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Abstract

With the increasing interest in applying the methodology of difference-of-convex (dc) optimization to
diverse problems in engineering and statistics, this paper establishes the dc property of many functions
in various areas of applications not previously known to be of this class. Motivated by a quadratic
programming based recourse function in two-stage stochastic programming, we show that the (optimal)
value function of a copositive (thus not necessarily convex) quadratic program is dc on the domain of
finiteness of the program when the matrix in the objective function’s quadratic term and the constraint
matrix are fixed. The proof of this result is based on a dc decomposition of a piecewise LC! function
(i.e., functions with Lipschitz gradients). Armed with these new results and known properties of dc
functions existed in the literature, we show that many composite statistical functions in risk analysis,
including the value-at-risk (VaR), conditional value-at-risk (CVaR), Optimized Certainty Equivalent
(OCE), and the expectation-based, VaR-based, and CVaR-based random deviation functionals are all
dc. Adding the known class of dc surrogate sparsity functions that are employed as approximations of
the £y function in statistical learning, our work significantly expands the classes of dc functions and
positions them for fruitful applications.

1 Introduction

Long before their entry into the field of optimization in the early 1980’s [20, 19 B6, B3], difference-
of-convex (dc) functions have been studied extensively in the mathematics literature; the 1959 paper
[18] cited a 1950 paper [2] where dc functions were considered. The paper [I8] contains a wealth of
fundamental results on dc functions that lay the foundation for this class of non-convex functions. While
focused on the more general class of “delta-convex functions” in abstract spaces, the thesis [58] contains
the very important mixing property of dc functions that in today’s language is directly relevant to the
dc property of piecewise functions. The most recent paper [4] adds to this literature of the mathematics
of dc functions with a summary of many existing properties of dc functions. As noted in the last paper,
the mapping that Nash employed to show the existence of a mixed equilibrium strategy in his celebrated
1951 paper [30] turns out to be defined by dc functions. This provides another evidence of the relevance
of dc¢ functions more than half a century ago. In the optimization literature, applications of the dc
methodology to nonconvex optimization problems are well documented in the survey papers [25] [24]
and in scattered papers by the pair of authors of the latter papers and their collaborators; adding to
these surveys, the paper [22] discusses an application of dc programming to the class of linear programs
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with complementarity constraints; the most recent paper [23] documents many contemporary applied
problems in diverse engineering and other disciplines.

Our own interest in dc functions stemmed from the optimization of some physical layer problems in signal
processing and communication [II, 3, B3]. Most worthy of note in these references are the following. In
[33], a novel class of dc functions was identified and an iterative algorithm was described to compute
a directional stationary point of a convex constrained dc program; extensions of the algorithm to dc
constraints were also presented. In [I], a unified dc representation was given for a host of surrogate
sparsity functions that were employed as approximations of the £y function in statistical learning; such
a representation further confirms the fundamental importance of dc functions in the latter subject that
is central to today’s field of big-data science and engineering. The paper [35] investigates decomposition
methods solving a class of multi-block optimization problems with coupled constraints and partial dc-
structure.

The present paper was initially motivated by the desire to understand the dc property of composite
risk/deviation functions arising from financial engineering [41), 44} [45]; see Section for a formal definition
of these functions. Roughly speaking, these are functions defined as the compositions of some well-known
statistical quantities, such as variance, standard deviation, and quantiles, with some random functionals
such as the uncertain return of an investment portfolio [43], 42 [46] or the second-stage recourse function
[34] in stochastic programming [8 [51]. Initially, we were intrigued by the question of whether the value-
at-risk (VaR) functional of a random portfolio return was a dc function of the asset holdings. It turns
out that this question already has an affirmative answer given in the paper [59] where a formula linking
the VaR and CVaR is obtained. In our work, we provide an alternative expression connecting these two
risk quantities that is based on linear programming duality. We also extend our formula to the more
general context of the optimized certainty equivalent introduced by Ben Tal and Teboulle [7, 6] that
predates the work of Rockafellar and Uryasev [43] [42]. Our next investigation pertains to a composite
risk function involving a recourse function defined by a random quadratic program parameterized by the
first-stage decision variable. Our analysis pertains to the general problem where the latter quadratic
recourse program is nonconvex. A second contribution of our work is a detailed proof showing that the
(optimal) value function of a quadratic program (QP) is dc on the domain of finiteness of the program
when the matrix in the objective function’s quadratic term and the constraint matrix are fixed, under
the assumption that the former matrix is copositive on the recession cone of the constraint region. Such
a copositive assumption is essential because without it the quadratic program is unbounded below on
any non-empty feasible set. In turn, the proof of the said dc property of the QP value function is based
on an explicit dc decomposition of a piecewise function with Lipschitz gradients that is new by itself.
In addition to these specialized results pertaining to statistical optimization and two-stage stochastic
programming, we obtain a few general dc results that supplement various known facts in the literature;
e.g., the decompositions in part (c¢) of Lemma [3[ and Propositions [5{ and @

1.1 Significance of the dc property

Besides the mathematical interest, the dc property of a function can be used profitably for the design
of convex program based optimization algorithms. Indeed, the backbone of the classical dc¢ algorithm
[25] 24, 36] and its recent enhancements [33] 35] is a given dc decomposition of the functions involved
in the optimization problem. Such a decomposition provides a convenient convex majorization of the
functions that can be used as their surrogates to be optimized [37, 38]. In a nutshell, the benefit of
a dc-based iterative algorithm is that it provides a descent algorithm without either a line search or
a trust region step; as a result, parallel and/or distributed implementations of such an algorithm can
be easily designed without centralized coordination [39] [40] [48], [49] when the given problem has certain
partitioned structure. More interestingly, a certain class of dc programs is the only class of nonconvex,



nondifferentiable programs for which a directional derivative based stationary point can be computed
[33]; such a stationarity concept is the sharpest one among all “first-order” stationarity concepts. In
particular, directional stationarity is significantly sharper than the convex-analysis based concept of a
critical point of a dc program [25] 24] [36], which is a relaxation of a Clarke stationary point [10] under the
dc property. Here sharpness refers to the property that under various first-order stationarity definitions,
the corresponding sets of stationary points contain the set of directional stationary points. The papers
[1, O] examine how directional stationarity is instrumental in the characterization of local minimizers
of nonconvex and nondifferentiable optimization problems under piecewise linearity and/or second-order
conditions.

The dc algorithm and its variants have been employed in many applied contexts; see the recent survey
[23]. For many existing applications, the resulting convex programs can be solved very easily; see e.g.
[16, 26] in the area of sparse optimization that has attracted much interest in recent years. In general,
deciding whether a given nonconvex function is dc is not necessarily an easy task. In situations where a
function can be shown to be dc, a dc decomposition offers the first step to design an efficient algorithm
by readily providing a convex majorant of the function to be minimized and enabling the investigation
and computation of sharp stationary solutions. A novel case in point is the family of nonconvex, nondif-
ferentiable composite programs arising from piecewise affine statistical regression and multi-layer neural
networks with piecewise affine activation functions. For these applied problems, the convex subprograms
are not straightforward to be solved; nevertheless, they are amenable to efficient solution by a semi-
smooth Newton method [13, Section 7.5]. Details of this dc approach to the numerical solution of these
advanced statistical learning problems can be found in the most recent reference [11].

