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Abstract

The randomized version of the Kaczmarz method for the solution of
linear systems is known to converge linearly in expectation. In this work
we extend this result and show that the recently proposed Randomized
Sparse Kaczmarz method for recovery of sparse solutions, as well as many
variants, also converges linearly in expectation. The result is achieved in
the framework of split feasibility problems and their solution by random-
ized Bregman projections with respect to strongly convex functions. To
obtain the expected convergence rates we prove extensions of error bounds
for projections. The convergence result is shown to hold in more gen-
eral settings involving smooth convex functions, piecewise linear-quadratic
functions and also the regularized nuclear norm, which is used in the area
of low rank matrix problems. Numerical experiments indicate that the
Randomized Sparse Kaczmarz method provides advantages over both the
non-randomized and the non-sparse Kaczmarz methods for the solution
of over- and under-determined linear systems.

Keywords: randomized Kaczmarz method, linear convergence, Bregman pro-
jections, sparse solutions, split feasibility problem, error bounds
AMS classification: 65F10, 68W20, 90C25

1 Introduction

In this paper we analyse a randomized variant of the recently proposed Sparse
Kaczmarz method to recover sparse solutions of linear systems. Let A ∈ Rm×n
be a matrix with rows aTi ∈ Rn and b ∈ Rm be such that the linear system

∗Institut für Mathematik, Carl von Ossietzky Universität Oldenburg, 26111 Oldenburg,
Germany, frank.schoepfer@uni-oldenburg.de
†Institute for Analysis and Algebra, TU Braunschweig, 38092 Braunschweig, Germany,

d.lorenz@tu-braunschweig.de, fon +49-531-391-7423, fax +49-531-391-7414. The work of
D.L. was partially supported by the National Science Foundation under Grant DMS-1127914
to the Statistical and Applied Mathematical Sciences Institute. Any opinions, findings, and
conclusions or recommendations expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science Foundation.

1

ar
X

iv
:1

61
0.

02
88

9v
1 

 [
m

at
h.

O
C

] 
 1

0 
O

ct
 2

01
6



Ax = b is consistent. For the standard Kaczmarz method [24] one goes through
the indices of the rows cyclically, and projects a given iterate onto the solution
space of this row. For i = mod(k − 1,m) + 1 the method iterates

xk+1 = xk −
〈ai , xk〉 − bi
‖ai‖22

· ai. (1)

It is known that the method converges to the minimum norm solution x̂ of
Ax = b when it is initialized with x0 = 0, but the speed of convergence is
not simple to quantify, and especially, depends on the ordering of the rows, see
e.g. [20]. The situation changes if one considers a randomization such that in
each step one chooses a row of the system at random. In the seminal paper [41]
it has been shown that a choice of row i with probability ‖ai‖22/‖A‖2F leads to
a linear convergence rate in expectation,

E
[
‖xk+1 − x̂‖22

]
≤ (1− σ2

min

‖A‖2F
) · E

[
‖xk − x̂‖22

]
,

where ‖A‖2F is the Frobenius norm and σmin denotes the smallest positive sin-
gular value of A. Since then similar results have been obtained for randomized
Block Kaczmarz methods and systems of equalities and inequalities, see [9, 26,
31] and connections to stochastic gradient descent have been drawn [30].

In [27, 28] a variant of the Kaczmarz method has been proposed that pro-
duces sparse solutions. This Sparse Kaczmarz method uses two variables and
reads as

x∗k+1 = x∗k −
〈ai , xk〉 − bi
‖ai‖22

· ai

xk+1 = Sλ(x∗k+1)

(2)

with λ > 0 and the soft shrinkage function Sλ(x) = max{|x| − λ, 0} · sign(x).
It has been shown in [27] that the iterates xk converge to the solution of the
regularized Basis Pursuit problem,

min
x∈Rn

λ‖x‖1 + 1
2‖x‖22 s.t. Ax = b , (3)

see e.g. [15, 18, 21], and also [38] for explicit values of λ > 0 that guarantee exact
recovery of sparse solutions. But no convergence rate has been given. In [33]
sublinear convergence rates have been obtained for the Randomized Sparse Kacz-
marz method by identifying the iteration as a randomized coordinate gradient
descent method applied to the unconstrained dual of (3), see also [32, 42]. How-
ever, linear convergence could only be obtained by smoothing the objective func-
tion in (3), which results in an iteration that is slightly different from (2), and
need not solve (3). Here we will show that the Randomized Sparse Kaczmarz
method in fact converges linearly in expectation without smoothing. We use
the theoretical framework developed in [27], which treats the Sparse Kaczmarz
method as a special case of so-called Bregman projections for split feasibility
problems. Using this flexible framework we will show (sub-)linear convergence
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rates for a broad range of problems. Especially, linear rates are also obtained
for randomized iterations of the form

X∗k+1 = X∗k − 〈Ai , Xk〉−bi
‖Ai‖2F

·Ai
Xk+1 = Sλ(X∗k+1)

(4)

to solve the regularized nuclear norm optimization problem in the area of low
rank matrix problems,

min
X∈Rn1×n2

λ‖X‖∗ + 1
2‖X‖2F s.t. 〈Ai , X〉 = bi , i = 1, . . . ,m , (5)

where 〈A , X〉 = trace(AT · X) for two matrices A,X ∈ Rn1×n2 , and Sλ(X)
denotes the singular value thresholding operator, see eg. [14, 25, 34, 43].

In the next section we recall the basic properties of Bregman projections.
In section 3 we prove some error bounds which are crucial for the convergence
analysis of the method of randomized Bregman projections in section 4. The
special case of the Randomized Sparse Kaczmarz method is treated in section 5.
In the last section we report some numerical results illustrating the performance
of the Sparse Kaczmarz method with and without randomization, and also its
benefit for sparsity problems compared to the standard Kaczmarz method, even
in the case of overdetermined systems.

2 Basic notions

We recall some well known concepts and properties of convex functions, see [37],
and state basic assumption that will be used throughout the paper.

Let f : Rn → R be convex. Since f is assumed to be finite everywhere, it is
also continuous. By ∂f(x) we denote the subdifferential of f at x ∈ Rn,

∂f(x) = {x∗ ∈ Rn | f(y) ≥ f(x) + 〈x∗ , y − x〉 for all y ∈ Rn} ,

which is nonempty, compact and convex. Furthermore for all R > 0 we have

sup
x∈BR , x∗∈∂f(x)

‖x∗‖2 <∞ , where BR := {x ∈ Rn | ‖x‖2 ≤ R} .

