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Abstract

Given a graph G = (V,E) and an integer k ∈ N, we study k-Vertex Separator (resp. k-Edge
Separator), where the goal is to remove the minimum number of vertices (resp. edges) such that
each connected component in the resulting graph has at most k vertices. Our primary focus is
on the case where k is either a constant or a slowly growing function of n (e.g. O(log n) or no(1)).
Our problems can be interpreted as a special case of three general classes of problems that have
been studied separately (balanced graph partitioning, Hypergraph Vertex Cover (HVC), and
fixed parameter tractability (FPT)).

Our main result is an O(log k)-approximation algorithm for k-Vertex Separator that runs
in time 2O(k)nO(1), and an O(log k)-approximation algorithm for k-Edge Separator that runs
in time nO(1). Our result on k-Edge Separator improves the best previous graph partitioning
algorithm [KNS09] for small k. Our result on k-Vertex Separator improves the simple (k +
1)-approximation from HVC [BAMSN15]. When OPT > k, the running time 2O(k)nO(1) is
faster than the lower bound kΩ(OPT)nΩ(1) for exact algorithms assuming the Exponential Time
Hypothesis [DDvH14]. While the running time of 2O(k)nO(1) for k-Vertex Separator seems
unsatisfactory, we show that the superpolynomial dependence on k may be needed to achieve
a polylogarithmic approximation ratio, based on hardness of Densest k-Subgraph.

We also study k-Path Transversal, where the goal is to remove the minimum number of ver-
tices such that there is no simple path of length k. With additional ideas from FPT algorithms
and graph theory, we present an O(log k)-approximation algorithm for k-Path Transversal that

runs in time 2O(k3 log k)nO(1). Previously, the existence of even (1−δ)k-approximation algorithm
for fixed δ > 0 was open [Cam15].
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1 Introduction

We study the following natural graph partitioning problems.

k-Vertex Separator

Input: An undirected graph G = (V,E) and k ∈ N.

Output: Subset S ⊆ V such that in the subgraph induced on V \ S (denoted by G|V \S), each
connected component has at most k vertices.

Goal: Minimize |S|.

The edge version can be defined similarly.

k-Edge Separator

Input: An undirected graph G = (V,E) and k ∈ N.

Output: Subset S ⊆ E such that in the subgraph (V,E \ S), each connected component has
at most k vertices.

Goal: Minimize |S|.

These two problems have been actively studied in a number of different research contexts that
have been developed independently. We categorize past research into three groups.

Graph Partitioning. Graph partitioning is a general task of removing a small number of edges
or vertices to make the resulting graph consist of smaller connected components. In this context,
the edge versions have received more attention.

One of the most well-studied formulations is called l-Balanced Partitioning. Given a graph
G = (V,E) and l ∈ N, the goal is to remove the smallest number of edges so that the resulting
graph has l (l ≥ 2) connected components with (roughly) the same number n

l of vertices. 1 The
case l = 2 has been studied extensively and produced elegant approximation algorithms. The best
results are O(log n)-true approximation (i.e., each component must have n

2 vertices) [Rac08] and
O(
√
log n)-bicriteria approximation (i.e., each component must have at most 2n

3 vertices) [ARV09].
The extension to l ≥ 3 has been studied more recently. While it is NP-hard to achieve any
nontrivial true approximation for general l [AR06], Krauthgamer et al. [KNS09] presented an
O(
√
log n log l)-bicriteria approximation where the resulting graph is guaranteed to have each con-

nected component with at most 2n
l vertices.

The true approximation for l-Balanced Partitioning is ruled out by encoding the Integer 3-
Partition problem in graphs, and hard instances contain disjoint cliques of size at most n

l . Even et
al. [ENRS99] defined a similar problem called ρ-Separator, which is exactly our k-Edge Separator
with ρ = k

n . They “believe that the definition of ρ-Separator captures type of partitioning that is
actually required in applications”, since “instead of limiting the number of resulting parts, which
is not always important for divide-and-conquer applications or for parallelism, it limits only the
sizes or weights of each part.” They provided a bicriteria approximation algorithm that removes
at most O(1+ǫ

ǫ log n) ·OPT edges to make sure that each component has size (1+ǫ)ρn for any ǫ > 0,

1In the literature it is called k-Balanced Partitioning. We use l in order to avoid confusion between l-Balanced
Partitioning and k-Edge Separator (l = n

k
).
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which is improved to O(1+ǫ
ǫ

√

log(1/ǫρ) log n) ·OPT by Krauthgamer et al. [KNS09]. The previous
algorithms’ primary focus is when ρ is a constant (so that k = Ω(n)), and their performance
deteriorates when k is small. In particular, when k = O(n1−ǫ) and ρ = O(n−ǫ) for some ǫ > 0, the
best guarantee from the above line of work gives an O(log n)-bicriteria approximation algorithm.

Some of the ideas can be used for the analogous vertex versions, but they have not received
the same amount of attention. Often additional algorithmic ideas were required to achieve the
same guarantee [FHL08], or matching the same guarantee is proved to be NP-hard under some
complexity assumptions [LRV13].

Hypergraph Vertex Cover. k-Vertex Separator for small values of k has been actively studied.
1-Vertex Separator is the famous Vertex Cover problem. When k = 2, Papadimitriou and Yan-
nakakis [Yan81, PY82] defined the dissociation number to be n minus the optimum of 2-Vertex Sep-
arator in the context of certain constrained spanning tree problems, which have been studied
independently from the graph partitioning literature (see [ODF+11] for a survey).

A simple (k + 1)-approximation for k-Vertex Separator can be achieved by viewing them as
a special case of (k + 1)-Hypergraph Vertex Cover ((k + 1)-HVC). Given a graph G = (V,EG), we
construct a hypergraph H = (V,EH) where EH contains every set of k+1 vertices {v1, . . . , vk+1} ⊆
V that induces a single connected component. This reduction is complete and sound because a
subset S ⊆ V intersects every hyperedge in EH if and only if G|V \S has no connected component
of size at least k+1. Since (k+1)-Hypergraph Vertex Cover admits a trivial (k+1)-approximation
(e.g., take any hyperedge e not intersectingS and let S ← S∪e), we get a (k+1)-true approximation
for k-Vertex Separator. This was observed in the work of Ben-Ameur et al. [BAMSN15].