In summary, a dc decomposition offers both a computational venue and a theoretical framework for
the understanding and numerical solution of nonconvex nondifferentiable optimization problems. In this
paper we collect in one place many nonconvex functions that are not previously known to be of the
dc kind and establish their dc property. These function arise from 3 different areas: (a) composite risk
functionals, (b) statistical estimation and learning, and (c¢) quadratic recourse in stochastic programming.
Further study of how the dc property of these functions can benefit algorithmic design for solving the
optimization problems involving these functions is beyond the scope of this paper. As word of caution:
the obtained dc decompositions for the functions studied in this paper may not be the most conducive
for numerical use; nevertheless, they offer a formal demonstration of the dc property of the functions
that are not previously known to have this property.

1.2 Organization of the paper

In the next section, we introduce several classes of composite risk and statistical functions to be studied
subsequently. These include the renowned Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR)
[43, [42], their extensions to a utility based Optimized Certainty Equivalent (OCE) [5] 16} [7], and maximum
likelihood functions (Subsection derived from one-parameter exponential densities composite with a
statistical estimation model. In Section 3] we give proofs of the difference-convexity of the composite risk
and statistical functions, providing in particular an alternative expression connecting the VaR with the
CVaR in Subsection [B.] that is extended to the OCE in Subsection [3.2 Subsection [3.3] deals with the
composite statistical functions such as the variance, standard deviations and certain composite density
functions. Section {4] shows that the optimal objective value of a copositive quadratic program for a
fixed constraint matrix is a dc function of the linear term of the objective and the right-hand side of
the constraints; such a value function arises as the recourse of a two-stage stochastic program with the
copositivity assumption generalizing the positive semi-definiteness of the quadratic form and making the
objective function nonconvex in general. Specialized to a linear program, this dc property is a new result
in the vast literature of linear programming theory and provides a first step in expanding the two-stage



stochastic programming domain beyond the much focused paradigm of linear recourse. Lastly in Section
we give a necessary and sufficient condition for a univariate folded concave function to be dc. Such a
function provides a unification of all the surrogate sparsity functions that have a fundamental role to
play in nonconvex sparsity optimization.

2 Composite Risk and Statistical Functions
For a given scalar A > 0 and decision variable x € R™, consider the function
Ra(z) £ EZ(2;0) + AD[Z(7;0)]

where IE is the expectation operator with respect to the random variable w defined on the probability
space (92, F,IP), with Q being the sample space, F being the o-algebra generated by subsets of €, and
IP being a probability measure defined on F; A > 0 is a given parameter that balances the expectation
(for risk neutrality) and the deviation measure D (representing risk aversion); for a random variable Z,
D(Z2) is a expectation-based, CVaR-based, or VaR-based deviation measure:

Expectation Based (C)VaR Based
e Variance: 2(Z)LE[Z-EZ)? IE[Z — (C)VaR(Z)]?
e Standard Deviation: o(Z) 2 \/o2(2) \/]E )VaR(Z2)]?
e Absolute Semi-Deviation (ASD):  ASD(Z) £ E[Z — EZ], —(C )VaR(Z)] .
e Absolute Deviation (AD): AD(Z2)2E|Z - EZ| E | Z —(C)VaR(2) |

where [o]; = max(0, ), and the expressions of CVaR,(e) and VaR,(e) are as follows:

1
o(Z2) = ini t+ —E|Z -t
CVaR,(2) minimum [ +q [ ] _,_]

VaR,(2) = minimum{t’ | ' € argmin [t—i— 1 ! E[Z- t]+] } :
teR -
The case where D(Z2) is itself CVaR,(Z) or VaR,(Z) is also covered by our analysis. Unlike the equality
AD(Z) = 2ASD(Z2), it is in general not true that I£ |Z — CVaR.(2)| = 2IE[Z — CVaR,(Z)],. For a
recent survey on the connection between risk functions and deviation measures and their applications in
risk management and statistical estimation, see [41].

Admittedly, the (C)Var-based deviation measure is a non-traditional quantity that is not commonly em-
ployed in risk analysis. Nevertheless, as a quantile of a random variable that includes for instance the
median as a special case, we feel that it is important to consider the deviation from such a fundamental
statistical quantity and understand its generalized convexity properties (if applicable) when its optimiza-
tion is called for. The resulting deviations are the analogs of the classical variance family of deviations
that are based on the mean of the random variable.

Extending the (C)VaR, the Optimized Certainty Equivalent (OCE) of a random variable is defined by
a proper, concave, non-decreasing, lower semi-continuous utility function u : R — [—o00, 00) with a
non-empty effective domain dom(u) = {¢t € R | u(t) > —oo } such that u(0) = 0 and 1 € du(0), where du
denotes the subdifferential map of w. Thus in particular,

u(t) > 0, Vt >0, and
t, vt e R

g
—~
=

AN



Let U be the family of these univariate utility functions. For an essentially bounded random variable
Z satisfying sup | Z(w)| < oo, the optimized certainty equivalent (OCE) of Z with respect to a utility
we

function u € U is defined as

Ou(2) = sup [+ Eu(Z —n)].

1
The choice of u(t) £ T a min(0,t) yields O, (Z) = —CVaR,(—Z2). Proposition 2.1 in [5] shows that

for a random variable Z whose support is a compact interval, then the supremum in O, (Z2) is attained;
in this case, we may consider the largest such maximizer,

my(Z) 2 max{n' | n' € argmax [n + IEu(Z —n)] },
neR

which is the utility-based extension of VaR that pertains to a given choice of u. As explained in [5],
the deterministic quantity m,(Z) can be interpreted as the largest optimal allocation between present
and future consumption if Z represents an uncertain income of Z dollars, largest as a way to break ties
among multiple optimal allocations if such allocation is not unique.

2.1 Quadratic recourse function

Besides the bilinear Z(z;w) = zTw that is quite common in portfolio management with w representing
the uncertain asset returns and x the holdings of the assets, we shall treat carefully a quadratic recourse
function given by

Ylr;w) = minignum [f(w) + Gw)z]" 2+ $27Qz

1
subject to C(w)x + Dz > &(w), W

where @) € R™*™ is a symmetric, albeit not necessarily positive or negative semi-definite, matrix; D is a
k x m matrix, f: Q — R™ and ¢ : Q — R* are vector-valued random functions, and G :  — R™*" and
C : Q — R**" are matrix-valued random functions. Besides the main dc result of the composite function
Ra(x), the proof that the value function 1 (e;w) is dc on its domain of finiteness is a major contribution
of this work that is of independent interest. This result will be discussed in detail in Section[d] There are
several noteworthy points of our analysis: (a) the matrix @ is not required to be positive semi-definite;
thus we allow our recourse function to be derived from an indefinite quadratic program; (b) the first-stage
variable x appears in both the objective function and the constraint; this is distinguished from much of
the stochastic (linear) programming literature where = appears only in the constraint; and (c) it follows
from our result that the value function of a linear program:

o(b,c) = minimum ¢z
z

subject to Az = b and 2z2>0,

is a dc function on its domain of finiteness. This is a new result by itself because existing results in
parametric linear programming deal only with the concavity/convexity of ¢(b, ¢) when b (c respectively)
is fixed; there does not exist a (non-)convexity analysis of the optimal objective value as a function jointly
of b and c.

