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Abstract

For a symmetric positive semidefinite linear system of equations Qx = b, where x =
(x1, . . . , xs) is partitioned into s blocks, with s ≥ 2, we show that each cycle of the classical
block symmetric Gauss-Seidel (block sGS) method exactly solves the associated quadratic
programming (QP) problem but added with an extra proximal term of the form 1

2
‖x−xk‖2

T
,

where T is a symmetric positive semidefinite matrix related to the sGS decomposition of Q
and xk is the previous iterate. By leveraging on such a connection to optimization, we are
able to extend the result (which we name as the block sGS decomposition theorem) for solv-
ing a convex composite QP (CCQP) with an additional possibly nonsmooth term in x1, i.e.,
min{p(x1) +

1

2
〈x, Qx〉 − 〈b, x〉}, where p(·) is a proper closed convex function. Based on

the block sGS decomposition theorem, we extend the classical block sGS method to solve a
CCQP. In addition, our extended block sGS method has the flexibility of allowing for inexact
computation in each step of the block sGS cycle. At the same time, we can also accelerate
the inexact block sGS method to achieve an iteration complexity of O(1/k2) after perform-
ing k cycles. As a fundamental building block, the block sGS decomposition theorem has
played a key role in various recently developed algorithms such as the inexact semiproxi-
mal ALM/ADMM for linearly constrained multi-block convex composite conic programming
(CCCP), and the accelerated block coordinate descent method for multi-block CCCP.

Keywords: Convex composite quadratic programming, block symmetric Gauss-Seidel, Schur
complement, augmented Lagrangian method

AMS subject classifications: 90C06, 90C20, 90C25, 65F10

1 Introduction

It is well known that the classical block symmetric Gauss-Seidel (block sGS) method [1, 7, 13, 23]
can be used to solve a symmetric positive semidefinite linear system of equations Qx = b where
x = (x1; . . . ;xs) is partitioned into s blocks with s ≥ 2. We are particularly interested in the
case when s > 2. In this paper, we show that each cycle of the classical block sGS method
exactly solves the corresponding convex quadratic programming (QP) problem but added with
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an extra proximal term depending on the previous iterate (say xk). Through such a connection
to optimization, we are able to extend the result (which we name as the block sGS decomposition
theorem) to a convex composite QP (CCQP) with an additional possibly nonsmooth term in x1,
and subsequently extend the classical block sGS method to solve a CCQP. We can also extend
the classical block sGS method to the inexact setting, where the underlying linear system for
each block of the new iterate xk+1 need not be solved exactly. Moreover, by borrowing ideas in
the optimization literature, we are able to accelerate the classical block sGS method and provide
new convergence results. More details will be given later.

Assume that Xi = R
ni for i = 1, . . . , s, and X = X1×· · ·×Xs, where s ≥ 2 is a given integer.

Consider the following symmetric positive semidefinite block linear system of equations:

Qx = b, (1)

where x = [x1; . . . ; xs] ∈ X , b = [b1; . . . ; bs] ∈ X , and

Q =




Q1,1 . . . Q1,s

...
...

...

Q∗
1,s . . . Qs,s


 (2)

with Qi,j ∈ R
ni×nj for 1 ≤ i, j ≤ s. It is well known that (1) is the optimality condition for the

following unconstrained QP:

(QP) min
{
q(x) :=

1

2
〈x, Qx〉 − 〈b, x〉 | x ∈ X

}
. (3)

Note that even though our problem is phrased in the matrix-vector setting for convenience, one
can consider the setting where each Xi is a real ni-dimensional inner product space and Qi,j is
a linear map from Xi to Xj. Throughout the paper, we make the following assumption:

Assumption 1. Q is symmetric positive semidefinite and each diagonal block Qi,i is symmetric
positive definite for i = 1, . . . , s.

From the following decomposition of Q:

Q = U +D + U∗, (4)

where

U =




0 Q1,2 . . . Q1,s

. . .
...

. . . Qs−1,s

0



, D =




Q1,1

Q2,2

. . .

Qs,s


 , (5)

the classical block sGS iteration in numerical analysis is usually derived as a natural gener-
alization of the classical pointwise sGS for solving a symmetric positive definite linear system
of equations, and the latter is typically derived as a fixed-point iteration for the sGS matrix
splitting based on (4); see for example [23, Sec. 4.1.1], [13, Sec. 4.5]. Specifically, the block sGS
fixed-point iteration in the third normal form (in the terminology used in [13]) reads as follows:

Q̂(xk+1 − xk) = b−Qxk, (6)
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where Q̂ = (D + U)D−1(D + U∗).
In this paper, we give a derivation of the classical block sGS method (6) from the optimization

perspective. By doing so, we are able to extend the classical block sGS method to solve a
structured CCQP problem of the form:

(CCQP) min
{
F (x) := p(x1) +

1

2
〈x, Qx〉 − 〈b, x〉 | x = [x1; . . . ;xs] ∈ X

}
, (7)

where p : X1 → (−∞,∞] is a proper closed convex function such as p(x1) = ‖x1‖1 or p(x1) =
δ
R
n1
+
(x1) (the indicator function of Rn1

+ defined by δ
R
n1
+
(x1) = 0 if x1 ∈ R

n1

+ and δ
R
n1
+
(x1) = ∞

otherwise). Our specific contributions are described in the next few paragraphs. We note that
the main results presented here are parts of the thesis of the first author [18].

First, we establish the key result of the paper, the block sGS decomposition theorem, which
states that each cycle of the block sGS method, say at the kth iteration, corresponds exactly to
solving (7) with an additional proximal term 1

2‖x− xk‖2TQ added to its objective function, i.e.,

min
{
p(x1) +

1

2
〈x, Qx〉 − 〈b, x〉+ 1

2
‖x− xk‖2TQ | x ∈ X

}
, (8)

where TQ = UD−1U∗, and ‖x‖2TQ = 〈x, TQx〉. It is clear that when p(·) ≡ 0, the problem (7)
is exactly the QP (3) associated with the linear system (1). Therefore, we can interpret the
classical block sGS method as a proximal-point minimization method for solving the QP (3),
and each cycle of the classical block sGS method solves exactly the proximal subproblem (8)
associated with the QP (3). As far as we are aware of, this is the first time in which the classical
block sGS method (6) (and also the pointwise sGS method) is derived from an optimization
perspective.

Second, we also establish a factorization view of the block sGS decomposition theorem and
show its equivalence to the Schur complement based (SCB) reduction procedure proposed in [17]
for solving a recursively defined variant of the proximal subproblem (8). The SCB reduction
procedure in [17] is derived by inductively finding an appropriate proximal term to be added
to the objective function of (7) so that the block variables xs, xs−1, . . . , x2 can be eliminated in
a sequential manner and thus ending with a minimization problem involving only the variable
x1. In a nutshell, we show that the SCB reduction procedure sequentially eliminates the blocks
(in the reversed order starting from xs) in the variable x of the proximal subproblem (8) by
decomposing the proximal term 1

2‖x− xk‖2TQ also in a sequential manner. In turn, each of the
reduction step corresponds exactly to one step in a cycle of the block sGS method.

