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Distributionally Robust Expectation Inequalities for Structured
Distributions

Bart P.G. Van Parys · Paul J. Goulart · Manfred
Morari

Abstract Quantifying the risk of unfortunate events occurring, despite limited distributional information,
is a basic problem underlying many practical questions. Indeed, quantifying constraint violation probabil-
ities in distributionally robust programming or judging the risk of financial positions can both be seen to
involve risk quantification under distributional ambiguity. In this work we discuss worst-case probability and
conditional value-at-risk (CVaR) problems, where the distributional information is limited to second-order
moment information in conjunction with structural information such as unimodality and monotonicity of
the distributions involved. We indicate how exact and tractable convex reformulations can be obtained
using standard tools from Choquet and duality theory. We make our theoretical results concrete with a
stock portfolio pricing problem and an insurance risk aggregation example.

Keywords Optimal Inequalities, Extreme Distributions, Convex Optimisation, Choquet Representation,
CVaR

1 Introduction

In a wide range of applications, one is faced with the problem of quantifying the expected cost L(ξ) of a
random variable ξ with distribution P. Common problems include determining the expected profit of a stock
portfolio with uncertain stock returns [3,9], or quantifying the symbol error rate in a noisy communication
channel [26]. When the distribution P of the random vector ξ is known, computing EP {L(ξ)} typically
reduces to the evaluation of a (high-dimensional) integral. High-dimensional integration is in general a
computationally formidable task [11] in all but a few exceptional circumstances.

Furthermore, in practice it is often the case that the information available concerning the distribution P is
limited. This means that the distribution of ξ is ambiguous and only known to belong to some ambiguity
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set P containing all distributions consistent with the known partial information concerning P. We are thus
limited to providing an upper bound on the expected cost EP {L(ξ)} holding uniformly for all distributions
P in the ambiguity set P. Hence when faced with limited information on the distribution of ξ, the least
upper bound on the expected cost is supP∈P EP {L(ξ)}.

Unfortunately, such worst-case expectation bounds or inequalities are generally unavailable in closed form,
except in special cases where one can resort to classical bounds such as the Chebyshev or Gauss inequalities
[20]. On the other hand, tractable reformulations based on convex programming are known [26,28] for the
case where P consists of all distributions sharing a known mean and variance. Thanks to modern interior
point algorithms [13], these convex programming reformulations provide a de facto closed form solution
to the worst-case expectation problem. The resulting inequalities are widely used across many different
disciplines such as distributionally robust optimisation [4] and control [24, 25] or portfolio selection and
hedging [27,29].

The main downside of these inequalities stems from the fact that the ambiguity set P, consisting of all
distributions sharing a known mean and variance, contains distributions that are not realistic in many
applications and that consequently render the inequalities overly pessimistic. Indeed, the distributions
achieving the worst-case expectation bound generically have discrete support with a finite number of
discretisation points. Fortunately, recent work has demonstrated that this pessimism can be partially
mitigated by restricting the ambiguity set P to contain only distributions satisfying additional structural
requirements [17,23]. In this paper, we will therefore consider the following worst-case expectation problem
with second-order moment information:

Bwc (L,Ps, µ, S) := sup
P∈Ps

EP {L(ξ)}

s.t. P ∈ P(µ, S),
(Pwc)

where the ambiguity set P(µ, S) is defined as the collection of all distributions sharing a known mean and
variance P(µ, S) =

{
P ∈ Pn

∣∣ ∫ x P(dx) = µ,
∫
xx> P(dx) = S

}
. The set Ps will be used to characterize

any further structural information about the distributions P considered, e.g. symmetry, unimodality or
monotonicity. When Ps is taken to be the standard probability simplex Pn on (Rn,B(Rn)), then the worst-
case expectation problem reduces to the standard generalised moment problem discussed in [26, 28]. The
principal aim of this paper is to provide a unified approach to the situations under which problem (Pwc)
admits a tractable reformulation, specifically for those situations in which Ps is more richly structured.

1.1 Conditional value-at-risk

A closely related and popular alternative to the expected cost of L(ξ) is its expected shortfall or conditional
value-at-risk (CVaR).

Definition 1 (CVaR) For any measurable loss function L : Rn → R, probability distribution P and
tolerance ε ∈ (0, 1), the CVaR of the random loss L(ξ) at level ε with respect to P is defined as

P-CVaRε (L(ξ)) := inf
β∈R

{
β +

1

ε
EP

{
(L(ξ)− β)+

}}
. (1)

Rockafellar and Uryasev [18] have shown that the set of optimal solutions for β in (1) is a closed interval
whose left endpoint is given by the 1 − ε quantile of L(ξ). Moreover, it can be shown that if the random
loss L(ξ) follows a continuous distribution, then CVaR coincides with the conditional expectation of L(ξ)
above its 1− ε quantile. This observation originally motivated the term conditional value-at-risk.
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While CVaR is an interesting risk measure, it nevertheless still requires that the distribution of ξ be
known. As in the worst-case expectation problem, we therefore consider instead the following worst-case
CVaR problem:

BCVaR := sup
P∈Ps

P-CVaRε (L(ξ))

s.t. P ∈ P(µ, S).

However, from a computational point of view the CVaR problem can be reduced to a worst-case expectation
problem. Defining L(β,P) := β+ 1

εEP
{

(L(ξ)− β)+
}

and recalling the definition (1), our worst-case CVaR
problem becomes

BCVaR = sup
P∈P

inf
β
L(β,P) = inf

β
sup
P∈P

L(β,P)

= inf
β

{
β + sup

P∈P

1

ε
EP

{
(L(ξ)− β)+

}}
.

Since L(β,P) is convex in β and linear in P, the interchange of the supremum and infimum operations
is justified when the ambiguity set P = Ps ∩ P(µ, S) is weakly closed by virtue of a stochastic saddle
point theorem due to [22]. The worst-case expectation problem can now be seen to constitute an inner
problem in the worst-case CVaR problem. Since the optimal β? is known to lie in a closed interval [18] and
supP∈P L(β,P) is convex in β, computing a solution to the worst-case CVaR problem reduces to solving
a sequence of worst-case expectation problems. For instance, the golden section search can be used to
optimise supP∈P L(β,P) only requiring a polynomial number of evaluations supP∈P EP

{
(L(ξ)− β)+

}
[8].

Hence in what follows, we will deal with the more general worst-case expectation problem (Pwc) directly.

1.2 Outline of the paper

In Section 2, we describe the worst-case expectation bound Bwc (L,Pn, µ, S) over the standard simplex
Pn. We then show how the more general expectation bound Bwc (L,Ps, µ, S) over the restricted ambiguity
set Ps ⊆ Pn can be reduced to an equivalent expectation bound Bwc (Ls,Pn, µs, Ss) over the standard
simplex Pn using an integral or Choquet star representation of Ps. In Section 3, we show that two important
classes of structured distributions – namely unimodal and monotone distributions – admit such Choquet
star representations. In Section 4 we make the abstract results concrete for the case of unimodal and
monotone distributions, respectively, for both worst-case probability and expectation inequalities. Section
5 illustrates the results on an stock portfolio problem and an insurance risk aggregation problem.

The main results presented in this paper, from a practitioners point of view, are summarised in Table 1. We
will focus mainly on indicator functions of polytopic sets Ξ which arise in worst-case probability inequalities
and piecewise affine functions which arise when dealing with convex cost functions L : Rn → R+.

1.3 Notation

We denote by In the identity matrix in Rn×n and by Sn+ and Sn++ the sets of all positive semidefinite
and positive definite symmetric matrices in Rn×n, respectively. For any matrix A ∈ Rn×n we denote its
pseudo-inverse with A†. The beta function, or Euler integral of the first kind, B : R2

++ → R++ is defined
as the integral

B(u, v) :=

∫ 1

0

λu−1 · (1− λ)v−1 dλ.
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Bwc (L,Ps, µ, S) Probability inequalities Expectation inequalities

L(x) = 1Rn\Ξ(x) L(x) = maxi∈I a>i x− bi

Standard simplex Pn [26] or Example 1 [28] or Example 2

Choquet star simplex Section 2.3 Section 2.4

Unimodal Uα Cor. 1 or [23] Cor. 2

Monotone Mγ Cor. 3 Cor. 4

Table 1 Optimal inequalities described by problem (Pwc) and discussed in this paper.

