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Abstract This paper addresses the question of whether it can be beneficial for an
optimization algorithm to follow directions of negative curvature. Although prior
work has established convergence results for algorithms that integrate both descent
and negative curvature steps, there has not yet been extensive numerical evidence
showing that such methods offer consistent performance improvements. In this
paper, we present new frameworks for combining descent and negative curvature
directions: alternating two-step approaches and dynamic step approaches. The
aspect that distinguishes our approaches from ones previously proposed is that
they make algorithmic decisions based on (estimated) upper-bounding models of
the objective function. A consequence of this aspect is that our frameworks can,
in theory, employ fixed stepsizes, which makes the methods readily translatable
from deterministic to stochastic settings. For deterministic problems, we show
that instances of our dynamic framework yield gains in performance compared
to related methods that only follow descent steps. We also show that gains can
be made in a stochastic setting in cases when a standard stochastic-gradient-type
method might make slow progress.
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1 Introduction

There has been a recent surge of interest in solving nonconvex optimization prob-
lems. A prime example is the dramatic increase in interest in the training of deep
neural networks. Another example is the task of clustering data that arise from
the union of low dimensional subspaces. In this setting, the nonconvexity typically
results from sophisticated modeling approaches that attempt to accurately cap-
ture corruptions in the data [5,13]. It is now widely accepted that the design of
new methods for solving nonconvex problems (at least locally) is sorely needed.

First consider deterministic optimization problems. For solving such prob-
lems, most algorithms designed for minimizing smooth objective functions only
ensure convergence to first-order stationarity, i.e., that the gradient of the objec-
tive asymptotically vanishes. This characterization is certainly accurate for line
search methods, which seek to reduce the objective function by searching along
descent directions. Relatively few researchers have designed line search (or other,
such as trust region or regularization) algorithms that generate iterates that prov-
ably converge to second-order stationarity. The reason for this is three-fold: (i) such
methods are more complicated and expensive, necessarily involving the computa-
tion of directions of negative curvature when they exist; (ii) methods designed only
to achieve first-order stationarity rarely get stuck at saddle points that are first-
order, but not second-order stationary [19]; and (iii) there has not been sufficient
evidence showing benefits of integrating directions of negative curvature.

For solving stochastic optimization problems, the methods most commonly
invoked are variants of the stochastic gradient (SG) method. During each iteration
of SG, a stochastic gradient is computed and a step opposite that direction is taken
to obtain the next iterate. Even for nonconvex problems, convergence guarantees
(e.g., in expectation or almost surely) for SG methods to first-order stationarity
have been established under reasonable assumptions; e.g., see [2]. In fact, SG and
its variants represent the current state-of-the-art for training deep neural networks.
As for methods that compute and follow negative curvature directions, it is no
surprise that such methods (e.g., [20]) have not been used or studied extensively
since practical benefits have not even been shown in deterministic optimization.

The main purpose of this paper is to revisit and provide new perspectives on the
use of negative curvature directions in deterministic and stochastic optimization.
Whereas previous work in deterministic settings has focused on line search and
other methods, we focus on methods that attempt to construct upper-bounding

models of the objective function. This allows them, at least in theory, to employ
fixed stepsizes while ensuring convergence guarantees. For a few instances of such
methods of interest, we provide theoretical convergence guarantees and empirical
evidence showing that an optimization process can benefit by following negative
curvature directions. The fact that our methods might employ fixed stepsizes is
also important as it allows us to offer new strategies for stochastic optimization
where, e.g., line search strategies are not often viable.

1.1 Contributions

The contributions of our work are the following.
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– For deterministic optimization, we first provide conditions on descent and neg-
ative curvature directions that allow us to guarantee convergence to second-
order stationarity with a simple two-step iteration with fixed stepsizes; see §2.1.
Using the two-step method as motivation, we then propose a dynamic choice
for the direction and stepsize; see §2.2. In particular, the dynamic algorithm
makes decisions based on which available step appears to offer a more signif-
icant objective reduction. The details of our dynamic strategy represent the
main novelty of this paper with respect to deterministic optimization.