Like the deviations from the (C)VaR, recourse-function based deviations are not common in the stochastic
programming literature. Part of the reason for this lack of attention might be due to the computational
challenge of dealing with the recourse function itself, which is further complicated when coupled with the
statistical functions, such as variances, standard deviations, or semi-deviations. Hopefully, understanding
the structural properties of the composite recourse-based deviations could open a path for solving the



advanced stochastic programs for risk-averse players who might be interested in reducing their risk
exposure of deviation from the second-stage decisions. In such a situation, the composite deviations
would provided a reasonable measure of the risk to be reduced.

In the analysis of the value function ¢ (e;w), we are led to a detailed study of the dc property of piecewise
functions. Specifically, a continuous function @ defined on an open set @ C R™ is piecewise CF [I3|
Definition 4.5.1] for an integer k > 0 if there exist finitely many C* functions {6;}/_; for some integer
I > 0, all defined on O, such that 6(x) € {0;(x)}!_; for all z € O. A major focus of our work is the case
of a piecewise quadratic (PQ) 60, which has each 6; being a (possibly nonconvex) quadratic function. It
is a well-known fact that a general quadratic function must be dc; subsequently, we extend this fact to a
piecewise quadratic function with an explicit dc representation in terms of the pieces. While our analysis
relies on several basic results of dc functions that can be found in [4, 18] (see also [54, Chapter 4]), we also
discover a number of new results concerning PQ functions that are of independent interest. Summarized
below, these results are the pre-requisites to establish the dc property of the composite-risk functions
with quadratic recourse.

e The optimal objective value of the quadratic program (QP):

Qo (4.5) £ minimum (=) £ 7z 4} 27Q:

2

subject to z € Pp(b) =2 {2z € R™ | Dz > b}, @
is a dc function of (¢, b) on the domain dom(Q, D) £ {(g,b) € R™™ | —co < APopt (¢, b) < 00} of finiteness
of the problem, for a fixed pair (Q, D) with @ being a symmetric matrix that is copositive on the recession
cone of the feasible region Pp(b); i.e., provided that v Qu > 0 for all v € Dy, 2 {v € R™ | Dv > 0}. We
let qpg,(q,b) denote the optimal solution set of , which is empty for (¢,b) € dom(Q, D). It turns out
that the analysis of in such a copositive case is not straightforward and uses significant background
about the problem and polyhedral theory.

e Motivated by the value function qp,(g,b), we obtain an explicit min-max (dc) representation of a
general (not necessarily convex) piecewise quadratic function with given pieces, extending the work [52]
that studies the special case when such a function is convex and also the max-min representation of a
piecewise linear function [32, 47], as well as the so-called mixing property of dc functions [58, Lemma 4.8]
on open convex sets extended to the family of PQ functions whose domains are closed sets.

2.2 One-parameter exponential densities

The discussion of the following statistical modeling is drawn from [50]. A random variable Y belongs to
a one-parameter exponential family if its density (or mass) function can be written in the form

9(y;0) = a(y)exp {yd —b(0) },

where 6 is the canonical parameter, and a and b are given functions with b being convex and increasing.
In the presence of covariates X, we model the conditional distribution of Y'|X = z as a one-parameter
exponential family member with parameter § = m(x;©) that depends on the realization x of Y| X and
where m(e; ©) is a parametric statistical (e.g. linear) model with the parameter © € R" in the latter model

being computed by maximzing the expected log-likelihood function IEy|x [logg(y;m(z;0))]. When

N

s—1, the latter optimization problem is equivalent to

discretized with respect to the given data {(ys; %)

N
o1 s, s,
maximize NZ [ ysm(z®;0) —bom(x®;0)].

s=1



In the recent paper [I7], a piecewise affine statistical estimation model was proposed with m(e;©) being
a piecewise affine function. Per the representation results of [47,52], every such function can be expressed
as the difference of two convex piecewise affine functions, and is thus dc. This motivates us to ask the
question of whether the composite function bom(e; ©) is dc, and more generally, if IElog f(O;w) is dc if
f(o;w) is dc for each w € Q.

3 Proof of Difference-Convexity

We show that if the random function Z(z;w) = p(z,w)—q(z,w) where p(e,w) and ¢(e,w) are both convex
functions on a domain D for every fixed w € €, then all the expectation based and (C)VaR based risk
measures Ry (z) are dc on D, so are the OCE extensions O, (Z(z;w)) and m,(Z(z;w)) with a piecewise
linear utility function u. In turn, it suffices to show that the following functions are dc with Z = Z(x; w):

e CVaR,(Z2) and VaR,(2);
e the OCE extensions O, (Z) and m,,(Z) with a piecewise linear utility function w;
e 02(Z) and o(Z2).

Once these are shown, using known properties of dc functions (such as the nonnegative part of a dc
function is dc), we can readily establish the dc-property of the following functions and also yield their dc
decompositions:

e ASD(Z) = $AD(2);

o E[Z — (O)VaR,(2) and \/E[Z — (C)VaR,,(2)]% and
e E[Z - (C)VaR,(2)], and E|Z — (C)VaR,(Z2)].

Among the former three families of composite functions, the proof of VaR,(Z(z;w)), my(Z(z;w)),
o(Z(z;w)) requires the random variable @ to be discretely distributed.

3.1 CVaR and VaR
The following result shows that CVaR,(f(z,w)) is a dc function if f(-,w) is dc for fixed realization w.

Proposition 1. For every w € Q, let f(z,w) = p(x,w) — q(z,@) be the dc decomposition of f(e,w) on
a convex set D C R™. Then for every a € (0, 1),

- . 1 . . 1 -
CVala(f(0.3) = mip { ¢ 22 Bmox (0(0.8) ~ 0(0.8)) | - 1+ Baln ).
S
cvx in x cvx in x

Proof. The equality is fairly straightforward. The convexity of the minimum is due to the joint convexity

1 ~ ~
of the function (x,t) — t + T o Emax (p(z,0) — t,q(z,w) ). O
-«

A formula that connects VaR,(Z) to CVaR,(Z) for a discretely distributed random variable Z was
obtained in [59]; this formula can be used to establish the dc property of VaR,(f(z,w)) when f(e,w) is
dc.. In what follows, we derive an alternative expression connecting VaR(Z) and CVaR(Z) using simple
linear programming duality when the sample space 2 = {w17 cw® } for some integer S > 0. Let
{p1, -+ ,ps} be the associated family of probabilities of the discrete realizations of the random variable



@. Writing z; £ f(z,w*), we then have

VaR,(f(z,@)) = min{t’ | t' € argmin (t+2p5 zs — t] ) }

teR

= min}mum t (by representation of the argmin)
U

S
: 1 -

subject to ¢+ 1o z;ps us < CVaRq(f(z,w))
s=
t+us > =z

T s=1,---,8
us > 0
= maximum — vg CVaR,(f(z,w)) + Z vszs  (by linear programming duality)
v
subject to — v + sz =1

