@F f � x) the set of selections x� 2 Lq(S;E�) of the
multimap s� @F fs(x(s)); one has the inclusion

Lq(@F f � x) � @F If (x):

For the case p = 1 we refer to [7] and [43].
Proof. Let x� 2 Lq(@F f � x) and let g : S � E ! R be given by

g(s; e) = � 1

kek (f(x(s) + e)� f(x(s))� hx
�(s); ei)

for (s; e) 2 S � (Enf0g), g(s; 0) = 0. Considering the sets f(s; e) : g(s; e) < rg; one sees that g and
g+ := max(g; 0) are measurable. Moreover, by condition (4), one has

g(s; e) � ja(s)j+ kx�(s)k+ b kekp�1 8(s; e) 2 (SnN)� E:

Since p� 1 = p=q and since x� 2 Lq(S;E�); we see that g+ satis�es condition (N) with F := R, z = 0; and a
changed into jaj+ kx�(�)k : Proposition 21 and the fact that g+(s; e)! 0 as e! 0 ensure that g+ � u! 0 in
Lq(S;R) as u! 0 in Lp(S;E): Since

If (x+ u)� If (x)� hx�; ui � �
Z
g+(s; u(s)) ku(s)k d�(s) � �



g+ � u


q
kukp

that shows that x� 2 @F If (x): �
One may wonder whether one can drop assumption (DF ) in the preceding statement. The following

counter-example shows that it is not the case.
Counter-example. Let S := [0; 1] with its Lebesgue measure and for n � 1 let Sn := [0; n�4]: Consider
the integrand f : S � R! R given by f(s; e) := e3 and the associated integral functional If on L2(S;R):
For all s 2 S one has @F fs(0) = f0g: Thus, for x := 0 we have L2(@F f � x) = f0g: However we have
@F If (x) = ? since for xn := �n1Sn we have kxnk2 = 1=n but If (xn)= kxnk2 = �1; so that for x� = 0 one
has limn(1= kxnk2)(If (xn)� If (0)� hx�; xni) = �1: �

6 Subderivatives of integral functionals

In this section we consider generalized directional derivatives (subderivatives in the terminology of [52]) as
well as subdi¤erentials.

6.1 The case of the incident subdi¤erential

The following result is remarkable because it does not require any restrictive assumption.

Theorem 23 ([15], [25]) Let f : S �E ! R1 := R [ f1g be a normal integrand �nite at x 2 Lp(S;E): Let
h : S � E ! R be the integrand given by h(s; e) := f Is (x(s); e) for (s; e) 2 S � E, for fs := f(s; �). Then, for
all u 2 Lp(S;E) one has (If )I(x; u) � Ih(u) or

(If )
I(x; u) � I(f I � (x; u)); (5)

@IIf (x) � Lq(@If � x); (6)

where q := (1� 1=p)�1 and where Lq(@If � x) is the set of x� 2 Lq(S;E�) such that x�(s) 2 @Ifs(x(s)) a.e..

Its proof relies on the following result of independent interest.
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Proposition 24 Given a measurable multimap M : S � E �R, z := (x; y) 2 Lp;1(M); let T IzM be the mul-
timap s� T I(M(s); z(s)) and let TDz M be the multimap s� TD(M(s); z(s)): Then the following inclusions
hold:

Lp;1(T
I
zM) � T I(Lp;1(M); z)

TD(Lp;1(M); z) � Lp;1(TDz M):

Proof. Let us de�ne d : (E � R)� (E � R)! R by

d((e; r); (e0; r0)) := ke� e0kp + jr � r0j :

If C is a nonempty subset of E�R, let d((e; r); C) := inf(e0;r0)2C d((e; r); (e0; r0)): Then, since ((en; rn))! (e; r)
if, and only if (d((e; r); (en; rn))! 0, given (a; b) 2 C, (e; r) 2 E � R we have

(e; r) 2 T I(C; (a; b))() (d((e; r); t�1(C � (a; b)))! 0 as t! 0+:

Similarly, we de�ne dp;1 : (Lp(S;E)� L1(S))� (Lp(S;E)� L1(S))! R by

dp;1((u; v); (u
0; v0)) =

Z
S

(ku(s)� u0(s)kp + jv(s)� v0(s)j)d�(s):