– We prove convergence rate guarantees for our deterministic optimization meth-
ods that provide upper bounds for the numbers of iterations required to achieve
(approximate) first- and second-order stationarity; see §2.3. We follow this with
a discussion, in §2.4, on the issue of how methods might behave in the neighbor-
hood of so-called strict saddle points, a topic of much interest in the literature.

– In §2.5 and §2.6, we discuss different techniques for computing the search di-
rections in our deterministic algorithms and provide the results of numerical
experiments showing the benefits of following negative curvature directions, as
opposed to only descent directions.

– For solving stochastic optimization problems, we propose two methods. Our
first method shows that one can maintain the convergence guarantees of a
stochastic gradient method by adding an appropriately scaled negative curva-
ture direction for a stochastic Hessian estimate; see §3.1. This approach can be
seen as a refinement of that in [24], which adds noise to each SG step.

– Our second method for stochastic optimization is an adaptation of our dynamic
(deterministic) method when stochastic gradient and Hessian estimates are in-
volved; see §3.2. Although we are unable to establish a convergence theory for
this approach, we do illustrate some gain in performance in neural network
training; see §3.3. We view this as a first step in the design of a practical algo-
rithm for stochastic optimization that efficiently exploits negative curvature.

Computing directions of negative curvature carries an added cost that should
be taken into consideration when comparing algorithm performance. We remark
along with the results of our numerical experiments how these added costs can be
worthwhile and/or marginal relative to the other per-iteration costs.

1.2 Prior Related Work

For solving deterministic optimization problems, relatively little research has been
directed towards the use of negative curvature directions. Perhaps the first excep-
tion is the work in [23] in which convergence to second-order stationary points is
proved using a curvilinear search formed by descent and negative curvature di-
rections. In a similar vein, the work in [6] offers similar convergence properties
based on using a curvilinear search, although the primary focus in that work is
describing how a partial Cholesky factorization of the Hessian matrix could be
used to compute descent and negative curvature directions. More recently, a linear
combination of descent and negative curvature directions was used in an opti-
mization framework to establish convergence to second-order stationary solutions
under loose assumptions [8,9], and a strategy for how to use descent and nega-
tive curvature directions was combined with a backtracking linesearch to provide
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worst case iteration bounds in [27]. For further instances of work employing nega-
tive curvature directions, see [1,10,11,22]. Importantly, none of the papers above
(or any others to the best of our knowledge) have established consistent gains in
computational performance as a result of using negative curvature directions.

Another recent trend in the design of deterministic methods for nonconvex
optimization is to focus on the ability of an algorithm to escape regions around
a saddle point, i.e., a first-order stationary point that is not a minimizer nor a
maximizer. A prime example of this trend is the work in [26] in which a standard
type of regularized Newton method is considered. (For a more general presentation
of regularized Newton methods of which the method in [26] is a special case,
see, e.g., [25].) While the authors do show a probabilistic convergence result for
their method to (approximate) second-order stationarity, their main emphasis is
on the number of iterations required to escape neighborhoods of saddle points.
This result, similar to those in some (but not all) recent papers discussing the
behavior of descent methods when solving nonconvex problems (e.g., see [14,19]),
requires that all saddle points are non-degenerate in the sense that the Hessian of
the objective at any such point does not have any zero eigenvalues. In particular,
in [14] they show that a perturbed form of gradient descent converges to a second-
order stationary point in a number iterations that depends poly-logarithmically on
the dimension of the problem. Our convergence theory does not require such a non-
degeneracy assumption; see §2.4 for additional discussion comparing our results
to others. (See also [18], where it is shown, without a non-degeneracy assumption
and for almost all starting points, that certain first-order methods do not converge
to saddle points at which the Hessian of the objective has a negative eigenvalue.
That said, this work does not prove bounds on the number of iterations such a
method might spend near saddle points.)

