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Abstract We study quadratic optimization with indicator variables and an M-matrix,
i.e., a PSD matrix with non-positive off-diagonal entries, which arises directly in image
segmentation and portfolio optimization with transaction costs, as well as a substruc-
ture of general quadratic optimization problems. We prove, under mild assumptions,
that the minimization problem is solvable in polynomial time by showing its equiv-
alence to a submodular minimization problem. To strengthen the formulation, we
decompose the quadratic function into a sum of simple quadratic functions with at
most two indicator variables each, and provide the convex-hull descriptions of these
sets. We also describe strong conic quadratic valid inequalities. Preliminary computa-
tional experiments indicate that the proposed inequalities can substantially improve the
strength of the continuous relaxations with respect to the standard perspective refor-
mulation.
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1 Introduction

Consider the quadratic optimization problem with indicator variables
(QOI) min {a’x +by+yAy : (x,y)eC,0<y<x, xef0, I}N},

where N = {1, ...,n}, a and b are n-vectors, A is an n X n symmetric matrix and
C C RNVNXN, Binary variables x indicate a selected subset of N and are often used to
model non-convexities such as cardinality constraints and fixed charges. (QOI) arises
in linear regression with best subset selection [10], control [23], filter design [47]
problems, and portfolio optimization [11], among others. In this paper, we give strong
convex relaxations for the related mixed-integer set

S={(x,y.0) {0, 1}V xRY xR:y Qy <t, 0<y <x;foralli € N},

where Q is an M-matrix [43],1.e., O > O and Q;; < 0if i # j. M-matrices arise in
the analysis of Markov chains [30]. Convex quadratic programming with an M-matrix
is also studied on its own right [37]. Quadratic minimization with an M-matrix arises
directly in a variety of applications including portfolio optimization with transaction
costs [33] and image segmentation [27].

There are numerous approaches in the literature for deriving strong formulations for
(QOI) and S. Dong and Linderoth [19] describe lifted inequalities for (QOI) from its
continuous quadratic optimization counterpart over bounded variables. Bienstock and
Michalka [12] give a characterization linear inequalities obtained by strengthening
gradient inequalities of a convex objective function over a non-convex set. Convex
relaxations of S can also be constructed from the mixed-integer epigraph of the bilinear
function ), +j Qijyiyj- There is an increasing amount of recent work focusing on
bilinear functions [e.g., [13,14,35]]. However, the convex hull of such functions is
not fully understood even in the continuous case. More importantly, considering the
bilinear functions independent from the quadratic function ),y Qii yi2 may result
in weaker formulations for S. Another approach, applicable to general mixed-integer
optimization, is to derive a strong formulation based on disjunctive programming
[8,17,45]. Specifically, if a set is defined as the disjunction of convex sets, then its
convex hull can be represented in an extended formulation using perspective functions.
Such extended formulations, however, require creating a copy of each variable for
each disjunction, and lead to prohibitively large formulations even for small-scale
instances. There is also a increasing body of work on characterizing the convex hulls
in the original space of variables, but such descriptions may be highly complex even
for a single disjunction, e.g., see [7,9,31,39].

The convex hull of S is well-known for a couple of special cases. When the matrix
Q is diagonal, the quadratic function y’ Qy is separable and the convex hull of S can
be described using the perspective reformulation [21]. This perspective formulation
has a compact conic quadratic representation [2,24] and is by now a standard model
strengthening technique for mixed-integer nonlinear optimization [15,25,38,48]. In
particular, a convex quadratic function y’ Ay is decomposed as y'Dy + y’ Ry, where
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Strong formulations for quadratic optimization with... 143

A= D+ R, D,R > 0and D is diagonal and then each diagonal term D,-,'yl.2 <t,
i € N, is reformulated as yi2 < t;x;. Such decomposition and strengthening of the
diagonal terms are also standard for the binary restriction, where y; = x;,i € N, in
which case x’Ax < ),y Diixi + x'Rx [e.g.[3,44]]. The binary restriction of S,
where y; = x; and Q;; < 0,7 # J, is also well-understood, since in that case the
quadratic function x’ Qx is submodular [40] and min {¢’x + x'Qx : x € {0, 1}"}isa
minimum cut problem [28,42] and, therefore, is solvable in poynomial time.

Whereas the set S with an M-matrix is interesting on its own, the convexification
results on S can also be used to strengthen a general quadratic y’ Ay by decomposing A
as A = Q + R, where Q is an M-matrix, and then applying the convexification results
in this paper only on the y' Qy term with negative off-diagonal coefficients, generaliz-
ing the perspective reformulation approach above. We demonstrate this approach for
portfolio optimization problems with negative as well as positive correlations through
computations that indicate significant additional strengthening over the perspective
formulation through exploiting the negative correlations.

The key idea for deriving strong formulations for S is decompose the quadratic
function in the definition of S as the sum of quadratic functions involving one or two

variables:
YOy=>Y D205 => > 0yi—yp)* (1)

i=1 \j=I i=1 j=i+l

Since a univariate quadratic function with an indicator is well-understood, we turn
our attention to studying the mixed-integer set with two continuous and two indicator
variables:

X:{(x,y,t)6{0,1}2XR2XR:(y1—y2)2§t,Ogyigxi, i=1,2}.

Frangioni et al [22] also construct strong formulations for (QOI) based on 2 x 2
decompositions. In particular, they characterize quadratic functions that can be decom-
posed as the sum of convex quadratic functions with at most two variables. They utilize
the disjunctive convex extended formulation for the mixed-integer quadratic set

f(:{(x,y,t)e{o,l}szszR:q(y)gt, 0<yi <xi, i=1,2},

where g (y) is a general convex quadratic function. The authors report that the for-
mulations are weaker when the matrix A is an M-matrix, and remark on the high
computational burden of solving the convex relaxations due the large number of addi-
tional variables. Additionally, Jeon et al. [29] give conic quadratic valid inequalities
for X, which can be easily projected into the original space of variables, and demon-
strate their effectiveness via computations. However, a convex hull description of X
in the original space of variable is unknown.

In this paper, we improve upon previous results for the sets S and X. In particular,
our main contributions are (i) showing, under mild assumptions, that the minimization
of a quadratic function with an M-matrix and indicator variables is equivalent to
a submodular minimization problem and, hence, solvable in polynomial time; (ii)
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144 A. Atamtiirk, A. Gémez

giving the convex hull description of X in the original space of variables—the resulting
formulations for S are at least as strong as the ones used by Frangioni et al. and require
substantially fewer variables; (iii) proposing conic quadratic inequalities amenable to
use with conic quadratic MIP solvers—the proposed inequalities dominate the ones
given by Jeon et al.; (iv) demonstrating the strength and performance of the resulting
formulations for (QOI).

Outline The rest of the paper is organized as follows. In Sect. 2 we review the previous
results for S and X. In Sect. 3 we study the relaxations of S and X, where the constraints
0 < y; < x; are relaxed to y; (1 — x;) = 0, and the related optimization problem. In
Sect. 4 we give the convex hull description of X. The convex hulls obtained in Sects. 3
and 4 cannot be immediately implemented with off-the-shelf solvers in the original
space of variables. Thus, in Sect. 5 we propose valid conic quadratic inequalities and
discuss their strength. In Sect. 6 we give extensions to quadratic functions with positive
off-diagonal entries and continuous variables unrestricted in sign. In Sect. 7 we provide
a summary computational experiments and in Sect. 8§ we conclude the paper.

Notation Throughout the paper, we use the following convention for division by 0:
0/0 = 0 and ¢/0 = oo if a > 0. In particular, the function p : [0, 1] x Ry — R, given
by p(x,y) = ¥*/x is the closure of the perspective function of the quadratic function
q(y) = y2, and is convex [e.g. [26], p.160] . For a set X C RV, conv(X) denotes the
convex hull of X. Throughout, Q denotes an n x n M-matrix, i.e., Q > Oand Q;; <0

fori # j.
2 Preliminaries

In this section we briefly review the relevant results on the binary restriction of § and
the previous results on set X.

2.1 The binary restriction of S

Let Sp be the binary restriction of S, i.e. y = x € {0, 1}". In this case, the decompo-
sition

n n

Mox =Y Qij |7 =D > 0ijtxi —x))* <t )
1

i=1 \j= i=1 j=i+1

leads to conv(Sp), by simply taking the convex hull of each term. Indeed, the quadratic
problem min {x’ Ox : x € {0, 1}”} is equivalent to an undirected min-cut problem
[e.g. [42]] and can be formulated as

n n n n
min Y (D Qi | xi—) " D Qijtijixi—xj <tij, xj —xi <t;j, 0<x < 1.

i=1 \j=1 i=1 j=i+1
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Strong formulations for quadratic optimization with... 145

Decomposition (2) leading to a simple convex hull description of Sp in the binary case
is our main motivation for studying decomposition (1) with the indicator variables.