Approximating k-HVC better than the trivial factor k (resp. k−1) will refute the Unique Games
Conjecture (resp. P 6= NP) [KR08, DGKR03], so we cannot hope to be able to get a significantly
better algorithm for k-HVC. An interesting line of research has tried to find a better approximation
algorithm when the hypergraph H is promised to have additional structure. When H is k-uniform
and k-partite, Lovász [Lov75] gave a k

2 -approximation algorithm that is shown to be tight under

the Unique Games Conjecture [GSS15] (the same work also showed almost tight k
2 − 1 + 1

2k NP-
hardness).

Given two graphs G,H whereH is the pattern graph with k vertices, Guruswami and Lee [GL15]
studied the problem of removing the minimum number of vertices from G such that the resulting
graph has no copy of H as a subgraph. They showed that if H is 2-vertex connected, this problem
is as hard to approximate as the general k-HVC.

k-Vertex Separator can be regarded as a special case of a more general class of problems where
we are given a graph G and a set of pattern graphs H with k + 1 vertices and asked to remove
the minimum number of vertices to ensure G does not have any graph inH as a subgraph (in this
case H is the set of all connected graphs with k + 1 vertices).

Fixed Parameter Tractability. Given a graph G and an integer k, the optimum of k-Vertex Sep-
arator has been known as k-Component Order Connectivity in mathematics. We refer to the survey
by Gross et al. [GHI+13] for more background.

Let OPT be the optimal value. For small values of k and OPT, the complexity of exact algo-
rithms has been studied in terms of their fixed parameter tractability (FPT). While the trivial algo-
rithm takes nO(OPT) time to find the exact solution for k-Vertex Separator, Drange et al. [DDvH14]
presented an exact algorithm that runs in time kO(OPT)n, so the problem is in FPT when param-
eterized by both k and OPT. They complemented their result by showing that the problem is
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W[1]-hard when parameterized by OPT or k. They also showed that any exact algorithm that
runs in time ko(OPT)nO(1) will refute the Exponential Time Hypothesis.

Given an instance of a problem with a parameter κ, an approximation algorithm is said to be
an FPT c-approximation algorithm if it runs in time f(κ) ·nO(1) for some function f and achieves c-
approximation. See the survey of Marx [Mar08] and the recent work of Chitnis et al. [CHK13]. For
k-Vertex Separator, the simple (k + 1)-approximation runs in polynomial time regardless of OPT
and k, but any exact algorithm requires both OPT and k to be parameterized. It is an interesting
question whether significantly improved approximation is possible when only one of them is
parameterized.

1.1 Our Results and Applications

Our main result is the following algorithm for k-Vertex Separator. For fixed constants b, c > 1, an
algorithm for k-Vertex Separator is called an (b, c)-bicriteria approximation algorithm if given an
instance G = (V,E) and k ∈ N, it outputs S ⊆ V such that (1) each connected component of G|S\V
has at most bk vertices and (2) |S| is at most c times the optimum of k-Vertex Separator.

Theorem 1.1. For any ǫ ∈ (0, 1/2), there is a polynomial time ( 1
1−2ǫ , O( log kǫ ))-bicriteria approximation

algorithm for k-Vertex Separator.

Setting ǫ = 1
4 and running the algorithm yields S ⊆ V with |S| ≤ O(log k) ·OPT such that each

component in G|V \S has at most 2k vertices. Performing an exhaustive search in each connected
component yields the following true approximation algorithm whose running time depends ex-
ponentially only on k.

Corollary 1.2. There is an O(log k)-approximation algorithm for k-Vertex Separator that runs in time
nO(1) + 2O(k)n.

This gives an FPT approximation algorithm when parameterized by only k, and its approxi-
mation ratio O(log k) improves the simple (k + 1)-approximation from k-HVC. When OPT ≫ k,
it runs even faster than the time lower bound kΩ(OPT)nΩ(1) for the exact algorithm assuming the
Exponential Time Hypothesis [DDvH14].

The natural question is whether superpolynomial dependence on k is necessary to achieve
true O(log k)-approximation. The following theorem proves hardness of k-Vertex Separator based
on Densest k-Subgraph. In particular, a polynomial time O(log k)-approximation algorithm for
k-Vertex Separator will imply O(log2 n)-approximation algorithm for Densest k-Subgraph. Given
that the best approximation algorithm achieves ≈ O(n1/4)-approximation [BCC+10] and nΩ(1)-
rounds of the Sum-of-Squares hierarchy have a gap at least nΩ(1) [BCV+12], such a result seems
unlikely or will be considered as a breakthrough.

Theorem 1.3. If there is a polynomial time f -approximation algorithm for k-Vertex Separator, then there
is a polynomial time 2f2-approximation algorithm for Densest k-Subgraph.

For k-Edge Separator, we prove that the true O(log k)-approximation can be achieved in poly-
nomial time. This shows a stark difference between the vertex version and the edge version.

Theorem 1.4. There is an O(log k)-approximation algorithm for k-Edge Separator that runs in time nO(1).

When k = no(1) so that ρ = n−(1−o(1)), our algorithm outperforms the previous best approxi-
mation algorithm for ρ-separator [KNS09, ENRS99].2

2Both papers only present a bicriteria approximation algorithm, but they can be combined with our final cleanup
step to achieve true approximation by adding O(log k) to the approximation ratio. See Appendix B.
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While most of graph partitioning algorithms deal with the edge version, we focus on the vertex
version because (1) it exhibits richer connections to k-HVC and FPT as mentioned, (2) usually the
vertex version is considered to be harder in the graph partitioning literature. We present the
algorithm for the edge version in Appendix B.

k-Path Transversal. Let l(G) be the length of the longest path of G including both endpoints
(e.g., length of a single edge is 2). Given a graph G = (V,E) and k ∈ N, k-Path Transversal asks
to find the smallest subset S ⊆ V such that l(G|V \S) < k. Finding a path of length k has played
a central role in devopment of FPT algorithms — it is NP-hard to do for general k, but there are
various algorithms that run in time 2O(k)nO(1) using color coding or algebraic algorithms.

k-Path Transversal is motivated by applications in transportation / wireless sensor networks,
and has also been actively studied as k-Path Vertex Cover or Pk-Hitting Set [TZ11, BKKS11,
BJK+13, Cam15, Kat16] in terms of their approximability and fixed parameter tractability. Tu
and Zhou [TZ11] gave a 2-approximation algorithm for 3-Path Transversal. Camby [Cam15]
recently gave a 3-approximation algorithm for 4-Path Transversal. In the same doctoral thesis,
Camby [Cam15] asked whether we can get (1 − δ)k-approximation for k-Path Transversal for a
general k and a universal constant δ > 0. We show that it admits O(log k)-approximation in FPT
time. Note that the superpolynomial dependence on k is necessary for any approximation from
NP-hardness of finding a k-path.