The gamma function, or Euler integral of the second kind, Γ : R→ R is defined as the integral

Γ (t) :=

∫ ∞
0

λt−1 · e−λ dλ.

For any set S ⊆ Rn, we denote its associated indicator function by 1S : Rn → {0, 1}, where 1S(x) = 1 when
x ∈ S and zero otherwise. Similarly when 0 ∈ S, its associated Minkowski or gauge function is denoted by
κS : Rn → R+, where κS(x) := inf {λ > 0 | x ∈ λS } .

2 Expectation Inequalities for Structured Distributions

We will initially restrict our attention to problems with limited moment information only, absent any
additional special structure of the distributions P. In other words, we assume for the moment that the
ambiguity set Ps corresponds to the standard probability simplex Pn. Later on, we will then show how
worst-case expectation problems over more restrictive convex ambiguity sets Ps ⊆ Pn can be dealt with
indirectly as well via a transformation of the problem data.

2.1 The dual problem and known results

The problem (Pwc) is an infinite dimensional linear program (LP) over a convex set of distributions, and
can be dualized yielding a finite dimensional linear semi-infinite program

Bwc(L,Pn, µ, S) ≤

Bdwc(L,Pn, µ, S) := inf
(Y,y,y0)

Tr

{(
Y y

y> y0

)
·
(
S µ

µ> 1

)}
s.t. Y ∈ Sn, y ∈ Rn, y0 ∈ R

x>Y x+ 2x>y + y0 ≥ L(x), ∀x ∈ Rn.

(D)

Under standard and quite mild regularity assumptions such as Slater’s condition, i.e. int P(µ, S) 6= ∅ ⇐⇒[
S, µ;µ>, 1

]
∈ Sn+1

++ , strong duality Bwc(L,Pn, µ, S) = Bdwc(L,Pn, µ, S) holds [21]. We will refer to problem
Bwc(L,Pn, µ, S) as a worst-case expectation problem with second-order moment information.

Note that the final constraint in problem (D) is convex, since it represents an infinite collection of convex
constraints in the variables (Y, y, y0), parametrized by x. Whether the problem (D) can be solved conve-
niently or not is a separate matter, since it is not obvious for a general function L how to cleanly eliminate
the quantifier x in Rn.
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However, there are two important special cases in which problem (D) can be converted into a standard-form
semi-definite program (SDP). The first is when L is the indicator function of the intersection of polyhedral
or elliptical sets, in which case (D) was shown in [26] to be transformable to an SDP via application of the
S-procedure. The result is a method for easily computing a (tight) worst-case bound on the probability of
a random vector with known first and second moments falling outside of a convex set, which provides a
multi-dimensional analog of the Chebyshev inequality1.

The second is the case when L is a convex piecewise affine function with a finite number of pieces, in which
case it is again possible to convert the problem (D) to an SDP using the procedure described in [28]. As
in the previous case, the method described in [28] is applicable only to situations in which the first two
moments of the uncertainty are known, but the ambiguity set is otherwise unstructured.

2.2 Expectation inequalities over a Choquet simplex

We have thus far described expectation bounds Bwc(L,Pn, µ, S) over the standard probability simplex
Pn. The principle aim of this work, however, is to describe worst-case expectation problems over convex
ambiguity sets Ps ⊆ Pn. We will argue that the worst-case expectation problem Bwc(L,Pn, µ, S) is in
fact rich enough to handle worst-case expectation bounds over more restricted ambiguity sets Ps ⊆ Pn as
well. The main theoretical tool necessary to handle convex classes of probability distributions Ps is their
Choquet representation [17,23].

Definition 2 (Extreme distributions) A distribution P ∈ Ps is said to be an extreme point of a convex
ambiguity set Ps if it is not representable as a strict convex combination of two distinct distributions in
Ps. The set of all extreme points of Ps is denoted as exPs.

Definition 3 (Choquet representation) We say that an ambiguity set Ps admits a (unique) Choquet
representation if

∀P ∈ Ps, ∃(!)m̄ : P =

∫
Ps

Q m̄(dQ)

where m̄ : B(Ps) → [0, 1] is supported on exPs and is referred to as the mixture representation of P over
exPs.

The Choquet representation of a convex ambiguity set Ps will enable us to reduce the worst-case expectation
problem (Pwc) over the ambiguity set Ps to a related worst-case expectation problem over the standard
simplex Pn. The existence or otherwise of a Choquet representation for an ambiguity set Ps is the topic of
Choquet theory [16]. It can be shown that under the relatively mild assumption that exPs is metrisable,
convex and compact, such Choquet representations always exist. However, not all Choquet representable
sets have necessarily a compact set of extreme points. Indeed, in Section 3 we will encounter sets of
distributions with non-compact sets of extreme points which nevertheless admit a Choquet representation.
It should also be remarked that when Ps is finite dimensional, the preceding statement is closely related
to Minkowski’s theorem stating that a compact convex set is the closed convex hull of its extreme points;
see Figure 1.

In this paper, we will mainly encounter ambiguity sets Ps that enjoy the slightly stronger notion of Choquet
star representability.

1 Note that in the case of structured distributions, one can also derive a multidimensional analog to the Gauss inequality
as shown in [23]. In contrast to the present work, which operates on the dual problem (D), the bounds in [23] are produced
by operating directly on the primal problem (Pwc).
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P

ex

ey ez

Fig. 1 A simplicial ambiguity set Ps with extreme points exPs = {ex, ey , ez}. Every distribution P ∈ Ps has a unique
mixture representation over exPs. For the depicted distribution we have the representation in term of the extreme points
P = 1

2
ex + 1

4
ey + 1

4
ez .

R1
(a) Generating distribution T

x

(b) Radial distributions Tx

Fig. 2 Visual illustration of a Choquet star simplex. Consider the univariate distribution T which generates a family of
distributions {Tx | x ∈ Rn } as illustrated in the two figures above. The univariate distribution T dictates the shape of
Tx along any direction x in Rn. A convex set Ps is a Choquet star simplex if there exists a distribution T such that all
extreme distributions exPs = {Tx | x ∈ Rn } are generated by T .

Definition 4 (Choquet star representation) Suppose that T is a distribution on (R+,B(R+)), and
define a family of distributions Tx on (Rn,B(Rn)) such that, for every x ∈ Rn and every C ∈ B(Rn),

Tx(C) = T ({λ ≥ 0 | λx ∈ C }).

We say that the ambiguity set Ps admits a Choquet star representation if it admits a unique Choquet
representation over

exPs = {Tx | x ∈ Rn } . (2)

In this case we say that Ps is generated by T .

Observe that in Definition 4 each distribution Tx ∈ exPs is supported on the ray {λx | λ ≥ 0}. We will
refer to distributions with support on rays emanating from the origin as radial distributions. Some visual
insight to Definition 4 is given in Figure 2.
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From Definition 4 it is evident that if Ps admits a Choquet star representation, then it is isomorphic to the
standard probability simplex Pn. We might therefore also refer to a Choquet star representable set as a
Choquet star simplex. The extreme points of a Choquet star simplex Ps admit the spatial parametrization
(2), which enables us to specialise Definition 3 to

P ∈ Ps ⇐⇒ ∃!m̄ : P =

∫
exPs

Q m̄(dQ) ⇐⇒ ∃!m ∈ Pn : P =

∫
Rn

Tx m(dx). (3)

Observe that the mixture representation m̄ in Definition 3 is a distribution on the set of distributions Ps.
With (3) many subtle problems arising from the need to endow Ps with a σ-algebra in which exPs is
measurable are circumvented. Indeed, the mixture representations m in (3) are elements of the standard
probability simplex Pn. In the context of Choquet star simplices, we will refer to both m̄ and m as mixture
representations.

With this in mind, the power of Choquet star representable ambiguity sets becomes clear. We now show
that a Choquet star representation of Ps can be utilized to remodel a structured problem in the form (Pwc)
as an equivalent unstructured problem (i.e. one with ambiguity set Pn) via an appropriate transformation
of the loss function and moments.