2.2 Previous results for set X

Here we review the valid inequalities of Jeon et al. [29] for X. Although their con-
struction is not directly applicable as they assume a strictly convex function, one can
utilize it to obtain limiting inequalities. For ¢(y) = y’Ay the inequalities of Jeon et
al. are described via the inverse of the Cholesky factor of A. However, for X, we have
q(y) = (y1 — y2)? or q(y) = y'Ay, where A = [ !, '] s a singular matrix and the
Cholesky factor is not invertible.

However, if the matrix is given by A = [fll ;21] with dy,d> > 1, then their

approach yields three valid inequalities:

2 2
1 didy — 1
dzy—z——xl+<L)y—2<t
X d

2 1 d x2 =
2 2
- 12 4 a L 42 0y, <4
X2 x1  d
2
1
<d1d2 _ 1) ¥} (vdl)’I - \/E)’z)
— )24 <t
d X2 X1+ x2

As dy, dr — 1, we arrive at three limiting valid inequalities for X.

Proposition 1 The following convex inequalities are valid for X :

2
2 < 3)
x2
2
A _y<t, )
X1
_ 2
1 —y) <1 )
X1+ x2

For completeness, we verify here the validity of the limiting inequalities directly. The
validity of inequality (3) is easy to see: observe that ¥3/x, < 1 for (x, y) € X; then, for
x1 = 0, (3) reduces to the perspective formulation for the quadratic constraint y% <t,
and for x; = 1 we have y3/x; — x; < 0 < t. The validity of inequality (4) is proven
identically. Finally, inequality (5) is valid since it forces y; = y, when x; = xp =0,
and is dominated by the original inequality (y; — y2)?> < 1 for other integer values
of x.

Inequalities (3)—(5) are not sufficient to describe conv(X) though. In the next two
sections we describe conv(X) and give new conic quadratic valid inequalities domi-
nating (3)—(5) for X.
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146 A. Atamtiirk, A. Gémez

3 The unbounded relaxation

In this section we study the unbounded relaxations of S and X obtained by dropping
the upper bound on the continuous variables:

Sy = {(x,y,t) c{0. Y xRY xR:y'Qy <1, y;i(1 —x;) =0 foralli eN},

XU=[(x,y,t)e{o,l}szixR:(m—yz)zsr:yi(l—x,»):o, i=1,2].

In Sect. 3.1 we show that the minimization of a linear function over Sy is equivalent to
a submodular minimization problem and, consequently, solvable in polynomial time.
In Sect. 3.2, we describe conv(Xy) and in Sect. 3.3 we use the results in Sect. 3.2 to
derive valid inequalities for Sy .

3.1 Optimization over Sy

We now show that the optimization of a linear function over Sy can be solved in
polynomial time under a mild assumption on the objective function. Consider the
problem

(P) min{d'x+b'y+1:(x,y.1) €Sy},

where Q is a positive definite M-matrix and b < 0. We show that (P) is a submodular
minimization problem. The positive definiteness assumption on Q ensures that an
optimal solution exists. Otherwise, if there is y > 0 with y'Qy = 0, the problem
may be unbounded. The assumption b < 0 is satisfied in most applications (e.g., see
Sects. 7.1 and 7.3). If b > 0, then y = 0 in any optimal solution.

Proposition 2 (Characterization 15 [43]) A positive definite M-matrix Q is inverse-
positive, i.e., its inverse satisfies Qi_jl > 0foralli, j.

Proposition 3 Problem (P) is equivalent to a submodular minimization problem and
it is, therefore, solvable in polynomial time.

Proof We assume that a > 0 (otherwise x = 1 in any optimal solution) and
that an optimal solution exists. Given an optimal solution (x*, y*) to (P), let T =
{i €N :yf > 0}, br the subvector of b induced by T, and by Q7 the submatrix of
Q induced by T. Then, from KKT conditions, we find by + 207yr = 0 & yr =
—07'br/2- Thus, an optimal solution satisfies b'y* + y*' Qy* = —w-

Consequently, defining 6;; : 2V — R fori, j € N as 6;;(T) = (Q}l),-j ifi,j e
T and 0 o.w., observe that (P) is equivalent to the binary minimization problem

) 1
;ngljl\ll a(T) — 1 Z Z bib;0;;(T)-

ieN jeN

@ Springer



Strong formulations for quadratic optimization with... 147

Note that since Q7 is a positive definite M-matrix forany T € N, Qr = ulr — Pr,
where Pr is a nonnegative matrix and the largest eigenvalue of Pr is less than p. By
scaling, we may assume that u = 1. Moreover, Q;l =U-Pp) ' = Yo Pﬁ [e.g.
[49]]. For € € Z, anfl alli, j € N let éfj(T) = (P});jifi, j € T, and 0 0.w. Note
that 6;;(T) = Z?io ij(T). Finally, define for k € N and T € N\{k} the increment

function p; (k, T) = 65(T U {k}) — 6/, (T).
Claim Foralli, j € Nand{ € Z, G_f;. is a monotone supermodular function.

Proof The claim is proved by induction on .

e Base case, £ = 0: Let k € N and T < N\{k}. Note that PQ = Ir. Thus
p,?k(k, T) = 1, and ,ol.oj (k, T) = 0 for all cases except i = j = k. Thus, the
marginal contributions are constant and G_ioj is supermodular. Monotonicity can be
checked easily.

e Induction step: Suppose Q_fj is supermodular and monotone for all i, j € N.
Observe that éf;.“(T) = Y,y O0L(T)P if i, j € T and éf;.“(T) = 0 other-
wise. Monotonocity of 9_1.‘;.“ follows immediately from the monotonicity of the
functions éft. Now letk € N and 71 € T, € N\{k}. To prove supermodularity,

we check that pf}ﬂ (k, Tp) — pf}“ (k, T1) > 0 by considering all cases:

kg i J)IE(L J) € Tthen pff™ (k. To) = pff™ (k. Th) = 3, oy (k. T2) =
pft (k, T1)) P;j > 0 by supermodularity of functions Gfl; if {i, j} ;(_ T and
{i.j} € Tathen pi"! (k. T2) — pjj* (k. T1) = pj;*"! (k. T2) = 0 by monotonic-
ity; finally, if {i, j} ¢ T» then pf;ﬂ(k, Ty) — pf;ﬂ(k, 7)) = 0.

k=i:1f j e Ty then o (k. T2) — pif (k. T1) = X, cn(of, (k. T2) —
,o,ft (k, T1)) P;j > 0 by supermodularity of functions Glft; ifj¢gTiand j € T
then ,o,f;'l(k, Ty) — p,fjl(k, T) = é,fjl(Tz U {k}) > 0; finally, if j ¢ T» then
pii 'k, Ty) — pi ! (k, Ti) = 0. The case k = j is identical. o

As 6;;(T) = Z?io éf;.(T) is a sum of supermodular functions, it is supermodular.
Consequently, 1/43 .y > jen bib;0;;(T) is a supermodular function and (P) is a
submodular minimization problem, solvable with a strongly polynomial number of
calls to a value oracle [e.g.[41]]. Evaluating the submodular function for a given set 7',
i.e., computing a(T') — by Q7 'br/4, requires only matrix multiplication and inversion,
and can be done in strongly polynomial time. Therefore (P) is solvable in strongly
polynomial time. O

3.2 Convex hull of Xy
Consider the function f : [0, 1] x Ri — R, defined as

01—n)?
J— X1
fay) = 2—y1)?
X2

ify1 >
ifyr <

(6)
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148 A. Atamtiirk, A. Gémez

and the corresponding nonlinear inequality

flx,y) =t )

Remark 1 Observe that that inequality (7) dominates inequality (5) since

O1—y)* _ 1 —»)?
< < fx, ).
X1+ x2 max{xy, x2}

Inequalities (3)—(4) are not valid for the unbounded relaxation as the conditions yl-z/xl- <
1 are not satisfied by all feasible points in Xy . For example, feasible points with
x1 =x2 =1,y =y > l and t = 0 are cut off by (3)—(4).

Proposition 4 Inequality (7) is valid for Xy .