For solving stochastic optimization problems, there has been little work that
focuses explicitly on the use of directions of negative curvature. For two exam-
ples, see [3,20]. Meanwhile, it has recently become clear that the nonconvex opti-
mization problems used to train deep neural networks have a rich and interesting
landscape [4,15]. Instead of using negative curvature to their advantage, modern
methods ignore it, introduce random perturbations (e.g., see [7]), or employ reg-
ularized/modified Newton methods that attempt to avoid its potential ill-effects
(e.g., [4,21]). Although such approaches are reasonable, one might intuitively ex-
pect better performance if directions of negative curvature are exploited instead
of avoided. In this critical respect, the methods that we propose are different from
these prior algorithms, with the exception of [20].

2 Deterministic Optimization

Consider the unconstrained optimization problem

min
x∈Rn

f(x), (1)

where the objective function f : Rn → R is twice continuously differentiable and
bounded below by a scalar finf ∈ R. We define the gradient function g := ∇f and
Hessian function H := ∇2f . We assume that both of these functions are Lipschitz
continuous on the path defined by the iterates computed in an algorithm, the
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gradient function g with Lipschitz constant L ∈ (0,∞) and the Hessian function
H with Lipschitz constant σ ∈ (0,∞). Given an invertible matrix M ∈ Rn×n, its
Euclidean norm condition number is written as κ(M) = ‖M‖2‖M−1‖2. Given a
scalar λ ∈ R, we define (λ)− := min{0, λ}.

In the remainder of this section, we present a two-step method that is guaran-
teed to converge toward second-order stationarity, as well as a dynamic approach
that chooses between two types of steps at each point based on lower bounds on
objective function decrease. Both algorithms are presented in a generic manner
that offers flexibility in the ways the steps are computed.

2.1 Two-Step Method

Our first method alternates between negative curvature and descent steps using
fixed stepsizes for each. (Either can be taken first; arbitrarily, we state our algo-
rithm and analysis assuming that one starts with a negative curvature step.) At
a given iterate xk ∈ Rn, let λk denote the left-most eigenvalue of H(xk). If λk ≥ 0
(i.e., H(xk) � 0), the algorithm sets dk ← 0; otherwise, dk is computed so that

dTkH(xk)dk ≤ γλk‖dk‖22 < 0, (2a)

g(xk)T dk ≤ 0, (2b)

and ‖dk‖2 ≤ θ|λk|, (2c)

for some γ ∈ (0, 1] and θ ∈ (0,∞) that are independent of k. A step in this direction
is then taken to obtain x̂k ← xk + βdk for some β ∈ (0, (3γ)/(σθ)). At this point,
if g(x̂k) = 0, then the algorithm sets ŝk ← 0; otherwise, ŝk is computed satisfying

−g(x̂k)T ŝk
‖ŝk‖2‖g(x̂k)‖2

≥ δ and ζ ≤ ‖ŝk‖2
‖g(x̂k)‖2

≤ η (3)

for some (δ, ζ) ∈ (0, 1] × (0, 1] and η ∈ [1,∞) that are independent of k. The
iteration ends by taking a step along this direction to obtain xk+1 ← x̂k + αŝk ≡
xk + αŝk + βdk for some α ∈ (0, (2δζ)/(Lη2)). We remark that (2) and (3) are
satisfiable; e.g., if ŝk = −g(x̂k) and dk is an eigenvector corresponding to the left-
most eigenvalue λk scaled so that g(xk)T dk ≤ 0 and ‖dk‖2 = |λk|, then (2) and (3)
are satisfied with γ = θ = δ = ζ = η = 1. For further remarks on step computation
techniques, see §2.5.