Theorem 1 Assume that the ambiguity set Ps admits a Choquet star representation with generating dis-
tribution T , then

Bwc (L,Ps, µ, S) = Bwc (Ls,Pn, µs, Ss) (4)

for Ls(x) :=
∫∞
0
L(λx) T (dλ), Ss ·

∫∞
0
λ2 T (dλ) = S and µs ·

∫∞
0
λ T (dλ) = µ.

Proof Since the set Ps admits a Choquet star representation, we can optimize of the mixture representations
m instead of P. Indeed, using the reparametrization P =

∫
Rn Ty m(dy) we obtain

supP
∫
Rn L(x)P(dx) = supm

∫
Rn

[∫
Rn L(λ)Ty(dλ)

]
m(dy)

s.t. P ∈ Ps ∩ P(µ, S) s.t.
∫
Rn Ty m(dy) ∈ P(µ, S).

Indeed, we have that P =
∫
Rn Ty m(dy) ∈ Ps∩P(µ, S) is equivalent to

∫
Rn Ty m(dy) ∈ P(µ, S). Furthermore,

we have the identity∫
Rn

[x>, 1]> · [x>, 1] P(dx) =

∫
Rn

[∫
Rn

[x>, 1]> · [x>, 1] Ty(dx)

]
m(dy),

which equals using Fubini’s Theorem and the Choquet star property of Ty∫
Rn

[x>, 1]> · [x>, 1] P(dx) =

∫
Rn

(∫∞
0
λ2 T (dλ) y · y>

∫∞
0
λT (dλ) y∫∞

0
λT (dλ) y> 1

)
m(dy).

Hence P =
∫
Rn Ty m(dy) ∈ P(µ, S) is equivalent to m ∈ P(µs, Ss). We have lastly that the expecta-

tion EP {L(ξ)} for P =
∫
Rn Ty m(dy) equals the expectation Em {Ls(ξ)} where Ls(y) := ETy

{L(ξ)} =∫∞
0
L(λy) T (dλ) again using Fubini’s Theorem concluding the proof.

Hence a worst-case expectation problem over a Choquet star simplex Ps can be reduced to an equivalent
problem over the standard probability simplex Pn. Both worst-case expectation problems are related in
terms of their loss functions, since

Ls(x) = ETx
{L(ξ)} (5)

according to the result presented in Theorem 1.

In the remainder of this section, we will discuss the transformation, via Theorem 1, of two important
types of loss functions L. These include indicator functions L = 1Rn\Ξ of polytopic sets Ξ which arise in
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worst-case probability inequalities, and certain piecewise affine functions L = maxi∈I a
>
i x−bi which come

about when dealing with convex cost functions.

In section 4 we will then show how, for either type of loss function, the associated worst-case expectation
bound Bwc(Ls,Pn, µs, Ss) amounts to a tractable SDP when the ambiguity set describes the set of all
unimodal or monotone distributions.

2.3 Worst-case probability inequalities

We address first the problem of bounding the probability of the event ξ /∈ Ξ where Ξ is an open convex
polytope and P ∈ Ps is a structured ambiguity set with known mean µ and second moment S. In this case
we can use the standard identity between the probability of an event P(ξ /∈ Ξ) = EP

{
1Rn\Ξ(ξ)

}
and the

expectation of its indicator function to state supP∈Ps∩P(µ,S) P(ξ /∈ Ξ) = Bwc(1Rn\Ξ ,Ps, µ, S).

In what follows, we assume that the set 0 ∈ Ξ has a half-space representation in the form Ξ := {x ∈
Rn|a>i x < bi, ∀i ∈ I}. It can be seen that the associated indicator function can be represented as the
point-wise maximum of the indicator functions associated with the half-spaces from which the set Ξ is
composed, i.e.

L = max
i∈I

1a>i x≥bi
= 1Rn\Ξ . (6)

The next proposition shows how to transform, via (5), such an indicator function for radial extreme
distributions Ty into a loss function Ls for use in (4):

Proposition 1 If the set Ps admits a Choquet star representation with generating distribution T , then

Ls(y) = ETy

{
max
i∈I

1a>i x≥bi
(ξ)

}
= max

i∈I
T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi

(y).

Hence, we have according to Theorem 1 that the worst-case probability problem over Ps can be reduced
to an equivalent worst-case probability problem over the standard simplex Pn

sup
P∈Ps∩P(µ,S)

P(ξ /∈ Ξ) = Bwc

(
1Rn\Ξ ,Ps, µ, S

)
,

= Bwc

(
max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi

(y),Pn, µs, Ss
)
.

2.4 Worst-case expectation inequalities

As mentioned in Section 2, the worst-case expectation problem over the standard simplex with second-
moment information is tractable when the loss function L is in the form

L(x) = max
i∈I

a>i x− bi (7)

and thus convex. Because the set of all functions consisting of the point-wise maximum of affine functions
coincides with the class of lower semi-continuous (l.s.c.) convex functions [16, Chapter 3], the following fact
is of interest.
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Proposition 2 If the set Ps admits a Choquet star representation with generating distribution T and L is
convex then

Ls(x) = ETx
{L(ξ)} =

∫ ∞
0

L(λx) T (dλ)

is convex as well.

Despite the previous encouraging result, it is generally not the case that the function Ls can be represented
as the maximum of a finite number of affine functions when L is in the form (7). Indeed, Proposition 2
merely establishes that convexity is preserved, but does not otherwise address the structure of Ls.

Instead of considering convex piecewise linear loss functions L as done in (7), we focus our attention in
what follows on loss functions in the form

L(x) = (` ◦ κΞ) (x) (8)

where ` : R+ → R is a monotonically increasing function and 0 ∈ Ξ a convex set. Loss functions in the form
(8) arise in distributionally robust optimisation [28, 29] and control [24, 25] when bounding the expected
violation of a constraint ξ ∈ Ξ using

EP {(` ◦ κΞ)(ξ)} ≤ α, ∀P ∈ P

as L increases with decreasing proximity to the set Ξ. That is, L is increasing as x moves further away
from Ξ. Moreover, the loss function (8) generalises the loss function (6) for ` = 1t≥1. The next proposition
establishes that the structure of a loss function in the form (8) is preserved under the transformation (5)
when Tx are radial distributions.

Proposition 3 If the set Ps admits a Choquet star representation with generating distribution T and L is
in the form (8) with 0 ∈ Ξ =

{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

then

Ls(x) = ETx
{L(ξ)} = (`s ◦ κΞ)(x) = max

i∈I
`s(a

>
i x/bi),

with `s(t) :=
∫∞
0
`(λt) T (dλ).

Proof We have the following chain of equalities proving the claim

Ls(x) = ETx
{L(ξ)} =

∫ ∞
0

L(λx) T (dλ) =

∫ ∞
0

` (κΞ(λx)) T (dλ)

=

∫ ∞
0

` (λ · κΞ(x)) T (dλ)

where the last equality follows from the positive homogeneity of κΞ .

Hence, we have according to Theorem 1 that the worst-case expectation problem over Ps can be reduced
to an equivalent worst-case probability problem over the standard simplex Pn, i.e.

Bwc(` ◦ κΞ ,Ps, µ, S) = Bwc(max
i∈I

`s(a
>
i x/bi),Pn, µs, Ss).

In the next section we discuss specific ambiguity sets Ps that admit Choquet star representations, with a
focus on unimodal and monotone distributions. Both structural properties are shown to be closely related
and their corresponding ambiguity sets admit Choquet star representations. We will then be able to exploit
the particular structure of these ambiguity sets in combination with Propositions 1 and 3 to produce
tractable optimization problems in Section 4 for the computation of the worst-case bound (4) via the
solution of its dual.
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f

R

(a) 1-unimodal distribution

f

R

(b) 2-unimodal distribution

Fig. 3 Univariate α-unimodal probability distributions and their density functions.

3 Unimodal and monotone distributions

We next identify two important classes of distributions that are amenable to Choquet representation. These
include the family of unimodal (and more generally α-unimodal) distributions – which have previously been
employed to produce multi-dimensional generalizations to the Gauss and Chebyshev inequalities in [23] –
and the related (and more restrictive) class of monotone (and more generally γ-monotone) distributions.

