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Abstract

We define a reduction mechanism for LP and SDP formulations that degrades approximation factors

in a controlled fashion. Our reduction mechanism is a minor restriction of classical reductions estab-

lishing inapproximability in the context of PCP theorems. As a consequence we establish strong linear

programming inapproximability (for LPs with a polynomial number of constraints) for many problems. In

particular we obtain a 3
2 − ε inapproximability for VertexCover answering an open question in Chan et al.

[2013] and we answer a weak version of our sparse graph conjecture posed in Braun et al. [2014a] showing

an inapproximability factor of 1
2 + ε for bounded degree IndependentSet. In the case of SDPs, we obtain

inapproximability results for these problems relative to the SDP-inapproximability of MaxCUT. More-

over, using our reduction framework we are able to reproduce various results for CSPs from Chan et al.

[2013] via simple reductions from Max-2-XOR.

1 Introduction

Linear Programming (LP) and Semidefinite Programming (SDP) formulations are ubiquitous in combina-

torial optimization problems and are often an important ingredient in the construction of approximation

algorithms. Extended formulations study the size of such LP or SDP formulations. So far most strong lower

bounds have been obtained by ad-hoc analysis, which is stark contrast to the computational complexity world,

where we often resort to reduction mechanisms to establish hardness or hardness of approximation.

In this work we establish a strong reduction mechanism for approximate LP and SDP formulations. Hav-

ing a reduction mechanism in place has three main appeals.

(i) The reduction mechanism allows for the propagation of hardness results across optimization problems

very similar in spirit to the computational complexity approach. In particular, no specific knowledge

of how the hardness of the base problem has been established is required. As such it turns establishing

LP/SDP hardness into a routine task for many problems allowing a much broader community to benefit

from results from extended formulations.

(ii) Any future improvements to the strength of the lower bounds of the base problems immediately propa-

gate to all problems that one can reduce to. In particular, it is likely that the lower bounds in Chan et al.

[2013] and Lee et al. [2014a], which form the base hard problems that we reduce from can be further

improved.

(iii) Having a reduction mechanism in place provides an ordering on the hardness of problems. As such

it is a first step in identifying the LP/SDP analog to a complete problem. This is a quite appealing

1

http://arxiv.org/abs/1410.8816v5


problem in its own right as it will likely have to reconcile the LP-hardness of matching and 3-SAT,

which is in contrast to the polynomial time solvability of matching in computational complexity.

Our reduction mechanism is compatible with numerous known reductions in the literature that have been

used to analyze computational complexity, so that we can reuse these reductions in the context of LPs and

SDPs. As the approach is very similar in all cases, i.e., to verify that the additional conditions of our mecha-

nism are met, we will only state a select few that are of specific interest. We obtain new LP inapproximabil-

ity results for problems such as, e.g., VertexCover, Max-MULTI-k-CUT, and bounded degree IndependentSet

which are not 0/1 CSPs and hence not captured by the approach in Chan et al. [2013]. Moreover we reproduce

previous results for CSPs in Chan et al. [2013] via direct reductions from Max-2-XOR. This is interesting in

view of Max-2-XOR being the actual driver of complexity for most of these problems. In particular, estab-

lishing a stronger lower bound for Max-2-XOR, e.g., of the form 2Ω(nδ) would imply improve the LP-hardness

of approximation of many other CSPs.

Our reduction mechanism is based on a more abstract view of extended formulations that is motivated

by the earlier approach in Chan et al. [2013] to capture linear programming formulations independent of

the specific linear encoding in the context of CSPs, where the feasible region is the whole 0/1 cube. We

generalize this approach to studying arbitrary combinatorial optimization problems and the resulting model

captures previous approaches studying approximations via polyhedral pairs (see Braun et al. [2012, 2014c]).

In the same spirit as Chan et al. [2013] we do not rely on lifting a specific polyhedral representation but rather

work directly with the combinatorial optimization problem, i.e., we answer questions of the form

Given a combinatorial optimization problem, what is the smallest size of any of its LPs or SDPs?

While this difference to the traditional extended formulation model is more of a philosophical nature and

the results are equivalent to those obtained via the traditional extended formulations setup, on a technical level

this perspective significantly simplifies the treatment of approximate LP/SDP formulations and it enables the

formulation of the reduction mechanism.

Related work

For a detailed account on various lower bounds for extended formulations of combinatorial optimization

problems, see e.g., Fiorini et al. [2012], Rothvoß [2014]. A reduction mechanism for exact extended for-

mulations has been considered in Avis and Tiwary [2013], Pokutta and Van Vyve [2013], where it already

provided lower bounds on the exact extension complexity of various polytopes, however both fall short to cap-

ture approximations as they cannot incorporate the necessary affine shifts. Our generalization of (encoding

dependent) extended formulations to encoding independent formulation complexity is a natural extension of

Chan et al. [2013] and Braun et al. [2014b]. The former studied an encoding-independent model for uniform

formulations of CSPs, whereas the latter used a restricted LP version of the model presented here. Recently,

there has been also progress in relating general LP and SDP formulations with hierarchies (Chan et al. [2013],

Lee et al. [2014b,a]), and we reuse some of the results as the basis for later reductions. In particular Lee et al.

[2014a] recently established super-polynomial lower bounds for the size of approximate SDP formulations

capturing Max-3-SAT and other problems, however the SDP hardness of approximation of our base problems

is still open. Our approach is also related to Kaibel et al. [2013] as well as inapproximability reductions in

the context of PCPs and Lasserre hierarchies (see e.g., Håstad [1999], Trevisan et al. [2000], Håstad [2001],

Trevisan [2004], Schoenebeck [2008], Tulsiani [2009]).

Contribution

Our contribution can be broadly separated into the following three parts, where the reduction mechanism

is the main contribution. The abstract view on extended formulations should be considered an enabler for
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the reduction mechanism and the analysis of approximate LP/SDP formulations. The use of the reduction

mechanism is exemplified via various new inapproximability results.

We stress that all results are independent of P vs. NP and pertain to solving combinatorial problems with

LPs or SDPs.

(i) Factorization Theorem for Combinatorial Problems. The key element in the analysis of extended

formulations is Yannakakis’s celebrated Factorization Theorem (see Yannakakis [1991, 1988]) and its

generalizations (see e.g., Gouveia et al. [2013], Braun et al. [2012, 2014c], Chan et al. [2013]) equating

the minimal size of an extended formulation with a property of a slack matrix, e.g., in the linear case

the nonnegative rank. We provide an abstract, unified version (Theorem 3.5) of these factorization theo-

rems for combinatorial optimization problems and their approximations acting directly on the problem.

From an optimal factorization one can explicitly reconstruct an optimal encoding as a linear program

or semidefinite program. As a consequence we characterize the linear programming complexity as well

as the semidefinite programming complexity of a combinatorial problem independent of the linear rep-

resentation of the problem. Our employed model is essentially equivalent to the extended formulations

approach as we will see (see Section 2.1) and its main purpose is to facilitate the definition (and use) of

the reduction mechanism.

(ii) Reduction mechanism. We provide a purely combinatorial and conceptually simple framework for

reductions (similar to L-reductions) of optimization problems in the context of LPs and SDPs (and in

fact any other conic programming paradigm), where approximations are inherent without the need of any

polyhedra (and polyhedral pairs) as compared to e.g., Braun et al. [2012, 2014c]. Thereby we overcome

many technical difficulties that prevented direct reductions for approximate LPs or SDPs in the past. Many

reductions in the context of PCP inapproximability are compatible with our mechanism and hence can

be reused. Contrasting the above, so far LP inapproximability results have been only obtained for very

restricted classes of problems (see Braun et al. [2012], Chan et al. [2013], Braun et al. [2014c]) requiring

a case-by-case analysis.

(iii) LP inapproximability and conditional SDP inapproximability of specific problems. Our reduction

mechanism opens up the possibility to reuse previous hardness results to establish inapproximability of

problems. As a case in point, we establish the first LP inapproximability result for VertexCover and

IndependentSet as well as reproduce the results in Chan et al. [2013], all by simple and direct reductions

from the LP-inapproximability of Max-2-XOR within a factor better than 1
2 established in Chan et al.

[2013]. For SDP formulations our reductions establish relative inapproximability between the consid-

ered problems as strong SDP hardness of approximation for our base problems Max-k-XOR are unknown.

Several of our inapproximability results are new and others reproduce the results in Chan et al. [2013]

via direct reductions from a single hard problem. The conditional SDP inapproximability factors are

formulated under the assumption that the Goemans-Williams SDP for MaxCUT is optimal (see Conjec-

ture 4.6), which is compatible with the Unique Games Conjecture. Alternatively, these reductions can

be also combined with the 15/16 + ε SDP-hardness of approximation for MaxCUT that was recently

established in Braun et al. [2015c] to obtain unconditional (but weaker) inapproximability factors. To

obtain the respective factors it suffices to replace cGW with 15/16 in the arguments.

In particular, we answer an open question regarding the inapproximability of VertexCover (see Chan et al.

[2013]) and we answer a weak version of our sparse graph conjecture posed in Braun et al. [2014a]. We

obtain results as provided in the following table:
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Inapproximability Approximability

Problem (LP) (SDP under 4.6) (PCP) (LP)

VertexCover (new) 3
2 − ε 1.12144 − ε 1.361 − ε 2

Min-2-CNFDeletion (new) ω(1) ω(1) 2.889 − ε —

MinUnCUT (new) ω(1) ω(1) Cuncut − ε —

Max-MULTI-k-CUT (new)
2c(k)+1
2c(k)+2

+
ε

c(k)+cGW

c(k)+1
1 − 1

34k + ε 1
2(1−1/k)

bounded degree

IndependentSet (new)

1
2 + ε cGW + ε O

(
log4 ∆

∆

)
—

Max-2-SAT 3
4 + ε

(optimal)

1+cGW
2 + ε ≈

0.93928 + ε

21
22 + ε 3

4

Max-3-SAT 3
4 + ε 1+cGW

2 + ε ≈
0.93928 + ε

7
8 + ε 19

27

Max-DICUT 1
2 + ε

(optimal)

cGW + ε 12
13 + ε 1

2

Max-2-CONJSAT 1
2 + ε

(optimal)

cGW + ε 9
10 + ε 1

2

Here cGW ≈ 0.87856 is the approximation factor of the algorithm for MaxCUT from Goemans and Williamson

[1995], and c(k) is a constant depending on k defined in Section 6.1.

Note that our conditional SDP inapproximability of Max-2-SAT and Max-3-SAT within is (1+ cGW)/2+
ε ≈ 0.93928+ ε, better than the current best unconditional inapproximability of 7/8 from [Lee et al., 2014a,

Theorem 1.5]; see Section 6 for details. Moreover, there exists a linear program for IndependentSet achieving

an approximation guarantee of 2
√

n, which is indeed better than the n1−ε hardness of approximation by

Håstad [1999], so that we cannot expect to obtain a n1−ε hardness of approximation ; see Bazzi et al. [2015]

for a detailed discussion.

As a nice (minor) byproduct, the presented framework augments the results in Fiorini et al. [2012],

Braun et al. [2012], Braverman and Moitra [2013], Braun et al. [2014c], Rothvoß [2014] to be independent

of the chosen linear encoding (see Section 3.1), which allows us to reuse these results directly in reduc-

tions. Also, approximations of the slack matrix provide approximate programs for the optimization prob-

lem, as shown in Theorem 7.2. Our approach also immediately carries over to symmetric formulations (see

Braun et al. [2015a] for SDPs) and other conic programming paradigms; the details are left to the interested

reader.