Theorem 1.5. There is an O(log k)-approximation algorithm for k-Path Transversal that runs in time

2O(k3 log k)nO(1).

2 Techniques

Our algorithms for k-Vertex Separator and k-Edge Separator consist of the following three steps.
We give a simple overview of our techniques for k-Vertex Separator.

1. Spreading Metrics. Spreading metrics were introduced in Even et al. [ENRS00] and subse-
quently used for ρ-separator [ENRS99].3 They assign lengths to vertices such that any subset S of
vertices with |S| > k that induce a single connected component are spread apart.

Given lengths xv to each vertex v ∈ V , define du,v to be the length of the shortest path from u
to v, including the lengths of both u and v (so that du,u = xu). Given a feasible solution S ⊆ V for
k-Vertex Separator, let xv = 1 if v ∈ S, and xv = 0 if v /∈ S. It is easy to see that two vertices u
and v lie on the same component of G|V \S if and only if du,v = 0. Otherwise, du,v ≥ 1. Therefore,
for every vertex v, the number of vertices that have distance strictly less than 1 from v must be at
most k.

Spreading metrics are a continuous relaxation of the above integer program. We relax each
distance xv to have value in [0, 1], and let du,v still be the length of the shortest path from u to
v. Let fu,v = max(1 − du,v, 0). In the integral solution, it indicates whether du,v < 1 or not. The
constraint

∑

u fv,u ≤ k for all v ∈ V is a relaxation of the requirement that the number of vertices
that have distance strictly less than 1 from v must be at most k.

Even though this relaxation does not exactly capture the integer problem, one crucial property
of this relaxation is that for every v ∈ V and ǫ ∈ (0, 12), the number of vertices that have distance

at most ǫ from v can be at most k
1−ǫ . This can proved via a simple averaging argument.

3The conference version of [ENRS00] precedes that of [ENRS99].
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2. Low-Diameter Decomposition. Before we introduce our rounding algorithm, we briefly
discuss why the previous algorithms based on the same (or stronger) relaxation has the approxi-
mation ratio depending on n.

The current best algorithm by Krauthgamer et al. [KNS09] further strengthened the above
spreading metrics by requiring that they also form an ℓ22 metric, and transformed them to an ℓ2
metric. This black-box transformation of an n-points ℓ22 metric incurs distortion of Ω(

√
log n), so

the approximation ratio must depend on n.
The older work of Even et al. [ENRS99] used the rounding algorithm of Garg et al. [GVY96]

that iterative takes a ball of small radius from the graph. More specifically, they defined vol(v, r)
to be the total sum of lengths in the ball of radius r centered at v, and grow r until the boundary-

volume ratio becomes O(log(
vol(v, 1

2
)

vol(v,0) )). To make vol(v, 0) nonzero, a seed value of ǫ · OPT must be

added to the the definition of vol(v, r). But when k = O(1) so that the number of balls we need to
remove from the graph is Ω(n), this incurs extra cost of Ω(ǫnOPT), forcing ǫ to depend on n.

We apply another standard technique for the low-diameter decomposition to our spreading met-
rics. In particular, our algorithm is similar to that of Carlinescu et al. [CKR05], preceded by a
simple rounding algorithm that removes every vertex with large xv. One simple but crucial ob-
servation is that the performance of this algorithm only depends on the size of the ball around
each vertex, which is exactly what spreading metrics is designed for! Since the size of each ball of
radius 1

2 is at most O(k), we can guarantee that we can delete at most O(log k) · OPT vertices so
that each connected component has at most O(k) vertices.

When k = O(1), to the best of our knowledge, this is a rare example where the number of
partitions (i.e., the number of balls taken) is Ω(n) but the approximation ratio is much smaller
than that. The original rounding algorithm of Carlinescu et al. [CKR05] is applied to 0-Extension
with k terminals to achieve O(log k)-approximation, where only k balls are needed to be taken.
The famous O(log k)-approximation for Multicut with k source-sink pairs [GVY96] also required
only k partitions.

3. Cleanup. After running the bicriteria approximation algorithm to make sure that each con-
nected component has size at most O(k), for k-Vertex Separator, we run the exhaustive search for
each component to have the true approximation. This incurs the extra running time of 2O(k)n, but
our hardness result implies that the superpolynomial dependence on k may be necessary.

For k-Edge Separator, essentially the same bicriteria approximation algorithm works. After
that, for each component, we use (a variant of) Racke’s O(log n)-true approximation algorithm for
Min Bisection to each component to make sure that each component has at most k vertices. The
existence of true approximation for Min Bisection is a key difference between the vertex version and
the edge version. Even O(

√
log n)-bicriteria approximation is known for the vertex version of Min

Bisection [FHL08], but our hardness result for the vertex version suggests that this algorithm is
not likely to be applicable. While Min Bisection asks to partition the graph into two pieces while k-
Edge Separator may need to partition it into many pieces, we prove that as long as each connected
component has size at most 3k

2 , a simple trick makes the two problems equivalent.

3 Algorithm for k-Vertex Separator

3.1 Spreading Metrics

Our relaxation is close to spreading metrics used for ρ-separator [ENRS99]. While their relaxation
involves an exponential number of constraints and is solved by the ellipsoid algorithm, we present
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a simpler relaxation where the total number of variables and constraints is polynomial. Our relax-
ation has the following variables.

• xv for v ∈ V : It indicates whether v is removed or not.

• du,v for (u, v) ∈ V × V : Given {xv}v∈V as lengths on vertices, du,v is supposed to be the
minimum distance between u and v. Let Pu,v be the set of simple paths from u to v, and
given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0 + · · ·+ xup . Formally, we want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = xu.

• fu,v for all (u, v) ∈ V × V : It indicates whether u and v belong to the same connected com-
ponent or not.