Then, for z := (x; y) 2 Lp;1(M) we have

w := (u; v) 2 T I(Lp;1(M); z)() (dp;1((u; v);
1

t
[Lp;1(M)� (x; y)])! 0 as t! 0+:

Moreover, setting for t > 0; (s; e; r) 2 S � E � R

gt(s; e; r) := d((u(s); v(s)); t
�1((e; r)� (x(s); y(s)))) + �M(s)(e; r);

we see that

dp;1((u; v);
1

t
[Lp;1(M)� (x; y)]) = inff

Z
S

gt(s; u
0(s); v0(s)) : (u0; v0) 2 Lp(S;E)� L1(S)g:

Using a variant of Proposition 6 and noting that since (0; 0) 2 t�1[Lp;1(M)� (x; y)] we have

dp;1((u; v);
1

t
[Lp;1(M)� (x; y)]) � kukpp + kvk1

we obtain

dp;1((u; v); t
�1(Lp;1(M)� (x; y)) =

Z
S

inf
(e;r)2E�R

gt(s; e; r)d�(s):

Given (u; v) 2 Lp;1(T IzM) we have limt!0+ gt(s; u(s); v(s)) = 0 a.e. Then, for any sequence (tn) ! 0+ we
have

dp;1((u; v); t
�1
n [Lp;1(M)� (x; y)]) �

Z
S

gtn(s; u(s); v(s))d�(s):

Since for all n 2 N we have gtn(s; u(s); v(s)) � ku(s)k
p
+ jv(s)j for all s 2 S; and since (gtn(s; u(s); v(s)))! 0

as n ! 1, the dominated convergence theorem yields (dp;1((u; v); t�1n (Lp;1(M) � (x; y))n ! 0: That shows
that (u; v) 2 T I(Lp;1(M); z):
Given (v; w) 2 TD(Lp;1(M); z) there exist sequences (tn) ! 0+; ((vn; wn)) ! (v; w) in Lp;1(E � R) such

that (x; y) + tn(vn; wn) 2 Lp;1(M) for all n 2 N. That means that for all n 2 N there exists a null subset Nn
of S such that (x(s) + tnvn(s); y(s) + ynwn(s)) 2 M(s) for all s 2 SnNn: The set N := [nNn is a null set
and there exist a null set N 0 and a subsequence ((vk(n);wk(n))) of ((vn; wn)) such that ((vk(n)(s); wk(n)(s)))!
(v(s); w(s)) a.e.for all s 2 SnN 0: Thus, for s 2 Sn(N [N 0) one has (v(s); w(s)) 2 TD(M(s); z(s)): Therefore
(v; w) 2 Lp;1(TDz M): �
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Proof of Theorem 23. (a) Relation (5) is equivalent to epi Ih � epi IIf (x; �): This inclusion is a consequence
of the following relations in which y(s) := f(s; x(s)), z(s) := (x(s); y(s)), r := If (x), and T I(epi f; z) denotes
the multimap s� T I(epi fs; z(s)):

epi Ih = A(Lp;1(epih)) (Lemma 5)

= A(Lp;1(T
I(epi f; z))) (de�nition of h := f I(x(�); �))

� A(T I(Lp;1(epi f); z)) (Proposition 24)

� T I(A(Lp;1(epi f); Az) (Lemma 2)

= T I(epi If ; (x; r)) (Lemma 5).

(b) It is a consequence of Lemma 9 and of the de�nition of @IIf . �

6.2 The case of the circa-subdi¤erential

A similar approach can be conducted for the Clarke (or circa-) subdi¤erential, even if the integrand is not
locally Lipschitzian. However, we need the growth assumption (G) to show that the openness property of
Lemma 2 is satis�ed by the map A described in relation (1).

Proposition 25 ([17]) Assume (S;S; � ) is �-�nite. Let A : Lp(S;E) � L1(S) ! Lp(S;E) � R be given by
A(x; y) := (x;

R
S
y(s)ds) for (x; y) 2 Lp(S;E)�L1(S) and let f : S�E ! R1 be a normal integrand satisfying

condition (G). Then, for all x 2 dom If � Lp(S;E), A is open from Lp;1(epi f) onto epi If at (x; f � x):

Proof. Let ((xn; rn)) be a sequence in epi If with limit (x; r), with r � I(f � x): We want to prove that
there exists a sequence (yn) in L1(S) with limit y := f � x such that yn � f � xn and