Proof There are four cases to consider. If x; = xp = 1, then f(x, y) reduces to the
original quadratic inequality (y; — y»)?, thus the inequality is valid. If x; = x, = 0,
then the points in X satisfy y; = y» = Oand ¢ > 0; since f(0, 0) = 0, none of these
points are cut off by (7). If x; = 1 and xp = 0, then y, = 0 in any point in Xy and,
in particular, y; > y»; thus f(x, y) reduces to the original inequality. The case where
x1 = 0 and xp = 1 is similar. O

Observe that function f is a piecewise nonlinear function, where each piece is conic
quadratic representable. However, the pieces are not valid outside of the region where
they are defined, e.g., (y1 — yg)2 < tx is invalid when y, > yj as it cuts off feasible
points with x; = y; = 0 and y, > 0. Thus, inequality (7) is not equivalent to the
system given by (y; — y2)2 < tx;,i = 1, 2. Nevertheless, as shown in Proposition 5
below, (7) is a convex inequality.

Proposition 5 The function f is convex on its domain.

Proof Let (%, ¥), (£, §) € [0, 11* x R% and let (x*, y*) = (1 — M)(X, §) + A&, §)
for 0 < A < 1 be a convex combination of (¥, ¥) and (X, y). We need to prove that

FOEY) == fE P +Af (R, D). ®)

If ¥y > ypand y; > ¥, 0r y; < ¥ and y; < 3>, inequality (8) holds by convexity
of the individual functions in the definition of f. Otherwise, assume, without loss of
generality, that | > 2, §1 < J»,and y{ < yj.Lettingy = 1 — (1 —A) =32, observe

2=y’
that

y <i<l.

y > 0, which is equivalent to y; — yj > 0.
¥s = yi =y (@2 = .

yXy < AXy < x3.
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Then, we find

* _ ,%)\2 * )2
f(x*’y*) — (y2 *yl) S (yZ ,\yl)

Xy Y X2

S a2
Q2207 5 r 8 5) + (1= D FE ).

O

A consequence of Proposition 5 is that the convex inequality (7) can be implemented
(with off-the-shelf solvers) using subgradient inequalities as for a subgradient & €
df (x, y) at a given point (X, y), we have f(X,y) +&(x — X,y — 3) < f(x, y), for
all points (x, y) in the domain of the convex function f. In particular, the linear cuts

fEN+E @ —xy—y) <tforf €df(x,y) (C))

provide an outer-approximation of f(x, y) <t at (x, y) and are valid everywhere on
the domain. A subgradient £ can be found simply by taking the gradient of the relevant
piece of the function at (x, y). In particular, for y; > y, and x; > 0, a subgradient

inequality is
- -2 - -
yi—»n y1— N
—( - )x1+2< = )(y1—y2)§t. (10)
X1 X1

The process outlined here to find subgradient cuts (9) for f can be utilized for any
convex piecewise nonlinear function, and will be used for other functions in the rest of
the paper. Convex piecewise nonlinear functions also arise in strong formulations for
mixed-integer conic quadratic optimization [5], and subgradient linear cuts for such
functions were recently used in the context of the pooling problem [36].

As Theorem 1 below states, inequality (7) and bound constraints for the binary
variables describe the convex hull of X.

Theorem 1 (Convex hull of X;)
com(Xy) = {(x, v 0 1P xRE xR: f(x,y) < r} .
Proof Consider the optimization problems

(Py) min  a'x + b’y +ct;

(x,y,1)eXy

(P1) min ax+by+ctst f(x,y) <t
(x,y,0€[0,112xR2 xR

To prove the result we show that for any value of a, b, c, either (Pp) and (P;) are both
unbounded, or there exists a solution integral in x that is optimal for both problems. If
¢ < 0, then (Py) and (Pp) are both unbounded, and if ¢ = 0 then (P;) corresponds to
an optimization problem over an integral polyhedron and it is easily checked that (Py)
and (Pj) are equivalent. Thus, the interesting case is ¢ > 0 or, by scaling, ¢ = 1. Note
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150 A. Atamtiirk, A. Gémez

that t = (y; — y2)2 in any optimal solution of (Py), and t = f(x, y) in any optimal
solution of (Py1). If b1, by > 0, then y; = y» = 0 is optimal with corresponding
integer x optimal for both (Py) and (Py).

Moreover, if by + by < 0, then both problems are unbounded: x; = x; = 1,
y1 = y2 = A is feasible for any A > 0 for both problems. Thus, one needs to consider
only the case where b1 4+ by > 0 and b; < 0 or b < 0. Without loss of generality, let
by <0and by > 0.

Optimal solutions of (Pp). There exists an optimal solution with yo = 0 (if 0 < y» <
y1, subtracting € > 0 from both y; and y, does not increase the objective — and if
y2 > y1, then swapping the values of y; and y, reduces the objective). Thus, y» = 0,
xp = 0ifa, > 0 and x, = 1 otherwise, and either x; = y; = O or x; = 1 and
v = —%‘, which is the stationary point of b1 y; + ylz.

Optimal solutions of (P1). Note that there exists an optimal solution of (P;) where at
least one of the continuous variables is 0 (if 0 < yj, yz, subtracting € > 0 from both
variables does not increase the objective value — this operation does not change the
relative order of y; and y»). Then, we conclude that y, = 0 in an optimal solution
(if y1 = 0 and y» > 0, then setting y» = 0 reduces the objective value). Moreover,
when y» = 0, then f(x,y) = y]2/x1. Thus, in the optimal solution y; = —bjx1/2.
Substituting in the objective, we see that (P1) simplifies to ming<y,, x,<1 a2x2 + (a1 —
b% /4)x1. For an optimal solution, x, = 0 if a; > 0 and x, = 1 otherwise, and x; =0
ifa; — b%/4 > (0 and x; = 1 otherwise. And, if x; = 1, then y; = —b1/2. Hence, the
optimal solutions coincide. O

3.3 Valid inequalities for Sy

Inequali_ties in an extended formulation Let Q,- = Z?=1 Qijand P ={i e N : Qi >
0} and P = N\ P. Using decomposition (1) and introducing #;;, 1 <i < j < n, one
can write a convex relaxation of Sy as

Z Qiyi + Z QiyE/xi — Z Z Qijtij <t

ieP ieP i=1 j=i+l
fGisxj,yiy) <tj, 1<i<j=<n.
Inequalities in the original space of variables By projecting out the auxiliary variables

t;j one obtains valid inequalities in the original space of variables. By re-indexing
variables if necessary, assume that y; > y, > ... > y, to obtain the convex inequality

DQiyi+Y Qi /xi—=Y Y Qiji—y)/xi <t (an
icP ieP i=1 j=i+1

Observe that the nonlinear inequality (11) is valid only if y; > ... > y, holds.
However, we can obtain linear inequalities that are valid for Sy by underestimating the

convex function Zief’ Qiyi + Zl‘ep Qiy,?/xi - 2?21 Zl;:iﬂ Qij f(xi,xj, yi, ¥j)
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Strong formulations for quadratic optimization with... 151

by its subgradients. Let (x, y) € [0, 1V x Rﬁ be such that y; > ... > y, and x > 0.
Then, the subgradient inequality

n

5.\ 2 n (Vi — b2
_ZQi <?> xi+Z Z Qz/()’l_z y/) X

ieP i=1 \ j=i+1 X
+22Ql o yl +ZQ1)’1
iepP ieP
n n - -
Qu(yj = yi) Qij(yi —yj)
2 = - =2 )y <,
Y (T WG o),
i=1 \j=1 Jj=i+1

corresponding to a first order approximation of (11) around (x, y), is valid for Sy
(regardless of the ordering of the variables).

4 The bounded set X
Let g : [0, 11> x RZ — R, be defined as
L );22) 0 ”) if y2 <x2 < yrand x2(x1 — y1) < y2(x1 — x2)
glr,y) = § Qazx)? | (s yl) if yj <x1 < yzand x1(x2 — y2) < y1(x2 — x1)

X2 —X]

f(x,y) otherwise,

12)
where f is the function defined in (6). This section is devoted to proving the main
result:

Theorem 2 (Convex hull of X)
conv(X) = {(x,y,t) € [0, 11% x Ri tgx,y) <t yi<x, 0= 1,2}_

Remark 2 Observe that for the binary restriction Xp with y; = x;, i = 1,2,
g(x,y) < t reduces to |x; — x2| < t, which together with the bound constraints
describe conv(Xp).

The rest of this section is organized as follows. In Sect. 4.1 we give the convex hull
description of the intermediate set with two continuous variables and one indicator
variable:

X1={(x,y,oe{o,l}xRixR:(yl—yz)zst, i <1, yzfl}.

In Sect. 4.2 we use this results to prove Theorem 2. Finally, in Sect. 4.3 we give
valid inequalities for S. Unlike in Sect. 3, the convex hull proofs in this section are
constructive, i.e., we show how g is constructed from the mixed-binary description of
X, instead of just verifying that g does indeed result in conv(X).
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152 A. Atamtiirk, A. Gémez

4.1 Convex hull description of X;
Let g1 : [0, 1] x Ri — Ry be given by

)2 VI
Lo B2l iy — yy < x(2 — 1)
2
g1(x, y1, y2) = § 1=y if y2 < y1

X
(2 —y)? otherwise.