—Ps
11—«

UO+US§07 S:]-a”')S
and v, Vg >0, s=1,---,8

S
= CVaRq(f(2,®)) + maximum D [2s — CVaRa(f(2,@))] vs

s=1
subject to 1_‘; [szz—l +v, <0, s=1,---,8
s'=1
and v >0, s=1,---,5,
S
where the last equality follows by the substitution: vy = Z vs — 1 and by noticing that the nonnegativity
s=1

of vy can be dropped, provided that {vs}le belongs to the fixed set:

+US§07 S:l,"‘,S )

S
N S —Ds
w = U€R+’ I—a [Z’l}s/—l
s'=1

v~

1
can be written as []Ig — plT} v+ 1 <0

l1—« «

where Ilg is the identity matrix of order S, p is the S-vector of probabilities {pS}SS:17 and 1g is the
S-vector of ones. Let {vj £ (vg)le}J be the finite family of extreme points of W for some integer
J > 0. We then obtain the expression:J -

S

VaR.(f(x,@)) = CVaRa(f(z,@)) + m?}élfg}}m Z [ f(z,w®) — CVaR(f(z,@))] v?, (3)
- s=1



which shows that VaR,(f(z,w)) is the pointwise maximum of a finite family of dc functions. As such it
is itself a dc function of x, by known properties of difference-convexity. The above expression is different

from the one in [59, page 866] that has the following form for the case f(z,&) = 27 &:

VaR, (z1@) = %CV&RQ(ZL‘T@) + <1 - 7) CVaR,— (27 @) (4)
where v € (0,a) is a constant that is independent of x. [The bilinearity of the portfolio return z’@ is
not essential.] When the scenarios have equal probabilities, the constant v can easily be determined. In
the general case of un-equal scenario probabilities, the constant v can still be obtained by solving a bin
packing problem. In the considered examples in the cited reference, it was observed that a small v relative
to the scenario probabilities was sufficient to validate the formula. In contrast, our dc decomposition
of VaR,(f(z,w)) replaces the bin-packing step by the enumeration of the extreme points of the special
polyhedron W. Detailed investigation of the connection of these two formulae of VaR in terms of CVaR

and how the alternative expression can be used for algorithmic design are beyond the scope of this
paper. In the next subsection, we extend the above derivation to a piecewise linear utility based OCE.

, . J
The family {UJ = (vg)f_l} » of extreme points of the special set VWV depends only on the probabilities

{ps}5_; and not on the realizations {w*}%_;. Properties of these extreme points are not known at the
present time; understanding the polytope W and its extreme points could benefit the design of efficient
descent algorithms for optimizing VaR (f(x,@)). This is a worthwhile investigation that is left for future
research. In the special case where the scenario probabilities {pS}SS:1 are all equal, we expect that the
formula can be significantly simplified.

3.2 Extension to an OCE with piecewise linear utility

Consider the function m,(f(z,©)) with a concave piecewise linear utility function u(t) = lrgigl a;it + o
<i<

for some positive integer I and scalars {a;, ai}le with each a; > 0. Omitting the derivation which is
similar to the above for the VaR, we can show that

my(f(z,w)) = Ou(f(z,w)) —i—mlnlmumzz {ai [f(z,0®) = Ou(f(z,0)] + i } ¥l

1<5<J
=1 s=1

where each ¢/ = (gpgs)gss)):l

I S
o 2 {SD GR{I—S | ZZ (psai_(ss’s)@is’ = Ps, Vs = 17"'a5}7

i=1 /=1

is an extreme point of a corresponding set

1 ifs=s
0 ifs’#s
dc function of = provided that f(e,w) is. Thus so is m,(f(e,w)).

where 6y & { . Similar to Proposition the following result shows that O, (f(z,w)) is a

Proposition 2. For every w € Q, let f(z,w) = p(z,w) — q(z,w) be the dc decomposition of f(e,w) on a
convex set D C R™. For a concave piecewise linear utility function u(t) £ 1r£j£1[ a;t + «o; for some positive
<i<

integer I and scalars {a;, ai}i[:l with each a; > 0, it holds that

I
Ou(f(z,0)) (Zaz> Ep(z, w)—l—max n — IE max Za, p(z,@0) +a; (q(z,@)+1n) — oy

€R 1<i<I
i=1 1/ #L

cvx 1 x cve in x




Proof. We have, for each w € €,

u(few)—n) = min {a [pla,w) — glow) — 1) +ai )
I
= (Z%’) p(z,w) — max Zai’ p(z,w) +a; (q(z,w) +n) —ai
i=1 == i1

-~

jointly cvx in (z,7)

Thus the desired expression of O, (f(z,w)) follows readily. O

3.3 Variance, standard deviation, and exponential densities

We next show that the composite variance and standard deviations of dc functionals are dc, and so are
the composite logarithmic and exponential functions. The proof of the former functions is based on
several elementary facts of dc functions, which we summarize in Lemma [3| below. While these facts all
pertain to composite functions and are generally known in the dc literature (see e.g. [I8, Theorem II,
page 708] and [4l, 57]), we give their proofs in order to highlight the respective dc¢ decompositions of the
functions in question. Such explicit decompositions are expected to be useful in applications.

Lemma 3. Let D be a convex subset in R™. The following statements are valid:
(a) The square of a dc function on D is dc on D.
(b) The product of two dc functions on D is dc on D.

(c) Let fi(z) = gi(x) — hi(z) be a dc decomposition of f; on D, for i = 1,--- 1. Then ||F(z)|2 is a dc
function on D, where F(z) £ (fi(z))l_,.

Proof. (a) Let f = g — h be a dc decomposition of f with g and h being both nonnegative convex
functions. We have

fP=2(+0)~(g+h) (5)
This gives a dc representation of f2 because the square of a nonnegative convex function is convex.

(b) Let J/“\and fbe any two dc functions on D, we can write
Fl) Fla) = § [(F@) + fa) ) = Fla)? = Fla?],

which shows that the product ]?f is dc.

(c) Using the fact that ||v||2 = I‘]‘nzﬁx u'v, we can express
u: ||ull2=1
I
[ F ()2 = ﬁlﬂf_lzuz (gi(x) — hi(z))

S Ti=1

I I

= Z —gi(x) — hi(x) | + . r‘gﬁx ) (u;+1)gi(z) + (1 —u;) hi(x)
. S— : 2=1 ~~
=1 cve function =l L
- Qpi($aui)

Since each ¢;(e,u;) is a convex function and the pointwise maximum of a family of convex functions is
convex, the above identity readily gives a dc decomposition of || F(z)||2. O

10



Remark. It follows from the above proof in part (c) that the function || F(z)|]2 + Z (gi(z) + hi(x))

is convex. This interesting side-result is based on a pointwise maximum representatlon of the convex
Euclidean norm function; the result can be extended to the composition of a convex with a dc function
by using the conjugacy theory of convex functions; see Proposition [0] for an illustrative result of this kind.
O

Utilizing the expression (), we give a dc decomposition of o2(f(z,d)).