R
yn = rn for all n. Let

�rst do that when r = I(f � x). Without loss of generality, taking a subsequence if necessary, we may assume
that (xn) ! x a.e. and that there exists some h 2 Lp(S) such that kxn(s)kp � h(s) a.e. Lemma 5 yields a
sequence (un) in L1(S) such that rn = I(un) and un � f � xn for all n: Since f is a normal integrand, the
sequence (vn) := (min(un; f � x)) converges to y := f � x a.e.. By condition (G) for some a 2 L1(S); b 2 R+
we have

un � f � xn � a(s)� b kxn(s)kp � a(s)� bh(s):

Since vn(s) � y(s) := (f � x)(s) we get that

jvn(s)j � max(jy(s)j ; ja(s)j+ bh(s))

and the dominated convergence theorem ensures that (vn)! y in L1(S): Since un�vn � 0 and (
R
(un�vn)) =

(rn �
R
vn) ! r �

R
y = 0 we have (un � vn) ! 0 in L1(S); hence (un) ! y in L1(S). Thus we can take

yn := un.
When r > s := I(f � x); taking a sequence (un) ! u := y + s � r such that un � f � xn and

R
un =

sn := rn � r + s and setting yn := un + z, where z 2 L1(S) is such that z � 0 and I(z) = r � s; we get
yn � un � f � xn and

R
yn =

R
un +

R
z = rn; as required. �

Then, steps similar to the ones for the proof of Theorem 23 lead to the following result that is an extension
to the non locally Lipschitzian case of [8, Thm 2.7.5].

Theorem 26 ([17]) Let (S;S; � ) be �-�nite and let f : S�E ! R1 := R[f1g be a normal integrand �nite
at x 2 Lp(S;E) and satisfying condition (G). Let h : S�E ! R be the integrand given by h(s; v) := fCs (x(s); v)
for (s; v) 2 S � E. Then, for all u 2 Lp(S;E) one has (If )C(x; u) � Ih(u) or

(If )
C(x; u) � I(fC � (x; u)); (7)

@CIf (x) � Lq(@Cf � x): (8)
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6.3 The case of the directional subdi¤erential

For the directional (or Dini-Hadamard or contingent) subdi¤erential one does not have such simple results.
However, under assumption (D) on the integrand, one disposes of an interesting inclusion that can be easily
obtained.

Theorem 27 Let f : S � E ! R be a normal integrand satisfying condition (D) at x 2 Lp(S;E) for which
f � x 2 L1(S): Then, for all v 2 Lp(S;E) one has

IfD (x; v) � FD(x; v) := (If )D(x; v); (9)

Lq(@Df � x) � @DF (x) := @DIf (x): (10)

Proof. By assumption (D) there exist a 2 Lq(S), b > 0 and a null set N such that

8(s; e) 2 (SnN)� E fs(x(s) + e)� fs(x(s)) � �a(s) kek � b kekp

with b = 0 if p = 1: Given v 2 Lp(S;E); let (tn) ! 0+ and (vn) ! v in Lp(S;E) be such that (t�1n [F (x +
tnvn)� F (x)])! FD(x; v): We set

qn(s) :=
1

tn
[f(s; x(s) + tnvn(s))� f(s; x(s))];

so that (I(qn)) ! FD(x; v). Taking a subsequence (vk(n)) of (vn), we may assume that (vk(n)) ! v a.e. Let
us consider the sequence of nonnegative functions (pn) de�ned by

pn(s) := qk(n)(s) + a(s)


vk(n)(s)

+ btp�1k(n)



vk(n)(s)

p
and observe that

lim inf
n

qk(n)(s) + a(s)


vk(n)(s)

+ btp�1k(n)



vk(n)(s)

p � fDs (x(s); v(s)) + a(s) kv(s)k ;
(

Z
S

[a(s)


vk(n)(s)

+ btp�1k(n)



vk(n)(s)

p]d�(s))! Z
S

a(s) kv(s)k d�(s)

by Hölder�s inequality. Applying Fatou�s lemma to (pn) we obtain

IDf (x; v) + I(a kvk) = lim
n

Z
S

pn(s)d�(s) �
Z
S

[fDs (x(s); v(s)) + a(s) kv(s)k]d�(s);

hence IDf (x; v) � IfD (x; v): The inclusion Lq(@Df � x) � @DIf (x) ensues. �
Let us present a more re�ned result given in [21]. It uses condition (Cp) instead of condition (D) and the

notion of uniformly integrable sequence. Let us recall it. A sequence (vn) of L1(S) is said to be uniformly
integrable if limr!1 supn