3.1 Unimodal distributions and their Choquet representations

A minimal structural property commonly encountered in practical situations is unimodality. Informally,
a continuous probability distribution is unimodal if it has a centre m, referred to as the mode, such that
the probability density function is non-increasing with increasing distance from the mode. Note that most
distributions commonly studied in probability theory are unimodal.

In the remainder we adopt the following standard definition of unimodality; see e.g. Dharmadhikari and
Joag-Dev [5].

Definition 5 (α-Unimodal distributions) For any fixed α ∈ R+, a distribution P ∈ Pn is called α-
unimodal with mode 0 if tαP(B/t) is non-decreasing in t ∈ (0,∞) for every Borel set B ∈ B(Rn). The set
of all α-unimodal distributions with mode 0 is denoted as Uα.

To develop an intuitive understanding of Definition 5, it is instructive to study the special case of continuous
distributions. The density function of a continuous α-unimodal distribution may increase along rays, but
the rate of increase is controlled by the parameter α. We have that a distribution P ∈ Pn with a continuous
density function f(x) is α-unimodal about 0 if and only if tn−αf(tx) is non-increasing in t ∈ (0,∞) for every
fixed x 6= 0. This implies that if an α-unimodal distribution on Rn has a continuous density function f(x),
then f(x) does not grow faster than ‖x‖α−n. In particular, for α = n the density is non-increasing along
rays emanating from the origin. In this case, the notion of α-unimodality coincides with star unimodality [5].
Hence α can be seen as a characterization of the degree of unimodality of a distribution; see Figure 3.

Definition 6 (Radial α-unimodal Distributions) For any α > 0 and x ∈ Rn we denote by uαx the
radial distribution supported on the line segment [0, x] ⊂ Rn with the property that

uαx ([0, tx]) = α

∫ t

0

λα−1 dλ ∀t ∈ [0, 1].



Distributionally Robust Expectation Inequalities for Structured Distributions 11

The importance of the radial distributions uαx is highlighted in the following theorem, stating that the set
of radial unimodal distributions are the extreme points of the ambiguity set Uα:

Theorem 2 ([5]) The set Uα admits a Choquet star representation of the form

∀P ∈ Uα, ∃!m ∈ Pn : P(·) =

∫
Rn

uαx (·) m(dx)

for the generating distribution T ([0, t]) = α
∫ t
0
λα−1 dλ, ∀t ∈ [0, 1].

Theorem 2 asserts that every α-unimodal distribution admits a unique Choquet star representation in terms
of the extreme radial distributions uαx . Thus, Uα is a Choquet simplex over the set of radial α-unimodal
distributions.

The ambiguity sets Uα enjoy the nesting property Uα ⊆ Uβ whenever α ≤ β. It easy to verify that the
radial distribution uαx converges weakly to the Dirac distribution δx as α tends to infinity. This allows us to
conclude that the weak closure of ∪α≥0 Uα coincides with the standard simplex Pn. Hence, the standard
simplex Pn is included as the limit of the hierarchy of α-unimodal ambiguity sets Uα for α tending to
infinity.

3.2 Monotone distributions and their Choquet representations

A structural property which is closely related to unimodality is monotonicity. Where unimodality requires
intuitively that the density function of a continuous distribution should be decreasing with increasing dis-
tance from the mode, monotonicity additionally requires that this decrease is smooth. Indeed, monotonicity
is often used in mathematics to model the notion of smoothness of a distribution [15].

In the remainder we adopt the following standard definitions of monotonicity [15] of distributions, which
are inspired on the notion of monotone functions.

Definition 7 (γ-monotone functions) A univariate function f : R+ → R is denoted as γ-monotone if
it is γ times differentiable and

(−1)kf (k)(t) ≥ 0, ∀t > 0, k ∈ {0, . . . , γ}.

Definition 8 (γ-Monotone distributions2) For any 1 ≤ γ ∈ N, a distribution P is called γ-monotone
with mode 0 if tγ+n−1P(B/t) is γ-monotone in t ∈ (0,∞) for every Borel set B ∈ B(Rn). The set of all
γ-monotone distributions with mode 0 is denoted as Mγ .

Again, it is instructive to consider the case of continuous distributions. We have that a continuous dis-
tribution P is γ-monotone if and only if its density function f(tx) is γ-monotone in t ∈ (0,∞) for every
fixed x [2]. This means that if a γ-monotone distribution P admits a continuous density f , then f is γ-
monotone along rays emanating from the mode. Hence γ can be seen as a characterization of how smooth
the distribution is, see also Figure 4.

Definition 9 (Radial γ-monotone distributions) For any γ ∈ N0 and x ∈ Rn we denote by mγ
x the

radial distribution supported on the line segment [0, x] ⊂ Rn with the property that

mγ
x ([0, tx]) =

1

B(n, γ)
·
∫ t

0

λn−1 · (1− λ)γ−1 dλ ∀t ∈ [0, 1].

2 The class of γ-monotone distributions defined here can be identified with the class of (n, γ)-unimodal distributions
discussed in [2, Theorem 3.1.14].
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f

R

(a) 1-monotone distribution

f

R

(b) 2-monotone distribution

Fig. 4 Univariate γ-monotone probability distributions and their density functions.

The importance of the radial distributions mγ
x is highlighted in the following theorem, stating that the set

of radial monotone distributions are the extreme points of Mγ .

Theorem 3 ([2]) The set Mγ admits a Choquet star representation of the form

∀P ∈Mγ , ∃!m ∈ Pn : P(·) =

∫
Rn

mγ
x(·) m(dx)

for the generating distribution T ([0, t]) = B−1(n, γ) ·
∫ t
0
λn−1 · (1− λ)γ−1 dλ, ∀t ∈ [0, 1].

Theorem 3 asserts that every γ-monotone distribution admits a unique Choquet star representation in term
of the extreme radial monotone distributions mγ

x. Thus, Mγ is a Choquet simplex over the set of radial
γ-monotone distributions.

The ambiguity setsMγ enjoy the nesting propertyMδ ⊆Mγ whenever γ ≤ δ. Historically, a distribution
in ∩γ∈N0Mγ has been denoted as a completely monotone distribution [1]. It easy to verify that the sequence
mγ
xγ of radial monotone distributions converges weakly when γ tends to infinity to a radial distribution

mx supported on the ray {λx | λ ∈ R+ } with the property

mx ([0, tx]) =
1

Γ (n)

∫ t

0

λn−1e−λ dλ ∀t ∈ [0,∞).

In the light of this observation, Theorem 3 reduces in the case of univariate completely monotone distri-
butions to Bernstein’s representation theorem [1]. We remark here thatM∞ is a closed and convex subset
of Pn as it is the intersection of a collection of closed sets. At the other end of the extreme, we have that
the set of all 1-monotone distributions M1 coincides with the set of star unimodal distributions Un.

4 Structured expectation inequalities as semidefinite programs

Having identified two classes of structured distributions amenable to Choquet representation, we are now
free in principle to apply our approach to solving the dual problem (D). Specifically, given the generating
distributions T identified in either Theorem 2 (for unimodal distributions) or Theorem 3 (for monotone
distributions) and either an indicator or convex piecewise affine (PWA) function L, we can apply the
appropriate transformations from Section 2.2 to transform (L, S, µ) 7→ (Ls, Ss, µs) and then solve the dual
problem (D) with this new data.

However, as a practical matter this remains problematic, since our transformed function Ls will be neither
an indicator function nor PWA. In order to circumvent this difficulty we require the following result, which
transforms the semi-infinite constraints over Rn in the dual problem (D) to an equivalent semi-infinite
constraint over Rd.
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Theorem 4 The worst-case expectation problem with second-order moment information (D) can be refor-
mulated as Bdwc (maxi∈I fi(Aix),Pn, µ, S) =

inf Tr

{(
Y y

y> y0

)
·
(
S µ

µ> 1

)}
s.t.