Definition 2.1. The convex function f : Rn → R is said to be α-strongly convex
for some α > 0, if for all x, y ∈ Rn and x∗ ∈ ∂f(x) we have

f(y) ≥ f(x) + 〈x∗ , y − x〉+
α

2
· ‖y − x‖22 .

The convex conjugate function of f is f∗ : Rn → R,

f∗(x∗) = sup
x∈Rn

〈x∗ , x〉 − f(x) .
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Theorem 2.2. If f : Rn → R is α-strongly convex then the conjugate function
f∗ is differentiable with a 1/α-Lipschitz-continuous gradient, i.e.

‖∇f∗(x∗)−∇f∗(y∗)‖2 ≤
1

α
· ‖x∗ − y∗‖2 for all x∗, y∗ ∈ Rn.

Definition 2.3. A convex function f : Rn → R is called piecewise linear-
quadratic if there are finitely many polyhedral sets Fi ⊂ Rn, i ∈ I := {1, . . . , p},
whose union equals Rn, and relative to each of which f(x) is given by a convex
linear-quadratic function

f(x) = 1
2 · 〈x , Aix〉+ 〈ai , x〉+ αi , x ∈ Fi ,

with symmetric positive-semidefinite matrices Ai ∈ Rn×n, vectors ai ∈ Rn and
αi ∈ R. For x ∈ Rn we define If (x) := {i ∈ I |x ∈ Fi} and Fx :=

⋂
i∈If (x) Fi.

Note that each Fx is polyhedral and there are only finitely many different
sets Fx.

Theorem 2.4. If f : Rn → R is convex piecewise linear-quadratic then f∗ is
also convex piecewise linear-quadratic, and for all x ∈ Rn we have

∂f(x) = conv{Aix+ ai | i ∈ If (x)} .

2.1 Bregman distance

The concept of Bregman distance and projections goes back to Bregman [8]
and has been successfully used in optimization, see e.g. [2, 4, 10, 13, 40]. The
definitions and results in this and the next subsection are taken from [27].

Definition 2.5. Let f : Rn → R be strongly convex. The Bregman distance
Dx∗

f (x, y) between x, y ∈ Rn with respect to f and a subgradient x∗ ∈ ∂f(x) is
defined as

Dx∗

f (x, y) := f(y)− f(x)− 〈x∗ , y − x〉 = f∗(x∗)− 〈x∗ , y〉+ f(y) .

If f is differentiable then we have ∂f(x) = {∇f(x)} and hence we simply write
Df (x, y) = Dx∗

f (x, y).

Note that for f(x) = 1
2‖x‖22 we just have Df (x, y) = 1

2‖x − y‖22. In general
Df is not a distance function in the usual sense, as it need neither be symmetric,
nor does it have to obey a (quasi-)triangle inequality. Nevertheless it has some
distance-like properties which we state in the following lemma.

Lemma 2.6. Let f : Rn → R be α-strongly convex. For all x, y ∈ Rn and
x∗ ∈ ∂f(x), y∗ ∈ ∂f(y) we have

α

2
‖x− y‖22 ≤ Dx∗

f (x, y) ≤ 〈x∗ − y∗ , x− y〉 ≤ ‖x∗ − y∗‖2 · ‖x− y‖2
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and hence
Dx∗

f (x, y) = 0 ⇔ x = y.

For sequences xk and x∗k ∈ ∂f(xk) boundedness of D
x∗
k

f (xk, y) implies bounded-
ness of both xk and x∗k. If f has a L-Lipschitz-continuous gradient then we also
have Df (x, y) ≤ L

2 · ‖x− y‖22.

2.2 Bregman projections

Definition 2.7. Let f : Rn → R be strongly convex, and C ⊂ Rn be a
nonempty closed convex set. The Bregman projection of x onto C with respect
to f and x∗ ∈ ∂f(x) is the unique point Πx∗

C (x) ∈ C such that

Dx∗

f

(
x,Πx∗

C (x)
)

= min
y∈C

Dx∗

f (x, y) =: distx
∗

f (x,C)2 .

For differentiable f we simply write ΠC(x) and distf (x,C).

The notation for the Bregman projection does not capture its dependence
on the function f , which, however, will always be clear from the context. Note
that for f(x) = 1

2‖x‖22 the Bregman projection is just the orthogonal projection
onto C. To distinguish this case we denote the orthogonal projection by PC(x).
We point out that in this case distf (x,C)2 and the usual dist(x,C)2 differ by
a factor of 2, but we prefer this slight inconsistency to incorporating the factor
into the definition of distf . The Bregman projection can also be characterized
by a variational inequality.

Lemma 2.8 ([27, Lemma 2.2]). Let f : Rn → R be strongly convex. Then
a point x̂ ∈ C is the Bregman projection of x onto C with respect to f and
x∗ ∈ ∂f(x) iff there is some x̂∗ ∈ ∂f(x̂) such that one of the following equivalent
conditions is fulfilled

〈x̂∗ − x∗ , y − x̂〉 ≥ 0 for all y ∈ C
Dx̂∗

f (x̂, y) ≤ Dx∗

f (x, y)−Dx∗

f (x, x̂) for all y ∈ C .
We call any such x̂∗ an admissible subgradient for x̂ = Πx∗

C (x).

Bregman projections onto affine subspaces and half-spaces can be computed
efficiently.

Definition 2.9. Let A ∈ Rm×n, b ∈ Rm, u ∈ Rn and β ∈ R. By L(A, b) we
denote the affine subspace

L(A, b) := {x ∈ Rn |Ax = b} ,
by H(u, β) the hyperplane

H(u, β) := {x ∈ Rn | 〈u , x〉 = β} ,
and by H≤(u, β) the half-space

H≤(u, β) := {x ∈ Rn | 〈u , x〉 ≤ β} .
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Lemma 2.10 ([27, Lemma 2.4]). Let f : Rn → R be α-strongly convex.

(a) The Bregman projection of x ∈ Rn onto L(A, b) 6= ∅ is

x̂ := Πx∗

L(A,b)(x) = ∇f∗(x∗ −AT ŵ) ,

where ŵ ∈ Rm is a solution of

min
w∈Rm

f∗(x∗ −ATw) + 〈w , b〉 .