Finally, we would also like to note that our model and reductions have been already applied to obtain inap-

proximability results for approximate GraphIsomorphism in Braun et al. [2015b], exponential lower bound

for symmetric SDPs for Matching (see [Braun et al., 2015a, Theorem 3.1]), and(2 − ε)-inapproximability

for VertexCover together with inapproximability of IndependentSet within any constant factor in Bazzi et al.

[2015] improving our Theorem 5.3 by a significantly more involved argument. An extension of this reduction

mechanism is presented in Braun et al. [2015c] relaxing some of our conditions, which enables the study of

fractional optimization problems (such as e.g., Sparsest Cut).

2 Optimization problems

We intend to study the required size of a linear program or semidefinite program capturing a combinatorial

optimization problem with specified approximation guarantees. In our context an optimization problem is

defined as follows.
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Definition 2.1 (Optimization problems). An optimization problem P = (S ,F , val) consists of a set S of

feasible solutions and a set F of instances, together with a real-valued objective function val : S ×F → R.

A wide class of examples consist of constraint satisfaction problems (CSPs):

Definition 2.2 (Maximum Constraint Satisfaction Problem (CSP)). A constraint family C = {C1, . . . , Cm}
on the boolean variables x1, . . . , xn is a family of boolean functions Ci in x1, . . . , xn. The Ci are constraints

or clauses. The problem P(C) corresponding to a constraint family C has

(i) feasible solutions all 0/1 assignments s to x1, . . . , xn;

(ii) instances all nonnegative weightings w1, . . . , wm of the constraints C1, . . . , Cm

(iii) objective function the weighted sum of satisfied constraints: satw1,...,wm(s) = ∑i wiCi(s).

The goal is to maximize the weights of satisfied constraints, in particular CSPs are maximization problems.

A maximum Constraint Satisfaction Problem is an optimization problem P(C) for some constraint family

C. A k-CSP is a CSP where every constraint depends on at most k variables.

For brevity, we shall simply use CSP for a maximum CSP, when there is no danger of confusion with a

minimum CSP. In the following, we shall restrict to instances with 0/1 weights, i.e., an instance is a subset

L ⊆ C of constraints, and the objective function computes the number satL(s) = ∑C∈L C(s) of constraints in

L satisfied by assignment s. Restriction to specific instances clearly does not increase formulation complexity.

As a special case, the Max-k-XOR problem restricts to constraints, which are XORs of k literals. Here we

shall write the constraints in the equivalent equation form xi1 ⊕ · · · ⊕ xik
= b, where ⊕ denotes the addition

modulo 2.

Definition 2.3 (Max-k-XOR). For fixed k and n, the problem Max-k-XOR is the CSP for variables x1, . . . , xn

and the family C of all constraints of the form xi1 ⊕ · · · ⊕ xik
= b with 1 ≤ i1 < · · · < ik ≤ n and

b ∈ {0, 1}.

An even stronger important restriction is MaxCUT, a subproblem of Max-2-XOR as we will see soon. The

aim is to determine the maximum size of cuts for all graphs G with V(G) = [n].

Definition 2.4 (MaxCUT). The problem MaxCUT has instances all simple graphs G with vertex set V(G) =
[n], and feasible solutions all cuts on [n], i.e., functions s : [n] → {0, 1}. The objective function val com-

putes the number of edges {i, j} of G cut by the cut, i.e., with s(i) 6= s(j).
The problem MaxCUT∆ is the subproblem of MaxCUT considering only graphs G with maximum degree

at most ∆.

We have valG(s) = satL(G)(s), for the constraint set L(G) =
{

xi ⊕ xj = 1
∣∣ {i, j} ∈ E(G)

}
, realizing

MaxCUT as a subproblem of Max-2-XOR with the same feasible solutions.

We are interested in approximately solving an optimization problem P by means of a linear program

or a semidefinite program. Recall that a typical PCP inapproximability result states that it is hard to decide

between max vali ≤ S(i) and max vali ≥ C(i) for a class of instances i and some easy-to compute functions

S and C usually refereed to as soundness and completeness. Here and below max vali denotes the maximum

value of the function vali over the respective set of feasible solutions. We adopt the terminology to linear

programs and semidefinite programs. We start with the linear case.

Definition 2.5 (LP formulation of an optimization problem). Let P = (S ,F , val) be an optimization prob-

lem with real-valued functions C, S on F , called completeness guarantee and soundness guarantee, respec-

tively. If P is a maximization problem, then let FS :=
{

f ∈ F
∣∣max val f ≤ S( f )

}
denote the set of
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instances, for which the maximum is upper bounded by soundness guarantee S. If P is a minimization prob-

lem, then let FS :=
{

f ∈ F
∣∣min val f ≥ S( f )

}
denote the set of instances, for which the minimum is

lower bounded by soundness guarantee S.

A (C, S)-approximate LP formulation of P is a linear program Ax ≤ b with x ∈ Rd together with the

following realizations:

(i) Feasible solutions as vectors xs ∈ Rd for every s ∈ S so that

Axs ≤ b for all s ∈ S , (1)

i.e., the system Ax ≤ b is a relaxation (superset) of conv (xs | s ∈ S).

(ii) Instances as affine functions w f : Rd → R for every f ∈ FS such that

w f (xs) = val f (s) for all s ∈ S , (2)

i.e., we require that the linearization w f of val f is exact on all xs with s ∈ S .

(iii) Achieving guarantee C via requiring

max
{

w f (x)
∣∣∣ Ax ≤ b

}
≤ C( f ) for all f ∈ FS , (3)

for maximization problems (resp. min
{

w f (x)
∣∣ Ax ≤ b

}
≥ C( f ) for minimization problems).

The size of the formulation is the number of inequalities in Ax ≤ b. Finally, the LP formulation complexity

fc+(P , C, S) of the problem P is the minimal size of all its LP formulations.

For all instances f ∈ F soundness and completeness should satisfy C( f ) ≥ S( f ) in the case of maxi-

mization problems and C( f ) ≤ S( f ) in the case of minimization problems in order to capture the notion of

relaxations and we assume this condition in the remainder of the paper.

Remark 2.6. We use affine maps instead of linear maps to allow easy shifting of functions. At the cost of an

extra dimension and an extra equation, affine functions can be realized as linear functions.

Remark 2.7 (Inequalities vs. Equations). Traditionally in extended formulations, one would separate the de-

scription into equations and inequalities and one would only count inequalities. In our framework, equations

can be eliminated by restricting to the affine space defined by them, and parametrizing it as a vector space.

However, note that restricting to linear functions, one might need an equation to represent affine functions

by linear functions.

For determining the exact maximum of a maximization problem, one chooses C( f ) = S( f ) := max val f .

To show inapproximability within an approximation factor 0 < ρ ≤ 1, one chooses guarantees satisfying

ρC( f ) ≥ S( f ). This choice is motivated to be comparable with factors of approximation algorithms finding

a feasible solution s with val f (s) ≥ ρ max val f . For minimization problem, C( f ) = S( f ) := min val f in

the exact case, and ρC( f ) ≤ S( f ) for an approximation factor ρ ≥ 1 provided val f is nonnegative. This

model of outer approximation streamlines the models in Chan et al. [2013], Braun et al. [2014b], Lee et al.

[2014b], and also captures, simplifies, and generalizes approximate extended formulations from Braun et al.

[2012, 2014c]; see Section 2.1 for a discussion.

We will now adjust Definition 2.5 to the semidefinite case. For symmetric matrices, as customary, we

use the Frobenius product as scalar product, i.e., 〈A, B〉 = Tr[AB]. Recall that the psd-cone is self-dual

under this scalar product.
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Definition 2.8 (SDP formulation of an optimization problem). Let P = (S ,F , val) be a maximization

problem with real-valued functions C, S on F and let FS :=
{

f ∈ F
∣∣max val f ≤ S( f )

}
as in Defini-

tion 2.5.

A (C, S)-approximate SDP formulation of P consists of a linear map A : Sd → Rk and a vector b ∈ Rk

(defining a semidefinite program
{

X ∈ Sd
+

∣∣A(X) = b
}

). Moreover, we require the following realizations

of the components of P :

(i) Feasible solutions as vectors Xs ∈ Sd
+ for every s ∈ S so that

A(Xs) = b (4)

i.e., the system A(X) = b, X ∈ Sd
+ is a relaxation of conv (Xs | s ∈ S).

(ii) Instances as affine functions w f : Sd → R for every f ∈ FS with

w f (Xs) = val f (s) for all s ∈ S , (5)

i.e., we require that the linearization w f of val f is exact on all Xs with s ∈ S .

(iii) Achieving guarantee C via requiring

max
{

w f (X)
∣∣∣A(Xs) = b, Xs ∈ S

d
+

}
≤ C( f ) for all f ∈ F , (6)

for maximization problems, and the analogous inequality for minimization problems.

The size of the formulation is the parameter d. The SDP formulation complexity fc⊕(P , C, S) of the

problem P is the minimal size of all its SDP formulations.

2.1 Relation to approximate extended formulations

Traditionally in extended formulations, one would start from an initial polyhedral representation of the prob-

lem and bound the size of its smallest possible lift in higher-dimensional space. In the linear case for example,

the minimal number of required inequalities would constitute the extension complexity of that polyhedral

representation. Our notion of formulation complexity can be understood as the minimum extension com-

plexity over all possible polyhedral encodings of the optimization problem. This independence of encoding

addresses previous concerns that the obtained lower bounds are polytope-specific or encoding-specific and

alternative linear encodings (i.e., different initial polyhedron) of the same problem might admit smaller for-

mulations: we showed that this is not the case. More precisely, in view of the results from above the standard

notion of extension complexity and formulation complexity are essentially equivalent, however the more

abstract perspective simplifies the handling of approximations and reductions as we will see in Section 4.

The notion of LP formulation, its size, and LP formulation complexity are closely related to polyhedral

pairs and linear encodings (see Braun et al. [2012, 2014c], and also Pashkovich [2012]). In particular, given

a (C, S)-approximate LP formulation of a maximization problem P with linear program Ax ≤ b, represen-

tations {xs | s ∈ S} of feasible solutions and
{

w f
∣∣ f ∈ FS} of instances, one can define a polyhedral pair

encoding P
P := conv (xs | s ∈ S) ,

Q :=
{

x ∈ R
d
∣∣∣ 〈w f , x〉 6 C( f ), ∀ f ∈ FS}

}
.

Then for K := {x | Ax ≤ b}, we have P ⊆ K ⊆ Q. Note that there is no need for the approximating

polyhedron K to reside in extended space, as P and Q already live there.

Put differently, the LP formulation complexity of P is the minimum size of an extended formulation over

all possible linear encodings of P . The semidefinite case is similar, with the only difference being that K is

now a spectrahedron, being represented by a semidefinite program instead of a linear program.
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3 Factorization theorem and slack matrix

We provide an algebraic characterization of formulation complexity via the slack matrix of an optimiza-

tion problem, similar in spirit to factorization theorems for extended formulations (see e.g., Yannakakis

[1991, 1988], Gouveia et al. [2013], Braun et al. [2012, 2014c]), with a fundamental difference pioneered

in Chan et al. [2013] that there is no linear system to start from. The linear or semidefinite program is con-

structed from scratch using a matrix factorization. This also extends Braun et al. [2014b], by allowing affine

functions, and using a modification of nonnegative rank, to show that formulation complexity depends only

on the slack matrix.