(
Y y

y> y0

)
∈ Sn+1

+ ,

(
T1,i T2,i

T>2,i T3,i

)
∈ Sd+1

+ , Λ1,i ∈ Rd×d, Λ2,i ∈ RdΛ1,i + Λ>1,i − T1,i Λ2,i − T2,i −Λ>1,iAi
Λ>2,i − T>2,i y0 − T3,i y> − Λ>2,iAi
−A>i Λ1,i y −A>i Λ2,i Y

 � 0, ∀i ∈ I


(C1)

T3,i + 2q>T2,i + q>T1,iq ≥ fi(q), ∀q ∈ Rd, ∀i ∈ I (C2)

Proof The constraint in the dual problem (D) can be reformulated as

∀i ∈ I, ∀q ∈ Rd : inf
Aix=q

x>Y x+ 2x>y + y0 ≥ fi(q).

As we assume throughout that maxi∈I fi(Aix) ≥ 0, it must hence follow that Y is positive semidefinite
and x>Y x+ 2x>y is bounded from below. The claim now follows immediately from Theorem 5 applied to
the parametric optimization problem infAix=q x>Y x+ 2x>y + y0.

Note that this reformulation of the standard dual problem (D) into the more unconventional form in
Theorem 4 is motivated by a desire to replace the semi-infinite constraint over Rn with one over Rd. Hence
when d � n, the reformulation offered by Theorem 4 is preferable to the standard dual (D). It is well
known that the semi-infinite constraint in Rd of Theorem 4 for piece-wise polynomial fi admits a tractable
reformulation in the univariate case when d = 1, or when the functions fi are quadratically representable.
In particular, when the functions fi are univariate piecewise polynomial, the semi-infinite constraints in
Theorem 4 are known to admit tractable linear matrix inequality (LMI) reformulations based on exact
sum-of-squares (SOS) representations [12].

4.1 Unstructured distributions

Before considering the structured classes of distributions identified in Section 3, it is instructive to apply
Theorem 4 to the unstructured case Ps = Pn, and restate two well-known results for problems with
univariate fi in terms of Theorem 4.

When the functions fi = 1a>i x≥bi
are indicator functions, problem Bwc(maxi∈I fi,Pn, µ, S) describes the

worst-case probability of ξ /∈ Ξ =
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

as found in [26]:

Example 1 (Vandenberghe et al. [26]) Suppose that Ξ =
{
x ∈ Rn

∣∣ a>i x < bi, ∀i ∈ I
}

and define a loss
function L = 1Rn\Ξ . Then the worst-case probability problem for the event ξ /∈ Ξ can be modelled as in
Theorem 4. The constraint (C2) becomes

T3,i − 1 + 2q>T2,i + q>T1,iq ≥ 0, ∀q ≥ bi, ∀i ∈ I,

which can be rewritten using a LMI representation. The worst-case probability problem is therefore equiv-
alent to an SDP, i.e.

Bwc(L,Pn, µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1),

∃τi ∈ R+,

(
T1,i T2,i

T2,i T3,i − 1

)
� τi

(
0 1
1 −2bi

)
, ∀i ∈ I,
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whenever the feasible set of distributions P(µ, S) satisfies the Slater condition int P(µ, S) 6= ∅ ⇐⇒ S �
µµ>.

Similarly, for affine functions fi, problem Bwc(maxi∈I fi,Pn, µ, S) quantifies the worst-case expectation
problem for convex piecewise affine loss functions, as can be found in [28]:

Example 2 (Zymler et al. [28]) For a piecewise affine loss function L(x) = maxi∈I a>i x− bi, the constraint
(C2) in Theorem 4 becomes

T3,i + 2q>T2,i + q>T1,iq ≥ q − bi, ∀q ∈ R, ∀i ∈ I,

which can be rewritten using an LMI representation. The worst-case expectation problem for the piece-wise
affine loss function L is therefore equivalent to an SDP, i.e.

Bwc(L,Pn, µ, S) = inf Tr {Y S}+ 2y>µ+ y0

s.t. (C1),(
T1,i T2,i − 1

2

T2,i − 1
2 T3,i + bi

)
� 0, ∀i ∈ I,

whenever the feasible set of distributions P(µ, S) satisfies the Slater condition int P(µ, S) 6= ∅ ⇐⇒ S �
µµ>.

4.2 Unimodal distributions

We can now make the abstract result of Theorem 1 concrete and explicitly state SDP reformulations of
a worst-case probability problem for a polytopic set Ξ and a worst-case expectation problem for a loss
function L(x) = (κΞ(x)− 1)+ for the case of unimodal ambiguity sets.

Specifically, our method is as follows: Theorem 2 provides us with the appropriate generating distribution T
for α-unimodal distributions. We then use this generating distribution to transform (L, µ, S) 7→ (Ls, µα, µα)
via Theorem 1, where the mapping L 7→ Ls in particular is supplied by either Proposition 1 or Proposition 3.
This produces a transformed loss function in the form Ls(x) = maxi fi(Aix) for some univariate functions
fi. Finally, we apply Theorem 4 and identify the appropriate expression for the constraint C2 for our
particular functions fi.

Corollary 1 (α-Unimodal probability inequalities) For any rational 0 ≤ α = v
w , with (v, w) ∈ N

and 0 ∈ Ξ we have the equality Bwc(1Rn\Ξ ,Uα, µ, S) =

inf Tr

{(
Y y

y> y0

)
·
(
Sα µα
µ>α 1

)}
s.t. (C1),

q2w+vb2iT1,i + 2qw+vbiT2,i + qv(T3,i − 1) + 1 ≥ 0, ∀q ≥ 0

whenever the feasible set of distributions P(µ, S) ∩ Uα satisfies the Slater condition int P(µ, S) ∩ Uα 6=
∅ ⇐⇒ Sα � µαµ>α with Sα = α+2

α S and µα = α+1
α µ.

We remark here that Corollary 1 generalizes the results presented in [23] as it no longer matters that α ≥ 1.
However where the result in [23] follows from a direct reformulation of the primal problem (Pwc), the result
in corollary 1 hinges on the Slater condition Sα � µαµ

>
α . The proofs of the corollaries presented in this

section are deferred to Appendix B.
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Corollary 2 (α-Unimodal expectation inequalities) For any rational 0 ≤ α = v
w ∈ Q, with v, w ∈ N,

we have the equality Bwc(max{0, κΞ(x)− 1},Uα, µ, S) =

inf Tr

{(
Y y

y> y0

)
·
(
Sα µα
µ>α 1

)}
s.t. (C1),

q2w+v b2iT1,i + qw+v

(
2biT2,i −

α

α+ 1

)
+ qv (1 + T3,i)−

1

α+ 1
≥ 0, ∀q ≥ 1

whenever the feasible set of distributions P(µ, S) ∩ Uα satisfies the Slater condition int P(µ, S) ∩ Uα 6=
∅ ⇐⇒ Sα � µαµ>α with Sα = α+2

α S and µα = α+1
α µ.

4.3 Monotone distributions

We now can also make the abstract results of Theorem 1 concrete and explicitly state the SDP reformula-
tions of a worst-case probability problem for a polytopic set Ξ and a worst-case expectation problem for
a loss function L(x) = (κΞ(x)− 1)+ for the case of monotone ambiguity sets. Our approach is identical to
that in Section 4.2, except that we now look to Theorem 3 to provides us with the appropriate generating
distribution T for γ-monotone distributions.

Corollary 3 (γ-Monotone probability inequalities) For any integer γ ≥ 1 we have the equality
Bwc(1Rn\Ξ ,Mγ , µ, S) =

inf Tr

{(
Y y

y> y0

)
·
(
Sγ µγ
µ>γ 1

)}
s.t. (C1),

T1,ib
2
i q
n+γ+1 + 2biT2,iq

n+γ+ (T3,i − 1) qn+γ−1+

1

B(n, γ)

γ−1∑
k=0

(−1)k

n+ k

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

whenever the feasible set of distributions P(µ, S) ∩Mγ satisfies the Slater condition int P(µ, S) ∩Mγ 6=
∅ ⇐⇒ Sγ � µγµ>γ with Sγ = n+γ

n
n+γ+1
n+1 S and µγ = n+γ

n µ.