Moreover, an admissible subgradient for x̂ is x̂∗ := x∗ − AT ŵ. If A has
full row rank then for all y ∈ L(A, b) we have

Dx̂∗

f (x̂, y) ≤ Dx∗

f (x, y)− α

2
· ‖(AAT )−

1
2 (Ax− b)‖22 .

(b) The Bregman projection of x ∈ Rn onto H(u, β) with u 6= 0 is

x̂ := Πx∗

H(u,β)(x) = ∇f∗(x∗ − t̂ · u) ,

where t̂ ∈ R is a solution of

min
t∈R

f∗(x∗ − t · u) + t · β .

Moreover, an admissible subgradient for x̂ is x̂∗ := x∗ − t̂ · u and for all
y ∈ H(u, β) we have

Dx̂∗

f (x̂, y) ≤ Dx∗

f (x, y)− α

2
· (〈u , x〉 − β)2

‖u‖22
.

If x /∈ H≤(u, β) then we necessarily have t̂ > 0, Πx∗

H≤(u,β)(x) = x̂ and the

above inequality holds for all y ∈ H≤(u, β).

3 Bounded linear regularity and error bounds

As in [3] for the case of metric projections, we will establish convergence rates
with Bregman projections under the assumption of bounded linear regularity.
By rint(C) we denote the relative interior of a subset C ⊂ Rn.

Definition 3.1. Let C1, . . . Cr ⊂ Rn be closed convex sets with nonempty
intersection C :=

⋂r
i=1 Ci.

(a) The collection {C1, . . . Cr} is called boundedly linearly regular, if for every
R > 0 there exists γ > 0 such that for all x ∈ BR we have

dist(x,C)2 ≤ γ ·
r∑
i=1

dist(x,Ci)
2 ,

and it is called linearly regular, if such an estimate holds globally for all
x ∈ Rn.
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(b) The collection {C1, . . . Cr} satisfies the standard constraint qualification,
if there exists q ∈ {0, . . . , r} such that Cq+1, . . . , Cr are polyhedral and

q⋂
i=1

rint(Ci) ∩
r⋂

i=q+1

Ci 6= ∅ .

Theorem 3.2 (Corollary 3 and 6 in [6]). If the collection {C1, . . . Cr} satisfies
the standard constraint qualification then it is boundedly linearly regular. And
if C is also bounded, then {C1, . . . Cr} is linearly regular.

By Lemma 2.6, and since distx
∗

f (x,C)2 ≤ Dx∗

f

(
x, PC(x)

)
, we can immedi-

ately bound the Bregman distance by the metric distance.

Lemma 3.3. Let f : Rn → R be strongly convex.

(a) For all x ∈ Rn, x∗ ∈ ∂f(x) and y∗ ∈ ∂f
(
PC(x)

)
we have

distx
∗

f (x,C)2 ≤ ‖x∗ − y∗‖2 · dist(x,C) .

(b) If f has a L-Lipschitz-continuous gradient then we have for all x ∈ Rn

distf (x,C)2 ≤ L
2 · dist(x,C)2 .

In general, it is not obvious how to extend the second (and better) estimate
to non-differentiable funtions f , because we lack an inequality like ‖x∗−y∗‖2 ≤
L · ‖x − y‖2. However, we can achieve the better estimate for convex piece-
wise linear-quadratic f . The result is based on the following lemma, which
exploits the fact that the subgradients on the sets Fx are closely related, cf.
Definition 2.3.

Lemma 3.4. Let f : Rn → R be strongly convex piecewise linear-quadratic and
C ⊂ Rn be closed convex. Then for all R > 0 there exists L > 0 such that for
all x ∈ BR and x∗ ∈ ∂f(x) we have

distx
∗

f (x,C)2 ≤
{
L · dist(x,C)2 , Fx ∩ C = ∅
L · dist(x, Fx ∩ C)2 , Fx ∩ C 6= ∅

.

Proof. Since BR is compact we have dist(BR ∩ Fx, C) > 0 for all x ∈ BR with
Fx ∩ C = ∅. Since there are only finitely many different sets Fx it follows that

d := min{dist(BR ∩ Fx, C) |x ∈ BR with Fx ∩ C = ∅} > 0 .

Furthermore there is a constant c > 0 such that ‖x∗ − y∗‖2 ≤ c for all x ∈ BR,
x∗ ∈ ∂f(x) and y∗ ∈ ∂f

(
PC(x)

)
. Let x ∈ BR and x∗ ∈ ∂f(x). By Theorem 2.4

there are λi ∈ [0, 1] with
∑
i∈If (x) λi = 1 such that

x∗ =
∑

i∈If (x)
λi · (Aix+ ai) .
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In case Fx ∩ C = ∅ we have dist(x,C) ≥ d, and hence by Lemma 3.3 we get

distx
∗

f (x,C)2 ≤ ‖x∗ − y∗‖2 · dist(x,C) ≤ c

d
· dist(x,C)2 .

In case Fx ∩C 6= ∅ we set x̂ := PFx∩C(x). Since x̂ ∈ Fx we have If (x) ⊂ If (x̂),
and therefore we can choose the following subgradient of f at x̂,

x̂∗ :=
∑

i∈If (x)
λi · (Aix̂+ ai)

with the same λi as for x∗. We set Lf := max{‖Ai‖2 | i ∈ I} and estimate

〈x∗ − x̂∗ , x− x̂〉 =
∑

i∈If (x)
λi · 〈Ai(x− x̂) , x− x̂〉 ≤ Lf · ‖x− x̂‖22 ,

which yields distx
∗

f (x,C)2 ≤ 〈x∗ − x̂∗ , x− x̂〉 ≤ Lf · dist(x, Fx ∩ C)2.

Now we can prove the main theorem of this section.

Theorem 3.5. Let f : Rn → R be strongly convex piecewise linear-quadratic,
and let C ⊂ Rn be closed convex such that the collections {Fx, C} are boundedly
linearly regular for all x ∈ Rn with Fx ∩C 6= ∅. Then for all R > 0 there exists
L > 0 such that for all x ∈ BR and x∗ ∈ ∂f(x) we have

distx
∗

f (x,C)2 ≤ L · dist(x,C)2 .

Proof. The assertion immediately follows from Lemma 3.4 and Definition 3.1,
because dist(x, Fx) = 0.