Definition 3.1 (Slack matrix of P ). Let P = (S ,F , val) be an optimization problem with guarantees C, S.

The (C, S)-approximate slack matrix of P is the nonnegative FS × S matrix M, with entries

M( f , s) :=

{
C( f )− val f (s) if P is a maximization problem,

val f (s)− C( f ) if P is a minimization problem.

We introduce the LP factorization of a nonnegative matrix, which for slack matrices captures the LP

formulation complexity of the underlying problem.

Definition 3.2 (LP factorization of a matrix). A size-r LP factorization of M ∈ R
m×n
+ is a factorization

M = TU + µ1 where T ∈ R
m×r
+ , U ∈ R

r×n
+ and µ ∈ R

m×1
+ . Here 1 is the 1 × n matrix with all entries

being 1. The LP rank rankLP M of M is the minimum r such that there exists a size-r LP factorization of M.

A size-r LP factorization is equivalent to a decomposition M = ∑i∈[r] uiv
⊺

i + µ1 for some (column)

vectors ui ∈ Rm
+, vi ∈ Rn

+ with i ∈ [r] and a column vector µ ∈ Rm
+. It is a slight modification of

a nonnegative matrix factorization, disregarding simultaneous shift of all columns by the same vector, i.e.,

allowing an additional term µ · 1 not contributing to the size, so clearly, rankLP ≤ rank+ M ≤ rankLP M+
1.

One similarly defines SDP factorizations of nonnegative matrices.

Definition 3.3. A size-r SDP factorization of M ∈ R
m×n
+ is a factorization is a collection of matrices

T1, . . . , Tm ∈ Sr
+ and U1, . . . , Un ∈ Sr

+ together with µ ∈ R
m×1
+ so that Mij = Tr[TiUj] + µ(i). The SDP

rank rank⊕ M of M is the minimum r such that there exists a size-r SDP factorization of M.

For the next theorem, we need the folklore formulation of linear duality using affine functions, see e.g.,

[Schrijver, 1986, Corollary 7.1h].

Lemma 3.4 (Affine form of Farkas’s Lemma). Let P :=
{

x
∣∣ Ajx ≤ bj, j ∈ [r]

}
be a non-empty polyhedron.

An affine function Φ is nonnegative on P if and only if there are nonnegative multipliers λj, λ0 with

Φ(x) ≡ λ0 + ∑
j∈[r]

λj(bj − Ajx).

We are ready for the factorization theorem for optimization problems.

Theorem 3.5 (Factorization theorem for formulation complexity). Consider an optimization problem P =
(S ,F , val) with (C, S)-approximate slack matrix M. Then we have

fc+(P , C, S) = rankLP M, and fc⊕(P , C, S) = rankSDP M.

for linear formulations and semidefinite formulations, respectively.
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Remark 3.6. The factorization theorem for polyhedral pairs (see Braun et al. [2012], Pashkovich [2012],

Braun et al. [2014c]) states that the nonnegative rank and extension complexity might differ by 1, which

was slightly elusive. Theorem 3.5 clarifies, that this is the difference between the LP rank and nonnegative

rank, i.e., formulation complexity is a property of the slack matrix. Note also that for the slack matrix of a

polytope, every row contains a 0 entry, and hence the µ1 term in any LP factorization must be 0. Therefore

the nonnegative rank and LP rank coincide for polytopes. Similar remarks apply to SDP factorizations.

Proof of Theorem 3.5—the linear case. We will confine ourselves to the case of P being a maximization

problem. For minimization problems, the proof is analogous.

To prove rankLP M ≤ fc+(P , C, S), let Ax ≤ b be an arbitrary (C, S)-approximate, size-r LP formu-

lation of P , with realizations
{

w f
∣∣ f ∈ FS} of instances and {xs | s ∈ S} of feasible solutions. We shall

construct a size-r nonnegative factorization of M. As maxx:Ax≤b w f (x) ≤ C( f ) by Condition (3), via the

affine form of Farkas’s lemma, Lemma 3.4 we have

C( f )− w f (x) =
r

∑
j=1

T( f , j)
(

bj − 〈Aj, x〉
)
+ µ( f )

for some nonnegative multipliers T( f , j), µ( f ) ∈ R+ with 1 ≤ j ≤ r. By taking x = xs, we obtain

M( f , s) =
r

∑
j=1

T( f , j)U(j, s) + µ( f ), with U(j, s) := bj − 〈Aj, xs〉 for j > 0.

i.e., M = TU + µ1. By construction, T and µ are nonnegative. By Condition (1) we also obtain that U is

nonnegative. Therefore M = TU + µ1 is a size-r LP factorization of M.

For the converse, i.e., rankLP ≥ fc+(P , C, S), let M = TU + µ1 be a size-r LP factorization. We shall

construct an LP formulation of size r. Let Tf denote the f -row of T for f ∈ FS , and Us denote the s-column

of U for s ∈ S . We claim that the linear system x ≥ 0 with representations

w f (x) := C( f )− µ( f )− Tf x ∀ f ∈ FS and xs := Us ∀s ∈ S

satisfies the requirements of Definition 2.5. Condition (2) is implied by the factorization M = TU + µ1:

w f (xs) = C( f )− µ( f )− Tf Us = C( f )− M( f , s) = val f (s).

Moreover, xs ≥ 0, because U is nonnegative, so that Condition (1) is fulfilled. Finally, Condition (3) also

follows readily:

max
{

w f (x)
∣∣∣ x ≥ 0

}
= max

{
C( f )− µ( f )− Tf x

∣∣ x ≥ 0
}
= C( f )− µ( f ) ≤ C( f ),

as the nonnegativity of T implies Tf x ≥ 0; equality holds e.g., for x = 0. Recall also that µ( f ) ≥ 0. Thus

we have constructed an LP formulation with r inequalities, as claimed.

Remark 3.7. It is counter-intuitive that 0 is always a maximizer, and, actually, it is an artifact of the con-

struction. At a conceptual level, the polyhedron Ax ≤ b containing conv (xs | s ∈ S) is represented as the

intersection of the nonnegative cone with an affine subspace in the slack space. The affine functions w f are

extended to attain their optimum value on this intersection in the nonnegative cone, and thus also at 0, the

apex of the cone. In particular, intersecting with the affine subspace is no longer needed. See Figure 1 for an

illustration.
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xs

conv (xs | s ∈ S)

Sn

w f

Figure 1: Linear program from an LP factorization. The LP is the positive orthant x ≥ 0. The point 0 is a maximizer for all

linearizations w f = C( f )− µ( f )− Tf x of objective functions val f for all instances f . The normals of all objective functions

point in nonpositive direction as Tf ≥ 0.

Remark 3.8 (Solution structure). Observe that the obtained LP formulation via the LP-factorization of the

slack matrix also separates solutions s ∈ S into two disjoint classes S = So ·∪ Sn, where So contains those

solutions that potentially can be optimal for some function, i.e., it is the set of coordinate-wise minimal

points in S. The set Sn is the set of solution that are never optimal for any f ∈ F as they are coordinate-wise

dominated by at least one point in So, i.e., for any sn ∈ Sn there exists so ∈ So with so ≤ sn coordinate-wise.

This might have applications in the context of inverse optimization (see e.g., Ahuja and Orlin [2001]),

where we would like to decide whether for a given solution s ∈ S , there exists an f ∈ F , that is maximized

at s. This can now be read off the factorization.

Proof of Theorem 3.5—the semidefinite case. As before we confine ourselves to the case of P being a max-

imization problem. The proof is analogous to the linear case, but for the sake of completeness, we provide a

full proof.

To prove rankSDP M ≤ fc⊕(P , C, S), let A(X) = b, X ∈ Sr
+ be an arbitrary size-r SDP formulation

of P , with realizations
{

w f
∣∣ f ∈ FS} of instances and {Xs | s ∈ S} of feasible solutions. To apply strong

duality, we may assume that the convex set {X ∈ Sr
+ | A(X) = b} has an interior point because otherwise

it would be contained in a proper face of Sr
+, which is an SDP cone of smaller size. We shall construct a

size-r SDP factorization of M. As maxX∈Sr
+ : A(X)=b w f (X) ≤ C( f ) by Condition (6), via the affine form

of strong duality, we have

C( f )− w f (X) = 〈Tf , X〉+ 〈y f , b −A(X)〉+ λ f

10



for all f ∈ F with some Tf ∈ Sr
+, y f ∈ Rk and λ f ∈ R+. By substituting Xs into X, we obtain

M( f , s) = C( f )− w f (Xs) = 〈Tf , Xs〉+ 〈y f , b −A(Xs)〉+ λ f = 〈Tf , Xs〉+ λ f ,

which is an SDP factorization of size r.
For the converse, i.e., fc⊕(P , C, S) ≤ rankSDP M, let M( f , s) = 〈Tf , Us〉 + µ( f ) be a size-r SDP

factorization. We shall construct an SDP formulation of size r. We claim that the SDP formulation:

X ∈ S
r
+ (7)

with representations

w f (X) := C( f )− µ( f )− 〈Tf , X〉 ∀ f ∈ FS and Xs := Us ∀s ∈ S

satisfies the requirements of Definition 2.8. Condition (5) follows by:

w f (Xs) = C( f )− µ( f )− 〈Tf , Us〉 = C( f )− M( f , s) = val f (s).

Moreover, the Xs = Us are psd, hence clearly satisfy the system (7), so that Condition (4) is fulfilled. Finally,

Condition (6) also follows readily.

max
{

w f (X)
∣∣∣X ∈ S

r
+

}
= max

{
C( f )− µ( f )− 〈Tf , X〉

∣∣X ∈ S
r
+

}
= C( f )− µ( f ) ≤ C( f ),

as Tf and X being psd implies 〈Tf , X〉 ≥ 0; equality holds e.g., for X = 0. Thus we have constructed an

SDP formulation of size r as claimed.

3.1 Examples

In the context of optimization problems we typically differentiate two types of formulations. The uniform

model asks for a formulation for a whole family of instances. Our Examples 3.9, 4.7 and 3.10 are all uni-

form models. The non-uniform model asks for a formulation for the weighted version of a specific problem,

where the instances differ only in the weighting. Lower bounds or inapproximability factors for non-uniform

models are usually stronger statements, as in the non-uniform case the formulation potentially could adapt

to the instance resulting in potentially smaller formulations; see Bazzi et al. [2015] for such an example in

the context of stable sets. We refer the reader to Chan et al. [2013], Braun et al. [2014b] for an in-depth

discussion.

The difference between uniform and non-uniform sometimes depends on the point of view. For graph

problems, often the non-uniform model for a graph G induces a uniform model for the family of all of its

(induced) subgraphs by choosing 0/1 weights (see e.g., Definition 5.1). In other words, the non-uniform

model is actually a uniform model for the class of all subinstances of G. Examples 3.9 and 4.7 with 0/1
weights demonstrate this: they are uniform models for all subgraphs G ⊆ Kn, but can also be viewed as

non-uniform models for Kn.

Note that these models can also be used for studying average case complexity. For example, one might

consider the complexity of the problem for a randomly selected large class of instances using the uniform

model, or one might consider the non-uniform model for a randomly selected instance. For the maximum

stable set problem, both random versions were examined in Braun et al. [2014b].
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3.1.1 The matching problem revisited

The lower bounds in Fiorini et al. [2012], Rothvoß [2014] are concerned with specific polytopes, namely the

TSP polytope as well as the matching polytope. We obtain, as a slight generalization, the same lower bounds

for the Hamiltonian cycle problem (which is captured by the TSP problem with appropriate weights) as well

as the matching problem, independent of choice of the specific polytope that represents the encoding. Here

we present only the matching problem. The lower bound for the Hamiltonian cycle problem will be obtained

in Section 4.1 via a reduction.