Proposition 6 conv(X) = {(x, y,t) €10, 1] x Ri X R:gi(x,y1,») <t, y <ux,
y2 <1}

Proof Note thatapoint (x, y, t) belongs to conv(X) if and only if there exists (X, y, 7),
(%,9,7)and 0 < A < 1 such that

t=(1—A7f+Af (13)
x = (1 —MX+Ax (14)
yi =1 =231+ A% (15)
y2 =1 =2+ A (16)
x=0 x=1 (17)
51=0,0<H <1 (18)
0<, H =1 (19)
P> (20)
P> G - )% 1)

The non-convex system (13)—(21) follows directly from the definition of the convex
hull. Note that a convex extended formulation of conv(X) could also be obtained
using the approach proposed by [17]. See also Vielma [46] for a recent approach
to eliminate the auxiliary variables using Cayley embedding. We now show how to
project out the additional variables (x, y, ), (£, ¥, 7) to find conv(X) in the original
space of variables, which can be done directly from the non-convex formulation above.

From constraints (14) and (17) we see A = x, from constraint (15) y; = % from

(18) y; < x, from (16) we find y, = %, and from (19) we get 0 < 3 < I and

0< % < 1. Thus, (13)—(21) is feasible if and only if 0 < y; < x,0 < y, < 1
and there exists ¥, such that

- (y2 — x52)° N (x$2 — 1)

n_olox o2
X

, 0<»m =<1,
1—x X X X

The existence of such ¥, can be checked by solving the convex optimization problem

(2 — xf’z)2 N (x32 — yl)2

M1D)  min ¢(3,) = 1
—-X X
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1—x 2

}Sf’zimin{l,—}.

X

s.t. max {O, 2 _
X X

The equation ¢'(y2) = 0 yields

(2 —axd) N (x92 — 1) —o
1—x X

R 1—x
©y2=yz+le =n(x,y).

Let $5 be an optimal solution to (M1). Note that 5 > 0 whenever n(x, y) > 0.
Moreover, n(x, y) < yx_z — 1%" =— y1 + 1 < y,, which can only happen if y; =0
and y, = 1, in which case yx_z — 1%
to one of its lower bounds.

Now observe that )x—z < n(x,y) & y» < y1, in which case n(x,y) < %‘ < 1.
Additionally, if 1 < n(x, y), then x < y, and in particular y; < y;. Therefore, the
cases n(x, y) < min{l, 22}, n(x, y) > 1, and n(x, y) > 22 are mutually exclusive if
% # x, and the optimal solution of (M1) corresponds to setting 35 = n(x, ), 95 = 1,
or y; = yx_z respectively. By calculating the objective function of (M1) with the
appropriate value of 33, we find ¢(35) = g1(x, y1, y2). Hence, (x, y, 1) € conv(X)
ifandonly ift > g1 (x, y;, »)and0 <y <x < 1,0 <y, < 1. O

= 1. Thus, we may assume that 5 is not equal

4.2 Convex hull description of X

We use a similar argument as in the proof of Proposition 6 to prove Theorem 2. Let
(x,y,t) be a point such that 0 < y; < x; < 1 and we additionally assume that
y1 > y2. A point (x, y, ) belongs to conv(X) if and only if there exists (X, y, 1),
(%, 9,1),and 0 < A < 1 such that

t=1=Mf+Ar (22)
xp = (1 = )X + A%y (23)
x2 = (1 —Nxp + Axp 24)
yi =1 —=2)y +21J (25)
v2=0=1)y»+21h (26)
X =0, xp =1 27
727=00<Hh =<1 (28)
O<y<x1<1,0=<y <x<l (29)
= 3i/% (30)
i > gi(X1, 91, 92). (€29)

The system (22)—(31) corresponds to conv(Ko U K1), where Ko = {(x,y,1) €
[0, 1> xRE xR :yi/x <t, yp =2, =0}and Ky = {(x, y,1) € [0, 1]? xRZ xR :
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g1(x1,y1,¥y2) <t, xp = 1}. Observe that Ky and K are the convex hulls of the
restrictions of X, where x, = 0 and x, = 1, respectively.

Using a similar reasoning as in the proof of Proposition 6, we find A = x», y, = )yc—i
S Xi—0i 5o yi—x0d
X1 = T—x, s V1 = T—x> , and

(M2) t > min ¥ (%1, y1)

X1,)1
st.0<P <z <1 (32)
N Yo . _X1—y1 x1 1l—x2 |
N<— x1-y<—— — = < X1, (33)
X2 X2 X2 X2
where
.. (n1 —X2§1)2 ..
Y(X1, 91) 1= ———F— + x281(X1, Y1, y2/%2)-

X1 — X2X1

Thus, to find the convex hull of X, we need to compute in closed form the solutions
of the optimization problem (M2).

Lemma 1 There exists an optimal solution (X}, 37) to (M2) such that y{ > )yc—i

Proof Note that if §; < i’—;, the function v is non-increasing in y; for any value of
X1. Thus there exists an optimal solution where y; is set to one of its upper bounds,
iA.e., either 37 = »1/x; or 37 = x. Since we assume y; > y> and J; < y2/x,, the case
$i = ¥1/x, is not possible.

5 = 2 B S| § o< 22
Now suppose that y; = x1. Then observe that 1 < o +Vhi5t e =< xz.Thus

1

(n - xzfl)z N (y2 — X231)2
X] — X2X1 X2 — X2X1

V(X)) =

in this case (substituting y; = X1). Taking the derivative, we find

. i — x2%1
YE) =0
(x1 — x2x1)

(y2 — x2%1)
XZ—AZ
(x2 — x2X1)

(=2x1 + x2%1 + y1)
(—2xz + xX1 + yz) :

Note that y; —xpX; > Osince x| = J1 < »1/x; in any feasible solution, and y, —xpX; >
0, by assumption. Additionally

— since y; < xj and X; = y; < Vi/x < X1/xy, we find that —2x] + x2%] + y; <0,
— since y» < xp and x| < 1, we find that —2x3 + x2X1 + y2 < 0.

Therefore, v/ (x|) is non-positive, i.e., ¥ is non-increasing. Then, increasing y; = x|
another optimal solution can be found. In particular, an optimal solution with y§ > y2/x
exits. O

@ Springer



Strong formulations for quadratic optimization with... 155

From Lemma 1 we can assume, without loss of generality, that

(1 —x291)? n (X231 — yz)z.
X] — X2X1 X2X1

V(X1 y1) = (34)

Taking partial derivatives, we find that

oo
— (X1, 1) =2x2 | —
ay1

oy . . yi —x291\? 0¥ -\’
~ (xla }’1) = X2 - ~_ — X2 - A~ .
0X X1 — X2X1 X2X]

Lemmas 2—4 characterize the optimal solutions of (M2), depending on the values of
(x, y). Note that if

V1 — X231 N X291 — 2
X1 — xz)el xz)’el ’

N I 3
yi==—+—01—y) (35)

X2 X1
then %(ﬁl, y1) = 3—}?”1()?1, v1) = 0, independently of the values of x| and y;. Thus,
any feasible point that satisfies (35) is an optimal solution of (M2), as is the case for
Lemmas 2 and 3. In contrast, under the conditions of Lemma 4, no feasible point

satisfies (35) as it would violate upper bound constraints.
X1—

Lemma 2 [fx| < x; then )?T = xze, where € > 0 is a sufficiently small number, and

(¥

= ))c% + );—'l(yl — y2) is an optimal solution to (M2) with objective Y (X5, y5) =
01=y)%

X1
Proof We have %(2;‘, ) = %(if, 97) = 0 and (x, y{) satisfies all constraints
(32)—(33). Thus, (x], y{) is a KKT point and, by convexity, is an optimal solution.
Substituting in (34), we get the result. O

Lemma3 If x; > x; and y>(x; — x2) + y1x2 < xoxy, then X = 1 and y{ =

_ 1-»)?
= =

xF . . . . .. Ax A
)yc—z + ﬁ(yl — y2) is an optimal solution to (M2) with objective 1 (X5, y5)

ISR : Sk Y2 VITY2 Y2 YITV2 Vi Gk
Proof Observe that (X7, ¥7) is feasible as y = ot Sut Y ==