Remark 3.6. If C is polyhedral then by Theorem 3.2 all collections {Fx, C}
are boundedly linearly regular.

For the split feasibility problem we also need the following generalization of
Hoffmann’s error bound [23] to possibly non-polyhedral sets, which are defined
by convex constraints in the range R(A) of a matrix A.

Lemma 3.7. Let the convex set C ⊂ Rn have the form C = {x ∈ Rn |Ax ∈ Q}
with A ∈ Rm×n and Q ⊂ Rm closed convex such that the collection {Q,R(A)}
is boundedly linearly regular. Then for every R > 0 there exists γ > 0 such that
for all x ∈ BR we have

dist(x,C) ≤ γ · dist(Ax,Q) .

Proof. In case A = 0 (and 0 ∈ Q) we have C = Rn and hence the assertion
holds trivially. Otherwise let σmin > 0 be the smallest positive singular value
of A, and let R > 0. Since {Q,R(A)} is boundedly linearly regular, there exists
γ > 0 such that for all x ∈ BR we have

dist
(
Ax,Q ∩R(A)

)
≤ γ · dist(Ax,Q) .
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To x ∈ BR we find some x̂ ∈ C such that Ax̂ = PQ∩R(A)(Ax). Since x̂+N (A) ⊂
C for the nullspace N (A) of A we get

dist(x,C) ≤ ‖x− Px̂+N (A)(x)‖2 = ‖(x− x̂)− PN (A)(x− x̂)‖2
≤ 1

σmin
· ‖Ax−Ax̂‖2 = 1

σmin
· dist

(
Ax,Q ∩R(A)

)
≤ γ

σmin
· dist(Ax,Q) ,

from which the assertion follows.

Note that for polyhedral sets Q the collection {Q,R(A)} is always boundedly
linearly regular. Moreover in this case the classical result of Hoffmann holds
globally for all x ∈ Rn, cf. [23]. For non-polyhedral sets Q the assertion holds
if rint(Q)∩R(A) 6= ∅, cf. Theorem 3.2. Indeed, if this condition is not fulfilled,
the assertion cannot be guaranteed in general, as the following counterexample

demonstrates: For Q = {x ∈ R2 | ‖x− (0, 1)T ‖2 ≤ 1} and A =

(
1 0
0 0

)
we have

Q ∩R(A) = {0}, C = {0} × R and hence for x1 > 0 we get

dist(A(x1, 0)T , Q)

dist((x1, 0)T , C)
=

√
1 + x21 − 1

x1
=

x1√
1 + x21 + 1

−→ 0 for x1 ↘ 0 .

Finally we concentrate on feasible linearly constrained optimization problems,

min
x∈Rn

f(x) s.t. Ax = b (6)

like in (3) or (5). If the objective function f is strongly convex then (6) has
a unique solution x̂ which fulfills ∂f(x̂) ∩ R(AT ) 6= ∅, and hence coincides
with the Bregman projection Πx∗

L(A,b)(x) with respect to f for all x ∈ Rn with

x∗ ∈ ∂f(x)∩R(AT ) 6= ∅, cf. Lemma 2.10 (a). As a consequence for all such x, x∗

we have distx
∗

f

(
x, L(A, b)

)2
= Dx∗

f (x, x̂). Our next aim is an error bound of the

form Dx∗

f (x, x̂) ≤ γ · ‖Ax− b‖22. For piecewise linear-quadratic or differentiable
f this immediately follows from Lemma 3.5 and 3.3 (b) and Hoffmann’s error
bound. But we will also achieve this result under weaker assumtions. To clarify
these assumtions we need the concept of calmness of a set-valued mapping [37].

Definition 3.8. A set-valued mapping S : Rn ⇒ Rm is calm at x̂ ∈ Rn if
S(x̂) 6= ∅ and there are constants ε, L > 0 such that

S(x) ⊂ S(x̂) + L · ‖x− x̂‖2 ·B1 , ‖x− x̂‖2 ≤ ε .

Example 3.9. (a) Any polyhedral multifunction, i.e. a set-valued mapping
whose graph is the union of finitely many polyhedral sets, is calm at each
x̂ ∈ Rn. In particular this holds for the subdifferential mapping ∂f(x) of
a convex piecewise linear-quadratic function f : Rn → R, see Proposition
1 in [36].
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(b) Let σ(X) ∈ Rm denote the vector of singular values of X ∈ Rn1×n2 (with
m = min{n1, n2}), and let h : Rm → R be a convex piecewise linear-
quadratic function which is absolutely symmetric, i.e. h(x1, . . . , xm) =
h
(
|xπ(1)|, . . . , |xπ(m)|

)
for any permutation π of the indices. Then the sub-

differential mapping of f(X) := h
(
σ(X)

)
is calm at each X̂ ∈ Rn1×n2 . In

particular this holds for the nuclear norm ‖X‖∗ := ‖σ(X)‖1, the spectral
norm ‖X‖2 := ‖σ(X)‖∞ and f(X) = λ · ‖X‖∗ + 1

2 · ‖X‖2F . Furthermore
the subdifferential mapping of

f(X1, X2) = 1
2 · ‖X1‖2F + λ1 · ‖X1‖∗ + 1

2 · ‖X2‖2F + λ2 · ‖X2‖1
is calm at each (X̂1, X̂2) ∈ Rn1×n2 × Rn1×n2 , where ‖X‖1 denotes the
1-norm of all entries of a matrix X, see Example 2.10 in [39].

Now we can reformulate Theorem 2.12 in [39] to fit the present context.