Third, based on the block sGS decomposition theorem, we are able to extend the classical
block sGS method for solving the QP (3) to solve the CCQP (7), and each cycle of the extended
block sGS method corresponds precisely to solving the proximal subproblem (8). Our extension
of the block sGS method has thus overcome the limitation of the classical method by allowing
us to solve the nonsmooth CCQP which often arises in practice, for example, in semidefinite
programming where p(x1) = δ

S
n1
+
(x1) and S

n1

+ is the cone of n1×n1 symmetric positive semidef-

inite matrices. Moreover, our extension also allows the updates of the blocks to be inexact. As
a consequence, we also obtain an inexact version of the classical block sGS method, where the
iterate xk+1 need not be computed exactly from (6). We should emphasize that the inexact
block sGS method is potentially very useful when a diagonal block, say Qi,i, in (2) is large and
the computation of xk+1

i must be done via an iterative solver rather than a direct solver. Note
that even for the linear system (6), our systematic approach (in section 4) to derive the inexact
extension of the classical block sGS method appears to be new. The only inexact variant of the
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classical block sGS method for (6) with a convergence proof we are aware of is the pioneering
work of Bank et al. in [3]. In [3], the authors showed that by modifying the diagonal blocks in
D, the linear system involved in each block can be solved by a given fixed number of pointwise
sGS cycles.

Fourth, armed with the optimization interpretation of each cycle of the block sGS method,
it becomes easy for us to adapt ideas from the optimization literature to establish the iteration
complexity of O(‖x0 − x∗‖2Q̂/k) for the extended block sGS method as well as to accelerate

it to obtain the complexity of O(‖x0 − x∗‖2Q̂/(k + 1)2), after running for k cycles, where x∗

is an optimal solution for (7). Just as in the classical block sGS method, we can obtain a
linear rate of convergence for our extended inexact block sGS method under the assumption
that Q is positive definite. With the help of an extensive optimization literature on the linear
convergences of proximal gradient methods, we are further able to relax the positive definiteness
assumption on Q to a mild error bound assumption on the function F in (7) and derive at least
R-linear convergence results for our extended block sGS method. The error bound assumption
in fact holds automatically for many interesting applications, including the important case when
p(·) is a piecewise linear-quadratic function. We note that there is active research in studying
the convergence of proximal gradient methods for a convex composite minimization problem of
the form min{f(x) + g(x) | x ∈ X}, with f being a smooth convex function and g a proper
closed convex function whose proximal map is easy to compute; see for example [24] and the
references therein. In each iteration of a typical proximal gradient method, a simple proximal
term L

2 ‖x− x̄‖2, where L is a Lipschitz constant for the gradient of f , is added to the objective
function. Our extended block sGS method for (CCQP) differs from those proximal gradient
methods in the literature in that the proximal term we add comes from the sophisticated positive
semidefinite linear operator associated with the sGS decomposition of Q.

Recent research works in [6, 16, 17, 25, 26] have shown that our block sGS decomposition
theorem for the CCQP (7) can play an essential role in the design of efficient algorithms for
solving various convex optimization problems such as convex composite quadratic semidefinite
programming problems. Indeed, the block sGS decomposition based ADMM algorithms de-
signed in [6, 25, 26] have found applications in various recent papers such as [2, 10, 15]. Our
experiences have shown that the inexact block sGS cycle can provide the much needed compu-
tational efficiency when one is designing an algorithm based on the framework of the proximal
augmented Lagrangian (ALM) or proximal alternating direction method of multipliers (ADMM)
for solving important classes of large scale convex composite optimization problems. As a con-
crete illustration of the application of our block sGS decomposition theorem, we will briefly
describe in section 5 on how to utilize the theorem in the design of the proximal augmented
Lagrangian method for solving a linearly constrained convex composite quadratic programming
problem.

The idea of sequentially updating the blocks of a multi-block variable, either in the Gauss-
Seidel fashion or the successive over-relaxation (SOR) fashion, has been incorporated into quite
a number of optimization algorithms [5] and in solving nonlinear equations [22]. Indeed the
Gauss-Seidel (also known as the block coordinate descent) approach for solving optimization
problems has been considered extensively; we refer the readers to [4, 12] for the literature
review on the recent developments, especially for the case where s > 2. Here we would like
to emphasize that even for the case of an unconstrained smooth convex minimization problem
min{f(x) | x ∈ X}, whose objective function f(x) (not necessarily strongly convex) has a
Lipschitz continuous gradient of modulus L, it is only proven recently in [4] that the block
coordinate (gradient) descent method is globally convergent with the iteration complexity of
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O(Ls/k) after k cycles, where s is the number of blocks. When f(x) is the quadratic function
in (3), the block coordinate descent method is precisely the classical block Gauss-Seidel (GS)
method. In contrast to the block sGS method, each iteration of the block GS method does
not appear to have an optimization equivalence. Despite the extensive work on the Gauss-
Seidel approach for solving convex optimization problems, surprisingly, little is known about
the symmetric Gauss-Seidel approach for solving the same problems except for the recent paper
[25] which utilized our block sGS decomposition theorem to design an inexact accelerated block
coordinate descent method to solve a problem of the form min{p(x1) + f(x) | x ∈ X}.

The remaining parts of the paper are organized as follows. The next section is devoted to the
block sGS decomposition theorem for the CCQP (7). In section 3, we present a factorization view
of the block sGS theorem and prove its equivalence to the SCB reduction procedure proposed
in [17, 18]. In the following section, we derive the block sGS method from an optimization
perspective and extend it to solve the CCQP (7). The convergence results for our extended
block sGS method are also presented in this section. In section 5, the application of our block
sGS decomposition theorem is demonstrated in the design of a proximal augmented Lagrangian
method for solving a linearly constrained convex composite quadratic programming problem.
The extension of the classical block symmetric SOR method for solving (7) is presented in section
6. We conclude our paper in the final section.

We end the section by giving some notation. For a symmetric matrix Q, the notation Q � 0
(Q ≻ 0) means that the matrix Q is symmetric positive semidefinite (definite). The spectral
norm of Q is denote by ‖Q‖2.

2 Derivation of the block sGS decomposition theorem for (7)

In this section, we present the derivation of one cycle of the block sGS method for (7) from the
optimization perspective as mentioned in the introduction.