Y2 Yi=Y2 __ YaXi1+yiXxo—y2xo O Dk. Dk ok 1 Y2 1=y o

X2+ X X1X2 =l=apnx -y =1 X2 x| =1 x|

N aon oo n I oasl gy o = #% 0 Additionally, note that
X1 - X2 X2 X2 X2 — 1 ’

X1
TR = FE@YL 9D = 0. Thus, (x7, y7) is a KKT point and, by convexity, is
an optimal solution. Substituting in (34), we find the result. O

Lemma 4 If x| > x3 and y>(x1 — x2) + y1X2 > Xx2X1, then X{ = 1 and 3| = 1 is an

_ (i—x)? (x2—y)?
)= X1—x2 + X2

optimal solution to (M?2) with objective (%3, 35

Proof Note that since xp > y; and y2(x1 — x2) + y1x2 > x2x1, we have xp(x; —

x2) + yix2 > x2x1 < y; > xp and, in particular, jzf < )y(—; Additionally, it is
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easily checked that all other constraints (32)—(33) are satisfied. From y>(x; — x3) +
y1x2 > xoxy we find that =222 < 12 1 iz Now let ;11 and o be the dual variables
associated with constraints y; < x; and X; < 1, respectively. Since both constraints
are satisfied at equality at (X}, J), then we see that the dual variables 1 and 1>

may take positive values without violating complementary slackness. In particular, let
/“Ll — 2)C2 ()’1 —X2 _ xz—yz) > 0 and M; =X (yl:xz _ xz—yz) (Xl Y1 + yz) > 0.

X1—X2 X2 X1—X2 X2 X1—X2
P (&}, ¥)) = —uf + p3. Thus (X7, ¥7) corresponds to
a KKT point and, by convexity, is optimal. Substituting in (34) gives the result. O

Then, 2& 5 (xi‘ yi) = i} and W

Note that Lemmas 2, 3 and 4 cover all cases with y; > y>. We can now prove the main
result.

Proof (Theorem 2)If y; > y», the description of the convex hull follows directly from
Lemmas 2, 3 and 4. If y; < y,, the result follows from symmetry. O

4.3 Valid inequalities for S

Similar to the discussion in Sect. 3.3, the description of conv(X) can be used to derive
strong extended convex relaxations for S. In order to obtain (nonlinear) inequalities
in the original space of variables, we project out the auxiliary variables for a given
ordering y; > --- > y, of the continuous variables with additional restrictions cor-
responding to conditions x; (x; — y;) < y;(x; — x;) in (12). Finally, to obtain linear
inequalities valid independent of the conditions, we derive the first order approxima-
tions.

Suppose y; > -+ > yy, and x;(x; — y;) < y;(x; — x;) for j > i, which holds, in
particular, if x = y. By eliminating the auxiliary variables under these conditions we
obtain the inequality

_ — )2
PO, y) =D Qivity | Qiyi/xi— Z Z Q,,((yl %2 + o) )St.

X1 — X X
ich icP i=1 j=i+1 =42 2
(36)

Inequality (36) is only valid for the particular permutation of the continuous variables
and whgn conditions x; (x; — y;) < y;(x; — x;) for j > i hold. Since Ziep Qiyi +
Siep Oiv2 /% — Y0 Sy Qijg (R, Xj, 3is 7) = #(X, 5), we can find valid
subgradient mequahtles by taking gradients of the left-hand-side of (36). Let 7; =
Qi + 22’;, Qij and o; = 237, Qjj, and recall 0; = -1 Qij. The partial
derivatives of ¢ evaluated at a pomt (x, y) where x = y are as follows:

—(x y) = ZQ,,+ZQU Qi=—Qii=7—a, ieP
Jj=i+1 j=i+1

06 o

_(x y) = ZQ11+ZQ11—7T_“1+Q19 iepP
Jj=i+1 Jj=i+1
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3¢ " i

3y, B V) =2 > 0ij+20i = —a, ieP
Vi j=i+l

A . - - _

a—y(f,§)=—2 Z Qij+Qi=—a; — 0, i€P.
! j=i+1

Thus, since ¢ (x, y) + Vo (x, y)(x —x,y — y) < g(x,y) < t, we obtain the linear

inequality
n n
Yomixi <ty ail—y) =y 0ilxi — yi). (37)
i=1 i=1 ich
Observe that inequality (37) depends only on the ordering of X, but not on the actual
values.

Remark 3 Consider the submodular function given by ¢(x) = x’Qx. The extreme
points of the extended polymatroid [20] associated with g, IT, correspond to the vectors
7 in inequality (37); thus, the convex lower envelope of ¢ is described by the function
G (x) = maxyer'x [34]. Atamtiirk and Bhardwaj [4] employ these polymatroid
inequalities for the binary case. For the mixed-integer case, the inequality (37) is tight
for the binary restriction x = y, and the right hand side is relaxed as the distance
between x and y increases.

Remark 4 The values ¢; in inequality (37) corresponds to the value of derivative of
q(x) with respect to x; when x; = 1 forall j <i and x; = 0 for j > i. Atamtiirk
and Jeon [6] use lifting to derive similar inequalities for another class of nonlinear
functions with indicator variables and submodular binary restriction.

5 Valid conic quadratic inequalities for X

The inequalities f(x,y) < t and g(x,y) < t derived in Sects. 3 and 4 for Xy and
X, respectively, cannot be directly used within off-the-shelf solvers in the original
space of variables as they are piecewise functions. However, since they are convex,
they can be implemented using gradient outer-approximations at differentiable points
(as discussed in Sects. 3.3 and 4.3): given a fractional point (x, ¥) with x > 0 and a
subgradient £ € dg(x, y), the inequality

gE M +EC-xy-§) =<t (38)

can be used as a cutting plane to improve the continuous relaxation. However, such an
approach may require adding too many inequalities (38) to the formulation, possibly
resulting in poor performance (see also Sects. 7.1 and 7.3 for additional discussion on
computations). Alternatively, an extended formulation could be used [e.g., [17,22]];
however, such formulations may require a prohibitively large number of variables,
resulting in hard-to-solve convex formulations and poor performance in branch-and-
bound algorithms. Therefore, in this section we give valid conic quadratic inequalities
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that provide a strong approximation of conv(X) and can be readily used within conic
quadratic solvers.

5.1 Derivation of the inequalities

Let Ly = {(x, y,t) € X : xp = 0} and observe that

2
conv(La) = { (x, 3,0 € [0, 1P x B2 x R: 2L <1, yj < xy, X2=Y2=0}-
X1

2
We now consider inequalities obtained by lifting the valid inequality % < t for
conv(L,), i.e., inequalities of the form

y2
x—l + h(x2, y2) <t (39)
1

for X, where 4 : [0, 1] x Ry — R. We additionally require the left hand side of (39)

to be convex, which is the case if and only if / is convex.

Proposition 7 Inequality
N
1,72
X1 X2

=2y <t (40)

is valid for X and is the strongest convex inequality of the form (39).

Proof Any valid inequality of the form (39) needs to satisfy

2
. y
h(x2,y2) < o = min {()’1 —yz)z—j 0y <x1, x1 € {0,1}}-

If x; = 0, then ¢« = y%; else, « = —2y1» —i—y%. Thus, y1 = x; = 1
is a minimizer. We also find that h(x, y2) < y% — 2y for xo» € {0, 1}.
To find the strongest convex inequality, we compute conv(W), where W =
{G2, y2,12) € {0, 1} x R% ¥2—2y2 <t2, y2 < x2} . Using the perspective refor-
mulation, one sees that

2

conv(W) = {(xz, y2,12) € [0, 1] x RY - z_z =2y <, =< xz} ,
2

and we get inequality (40). O

2 2
By changing the lifting order, we also get that valid inequality EVc_i + )% —2y; <t,
or, writing the inequalities more compactly, we arrive at the convex valid inequality

N
=L+ =2 _2min{y;, y2} <. (41)
X1 X2
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Remark 5 Observe that inequality (41) dominates inequality (4) since

2 2 2 2
y Y 2 y Y
—n=top-—moy =Tt -y ="L42
X1 X1 X2 X1 X2

2
hal
X1

—2y;.

Similarly, we find that (41) dominates inequality (3).

Remark 6 For the binary case, y; = x;,1 = 1, 2, (41) reduces to |x; — xa| < 1.

5.2 Strength of the inequalities

In order to assess the strength of inequality (41), we consider the optimization problem

min a1x; + axxy + biyr +bayr +t
st —y)? <t

2 2

M,

X1 X2

O=ym=x1 =1

0<yy<x=<l1

(SR) —2minf{yy, y2} <t

Inequalities (41) are not sufficient to guarantee the integrality of x in the optimal
solutions of (SR) for all values of a and b, since they do not describe conv(X) (given
in Sect. 4). However, we now show that optimal solutions of (SR) are indeed integral
under mild assumptions on the coefficients a and b. First, we prove an auxiliary lemma.