Theorem 3.10. Consider the linearly constrained optimization problem (6)
with A ∈ Rm×n, b ∈ R(A), and strongly convex f : Rn → R. Let x0 ∈ Rn and
x∗0 ∈ ∂f(x0)∩R(AT ) be given. If the subdifferential mapping of f is calm at the
unique solution x̂ of (6) and if the collection {∂f(x̂),R(AT )} is linearly regular,
then there exists γ > 0 such that for all x ∈ Rn and x∗ ∈ ∂f(x) ∩ R(AT ) with

Dx∗

f (x, x̂) ≤ Dx∗
0

f (x0, x̂) we have

distx
∗

f (x, L(A, b))2 = Dx∗

f (x, x̂) ≤ γ · ‖Ax− b‖22 .
Proof. To obtain the error bound we apply the results of [39] to the objective
function g(y) = f∗(AT y)− 〈b , y〉 of the unconstrained dual

min
y∈Rm

f∗(AT y)− 〈b , y〉 ,

which relates to the Bregman distance in the following way by setting x∗ = AT y,
x = ∇f∗(x∗) and observing that 〈b , y〉 = 〈x∗ , x̂〉,

Dx∗

f (x, x̂) = g(y)− gmin .
It follows from Theorem 2.12 in [39] that the function g is restricted strongly
convex on all of its level sets. Hence, by Lemma 2.2 in [39], there exists γ > 0

such that for all x ∈ Rn and x∗ ∈ ∂f(x) ∩ R(AT ) with Dx∗

f (x, x̂) ≤ D
x∗
0

f (x0, x̂)
we have

Dx∗

f (x, x̂) = g(y)− gmin ≤ γ · ‖∇g(y)‖22 = γ · ‖Ax− b‖22 .

4 Randomized Bregman Projections for SFP

The convex feasibility problem (CFP) is to find a common point of finitely many
closed convex sets Ci ⊂ Rn, i ∈ I := {1, . . . ,m}, with nonempty intersection,

find x ∈ C :=
⋂
i∈I

Ci . (7)
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A simple and widely known idea to solve (7) is to project successively onto the
individual sets Ci and we refer to [3] for an excellent introduction. By now
there is a vast literature on CFPs and projection algorithms for their solution,
see e.g. [4, 5, 8, 12, 17, 44]. These projection algorithms are most efficient if the
projections onto the individual sets are relatively cheap. Here we concentrate
on a special instance of the CFP, also called split feasibility problem (SFP) [11,
13, 16, 40], where some or all of the sets Ci arise by imposing convex constraints
Qi ⊂ Rmi in the range of a matrix Ai ∈ Rmi×n,

Ci = {x ∈ Rn |Aix ∈ Qi} . (8)

In general projections onto such sets can be prohibitively expensive and it is
often preferable to use projections onto suitable enclosing halfspaces. The fol-
lowing lemma shows a construction of such an enclosing halfspace, see [27].

Lemma 4.1. Let Q ⊂ Rm be a nonempty closed convex set and A ∈ Rm×n.
Assume that x̃ /∈ C = {x ∈ Rn |Ax ∈ Q} and set

w := Ax̃− PQ(Ax̃) and β := 〈ATw , x̃〉 − ‖w‖22 .

Then it holds that ATw 6= 0, x̃ /∈ H≤(ATw, β) and C ⊂ H≤(ATw, β). In other
words, the hyperplane H(ATw, β) separates x̃ from C.

To solve a split feasibility problem one can proceed as follows: Let IQ ⊂ I
be the subset of all indices i belonging to sets of the form (8), and denote by
IC := I \IQ the set of the remaining indices. Encounter the different constraints
Ci successively and project the current iterate onto Ci in case i ∈ IC , or onto an
enclosing halfspace according to Lemma 4.1 and Lemma 2.10 (b) in case i ∈ IQ,
see Algorithm 1. In [27] convergence of the iterates to a solution of (7) was
shown for Bregman projections with respect to nondifferentiable functions, and
for quite general control sequences i : N → I. The only requirement was that(
i(k)

)
k∈N encounters each index in I infinitely often.1 However, no assertion was

made about convergence rates. Here we follow [1, 9, 19, 26, 29, 31, 35, 41, 45]
and show that a randomized version of the algorithm converges in expectation
to a solution of (7) with an expected (sub-)linear convergence rate.

Theorem 4.2. Let f : Rn → R be α-strongly convex. Consider the SFP (7)
under the assumption that the collections {C1, . . . , Cr} and {Qi,R(Ai)} for each
i ∈ IQ are boundedly linearly regular. Then for any starting points x0 ∈ Rn and
x∗0 ∈ ∂f(x0) the iterates xk and x∗k of Algorithm 1 remain bounded, the Bregman
distances to C decrease monotonically,

dist
x∗
k+1

f (xk+1, C) ≤ dist
x∗
k

f (xk, C) ,

1Because very general control sequences i : N → I besides simple cyclic control fulfill this
requirement, the corresponding method was also called method of random Bregman projections
in [4]. But such control sequences are not necessarily stochastic objects, in contrast to the
situation in the present work. Hence we use the word randomized in Algorithm 1 instead of
random to distinguish between the cases.
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Algorithm 1 Randomized Bregman projections for split feasibility problems
(RBPSFP)

Input: starting points x0 ∈ Rn, x∗0 ∈ ∂f(x0) and probabilities pi > 0, i ∈ I
Output: a solution of (7)

1: initialize k = 0
2: repeat
3: choose an index ik = i ∈ I at random with probability pi > 0
4: if ik ∈ IC then

5: update xk+1 = Π
x∗
k

Cik
(xk) together with an admissible subgradient

x∗k+1 ∈ ∂f(xk+1), cf. Lemma 2.8
6: else if ik ∈ IQ then
7: set wk = Aikxk − PQik

(
Aikxk

)
and βk = 〈ATikwk , xk〉 − ‖wk‖22

8: update xk+1 = Π
x∗
k

H≤(AT
ik
wk,βk)

(xk) with x∗k+1 ∈ ∂f(xk+1) as in

Lemma 2.10 (b)
9: end if

10: increment k = k + 1
11: until a stopping criterion is satisfied

and converge in expectation to zero, where the expectation is taken with respect
to the probability distribution pi > 0, i ∈ I. The expected rate of convergence is
at least sublinear: There is a constant c > 0 such that

E [dist(xk, C)] ≤ c√
k
.

Proof. At first we consider the case ik ∈ IC . By Lemma 2.6 we have

D
x∗
k

f (xk, xk+1) ≥ α

2
· ‖xk − xk+1‖22 ≥

α

2
· dist(xk, Cik)2 ,

and together with Lemma 2.8 we can estimate for all x ∈ C

D
x∗
k+1

f (xk+1, x) ≤ Dx∗
k

f (xk, x)− α

2
· dist(xk, Cik)2 . (9)

Now we consider the case ik ∈ IQ. By Lemma 4.1 we have C ⊂ H≤(ATikwk, βk),
and together with Lemma 2.10 (b) we can estimate for all x ∈ C

D
x∗
k+1

f (xk+1, x) ≤ Dx∗
k

f (xk, x)− α

2 · ‖Aik‖22
· ‖Aikxk − PQik

(
Aikxk

)
‖22 . (10)

We fix some x ∈ C and conclude from (9), (10) and Lemma 2.6 that both xk and
x∗k remain bounded. Hence by Lemma 3.7 and the bounded linear regularity of
all {Qi,R(Ai)}, i ∈ IQ, there exist γi > 0 such that for all k we have

dist(xk, Ci) ≤ γi · ‖Aikxk − PQik

(
Aikxk

)
‖2 .
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Inserting this estimate into (10) we get

D
x∗
k+1

f (xk+1, x) ≤ Dx∗
k

f (xk, x)− γ2i · α
2 · ‖Aik‖22

· dist(xk, Cik)2 .