Our LP is written as follows.

minimize
∑

v∈V

xv

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (1)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V

fu,v ≥ 0 ∀(u, v) ∈ V × V
∑

u∈V

fv,u ≤ k ∀v ∈ V (2)

xv ≥ 0 ∀v ∈ V (3)

(1) can be formally written as

du,u = xu ∀u ∈ V

du,w ≤ du,v + xw ∀(u, v) ∈ V × V, (v,w) ∈ E

Therefore, the size of our LP is polynomial in n. It is easy to verify that our LP is a relaxation —
given a subset S ⊆ V such that each connected component of G|V \S has at most k vertices, the
following is a feasible solution with

∑

v xv = |S|.

• xv = 1 if v ∈ S. xv = 0 if v /∈ S.

• du,v = minP∈Pu,v d(P ).

• fu,v = 1 if u and v are in the same component of G|V \S . Otherwise fu,v = 0.

Fix an optimal solution {xv}v , {du,v, fu,v}u,v for the above LP. It only ensures that du,v ≤ minP∈Pu,v d(P ),
so a priori du,v can be strictly less than minP∈Pu,v d(P ). However, in that case increasing du,v
still maintains feasibility, since larger du,v provides a looser lower bound of fu,v and lower fu,v
helps to satisfy (2). For the subsequent sections, we assume that du,v = minP∈Pu,v d(P ), and
fu,v = max(1− du,v, 0) for all u, v.

6



3.2 Low-diameter Decomposition

Given the above spreading metrics, we show how to decompose a graph such that each con-
nected component has small number of vertices. Our algorithm is based on that of Calinescu et
al. [CKR05]. One major difference is to bound the size of each ball by O(k) in the analysis, and
simple algorithmic steps to ensure this fact.

Fix ǫ ∈ (0, 12). Given an optimal solution {xv}v∈V , the first step of the rounding algorithm is to
remove every vertex v ∈ V with xv ≥ ǫ. This simple step is crucial in bounding the size of the ball
around each vertex. It removes at most OPT

ǫ vertices. Let V ′ := V \ {v : xv ≥ ǫ}, and G′ = (V ′, E′)
be the subgraph of G induced by V ′. Let d′u,v be the minimum distance between u and v in G′,
and let f ′

u,v := max(1 − d′u,v, 0). Since removing vertices only increases distances, d′u,v ≥ du,v and
f ′
u,v ≤ fu,v for all (u, v) ∈ V ′ × V ′.

Our low-diameter decomposition removes at most O( log kǫ ) · ∑v∈V ′ xv vertices so that each

resulting connected component has at most k
1−2ǫ vertices. It proceeds as follows.

• Pick X ∈ [ǫ/2, ǫ] uniformly at random.

• Choose a random permutation π : V ′ 7→ V ′ uniformly at random.

• Consider the vertices one by one, in the order given by π. Let w be the considered vertex (we
consider every vertex whether it was previously disconnected, removed or not).

– For each vertex v ∈ V ′ with d′w,v − xv ≤ X ≤ d′w,v, we remove v when it was neither
removed nor disconnected previously.

– The vertices in {v : d′w,v < X} are now disconnected from the rest of the graph. Say
these vertices are disconnected.

For each vertex w, let B(w) := {v ∈ V ′ : d′w,v ≤ 2ǫ}. A simple averaging argument bounds
|B(w)|.

Lemma 3.1. For each vertex w, |B(w)| ≤ k
1−2ǫ .

Proof. Assume towards contradiction that |B(w)| > k
1−2ǫ . For all u ∈ B(w),

fw,u ≥ f ′
w,u ≥ 1− d′w,u ≥ 1− 2ǫ.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,

∑

u∈V

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− 2ǫ)|B(w)| > k,

contradicting (2) of our LP.

Note that at the end of the algorithm, every vertex is removed or disconnected, since every
w ∈ V ′ becomes removed or disconnected after being considered. Moreover, each connected
component is a subset of {v : d′w,v < X} for some w ∈ V ′ and X ≤ ǫ, which is a subset of B(w).

Therefore, each connected component has at most k
1−2ǫ vertices. We finally analyze the probability

that a vertex v is removed.

Lemma 3.2. The probability that v ∈ V ′ is removed is at most O( log kǫ ) · xv.

7



Proof. Fix a vertex v ∈ V ′. When w ∈ V ′ is considered, v can be possibly removed only if

d′v,w − xv ≤ ǫ

⇒ d′v,w ≤ 2ǫ (since xv ≤ ǫ)

⇒ w ∈ B(v).

Let W = {w1, . . . , wp} be such vertices such that d′v,w1
≤ · · · ≤ d′v,wp

≤ 2ǫ. By Lemma 3.1, p ≤ k
1−2ǫ .

Fix i and consider the event that v is removed when wi is considered. This happens only if
d′v,wi

−xv ≤ X ≤ d′v,wi
. For fixed such X, a crucial observation is that if wj with j < i is considered

before wi, since d′v,wj
− xv ≤ X, v will be either removed or disconnected when wj is considered.

In particular, v will not be removed by wi. Given these observations, the probability that v is
removed is bounded by

Pr[v is removed] =

p
∑

i=1

Pr[v is removed when wi is considered]

=

p
∑

i=1

Pr[X ∈ [d′v,wi
− xv, d

′
v,wi

] and wi comes before w1, . . . , wi−1 in π]

≤
p

∑

i=1

2xv
ǫi

= xv ·O(
log p

ǫ
) = xv ·O(

log k

ǫ
).

Therefore, the low-diameter decomposition removes at most O( log kǫ ) ·∑v xv ≤ O( log kǫ ) · OPT
vertices so that each resulting connected component has at most k

1−2ǫ vertices. This gives a bicri-
teria approximation algorithm that runs in time poly(n, k), proving Theorem 1.1.

4 k-Path Transversal

Let G = (V,E) and k ∈ N be an instance of k-Path Transversal, where we want to find the smallest
S ⊆ V such that the length of the longest path in G|V \S (denoted by l(G|V \S)) is strictly less than
k. Recall that the length here denotes the number of vertices in a path. Call a path l-path if it has l
vertices.