1fvn�rgvn

1 = 0: By [14, Thm 2.29], [21, Lemma 3.2] or [46, Proposition 8.16],
this condition implies the following condition and when (vn) is bounded in L1(S) is equivalent to it:
(E) for every " > 0 there exists some � > 0 such that for all A 2 S satisfying �(A) < � one has

R
A
jvnj d� � "

for all n 2 N.
The sequence (vn) is said to be equi-integrable if it satis�es conditions (E) and (E�), with
(E�) for every " > 0 there exists some T 2 S satisfying �(T ) <1 such that supn



1SnT vn

 < ":
Let us recall that any convergent sequence of L1(S) is equi-integrable and that for any sequence (Sn) in S

and any equi-integrable sequence (vn) the sequence (1Snvn) is equi-integrable. We need the following re�ned
Fatou�s lemma.

Lemma 28 ([21]) Let (un) be a sequence of measurable functions from S to R such that the sequence (vn)
given by vn = u�n := max(�un; 0) is equi-integrable and bounded in L1(S). Then, if (S;S; �) is �-�nite, one
has

I(lim inf
n

un) � lim inf
n

I(un):
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Proof. Let (un) be such that vn = u�n is equi-integrable and bounded in L1(S). Let us pick some
positive integrable function z such that

R
S
zd� = 1. By [21, Lemma 3.2] the family fvn=zg is uniformly

integrable: limr!1 supn


1fvn�rzgvn

1 = 0: Given " > 0 we take r > 0 such that supn



1fvn�rzgvn

1 � ":
Let wn := sup(un;�rz): Observing that wn � 0 on Sn := fun � �rzg and wn = un on Scn := SnSn we have

I(wn) = I(1Snwn) + I(1Scnwn) � I(1Scnwn) = I(1Scnun)
I(wn) + I(1Snun) � I(1Scnun) + I(1Snun) = I(un): (11)

Since wn � �rz for all n, we can apply Fatou�s lemma to (wn); so that

I(lim inf
n

un) � I(lim inf
n

wn) � lim inf
n

I(wn):

Since I(1Snun) = I(�1fvn�rzgvn) = �I(1fvn�rzgvn) = �


1fvn�rzgvn

1 � �" we deduce from relation (11)

that
lim inf

n
I(wn)� " � lim inf

n
(I(wn) + I(1fun��rzgun)) � lim infn

I(un):

Since " is arbitrary the result follows. �

Theorem 29 Let f : S � E ! R be a normal integrand such that the associated integral functional If on
Lp(S;E) is calm at x with f � x 2 L1(S): Then, the conclusions of the preceding theorem hold.

Proof. Let r > 0; c > 0 be such that If (x + u) � If (x) � �c kukp for all u 2 Lp(S;E) such that
kukp � r: Again, it su¢ ces to prove relation (9) for v 2 Lp(S;E). Let (tn) ! 0+, (vn) ! v be such
that limn t�1n (If (x + tnvn) � If (x)) = (If )

D(x; v). Taking a subsequence of a given subsequence, we may
assume that (vn) ! v a.e. and ktnvnkp � r for all n 2 N. Let qn := t�1n (f � (x + tnvn) � f � x)) and let
Sn := fs 2 S : qn(s) � 0g: The sequence (q�n ) is bounded in L1(S) sinceZ

S

q�n d� = �
Z
S

1Snqnd� =
1

tn

Z
S

(f � x� f � (x+ tn1Snvn))d�

=
1

tn
(If (x)� If (x+ tn1Snvn)) � c k1Snvnkp � c kvnkp :

It is equi-integrable since (kvn(�)kp) is equi-integrable and since for any A 2 S one hasZ
A

q�n d� =

Z
S

1

tn
(f � x� f � (x+ tn1A\Snvn))d� � c k1A\Snvnkp :

Applying the extended Fatou�s lemma we get I(lim infn qn) � lim infn I(qn) and

I(fD � (x; v)) � I(lim inf
n

qn) � lim
n
t�1n (If (x+ tnvn)� If (x)) = (If )D(x; v):