Recall the decomposition of Q in (4), U ,D in (5) and the sGS linear operator defined by

TQ = UD−1U∗. (9)

Given x̄ ∈ X , corresponding to problem (7), we consider solving the following subproblem

x+ := argminx∈X

{
p(x1) + q(x) +

1

2
‖x− x̄‖2TQ − 〈x, ∆(δ′, δ)〉

}
, (10)

where δ′, δ ∈ X are two given error vectors with δ′1 = δ1, and

∆(δ′, δ) := δ + UD−1(δ − δ′). (11)

We note that the vectors δ′, δ need not be known a priori. We should view x+ as an approximate
solution to (10) without the perturbation term 〈x, ∆(δ′, δ)〉. Once x+ has been computed, the
associated error vectors can then be obtained, and x+ is then the exact solution to the perturbed
problem (10).

The following theorem shows that x+ can be computed by performing exactly one cycle of
the block sGS method for (7). In particular, if p(x1) ≡ 0 and δ′ = 0 = δ, then the computation
of x+ corresponds exactly to one cycle of the classical block sGS method. For the proof, we
need to define the following notation for a given x = (x1; . . . ;xs),

x≥i = (xi; . . . ;xs), x≤i = (x1; . . . ;xi), i = 1, . . . , s.

We also define x≥s+1 = ∅.

5



Theorem 1 (sGS Decomposition). Assume that Q � 0 and the self-adjoint linear operators Qii

are positive definite for all i = 1, . . . , s. Then, it holds that

Q̂ := Q+ TQ = (D + U)D−1(D + U∗) ≻ 0. (12)

For i = s, . . . , 2, suppose that we have computed x′i ∈ Xi defined by

x′i := argmin
xi∈Xi

p(x̄1) + q(x̄≤i−1;xi;x
′
≥i+1)− 〈δ′i, xi〉

= Q−1
ii

(
bi + δ′i −

∑i−1
j=1Q

∗
jix̄j −

∑s
j=i+1Qijx

′
j

)
.

(13)

Then the optimal solution x+ for (10) can be computed exactly via the following steps:




x+1 = argmin
x1∈X1

p(x1) + q(x1;x
′
≥2)− 〈δ1, x1〉,

x+i = argmin
xi∈Xi

p(x+1 ) + q(x+≤i−1;xi;x
′
≥i+1)− 〈δi, xi〉

= Q−1
ii

(
bi + δi −

∑i−1
j=1Q

∗
jix

+
j −∑s

j=i+1Qijx
′
j

)
, i = 2, . . . , s.

(14)

Proof. Since D ≻ 0, we know that D, D + U and D + U∗ are all nonsingular. Then, (12) can
easily be obtained from the following observation

Q+ TQ = D + U + U∗ + UD−1U∗ = (D + U)D−1(D + U∗). (15)

Next we show the equivalence between (10) and (14). By noting that δ1 = δ′1 and Q11 ≻ 0,
we can define x′1 as follows:

x′1 = argmin
x1∈X1

p(x1) + q(x1;x
′
≥2)− 〈δ′1, x1〉 = argmin

x1∈X1

p(x1) + q(x1;x
′
≥2)− 〈δ1, x1〉 = x+1 . (16)

The optimality conditions corresponding to x′1 and x+1 in (16) can be written as
{

Q11x
′
1 = b1 − γ1 + δ′1 −

∑s
j=2Qijx

′
j, (17a)

Q11x
+
1 = b1 − γ1 + δ1 −

∑s
j=2Qijx

′
j , (17b)

where γ1 ∈ ∂p(x′1) ≡ ∂p(x+1 ). Simple calculations show that (17a) together with (13) can
equivalently be rewritten as

(D + U)x′ = b− γ + δ′ − U∗x̄,

where γ = (γ1; 0; . . . , 0) ∈ X , while (14) can equivalently be recast as

(D + U∗)x+ = b− γ + δ − Ux′.

By substituting x′ = (D + U)−1(b− γ + δ′ − U∗x̄) into the above equation, we obtain that

(D + U∗)x+ = b− γ + δ − U(D + U)−1(b− γ + δ′ − U∗x̄)

= D(D + U)−1(b− γ) + U(D + U)−1U∗x̄+ δ − U(D + U)−1δ′,

which, together with (15), (11) and the definition of TQ in (9), implies that

(Q+ TQ)x+ = b− γ + TQx̄+∆(δ′, δ). (18)

In the above, we have used the fact that (D+U)D−1U(D+U)−1 = UD−1. By noting that (18) is
in fact the optimality condition for (10) and Q+ TQ ≻ 0, we have thus obtained the equivalence
between (10) and (14). This completes the proof of the theorem.
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We shall explain here the roles of the error vectors δ′ and δ in the above block sGS decom-
position theorem. There is no need to choose these error vectors in advance. We emphasize that
x′i and x+i obtained from (13) and (14) should be viewed as approximate solutions to the mini-
mization problems without the terms involving δ′i and δi. Once these approximate solutions have
been computed, they would generate δ′i and δi automatically. With these known error vectors,
we know that the computed approximate solutions are the exact solutions to the minimization
problems in (13) and (14).

The following proposition is useful in estimating the error term ∆(δ′, δ) in (10).

Proposition 1. Denote Q̂ := Q + TQ, which is positive definite. Let ξ = ‖Q̂−1/2∆(δ′, δ)‖. It
holds that

ξ ≤ ‖D−1/2(δ − δ′)‖+ ‖Q̂−1/2δ′‖.

Proof. Recall that Q̂ = (D + U)D−1(D + U∗). Thus, we have

Q̂−1 = (D + U∗)−1D(D + U)−1 = (D + U∗)−1D1/2D1/2(D + U)−1,

which, together with the definition of ∆(δ′, δ) in (11), implies that

ξ = ‖D1/2(D + U)−1δ′ +D−1/2(δ − δ′)‖ ≤ ‖D1/2(D + U)−1δ′‖+ ‖D−1/2(δ − δ′)‖.

The desired result then follows.