Let Pk be the set of all simple paths of length k. Our algorithm starts by solving the following
naive LP.

minimize
∑

v∈V

xv

subject to
k

∑

i=1

xvi ≥ 1 ∀P = (v1, . . . , vk) ∈ Pk (4)

x ≥ 0 ∀v ∈ V × V

When G is a clique with n vertices, any feasible solution needs to remove at least n−k+1 vertices
while the above LP has the optimum at most n

k by giving 1
k to every xv. Therefore, it has an

integrality gap close to k, but our algorithm bypasses this gap.
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Lemma 4.1. The above LP can be solved in time kO(k)nO(1).

Proof. Given the current solution {xv}v, we show how to check (4) in FPT time, so that the LP can

be solved efficiently via the ellipsoid algorithm. In particular, it suffices to computeminP=(v1,...,vk)∈Pk

∑k
i=1 xvi .

Our algorithm is a simple variant of an algorithm for the k-Path problem. Our presentation fol-
lows Williams [Wil13].

Call a set of functions F = {fi}i with fi : [n] 7→ [k] a k-perfect hash family if for any subset
S ⊆ [n] with |S| = k, there exists fi ∈ F such that fi(S) = [k]. Naor et al. [NSS95] show that
efficiently computable such F exists with |F | = 2O(k) log n.

For each fi ∈ F and a permutation π ∈ Sk, we construct a directed acyclic graph (DAG) Dfi,π,
where for each edge (u, v) ∈ E, we add an arc from u to v if π(fi(u)) < π(fi(v)). Finding the

k-directed path that minimizes
∑k

i=1 xvi in a DAG can be done via dynamic programming. For
v ∈ V and l ∈ [k], let T [v, l] be the minimum weighted length of l-path that ends at v, and compute
T in topological order.

Let P ∗ = (v∗1 , . . . , v
∗
k) be the path that minimizes minP=(v1,...,vk)∈P

∑k
i=1 xvi . There must be

fi ∈ F and π ∈ Sk such that π(fi(v
∗
i )) < π(fi(v

∗
i+1)) and arc (v∗i , v

∗
i+1) exists for 1 ≤ i < k. For this

fi and π, the above dynamic programming algorithm for Dfi,π finds P ∗.
The dynamic programming takes nO(1) time, and we try 2O(k)k! log n = kO(k) log n different

pairs (fi, π), so the separation oracle runs in time kO(k)nO(1). Our LP has only n variables, so the
total LP runs in time kO(k)nO(1).

Solve the above LP to get an optimal solution {xv}v∈V . Let FRAC :=
∑

v xv. Call a vertex v ∈ V
red if xv ≥ 1

k . Let R be the set of red vertices. One simple but crucial observation is that every
k-path must contain at least one red vertices, since all non-red vertices have xv < 1

k .
Let S∗ be the optimal solution of k-Path Transversal. Let V ∗ := V \ S∗, R∗ := R \ S∗ and

G∗ = G|V \S∗ . The result for k-Path Transversal requires the following lemma.

Lemma 4.2. There exists S′ ⊆ V ∗ with |S′| ≤ |R∗|
k vertices so that in the induced subgraph G∗

V ∗\S′ , each

connected component has at most k3 red vertices.

Proof. We prove the lemma by the following (possibly exponential time) algorithm: For each con-
nected component C that has more than k3 red vertices, take an arbitrary longest path, remove
all vertices in it (i.e., add them to S′) and charge its cost to all red vertices in C uniformly. Since
the length of any longest path should not exceed k and C has more than k3 red vertices, each red
vertex in C gets charged at most 1

k2 in each iteration.
We argue that each vertex in G∗ is charged at most k times. This is based on the following

simple observation.

Fact 4.3. In a connected component C , any two longest paths should intersect.

Proof. Let P1 = (v1, . . . , vp) and P2 = (u1, . . . , up) be two vertex-disjoint longest paths in the same
connected component. Since they are in the same component, there exist i, j ∈ [k] and another path
P3 = (vi, w1, . . . , wq, uj) such that w1, . . . , wq are disjoint from v’s and u’s (q may be 0). By reversing
the order of P1 or P2, we can assume that i, j ≥ p+1

2 . Then (v1, . . . , vi, w1, . . . , wq, uj , . . . , u1) is a
path with length at least p+ 1, contradicting the fact that P1 and P2 are longest paths.

Therefore, if we remove one longest path from C , whether the remaining graph is still con-
nected or divided into several connected components, the length of the longest path in each
resulting connected component should be strictly less than the length of the longest path in C .
Therefore, each vertex in G∗ can be charged at most k times, and the total amount of charge is
k · 1

k2
= 1

k .

9



Consider S∗ ∪S′. Its size is at most OPT+ |R∗|
k ≤ OPT+FRAC ≤ 2OPT, since every red vertex

has xv ≥ 1
k , and each component of GS∗∪S′ has at most k3 red vertices. We formally define the

following generalization of k-Vertex Separator.

k-Subset Vertex Separator

Input: An undirected graph G = (V,E), a subset R ⊆ V and k ∈ N.

Output: Subset S ⊆ V such that in the subgraph induced on V \ S (denoted by G|V \S), each
connected component has at most k vertices from R.

Goal: Minimize |S|.

Even though it seems a nontrivial generalization of k-Vertex Separator, the analogous bicriteria
approximation algorithm also exists. It is proved in Section C.

Theorem 4.4. For any ǫ ∈ (0, 1/2), there is a polynomial time ( 1
1−2ǫ , O( log kǫ ))-bicriteria approximation

algorithm for k-Subset Vertex Separator.

For k-Path Transversal, run the above bicriteria approximation algorithm for k-Subset Vertex
Separator with k ← k3 and ǫ← 1

4 . This returns a subset S ⊆ V such that |S| ≤ O(log k) ·OPT and
each connected component of GV \S has at most 2k3 red vertices.

Now we solve for each connected component C . Since every k-path has to have at least one
red vertex, removing every red vertex destroys every k-path. In particular, the optimal solution
has at most 2k3 vertices in C . We run the following simple recursive algorithm.

• Find a k-path P = (v1, . . . , vk) if exists.

– Otherwise, we found a solution — compare with the current best one and return.

• If the depth of the recursion is more than 2k3, return.

• For each 1 ≤ i ≤ k,

– Remove vi from the graph and recurse.