�
Counter-example. The preceding relations do not hold without some assumption on the integrand, as the
following example shows. Let S := [0; 1] with its Lebesgue measure and let the integrand f : S � R! R be
given by f(s; e) := e3. For n � 1 let Sn := [0; n�5] and let vn := �n21Sn so that kvnk2 = 1=

p
n and (vn)! 0:

Let tn = n�1=3: Then t�1n If (tnvn) = �t2nn = �n1=3 and (If )D(x; 0) = �1 for x := 0 but since fD(0; u) = 0
for all u 2 R the conclusion IfD (x; v) � (If )D(x; v) does not hold. �

7 The case of the limiting subdi¤erential

We need the following result.
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Lemma 30 ([1, Thm 8.4.1], [32, Prop. 6.5]) Suppose E is a re�exive Banach space and (Mn) is a sequence
of multimaps from S into E� with measurable graphs. Let M := seq�w � lim supnMn; and let co(M) be the
multimap given by co(M)(s) := co(M(s)), the weak� closed convex hull of M(s).Then co(M) has a measurable
graph and for q 2 [1;1[ one has

seq�w � lim sup
n

Lq(Mn) � Lq(co(M)):

Lemma 31 ([17]) Let f : S�E ! R1 be a normal integrand satisfying the growth property (G) and let (xn)
be a sequence in Lp(S;E) with limit x 2 domIf � Lp(S;E): If (If (xn)) ! If (x) then (f � xn) ! f � x in
L1(S;E):

Proof. Since f �x and f �xn are integrable (for n large enough, so that we may assume that it is the case for
all n) they are �nite a.e. Let gn := f �x� f �xn; so that, by condition (G), we have gn(s) � a(s)+ b kxn(s)kp
a.e., with a(�) := f(�; x(�))�a(�) 2 L1(S) and b 2 R+: From any subsequence of (xn) we can extract a sequence
(x0n) that converges to x a.e. and such that there exists some h 2 L1(S) satisfying kx0n(�)k

p � h(�): Avoiding
reindexation, we assume x0n = xn and we note that

g+n := max(gn; 0) � a+ + bh:

Since fs is lower semicontinuous on E for a.e. s, and since (x0n) ! x a.e., we see that (g+n ) ! 0 a.e. The
dominated convergence theorem ensures that (

R
S
g+n )! 0: Now jgnj = g+n + g�n with g�n := max(�gn; 0) and

gn = g
+
n � g�n so that Z

S

g�n =

Z
S

g+n �
Z
S

gn ! 0

by the assumption that (I(gn)) = (If (x)� If (xn))! 0: Thus

(

Z
S

jgnj) = (
Z
S

g+n ) + (

Z
S

g�n )! 0:

That shows that (kf � xn � f � xk1)! 0 since we started from an arbitrary subsequence of (xn). �
In the following statement, given a function F : X ! R �nite at x 2 X on a normed space X, we denote

by @LIF (x) the set of weak� limits of sequences (x�n) such that x
�
n 2 @IF (xn) for some sequence (xn)! x for

which (F (xn))! F (x):

Proposition 32 Suppose p 2]1;1[, E is re�exive and f : S � E ! R1 is a normal integrand satisfying
condition (G). Then, for any x in the domain of If in Lp(S;E) one has

@LIIf (x) � Lq(co(@LIf � x)):

Proof. Given x� 2 @LIIf (x) we pick sequences (xn) ! x, (x�n) ! x� weakly� with (If (xn)) ! If (x);
x�n 2 @IIf (xn) for all n 2 N. Since x�n 2 Lq(@If � xn) by 23, the result is a consequence of the two preceding
lemmas, taking Mn := @If � xn. �
The inclusion @FF � @IF entails the following consequence.