Corollary 4 (γ-Monotone expectation inequalities) For any integer γ ≥ 1 we have the equality
Bwc(max{0, κΞ(x)− 1},Mγ , µ, S) =

inf Tr

{(
Y y

y> y0

)
·
(
Sγ µγ
µ>γ 1

)}
s.t. (C1),

T1,ib
2
i q
n+γ+1 +

(
2biT2,i −

n

n+ γ

)
qn+γ + (T3,i + 1) qn+γ−1−

1

B(n, γ)

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(
γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ 1

whenever the feasible set of distributions P(µ, S) ∩Mγ satisfies the Slater condition int P(µ, S) ∩Mγ 6=
∅ ⇐⇒ Sγ � µγµ>γ with Sγ = n+γ

n
n+γ+1
n+1 S and µγ = n+γ

n µ.
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As mentioned in the beginning of this section, the polynomial inequalities appearing in Corollaries 1 to 4
admit exact SDP representations [12]. Standard software tools, such as YALMIP [10], are available which
implement this transformation automatically. We do not state the resulting SDP constraints explicitly as
they offer no further insight and would only clutter the statement of previous corollaries further.

5 Numerical examples

We illustrate the optimal inequalities presented in this paper by bounding the value of European stock
portfolios [3] and by computing worst-case bounds when aggregating random variables with known marginal
information [6]. The resulting SDP problems are implemented in Matlab using the interface YALMIP, and
solved numerically using SDPT3.

5.1 Optimal pricing of stock portfolios

In this example we are interested in finding an upper bound on the price of a European stock option [3]
with random pay-off

Φ(ξ) := max{0, a>ξ − k} = k (κΞ(ξ)− 1)+ ,

for Ξ =
{
x ∈ Rn

∣∣ a>x ≤ k}. This option allows its holder to buy a portfolio a ∈ Rn of stocks at a price
k ∈ R+ at maturity. The payoff Φ is hence positive if the uncertain value ξ ∈ Rn of the stocks at maturity
in the portfolio a ∈ Rn exceeds the negotiated price k ∈ R+. If the price of portfolio of stocks a>ξ in the
market at maturity is less then k, then the holder will not exercise his right to buy the stock portfolio at
price k.

When we denote with P? the distribution of ξ, then for the issuer of the option it is of interest to know

p := sup
P∈P

EP {Φ(ξ)}

for P a set of distributions for which the option issuer is convinced that P? ∈ P. Indeed, the issuer would
like to demand a price of the stock option buyer which exceeds p, as in this case he or she is convinced
that on average a profit is made.

In the remainder of this section, we assume that our portfolio ξ = (ξ
IBMTM , ξAPPLETM) consists of a = (1, 1)>

an equal part of IBMTM and APPLETM stocks. The stock holder is convinced that the distribution of ξ
satisfies

P
? ∈ P

(
µ :=

(
164
114

)
, S :=

(
30 5
5 70

)
+

(
164
114

)(
164
114

)>)
for a strike price at maturity k = 280. This situation is sketched in Figure 5(a). The red ellipsoid represents
the stock return ambiguity via the set

{
x
∣∣ 1

2 (x− µ)>Σ−1(x− µ) ≤ 1
2

}
where S = Σ + µµ>. The stock

holder is also convinced that the distribution of ξ should be well-behaved and has a mode which coincides
with its mean. In Figure 5(b), the optimal price p is given when the stock holder believes that either
P? ∈ Mγ or P? ∈ Uα in function of γ ∈ {1, . . . , 9} and α ∈ {2, . . . , 10}. Stock returns and losses are
more often small rather than large which justifies this believe. For good reference we also give the price
EP? {Φ(ξ)} when P? corresponds to the normal distribution N(µ,Σ) computed via Monte Carlo simulation.
As remarked before, the bounds converge to either the bounds for arbitrary distributions when α → ∞
or completely monotone distributions in case γ → ∞. Both these asymptotic bounds are visualized as
dotted lines in the appropriate color. While these worst-case prices are conservative when compared to a
particular price for normally distributed returns, they are tight in the worst-case with respect to the sets
of α-unimodal or γ-monotone return distributions.



Distributionally Robust Expectation Inequalities for Structured Distributions 17

156 158 160 162 164 166 168 170

106

108

110

112

114

116

118

120
a>ξ = k

ξIBM

ξ A
P
P
L

(a)

1 2 3 4 5 6 7 8 9

3.2

3.4

3.6

3.8

4

4.2

4.4

α− 1, γ

pr
ic

e

α-Unimodal
γ-Monotone

Normal

(b)

Fig. 5 Optimal pricing of a portfolio containing an equal amount of IBMTM and APPLETM stocks. Figure 5(a) indicates
the distribution of (ξ

IBMTM , ξAPPLETM ) visually. The blue line indicates realizations beyond which a profit is made. Note
that the prices in Figure 5(b) coincide for α = n = 2 and γ = 1 as the set of 1-monotone distributions M1 coincides with
Un.

5.2 Factor models in insurance

Insurance companies most commonly model the size of claims ξi incurred as a result of different types of
insurance policies separately from another [6]. The claims ξi factor the total claim

Sd :=
∑d
i=1 ξi

as a sum of d separate claims ξi without a specified dependence structure. The problem of quantifying
a certain statistic of L(Sd) for a given loss function L based on (partial) marginal information of the
distributions of the factors ξi is known as a Fréchet problem [19].

We consider a portfolio containing four types of insurance policies, i.e. car, life, fire and medical insurances.
We will assume that only information on the means µi := EP {ξi} and second moments s2i := EP

{
ξ2i
}

of the size of the corresponding insurance claims are given. Suppose we are interested in large aggregate
claims Sd occurring with probability at most α = 5%, where that part of the claim Sd exceeding the
threshold k = 150.000 CHF is covered by a reinsurer. In what follows we therefore consider the problem of
quantifying the least upper bound on the conditional value at risk CVaRα (L(Sd)), where

L(Sd) = min (max (Sd, 0) , k)

using only the marginal means µi and second moments s2i as given in Table 2. The expected aggregate claim
above the 5th percentile, i.e. CVaRα (L(Sd)), can using Monte-Carlo simulation be determined to equal
60, 811 CHF in case the individual claims ξi are independent and log-normally distributed. It would be
interesting to know how much this particular expected aggregate claim depends on the assumed indepen-
dence and the specific distribution of the individual claims by comparing the previous expected aggregate
claim to the worst-case CVaR bound assuming only the marginal moments and unimodality.

It will be assumed that the joint probability distribution P of (ξ1, . . . , ξ4) is star unimodal around the
same mode as the discussed log-normal distribution. The corresponding worst-case CVaR problem can be
reduced to a worst-case expectation problem as indicated in Section 1.1 using the golden search method for
the outer minimization problem over β ∈ [0, k]. The corresponding transformed loss function Ls according
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CHF Average µi Standard deviation σi

Car insurance 15.000 2.000

Life insurance 7.000 1.000

Fire insurance 3.000 5.000

Medical insurance 20.000 2.000

Table 2 Marginal means and standard deviations of the size of the claims incurred by the four types of insurance policies
in the portfolio.

to Theorem 1 is given in Appendix C. The worst-case excepted aggregate claim above the 5th percentile,
i.e. CVaRα (L(Sd)), using marginal moments and unimodal structural information was numerically de-
termined to be 89, 135 CHF in approximately 15 seconds using Matlab on a PC3 operated by Debian

GNU/Linux 7 (wheezy). Although more conservative than the previously stated expected aggregate claim
when assuming independent log-normal individual claims, this worst-case bound is able to exploit the uni-
modal distributional information optimally. Indeed, merely using the moment information and neglecting
all distributional structure results in a worst-case bound of 102, 275 CHF on the aggregate claim.

6 Conclusion

This paper provides a new perspective on the computational solution of worst-case expectation problems
for convex classes of distributions with second-order moment information. We show that worst-case ex-
pectation inequalities over a Choquet simplex can in several interesting cases be reduced to worst-case
expectation inequalities over the standard probability simplex. We focus in particular on the set of all uni-
modal distributions and the set of all monotone distributions. We illustrate the power of this perspective by
pointing out that all known previous results concerning worst-case probability bounds with second-order
moment information can be reduced to special cases of the results stated in this work. Moreover, we present
how our results can be used to compute optimal bounds on the worst-case expectation and CVaR of cer-
tain loss functions when the true but unknown distribution is known to be either unimodal or monotone.
We illustrate our methods by considering an option pricing problem for European stock options and an
insurance risk aggregation problem with marginal information.