Together with (9) this implies that the Bregman distances decrease monotoni-
cally, and that there is a constant c > 0 such that

dist
x∗
k+1

f (xk+1, C)2 ≤ dist
x∗
k

f (xk, C)2 − c · dist(xk, Cik)2 . (11)

For the moment we fix the values of the indices i0, . . . , ik−1 and consider only
ik as a random variable with values in I. Taking the expectation on both sides
of (11) conditional to the values of the indices i0, . . . , ik−1 yields

E
[
dist

x∗
k+1

f (xk+1, C)2
∣∣∣ i0, . . . , ik−1] ≤ dist

x∗
k

f (xk, C)2 −
∑
i∈I

pi · c · dist(xk, Ci)
2 .

By boundedness of xk and bounded linear regularity of the collection {C1, . . . , Cm}
there is γ > 0 such that for all k we have

E
[
dist

x∗
k+1

f (xk+1, C)2
∣∣∣ i0, . . . , ik−1] ≤ dist

x∗
k

f (xk, C)2 − γ · dist(xk, C)2 . (12)

Furthermore, by Lemma 3.3 (a) there is L > 0 such that for all k we have

distx
∗

f (xk, C)4 ≤ L · dist(xk, C)2, and hence we get

E
[
dist

x∗
k+1

f (xk+1, C)2
∣∣∣ i0, . . . , ik−1] ≤ dist

x∗
k

f (xk, C)2 − γ
L · dist

x∗
k

f (xk, C)4 .

Now we consider all indices i0, . . . , ik as random variables with values in I, and
take the full expectation on both sides,

E
[
dist

x∗
k+1

f (xk+1, C)2
]
≤ E

[
dist

x∗
k

f (xk, C)2
]
− γ

L · E
[
dist

x∗
k

f (xk, C)4
]

≤ E
[
dist

x∗
k

f (xk, C)2
]
− γ

L ·
(
E
[
dist

x∗
k

f (xk, C)2
])2

.

We set dk := E
[
dist

x∗
k

f (xk, C)2
]
. Then we have dk+1 ≤ dk − γ

Ld
2
k. We observe

that dk is decreasing and by rearranging the inequality to

1

dk+1
≥ 1

dk
+
γ

L

dk
dk+1

≥ 1

dk
+
γ

L

we obtain 1
dk+1

≥ 1
d0

+ γ
L (k + 1), and we conclude dk ≤ Ld0

L+γd0·k as desired.

The expected sublinear convergence rates for dist(xk, C) now follow from the

estimate E [dist(xk, C)] ≤
√

2
α · E

[
dist

x∗
k

f (xk, C)
]
, cf. Lemma 2.6.
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Remark 4.3. According to Lemma 2.10 (b) the computation of the Breg-

man projection xk+1 = Π
x∗
k

H≤(AT
ik
wk,βk)

(xk) onto the halfspace H≤(ATikwk, βk) in

step 8 of Algorithm 1 amounts to an exact linesearch. In practice, this is feasible
only in special cases, e.g. for f(x) = ‖x‖22 or f(x) = λ · ‖x‖1 + 1

2‖x‖22. But the
assertions of Theorem 4.2 and the next two theorems remain true for inexact
linesearches as well, cf. [27]. In particular, we may choose

tk := α · ‖wk‖22
‖AT

ik
wk‖22

, x∗k+1 := x∗k − tk ·ATikwk , xk+1 = ∇f∗(x∗k+1) .

For piecewise linear-quadratic or differentiable f the expected rate of con-
vergence is even linear.

Theorem 4.4. If f is piecewise linear-quadratic or has a Lipschitz-continuous
gradient, then under the assumptions of Theorem 4.2 the expected rate of con-
vergence is linear: There are constants q ∈ (0, 1) and c > 0 such that

E
[
dist

x∗
k+1

f (xk+1, C)2
]
≤ q · E

[
dist

x∗
k

f (xk, C)2
]
,

and hence
E [dist(xk, C)] ≤ c · q k

2 .

Proof. By Theorem 3.5 and Lemma 3.3 (b) respectively, there is L > 0 such

that for all k we have dist
x∗
k

f (xk, C)2 ≤ L ·dist(xk, C)2. Hence, using this in (12)
in the proof of Theorem 4.2 we get

E
[
dist

x∗
k+1

f (xk+1, C)2
]
≤
(
1− γ

L

)
· E
[
dist

x∗
k

f (xk, C)2
]
,

from which the linear convergence rates follow.

Finally we turn to linearly constrained optimization problems.

Theorem 4.5. Consider the linearly constrained optimization problem (6) un-
der the assumptions of Theorem 3.10. Let I1, . . . , Ir be a covering of {1, . . . ,m}
(not necessarily disjoint), denote by Ai the matrix consisting of the rows of A
indexed by Ii, and let bi denote the vector consisting of the entries of b indexed by
Ii. The constraints Aix = bi may be considered both as constraints with i ∈ IC ,
cf. Lemma 2.10 (a), or with i ∈ IQ and Qi = {bi}. If the initial values are
chosen as x∗0 ∈ R(AT ) and x0 = ∇f∗(x∗0) then the iterates of Algorithm 1 con-
verge in expectation to the solution x̂ of (6). The expected rate of convergence
is linear: There are constants q ∈ (0, 1) and c > 0 such that

E
[
D
x∗
k+1

f (xk+1, x̂)
]
≤ q · E

[
D
x∗
k

f (xk, x̂)
]
,

and hence
E [‖xk − x̂‖] ≤ c · q

k
2 .