Lemma 5 If there exists an optimal solution to (SR) with y; € {0, 1} for some i €
{1, 2}, then there exists an optimal solution that is integral in x.

Proof If y; = 0, then clearly there is an optimal solution with x; € {0, 1}, depending
on the sign of a;. Moreover, (SR) reduces to ming<y,<x,<1 {a2x2 + bay> + y3/x2} ,

which has an optimal integral solution in x;. On the other hand, if y; = x1 = 1,
then (SR) reduces to ming<y, <x,<1 {a2x2 + (b —2)y2 + y% /xz} , which, again, has
an optimal integral solution in x2. The case with y» € {0, 1} is symmetric. O

Proposition 8 Ifai, ay have the same sign and by, by have the same sign, then (SR)
has an optimal solution that is integral in x.

Proof Note that if a;,ax < 0, then x; = xo = 1 for an optimal solution of (SR).
Also, if by, bp > 0, then y; = y» = 0 in an optimal solution of (SR), in which case
x is integral in extreme point solutions. It remains to show that if a;,a> > 0 and
b1, by < 0, then there exists an optimal solution of (SR) that is integral in x.

Suppose that y; = y, = y in an optimal solution. Then (y; — y2)> = 0 and ;—]2 +

% —2y < 0.Thus, t = 0and (SR) reduces tomin {ajx| + axx2 + (b1 + b2)y: 0 <y
< minf{xy, xo} < 1}, which has an optimal solution integral in x.
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Now suppose, without loss of generality, there is an optimal solution with 1 > y; >
y2 > 0 (if yy = 1 or y» = 0 then by Lemma 5 the solution is integral in x). Then
observe that, in this case, the functions (y; — yg)2 and y% /X2 — 2y, are non-increasing
in y;. Since by < 0, there exists a solution where y; is at its upper bound, i.e., y, = x».
Thus problem (SR) reduces to

(SR’) min {a1X1 + byy1 + (@+b)ys +1: (y1—y2)?

y2
<ty <t y<xi<1}.
X1

Let (A, u, o, B) be the dual variables associated with the < constraints displayed in
the order above and consider the dual feasibility conditions of problem (SR”)

"
—a=—pi— —a+p
X

Y1
— by =211 —y2) + 2#; +a

— (a2 +b2) ==2A(y1 —y2) — 1
1l=A4+u
0<x nap.

Let (x1, y1, y2, 1) be a KKT point with multipliers (X, w, a, ,B_) and suppose that x| <

1. Then observe that for small € > 0, (y"-,#x_l, y1 + €, y2 + €, 1) is also a KKT point
with the same multipliers. In particular, by choosing € so that 1 = y%i, we see that

there is an optimal solution with x; = 1. Then, problem (SR’) further simplifies to
(SR")  min{biyi + (a2 +b)y2 +1: (=)’ 1,37 —y2 <1}

It remains to show that y, = x; is integral. Note that
Y =2y 4y =y — Qi — 1=y -,

and, therefore, constraint yl2 — y» < t is not binding when y; < 1. So, (SR”) is
equivalenttomin by y1+(az+b2) y2+(y1 — yz)z. However, by increasing or decreasing
y1 and y> by the same amount it is easy to check that there exists an optimal solution
where either y; = 1 or y» = 0, and from Lemma 5 there exists an optimal integral
solution. O

Proposition 8 provides some insight on the problems for which inequalities (41) may
be particularly effective: if the coefficients of the binary variables and the continuous
variables have the same sign, then the relaxation induced by (41) may be close to ideal;
otherwise, using subgradient inequalities may be required to find strong formulations.
In our computations, this simple rule of thumb indeed results in the best performance.

@ Springer



Strong formulations for quadratic optimization with... 161

6 Extensions to other quadratic functions with two indicator variables

In this paper we focus on the set X, i.e., a mixed-integer set with non-negative contin-
uous variables and non-positive off-diagonal entries in the quadratic matrix. Although
an in-depth study of more general quadratic functions is outside the scope of this paper,
the approach used in Sect. 5 can be naturally extended to other quadratic functions.
We briefly discuss two such extensions.

6.1 General quadratic functions
Observe that a general quadratic function y’Ay can be decomposed as

n

y'Ay = Z Aji — ZIAUI - Z Aij (i = y))*

i=1 i j>i:Ai;<0
+ Z Aij (i + 3))°
j>i1Al'j>0

Thus, stronger formulations for general quadratic functions may be obtained by study-
ing the set with two continuous and two indicator variables and positive off-diagonal
term

X, = {(x,y,t) (0. 1P xRE xR: (yi+y)2 <1, yi <x;, i = 1,2].
Proposition 9 Inequality

2 2
o
X1 X2

=t (42)
is valid for X4 and is the strongest among inequalities of the form (39).

The proof is analogous the the proof of Proposition 7 as is omitted for brevity. Although
inequality (42) is similar in spirit to (40), and that it is the strongest among inequalities

of the form (39), it is not as strong as (40) for X. In particular, an integrality result
similar to Proposition 8 does not hold for (42).

6.2 Quadratic functions with continuous variables unrestricted in sign

Consider the set

Xe={(. 00 1P xR xR+ =1, —x <y sxfori =12},
Observe that, since the continuous variables can be positive or negative, the sign inside

the quadratic expression does not matter (e.g., it can be flipped via the transformation
y2» = —y»). Thus we assume, without loss of generality, that it is a minus sign.
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Proposition 10 Inequality (4), originally proposed by Jeon et al. [29], is valid for
X+ and is the strongest among inequalities of the form (39).

Proof Any valid inequality for X+ of the form (39) needs to satisfy
32
h(vy2) Se=min (1 —y2) = 10 s —n <y sax e (0 1)y

Ifx; =0, thena = y22. Else,a = —2y;y2+ y%;in this case, the minimum is attained at
yi = lify» > 0and at yj = —1 otherwise. Thus, we find that 2 (x2, y2) < y% —2|y|
for xo € {0, 1}. To find the strongest convex inequality, we compute conv(Wi),
where We = {(32.x2.0) € {0, 1} x R x R:y? = 2|y <1, —x2 <y < x2}.
The convex lower envelope corresponding to the one-dimensional non-convex func-
tion h1(y2) = y% — 2|yo| for y» € [—1, 1] is the constant function equal to —1.
Moreover, it can be shown that

conv(Wy) = {(yz,m, r) €[0,1] x Ri i—xp =<, —xp <y =< X2}

2
and we get the convex valid inequality )yc—ll —xp <tfor Xgy. O

In light of Proposition 10, inequalities (40)-(41) can be interpreted as inequali-
ties that additionally account for the non-negativity of the continuous variables, with
respect to the valid inequalities proposed by Jeon et al. [29]. Moreover, although not
explicitly considered by Jeon et al., their inequalities may be particularly effective
for quadratic optimization problems with indicator variables and continuous variables
unrestricted in sign. Observe that inequalities (3)—(5) are indeed valid even if the vari-
ables are not required to be non-negative — in contrast with the inequalities f (x, y) < f,
g(x,y) <t and (41), which account for the non-negativity of the variables and are
only valid in that case.

7 Computations

In this section we report a summary of computational experiments performed to test
the effectiveness of the proposed inequalities in a branch-and-bound algorithm. All
experiments are conducted using Gurobi 7.5 solver on a workstation with a 3.60GHz
Intel® Xeon® E5-1650 CPU and 32 GB main memory with a single thread. The time
limit is set to one hour and Gurobi’s default settings are used (except for the parameter
“PreCrush”, which is set to 1 in order to use cuts). Cuts (if used) are added only at
the root node using the callback features of Gurobi, and the reported times include the
time used to add cuts.
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7.1 Image segmentation with £-0 penalty

Given a finite set N, functions d; : R — R fori € N and s;; : R — Ry fori # j,
consider

(D) min A+ sii i — ¥)).

ieN i#j

where ¥ C ]Rﬁ. Problem (D) arises as the Markov Random Fields (MRF) problem
for image segmentation, see [16,32]. In the MRF context, d; are the deviation penalty
functions, used to model the cost of changing the value of a pixel from the observed
value p; to y;,e.g..d; (y;) = ¢i(pi — y,‘)2 with¢; € Ry ; functions s;; are the separation
penalty functions, used to model the cost of having adjacent pixels with different
values, e.g., s;j (yi —y;) = cij(yi —yj)2 with¢;; > Oif pixels i and j are adjacent, and
sij(yi —yj) = Ootherwise. Often, Y = [0, 11V oris given by a suitable discretization,
i.e., y is a vector of integer multiples of a parameter €. We consider in our computations
the case ¥ = [0, 1], but the proposed approach can be used with any Y.