Theorem 1 shows that instead of solving the QP subproblem (10) directly with an N -
dimensional variable x, where N =

∑s
i=1 ni, the computation can be decomposed into s pieces

of smaller dimensional problems involving only the variable xi for each i = 1, . . . , s. Such a
decomposition is obviously highly useful for dealing with a large scale CCQP of the form (7)
when N is very large. The benefit is especially important because the computation of xi for
i = 2, . . . , s involves only solving linear systems of equations. Of course, one would still have
to solve a potentially difficult subproblem involving the variable x1 due to the presence of the
possibly nonsmooth term p(x1), i.e.,

x+1 = argmin
{
p(x1) +

1

2
〈x1, Q11x1〉 − 〈c1, x1〉 | x1 ∈ X1

}
,

where c1 is a known vector depending on the previously computed x′s, . . . , x
′
2. However, in many

applications, p(x1) is usually a simple nonsmooth function such as ‖x1‖1, ‖x1‖∞, or δ
R
n1
+
(x1) for

which the corresponding subproblem is not difficult to solve. As a concrete example, suppose
that Q11 = In1

. Then x+1 = Proxp(c1) and the Moreau-Yosida proximal map Proxp(c1) can be
computed efficiently for various nonsmooth function p(·) including the examples just mentioned.
In fact, one can always make the subproblem easier to solve by (a) adding an additional proximal
term 1

2‖x1 − x̄1‖2J1 to (10), where J1 = µ1In1
− Q11 with µ1 = ‖Q11‖2; and (b) modifying the

sGS operator to UD̂−1U∗, where D̂ = D+diag(J1, 0, . . . , 0). With the additional proximal term
involving J1, the subproblem corresponding to x1 then becomes

x+1 = argmin
{
p(x1) +

1

2
〈x1, Q11x1〉 − 〈c1, x1〉+

1

2
‖x1 − x̄1‖2J1 | x1 ∈ R

n1

}

= argmin
{
p(x1) +

µ1

2
〈x1, x1〉 − 〈c1 + J1x̄1, x1〉 | x1 ∈ R

n1

}

= Proxp/µ1

(
µ−1
1 (c1 + J1x̄1)

)
.

7



In fact, more generally, one can also modify the other diagonal blocks in D to make the
linear systems involved easier to solve by adding the proximal term 1

2‖x − x̄‖2diag(J1,J2,...,Js) to
(10), where Ji � 0, i = 1, . . . , s are given symmetric matrices. Correspondingly, the sGS linear
operator for the proximal term to be added to the problem (10) then becomes TQ+diag(J1,...,Js) =

UD̂−1U∗, where D̂ = D+diag(J1, J2, . . . , Js), and Q̂ in (12) becomes Q̂ = Q+diag(J1, . . . , Js)+
UD̂−1U∗. There are many suitable choices for Ji, i = 2, . . . , s. A conservative choice would be
Ji = ‖Qii‖2Ini

−Qii, in which case the linear system to be solved has its coefficient matrix given
by Qii + Ji = ‖Qii‖2Ini

. Another possible choice of Ji is the sGS linear operator associated
with the matrix Qii, in which case the linear system involved has its coefficient matrix given by
Qii + TQii

and its solution can be computed by using one cycle of the sGS method. The latter
choice has been considered in [3] for its variant of the classical block sGS method. Despite the
advantage of simplifying the linear systems to be solved, one should note that the price to pay
for adding the extra proximal term 1

2‖x − x̄‖2diag(J1,...,Js) is worsening the convergence rate of

the overall block sGS method.

3 A factorization view of the block sGS decomposition theorem
and its equivalence to the SCB reduction procedure

In this section, we present a factorization view of the block sGS decomposition theorem and
show its equivalence to the Schur complement based (SCB) reduction procedure developed in
[17, 18].

Let Θ1 be the zero matrix in R
n1×n1 and N1 := n1. For j = 2, . . . , s, let Nj :=

∑j
i=1 ni and

define Θ̂j ∈ R
Nj−1×Nj−1 and Θj ∈ R

Nj×Nj as follows:

Θ̂j :=




Q1,j
...

Qj−1,j


Q−1

j,j

[
Q∗

1,j, . . . , Q
∗
j−1,j

]

and

Θj :=




Q1,2

0
...
0


Q−1

2,2

[
Q∗

1,2, 0, . . . , 0
]
+ · · ·+




Q1,j
...

Qj−1,j

0


Q−1

j,j

[
Q∗

1,j, . . . , Q
∗
j−1,j, 0

]
. (19)

Then, the above definitions indicate that, for 2 ≤ j ≤ s,

Θj = diag(Θj−1, 0nj
) + diag(Θ̂j, 0nj

) ∈ R
Nj×Nj . (20)

In [17, 18], the SCB reduction procedure corresponding to problem (7) is derived through the
construction of the above self-adjoint linear operator Θs on X . Now we recall the key steps in
the SCB reduction procedure derived in the previous work. For j = 1, . . . , s, define

Qj :=




Q1,1 . . . Q1,j−1 Q1,j

...
. . .

...
...

Q∗
1,j−1 . . . Qj−1,j−1 Qj−1,j

Q∗
1,j . . . Q∗

j−1,j Qj,j



, Rj :=




Q1,j

...
Qj−1,j


 .
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Note that Θ̂j = RjQ
−1
j,jR

∗
j . It is easy to show that

min
{
p(x1) + q(x≤s−1;xs) +

1

2
‖x− x̄‖2Θs

| x ∈ X
}

(21)

= min
x≤s−1∈X≤s−1





p(x1) +
1
2 〈x≤s−1, Qs−1x≤s−1〉 − 〈b≤s−1, x≤s−1〉+ 1

2‖x≤s−1 − x̄≤s−1‖2Θs−1

+minxs∈Xs

{
1
2 〈xs, Qs,sxs〉 − 〈bs −R∗

s x≤s−1, xs〉+ 1
2‖x≤s−1 − x̄≤s−1‖2Θ̂s

}


 .

By first solving the inner minimization problem with respect to xs, we get the solution as a
function of x1, . . . , xs−1 as follows:

xs = Q−1
s,s

(
bs −R∗

s x≤s−1

)
. (22)

And the minimum value is given by

−1

2
〈bs −R∗

s x≤s−1, Q
−1
s,s(bs −R∗

sx≤s−1)〉+
1

2
‖x≤s−1 − x̄≤s−1‖2Θ̂s

= −1

2
〈bs, Qs,sbs〉+

1

2
〈x̄≤s−1, Θ̂sx̄≤s−1〉+ 〈RsQ

−1
s,s(bs −R∗

sx̄≤s−1), x≤s−1〉.

Thus (21) reduces to a problem involving only the variables x1, . . . , xs−1, which, up to a constant,
is given by

min
x≤s−1∈X≤s−1

{
p(x1) +

1
2 〈x≤s−1, Qs−1x≤s−1〉 − 〈b≤s−1 −Rsx

′
s, x≤s−1〉

+1
2‖x≤s−1 − x̄≤s−1‖2Θs−1

}

= min
x≤s−1∈X≤s−1

{
p(x1) + q(x≤s−1;x

′
s) +

1
2‖x≤s−1 − x̄≤s−1‖2Θs−1

}
, (23)

where x′s = Q−1
s,s(bs − R∗

s x̄≤s−1). Observe that (23) has exactly the same form as (21). By
repeating the above procedure to sequentially eliminate the variables xs−1, . . . , x2, we will finally
arrive at a minimization problem involving only the variable x1. Once that minimization problem
is solved, we can recover the solutions for x2, . . . , xs in a sequential manner.