Algorithm 1 Two-Step Method

Require: x1 ∈ Rn, α ∈ (0, (2δζ)/(Lη2)), and β ∈ (0, (3γ)/(σθ))
1: for all k ∈ {1, 2, . . . } =: N+ do

2: if λk ≥ 0 then set dk ← 0 else set dk satisfying (2)
3: set x̂k ← xk + βdk
4: if g(x̂k) = 0 then set ŝk ← 0 else set ŝk satisfying (3)
5: if dk = ŝk = 0 then return xk
6: set xk+1 ← x̂k + αk ŝk ≡ xk + αŝk + βdk
7: end for
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We now show that Algorithm 1 converges toward second-order stationarity.
Critical for this analysis are bounds on (α, β) that we have stated (and are also
stated in Algorithm 1). Also, for the analysis, it is convenient to define

D := {k ∈ N+ : dk 6= 0} ≡ {k ∈ N+ : λk < 0}

along with the indicator ID(k), which evaluates as 1 if k ∈ D and as 0 otherwise.

Theorem 1 If Algorithm 1 terminates finitely in iteration k ∈ N+, then g(xk) = 0
and λk ≥ 0, i.e., xk is second-order stationary. Otherwise, the computed iterates satisfy

lim
k→∞

‖g(xk)‖2 = 0 and lim inf
k→∞

λk ≥ 0. (4)

Proof Algorithm 1 terminates finitely if and only if, for some k ∈ N+, dk = ŝk = 0.
We can then observe that dk = 0 if and only if λk ≥ 0, while ŝk = 0 if and only if
0 = g(x̂k) = g(xk), where the last equality holds because x̂k = xk whenever dk = 0.
These represent the desired conclusions for this case. Otherwise, if Algorithm 1
does not terminate finitely, consider arbitrary k ∈ N+. If k /∈ D, then dk = 0 and
x̂k = xk, meaning that f(x̂k) = f(xk). Otherwise, if k ∈ D, then dk 6= 0 and λk < 0,
and, by the step computation conditions in (2), it follows that

f(x̂k) ≤ f(xk) + g(xk)T (βdk) + 1
2 (βdk)TH(xk)(βdk) + 1

6σ‖βdk‖
3
2

≤ f(xk) + 1
2β

2γλk‖dk‖22 + 1
6σβ

3θ3|λk|3

≤ f(xk)− 1
2β

2θ2(γ − 1
3σβθ

)
|λk|3

= f(xk)− c1(β)|λk|3,

where c1(β) := 1
2β

2θ2
(
γ − 1

3σβθ
)
∈ (0,∞). Similarly, it follows from (3) that

f(xk+1) ≤ f(x̂k) + g(x̂k)T (αŝk) + 1
2L‖αŝk‖

2
2

≤ f(x̂k)− αδζ‖g(x̂k)‖22 + 1
2Lα

2η2‖g(x̂k)‖22
= f(x̂k)− α(δζ − 1

2Lαη
2)‖g(x̂k)‖22

= f(x̂k)− c2(α)‖g(x̂k)‖22,

where c2(α) := α(δζ − 1
2Lαη

2) ∈ (0,∞). Overall,

f(xk+1) ≤ f(xk)− ID(k)c1(β)|λk|3 − c2(α)‖g(x̂k)‖22. (5)

Now observe that, for any ` ∈ N+, it follows that

f(x1)− f(x`+1) =
∑̀
k=1

(f(xk)− f(xk+1))

≥
∑̀
k=1

(
ID(k)c1(β)|λk|3 + c2(α)‖g(x̂k)‖22

)
.