Finding a path takes time 2O(k)nO(1). In each stage the algorithm makes k branches, but the depth
of the recursion is at most 2k3 and the algorithm is guaranteed to find the optimal solution. There-

fore, it runs in time 2O(k)nO(1) · k2k3 = 2O(k3 log k)nO(1). This proves Theorem 1.5.
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A Hardness of k-Vertex Separator

In this section, we prove that an f -true approximation algorithm for k-Vertex Separator that runs
in time poly(n, k) will result in 2f2-approximation algorithm for the Densest k-Subgraph problem,
proving Theorem 1.3. In particular, O(log k)-true approximation for k-Vertex Separator in time
poly(n, k) will lead to O(log2 n)-approximation for Densest k-Subgraph.

Given an undirected graph G = (V,E) and an integer k, Densest k-Subgraph asks to find
S ⊆ V with |S| = k to maximize the number of edges of G|S . It is one of the notorious prob-
lems in approximation algorithms. The current best approximation algorithm achieves≈ O(n1/4)-
approximation [BCC+10]. While only PTAS is ruled out assuming NP 6⊆ ∩ǫ>0BPTIME(2n

ǫ

) [Kho06],
there are strong gap instances for Sum-of-Squares hierarchies of convex relaxations (nΩ(1) gap for
nΩ(1) rounds) [BCV+12], so having a polylog(n)-approximation algorithm for Densest k-Subgraph
seems unlikely or will lead to a breakthrough. Therefore, it may be the case that achieving
O(log k)-approximation for k-Vertex Separator requires superpolynomial dependence on k in the
running time.

Our reduction is close to that of Drange et al. [DDvH14] who reduced Clique to k-Vertex Sep-
arator to prove W[1]-hardness. Formally, we introduce another problem called Minimum k-Edge
Coverage. Given an undirected graph G and an integer k, the problem asks to find the minimum
number of vertices whose induced subgraph has at least k edges. This problem can be thought as
a dual of Densest k-Subgraph in a sense that given the same input graph, the optimum of Densest
a-Subgraph is at least b if and only if the optimum of Minimum b-Edge Coverage is at most a.
Hajiaghayi and Jain [HJ06] proved the following theorem, relating their approximation ratios.

Theorem A.1 ([HJ06]). If there is a polynomial time f -approximation algorithm for Minimum k-Edge
Coverage, then there is a polynomial time 2f2-approximation algorithm for Densest k-Subgraph.

We introduce a reduction from Minimum k-Edge Coverage to k-Vertex Separator. Given an
instance G = (V,E) and k for Minimum k-Edge Coverage, the instance of k-Vertex Separator
G′ = (V ′, E′) and k′ is created as follows. Let n = |V |, m = |E|, and M = n+ 1.

• V ′ = V ∪ {ei : e ∈ E, i ∈ [M ]}. Note that |V ′| = n+Mm.

• E′ =
(

V
2

)

∪ {(u, ei) : u ∈ V, e ∈ E, u ∈ e, i ∈ [M ]}. Intuitively, the subgraph induced by
V ⊆ V ′ forms a clique, and for each e = (u, v) ∈ E and i ∈ [M ], ei is connected to u and v in
G′.

• k′ = |V ′| −Mk.
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Lemma A.2. Every instance of k-Vertex Separator produced by the above reduction has an optimal solution
S ⊆ V ′ such that indeed S ⊆ V .

Proof. Take an optimal solution S such that G′
V ′\S has each connected component with at most k

vertices. Suppose S contains ei for some e = (u, v) ∈ E and i ∈ [M ]. There are three cases.

• u, v /∈ S: Since there is an edge (u, v) ∈ E′, u and v are in the same connected component in
G′|V ′\S . Removing ei from S and adding u to S still results in an optimal solution.

• u ∈ S, v /∈ S: Removing ei from S and adding u to S decreases the size of the connected
component of u by 1, and creates a new singleton component consisting ei. It is still an
optimal solution.

• u, v ∈ S: Removing ei from S just creates a new singleton component consisting ei. It is a
strictly better solution.

We can repeatedly apply one of these three operations until S is an optimal solution contained in
V .

When S ⊆ V , G′|V ′\S has the following connected components.

• One component (V \S)∪{ei : e = (u, v) ∈ E, {u, v} 6⊆ S, i ∈ [M ]}. Call it the giant component.

• For each e = (u, v) ∈ E with u, v ∈ S and i ∈ [M ], a singleton component {ei}. Call them
singleton components.

Suppose that the instance of Minimum k-Edge Coverage admits a solution T ⊆ V such that
the induced subgraph G|T has l ≥ k edges. Let S = T . Since |V \ S| = n − |T | and |{(u, v) ∈ E :
{u, v} 6⊆ T}| = m− l, In G′|V ′\S , the giant component will have cardinality

n− |T |+M(m− l) ≤ n− |T |+M(m− k) ≤ n+M(m− k) = |V ′| −Mk = k′.

On the other hand, suppose that the instance of k-Vertex Separator has a solution S. By
Lemma A.2, assume that S ⊆ V . Let l be the number of edges in G|S . The size of the giant
component is at least n − |S| +M(m − l) ≥ M(m − l − 1) + 1 since M > n. Since S is a feasible
solution of the k′-Vertex Separator, we must have

M(m− l − 1) + 1 ≤ k′ = M −mk

⇒ l ≥ k.

Therefore, S is also a solution to Minimum k-Edge Coverage. This proves that the above reduction
is an approximation preserving reduction from Minimum k-Edge Coverage to k-Vertex Separator,
proving Theorem 1.3.

B Algorithm for k-Edge Separator

We present an O(log k)-true approximation algorithm for k-Edge Separator, proving Theorem 1.4.
Except the cleanup step, the algorithm is almost identical to that of k-Vertex Separator.
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B.1 Spreading Metrics

Our relaxation for the edge version is very close to that of the vertex version. It has the following
variables.

• xe for e ∈ E: It indicates whether e is removed or not.

• du,v for (u, v) ∈ V × V : Given {xe}e∈E as lengths on vertices, du,v is supposed to be the
minimum distance between u and v. Let Pu,v be the set of simple paths from u to v, and
given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0,u1 + · · · + xup−1,up . Formally, we
want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = 0.

• fu,v for all (u, v) ∈ V × V : It indicates whether u and v belong to the same connected com-
ponent or not.