Now we will prove the equivalence between the block sGS decomposition theorem and the
SCB reduction procedure in the subsequent analysis by proving that Θs = TQ, where TQ is given
in (9). For j = 2, . . . , s, define the block matrices V̂j ∈ R

Nj×Nj and Vj ∈ R
N×N by

V̂j :=




In1
Q1,jQ

−1
j,j

. . .
...

Inj−1
Qj−1,jQ

−1
j,j

Inj



∈ R

Nj×Nj , Vj := diag(V̂j , IN−Nj
) ∈ R

N×N , (24)

where Inj
is the nj × nj identity matrix. Note that V̂s = Vs. Given j ≥ 2, we have, by simple

calculations, that for any k < j,

V̂−1
j




Q1,k
...

Qk−1,k

0



=




Q1,k
...

Qk−1,k

0




and V̂−1
j




Q1,j
...

Qj−1,j

Qj,j



=




0
...
0

Qj,j



. (25)
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From (19) and (25), we have that

V̂−1
j Θj(V̂−1

j )∗ = Θj, j = 2, . . . , s. (26)

Lemma 1. Let U and D be given in (5). It holds that

V∗
2 · · · V∗

s = D−1(D + U∗), Vs · · · V2 = (D + U)D−1.

Proof. It can be verified directly that

V∗
2 · · · V∗

s =




I

Q−1
2,2Q

∗
1,2 I

...
. . .

. . .

Q−1
s,sQ

∗
1,s · · · Q−1

s,sQ
∗
s−1,s I



= D−1(D + U∗).

The second equality follows readily from the first.

In the proof of the next lemma, we will make use of the well known fact that for given
symmetric matrices A,C such that C ≻ 0 and M := A−BC−1B∗ ≻ 0, we have that

[
A B
B∗ C

]
=

[
I BC−1

0 I

] [
M 0
0 C

] [
I 0

C−1B∗ I

]
. (27)

Theorem 2. It holds that

Qs +Θs = Vs · · · V2 DV∗
2 · · · V∗

s and Θs = TQ.

Proof. By using (27), for j = 2, . . . , s, we have that

Qj = V̂j diag(Mj−1, Qj,j) V̂∗
j ,

where

Mj−1 =




Q1,1 . . . Q1,j−1
...

. . .
...

Q∗
1,j−1 . . . Qj−1,j−1


−




Q1,j
...

Qj−1,j


Q−1

j,j

[
Q∗

1,j , . . . , Q
∗
j−1,j

]
= Qj−1 − Θ̂j.

Thus, from (26), we know that for 2 ≤ j ≤ s,

Qj +Θj = V̂j

(
diag(Mj−1, Qj,j) + V̂−1

j Θj(V̂−1
j )∗

)
V̂∗
j = V̂j

(
diag(Mj−1, Qj,j) + Θj

)
V̂∗
j .

For 2 ≤ j ≤ s, by (20), we have that

diag(Mj−1, Qj,j) + Θj = diag(Mj−1 +Θj−1 + Θ̂j , Qj,j) = diag(Qj−1 +Θj−1, Qj,j)

and consequently,
Qj +Θj = V̂j diag(Qj−1 +Θj−1, Qj,j) V̂∗

j . (28)
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Thus, by recalling the definitions of V̂j and Vj in (24) and using (28), we obtain through simple
calculations that

Qs +Θs = Vs diag(Qs−1 +Θs−1, Qs,s) V∗
s

=
...

= Vs · · · V2 diag(Q1 +Θ1, Q2,2, . . . , Qs,s) V∗
2 · · · V∗

s .

Thus, by using the fact that Q1 +Θ1 = Q1,1, we get

Qs +Θs = Vs · · · V2 diag(Q1,1, Q2,2, . . . , Qs,s) V∗
2 · · · V∗

s .

By Lemma 1, it follows that

Qs +Θs = (D + U)D−1DD−1(D + U∗) = (D + U)D−1(D + U∗) = Q+ TQ,

where the last equation follows from (12) in Theorem 1. Since Qs = Q, we know that

Θs = TQ.

This completes the proof of the theorem.

4 An extended block sGS method for solving the CCQP (7)

With the block sGS decomposition theorem (Theorem 1) and Proposition 1, we can now extend
the classical block sGS method to solve the CCQP (7). The detail steps of the algorithm for
solving (7) are given as follows.

Algorithm 1: An sGS based inexact proximal gradient method for (7).

Input x̃1 = x0 ∈ dom(p) × R
n2 × . . . × R

ns , t1 = 1 and a summable sequence of nonnegative
numbers {ǫk}. For k = 1, 2, . . ., perform the following steps in each iteration.

Step 1. Compute

xk = argminx∈X

{
p(x1) + q(x) +

1

2
‖x− x̃k‖2TQ − 〈x, ∆( δ̃

k
, δk)〉

}
, (29)

via the sGS decomposition procedure described in Theorem 1, where δ̃
k
, δk ∈ X are error

vectors such that
max{‖δ̃k‖, ‖δk‖} ≤ ǫk

tk
. (30)

Step 2. Choose tk+1 such that t2k+1 − tk+1 ≤ t2k and set βk = tk−1
tk+1

. Compute

x̃k+1 = xk + βk(x
k − xk−1).

We have the following iteration complexity convergence results for Algorithm 1.
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Proposition 2. Suppose x∗ is an optimal solution of problem (7). Let {xk} be the sequence
generated by Algorithm 1. Define M = 2‖D−1/2‖2 + ‖Q̂−1/2‖2.
(a) If tk+1 =

1+
√

1+4t2
k

2 for all k ≥ 1, it holds that

0 ≤ F (xk)− F (x∗) ≤ 2

(k + 1)2

(
‖x0 − x∗‖Q̂ + ǭk

)2
,

where Q̂ = Q+ TQ and ǭk = 2M
∑k

i=1 ǫi.

(b) If tk = 1 for all k ≥ 1, it holds that

0 ≤ F (xk)− F (x∗) ≤ 1

2k

(
‖x0 − x∗‖Q̂ + ǫ̃k

)2
,

where ǫ̃k = 4M
∑k

i=1 iǫi.

Proof. (a) The result can be proved by applying Theorem 2.1 in [14]. In order to apply the
theorem, we need to verify that the error e := γ+Qxk−b+TQ(xk−x̃k), where γ = (γ1; 0; . . . ; 0)

and γ1 ∈ ∂p(xk1), incurred for solving the subproblem (without the perturbation term ∆( δ̃
k
, δk))

in Step 1 inexactly is sufficiently small. From Theorem 1, we know that

e := γ +Qxk − b+ TQ(xk − x̃k) = ∆( δ̃
k
, δk).

The theorem is proved via Theorem 2.1 in [14] if we can show that ‖Q̂−1/2∆( δ̃
k
, δk)‖ ≤ M ǫk

tk
.