This inequality and f being bounded below show that

∞∑
k=1,k∈D

|λk|3 ≡
∞∑
k=1

|(λk)−|3 <∞ (6a)
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and
∞∑
k=1

‖g(x̂k)‖22 <∞. (6b)

The latter bound yields

lim
k→∞

‖g(x̂k)‖2 = 0, (7)

while the former bound and (2c) yield

∞∑
k=1

‖x̂k − xk‖32 = β3
∞∑
k=1

‖dk‖32 ≤ β3θ3
∞∑
k=1

|(λk)−|3 <∞,

from which it follows that

lim
k→∞

‖x̂k − xk‖2 = 0. (8)

It follows from Lipschitz continuity of g along with (7) and (8) that

0 ≤ lim sup
k→∞

‖g(xk)‖2

= lim sup
k→∞

‖g(xk)− g(x̂k) + g(x̂k)‖2

≤ lim sup
k→∞

‖g(xk)− g(x̂k)‖2 + lim sup
k→∞

‖g(x̂k)‖2

≤ L lim sup
k→∞

‖xk − x̂k‖2 + lim sup
k→∞

‖g(x̂k)‖2 = 0,

which implies the first limit in (4). Finally, in order to derive a contradiction,
suppose that lim infk→∞ λk < 0, meaning that there exists some ε > 0 and infinite
index set K ⊆ D such that λk ≤ −ε for all k ∈ K. This implies that

∞∑
k=1

|(λk)−|3 ≥
∑
k∈K
|(λk)−|3 ≥

∑
k∈K

ε3 =∞,

contradicting (6a). This yields the second limit in (4). ut

There are two potential weaknesses of this two-step approach. First, it sim-
ply alternates back-and-forth between descent and negative curvature directions,
which might not always lead to the most productive step from each point. Second,
even though our analysis holds for all stepsizes α and β in the intervals provided
in Algorithm 1, the algorithm might suffer from poor performance if these values
are chosen poorly. We next present a method that addresses these weaknesses.

2.2 Dynamic Method

Suppose that, in any iteration k ∈ N+ when λk < 0, one computes a nonzero
direction of negative curvature satisfying (2a)–(2b) for some γ ∈ (0, 1]. Suppose
also that, if g(xk) 6= 0, then one computes a nonzero direction sk satisfying the
equivalent of the first condition in (3), namely, for some δ ∈ (0, 1],

− g(xk)T sk ≥ δ‖sk‖2‖g(xk)‖2. (9)
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Defining, for (Lk, σk) ∈ (0,∞)× (0,∞), the model reductions

ms,k(α) := −αg(xk)T sk − 1
2Lkα

2‖sk‖22
and md,k(β) := −βg(xk)T dk − 1

2β
2dTkH(xk)dk − σk

6 β
3‖dk‖32,

ones finds that, if Lk ≥ L and σk ≥ σ, then

f(xk + αsk) ≤ f(xk)−ms,k(α) (10a)

and f(xk + βdk) ≤ f(xk)−md,k(β). (10b)

These two inequalities suggest that, during iteration k ∈ N+, one could choose
which of the two steps (sk or dk) to take based on which model reduction predicts
the larger decrease in the objective. One can verify that the reductions ms,k and
md,k are maximized (over the positive real numbers) by

αk :=
−g(xk)T sk
Lk‖sk‖22

and βk :=

(
−ck +

√
c2k − 2σk‖dk‖32g(xk)T dk

)
σk‖dk‖32

, (11)

where ck := dTkH(xk)dk is a measure of H(xk)-curvature for dk.

Algorithm 2, stated below, follows this dynamic strategy of choosing between sk
and dk for all k ∈ N+. It also involves dynamic updates for Lipschitz constant
estimates, represented in iteration k ∈ N+ by Lk and σk. In this deterministic
setting, a step is only taken if it yields an objective function decrease. Otherwise,
a null step is effectively taken and a Lipschitz constant estimate is increased.

Algorithm 2 Dynamic Method

Require: x1 ∈ Rn and (ρ, L1, σ1) ∈ (1,∞)× (0,∞)× (0,∞)
1: for all k ∈ N+ do

2: if λk ≥ 0 then set dk ← 0 else set dk satisfying (2a)–(2b)
3: if g(xk) = 0 then set sk ← 0 else set sk satisfying (9)
4: if dk = sk = 0 then return xk
5: loop
6: compute αk > 0 and βk > 0 from (11)
7: if ms,k(αk) ≥ md,k(βk) then
8: if (10a) holds with α = αk then
9: set xk+1 ← xk + αksk

10: exit loop
11: else
12: set Lk ← ρLk

13: end if
14: else
15: if (10b) holds with β = βk then
16: set xk+1 ← xk + βkdk
17: exit loop
18: else
19: set σk ← ρσk
20: end if
21: end if
22: end loop
23: set (Lk+1, σk+1) ∈ (0, Lk]× (0, σk]
24: end for
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In the next two results, we establish that Algorithm 2 is well-defined and that
it has convergence guarantees on par with Algorithm 1 (recall Theorem 1).