Example 3.9 (Maximum matching problem). The maximum matching problem PMatch asks for the maxi-

mum size of matchings in a given graph. While it can be solved in polynomial time, the matching polytope

has exponential extension complexity as shown in Rothvoß [2014]. Using the framework from above, we

immediately obtain that the matching problem has high LP formulation complexity, reusing the lower bound

on the nonnegative rank of the slack matrix of the matching polytope.

For the natural formulation of the problem in our framework, let n be fixed, and let the set S of feasible

solutions consist of all perfect matchings M of the complete graph on 2n vertices, and the instances be all

(simple) graphs G on [2n]. The value valG(M) for a graph G and a perfect matching M is defined to be

valG(M) := |M ∩ E(G)|

the number of edges shared by M and G, i.e., the size of the matching M ∩ E(G) of G. Clearly, all maximum

matchings of G can be obtained this way (via extension to any perfect matching on [2n]). Thus max valG is

the matching number ν(G) of G, the size of the maximum matchings of G.

Inspired by the description of the facets of the matching polytope in Edmonds [1965], we only consider

complete subgraphs on odd-sized subsets U. For such a complete graph KU on the odd-sized set U, we have

max valKU
= |U|−1

2 . Let δ(U) denote the set of all edges between U and its complement [2n] \U. We have

the identity |U| = 2 |M ∩ E(KU)| + |M ∩ δ(U)| and thus obtain the slack matrix for the exact problem

(i.e., C(G) = max valG)

S(KU, M) := C(KU)− valKU
=

|U| − 1

2
− |M ∩ E(KU)| =

|M ∩ δ(U)| − 1

2
.

This submatrix has nonnegative rank 2Ω(n) by Rothvoß [2014] and hence the LP formulation complexity of

the maximum matching problem is 2Ω(n), i.e., fc+(PMatch) = 2Ω(n).

The result can be extended to the approximate case with an approximation factor (1+ ε/n)−1, by invok-

ing the lower bound for the resulting slack matrix from Braun and Pokutta [2015], showing that the maximum

matching problem does not admit any fully-polynomial size relaxation scheme. Note that this is not unex-

pected as for the maximum matching problem an approximation factor of about 1− ε
n corresponds to an error

of less than one edge in the unweighted case for small ε, so that the decision problem could be decided via the

approximation. This is a behavior similar to FPTAS and strong NP-hardness for combinatorial optimization

problems that are mutually exclusive (under standard assumptions).

3.1.2 Independent set problem

We provide an example for maximum independent sets in a uniform model; see Braun et al. [2014b] for more

details as well as an average case analysis. Here there is no bound on the maximum degree of graphs, unlike

in Theorem 5.3.

Example 3.10 (Maximum independent set problem (uniform model)). Let us consider the maximum indepen-

dent set problem P over some family G of graphs G where V(G) ⊆ [n] with aim to estimate the maximum

size α(G) of independent sets in each G ∈ G.
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A natural choice is to let the feasible solutions be all subsets S of [n], and the instances be all G ∈ G.

The objective function is

valG(S) := |V(G) ∩ S| − |E(G(S))| .

Here valG(S) can be easily seen to lower bound the size of an independent set, obtained from S by re-

moving vertices not in G, and also removing one end point of every edge with both end points in S. Clearly,

valG(S) = |S| for independent sets S of G, i.e., in this case our choice is exact. Thus α(G) = maxS⊆[n] valG(S).
Let us consider the special case when G is the set of all simple graphs with V(G) ⊆ [n]. We shall use

guarantees S(G) := max valG = α(G) and C(G) := ρ−1 valG for an approximation factor 0 < ρ ≤ 1.

Restricting to complete graphs KU with U ⊆ [n], the obtained slack matrix is a (ρ−1 − 1)-shift of the

(partial) unique disjointness matrix, hence for approximations within a factor of ρ, we obtain the lower bound

fc+(P , C, max) ≥ 2
nρ
8 with Braverman and Moitra [2013], Braun and Pokutta [2013].

See Braun et al. [2014b] for other choices of G, such as e.g., randomly choosing the graphs.

3.1.3 k-juntas via LPs

It is well-known that the level-k Sherali–Adams hierarchy captures all nonnegative k-juntas, i.e., functions

f : {0, 1}n → R+ that depend only on k coordinates of the input (see e.g., Chan et al. [2013]) and it can be

written as a linear program using O(nk) inequalities. We will now show that this is essentially optimal for k
small.

Example 3.11 (k-juntas). We consider the problem of maximizing nonnegative k-juntas over the n-dimensional

hypercube. Let the set of instances F be the family of all nonnegative k-juntas and let the set of feasible so-

lutions be S = {0, 1}n , with val f (s) := val f (s). We put C( f ) = S( f ) = maxs∈S val f (s).
As we are interested in a lower bound we will confine ourselves to a specific subfamily of functions

F ′ := { fa | a ∈ {0, 1}n , |a| = k} ⊆ F with

fa(b) := a⊺b − 2

(
a⊺b

2

)
,

and hence C( fa) = 1. Clearly |F ′| = (n
k), so that the nonnegative rank of the slack matrix

Sa,b := C( fa)− fa(b) = 1 − a⊺b + 2

(
a⊺b

2

)
= (1 − a⊺b)2,

with a, b ∈ {0, 1}n and |a| = k is at most (n
k).

Now for each fa ∈ F ′ we have that C( fa)− fa(b) = (1 − a⊺b)2 = 1 if a ∩ b = ∅ and there are 2n−k

such choices for b for a given a. Thus the matrix S has (n
k)2

n−k entries 1 arising from disjoint pairs a, b.

However in Kaibel and Weltge [2013] it was shown that any nonnegative rank-1 matrix can cover at most 2n

of such pairs. Thus the nonnegative rank of S is at least

(n
k)2

n−k

2n
=

(n
k)

2k
.

The latter is Ω(nk) for k constant and at least Ω(nk−α) for k = α log n with α ∈ N constant and k > α.

Thus the LP formulation for k-juntas derived from the level-k Sherali-Adams hierarchy is essentially optimal

for small k.
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4 Affine Reductions for LPs and SDPs

We will now introduce natural reductions between problems, with control on approximation guarantees that

translate to the underlying LP and SDP level.

Definition 4.1 (Reductions between problems). Let P1 = (S1,F1, val) and P2 = (S2,F2, val) be maxi-

mization problems. Let C1, S1 and C2, S2 be guarantees for P1 and P2 respectively. A reduction from P1

to P2 respecting these guarantees consist of two maps:

(i) β : FS1
1 → cone

(
FS2

2

)
+ R rewriting instances as formal nonnegative combinations: β( f1) :=

∑
f∈FS2

2

b f1, f · f + µ( f1) with b f1, f ≥ 0 for all f ∈ FS2
2 ; the term µ( f1) is called the affine shift

(ii) γ : S1 → conv (S2) rewriting solutions as formal convex combination of S2: γ(s1) := ∑s∈S2
as1 ,s · s

with as1,s ≥ 0 for all s ∈ S2 and ∑s∈S2
as1 ,s = 1;

subject to

val f1
(s1) = ∑

f∈FS2
2

s∈S2

b f1, f as1 ,s · val f (s) + µ( f1), s1 ∈ S1, f1 ∈ FS1
1 , (8)

expressing representation of the objective function of P1 by that of P2, and additionally

C1( f1) ≥ ∑
f∈FS2

2

b f1, f · C2( f ) + µ( f1), f1 ∈ FS1
1 , (9)

ensuring feasibility of the completeness guarantee.

Observe that the role of soundness guarantees of P1 and P2 in the definition is to restrict the instances

considered: the map β involves only the instances whose optimum value is bounded by these guarantees.

One can analogously define reductions involving minimization problems. E.g., for a reduction from a maxi-

mization problem P1 to a minimization problem P2, the formulas are

β( f1) := µ( f1)− ∑
f∈FS2

2

b f1, f · f

val f1
(s1) = µ( f1)− ∑

f∈FS2
2

s∈S2

b f1, f as1 ,s · val f (s)

C1( f1) ≥ µ( f1)− ∑
val f ∈F

S2
2

b f1, f · C( f ).

Note that elements in S2 are obtained as convex combinations, while elements in F2 are obtained as

nonnegative combinations and a shift. The additional freedom for instances allows scaling and shifting the

function values.

In a first step we will verify that a reduction between optimization problems P1 to P2 naturally extends

to potential LP and SDP formulations.

Proposition 4.2 (Reductions of formulations). Consider a reduction from an optimization problem P1 to

another one P2 respecting completion and soundness guarantees C1, S1 and C2, S2. Then fc+(P1, C1, S1) ≤
fc+(P2, C2, S2) and fc⊕(P1, C1, S1) ≤ fc⊕(P2, C2, S2).
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Proof. We will use the notation from Definition 4.1 for the reduction. We only prove the claim for LP

formulations and for two maximization problems, as the proof is analogous for SDP formulations and when

either or both problems are minimization problems. Let us choose an LP formulation Ax ≤ b of P2 with xs

realizing s ∈ S2 and w f realizing f ∈ FS2
2 . For P1 we shall use the same linear program Ax ≤ b with the

following realizations ys1 of feasible solutions s1 ∈ S1, and u f1 of instances f1 ∈ FS1
1 , where

ys1 := ∑
s∈S2

as1,s · xs, u f1(x) := ∑
f∈FS2

2

b f1, f · w f (x) + µ( f1).

As ys1 is a convex combination of the xs, obviously Ays1 ≤ b. The u f1 are clearly affine functions with

u f1(ys1) = ∑
f∈FS2

2

b f1, f · w f

(

∑
s∈S2

as1 ,s · xs

)
+ µ( f1) = ∑

f∈FS2
2

b f1, f ∑
s∈S2

as1,s · w f (xs) + µ( f1) = val f1
(s1)

by Eq. (8). Moreover, by Eq. (9).

max
Ax≤b

u f1(x) ≤ ∑
f∈FS2

2

b f1, f · max
Ax≤b

w f (x) + µ( f1) ≤ ∑
f∈FS2

2

b f1, f · C2( f ) + µ( f1) ≤ C1( f1).

Remark 4.3. At the level of matrices, Proposition 4.2 can be equivalently formulated as follows. Whenever

M1 = R · M2 · C + t1 with M1, M2, R, C nonnegative matrices, and t a nonnegative vector, such that

1C = 1, then rankLP M1 ≤ rankLP M2 and rankSDP M1 ≤ rankSDP M2. Note that given a reduction of

P1 to P2 with the notation as in Definition 4.1, one chooses M1 and M2 to be the slack matrices of P1 and

P2, respectively, together with matrices R, C and a vector t with the following entries:

R( f1, f ) = b f1, f ,

C(s, s1) = as1 ,s,

t( f ) = C2( f1) + µ( f1)− ∑
f∈F2

b f1, f · C( f ),

all nonnegative, satisfying M1 = R · M2 · C + t1. Now we briefly indicate a proof for this alternative

formulation of Proposition 4.2.

First, we prove the LP case. Given a size-r LP factorization M2 = ∑i∈[r] uivi + µ1 of M2, one gets the

size-r LP factorization M1 = ∑i∈[r] Rui · viC + (Rµ + t)1 of M1.