Proof. Since x∗0 ∈ R(AT ) and the updates are of the form x∗k = x∗k−1−AT vk for

some vk ∈ Rm, we inductively get x∗k ∈ R(AT ) for all k ≥ 0. Hence the assertion
follows from Theorem 3.10 as in the proofs of Theorem 4.2 and 4.4.
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5 Linear convergence of the Randomized Sparse
Kaczmarz method

Here we show how to apply Theorem 4.5 to obtain linear convergence of the
Randomized Sparse Kaczmarz method. As illustrated in [28], the Sparse Kacz-
marz method (2) can be considered as a special case of Algorithm 1 applied to
the regularized Basis Pursuit problem (3). The objective function

f(x) = λ‖x‖1 + 1
2‖x‖22 (13)

is 1-strongly convex and also piecewise linear-quadratic with ∇f∗(x∗) = Sλ(x∗).
We formulate the constraint Ax = b with sets Qi = {bi} and mappings Ai = aTi
with the rows aTi of A, i ∈ {1, . . . ,m}. Step 7 in Algorithm 1 then reads as

wk = 〈aik , xk〉 − bik , βk = 〈aikwk , xk〉 − |wk|2 .

According to Lemma 2.10, the Bregman projection xk+1 = Π
x∗
k

H(AT
ik
wk,βk)

(xk) in

Step 8 can be computed as

xk+1 = ∇f∗(x∗k − tk · aik · wk) = Sλ
(
x∗k − tk · (〈aik , xk〉 − bik) · aik

)
with an appropriate stepsize tk. Now we use the inexact stepsize according to
Remark 4.3 with α = 1, namely

tk =
|wk|2
‖aikwk‖22

=
1

‖aik‖22
.

Hence, we do not need the quantity βk to perform the iteration, and the full
step reads as

x∗k+1 = x∗k −
〈aik , xk〉−bik
‖aik‖22

· aik , xk+1 = Sλ(x∗k+1) .

We recover the Randomized Sparse Kaczmarz method, which we state here as
Algorithm 2.

As already noted in [27], it is also possible to perform an exact linesearch
for the Sparse Kaczmarz method. To do so, in each step one has to solve the
one-dimensional problem

tk = argmin
t∈R

f∗(x∗k − t · aik) + t · bik (14)

which can be done in reasonable time since f∗ is piecewise linear-quadratic,
see [27, Section 2.5.2]. This results in the Exact-Step Randomized Sparse Kacz-
marz (ERSK) method, stated as Algorithm 3. Note that ERSK can also be
derived by directly considering the constraints as Ci = H(ai, bi) and perform-
ing exact Bregman projections onto Ci.

As a consequence of Theorem 4.5 we can conclude the following:
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Algorithm 2 Randomized Sparse Kaczmarz method (RSK)

Input: starting points x0 = x∗0 = 0 ∈ Rn, matrix A ∈ Rm×n, vector b ∈ Rm
such that Ax = b is consistent, and probabilities pi > 0, i ∈ {1, . . . ,m}

Output: the solution of minx∈Rn λ‖x‖1 + 1
2‖x‖22 s.t. Ax = b

1: initialize k = 0
2: repeat
3: choose an index ik = i ∈ {1, . . . ,m} at random with probability pi > 0
4: set aTik to the ik-th row of A

5: update x∗k+1 = x∗k −
〈aik , xk〉−bik
‖aik‖22

· aik
6: update xk+1 = Sλ(x∗k+1)
7: increment k = k + 1
8: until a stopping criterion is satisfied

Algorithm 3 Exact-Step Randomized Sparse Kaczmarz method (ERSK)

Input: starting points x0 = x∗0 = 0 ∈ Rn, matrix A ∈ Rm×n, vector b ∈ Rm
such that Ax = b is consistent, and probabilities pi > 0, i ∈ {1, . . . ,m}

Output: the solution of minx∈Rn λ‖x‖1 + 1
2‖x‖22 s.t. Ax = b

1: initialize k = 0
2: repeat
3: choose an index ik = i ∈ {1, . . . ,m} at random with probability pi > 0
4: set aTik to the i-th row of A
5: calculate tk = argmint∈R f

∗(x∗k − t · aik) + t · bik
6: update x∗k+1 = x∗k − tk · aik
7: update xk+1 = Sλ(x∗k+1)
8: increment k = k + 1
9: until a stopping criterion is satisfied

Corollary 5.1. Let A ∈ Rm×n and b ∈ Rm be in the range of A and let
λ > 0. Then both the RSK method from Algorithm 2 and the ERSK method
from Algorithm 3 converge in expectation to the unique solution x̂ of

min
x∈Rn

λ‖x‖1 + 1
2‖x‖22 s.t. Ax = b

at a linear rate, i.e. in both cases there exist q ∈ (0, 1) and c > 0 such that

E [‖xk − x̂‖] ≤ c · q
k
2 .

Expected linear convergence for a randomized and smoothed Sparse Kacz-
marz method was also shown in [33]. There the objective function (13) was
replaced by

fε(x) = λ · rε(x) + 1
2‖x‖22 (15)

with ε > 0 and rε(x) beeing the Moreau envelope of ‖x‖1,

rε(x) =

n∑
i=1

{
|xi| − ε

2 , |xi| > ε
x2
i

2ε , |xi| ≤ ε
.

16



The function fε is 1-strongly convex and has a Lipschitz-continuous gradient.
Hence linear convergence is also guaranteed by Theorem 3.10. But as shown
above, Theorem 3.10 also allows us to prove this result without smoothing the
objective function. Of course this also holds for the Randomized Block Sparse
Kaczmarz method considered in [33] by applying Theorem 3.10 with a covering
I1, . . . , Ir of {1, . . . ,m}.

6 Numerical examples

In two experiments we illustrate the impact of the Randomized Sparse Kacz-
marz method versus the (non-sparse) Randomized Kaczmarz and the (non-
randomized) Sparse Kaczmarz method.

6.1 Sparse vs. non-sparse Randomized Kaczmarz

We constructed overdetermined linear systems with Gaussian matrices A ∈
Rm×n for m ≥ n, and sparse solutions x̂ ∈ Rn with corresponding right hand
sides b = Ax̂ ∈ Rm and also respective noisy right hand sides bδ. We ran the
usual Randomized Kaczmarz method (RK), the Randomized Sparse Kaczmarz
method (RSK) (Algorithm 2), and the Exact-Step Randomized Sparse Kacz-
marz method (ERSK) (Algorithm 3) on the problem. Note that, since with high
probability the matrices A have full rank, in the case of no noise the solution x̂
is unique, and so all methods are expected to converge to the same solution x̂.