Proposition 4. For every w € Q, let f(z,w) = p(z,w) — ¢(z,w) be a dc decomposition of f(e,w) on
D C R" with p(e,w) and g(e,w) both nonnegative and convex. Then

o*(f(2,©)) = 2 E [p(z,0)* + q(x,3)* | + { Ep(z, ) + Eq(z,0) }*

cvx in x

—{ B [p(e,3) + (0, 3) P +2 [ (Ep(e,))* + (Eq(2,5) )’

Proof. We have
A3 = B9 - (Bf(e3) )y
= B [2{p(@,5) + 4(,5)* } - {p(e,5) + o(,5) }* |
- [2{<1Ep<x,w>> + (B, 7)) } — { Ep(e,) + Eq(z,5) ],
from which @ follows readily. O

The proof that o(f(z,w)) is dc requires w to be discretely distributed and is based on the expression:

2
S S
o(f(.@) = Y ps | fl@,w) =D po flaw’) | ;
s=1 s/=1
dc in x
S
thus, o(f(z,w)) is the 2-norm of the vector dc function x <\/]Ts [ Z Dy’ ])
s=1

(i.e., all its components are dc functions). As such, the de-property of std(f(e, )) follows from part (c)
of Lemma [3

We end this section by addressing two key functions in the one-parameter exponential density estimation
discussed in Subsection In generic notation, the first function is the composite b o m(x) for x in
a convex set D C R™. The univariate function m is convex and non-decreasing, and admits a special

de decomposition m(z) = p(x) — max [(ai)Tx + a; |, where p is a convex function on D and each pair
_l_

(a',a;) € R™; such a function m includes as a special case a piecewise affine function where p is also
the pointwise maximum of finitely many affine functions. The second function is log f(z), where f is a
dc function bounded away from zero. Extensions of these deterministic functions to the expected-value
function IE [log(f(z,w))] is straightforward when the random variable is discretely distributed so that

E [log(f Zps log(f(xz,w?)).

11



Proposition 5. Let b : R — R be a convex non-decreasing function and m(z) = p(a:)—lrgaé([ I (a2 + o |
<i<

with p being a convex function on the convex set D C R”. It holds that the composite function bo m is
dc on D.

Proof. By the non-decreasing property of b, we can write

om(z) = min b(p(z) - (a)'z ~bi),
with each function z — b(p(z) — (a’)Tz —b;) being convex. The above expression shows that the
composite b om(z) is the pointwise minimum of finitely many convex functions; hence b om is dc. O

Remark. While it is known that the composition of two dc functions is dc if their respective domains have
some openness/closedness properties; see e.g. [I8, Theorem II]. The dc decomposition of the composite
function is rather complex and not as simple as the one in the special case of Proposition [5| Whether the
latter decomposition can be extended to the general case where the pointwise (finite) maximum term in
the function m(x) is replaced by an arbitrary convex function is not known at the present time. O

Proposition 6. Let 0(x) = —log(f(z)) where f(z) = p(x)—q(z) is a dc function on a convex set D C R"
where in% f(z) > 0. Then there exists a scalar M > 0 such that the function 6(x) + M p(x) is convex on
e

D; thus 0 has the dc decomposition 0(z) = [0(x) + M p(x)] — M p(x) on D.

Proof. Let 1/M = inif) f(z). Consider the conjugate function of the univariate convex function ((t) £
ze

—log(t) for t > 0. We have

¢ (v) éigg {vt+log(t)} = —1—1log(—v), forwv < 0.

Hence, by double conjugacy,

—log(t) = sup {vt+1+log(—v)}, fort >0,
v<0

where the sup is attained at v = —1/¢. Since p(z) — ¢(z) > 1/M on D, it follows that

~log(p(z) —q(@)) = sup {v(p(x) —q(z)) +1+log(-v)}

= sup {w(p(x) —q(x))+1+log(—v)}
—M<v<0

= s { (v M)p(a)+ (—v) @)+ 1+log(—v) b — Mp(x).
—M<v<0

cvx in x

This shows that 6(x) + M p(z) is equal to the pointwise maximum of a family of convex functions, hence
is convex. O

4 A Study of the Value Function qp,,(q,b)

Properties of the QP-value function are clearly important for the understanding of the quadratic recourse
function ¢(x,w), which is equal to qp,y(q(z,w),b(z,w)) where ¢(z,w) = f(w) + G(w)z and b(z,w) £
¢(w) — C(w)z. In the analysis of the general QP (2), we do not make a semi-definiteness assumption on
Q. Instead the copositivity of QQ on Dy, is essential because if there exists a recession vector v in this
cone such that v7Qu < 0, then for all b for which Pp(b) # ), we have qp,y (g, b) = —oc for all ¢ € R".

12



We divide the derivation of the dc property (and an associated dc representation) of qp, (g, b) into two
cases: (a) when @ is positive definite, and (b) when @ is copositive on Dy,. In the former case, the dc
decomposition is easy to derive and much simpler, whereas the latter case is much more involved. Indeed,
when @ is positive definite, we have

— o . _ T _
QPopt (¢, 0) = _%QTQ Lo+ minimum % (Z+Q lq) Q(Z+Q 1q)
subject to Dz > b

= —%qTQ_1q+ mini;num %yTQy
subject to Dy > b’ £ b+ DQ 'q.

The lemma below shows that the minimum of the second summand in the above expression is a convex
function of the right-hand vector b’. This yields a rather simple dc decomposition of APopt(¢;b). The
proof of the lemma is easy and omitted.

Lemma 7. Let f: R™ — R be a strongly convex function and let D € R¥*™. The value function:
@(b) £ minimum f(y)
y
subject to Dy > b

is a convex function on the domain Range(D) — Ri which consists of all vectors b for which there exists
y € R™ satisfying Dy > b. U

It is worthwhile to point out that while it is fairly easy to derive the above “explicit” dc decomposition
of qpept (g, b) when @ is positive definite, the same cannot be said when @ is positive semidefinite. Before
proceeding further, we refer the reader to the monograph [27] for an extensive study of indefinite quadratic
programs. Yet results therein do not provide clear descriptions of the structure of (a) the optimal solution
set of the QP for fixed (¢q,b) and (b) the domain dom(Q, D) of finiteness, and (c) the optimal value
function qp,(q,b), all when @ is an indefinite matrix. Instead we rely on an early result [I5] and the
recent study [21] to formally state and prove these desired properties of the QP when @ is copositive
on the recession cone of the feasible region. This is the main content of Proposition [0 below. The key
to this proposition is the following consequence of a well-known property of a quadratic program which
was originally due to Frank-Wolfe and subsequently refined by Eaves [12]; see [27, Theorem 2.2]. In
the lemma below and also subsequently, the | notation denotes perpendicularity, which expresses the
complementarity condition between two nonnegative vectors.