For the SDP case, let M2(i, j) = Tr[TiUj] + µ(i) be an SDP factorization of size r. Then one can

construct the following SDP factorization of M1 of size r:

M1( f , s) = ∑
i,j

R( f , i)M2(i, j)C(j, s) + t( f ) = ∑
i,j

R( f , i)(Tr[TiUj] + µ(i))C(j, s) + t( f )

= Tr




(

∑
i

R( f , i)Ti

)

︸ ︷︷ ︸
T̂f

·
(

∑
j

UjC(j, s)

)

︸ ︷︷ ︸
Ûs



+

(

∑
i

R( f , i)µ(i) + t( f )

)

︸ ︷︷ ︸
µ̂( f )

,

using ∑j C(j, s) = 1, i.e., 1C = 1. Using the nonnegativity of R, C, µ, and t, the T̂f and Ûs are psd, and the

µ̂( f ) are nonnegative.
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For most problems, there is a natural size | f | of an instance f , which is a nonnegative number, and

guarantees are often proportional to it. In many cases there is no need to consider linear combinations in

reductions, leading to a lightweight version of reduction of the form β : F1 → F2 and γ : S1 → S2. For

convenience, the objective function val of P2 now appears on the left-hand side by rearranging.

Corollary 4.4 (Inapproximability via simple reductions). Let P1 and P2 be two optimization problems. Let

P1 the completeness guarantee of P1 have the form

C1( f ) = τ1 | f | , f ∈ F1

proportional to the size | f | of each instance f with | f | ≥ 0. Furthermore, let γ : S1 → S2 and β : FS1
1 → F2

be maps satisfying for some constants α, µ

valβ( f1)[γ(s1)] = α val f1
(s1) + µ | f1|

|β( f1)| = (|α|+ µ) · | f1| ,

where α > 0 if P2 is a maximization problem, and α < 0 if P2 is a minimization problem. Let the complete-

ness guarantee C2 of P2 be given as

C2( f ) := (ατ1 + µ) | f | f ∈ F2.

Furthermore let σ2 be a nonnegative number satisfying for all f1 ∈ FS1
1

max valβ( f1) ≤ σ2 |β( f1)| if P2 is a maximization problem

min valβ( f1) ≥ σ2 |β( f1)| if P2 is a minimization problem

and we set

S2( f ) = σ2 | f | f ∈ F2

Then β and γ form a reduction from P1 with guarantees C1, S1 to P2 with guarantees C2, S2. In partic-

ular, P2 is inapproximable within a factor of σ2/(ατ1 + µ) by LP and SDP formulations of size less than

fc+(P1, C1, S1) and fc⊕(P1, C1, S1), respectively.

In many cases also the soundness guarantee of P1 is proportional to the size of f , i.e.,

S1( f ) = σ1 | f | , f ∈ F1.

Then a common choice is σ2 = ασ1 + µ, provided that the reduction is exact, i.e.,

optP1
valβ( f1) = α optP2

val f1
+µ | f1| ,

where the operator optP1
is max when P1 is a maximization problem, and the operator optP1

is min when

P1 is a minimization problem. The operator optP2
is defined similarly for P2. We shall write fc+(P , τ, σ)

for fc+(P , C, S) with C( f ) = τ | f | and S( f ) = σ | f |.
The base problems P1 from which we reduce will be the CSPs MaxCUT, MaxCUT∆ or Max-k-XOR in

our examples. For CSPs, the size of an instance, i.e., weighting (w1, . . . , wm) is the total weight ∑i∈[m] wi

of all clauses, For 0/1 weightings representing a subset L of clauses, the size is just the number of elements

of L.

The following lower bounds on formulation complexity are implicit in Chan et al. [2013], where similar

results are written out explicitly for other constraint satisfaction problems. The problems below constitute

our base problems and play the same role as e.g., Max-3-XOR in Håstad’s PCP theorem (see Håstad [2001]).
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Theorem 4.5. For every k ≥ 2 and ε > 0, we have fc+(Max-k-XOR, 1− ε, 1/2 + ε) and fc+(MaxCUT, 1−
ε, 1/2 + ε) are both at least n

Ω( log n
log log n ) for infinitely many n. Moreover, for the bounded degree case we have

fc+(MaxCUT∆, 1 − ε, 1/2 + ε) = n
Ω(

log n
log log n ) for infinitely many n, where ∆ is large enough depending on

ε.

Proof. By [Schoenebeck, 2008, Theorem 12], for k ≥ 3 there are instances L of Max-k-XOR, with at most
1
2 + ε of the clauses satisfiable, but with a feasible Lasserre solution of value 1 in round Ω(n). This means in

the language of Chan et al. [2013] that Max-k-XOR is (1, 1
2 + ε)-inapproximable in the Ω(n)-round Lasserre

hierarchy, and therefore also in the Sherali–Adams hierarchy. Therefore by [Chan et al., 2013, Theorem 3.2],

Max-k-XOR is also (1− ε, 1
2 + ε)-inapproximable by an LP formulation of size nO(log n/ log log n) for infinitely

many n, which is just a reformulation of the claim for Max-k-XOR.

For MaxCUT and Max-2-XOR the argument is similar, however one uses [Charikar et al., 2009, Proof of

Theorem 5.3(I)] to show (1 − ε, 1
2 + ε)-inapproximability of MaxCUT, and hence of Max-2-XOR. As the

construction uses only bounded degree graphs, where the bound ∆ depends on ε but not on n, it follows that

our argument also works for MaxCUT∆.

Recall from Khot et al. [2007] that under the Unique Games Conjecture, MaxCUT cannot be approx-

imated better than cGW by a polynomial-time algorithm. This motivates the following conjecture, which

provides our SDP-hard base problem. For some problems it might be possible to also reduce from Max-3-

SAT, which is SDP-hard to approximate within any factor better than 7/8 Lee et al. [2014a].

Conjecture 4.6 (SDP inapproximability of MaxCUT). For every ε > 0, and for every constant ∆ large

enough depending on ε, the formulation complexity fc⊕(MaxCUT∆, 1 − ε, cGW + ε) of MaxCUT is super-

polynomial.

Note however that for fixed ∆, there are algorithms achieving an approximation factor of cGW + ε by

Feige et al. [2002], hence in the conjecture ∆ should go to infinity as ε tends to 0.

Finally, we remark that by [Karloff, 1999, Lemma 2.9] there are graphs G where the Goemans–Williamson

SDP is off by a factor of cGW + ε. For simplicity of calculations, however, we assume for the conjecture that

there are also such graphs with SDP optimum (1 − ε) |E(G)|.

4.1 Facial reductions and formulation complexity

As the notion of formulation complexity does not directly deal with polytopes, there is no direct translation

of monotonicity of extension complexity under faces and projections (see Fiorini et al. [2012]). Thus many

reductions that have been used in the context of extension complexity and polytopes do not apply, such as

e.g., the one from TSP to matching in Yannakakis [1988, 1991]. Often however, the facial reduction underlies

a reduction between the problems as defined in Definition 4.1. To exemplify this we provide the underlying

reduction from TSP to matching.

Example 4.7 (Maximum weight Hamiltonian cycles (uniform model)). We want to find a Hamiltonian cycle

with maximum weight in a weighted graph. We consider only nonnegative weights as customary.

Therefore for a fixed n, we choose the feasible solutions to be all Hamiltonian cycles C of the complete

graph Kn on [n], and the instances are weighted subgraphs G of Kn with nonnegative weights. The objective

function has the form

valG(C) := ∑
e∈C∩E(G)

we.

We shall consider the exact problem, i.e., with guarantees C(G) = S(G) = max valG.
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In order to have a finite family of instances, one could restrict the weights to e.g., 1, essentially asking

for the maximum number of edges a Hamiltonian cycle can have in common with a given subgraph. For

the following reduction, we will use weights {1, 2} and we adapt Yannakakis’s construction to reduce the

maximum matching problem on K2n to the maximum weight Hamiltonian cycle problem on K4n. To simplify

notation, we identify [4n] with {0, 1} × [2n], i.e., the vertices are labelled by pairs (i, j) with i being 0 or 1
and j ∈ [2n]. Given a graph G on [2n], we think of it as being supported on {0} × [2n].

We consider the weighted graph G̃ with edges and weights:

Edge Weight

{(0, j), (1, j)} 2 j ∈ [2n]
{(1, j), (1, k)} 1 j, k ∈ [2n]
{(0, j), (0, k)} 1 {j, k} ∈ E(G)

For every perfect matching M on [2n], choose a Hamiltonian cycle CM containing the edges

(i) {(0, j), (1, j)} for j ∈ [2n],

(ii) {(0, j), (0, k)} for {j, k} ∈ E(G),

(iii) n additional edges of the form {(1, j), (1, k)} to obtain a Hamiltonian cycle.

Note that

valG̃(CM) = 5n + |M ∩ E(G)| . (10)

We now determine the maximum of valG̃ on all Hamiltonian cycles. Therefore let C be an arbitrary

Hamiltonian cycle. Let us consider C restricted to {0} × [2n]; its components are (possible empty) paths.

Let k be the number of components, which are non-empty paths, and contained in G. Obviously, k ≤ ν(G),
where ν(G) is the matching number, as selecting one edge from every such component provides a k-matching

of G.

Let l be the number of components containing at least one edge not in G. Note that k + l ≤ n, because

choosing one edge of all these k + l components, we obtain a (k + l)-matching on [2n], similarly as in the

previous paragraph.

Finally, let m be the number of single vertex components. Therefore C contains exactly 2n− (k+ l +m)
edges on {0} × [2n], of which at least l are not contained in G. Hence the contribution of these edges to the

weight valG̃(C) is at most

valG̃(C ∩ E({0} × [2n])) ≤ 2n − (k + l + m)− l = 2n − k − 2l − m. (11)

Moreover, the cycle C contains exactly 2n − (k + l + m) edges on {1} × [2n] whose contribution to the

weight is

valG̃(C ∩ E({1} × [2n])) = 2n − (k + l + m). (12)

Finally, C contains 2(k + l + m) edges between the partitions {0} × [2n] and {1} × [2n], all of which have

weight at most 2. In fact, at each of the m single vertex components in {0} × [2n], only one of the edges can

be of the form {(0, j), (1, j)}, the other edge must have weight 0. Therefore the contribution of the edges

between the partitions is at most

valG̃(C ∩ E({0} × [2n], {1} × [2n]) ≤ 2[2(k + l + m)− m] = 4k + 4l + 2m. (13)

Summing up Eqs. (11), (12) and (13), we obtain the following upper bound on the weight of C:

valG̃(C) ≤ 4n + 2k + l ≤ 5n + k ≤ 5n + ν(G).
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Together with Eq. (10), this proves maxC valG̃(C) = 5n + ν(G). Thus the valG̃ and CM reduce the max-

imum matching problem to the maximum Hamiltonian cycle problem with β(G) = G̃, γ(M) = CM and

µ(G) = 5n. Hence the LP formulation complexity of the maximum Hamiltonian cycle problem is 2Ω(n) by

Proposition 4.2.

5 Inapproximability of VertexCover and IndependentSet

We will now establish inapproximability results for VertexCover and IndependentSet via reduction from

MaxCUT, even for bounded degree subgraphs. These two problems are of particular interest, answering a

question of Singh [2010] and Chan et al. [2013] as well as a weak version of sparse graph conjecture from

Braun et al. [2014a]. Moreover, VertexCover is not of the CSP type, therefore the framework in Chan et al.