Figure 1 shows the result for a five times overdetermined and consistent
system without noise. Note that the usual RK performs consistently well over
all trials, while the performance of RSK and ERSK differs drastically between
different instances. As denoted by the quantiles, there are a few instances on
which RSK and ERSK are remarkably fast, especially for the exact-step method,
while for other instance they are rather slow. Also, the asymptotic linear rate
of the medians is fastest for ERSK, and also RSK has a faster asymptotic rate
than non-sparse RK.

Figures 2 and 3 show the results for noisy right hand sides. Figure 2 uses a
two times overdetermined system with 10% relative noise, Figure 3 has the same
noise level and a five times overdetermined system. All methods consistently
stagnate at a residual level which is comparable to the noise level, however,
ERSK achieves this faster than RSK which in turn is faster than RK. Regarding
the reconstruction error, ERSK and RK achieve reconstructions with an error in
the size of the noise level, while SRK achieves an even lower reconstruction error.
The last effect is not explained by our theory. On an intuitive level one may
argue that the Sparse Kaczmarz method obtains better reconstructions since it
incorporates the sparsity of the solutions, but that the exact steps in the Sparse
Kaczmarz method spoil this advantage by trying to fullfill all equations exactly,
despite the noise. In fact, RSK with inexact stepsize may be seen as a kind of
relaxed Kaczmarz method.
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Figure 1: Experiment A: Comparison of Randomized Kaczmarz (black) Ran-
domized Rparse Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz
(green), n = 200, m = 1000, sparsity s = 25, no noise. Left: Plots of relative
residual ‖Ax − b‖/‖b‖, right: plots of error ‖x − x†‖/‖x†‖. Thick line shows
median over 60 trials, light area is between min and max, darker area indicate
25th and 75th quantile.
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Figure 2: Experiment A: Comparison of Randomized Kaczmarz (black) Ran-
domized Sparse Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz
(green), n = 200, m = 400, sparsity s = 25, 10% relative noise. Left: Plots of
relative residual ‖Ax− bδ‖/‖bδ‖, right: plots of error ‖x−x†‖/‖x†‖. Thick line
shows median over 60 trials, light area is between min and max, darker area
indicate 25th and 75th quantile.

18



0 2,000 4,000

10−1

100

k

‖A
x
−

bδ
‖/
‖b

δ
‖

0 2,000 4,000

10−1

100

k

‖x
−
x
† ‖
/‖

x
† ‖

Figure 3: Experiment A: Comparison of Randomized Kaczmarz (black) Ran-
domized Sparse Kaczmarz (red), and Exact-Step Randomized Sparse Kaczmarz
(green), n = 200, m = 1000, sparsity s = 25, 10% relative noise. Left: Plots of
relative residual ‖Ax− bδ‖/‖bδ‖, right: plots of error ‖x−x†‖/‖x†‖. Thick line
shows median over 60 trials, light area is between min and max, darker area
indicate 25th and 75th quantile.

6.2 Sparse cyclic vs. Randomized Sparse Kaczmarz

To investigate the impact of randomization within the Sparse Kaczmarz frame-
work, we studied an academic tomography problem. We used the AIRtools
toolbox [22] to create CT-measurement matrices of different sizes. We used fan-
beam geometry throughout and worked with overdetermined systems, sparse
solutions and noisefree right hand sides. We compared RSK with the cyclic ver-
sion of the Sparse Kaczmarz method, where we process the rows of the linear
system in their “natural” order. Figure 4 shows the result for a small problem
with n = 100 pixels, and Figure 5 shows the result for a problem with n = 900
pixels. In both cases the randomization shows improvements for the median as
well as for the extreme cases.

7 Conclusion

Using error bounds and the theoretical framework of Bregman projections for
split feasibility problems, we proved expected linear convergence for the Ran-
domized Sparse Kaczmarz method. Numerical experiments confirm the linear
convergence and demonstrate the benefit of using the method to recover sparse
solutions of linear systems, even in the overdetermined case. However, we could
not explicitly quantify the linear rate in terms of the problem data, as for the
standard Randomized Kaczmarz method. The contraction constants q in Theo-
rem 4.5 and Corollary 5.1 depend on quantities which are not easily accessible,
like the constants L from Theorem 3.5 and γ from Theorem 3.10.

As demonstrated in [27] the presented framework also allows for numerous
generalizations which we did not further pursue here. For example, in the pres-
ence of noise we could replace equality constraints 〈ai , x〉 = bi by inequalities
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Figure 4: Experiment B: Sparse Kaczmarz (blue) vs. Sparse Randomized Kacz-
marz (red), n = 100, m = 1164, sparsity s = 20. Left: Plots of relative residual
‖Ax− b‖/‖b‖, right: plots of error ‖x−x†‖/‖x†‖. Thick line shows median over
40 trials, light area is between min and max, darker area indicate 25th and 75th
quantile.
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Figure 5: Experiment B: Sparse Kaczmarz (blue) vs. Sparse Randomized Kacz-
marz (red), n = 900, m = 3660, sparsity s = 180. Left: Plots of relative residual
‖Ax− b‖/‖b‖, right: plots of error ‖x−x†‖/‖x†‖. Thick line shows median over
40 trials, light area is between min and max, darker area indicate 25th and 75th
quantile.
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|〈ai , x〉 − bi| ≤ δi to reflect an error estimate for each measurement. Algo-
rithms 2 and 3 would only have to be changed slightly by projecting onto the
modified hyperplanes H≤(ai, bi + δi) or H≤(−ai,−bi + δi), and we still obtain
linear convergence.

Let us remark that, motivated by the excellent performance of the Ran-
domized Sparse Kaczmarz method, we also tried to solve the regularized nu-
clear norm problem (5) by applying a randomized Kaczmarz iteration of the
form (4). Somewhat disappointingly, our preliminary numerical experiments
indicated that this unduly increases the number of times we have to perform
the expensive singular value thresholding. It would be interesting to know if the
use of low-rank matrices Ai in (4) allows for more efficient updates of Sλ(X∗k) to
compensate for this. A possible approach could be to use low-rank modifications
of the singular value decomposition of the dual iterates X∗k+1 = X∗k − tk ·Ai as
shown in [7].
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