But from (30) and Proposition 1, we have that

‖Q̂−1/2∆( δ̃
k
, δk)‖ ≤ ‖D−1/2δk‖+ ‖D−1/2δ̃

k‖+ ‖Q̂−1/2δ̃
k‖ ≤ Mǫk/tk,

thus the required inequality indeed holds true, and the proof is completed.

(b) There is no straightforward theorem for which we can apply to prove the result, we will
provide the proof in the Appendix.

Remark 1. It is not difficult to show that if p(·) ≡ 0, tk = 1, and δk = δ̃
k
= 0 for all k ≥ 1,

then Algorithm 1 exactly coincides with the classical block sGS method (6); and if δk, δ̃
k
are

allowed to be non-zero but satisfy the condition (30) for all k ≥ 1, then we obtain the inexact
extension of the classical block sGS method.

Remark 2. Proposition 2 shows that the classical block sGS method for solving (1) can be
extended to solve the convex composite QP (7). It also demonstrates the advantage of interpreting
the block sGS method from the optimization perspective. For example, one can obtain the O(1/k)
iteration complexity result for the classical block sGS method without assuming that Q is positive
definite. To the best of our knowledge, such a complexity result for the classical block sGS is
new. More importantly, inexact and accelerated versions of the block sGS method can also be
derived for (1).

Remark 3. In solving (29) via the sGS decomposition procedure to satisfy the error condition
(30), let x′ = [x′1; . . . ;x

′
s] be the intermediate solution computed during the backward GS sweep

(in Theorem 1) and the associated error vector be δ̃
k
= [δ̃k1 ; . . . ; δ̃

k
s ]. In the forward GS sweep,
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one can often save computations by using the computed x′i to estimate xk+1
i for i ≥ 2, and the

resulting error vector will be given by δki = δ̃ki +
∑i−1

j=1Q
∗
ji(x

k+1
j − x̃kj ). If we have that

‖∑i−1
j=1Q

∗
ji(x

k+1
j − x̃kj )‖ ≤ ρ, (31)

where ρ = c√
s
‖δ̃k‖ and c > 0 is some given constant, then clearly ‖δki ‖2 ≤ 2‖δ̃ki ‖2 + 2ρ2. When

all the error components ‖δki ‖2 satisfy the previous bound for i = 1, . . . , s, regardless of whether

xk+1
i is estimated from x′i or computed afresh, we get ‖δk‖ ≤

√
2(1 + c2)‖δ̃k‖. Consequently the

error condition (30) can be satisfied with a slightly larger error tolerance
√
2(1 + c2) ǫk/tk. It is

easy to see that one can use the condition in (31) to decide whether xk+1
i can be estimated from

x′i without contributing a large error to ‖δk‖ for each i = 2, . . . , s.

Besides the above iteration complexity results, one can also study the linear convergence rate
of Algorithm 1. Indeed, just as in the case of the classical block sGS method, the convergence
rate of our extended inexact block sGS method for solving (7) can also be established when
Q ≻ 0. The precise result is given in the next theorem.

Theorem 3. Suppose that the relative interior of the domain of p, ri(dom(p)), is non-empty,
Q ≻ 0 and tk = 1 for all k ≥ 1. Then

‖Q̂−1/2(xk − x∗)‖ ≤ ‖B‖k2‖Q̂−1/2(x0 − x∗)‖+M‖B‖k2
k∑

j=1

‖B‖−j
2 ǫj , (32)

where B = I − Q̂−1/2QQ̂−1/2, and M is defined as in Proposition 2. Note that 0 � B ≺ I.

Proof. For notational convenience, we let ∆j = ∆(δ̃
j
, δj) in this proof.

Define E1 : X → X1 by E1(x) = x1 and p̂ : X → (−∞,∞] by p̂(x) = p(E1Q̂−1/2x). Since
Q̂ ≻ 0, it is clear that range(E1Q̂−1/2) = X1 and hence ri(dom(p)) ∩ range(E1Q̂−1/2) 6= ∅. By
[21, Theorem 23.9], we have that

∂p̂(x) = Q̂−1/2E∗
1∂p(E1Q̂−1/2x) ∀ x ∈ X . (33)

From the optimality condition of xj , we have that

0 = γj + Q̂(xj − xj−1)− b+Qxj−1 −∆j

⇔ Q̂1/2xj−1 + Q̂−1/2(b−Qxj−1) + Q̂−1/2∆j = Q̂−1/2γj + Q̂1/2xj ,

where γj = (γj1; 0; . . . ; 0) with γj1 ∈ ∂p(xj1). Let x̂j = Q̂1/2xj and x̂j−1 = Q̂1/2xj−1. Then we
have that

x̂j−1 + Q̂−1/2(b−Qxj−1) + Q̂−1/2∆j ∈ (I + ∂p̂)(x̂j)

⇔ x̂j = Proxp̂
(
Bx̂j−1 + Q̂−1/2b+ Q̂−1/2∆j

)
.

Similarly if x∗ is an optimal solution of (7), then we have that

x̂∗ = Proxp̂(Bx̂∗ + Q̂−1/2b).
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By using the nonexpansive property of Proxp̂, we have that

‖x̂j − x̂∗‖ = ‖Proxp̂
(
Bx̂j−1 + Q̂−1/2b+ Q̂−1/2∆j

)
− Proxp̂(Bx̂∗ + Q̂−1/2b)‖

≤ ‖(Bx̂j−1 + Q̂−1/2b+ Q̂−1/2∆j)− (Bx̂∗ + Q̂−1/2b)‖

≤ ‖B‖2‖x̂j−1 − x̂∗‖+Mǫj.

By applying the above inequality sequentially for j = k, k − 1, . . . , 1, we get the required result
in (32).

Remark 4. In fact, one can weaken the positive definiteness assumption of Q in the above
theorem and still expect a linear rate of convergence. As a simple illustration, we only discuss

here the exact version of Algorithm 1, i.e., δ̃
k
= δk = 0, under the error bound condition

[19, 20] on F which holds automatically if p is a convex piecewise quadratic/linear function
such as p(x1) = ‖x1‖1, p(x1) = δ

R
n1
+

or if Q ≻ 0. When tk = 1 for all k ≥ 1, one can prove

that {F (xk)} converges at least Q-linearly and {xk} converges at least R-linearly to an optimal
solution of problem (7) by using the techniques developed in [19, 20]. Interested readers may
refer to [28, 30] for more details. For the accelerated case, with the additional fixed restarting
scheme incorporated in Algorithm 1, both the R-linear convergences of {F (xk)} and {xk} can
be obtained from [29, Corollary 3.8].