Lemma 8. Suppose that @ is copositive on D,. A pair (¢,b) € dom(@Q, D) if and only if Pp(b) # () and

Qu—DTy =0
0<nLlDv>0 = (¢+Qz)"v >0. (8)
Dz >b

Proof. By [27, Theorem 2.2], (¢,b) € dom(Q, D) if and only if Pp(b) # 0 and

vI'Qu =0, Dv >0
Dz >b

} = (¢+Qz)Tv > 0. 9)
By the copositivity of ) on D, we have
[UTQU =0, Dv> 0] & v is a minimizer of %uTQu for u € Dy
Qu — DTn =0

< dn such that
0<nl Dv=>0.
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Thus @ and are equivalent. ]

Interestingly, while the result below is well known in the case of a positive semidefinite @), its extension
to a copositive () turns out to be not straightforward, especially under no boundedness assumption
whatsoever. There is an informal assertion, without proof or citation, of the result below (in particular,
part (c)) for a general qp without the copositive assumption [28, page 88]. This is a careless oversight on
the authors’ part as the proof below is actually quite involved.

Proposition 9. Suppose that @) is copositive on Do,. The following statements hold:
(a) dpept(g;b) is continuous on dom(Q, D);
(b) dom(@, D) is the union of finitely many polyhedra (thus is a closed set);

(c) there exist a finite family F = {Sr} of polyhedra in R™** and finitely many quadratic functions
{app} such that qp,p(g,b) = minSqu #(q,b); hence qp,,; (g, b) is a piecewise quadratic function

F:(q,b)e
on dom(Q, D);

(d) for each pair (¢q,b) € dom(Q, D), the optimal solution set of the QP is the union of finitely many
polyhedra.

Proof. (a) Let {(¢",b")} C dom(Q@, D) be a sequence of vectors converging to the pair (¢, b>°). For
each v, let z¥ € qpg(¢”,b”). Note that this sequence {z”} need not be bounded. Nevertheless, by the
renowned Hoffman error bound for linear inequalities [13, Lemma 3.2.3], it follows that the following two
properties hold: (a) Pp(b>) # 0 and there exists a sequence {zZ”} C Pp(b>°) such that {z¥ — 2"} — 0;
and (b) for every z € Pp(b>), there exists, for every v sufficiently large, a vector y* € Pp(b”) such that
the sequence {y”} converges to z. Hence, for every (n,v) satisfying the left-hand conditions in (8], we
have
(¢®+Qz)"v = lim (¢"+Qy") v > 0.
V—00

Hence qpg,; (¢, b>°) # 0; thus (¢°°,b°°) € dom(Q, D). Moreover, by taking the vector z € qpy,(¢°°,b>),
we have

APopt (¢, 6%) = C(2) = lim ¢(y") > limsup¢(=") = limsup((z") = liminf ((2") > apop:(¢™,0™)

from which it follows that ILm APopt (¢7,0") = ILm ((2") exists and equals to qp,y,(¢°°,0>). Thus (a)
holds.

To prove (b), we use an early result of quadratic programming [15] stating that for a pair (¢,b) in
dom(Q, D), the value qp, (g, b) is equal to the minimum of the quadratic objective function ((z) on the
set of stationary solutions of the problem, and also use the fact [29] that the set of values of ¢ on the set of
stationary solutions is finite. More explicitly, the stationarity conditions of , or Karush-Kuhn-Tucker
(KKT) conditions, are given by the following mixed complementarity conditions:

g+Qz—DTn =0

(10)
0<nl Dz—b2>0.

In turn the above conditions can be decomposed into a finite, but exponential, number of linear inequality

systems by considering the index subsets Z C {1,--- , k} each with complement J such that
¢+ Qz— (Dzo)'nz = 0,
Dzez—bz =0 < m (11)
Dgez—b7s >0 = ng.

14



The above linear inequality system defines a polyhedral set in R™**  which we denote KKT(Z). Alter-
natively, a tuple (g, b) satisfies if and only if

q _Q (DIO)T 0 R™

by | €| D 0 0 R [ 2 QD(Z)
——

by Dze 0 —I 7 IR%';Z' a polyhedral cone

The recession cone of KKT(Z), denoted KKT(Z)«, is a polyhedral cone defined by the following homo-
geneous system in the variables (v, §):

Qu—(Dzo)'¢s = 0,
Dzev = 0 < &
Dgev 20 = &7

This cone is the conical hull of a finite number of generators, which we denote {(vIvE , §I’Z) 5:11 for some

integer L7 > 0. Notice that these generators depend only on the pair (Q, D). In terms of them, the
implication is equivalent to

Dz>b = (¢g+Qz)vt* >0, V¢ =1,---,Lz and all subsets Z of {1,--- ,k}.
In turn, for a fixed pair (Z, ¢), the latter implication holds if and only if

0

IA

T,T. ‘o 7,0\T
vt 4 minimum v z
g Dz>b (Q )

= gl maxi;gize X by linear programming duality
n>
subject to DTp = Qutt.

Let £(Z,0) & {ﬂ“}fﬁ") be the finite set of extreme points of the polyhedron {p € RE | DTy = QuvFt}
for some positive integer E(Z,¢). Again these extreme points depend on the pair (@, D) only. It then
follows that holds if and only if for every pair (Z,¢) with Z being a subset of {1,--- ,k} and ¢ =
1,---, Lz, there exists u2%* € £(Z,¢) such that 0 < ¢TovB! + bTpTb%. Together with the feasibility
condition b € range(D) — Rﬁ, each of the latter inequalities in (g, b) defines a polyhedron that defines a
piece of dom(Q, D). Specifically let V = H E(Z,0) where the Cartesian product ranges over all pairs
(Z.0)
(Z,¢) with Z being a subset of {1,--- ,k} and ¢ = 1,--- ,Lz. An element g € V is a tuple of extreme
points pZ4* over all pairs (Z,¢) as specified with x being one element in {1,--- , E(Z,{)} corresponding
to the given u; every such element p defines a system of Z | L7 | linear inequalities each of the
IC{1, k}
form:
gToPt 4 pT b > o,

Consequently, it follows that

;

dom(Q,D) = | { (4.b) € R™ x [D]Ram —Rﬂ | dCoBt 4 b T ThE > ,
ney N

there are Z | L7 | of these
Ic{1, k}

Vs
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proving that dom(@, D) is a union of finitely (albeit potentially exponentially) many polyhedra, each
denoted by dom*(Q, D) for p € V.

To prove (c), let F be the family of polyhedra
{dom*(Q,D) N QD(Z') | p € Vand ' C {1,--- ,k} }.
For each polyhedron in this family, the system KKT(Z') has a solution (z,7z/) satisfying:

g+ Qz— (Drie)'nz = 0,
Dziqz —bzr = 0 < nz (12)
Dj/.Z - bJI Z O,

where J' is the complement of Z’ in {1,--- ,k}. The system can be written as:

-Q (Dze)" 0 z q
Dziq 0 0 nr: = bz ) (771’73J’) > 0.
Dj/. 0 —]I|J/‘ S bj/

By elementary linear-algebraic operations similar to the procedure of obtaining a basic feasible solution
from an arbitrary feasible solution to a system of linear inequalities in linear programming, it follows
that there exists a matrix M (Z'), dependent on the pair (@, D) only, such that has a solution with
z2=M(T") ( Z >; ie., 1} has a solution that is linearly dependent on the pair (gq,b). It is not difficult
to show that the objective function ((z) is a constant on the set of solutions of [in fact, this constancy
property is the source of the finite number of values attained by the quadratic function ¢ on the set of
stationary solutions of the QP ({2))], it follows that this constant must be a quadratic function of the pair
(g,b). Since for a fixed pair (¢,b) € dom(Q, D), qpypt(q;b) is the minimum of these constants over all
polyhedra in the family F that contains the pair (g, b), part (c) follows.