A Equality constrained quadratic programs (QPs).

We will state here a relevant result concerning equality constrained QPs used throughout the rest of this paper. Assume
we define a function I : Rd → R as follows

I(b) := min
x∈Rn

x>Gx+ 2x>c+ y

s.t. Ax = b,

with A ∈ Rd×n having full row rank and G positive semidefinite. It is assumed that the function x>Gx+ 2x>c in bounded
from below such that I(b) > ∞. We can now represent the quadratic function I using a dual representation as indicated
in the following theorem.

Theorem 5 (Parametric representation of I) The function I is lower bounded by

I(b) ≥ b>T1b+ 2b>T2 + T3 (9)

3 An Intel(R) Core(TM) Xeon(R) CPU E5540 @ 2.53GHz machine.
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for all T1 ∈ Sd, T2 ∈ Rd and T3 ∈ R such that there exist Λ1 ∈ Rd×d, Λ2 ∈ Rd withΛ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A
Λ>2 − T>2 y − T3 c> − Λ>2 A
−A>Λ1 c−A>Λ2 G

 � 0. (10)

Moreover, inequality (9) is tight uniformly in b ∈ Rd for some T1, T2 and T3 satisfying condition (10).

Proof The Lagrangian of the optimization problem defining I(b) is given as

L(x, λ) := x>Gx+ 2x>
(
c+A>λ

)
− 2λ>b+ y.

As x>Gx + 2x>c is bounded from below on Rn, we have that for all b ∈ Rd there exists a minimizer x? such that
I(b) = (x?)>Gx? + 2(x?)>c+ y and Ax? = b. From the first order optimality conditions for convex QPs [14, Lemma 16.1],
we have that minx maxλ L(x, λ) = L(x?, λ?) = maxλ minx L(x, λ) where the saddle point (x?, λ?) is any solution of the
linear system (

G A>

A 0

)(
x?

λ?

)
=

(
−c
b

)
. (11)

The quadratic optimization problem maxx L(x, λ?) admits a maximizer if and only if (c+A>λ?) is in the range of G. It
must thus hold that (

Id −GG†
)(
c+A>λ?

)
= 0. (12)

Hence when dualizing the problem defining I(b), we get its dual representation I(b) = maxλ −
(
c+A>λ

)>
G†
(
c+A>λ

)
−

2λ>b+y. From equation (11) it follows that λ? is any solution of the linear equation b+AG†A>λ?+AG†c = 0. Therefore
there exists an affine λ?(b) = −Λ?1b− Λ?2 with Λ?1 ∈ Rd×d and Λ?2 ∈ Rd such that

I(b) = −
(
c−A>Λ?1b−A>Λ?2

)>
G†
(
c−A>Λ?1b−A>Λ?2

)
+ 2b>Λ?1

>b+ 2Λ?2
>b+ y. (13)

From equation (12) it follows that for all b in Rd it holds that
(
Id −GG†

) (
c−A>Λ?1b−A>Λ?2

)
= 0. We must hence also

have that (
Id −GG†

)(
−A>Λ?1, c−A>Λ?2

)
= 0. (14)

The dual reprenstation of I(b) guarantees that for all λ(b) = −Λ1b− Λ2 with Λ1 ∈ Rd×d and Λ2 ∈ Rd

I(b) ≥ −
(
c−A>Λ1b−A>Λ2

)>
G†
(
c−A>Λ1b−A>Λ2

)
+ 2b>Λ>1 b+ 2Λ>2 b

Lower bounding the right hand side of the previous inequality with b>T1b+ 2T>2 b+ T3 yields I(b) ≥ b>T1b+ 2T>2 b+ T3

if for all b in Rd it holds that(
b
1

)> [(
Λ1 + Λ>1 − T1 Λ2 − T2

Λ>2 − T>2 y − T3

)
−
(
−Λ>1 A

c> − Λ>2 A

)
G†
(
−A>Λ1 c−A>Λ2

)](b
1

)
≥ 0

and (
Id −GG†

)(
−A>Λ1, c−A>Λ2

)
= 0.

After a Schur complement [7, Thm 4.3], we obtain the first part of the theorem

∃Λ1, Λ2 :

Λ1 + Λ>1 − T1 Λ2 − T2 −Λ>1 A
Λ>2 − T>2 y − T3 c> − Λ>2 A
−A>Λ1 c−A>Λ2 G

 � 0 =⇒ I(b) ≥ b>T1b+ 2T>2 b+ T3.

As I(b) is a quadratic function there exist T ?1 , T ?2 and T ?3 such that I(b) = b>T ?1 b+ 2T ?2
>b+ T ?3 . The equations (13) and

(14) guarantee [7, Thm 4.3] that Λ?1 + Λ?1
> − T ?1 Λ?2 − T ?2 −Λ?1

>A
Λ?2
> − T ?2

> y − T ?3 c> − Λ?2
>A

−A>Λ?1 c−A>Λ?2 G

 � 0

completing the proof.
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B Proofs

Proposition 2:

Proof The statement can be proved almost immediately from the definition of convexity. For all θ ∈ [0, 1]

Ls(θa+ (1− θ)b) =

∫ ∞
0

L(λ(θa+ (1− θ)b)) T (dλ)

=

∫ ∞
0

L(θ(λa) + (1− θ)(λb)) T (dλ)

≤
∫ ∞
0

θL(λa) + (1− θ)L(λb) T (dλ)

= θLs(a) + (1− θ)Ls(b)

showing convexity of Ls.

Corollary 1:

From Theorem 2, we have that the generating distribution T for α-unimodal ambiguity sets satisfies

T ([0, t]) = α

∫ t

0
λα−1 dλ, ∀t ∈ [0, 1].

The moment transformations from Theorem 1 become

µα :=

[∫ ∞
0

λT (dλ)

]-1
µ =

[
α

∫ 1

0
λα(dλ)

]-1
µ =

α+ 1

α
µ

Sα :=

[∫ ∞
0

λ2 T (dλ)

]-1
S =

[
α

∫ 1

0
λα+1(dλ)

]-1
S =

α+ 2

α
S.

From Proposition 1, the transformed loss function Ls required in Theorem 1 can be found as

Ls(y) = max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi (y)

=: max
i∈I

fi(a
>
i y),

where

fi(q) =

α
∫ 1

bi/q
λα−1 dλ, q ≥ bi,

0 otherwise.

In order to apply Theorem 4, we now need only reformulate the semi-infinite constraint (C2), i.e. the constraint

T3,i + 2qT2,i + q2T1,i ≥ fi(q) ∀q ∈ R, ∀i ∈ I.

Because 0 ∈ Ξ and hence bi > 0, we have equivalently, for each i ∈ I, and for all q ∈ R+

T3,i + 2qT2,i + q2T1,i ≥

{
1− (bi/q)

α q ≥ bi,
0 otherwise.

which can be seen to reduce to

T3,i + 2qT2,i + q2T1,i ≥ 1−
bαi
qα
, ∀q ≥ 0.

Defining a new scalar variable q̃ and applying the variable substitution q̃w = q, this can be rewritten as

q̃2w+vT1,i + 2q̃w+vT2,i + q̃v(T3,i − 1) + bαi ≥ 0, ∀q̃ ≥ 0

after multiplying both sides with q̃v > 0. The final result is obtained after the substitution b
1/w
i q̄ = q̃.
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Corollary 2: The method of proof follows that of Corollary 1, except that we now apply Proposition 3 to generate the
transformed loss function Ls.

In this case the loss function L is equivalent to L = ` ◦ κΞ with `(t) = max{0, t − 1}. Recalling from Theorem 2 the
generating distribution T for α-unimodal distributions, we set

`s(t) =

∫ ∞
0

`(λt)T (dλ)

= α

∫ 1

0
max{0, (λt− 1)}λα−1dλ,

which is zero for any t ≤ 1. For t ≥ 1, we can evaluate the integral to get

∀t ≥ 1 : `s(t) = α

∫ 1

1/t
(tλα − λα−1)dλ

=
α

α+ 1
t− 1 +

1

α+ 1

(
1

t

)α
and then set Ls(x) = maxi∈I fi(a

>
i x) where each fi(q) := `s(q/bi).