5 An illustration on the application of the block sGS decompo-

sition theorem in designing an efficient proximal ALM

In this section, we demonstrate the usefulness of our block sGS decomposition theorem as a
building block for designing an efficient proximal ALM for solving a linearly constrained convex
composite QP problem given by

min
{
p(x1) +

1

2
〈x, Px〉 − 〈g, x〉 | Ax = d

}
, (34)

where P is a positive semidefinite linear operator on X , A : X → Y is a given linear map,
and g ∈ X , d ∈ Y are given data. Here X and Y are two finite dimensional inner product
spaces. Specifically, we show how the block sGS decomposition theorem given in Theorem 1
can be applied within the proximal ALM. We must emphasize that our main purpose here is
to briefly illustrate the usefulness of the block sGS decomposition theorem but not to focus on
the proximal ALM itself. Indeed, simply being capable of handling the nonsmooth function p(·)
has already distinguished our approach from other approaches of using the sGS technique in
optimization algorithms, e.g, [8, 9], where the authors incorporated the pointwise sGS splitting
as a preconditioner within the Douglas–Rachford splitting method for a convex-concave saddle
point problem.

In depth analysis of various recently developed ADMM-type algorithms and accelerated block
coordinate descent algorithms employing the block sGS decomposition theorem as a building
block can be found in [6, 15, 16, 17, 25]. Thus we shall not elaborate here again on the essential
role played by the block sGS decomposition theorem in the design of those algorithms.

Although the problem (34) looks deceivingly simple, in fact it is a powerful model which
includes the important class of standard convex quadratic semidefinite programming (QSDP)
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in the dual form given by

min
{1

2
〈W, HW 〉 − 〈h, ξ〉 | Z + B∗ξ +HW = C, ξ ∈ R

p, Z ∈ S
n
+, W ∈ W

}
, (35)

where h ∈ Rp, C ∈ Sn are given data, B : Sn → Rp is a given linear map that is assumed to
be surjective, H : Sn → S

n is a self-adjoint positive semidefinite linear operator, and W ⊆ S
n is

any subspace containing Range(H), the range space of H. Here S
n denotes the space of n × n

symmetric matrices and S
n
+ denotes the cone of symmetric positive semidefinite matrices in S

n.
One can obviously express the QSDP problem (35) in the form of (34) by defining x = (Z; ξ;W ),
p(Z) = δSn

+
(Z), P = diag(0, 0,H), and A = (I,B∗,H).

We begin with the augmented Lagrangian function associated with (34):

Lσ(x; y) = p(x1) +
1

2
〈x, Px〉 − 〈g, x〉+ σ

2
‖Ax− d+ σ−1y‖2 − 1

2σ
‖y‖2, (36)

where σ > 0 is a given penalty parameter and y ∈ Y is the multiplier associated with the equality
constraint. The template for a proximal ALM is given as follows. Given T � 0, x0 ∈ X and
y0 ∈ Y. Perform the following steps in each iteration.

Step 1. Compute

xk+1 = argmin
{
Lσ(x; y

k) +
1

2
‖x− xk‖2T | x ∈ X

}

= argmin
{
p(x1) +

1

2
〈x, (P + σA∗A)x〉 − 〈b, x〉+ 1

2
‖x− xk‖2T | x ∈ X

}
, (37)

where b = g +A∗(σd− yk).

Step 2. Compute yk+1 = yk + τσ(Axk − d), where τ ∈ (0, 2) is the step-length.

It is clear that the subproblem (37) has the form given in (7). Thus, one can apply the block
sGS decomposition theorem to efficiently solve the subproblem if we choose T = TP+σA∗A,
i.e., the sGS operator associated with Q := P + σA∗A. For the QSDP problem (35) with
W := Range(H), we have that

Q = σ




I B∗ H
B BB∗ BH
H HB∗ σ−1H +H2




and that the subproblem (37) can be efficiently solved by one cycle of the extended block sGS
method explicitly as follows, given the iterate (Zk, ξk,HW k) and multiplier yk.

Step 1a. Compute HW ′ as the solution of (σ−1I +H)HW ′ = σ−1bW −HZk −HB∗ξk, where
bW = H(σC − Y k).

Step 1b. Compute ξ′ from BB∗ξ′ = σ−1bξ − BZk − BHW ′, where bξ = h+ B(σC − Y k).

Step 1c. Compute Zk+1 = argmin
{
δSn

+
(Z) + σ

2 ‖Z + B∗ξ′ + HW ′ − σ−1bZ‖2
}
, where bZ =

σC − Y k.

Step 1d. Compute ξk+1 from BB∗ξk+1 = σ−1bξ − BZk+1 − BHW ′.
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Step 1e. Compute HW k+1 from (σ−1I +H)HW k+1 = σ−1bW −HZk+1 −HB∗ξk+1.

From the above implementation, one can see how simple it is for one to apply the block sGS
decomposition theorem to solve the complicated subproblem (37) arising from QSDP. Note that
in Step 1a and Step 1e, we only need to compute HW ′ and HW k+1, respectively, and we do not
need the values of W ′ and W k+1 explicitly. Here, for simplicity, we only write down the exact
version of a proximal ALM by using our exact block sGS decomposition theorem. Without any
difficulty, one can also apply the inexact version of the block sGS decomposition theorem to
derive a more practical inexact proximal ALM for solving (34), say when the linear systems
involved are large scale and have to be solved by a Krylov subspace iterative method.

6 Extension of the classical block symmetric SOR method for
solving (7)

In a way similar to what we have done in section 2, we show in this section that the classical block
symmetric SOR (block sSOR) method can also be interpreted from an optimization perspective.

Given a parameter ω ∈ [1, 2), the kth iteration of the classical block sSOR method in the
third normal form is defined by

Q̂ω(x
k+1 − xk) = b−Qxk, (38)

where
Q̂ω = (τD + U)−1(ρD)−1(τD + U∗),

τ = 1/ω, and ρ = 2τ − 1. Note that for ω ∈ [1, 2), we have that τ ∈ (1/2, 1] and ρ ∈ (0, 1]. We
should mention that the classical block sSOR method is typically not derived in the form given
in (38), see for example [13, p.117], but one can show with some algebraic manipulations that
(38) is an equivalent reformulation.

Denote
TsSOR :=

(
(1− τ)D + U

)
(ρD)−1

(
(1− τ)D + U∗).

In the next proposition, we show that W can be decomposed as the sum of Q and TsSOR. Similar
to the linear operator TQ in section 2, TsSOR is the key ingredient which enables us to derive the
block sSOR method from the optimization perspective, and to extend it to solve the CCQP (7).