Lastly, to prove (d), it suffices to note that for a given pair (¢,b) € dom(Q, D), the solution set of the
QP is equal to set of vectors z for which there exists 7 such that the pair (z,n) satisfies the linear
equality system KKT(Z) and 3 (¢"z + b"n) = qpoy (g, b) for some index subset Z of {1,--- , k}. O

4.1 Proof the dc property

Based on Proposition [J] and known properties of piecewise dc functions in general, the following partial
dc property of the value function qp,(q,b) can be proved.

Corollary 10. Suppose that @ is copositive on Do,. The value function qpopt(q, b) is dc on any open
convex set contained in dom(Q, D).

Proof. This follows from the mixing property of piecewise dc functions; see [4, Proposition 2.1] which
has its source from [58, Lemma 4.8]. O

Since dom(@Q, D) is a closed set, the above corollary does not yield the difference-convexity of qpq (g, b)
on its full domain. We give a formal statement of this property in Theorem [I2)under the assumption that
dom(Q, D) is convex. The proof of this desired dc property is based on a more general Proposition
pertaining to piecewise LC! functions that does not require the pieces to be quadratic functions nor the
polyehdrality of the sub-domains.

Recall that a function 6 is LC! (for Lipschitz continuous gradient) on an open set O in R™ if 6 is
differentiable and its gradient is a Lipschitz continuous function on O. It is known that a LC! function is
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M M
dc with the decomposition 6(z) = (9(3:) + > a:Tx) Yy 2Tz, where M is a positive scalar larger than

the Lipschitz modulus of the gradient function V6. Another useful fact [31, 3.2.12] about LC! functions
is the inequality that is a consequence of a mean-value function theorem of multivariate functions:
namely, if 6 is LC! with L > 0 being a Lipschitz modulus of V6 on an open convex convex set O, then
for any two vectors x and y in O,

L
0(z) = 0(y) < Vo) (@ —y)+ 5 = —yll3. (13)
I .
Proposition 11. Let 6(z) be a continuous function on a convex set S = U S" where each S is a closed
i=1

convex set in R, Suppose there exist LC! functions {6;(x) iI:1 defined on an open set O containing

S such that 0(z) = 0;(z) for all x € S* and that each difference function 6j;(x) £ 0;(x) — 6;(z) has dc

gradients on S. It holds that 6 is dc on S.

Proof. Let Lj be the Lipschitz modulus of V6;; on O and let L; = 1r£1a2<ILji. Let dist(z;S%) =
<<

min ||z — 2 ||z = ||z — Hgi(x) |2 be the distance function to the set S? with Ilg:(x) being the Euclidean

z€S?

projection (i.e., closest point) of the vector z onto S*. We note that both dist(e;S*) and [dist(e; S")]2

are convex functions. Define

. 3L; . .. .
¢i(z) £ dist(z;S") max ||VOji(x)]2 +—— [dlst(:c;Sl)]Q, z e RN
—— 1T 2

cvx in x ,
dcin x

and let 1;(z) £ 0;(x) + ¢;(x). The first summand, dist(x; S?) max IV0;i(x)||2, being the product of two
<<

dc functions is dc, by Lemma [3| Hence each function ¢; is dc. We claim that

f(x) = min ¢;(x), Va € S. (14)

Since the pointwise minimum of finitely many dc functions is dc [54, Proposition 4.1], the expression
is enough to show that 6 is dc on S. In turn since v;(z) = 6;(x) for all z € S*, to show , it suffices
to show that 1;(x) > 0(x) for all z € S\ S%. For such an z, let ' = IIg:(x). Since S is convex, the line
segment joining = and Z' is contained in S. Hence, there exists a finite partition of the interval [0, 1]:

O=m<n< <1< TT+1 =1

and corresponding indices i; € {1,--- , I} fort =1,--- ,T+1 so that 6(z) = 6;,(x) for all = in the (closed)
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t—1

sub-segment joining /7! £ z 4+ 741 (%' — ) to 2* £ = + (&' — x). We have

0(z) — 0i(z) = 0(z) — 0(F) + 0;(F') — 0;(x) because O(T') = 0;(z")

T+1 T4+1
=) [0 - -> [0 — (") ]
t=1

because 0(x'~ 1) :: 0;, (=) and 0(z') = 0;, (2?)

T+1 T+1
= > [0 () =@ )] =D [0 (a) — bi(2")]
t=1 t=1
T+1
= Z [eiti(xt_l) eltl(xt)]
t=1
T+1 I
< 3 | Tl (@ -ty B -t | oy @)
t=1
T+1 1r£1a<xl Lj; T+1
< {Vﬁiti(x)T(xt_l — a2ty + [V8i(at) — Voi,i(2)] " (2t —xt)} 1=l 7 Z ottt
t=1
T+1 T+1 L. '
< fgag[HWﬂ )HQZW tH2+ Jnax ng\lw—w !!2;!!96 —$t|!2+5zH33—i”H§
_ 3L; i 2 _i . ;
= max [ VO;(z) |2 ||z — 2 |2 = ¢i(x) because ||z — 2" [|2 = dist(2; 5°),

1<5<1

where the last inequality holds by the Cauchy-Schwartz inequality, the Lipschitz property of V#;,;, and

T+1
the identity Z |zt~ —2t||o = ||z —Z*||. Thus t;(z) > 0(z) for all z € S\ S as claimed, and |D follows
t=1

readily.
We are now ready to formally state and prove the following main result of this section.

Theorem 12. Suppose that @ is copositive on Dy, and that dom(Q, D) is convex. Then the value
function qp,p(g,b) is dc on dom(Q, D), provided that qp, is a quadratic function on each polyhedral
member in the family F described in part ¢ of Proposition@ In particular, qp,p (g, b) is dc on dom(Q, D),
if () is positive semidefinite.