[2013] does not apply. Using our reduction framework, recently these results have been further improved in

Bazzi et al. [2015] to obtain (2− ε)-inapproximability for VertexCover (which is optimal) and inapproxima-

bility of IndependentSet within any constant factor.

Formulation complexity depend heavily on how a problem is formulated. For example, the model of

IndependentSet used here is motivated by its combinatorial counterpart, and captures standard LPs, like the

ones coming from Sherali–Adams hierarchies. In this model, IndependentSet for a given graph G is approx-

imable within a factor of 2
√

n with a polynomial sized LP, see Bazzi et al. [2015]. However, the formulation

complexity of another model of the maximum independent set problem with an approximation factor n1−ε is

subexponential, rephrasing Fiorini et al. [2012] (see also Braun et al. [2012], Braverman and Moitra [2013],

Braun et al. [2014c]), see Section 3.1.2. In this model the instances come from the polytope world, and are

actually formal linear combinations of several graphs, and this makes the difference.

The current best PCP bound for bounded degree IndependentSet can be found in Chan [2013]. See also

Austrin et al. [2009] for inapproximability results assuming the Unique Games Conjecture.

The minimization problem VertexCover(G) of a graph G asks for a minimum weighted vertex cover of

G. We consider the non-uniform model with instances being the induced subgraphs of G.

Definition 5.1 (VertexCover). Given a graph G, the problem VertexCover(G) has all vertex covers S of

G as feasible solutions, and instances all induced subgraphs H of G. The problem VertexCover(G) is the

minimization problem with its objective function having values valH(S) := |S ∩ V(H)|. The problem

VertexCover(G)∆ is the restriction of instances to induced subgraphs H, with maximum degree at most ∆.

Note that for every vertex cover S of G, any induced subgraph H has S ∩ V(H) as a vertex cover, and

all vertex covers of H are of this form. In particular, min valH is the minimum size of a vertex cover of H.

The problem IndependentSet asks for maximum sized independent sets in graphs. As independent sets

are exactly the complements of vertex covers, it is natural to use a formulation similar to VertexCover.

Definition 5.2 (IndependentSet). Given a graph G, the maximization problem IndependentSet(G) has all

independent sets S of G as feasible solutions, and instances are all induced subgraphs H of G. The objective

function is valH(S) := |S ∩ V(H)|. The subproblem IndependentSet(G)∆ is the restriction to all induced

subgraphs H with maximum degree at most ∆.

For both VertexCover and IndependentSet, we shall use the following conflict graph G for a fixed n,

similar to Feige et al. [1991]; we might think of G as a universal graph encoding all possible instances.

Let the vertices of G be all partial assignments σ of two variables xi and xj satisfying the 2-XOR clause

xi ⊕ xj = 1. Two vertices σ1 and σ2 are connected if and only if the assignments σ1 and σ2 are incompatible

(i.e., assign different truth values to some variable), see Figure 2 for an illustration. As we are considering

problems for optimizing size of vertex sets, it is natural to define the size of an instance, i.e., a subgraph K,

as the size of its vertex set |V(K)|.
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(1, 0)

(0, 1)

x1 ⊕ x2 = 1

(1, 0)

(0, 1)

x1 ⊕ x3 = 1

Figure 2: Conflict graph of 2-XOR clauses. We include edges between all conflicted partial assignment to variables.

Theorem 5.3. For every ε > 0 there is a ∆ such that for infinitely many m, there is a graph G with |V(G)| =
m such that fc+(VertexCover(G)∆, 1/2 + Θ(ε), 3/4 − Θ(ε)) ≥ m

Ω(
log m

log log m )
showing inapproximability

within a factor of 3
2 −Θ(ε), and also fc+(IndependentSet(G)∆, 1/2−Θ(ε), 1/4+Θ(ε)) ≥ m

Ω( log m
log log m )

es-

tablishing inapproximability factor 1
2 +Θ(ε). Assuming Conjecture 4.6, we also have fc⊕(VertexCover(G)∆, 1/2+

Θ(ε), 1 − cGW/2 − Θ(ε)) and fc⊕(IndependentSet(G)∆, 1/2 − Θ(ε), cGW/2 + Θ(ε)) are superpolyno-

mial, achieving inapproximability factors 2 − cGW − Θ(ε) and cGW + Θ(ε), respectively.

Proof. We shall use the graph G constructed above, which has m = 2(n
2) vertices. We reduce MaxCUT∆ to

VertexCover(G)2∆−1 using Corollary 4.4 with α = −1, µ = 2, τ1 = 1− ε, σ1 = 1/2+ ε. For demonstration

purposes, we shall write out the explicit guarantees below. Recall that for a graph K on [n] with maximum

degree at most ∆, the guarantees for MaxCUT are CMaxCUT(K) = (1− ε) |E(K)| and SMaxCUT(K) = (1/2+
ε) |E(K)|. For VertexCover(G)2∆−1, we have the following explicit guarantees:

CVertexCover(G)(H) = (1/2 + ε/2) |V(H)| ,

SVertexCover(G)(H) = (3/4 − ε/2) |V(H)| .

Let H(K) be the induced subgraph of G on the set V(H(K)) :=
{

σ
∣∣ {i, j} ∈ E(K), dom σ = {xi, xj}

}

of all partial assignments σ which assign values to variables xi, xj corresponding to an edge {i, j} of K. In

particular, |V(H(K))| = 2 |E(K)|, as there are two partial assignments per each edge {i, j}.

Note that for every partial assignment σ to xi and xj, there are 2∆ − 1 partial assignments incompatible

with it in V(H(K)): exactly one assignment for every edge of K incident to i or j. Thus the maximum degree

of H(K) is at most 2∆ − 1.

We now define the two maps providing the reduction. Let β(K) := H(K). For a total assignment s, let

γ(s) :=
{

σ
∣∣ σ * s

}
be the set of partial assignments incompatible with s; this is clearly a vertex cover.

It remains to show that this is a reduction. For every edge {i, j} ∈ K, there are two partial assignments

σ to xi and xj satisfying xi ⊕ xj = 1. If s satisfies xi ⊕ xj = 1, i.e., {i, j} is in the cut induced by s, then

exactly one of the σ is compatible with s, otherwise both of the assignments are incompatible. This provides

valVertexCover
H(K) [γ(s)] =

∣∣{σ
∣∣ σ * s

}∣∣ = 2 |E(K)| − valMaxCUT
K (s).

To compare optimum values, note that for any vertex cover S of G, the partial assignments {σ | σ /∈ S} oc-

curring in the complement of S are compatible (as the complement forms a stable set), hence there is a global

assignment s of x1, . . . , xn compatible with all of them. In particular, γ(s) ⊆ S, hence valVertexCover
H(K) (S) ≥

valMaxCUT
K [γ(s)], so that we obtain

min valVertexCover
H(K) = min

s
valVertexCover

H(K) [γ(s)] = 2 |E(K)| − max valMaxCUT
K

≥ 2 |E(K)| − (1/2 + ε) |E(K)| = (3/4 − ε/2) |V(H(K))| = SVertexCover(H(K)).
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Finally, it is easy to verify that CVertexCover(H(K)) = 2 |E(K)| − CMaxCUT(K). This finishes the proof that β

and γ define a reduction to VertexCover(G)∆. Hence by Corollary 4.4 (or Proposition 4.2), using m = 2(n
2),

we have fc+(VertexCover(G)2∆−1, 3/2 − 2ε, 1 + 2ε) = n
Ω( log n

log log n ) = m
Ω( log m

log log m )
for infinitely many n.

For IndependentSet, we apply a similar reduction from MaxCUT∆ to IndependentSet(G)2∆−1. We define

β(K) := H(K) as above and we set γ(s) := {σ | σ ⊆ s} to be the set of partial assignments compatible with

the total assignment s, this is clearly an independent set, containing exactly one vertex per satisfied clause. In

particular, valH(K)[γ(s)] = valK(s). The rest of the argument is analogous to the case of VertexCover(G)∆,

and hence omitted. Now the parameters for Corollary 4.4 are α = 1, µ = 0, τ1 = 1 − ε, and σ1 = 1/2 + ε.

The SDP inapproximability factors follow similarly, by replacing 1
2 with cGW .

6 Inapproximability of CSPs

In this section we present example reductions for minimum and maximum constraint satisfaction problems.

The results for binary Max-CSPs, (for CSPs as defined in Definition 2.2) could also be obtained in the LP

case from Chan et al. [2013] by combination with the respective Sherali–Adams/Lasserre gap instances Lee

[2014]. For simplicity of exposition, we reduce from Max-2-XOR, or sometimes MaxCUT, however by reduc-

ing from the subproblem MaxCUT∆, we immediately obtain the results for bounded occurrence of literals,

with ∆ depending on the approximation factor.

6.1 Max-MULTI-k-CUT: a non-binary CSP

The Max-MULTI-k-CUT problem is interesting on its own being a CSP over a non-binary alphabet, thus the

framework in Chan et al. [2013] does not readily apply. Note that Max-MULTI-k-CUT is APX-hard, as it

contains MaxCUT. The current best PCP inapproximability bound 1 − 1/(34k) + ε is given by Kann et al.

[1997].

Here we omit the definition of non-binary CSPs, where the feasible solutions are no longer two-valued

assignments, and restrict to Max-MULTI-k-CUT.

Definition 6.1 (Max-MULTI-k-CUT). For fixed positive integers n and k, the problem Max-MULTI-k-CUT has

(i) feasible solutions: all partitions of [n] into k sets;

(ii) instances: all graphs G with V(G) ⊆ [n].

(iii) objective function: for a graph G and a partition p of [n], let valG(p) be the number of edges of G
whose end points lie in different cells of p.

This differs from a binary CSP only by having a different kind of feasible solutions. Hence it is still

natural to define the size of an instance, i.e., graph G, as the number of clauses, i.e, number of edges |E(G)|.

Corollary 6.2. Let k ≥ 3 be a fixed integer. Then for infinitely many n,

fc+(Max-MULTI-k-CUT, c(k) + 1 − ε, c(k) + 1/2 + ε) ≥ n
Ω
(

log n
log log n

)

achieving inapproximability factor
2c(k)+1
2c(k)+2

+ Θ(ε), where

c(k) :=

(
k − 2

2

)((
k + 2

2

)
− 3

)
+ 2(k − 2)

((
k + 2

2

)
− 3

)
.
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1

2

G

-3

(1, 2; 1; (1))

(1, 2; 1; (2))

(1, 2; 1; 1)

(1, 3; 1; (1))

(1, 3; 1; 1)

(1, 3; 1; (−3))

(2, 3; 1; 1)

(2, 3; 1; (2))

(2, 3; 1; (−3))

Figure 3: Reduction between MaxCUT and Max-MULTI-k-CUT. Here k = 3 and G = K2. The dashed edge denotes the edge of G,

which is not contained in the reduction. The squares are the copies of almost complete graphs added. The partition is represented

by coloring the vertices: blue and green are the original cells on [2], and red is an additional color.

Assuming Conjecture 4.6, we also have that fc⊕(Max-MULTI-k-CUT, c(k) + 1 − ε, c(k) + cGW + ε) is su-

perpolynomial, showing inapproximability factor

c(k) + cGW

c(k) + 1
+ Θ(ε).

Proof. We reduce MaxCUT to Max-MULTI-k-CUT. The reduction is essentially identical to Papadimitriou and Yannakakis

[1991], however we have to verify its compatibility with our reduction mechanism. To this end it will suffice

to define the reduction maps β and γ.