Corollary 33 With the assumptions of the preceding proposition, assume that the integrand f is such that
for some null set N of S and all (s; e) 2 (SnN) � E one has @Ifs(e) = @F fs(e); or more generally, that for
some x 2 dom If one has co(@LIf � x) = co(@Lf � x): Then one has

@LIf (x) � Lq(co(@Lf � x)):

Note that when E is �nite dimensional the additional assumption of the corollary is satis�ed whenever fs
is D-I regular for a.e. s; a rather mild assumption.
On the other hand, one has the following result in which we use the fact that when a Banach space X

is separable there is a norm on X� that induces the weak� topology on bounded subsets ([45, Thm 1.10] for
instance).
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Theorem 34 ([24]) Let f be a normal integrand satisfying condition (G). Suppose E is �nite dimensional
and Lp(S;E) is separable. Then, for any x 2 Lp(S;E) such that f � x 2 L1(S) one has

Lq(@Lf � x) � @LIf (x):

If Lq(@Lf � x) 6= ? then one even has

Lq(co@Lf � x) � @LIf (x):

Combining this theorem with the preceding corollary, we obtain a characterization of @LIf (x).

Corollary 35 Let f be a normal integrand satisfying condition (G). Suppose E is �nite dimensional and
Lp(S;E) is separable. If for some x 2 dom If in Lp(S;E) one has co(@LIf �x) = co(@Lf �x) and Lq(@Lf �x) 6=
? then one has

@LIf (x) = Lq(co@Lf � x):

Corollary 36 Let f be a normal integrand satisfying condition (G). Suppose E is �nite dimensional and
Lp(S;E) is separable. If for some x 2 dom If in Lp(S;E) one has and Lq(co@Lf � x) = Lq(@Cf � x); in
particular if fs is locally Lipschitzian around x(s) a.e. s 2 S; then one has

@LIf (x) = Lq(@Cf � x) = @CIf (x):

Proof. Taking into account Theorem 34, that follows from the inclusions @LIf (x) � @CIf (x) � Lq(@Cf �x)
(Theorem 26). A slightly di¤erent result is given in the next section.

8 The bene�ts of regularity

In the sequel we say that the normal integrand f is A-B regular along x 2 Lp(S;E) if for some null subset N
of S one has @Afs(x(s)) = @Bfs(x(s)) for all s 2 SnN: We dispose of several results showing that regularity
of the integrand f can be transferred to regularity of the integral functional F := If : The converse is not
without interest, but no as important for calculus and we do not consider it. We start with one of the weakest
regularity property: D-I regularity or proto-di¤erentiability (or epi-di¤erentiability).

Theorem 37 Suppose the normal integrand f is D-I regular along x 2 dom If in Lp(S;E) and @DF (x) 6= ?;
or, more generally, condition (Cp) holds or If is calm at x. Then F := If is D-I regular at x and

@DF (x) = Lq(@Df � x) = Lq(@If � x) = @IF (x):

If condition (Cp) is satis�ed at x and if for u 2 Lp(S;E) one has fD(x(�); u(�)) = f I(x(�); u(�)) a.e., in
particular if fD(x(s); �) = f I(x(s); �) a.e., then

FD(x; u) = F I(x; u) 8u 2 Lp(S;E):

Proof. Since the inclusion @DF (x) � @IF (x) is always valid, the �rst assertion stems from the relation
@Df � x = @If � x and the inclusions Lq(@Df � x) � @DF (x) and @IF (x) � Lq(@If � x).
In view of the inequality FD(x; u) � F I(x; u); the second relation is a consequence of the assumption that

fD � (x; u) = f I � (x; u):

F I(x; u) � I(f I � (x; u)) = I(fD � (x; u)) � FD(x; u)

since (Cp) or condition (D) implies the last inequality. �
Note that under the assumptions of both parts of the theorem, for @ = @D or @ = @I we dispose of

representations

@F (x) = Lq(@f � x);
FD(x; u) = I(fD � (x; u)) = I(f I � (x; u)) = F I(x; u):

Let us turn to stronger regularity assumptions.
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Theorem 38 Suppose the normal integrand f is F-I regular along x 2 dom If in Lp(S;E) and condition
(Dx) is satis�ed. Then If is F-I regular at x and

@F If (x) = Lq(@F f � x) = Lq(@If � x) = @IIf (x):

Proof. Under assumption (Dx), by Theorems 23 and 22 we have

@IIf (x) � Lq(@If � x) and Lq(@F f � x) � @F If (x):

When f is F-I regular along x; i.e. @If � x = @F f � x; we obtain @IIf (x) � @F If (x) and since the reverse
inclusion is always valid, we get the equalities of the statement. �

Theorem 39 Suppose the normal integrand f satis�es conditions (Cp) and (G) and is C-D regular along
x 2 dom If : Then, If is C-D regular at x and