Proof. This follows readily from Proposition by letting each pair (Sj,60;) be the quadratic piece
identified in part (c) of Proposition [9} O

Several remarks about the above results are in order. First, we refer to two examples in the literature
that show, respectively, a constraint-only [55], or an objective-only [56] perturbed (nonconvex) quadratic
program (QP) may not be piecewise linear-quadratic; i.e. the condition of dPopt being a quadratic
function on each polyhedral member in the family F may not be satisfied. However, we should point out
that while not satisfying the quadratic condition in the above theorem, the two numerical examples in
[55 56] can be verified to be dec, by the mixing property Corollary For the one in [56] the domain
of the value function is R?; for the other one [55], the domain of the function, which is restricted to the
(closed) fourth quadrant in R? in the reference, can be easily extended to an open convex set containing
this quadrant. Thus, the two examples in [55, 56] do not constitute a counterexample for which the
value function qpopt(q, b) is not dc. The question of whether we can relax the quadratic condition in
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Theorem and still show that the value function qpopt(q, b) is dc remains open. Second, when each
0;(x) = 2" a’ + oy is an affine function for some N-vector a’ and scalar «;, the representation of the
function 6 becomes
0(z) = min | 6i(z) +dist(z; 57) max ||’ —a*|l2 ],

which provides an alternative min-max representation of the piecewise affine function 8 with affine pieces
0;; this is distinct from the max-min representation of such a piecewise function in [32], 47]. Third, when
@ is positive semi-definite, dom(Q, D) is known to be convex; in fact, it is equal to the polyhedron

Q@ -DT
3 s
(without the complementarity condition) of the KKT system are feasible. Fourth, there are coposi-
tive, nonconvex QPs for which dom(@Q, D) is convex. For instance, for a symmetric, (entry-wise) positive
matrix @ and an identity matrix D, dom(Q, D) is equal to the entire space R™**. More generally, if
Do, = {0}, then for any symmetric matrix @, dom(@, D) = R™ x [DR’" — le_] is a convex polyhedron.
Fifth, the convexity of S in Proposition is a reasonable assumption because convex, and thus dc,
functions are defined only on convex sets. Hence, the convexity requirement of dom(Q, D) in Theorem
is needed for one to speak about the dc property of qpopt(q, b). Admittedly, the dc representation in
Theorem [12]is fairly complex, due to the possibly exponentially many quadratic pieces of the value func-
tion (cf. the proof of Proposition @ This begs the question of whether a much simpler representation
exists when the matrix @ is positive semi-definite (cf. the rather straightforward representation in
the positive definite case). There is presently no resolution to this question.

} (Rm X ]Rﬁ) — ({0} X Rﬁ), which is the set of pairs (q,b) for which the linear constraints

5 Univariate Folded Concave Functions

The family of univariate folded concave functions was introduced [14] in the literature of sparsity repre-

: . . . . 1 ift#0
sentation as approximations of the univariate non-zero count function £ (t) = { 0 ;thzwise Formally,

such a function is given by 0(t) = f(|t|), where f is a continuous, univariate concave function defined
on R;. Since we take the domain of f to be the closed interval [0, 00), the composition property of dc
functions [I8, Theorem II, page 708] is not applicable to directly deduce that @ is dc. We formally state
and prove the following result that is a unification of all the special cases discussed in [I]. Proposition 6
in [26] gives a different dc decomposition of such a folded concave function 6(t).

Proposition 13. Let f be a (continuous) univariate concave function defined on R;. The composite
function 6(¢) £ f(|t|) is dc on R if and only if f/(0;4) exists and is finite, where

f(0;+) £ i {0 = O g FET) = FO0)

15
70 T 710 T ( )

Proof. Since a dc function must be directionally differentiable, a property inherited from a convex
function, it suffices to prove the sufficiency claim of the result. Since f is concave on R, it follows that

f&) < fO)+ (0 +)t, Ve > 0. (16)

The proof is divided into 2 cases: (a) f'(0;4) <0, or (b) f/(0;4) > 0. (See Figure [1] for illustration.) In
case (a), it follows that ¢ = 0 is a maximum of the function 6 on the interval (—oco, co) by (16]). Further,
we claim that the function # is concave on the real line in this case. To prove the claim, it suffices to show
that if t; > 0 > to, then the secant, denoted S, joining the two points (¢1,6(¢1)) and (t2,6(t2)), where
0(t1) = f(t1) and 6(t2) = f(—t2), on the curve of 6(t) is below the curve 6(t) itself for ¢ in the interval
(t2,t1). This can be argued as follows. The secant S can be divided into two sub-secants, one, denoted 51,
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0(t1) — 6(t2)

l1 — 12
Sa, starting at the latter end point and ending at (t2, 0(t2)). It is not difficult to see that the sub-secant
Si lies below the line segment joining (¢1,60(¢1)) and (0,60(0)), which in turn lies below the curve of 6(t)
for t € (t1,0) by concavity of f; furthermore, for the same token, the sub-secant So lies below the line
segment joining (0,6(0)) to (t2,6(t2)), which in turn lies below the curve of 0(t) for ¢ € (0,t2). This
establishes the concavity of 6 in case (a).

starting at the end point (¢1,6(t1)), and ending at | 0,6(t2) — t2>; and the other, denoted

Consider case (b); i.e., suppose f'(0;+) > 0. Consider the half-line ¢ — f(0) + f/(0; +)t emanating from
the point (0, f(0)) for ¢ < 0. Let t* < 0 be the right-most ¢ < 0 such that this line meets the curve
0(t) = f(—t) to the left of the origin. If this does not happen, we let t* = —oo. Define the function:

(t) ift >0
fi(t) = (0) + f/(0;+)t ift € [t*,0] if t* > —o0
(—t) if t < t*,

f
f
f
f
f

e (1) ift >0 -

We claim that this function is concave on R and fi(t) < f(—t) for t € (t*,0]. Indeed, since f'(0;+) > 0,
it follows that f(—t) > f(0) + f/(0;+) ¢t for all ¢ € (t*,0) by the definition of ¢* . The concavity of f1(t)
can be proved in a way similar to the above proof of case (a), by considering sub-segments. Details are
omitted. Similarly, define ¢, > 0 as the left-most ¢ > 0 such that half-line ¢ — f(0) — f’(0;4) t meets the
curve 6(t) = f(t) to the right of the origin and let ¢* = oo if this does not happen. Define the function:

F(—t) ift <0
f2(t) £ ¢ F(0)— f/(0;+)t ift € [0,t7] if t% < o0
£(t) it > 1,
L [ 1) ift <0 o
R = { F0)— /(0 1)t ift € [0,00) } e =0

We can similarly show that fo(t) is concave on R and fo(t) < f(¢) for t € [0,¢ ). Now define g(t) £
max (f1(¢), f2(t)) for all t € R. As the pointwise maximum of two concave functions, g is dc. It remains
to show that g(t) = 0(t) for all ¢ € R. This can be divided into 2 cases: ¢t > 0 and ¢t < 0. In each case,
the above established properties of the two functions f; and fs can be applied to complete the proof. [J

Remarks. Being not dc, the univariate function 6(t) £ \/m provides a counter-example to illustrate
the important role of the existence of the limit (15). Another relevant remark is that the following fact
is known [I8, page 707]: “if D is a (bounded or unbounded) interval, then the univariate function f is
dc on D if and only if f has left and right derivatives (where these are meaningful) and these derivatives
are of bounded variation on every closed bounded interval interior to D”. We have not applied this fact
to prove Proposition [13| because our proof provides a simple construction of the dc representation of the
function 6 in terms of the function f. O
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Figure 1: g(t) = max (f1(?), f2(t))
Case (a): f(|t]) = —|t|* — 1; case (b)1: f(|t]) = —2(|t] — 1)® + 3; case (b)2: f(|t]) = /(|t| +1)
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