Given a graph G, we construct a new graph β(G) as illustrated in Figure 3. Consider the vertices of G
together with k − 2 new vertices −k, . . . ,−3. For every pair of vertices i, j we add nij copies of an almost

complete graph on k + 2 vertices, two of which are (i), (j), as follows.

First, let us determine the number nij of copies added. For i, j ∈ [n], we add one copy if i and j are

connected in G, and no copies otherwise. For i, j ∈ {−k, . . . ,−3} we add |E(G)| many copies. Finally, for

i ∈ [n] and j ∈ {−k, . . . ,−3} we add degG(i) many copies.

Now let us describe the copies themselves. Let us fix i, j and let x ∈ [nij] be an index of the copy. We

add k new vertices (i, j; x; (i)), (i, j; x; (j)), and (i, j; x; t) for t = 1, . . . , k − 2. We connect every pair of

the k+ 2 vertices i, j, (i, j; x; (i)), (i, j; x; (j)), (i, j; x; t) with an edge except the pairs {i, (i, j; x, (i))}, {i, j},

and {(i, j; x, j), (j)}. This is done for all i, j, x, and we let β(G) be the graph so obtained.

By construction, β(G) has

|E(β(G))| =
[(

k + 2

2

)
− 3

]
· ∑

ij

nij =

[(
k + 2

2

)
− 3

] (
1 + 2(k − 2) +

(
k − 2

2

))
|E(G)|
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many edges, and its vertex set V(β(G)) is contained in the set

[n] ·∪ {−k, . . . ,−3} ·∪
{
(i, j; x; t)

∣∣−k ≤ i < j ≤ 3, x ∈ [nij], t ∈ [k]
}

having size polynomial in n:

m := n + (k − 2) + k

[(
k − 2

2

)
+ 2(k − 2) + 1

](
n

2

)
.

vertices.

We define γ to map every 2-partition p of [n] into a k-partition of β(G) by extending it as follows. Let p1

and p2 denote the cells of p. Elements of p1 and p2 go to the first and second cell of the γ(p), respectively.

The new vertices −i added for i = −k, . . . ,−3 go to the i-th cell. Vertices (i, j; x; (i)) and (i, j; x; (j)) go to

the cell of i and j, respectively. For fixed i, j, x the vertices (i, j; x; t) for t = 1, . . . , k − 2 are put into k − 2
different cells, which do not contain (i, j; x; (i)) or (i, j; x; (j)). This is possible as there are k different cells.

By Papadimitriou and Yannakakis [1991],

valMax-MULTI-k-CUT
β(G) [γ(p)] = valMaxCUT

G (p) + µ(G),

max valMax-MULTI-k-CUT
β(G) = max valMaxCUT

G +µ(G),

where

µ(G) = |E(β(G))| − |E(G)| =
[(

k − 2

2

)
+ 2(k − 2)

] [(
k + 2

2

)
− 3

]

︸ ︷︷ ︸
c(k)

|E(G)| .

Therefore we obtain a reduction from MaxCUT on n vertices to Max-MULTI-k-CUT on m vertices, with m
polynomially bounded in n. Combining Corollary 4.4 with Theorem 4.5 in the LP case with parameters

α = 1, µ = c(k), τ1 = 1 − ε, σ1 = 1/2 + ε, we obtain that fc+(Max-MULTI-k-CUT, c(k) + 1 − ε, c(k) +

1/2 + ε) and is m
Ω(

log m
log log m ) = n

Ω(
log n

log log n ). The SDP case follows analogously from Conjecture 4.6 using

σ1 = cGW/2 + ε.

6.2 Inapproximability of general 2-CSPs

First we consider general CSPs with no restrictions on constraints, for which the exact approximation factor

can be easily established. We present the hardness of LP approximation here. The LP with matching factor

can be found in Trevisan [1998].

Definition 6.3 (Max-2-CSP and Max-2-CONJSAT). The problem Max-2-CSP is the CSP on variables x1, . . . , xn

with constraint family C2CSP consisting of all possible constraints depending on at most two variables. The

problem Max-2-CONJSAT is the CSP with constraint family consisting of all possible conjunctions of two

literals.

Corollary 6.4. For every ε > 0 and infinitely many n, we have fc+(Max-2-CSP, 1− ε, 1/2+ ε) ≥ n
Ω( log n

log log n )

achieving inapproximability factor 1
2 + Θ(ε), where n is the number of variables of Max-2-CSP. Similarly,

fc+(Max-2-CONJSAT, 1/2 − ε, 1/4 + ε) ≥ n
Ω(

log n
log log n ) establishing inapproximability factor 1

2 + Θ(ε) for

infinitely many n. Moreover, in the SDP case, assuming Conjecture 4.6, we have fc⊕(Max-2-CSP, 1 −
ε, cGW + ε) and fc⊕(Max-2-CONJSAT, 1/2 − ε, cGW/2 + ε) are superpolynomial showing inapproxima-

bility factor cGW + Θ(ε).
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Proof. We identify Max-2-XOR as a subproblem of Max-2-CSP: Every 2-XOR clause is evidently a boolean

function of 2 variables. So restricting the instances of Max-2-CSP to 2-XOR clauses with 0/1 weights gives

Max-2-XOR. Now with Theorem 4.5, the result follows.

The claim about Max-2-CONJSAT follows via the reduction from Max-2-CSP to Max-2-CONJSAT in

Trevisan [1998]. We prefer to reduce from Max-2-XOR instead for easier control over the approximation

guarantees. The idea is to write each clause C in disjunctive normal form, and replace C with the set S(C) of

conjunctions in its normal form, one conjunction for every assignment satisfying C. In particular, for 2-XOR

clauses S(xi ⊕ xj = 1) = {xi ∧ ¬xj,¬xi ∧ xj} and S(xi ⊕ xj = 0) = {xi ∧ xj,¬xi ∧ ¬xj}. Therefore

formally, a set of clauses L is mapped to β(L) =
⋃

C∈L S(C). Every assignment of variables is mapped

to themselves, i.e., γ is the identity. We have valβ(L)(s) = valL(s) and |β(L)| = 2 |L|. Now the claim

follows.

6.3 Max-2-SAT and Max-3-SAT inapproximability

We now establish an LP-inapproximability factor of 3
4 + ε for Max-2-SAT via a direct reduction from MaxCUT

and an SDP-inapproximability factor of about 0.93928+ ε assuming Conjecture 4.6. Note that Goemans and Williamson

[1994] show the existence of an LP that achieves a factor of 3
4 , so that our estimation is tight in the LP case.

Moreover, in Feige and Goemans [1995] it is shown that Max-2-SAT can be approximated with a small SDP

within a factor of 0.931 leaving a (conditional) gap of about 0.08.

Obviously, the same factor applies for Max-k-SAT with k ≥ 2, too. Note that we allow clauses with

less than k literals in Max-k-SAT, which is in line with the definition in Schoenebeck [2008] to maintain

compatibility. Note that [Lee et al., 2014a, Theorem 1.5] establishes 7/8 + ε inapproximability for Max-3-

SAT even in the SDP case.

Definition 6.5 (Max-k-SAT). For fixed n, k ∈ N, the problem Max-k-SAT is the CSP on the set of variables

{x1, . . . , xn}, where the constraint family C is the set of all sat clauses which consist of at most k literals.

Corollary 6.6. For infinitely many n, fc+(Max-2-SAT, 1− ε, 3/4+ ε) ≥ n
Ω(

log n
log log n ) and fc+(Max-3-SAT, 1−

ε, 3/4 + ε) ≥ n
Ω( log n

log log n ) achieving inapproximability factor 3
4 + Θ(ε), where n is the number of vari-

ables. In the case of SDPs, assuming Conjecture 4.6, we have fc⊕(Max-2-SAT, 1 − ε, (1 + cGW)/2) and

fc⊕(Max-3-SAT, 1− ε, (1+ cGW)/2) are both superpolynomial establishing inapproximability factor
1+cGW

2 +
Θ(ε) ≈ 0.93928 + Θ(ε).

Proof. We reduce MaxCUT to Max-2-SAT. For a 2-XOR clause l = (xi ⊕ xj = 1) with i, j ∈ [n], we define

two auxiliary constraints C1(l) = (xi ∨ xj) and C2(l) = (x̄i ∨ x̄j). Let β(L) := {C1(l), C2(l) | l ∈ L}
for a set of 2-XOR clauses L. We choose γ to be the identity map. Observe that whenever l is satisfied by

a partial assignment s then both C1(l) and C2(l) are also satisfied by s, otherwise exactly one of C1(l) and

C2(l) is satisfied. Hence we obtain a reduction from MaxCUT to Max-2-SAT. Together with Theorem 4.5

and Proposition 4.2 the result follows. The statement for Max-3-SAT follows, as Max-2-SAT is a subproblem

of Max-3-SAT.

Max-DICUT inapproximability

Problem Max-DICUT asks for a maximum sized cut in a directed graph G, i.e., partitioning the vertex set

V(G) into two parts V0 and V1, such that the number of directed edges (i, j) ∈ E(G) going from V0 to V1,

i.e., i ∈ V0 and j ∈ V1 are maximal. We use a formulation similar to MaxCUT.

Definition 6.7 (Directed Cut). For a fixed n ∈ N, the problem Max-DICUT is the CSP with constraint family

CDICUT = {¬xi ∧ xj | i, j ∈ [n], i 6= j}.
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We obtain (1/2 + ε)-inapproximability via the standard reduction from undirected graphs, by replacing

every edge with two, namely, one edge in either direction. The inapproximability factor is tight as the LP in

[Trevisan, 1998, Page 84, Eq. (DI)], is 1
2 -approximate for maximum weighted directed cut. In the SDP case

we obtain cGW + ε-inapproximability assuming Conjecture 4.6 and in Feige and Goemans [1995] it is shown

that Max-DICUT can be approximated with a small SDP within a factor of 0.859 leaving a (conditional) gap

of about 0.02.

Corollary 6.8. For infinitely many n, we have fc+(Max-DICUT, 1/2 − ε, 1/4 + ε) ≥ n
Ω(

log n
log log n ) achieving

inapproximability factor 1/2 + Θ(ε). Assuming Conjecture 4.6, in the SDP case fc⊕(Max-DICUT, 1/2 −
ε, cGW/2 + ε) is superpolynomial establishing inapproximability factor cGW + Θ(ε).

Proof. The proof is analogous to that of Corollaries 6.4 and 6.6, hence we point out only the differences We

reduce MaxCUT to Max-DICUT, but now replace every clause l = (xi ⊕ xj = 1) with C1(l) = ¬xi ∧ xj and

C2(l) = xi ∧¬xj. Now observe that whenever xi ⊕ xj = 1 is satisfied by a partial assignment s then exactly

one of ¬xi ∧ xj and xi ∧ ¬xj is also satisfied by s. If on the other hand xi ⊕ xj is not fulfilled by s, then

neither ¬xi ∧ xj nor xi ∧ ¬xj are fulfilled. The remainder of the proof is the same as in Corollary 6.6.