@CIf (x) = Lq(@Cf � x) = Lq(@Df � x) = @DIf (x):

If, moreover, @CIf (x) is nonempty, for all u 2 Lp(S;E) one has

(If )
C(x; u) = I(fC � (x; u)) = I(fD � (x; u)) = (If )D(x; u):

Proof. Under our assumptions we have the relation Lq(@Cf �x) = Lq(@Df �x) and the inclusions Lq(@Df �
x) � @DIf (x) and @CIf (x) � Lq(@Cf �x): Thus, @CIf (x) � @DIf (x): The inclusion @DIf (x) � @CIf (x) allows
us to obtain the �rst assertion.
To prove the second assertion we note that for a.e. s 2 S and v 2 E we have

fCs (e; v) = supfhe�; vi : e� 2 @Cfs(e)g = supfhe�; vi : e� 2 @Df(e)g � fDs (e; v)

for e := x(s) and equality holds since fD(x(s); v) � fC(x(s); v). Thus, for all u 2 Lp(S;E) we have

I(fD � (x; u)) � (If )D(x; u) � (If )C(x; u) � I(fC � (x; u))

and fC � (x; u) = fD � (x; u) so that the preceding inequalities are equalities. �

Theorem 40 ([24]) Suppose E is �nite dimensional, Lp(S;E) is separable and the normal integrand f sat-
is�es condition (G) and is C-L regular along x 2 dom If : Then, If is C-L regular at x and

@CIf (x) = Lq(@Cf � x) = Lq(@Lf � x) = @LIf (x):

Proof. This follows from the inclusions @CIf (x) � Lq(@Cf � x) = Lq(@Lf � x) � @LIf (x) and @LIf (x) �
@CIf (x): �
An anonymous referee has kindly observed that the assumption that E is �nite dimensional can be replaced

with the assumption that E is a separable Banach space.
We arrive at a strong regularity property.

Theorem 41 Suppose the normal integrand f satis�es conditions (G) and (Dx) and is C-F regular along
x 2 dom If : Then If is C-F regular at x, hence C-D-I-F regular at x and

@CIf (x) = Lq(@Cf � x) = Lq(@F f � x) = @F If (x):

Proof. Under conditions (G) and (Dx), by Theorems 26 and 22 we have

@CIf (x) � Lq(@Cf � x) and Lq(@F f � x) � @F If (x):

When f is C-F regular along x, i.e. @Cf � x = @F f � x, we obtain @CIf (x) � @F If (x) and since the reverse
inclusion is always valid, we get the equalities of the statement. �
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9 Legendre functions and integral functionals

A kind of duality for nonconvex functions has been designed by Ekeland [13], [12] and adapted by the second
author to the use of subdi¤erentials [40], [39], [38]. It encompasses the Fenchel conjugacy. Since the preceding
gives some knowledge of the subdi¤erentials of integral functionals, it is natural to examine its application to
such a class of functionals. The case of functionals on Lp(S;E) with p > 1 di¤ers from the case of integral
functionals on L1(S;E) considered in [43]. In the latter case, any proper integral functional associated with
a normal integrand is an Ekeland function ([43, Thm 18]) in the sense of the following de�nition.

De�nition 42 Given a Banach space X; a function f : X ! R1 := R [ f1g is an Ekeland function with
respect to a subdi¤erential @, in short a @-Ekeland function, or just an Ekeland function, if for any x1; x2 2 X;
x� 2 X� satisfying x� 2 @f(x1) \ @f(x2) one has hx�; x1i � f(x1) = hx�; x2i � f(x2):
Then, the Ekeland transform of f is the function fE : X 0 ! R1 given by fE(x�) := hx�; xi � f(x) for

x 2 (@f)�1(x�) when x� 2 @f(X), fE(x�) = +1 for x� 2 X 0n@f(X):

De�nition 43 The function f is called a (generalized) Legendre function if f is an Ekeland function, if
g := fE is an Ekeland function, if gE = f and if x� 2 @f(x), x 2 @fE(x�):