We can now apply Theorem 4 by reformulating the constraint (C2) for this choice of fi for each i ∈ I, resulting in the
constraint

T3,i + 2qT2,i + q2T1,i ≥
α

α+ 1

q

bi
− 1 +

1

α+ 1

bαi
qα

∀q ≥ bi

because 0 ∈ Ξ and hence bi > 0. We define a new scalar variable q̃ and apply the variable substitution q̃w = q, resulting
in the constraint

q̃2w+vT1,i + q̃w+v

(
2T2,i −

α

(α+ 1)bi

)
+ q̃v (1 + T3,i)−

bαi
α+ 1

≥ 0, ∀q̃ ≥ b1/wi

after multiplying both sides by q̃v > 0. The final result is obtained after the substitution b
1/w
i q̄ = q̃.

Corollary 3:

We follow the same approach as the proof of Corollary 1, but this time use the generating distribution T for γ-monotone
distributions from Theorem 3, i.e.

T ([0, t]) =
1

B(n, γ)
·
∫ t

0
λn−1 · (1− λ)γ−1 dλ, ∀t ∈ [0, 1].

In this case the moment transformations from Theorem 1 become

µγ :=

[∫ ∞
0

λT (dλ)

]-1
µ =

[
1

B(n, γ)

∫ 1

0
λn(1− λ)γ−1(dλ)

]-1
µ =

n+ γ

n
µ

Sγ :=

[∫ ∞
0

λ2 T (dλ)

]-1
S =

[
1

B(n, γ)

∫ 1

0
λn+1(1− λ)γ−1(dλ)

]-1
S =

n+ γ

n

n+ γ + 1

n+ 1
S.

From Proposition 1, the transformed loss function Ls required in Theorem 1 become

Ls(y) = max
i∈I

T
([
bi/a

>
i y,∞

))
· 1a>i x≥bi (y)

=: max
i∈I

fi(a
>
i y).

where

fi(q) =


1

B(n, γ)

∫ 1

bi/q
λn−1(1− λ)γ−1 dλ, q ≥ bi,

0 otherwise.
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For q ≥ bi, we can use a binomial expansion to evaluate this integral4, obtaining

B(n, γ)fi(q) = B(n, γ)−
∫ bi/q

0
λn−1 · (1− λ)γ−1 dλ

= B(n, γ)−
γ−1∑
k=0

∫ bi/q

0
(−1)k

(γ − 1

k

)
λn+k−1 dλ

= B(n, γ)− bni
γ−1∑
k=0

(−bi)k

n+ k

(γ − 1

k

) 1

qn+k
.

In order to apply Theorem 4, we now need only reformulate the semi-infinite constraint (C2). We obtain, for each i ∈ I,
the constraint

T3,i + 2qT2,i + q2T1,i ≥ 1−
bni

B(n, γ)

γ−1∑
k=0

(−bi)k

n+ k

(γ − 1

k

) 1

qn+k
, ∀q ≥ bi,

recalling that 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce, for each i ∈ I the constraint

T1,iq
n+γ+1 + 2T2,iq

n+γ + (T3,i − 1) qn+γ−1 +
bni

B(n, γ)

γ−1∑
k=0

(−bi)k

n+ k

(γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q.

Corollary 4:

The method of proof parallels that of Corollary 2, but this time using the generating distribution T for γ-monotone
distributions from Theorem 3. In this case we set

`s(t) =
1

B(n, γ)

∫ 1

0
max{0, (λt− 1)}λn−1(1− λ)γ−1dλ,

which is zero for any t ≤ 1. For any t ≥ 1, using a binomial expansion we can evaluate the integral to get

∀t ≥ 1 : B(n, γ)`s(t) = t

∫ 1

1/t
λn(1− λ)γ−1 dλ−

∫ 1

1/t
λn−1(1− λ)γ−1 dλ

= tB(n+1, γ)−B(n, γ)+

∫ 1/t

0
λn−1(1−λ)γ−1dλ− t

∫ 1/t

0
λn(1−λ)γ−1dλ

= tB(n+1, γ)−B(n, γ)+

γ−1∑
k=0

[
(−1)k

(γ − 1

k

) ∫ 1/t

0

(
λn−1 − tλn

)
λk dλ

]

= tB(n+ 1, γ)−B(n, γ) +

γ−1∑
k=0

(−1)k

(n+ k)(n+ k + 1)

(γ − 1

k

)(1

t

)n+k

and then set Ls(x) = maxi∈I fi(a
>
i x) where each fi(q) := `s(q/bi). In order to apply Theorem 4, we now need only

reformulate the semi-infinite constraint (C2). We obtain, for each i ∈ I, the constraint

T3,i + 2qT2,i + q2T1,i ≥
B(n+ 1, γ)

biB(n, γ)
q − 1+

bni
B(n, γ)

γ−1∑
k=0

(−bi)k

(n+ k)(n+ k + 1)

(γ − 1

k

) 1

qn+k
∀q ≥ bi

4 Note that the integral amounts to 1 − 1
B(n,γ)

∫ bi/q
0 λn−1(1 − λ)γ−1 dλ =: 1 − Ibi/q(n, γ), where Ibi/q(n, γ) is the

so-called regularized incomplete beta function, i.e. the cumulative distribution function for the beta distribution with shape
parameters (n, γ).
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because 0 ∈ Ξ and hence bi > 0. We multiply both sides by qn+γ−1 > 0 to produce the constraint

T1,iq
n+γ+1 +

(
2T2,i −

B(n+ 1, γ)

biB(n, γ)

)
qn+γ + (T3,i + 1) qn+γ−1−

bni
B(n, γ)

γ−1∑
k=0

(−bi)k

(n+ k)(n+ k + 1)

(γ − 1

k

)
qγ−k−1 ≥ 0, ∀q ≥ bi.

The final result is obtained after the substitution biq̄ = q̃.

C Factor models in insurance

As mentioned in Section 1.1, any worst-case CVaR problem can be reduced to a related worst-case expectation problem.
We are therefore interested in loss functions of the form L(Sd) = min (max (Sd, 0) , k)− β for 0 ≤ β ≤ k. We have that the

loss function L(Sd) can be written as the gauge function L(Sd) = ` ◦ κΞ(Sd) for Ξ = {x ∈ Rd|
∑d
i=1 xi ≥ 1} and

` =


0 if t ≤ β,
t− β if β ≤ t < k,

k − β if t ≥ k.

Recalling from Theorem 2 the generating distribution T for α-unimodal distributions, we set `s(t) =
∫∞
0 `(λt)T (dλ) which

is zero for any t ≤ β. For β ≤ t < k, we can evaluate the integral to get

β ≤ ∀t < k : `s(t) = α

∫ 1

β/t
(λt− β)λα−1dλ

=
α

α+ 1
t− β +

βα+1

α+ 1

1

tα
.

Similarly for t ≥ k, we get

∀t ≥ k : `s(t) = α

∫ k/t

β/t
(λt− β)λα−1dλ+ α

∫ 1

k/t
(k − β)λα−1dλ

= k − β −
kα+1 − βα+1

α+ 1

1

tα

and then set Ls(x) = `s(
∑d
i=1 xi). In order to apply Theorem 4, we now need only reformulate the semi-infinite constraint

(C2). This can be done using methods analogous to the method described in the proof of Corollary 2, but is omitted here
for the sake of brevity. We get finally

T1,iq
2 + 2qT2,i + T3,i ≥ 0, ∀q ∈ R

T1,iβ
2q2w+v + qw+vβ

(
2T2,i −

α

α+ 1

)
+ qv (T3,i + β)−

β

α+ 1
≥ 0, 1 ≤ ∀q <

(
k

β

)1/w

T1,ik
2q2w+v + 2kqw+vT2,i + qv (T3,i + β − k) + k

1− (β/k)α+1

α+ 1
≥ 0, ∀q ≥ 1


(C2).
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