Problem (D) can be cast as the nonlinear dual of the undirected minimum cost
network flow problem [1] and efficient algorithms exist when all functions are convex
[27]. In contrast, we consider here the case where the deviation functions involve
a non-convex £-0 penalty, which is often used to induce sparsity, e.g., restricting
the number of pixels that can have a color different from the background color. In
particular, d; (y;) = a;||yillo + d; (y;) with d; = ¢;(p; — y;)?. Thus, the problem can
be formulated as

min Zaixl' + ZCi(Pi — )+ Zcijtij .t (X, Xj, yi, ¥j, tij) € X, Vi # .
ieN ieN i#]

(43)
Instances The instances are constructed as follows. The elements of N correspond to
points in a k x k grid, thus n = k2, and separation functions s; j are non-zero whenever
the corresponding points are adjacent in the grid. The parameters p; fori € N, and ¢;;
for each pair of adjacent points i, j € N are drawn uniformly between 0 and 1. We set
a; = ci, where ¢; is generated as follows: first we draw ¢; uniformly between 0 and 1
foralli e N,letCy =) ;.yCiand Cr = Zi:pizoj(zpi —1); then we set¢; = 51'%-
Instances generated with these parameters are observed to have large integrality gaps.
Formulations We test the following formulations for solving problem (43):

Basic The natural formulation

min Zaixi +Zci(Pi _yi)2+ZCij(yi _yj)2 st.0<y<ux, xefo 1}V
ieN ieN i)

Perspective The perspective reformulation implemented with rotated cone con-
straints
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Y oeip;+min Y aixi+ Y ei (<2pivi+ )+ Y eij(vi — yj)’

ieN ieN ieN i#]

S.t. y,~2 <zixi, Yi € N

0<y<x,z>0, xe{0, 1}".

Conic The formulation with the conic quadratic inequalities (41)

Zcipl-z + min Zaix,- + Zci (—2pjyi +zj) + Zcijfij

ieN ieN ieN i#j
s.t. yi2 <zjxj, Vie N
2 S
i —yj)" <tij, zi+zj =2y <tij, zi+2j —2y; < tj, Vi #j

0<y<ux,z>0, xe{0, 1}V,

Furthermore, we also test models Perspective+cuts and Conic+cuts, where
the subgradient inequalities (38) are used as cutting planes to strengthen the
Perspective and Conic formulations, respectively. If x; = O for some i € N
then we use the first-order expansion around %; = 107> instead.

Results Table 1 shows a comparison of the performance of the algorithm for each for-
mulation for varying grid sizes. Each row in the table represents the average for five
instances for a grid size. Table 1 displays the initial gap (igap), the root gap improve-
ment (rimp), the number of branch and bound nodes (nodes), the elapsed time in
seconds (time), and the end gap at termination (egap) (in brackets, we report the
number of instances solved to optimality within the time limit). The initial gap is com-

puted as igap = W x 100, where objyest 1S the objective value of the
es

best feasible solution found and obj .o+ is the objective of the continuous relaxation

of Basic. The root improvement is computed as rimp = W x 100,
es con

where obj,15x is the objective value of the relaxation obtained after processing the
first node of the branch-and-bound tree for a given formulation, obtained by querying
Gurobi’s attribute “ObjBound” at the root node using a callback.

We observe that the Basic formulation requires a substantial amount of branching
before proving optimality, resulting in long solution times. The Perspective for-
mulation results in a root gap improvement close to 50% and better times and end gaps
than the Basic formulation. However, even with the Perspective formulation,
instances with £ x k = 400 and larger cannot be solved to optimality leaving end gaps
15.3% or more. In contrast, formulation Conic results in root gap improvements
close to 100%, and the performance of the branch-and-bound algorithm is orders-of-
magnitude better than with the Basic and Perspective formulations: instances
with k x k = 400 that are not close to being solved after one hour of computation with
Basic and Perspective are solved to optimality in one second; while formula-
tion Basic is able to solve in five minutes instances with 100 variables, formulation
Conic is able to solve in the same amount of time formulations with 2, 500 variables,
i.e., instances 250 times larger.

Formulation Conic+cuts results in very modest improvement in the strength
of the continuous relaxation when compared with Conic (less than 0.3% additional
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Fig. 1 Time to prove an optimality gap of 1% with Conic as a function of the dimension n = k x k

root gap improvement) and almost no difference in terms of nodes, times or end gaps.
Observe that in (43) the coefficients of the linear objective terms corresponding to
the discrete and continuous variables have the same sign, and the experimental results
are consistent with Proposition 8—Conic indeed is a very close approximation of
inequalities (38) in this case.

Note that if cuts are added without the approximation given by inequalities (41)
(formulation Perspective+cuts), the root improvement is substantial for small
instances but it degrades as the size increases. We conjecture that the required number
of cuts to obtain an adequate relaxation increases with the size of the instances. Thus,
for larger instances, Gurobi may stop adding cuts before obtaining a strong relaxation.
Additionally, to solve second-order conic subproblems in branch-and-bound, solvers
like Gurobi construct a linear outer approximation of the convex sets; adding a large
number of cuts may interfere with the construction of the outer approximation, leading
to weak relaxations of the convex set, which is observed for instances with k x k =
10, 000. Using the approximation of the convex hull derived in Sect. 5 as a starting
point appears to circumvent such numerical difficulties.

Finally, we remark that for the larger instances that are not solved to optimality by
Conic, high quality solutions and tight lower bounds are found within a few seconds,
but branching is ineffective to close the remaining gap. To illustrate, Figure 1 presents
the time to prove an optimality gap of at most 1%, as a function of the dimension
n of the problem. We see that the proposed approach scales very well (almost lin-
early) up to n = 20,000. In particular, the lower bound found corresponds to the one
obtained at the root node, and the feasible solutions are found within a small num-
ber (50-60) of branch-and-bound nodes. Memory limit is reached for instances with
n > 20,000.

7.2 Portfolio optimization with transaction costs

Consider a simple portfolio optimization problem with transaction costs similar to
the one discussed in [18, p.146]. However, in our case, transactions have a fixed cost
and there is a restricted number of transactions. For simplicity, we first consider assets
with uncorrelated returns. In this context, an M-matrix arises directly due to the buying
and selling decisions. In Sect. 7.3 we present computations with a general covariance
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matrix, from which an M-matrix corresponding to the negatively correlated assets can
be extracted to apply the reformulations.

Let N be the set of assets, u,o € Rﬁf be the vectors of expected returns and
standard deviations of returns. Let w € }Rﬁ denote the current holdings in each asset,
letat,a” € Rﬁ be the fixed transaction costs associated with buying and selling
any quantity, c*, ¢~ € R" be the variable transaction costs and profits of buying and
selling each asset, let u™, u™ € Rﬁ be the upper bounds on the transactions, and let
k be the maximum number of transactions. Then the problem of finding a minimum
risk portfolio that satisfies a given expected return b € R with at most k transactions
can be formulated as the mixed-integer quadratic problem:

min v(y) = Y of (w; + y; —y;)?
ieN
. Tl — e — v (s — ) —atxT —a ") > b
s.t. (Mzwz +y (i —¢) =y (i —¢;)—a;"x; a; x; ) =
ieN
Yot a7 <k
ieN
0=y <ufxt, 0<y <ujx;, x+x7 <1, VieN

toxm vty e o, )Y x {0, 1Y x RY x RY,

where v(y) is the variance of the new portfolio, the decision variables yi+ (y; ) indicate
the amount bought (sold) in asset i and the variables xi+ (x;7) indicate whether asset
i is bought (sold). Note that the quadratic objective function is nonseparable and
the corresponding quadratic matrix is positive semi-definite but not positive definite;
therefore, the classical perspective reformulation cannot be used. Additionally, observe
that the portfolio optimization problem can be reformulated by adding continuous
variables t € Rﬁ , constraints (xl.+ X yl.+ ,¥; »t) € X foralli € N to minimize the
linear objective

Yo Quily = y)) + 1) (44)

ieN

Note that since each continuous variable is involved in exactly one term in the objec-
tive, the extended formulation given by (44) and constraints (xiJr X y;’ Y i) €
conv(X) results in the convex envelope of v(y).

Instances The instances are constructed as follows. We set w; = u:r =u; = 1forall
i € N. Coefficients o; are drawn uniformly between 0 and 1, u; are drawn uniformly
between 0 and 20;, the transactions costs and profits ci+ and ¢; are drawn uniformly
between 0 and u;, the fixed costs a;“ and a; are drawn uniformly between 0 and
(ui — ci+) and (u; — ¢; ), respectively. The target return is set to 8 ), . i; Where
B > 01is a parameter; k is set to n/10.