6.4 Minimum constraint satisfaction

In this section we examine minimum constraint satisfaction problems, a variant of constraint satisfaction

problems, where the objective is not to maximize the number of satisfied constraints, but to minimize the

number of unsatisfied constraints. This is equivalent to maximizing the number of satisfied constraints,

however, the changed objective function yields different approximation factors due to the change in the

magnitude of the optimum value; this is in analogy to the algorithmic world. We consider only Min-2-

CNFDeletion and MinUnCUT from Agarwal et al. [2005], which are complete in their class in the algorith-

mic hierarchy; our technique applies to many more problems in Papadimitriou and Yannakakis [1991]. The

problem Min-2-CNFDeletion is of particular interest here, as it is considered to be the hardest minimum CSP

with nontrivial approximation guarantees (see Agarwal et al. [2005]). We start with the general definition of

minimum CSPs.

Definition 6.9. The minimum Constraint Satisfaction Problem on variables x1, . . . , xn with constraint family

C = {C1, . . . , Cm} is the minimization problem with

(i) feasible solutions all 0/1 assignments to x1, . . . , xn;

(ii) instances all nonnegative weightings w1, . . . , wm of the constraints C1, . . . , Cm;

(iii) objective functions weighted sum of negated constraints, i.e. valw1,...,wm(x1, . . . , xn) = ∑i wi[1 −
Ci(x1, . . . , xn)].

The goal is to minimize the objective function, i.e., the weight of unsatisfied constraints.

As mentioned above, we consider two examples.

Example 6.10 (Minimum CSPs). The problem Min-2-CNFDeletion is the minimum CSP with constraint fam-

ily consisting of all disjunction of two literals, as in Max-2-SAT. The problem MinUnCUT is the minimum

CSP with constraint family consisting of all equations xi ⊕ xj = b with b ∈ {0, 1}, as in Max-2-XOR.

We are ready to prove LP inapproximability bounds for these problems. Instead of the reductions in

Chlebík and Chlebíková [2004], we use direct, simpler reductions from MaxCUT and here we provide reduc-

tions for general weights. Note that the current best known algorithmic inapproximability for Min-2-CNFDeletion

is 8
√

5 − 15 − ε ≈ 2.88854 − ε by Chlebík and Chlebíková [2004]. Assuming the Unique Games Con-

jecture, Chawla et al. [2006] establish that Min-2-CNFDeletion cannot be approximated within any constant
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factor and our LP inapproximability factor coincides with this one. The problem MinUnCUT is known to

be SNP-hard (see Papadimitriou and Yannakakis [1991]) however the authors are not aware of the strongest

known factor. We refer the reader to Khanna et al. [2001] for a classification of all minimum CSPs.

Theorem 6.11. For every ε > 0 and infinitely many n, we have fc+(Min-2-CNFDeletion, ε, 1/4 − ε) =

n
Ω(

log n
log log n ) and fc+(MinUnCUT, ε, 1/2 − ε) = n

Ω(
log n

log log n ) establishing inapproximability within any con-

stant factor, where n is the number of variables. Assuming Conjecture 4.6, even in the SDP case we have

that fc⊕(Min-2-CNFDeletion, ε, (1 − cGW)/2 − ε) and fc⊕(MinUnCUT, ε, 1 − cGW − ε) are superpolyno-

mial showing inapproximability within any constant factor.

Proof. We reduce from MaxCUT to Min-2-CNFDeletion similar to the previous reductions: assignments are

mapped to themselves, i.e., γ is the identity. Under β every clause Cℓ is replaced with two disjunctive clauses

Cℓ(1) and Cℓ(2), both inheriting the weight wℓ of Cℓ, i.e., valMin-2-CNFDeletion
β(w1,...,wm)

(x1, . . . , xn) = ∑ℓ wℓ[(1 −
Cℓ(1)) + (1 − Cℓ(2))].

For Cℓ = (xi ⊕ xj = 1), we let Cℓ(1) := xi ∨¬xj and Cℓ(2) := ¬xi ∨ xj. Note that if Cℓ is unsatisfied,

then both of Cℓ(1) and Cℓ(2) are satisfied, and if Cℓ is satisfied, then exactly one of Cℓ(1) and Cℓ(2) is

satisfied. Therefore valMin-2-CNFDeletion
β(w1,...,wm)

= ∑ℓ wℓ − valMaxCUT
w1,...,wm

wℓ. This provides the desired lower bound.

For MinUnCUT the reduction is similar but simpler, as we replace every clause C with itself.

7 From matrix approximation to problem approximations

We will now explain how a nonnegative matrix with small nonnegative rank (or semidefinite rank) that is close

to a slack matrix of a problem P of interest can be rounded to an actual slack matrix with a moderate increase

in nonnegative rank (or semidefinite rank) and error. This argument is implicitly contained in Rothvoß [2011],

Briët et al. [2014] for the linear and semidefinite case respectively. In some sense we might want to think

of this approach as an interpolation between a slack matrix (which corresponds to P ) and a close-by matrix

of low nonnegative rank (or semidefinite rank) that does not correspond to any optimization problem. The

result is a low nonnegative rank (or semidefinite rank) approximation of P with small error.

We will need the following simple lemma. Recall that the exterior algebra of a vector space V is the

R-algebra generated by V subject to the relations v2 = 0 for all v ∈ V. As is customary, the product in

this algebra is denoted by ∧. The subspace of homogeneous degree-k elements (i.e., linear combination of

elements of the form v1 ∧ · · · ∧ vk with v1, . . . , vk ∈ V) is denoted by
∧k V. Recall that for k = dim V, the

space
∧k V is one dimensional and is generated by v1 ∧ · · · ∧ vk for any basis v1, . . . , vk of V.

Lemma 7.1. Let M ∈ Rm×n be a real matrix of rank r. Then there are column vectors a1, . . . , ar ∈ Rm

and row vectors b1, . . . , br ∈ Rn with M = ∑i∈[r] aibi. Moreover, ‖ai‖∞ ≤ 1 and ‖bi‖∞ ≤ ‖M‖∞ for all

1 ≤ i ≤ r.

Proof. Consider the r dimensional vector space V spanned by all the rows M1, . . . , Mm of M and identify the

one dimensional exterior product
∧r V with R. Now choose r rows Mi1 , . . . , Mir

for which Mi1 ∧ · · · ∧ Mir

is the largest in absolute value in R. As the Mi together span V it follows that the largest value is non-zero.

Hence Mi1 , . . . , Mir
form a basis of V. Therefore any row Mk can be uniquely written as a linear combination

of the basis elements:

Mk = ∑
j∈[r]

ak,j Mij
. (14)

Fixing j ∈ [r] and taking exterior products with the Mil
where l 6= j and both side we obtain

Mi1 ∧ . . . ∧ Mij−1
∧ Mk ∧ Mij+1

∧ . . . ∧ Mir
= ak,j · Mi1 ∧ . . . ∧ Mir

,

26



using the vanishing property of the exterior product. By maximality of Mi1 ∧ . . . ∧ Mir
, it follows that

|ak,j| ≤ 1. We choose ak :=
[ ak,1

...
ak,r

]
, and thus we have ‖ak‖∞ ≤ 1. Moreover choose bj := Mij

, so that

‖bj‖∞ ≤ ‖M‖∞ holds. Finally, Eq. (14) can be rewritten to M = ∑j∈[r] ajbj, finishing the proof.

For a vector a we can decompose it into its positive and negative part so that a = a+− a− with a+a− = 0.

Let |a| denote the vector obtained from a by replacing every entry with its absolute value. Note that a+, a−,

and |a| are nonnegative vectors and |a| = a+ + a−. Furthermore their ℓ∞-norm is at most ‖a‖∞ .

Theorem 7.2. Let P be an optimization problem with (C, S)-approximate slack matrix M and let M̃ be a

nonnegative matrix. Then for the adjusted guarantee C′ for P defined as

C′( f ) := C( f ) + (rank M + rank M̃)‖M̃ − M‖∞ if P is a maximization problem, and

C′( f ) := C( f )− (rank M + rank M̃)‖M̃ − M‖∞ if P is a minimization problem,

we have

fc+(P , C′, S) ≤ rankLP M̃ + 2(rank M + rank M̃) and

fc⊕(P , C′, S) ≤ rankSDP M̃ + 2(rank M + rank M̃).

Proof. We prove the statement for maximization problems; the minimization case follows similarly. The

proof is based on the vector identity

∑
i∈[k]

|ai|b − ∑
i∈[k]

aibi = ∑
i∈[k]

a+i (b − bi) + ∑
i∈[k]

a−i (b + bi). (15)

In our setting, the ai, bi with i ∈ [k] will arise from the (not necessarily nonnegative) factorization of

M̃ − M, obtained by applying Lemma 7.1, i.e., we have

M̃ − M = ∑
i∈[k]

aibi, (16)

where ‖ai‖∞ ≤ 1 and ‖bi‖∞ ≤ ‖M‖∞ for i ∈ [k] with k ≤ rank(M̃ − M) ≤ rank M + rank M̃.

Furthermore, define b := ‖M̃ − M‖∞1 to be the row vector with all entries equal to ‖M̃ − M‖∞1.

Substituting these values into (15), using Eq. (16) we obtain after rearranging

N := ∑
i∈[k]

|ai|b + M = M̃ + ∑
i∈[k]

a+i (b − bi) + ∑
i∈[k]

a−i (b + bi),

so that we can conclude

rankLP N ≤ rankLP M̃ + 2k ≤ rankLP M̃ + 2(rank M + rank M̃), (17)

and similarly

rankSDP N ≤ rankSDP M̃ + 2k ≤ rankSDP M̃ + 2(rank M + rank M̃). (18)

It remains to relate N to the (C′, S)-approximate slack matrix of P . By definition, the entries of N are

N( f , s) = ∑
i∈[k]

|ai( f )| · ‖M̃ − M‖∞ + C( f )

︸ ︷︷ ︸
:= f ∗≤C′( f )

− val f (s),
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where ai( f ) is the f -entry of ai. Furthermore, as ‖ai‖∞ ≤ 1 and k ≤ rank M + rank M̃, we have f ∗ ≤
C′( f ). Thus the (C′, S)-approximate slack matrix M′ of P looks like

M′( f , s) = N( f , s) + (C′( f )− f ∗),

and as f ∗ ≤ C′( f ), we have rankLP M′ ≤ rankLP N and rankSDP M′ ≤ rankSDP N, establishing the

claimed complexity bounds due to (17) in the LP case and (18) in the SDP case.

A possible application of Theorem 7.2 is to ‘thin-out’ a given factorization of a slack matrix to obtain an

approximation with low nonnegative rank. The idea is that if a nonnegative matrix factorization contains a

large number of factors that contribute only very little to each of the entries, then we can simply drop those

factors, significantly reduce the nonnegative rank, and obtain a very good approximation of the original op-

timization problem. Theorem 7.2 is then used to turn the approximation of the matrix into an approximation

of the original problem of interest.

Also, it is possible to obtain low rank approximations of combinatorial problems sampling rank-1 factors

proportional to their ℓ1-weight as done in the context of information-theoretic approximations in Braun et al.

[2013]. However, the obtained approximations tend to be too weak to be of interest.

8 Final Remarks

We conclude with the following remarks:

(i) Our reduction mechanism works for both LPs and SDPs alike. Unfortunately, there are few inapproxima-

bility results for SDPs (such as the one in Lee et al. [2014a]), so that our SDP inapproximability factors

are conditional on Conjecture 4.6, which serves as a blackbox here.

(ii) We expect that via an appropriate reduction one can establish LP inapproximability of the TSP, however

the current reductions, e.g., in [Engebretsen and Karpinski, 2001, §2] and [Karpinski et al., 2013, §6],

cannot be used as they translate feasible solutions depending on the objective functions.

(iii) Our reduction could also establish high formulation complexity for problems in P by reducing from the

matching problem.
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