Our LP is written as follows.

minimize
∑

e∈E

xe

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (5)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V

fu,v ≥ 0 ∀(u, v) ∈ V × V
∑

u∈V

fv,u ≤ k ∀v ∈ V (6)

xe ≥ 0 ∀e ∈ E (7)

(5) can be formally written as

du,u = 0 ∀u ∈ V

du,w ≤ du,v + xv,w ∀(u, v) ∈ V × V, (v,w) ∈ E

Therefore, the size of our LP is polynomial in n. It is easy to verify that our LP is a relaxation —
given a subset S ⊆ E such that each connected component of (V,E \ S) has at most k vertices, the
following is a feasible solution with

∑

e xe = |S|.

• xe = 1 if e ∈ S. xe = 0 if v /∈ S.

• du,v = minP∈Pu,v d(P ).

• fu,v = 1 if u and v are in the same component of (V,E \ S). Otherwise fu,v = 0.

Fix an optimal solution {xe}e, {du,v, fu,v}u,v for the above LP. It only ensures that du,v ≤ minP∈Pu,v d(P ),
so a priori du,v can be strictly less than minP∈Pu,v d(P ). However, in that case increasing du,v still
maintains feasibility, since larger du,v provides a looser lower bound of fu,v. For the subsequent
sections, we assume that du,v = minP∈Pu,v d(P ) for all u, v.
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B.2 Low-diameter Decomposition

Fix ǫ ∈ (0, 12 ]. Given an optimal solution {xe}e∈E and {du,v}u,v∈V ×V to the above LP, our low-

diameter decomposition removes at most O( log kǫ ) ·∑e xe edges so that each resulting connected

component has at most k
1−ǫ vertices. It proceeds as follows.

• Pick X ∈ [ǫ/2, ǫ] uniformly at random.

• Choose a random permutation π : V 7→ V uniformly at random.

• Consider the vertices one by one, in the order given by π. Let w be the considered vertex (we
consider every vertex whether it was previously disconnected or not).

– Let W ← ∅.
– For each vertex v ∈ V with dw,v ≤ X, if it is not disconnected yet, add it to W .

– Disconnect W from the rest of the graph (i.e., remove every edge that has exactly one
endpoint in W ).

For each vertex w, let B(w) := {v : dw,v ≤ ǫ}. A simple averaging argument bounds |B(w)|.

Lemma B.1. For each vertex w, |B(w)| ≤ k
1−ǫ .

Proof. Assume towards contradiction that |B(w)| > k
1−ǫ . For all u ∈ B(w), fw,u ≥ 1− dw,u ≥ 1− ǫ.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,

∑

u∈V

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− ǫ)|B(w)| > k,

contradicting (6) of our LP.

Note that at the end of the algorithm, every vertex is disconnected, since every w ∈ V becomes
disconnected after being considered. Moreover, each connected component is a subset of {v :
dw,v ≤ X} for some w ∈ V and X ≤ ǫ, which is a subset of B(w). Therefore, each connected
component has at most k

1−ǫ vertices. We finally analyze the probability that an edge e is removed.

Lemma B.2. The probability that e ∈ E is removed is at most O( log kǫ ) · xe.

Proof. Fix an edge e = (u, v) ∈ E. For a vertex v ∈ W , let dnearw,e = min(dw,u, dw,v) and dfarw,e =
max(dw,u, dw,v). When w ∈ V is considered, e can be possibly removed only if dnearw,e ≤ ǫ ⇒ w ∈
B(v) ∪ B(u). Let W = {w1, . . . , wp} be such vertices such that dnearw1,e ≤ · · · ≤ dnearwp,e ≤ ǫ. By

Lemma B.1, p ≤ 2 · k
1−ǫ .

Fix i and consider the event that e is removed when wi is considered. This happens only if
dnearwi,e ≤ X ≤ dfarwi,e. For fixed such X, a crucial observation is that if wj with j < i is considered
before wi, since dnearwj ,e ≤ X, e will be either removed (exactly one of u and v is disconnected) or
disconnected (both u and v are disconnected) when wj is considered. In particular, e will not be
removed by wi. Given these observations, the probability that e is removed is bounded by
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Pr[e is removed] =

p
∑

i=1

Pr[e is removed when wi is considered]

=

p
∑

i=1

Pr[X ∈ [dnearv,wi
, dfarv,wi

] and wi comes before w1, . . . , wi−1 in π]

≤
p

∑

i=1

2xe
ǫi

= xe · O(
log p

ǫ
) = xv ·O(

log k

ǫ
).

Therefore, the low-diameter decomposition removes at most O( log kǫ ) ·∑v xv ≤ O( log kǫ ) · OPT
edges so that each resulting connected component has at most k

1−ǫ vertices.
To get true approximation, we use the algorithm for Balanced b-Cut. For an undirected graph

G = (V,E) with n vertices and a real b ∈ (0, 1/2], the Balanced b-Cut problem asks to find a subset
S ⊆ V with bn ≤ |S| ≤ (1− b)n such that the number of edges that have exactly one endpoint in S
is minimized. Racke [Rac08] gave an O(log n)-true approximation algorithm for Balanced b-cut.4

We set ǫ = 1
3 such that each connected component after the low-diameter decomposition, each

connected component has at most 3k
2 vertices. Fix a component of size k′. If k′ ≤ k, we are done.

Otherwise, we use the O(log k′) = O(log k)-approximation algorithm for Balanced b-Cut within
the component. Usually k-Edge Separator (requires many connected components) and Balanced
b-Cut (requires 2 connected components) behave very differently, but given k′ ≤ 3k

2 , we show that
they are equivalent.

Lemma B.3. In a graph G = (V,E) with at most k′ ∈ (k, 23k] vertices, the optimum solution of k-Edge

Separator and b-Balanced Cut with b = k′−k
k′ are the same.

Proof. Any cut (S, V \ S) feasible for b-Balanced Cut ensures that max(|S|, |V \ S|) is at most (1−
b)k′ = k, so it is feasible for k-Edge Separator.

For the other direction, given a feasible solution of k-Edge Separator where V is partitioned
into S1, . . . , Sl (assume k ≥ |S1| ≥ · · · ≥ |Sl|), if l = 2, (S1, S2) is a feasible solution for b-Balanced
Cut and we are done. If l ≥ 3, merge Sl−1, Sl into one set (one Si may contain multiple connected
components). This reduces l by 1, and since |Sl−1|+ |Sl| ≤ 2

l ·k′ ≤ 2
3k

′ ≤ k, maintains the invariant
that |Si| ≤ k for all i. Iterating until l = 2 gives a feasible solution for b-Balanced Cut with the
same number of edges cut.