Any closed proper convex function f is a Legendre function for any subdi¤erential @ such that @F f �
@f � @Cf . Any closed proper concave function f (in the sense that �f is closed proper convex) is a Legendre
function for @ 2 f@F ; @D; @Ig with fE(x�) = �(�f)�(�x�); the same is true for @C if f is a continuous concave
function. Any continuous quadratic function is an Ekeland function and it is a Legendre function when its
Hessian is surjective with a direct kernel. Of course, any classical Legendre function in the sense of [46] is a
Legendre function.
Moreover, if A : X ! Y is a surjective continuous linear map between Banach spaces, and if g : Y ! R1

is an Ekeland function, then f := g �A is an Ekeland function and fE = gE � (A|)�1 on @f(X) � A|(Y �) =
(kerA)?.
Let us examine the application of the preceding concepts to integral functionals. Here we use the coupling

between X := Lp(S;E) and X� := Lq(S;E
�) with p 2]1;1[, q := (1� 1=p)�1. We denote by fE the function

(s; e�) 7! (fs)
E(e�) when fs is an Ekeland function s a.e.

Theorem 44 The integral functional If associated with an integrand f such that for a.e. s 2 S the function
fs is an Ekeland function with respect to the incident subdi¤erential @I is an Ekeland function with respect to
@I and its Ekeland transform is the integral functional associated with the Ekeland transform of the integrand:

(If )
E(x�) = IfE (x

�) 8x� 2 Lq(S;E�):

A similar assertion holds for the circa-subdi¤erential @C provided f satis�es the growth condition (G).

Such a result can be seen as an extension of the pioneering studies of convex integral functionals made by
R.T. Rockafellar in [47], [48].
Proof. Given x� 2 Lq(S;E�) and x1; x2 2 Lp(S;E) such that x� 2 @IIf (x1) \ @IIf (x2); we know that

x�(s) 2 @Ifs(xi(s)) a.e. s 2 S for i = 1; 2. Then, since fs is an Ekeland function, we have

hx�(s); x1(s)i � fs(x1(s)) = hx�(s); x2(s)i � fs(x2(s)) a.e. s 2 S:

Taking the integrals of both sides we see that

hx�; x1i � If (x1) = hx�; x2i � If (x2):

This shows that If is an Ekeland function and that (If )E(x�) = Ig(x�); where g := fE : �

Theorem 45 Assume that E is re�exive, that for a.e. s 2 S the function fs is a @I-Legendre function,
g := fE being also a normal integrand, and that If and Ig are calm on their domains.
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(a) If for a.e. s 2 S the functions fs and gs := fEs are D-I regular along the elements of Lp(S;E) and
Lq(S;E

�) respectively, then If is a Legendre function for @D and @I and is D � I regular.
(b) If f and g are normal integrals satisfying condition (G) for p and q respectively and if (for a.e. s 2 S)

fs and gs are corresponding Legendre functions for @C that are D � C regular, and such that If and Ig are
calm on their domains, then If is a Legendre function for @C and @D and is C �D regular.

Proof. (a) Suppose that for a.e. s 2 S the function fs is D-I regular along the elements of Lp(S;E) and
is a Legendre function with respect to @I . Then, gs := fEs := (fs)

E is also a @I -Ekeland function, and by the
preceding, when g := fE is a normal integrand, (Ig)E = IgE = If is a @I -Ekeland function. Moreover, when
f is D-I regular along x and If is calm on its domain, one has

x 2 @IIg(x�)) x 2 Lp(@Ig � x�)) x� 2 Lq(@If � x) = Lq(@Df � x)
) x� 2 @DIf (x) � @IIf (x)

and @DIg(x�) � @IIg(x�). Exchanging the roles of f and g have

x� 2 @DIf (x)) x� 2 @IIf (x)) x� 2 Lq(@If � x)) x 2 Lp(@Ig � x�) = Lp(@Dg � x�)
) x 2 @DIg(x�) � @IIg(x);

so that these implications are equivalences and If is a Legendre function for @D and @I .
The proof with the circa-subdi¤erential is similar. �

Remark. In (a), instead of assuming that fs and gs are D � I regular, it su¢ ces to assume that x� 2
Lq(@If � x)) x 2 Lp(@Dg � x�) and x 2 Lp(@Ig � x�)) x� 2 Lq(@Df � x); but such an assumption is not as
natural as our assumptions. �
Remark. If in (a) one assumes that fs and gs are F � I regular and that for all x 2 Lp(S;E) (resp.
x� 2 Lq(S;E�)) condition (Dx) is satis�ed (resp. (Dx�), then If is a Legendre function for @F and is F � I
regular. �
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