Formulations We test the formulations Basic, Basic+cuts, Conic, and Co-
nic+cuts,asdefinedin Sect.7.1. As mentioned above, the perspective reformulation
cannot be used for these instances.
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Results Table 2 shows the results for varying number of assets n and values of the
expected return 8. Observe that instances with lower values of 8 are more difficult
to solve for the Basic formulation: low B results in more feasible solutions, and
more branch-and-bound nodes need to be explored before proving optimality. We
also see that the Basic formulation is not effective for instances with 250 or more
assets, where most instances (27 out of 30) are not solved to optimality within the
time limit and leaving large end gaps at termination. On the other hand, the other three
formulations achieve root improvements of over 90% in most cases, and lead to much
lower solution times and end gaps.

Observe that for the portfolio problem, the coefficients of y;’ and y;” in the objective
and return constraints have opposite signs. Thus, we expect the approximation given
by Conic not to be as effective as in Sect. 7.1 and, therefore, the cuts to have a larger
impact in closing the root gaps. Indeed, we see in these experiments that adding cuts
leads to an additional 2% to 4% root improvement (compared to the 0.3% improvement
observed in Sect. 7.1)1. In particular, formulation Basic+cuts is able to solve all
instances in seconds, even instances with low values of 8 where all other formulations
struggle.

7.3 General convex quadratic functions

The quadratic matrices used in the previous computations had specific structures,
given by the applications considered. Although our results are for M-matrices, in
this section, we test the strength of the formulations for more general problems, with
dense matrices having positive and negative off-diagonal entries. To employ the results
developed for M-matrices, we simply apply the strengthening on the pairs of variables
with a negative off-diagonal entry. Toward this end, we consider the mean-variance
portfolio optimization

min y'Ay
st.by>r
(MV) 'x <k
0<y=<x
x e {0, 1),

where the objective is to minimize the portfolio variance y’ Ay, where A is a covariance
matrix, subject to meeting a target return and satisfying sparsity constraints.

Instances In order test the effect of positive off-diagonal elements and diagonal dom-
inance, the matrix A is constructed as follows: Let p > 0 be a parameter that controls
the magnitude of the positive off-diagonal entries of A, and § > 0 be a parameter that
controls the diagonal dominance of A. First, we construct a factor covariance matrix
F = GG’, where each entry in G9x20 in drawn uniformly from [—1, 1], and factor

! The root gap improvements of 95% achieved by Conic indicate that the approximation given in Sect. 5
is strong and considerably better than the natural continuous relaxation.
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exposure matrix X, 20 such that X;; = 0 with probability 0.8, and X;; is drawn
uniformly from [0, 1], otherwise. Then we construct an auxiliary matrix A = X FX'.
Then, for i # j, we set A;; = Aij if Aij < 0, and we set A;; = pAij other-
wise?. Finally, v; is drawn uniformly from [0, 66 ], where ¢ = % Zi#j |A;jl, and
Aii =) jeN |A;j| + v;. Observe that the auxiliary matrix A represents a low-rank
matrix obtained from a 20-factor model, and diag(v) is a diagonal matrix representing
the residual variances not explained by the factor model. The matrix A is obtained
by scaling the positive off-diagonals of A by p, and updating the diagonal entries
to ensure positive definiteness by imposing diagonal dominance. Additionally, b; is
drawn uniformly between 0.5U;; and 1.5U;;. Finally, we let r = 0.25 x ZieN b; and
k = n/5 for “small” instances, and r = 0.125 x ),y b; and k = n/10 for “large”
instances.

Formulations We test the same formulations as in Sect. 7.1. In this case, the diagonal
matrix diag(v) is used for the Per spective formulation. In particular, formulations
Perspective+cuts, Conic and Conic+cuts are based on the decomposition
of the objective function given by

min Y vizi + Y |Aijltj + (A — Q — diag(v))y
ieN Aij<0

sty Szixi, Yi € N, (xi.xj, yis yjatij) € X, Vi # j 1 Ajj <0,

where Q;j = min{0, A;;} for i # j and Qi = —}_;; Qij. By construction,
A — Q — diag(v) is positive semi-definite.

Results Table 3 presents the results for matrices with non-positive off diagonal entries
(i.e., p = 0) and varying diagonal dominance §. Table 4 presents the results for matri-
ces with fixed diagonal dominance and varying magnitudes for positive off-diagonal
entries p. We see that, in all cases formulation Conic results in better root gap
improvements than Perspective and Basic. The gap improvements depend on
the parameters § and p. In Table 3 we see that Conic formulation closes an additional
30% to 40% gap with respect to Perspective (independent of the diagonal domi-
nance ). In Table 4 we observe that, as expected, Coni c formulation is more effective
at closing root gaps when the magnitude p for the positive off-diagonal entries is small.
Nevertheless, for all instances formulations Conic and Conic+cuts result in sig-
nificantly stronger root improvements than Perspective (at least 15%, and often
much more) and the number of nodes required to solve the instances is decreased by
at least an order of magnitude.

Observe that the stronger formulations of Conic and Conic+cuts do not nec-
essarily lead to better solution times for small instances. Nevertheless, for the larger
instances (n = 100), using the Conic formulation leads to faster solution times,
lower end gaps and more instances solved to optimality for all values of § and p. As in

2 The matrices generated this way have only 20.1% of the off-diagonal entries negative on average — the
rest are positive if p > 0 and 0 if p = 0. The ratio of the magnitude of the negative entries vs. the total, i.e.,
Dijiag;<01Aij]

S 1A ,is on average 0.72 if p = 0.1, 0.57 if p = 0.2 and 0.34 if p = 0.5.
i#£j 1)
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Sect. 7.1, we observe little difference between Conic and Conic+cuts—consistent
with Proposition 8—and that Perspective+cuts is not effective in closing the
root gap. Approximating the nonlinear function with gradient inequalities appears to
cause numerical issues as adding cuts weakens the relaxation contrary to expectations.
Please see our comments at the end of Sect. 7.1.

Finally, observe that the formulations tested require adding O (n?) additional vari-
ables, one for each negative off-diagonal entry in A. Thus, solving the continuous
relaxations may be computationally expensive for large values of n. Table 5 illustrates
this point for matrices with p = O and § = 1.Itshows, forthe Basic, Perspective
and Coni c formulations, the value of the best feasible solution found (so1), the value
of the lower bound after one hour of branch and bound (ebound), the value of the
lower bound after processing the root node (rbound), the time used to process the root
node in seconds (rtime), and the number of nodes explored in one hour (nodes).
Each row represents the average over five instances, and the values of sol, ebound
and rbound are scaled so that the best feasible solution found for a given instance
has value 100. Observe that for n > 150 the lower bound found by Coni c at the root
node is stronger than the lower bounds found by other formulations after one hour
of branch-and-bound. However, the continuous relaxations of Conic are difficult to
solve for large values of n, leading to few branch-and-bound nodes explored and few
or no feasible solutions found within the time limit.

A possible approach that achieves a compromise between the strength and the
size of the formulation is to apply the proposed conic inequalities for a subset of the
matrix: given an M-matrix Q, choose I C {(i, j) € N x N : Q;; < 0} and use the
formulation

min Z 0izi + Z 0ivi — Z Qijtij — Z 0ij(yi — ){/)2

iepP ieP @i, ))el @i, /)¢l

st.y? <zixi, Yi € P, (xi,Xj, i, tij) € X, ¥(i, j) € I.

In particular, if |/| ~ 4n, then the results in Sect. 7.1 suggest that the formula-
tions would scale well. Additionally, the component corresponding to the remainder,
— Z(i’ el Qii(yi—yj )2, could be further strengthened by linear inequalities (37) (and
other subgradient inequalities corresponding to points where y # x) in the original
space of variables instead of extended reformulations. An effective implementation of
such a partial strengthening is beyond the scope of the current paper.

8 Conclusions

In this paper we show, under mild assumptions, that minimization of a quadratic func-
tion with an M-matrix with indicator variables is a submodular minimization problem,
hence, solvable in polynomial time. We derive strong formulations using the convex
hull description of non-separable quadratic terms with two indicator variables arising
from a decomposition of the quadratic function. Additionally, we provide strong conic
quadratic valid inequalities approximating the convex hulls. The derived formulations
generalize previous results in the binary case and separable case, and the inequalities
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dominate valid inequalities given in the literature. Computational experiments indicate
that the proposed conic formulations may be significantly more effective compared to
the natural convex relaxation and the perspective reformulation.
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