Proposition 3. Let ω ∈ [1, 2), and denote τ = 1/ω ∈ (1/2, 1], ρ = 2τ − 1. It holds that

Q̂ω = Q+ TsSOR. (39)

Proof. Let τ̄ := τ − 1
2 > 0 and U = U + 1

2D. Note that ρ = 2τ̄ and

Q̂ω = (τ̄D + U)(2τ̄D)−1(τ̄D + U∗
)

=
1

2
(τ̄D + U)(I + (τ̄D)−1U∗

) =
1

2
(τ̄D + U + U∗

+ U(τ̄D)−1U∗
)

=
1

2
(Q+ τ̄D + U(τ̄D)−1U∗

)

= Q+
1

2

(
τ̄D + U(τ̄D)−1U∗ −Q

)
.
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Now

τ̄D + U(τ̄D)−1U∗ −Q = τ̄D + U(τ̄D)−1U∗ − U − U∗

= (τ̄D − U)(τ̄D)−1(τ̄D − U∗
) =

(
(1− τ)D + U

)
(τ̄D)−1

(
(1− τ)D + U∗).

From here, we get the required expression for Q̂ω in (39).

Given two error tolerance vectors δ and δ′ with δ1 = δ′1, let

∆sSOR(δ
′, δ) := δ′ + (τD + U)(ρD)−1(δ − δ′).

Given x̄ ∈ X , similar to Theorem 1, one can prove without much difficulty that the optimal
solution of the following minimization subproblem

min
x∈X

{
p(x1) + q(x) +

1

2
‖x− x̄‖2TsSOR

− 〈x, ∆sSOR(δ
′, δ)〉

}
, (40)

can be computed by performing exactly one cycle of the block sSOR method. In particular,
when p(·) ≡ 0 and δ = δ′ = 0, the optimal solution to (40) can be computed by (38), i.e., set
x̄ = xk, then xk+1 obtained from (38) is the optimal solution to (40). By replacing TQ and
∆(·, ·) in Algorithm 1 with TsSOR and ∆sSOR(·, ·), respectively, one can obtain a block sSOR
based inexact proximal gradient method for solving (7) and the convergence results presented
in Proposition 2 and Theorem 3 still remain valid with Q̂ replaced by Q̂ω.

Remark 5. For the classical pointwise sSOR method, it was shown in [13, Theorem 4.8.14]
that if there exist positive constants γ and Γ such that

0 ≺ γD � Q,
(1
2
D + U

)
D−1

(1
2
D + U∗

)
� Γ

4
Q,

then its convergence rate is ‖I − Q1/2Q̂−1
ω Q1/2‖2 ≤ 1 − 2τ̄

τ̄2/γ+τ̄+Γ/4 , where τ̄ = 1/ω − 1/2.

Interestingly, for the convergence rate of our block sSOR method in Theorem 3, we also have a
similar estimate given by

‖I − Q̂−1/2
ω QQ̂−1/2

ω ‖2 ≤ 1− 2τ̄

τ̄2/γ + τ̄ + Γ/4
.

In order to minimize the upper bound, we can choose ω∗ = 2/(1 +
√
γΓ) and then we get

‖I − Q̂−1/2
ω∗

QQ̂−1/2
ω∗

‖2 ≤ 1−
√

γ/Γ

1 +
√

γ/Γ
.

7 Conclusion

In this paper, we give an optimization interpretation that each cycle of the classical block sGS
method is equivalent to solving the associated multi-block convex QP problem with an additional
proximal term. This equivalence is fully characterized via our block sGS decomposition theorem.
A factorization view of this theorem and its equivalence to the SCB reduction procedure are
also established. The classical block sGS method, viewed from the optimization perspective via
the block sGS decomposition theorem, is then extended to the inexact setting for solving a class
of multi-block convex composite QP problems involving nonsmooth functions. Moreover, we
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are able to derive O(1/k) and O(1/k2) iteration complexities for our inexact block sGS method
and its accelerated version, respectively. These new interpretations and convergence results,
together with the incorporation of the (inexact) sGS decomposition techniques in the design
of efficient algorithms for core optimization problems in [6, 15, 16, 17, 25], demonstrate the
power and usefulness of our simple yet elegant block sGS decomposition theorem. We believe
this decomposition theorem will be proven to be even more useful in solving other optimization
problems and beyond.

Appendix: Proof of part (b) of Proposition 2

To begin the proof, we state the following lemma from [24].

Lemma 2. Suppose that {uk} and {λk} are two sequences of nonnegative scalars, and {sk} is
a nondecreasing sequence of scalars such that s0 ≥ u20. Suppose that for all k ≥ 1, the inequality

u2k ≤ sk + 2
∑k

i=1 λiui holds. Then for all k ≥ 1, uk ≤ λ̄k +
√

sk + λ̄2
k, where λ̄k =

∑k
i=1 λi.

Proof. In this proof, we let ∆j = ∆(δ̃
j
, δj). Note that under the assumption that tj = 1 for all

j ≥ 1, x̃j = xj−1. Note also that from (30), we have that ‖Q̂−1/2∆j‖ ≤ Mǫj , where M is given
as in Proposition 2.

From the optimality of xj in (29), one can show that

F (x)− F (xj) ≥ 1

2
‖xj − xj−1‖2Q̂ + 〈xj−1 − x, Q̂(xj − xj−1)〉+ 〈∆j , x− xj〉 ∀ x. (41)

Let ej = xj − x∗. By setting x = xj−1 and x = x∗ in (41), we get

F (xj−1)− F (xj) ≥ 1

2
‖ej − ej−1‖2Q̂ + 〈∆j , ej−1 − ej〉, (42)

F (x∗)− F (xj) ≥ 1

2
‖ej‖2Q̂ − 1

2
‖ej−1‖2Q̂ − 〈∆j , ej〉. (43)

By multiplying j − 1 to (42) and combining with (43), we get

(aj + b2j ) ≤ (aj−1 + b2j−1)− (j − 1)‖ej − ej−1‖2Q̂ + 2〈∆j , jej − (j − 1)ej−1〉

≤ (aj−1 + b2j−1) + 2‖Q̂−1/2∆j‖‖jej − (j − 1)ej−1‖Q̂
≤ (aj−1 + b2j−1) + 2‖Q̂−1/2∆j‖(jbj + (j − 1)bj−1)

≤ · · ·

≤ a1 + b21 + 2

j∑

i=2

Mǫi(ibi + (i− 1)bi−1) ≤ b20 + 2

j∑

i=1

2Miǫibi, (44)

where aj = 2j[F (xj) − F (x∗)] and bj = ‖ej‖Q̂. Note that the last inequality follows from (43)

with j = 1 and some simple manipulations. To summarize, we have b2j ≤ b20 + 2
∑j

i=1 2Miǫibi.
By applying Lemma 2, we get

bj ≤ λ̄j +
√

b20 + λ̄2
j ≤ b0 + 2λ̄j ,
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where λ̄j =
∑j

i=1 λi with λi = 2Miǫi. Applying the above result to (44), we get

aj ≤ b20 + 2

j∑

i=1

λi(2λ̄i + b0) ≤ (b0 + 2λ̄j)
2.

From here, the required result in Part (b) of Proposition 2 follows.
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