Therefore, running the approximation algorithm b-Balanced Cut for each component guaran-
tees that we remove O(log k) · OPT additional edges and each component has at most k vertices.
This proves Theorem 1.4.

C k-Subset Vertex Separator

Given a graph G = (V,E) and k ∈ N. There is a subset R ⊆ V of red vertices. Our relaxation has
the following variables.

4His algorithm is originally stated for Min Bisection, the special case with b = 1
2

. For any c ∈ [0, 1− 2b], adding a dis-
joint clique with cn vertices and infinite-weight edges (his algorithm works in weighted version), forces the Minimum

Bisection algorithm to output a cut in the original graph where the smaller side contains exactly (1−c)n
2

∈ [bn, n

2
] ver-

tices. Trying every value of c ∈ [0, 1−2b] that makes cn an integer and taking the best cut gives the desiredO(log n)-true
approximation for Balanced b-Cut. The author thanks to Anupam Gupta for this idea.
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• xv for v ∈ V : It indicates whether v is removed or not.

• du,v for (u, v) ∈ V × V : Given {xv}v∈V as lengths on vertices, du,v is supposed to be the
minimum distance between u and v. Let Pu,v be the set of simple paths from u to v, and
given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0 + · · ·+ xup . Formally, we want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = xu.

• fu,v for all (u, v) ∈ V × V : It indicates whether u and v belong to the same connected com-
ponent or not.

Our LP is written as follows.

minimize
∑

v∈V

xv

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (8)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V

fu,v ≥ 0 ∀(u, v) ∈ V × V
∑

u∈R

fv,u ≤ k ∀v ∈ V (9)

(8) can be formally written as

du,u = xu ∀u ∈ V

du,w ≤ du,v + xw ∀(u, v) ∈ V × V, (v,w) ∈ E

The only change is that in (9), fv,u is summed over u ∈ R instead of u ∈ V . It is clearly a relaxation.
Fix an optimal solution {xv}v , {du,v, fu,v}u,v for the above LP. As usual, assume without loss of

generality that du,v = minP∈Pu,v d(P ), and fu,v = max(1− du,v, 0) for all u, v.

C.1 Low-diameter Decomposition

Fix ǫ ∈ (0, 12). Given an optimal solution {xv}v∈V , the first step of the rounding algorithm is to

remove every vertex v ∈ V with xv ≥ ǫ. It removes at most OPT

ǫ vertices.
Let V ′ := V \ {v : xv ≥ ǫ}, and G′ = (V ′, E′) be the subgraph of G induced by V ′. Let R′ =

V ′ ∩ R. Let d′u,v be the minimum distance between u and v in G′, and let f ′
u,v := max(1 − d′u,v, 0).

Since removing vertices only increases distances, d′u,v ≥ du,v and f ′
u,v ≤ fu,v for all (u, v) ∈ V ′×V ′.

Our low-diameter decomposition removes at most O( log kǫ ) · ∑v∈V ′ xv vertices so that each

resulting connected component has at most k
1−2ǫ red vertices. It proceeds as follows.

• Pick X ∈ [ǫ/2, ǫ] uniformly at random.

• Choose a random permutation π : R′ 7→ R′ uniformly at random.

• Consider the red vertices one by one, in the order given by π. Let w be the considered vertex
(we consider every vertex whether it was previously disconnected, removed or not).
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– For each vertex v ∈ V ′ with d′w,v − xv ≤ X ≤ d′w,v, we remove v when it was neither
removed nor disconnected previously.

– The vertices in {v : d′w,v < X} are now disconnected from the rest of the graph. Say
these vertices are disconnected.

For each vertex w ∈ V ′, let B(w) := {v ∈ R′ : d′w,v ≤ 2ǫ}. A simple averaging argument
bounds |B(w)|.
Lemma C.1. For each vertex w ∈ V ′, |B(w)| ≤ k

1−2ǫ .

Proof. Assume towards contradiction that |B(w)| > k
1−2ǫ . For all u ∈ B(w),

fw,u ≥ f ′
w,u ≥ 1− d′w,u ≥ 1− 2ǫ.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,
∑

u∈R

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− 2ǫ)|B(w)| > k,

contradicting (9) of our LP.

Note that at the end of the algorithm, every red vertex is removed or disconnected, since every
w ∈ V ′ becomes removed or disconnected after being considered. Moreover, each connected
component is a subset of {v : d′w,v < X} for some w ∈ V ′ and X ≤ ǫ, which is a subset of

B(w). Therefore, each connected component has at most k
1−2ǫ red vertices. We finally analyze the

probability that a vertex v ∈ V ′ is removed.

Lemma C.2. The probability that v ∈ V ′ is removed is at most O( log kǫ ) · xv.

Proof. Fix a vertex v ∈ V ′. When w ∈ R′ is considered, v can be possibly removed only if

d′v,w − xv ≤ ǫ

⇒ d′v,w ≤ 2ǫ (since xv ≤ ǫ)

⇒ w ∈ B(v).

Let W = {w1, . . . , wp} be such vertices such that d′v,w1
≤ · · · ≤ d′v,wp

≤ 2ǫ. By Lemma C.1, p ≤ k
1−2ǫ .

Fix i and consider the event that v is removed when wi is considered. This happens only if
d′v,wi

−xv ≤ X ≤ d′v,wi
. For fixed such X, a crucial observation is that if wj with j < i is considered

before wi, since d′v,wj
− xv ≤ X, v will be either removed or disconnected when wj is considered.

In particular, v will not be removed by wi. Given these observations, the probability that v is
removed is bounded by

Pr[v is removed] =

p
∑

i=1

Pr[v is removed when wi is considered]

=

p
∑

i=1

Pr[X ∈ [d′v,wi
− xv, d

′
v,wi

] and wi comes before w1, . . . , wi−1 in π]

≤
p

∑

i=1

2xv
ǫi

= xv ·O(
log p

ǫ
) = xv ·O(

log k

ǫ
).
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Therefore, the low-diameter decomposition removes at most O( log kǫ ) ·∑v xv ≤ O( log kǫ ) · OPT
vertices so that each resulting connected component has at most k

1−2ǫ red vertices. This gives a
bicriteria approximation algorithm that runs in time poly(n, k), proving Theorem 4.4.
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