Lemma 1 Algorithm 2 is well defined in the sense that it either terminates finitely or

generates infinitely many iterates. In addition, at the end of each iteration k ∈ N+,

Lk ≤ Lmax := max{L1, ρL} and σk ≤ σmax := max{σ1, ρσ}. (12)

Proof We begin by showing that the loop in Step 5 terminates finitely anytime it
is entered. For a proof by contradiction, if that loop were never to terminate, then
the updates to Lk and/or σk would cause at least one of them to become arbitrarily
large. Since (10a) holds whenever Lk ≥ L and (10b) holds whenever σk ≥ σ, it
follows that the loop would eventually terminate, thus reaching a contradiction.
Therefore, we have proved that the loop in Step 5 terminates finitely anytime it is
entered, and moreover that (12) holds. This completes the proof once we observe
that during iteration k ∈ N+, Algorithm 2 might finitely terminate in Step 4. ut

Theorem 2 If Algorithm 2 terminates finitely in iteration k ∈ N+, then g(xk) = 0
and λk ≥ 0, i.e., xk is second-order stationary. Otherwise, the computed iterates satisfy

lim
k→∞

‖g(xk)‖2 = 0 and lim inf
k→∞

λk ≥ 0. (13)

Proof Algorithm 2 terminates finitely only if, for some k ∈ N+, dk = sk = 0.
This can only occur if λk ≥ 0 and g(xk) = 0, which are the desired conclusions.
Otherwise, Algorithm 2 does not terminate finitely and during each iteration at
least one of sk and dk is nonzero. We use this fact in the following arguments.

Consider arbitrary k ∈ N+. If sk 6= 0, then the definition of αk in (11) and the
step computation condition on sk in (9) ensure that

ms,k(αk) =
1

2Lk

(
g(xk)T sk
‖sk‖2

)2

≥ δ2

2Lk
‖g(xk)‖22. (14)

Similarly, if dk 6= 0, then by the fact that βk maximizes md,k(β) over β > 0,

(2a)–(2b), and defining β̂k := −2dTkH(xk)dk/(σk‖dk‖32) > 0, one finds

md,k(βk) ≥ md,k(β̂k)

≥ −1
2 β̂

2
kd
T
kH(xk)dk − 1

6σkβ̂
3
k‖dk‖

3
2

= −2(dTkH(xk)dk)3

3σ2
k‖dk‖

6
2

≥ 2γ3

3σ2
k

|λk|3 =
2γ3

3σ2
k

|(λk)−|3. (15)

Overall, for all k ∈ N+, since at least one of sk and dk is nonzero, ‖gk‖2 = 0 if and
only if ‖sk‖2 = 0, and |(λk)−| = 0 if and only if ‖dk‖2 = 0, it follows that

f(xk)− f(xk+1) ≥ max

{
δ2

2Lk
‖g(xk)‖22,

2γ3

3σ2
k

|(λk)−|3
}
. (16)

Indeed, to show that (16) holds, let us consider two cases. First, suppose that the
update xk+1 ← xk+αksk is completed, meaning that (10a) holds with α = αk and
ms,k(αk) ≥ md,k(βk). Combining these facts with (14) and (15) establishes (16) in
this case. Second, suppose that xk+1 ← xk+βkdk is completed, meaning that (10b)
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holds with β = βk and ms,k(αk) < md,k(βk). Combining these facts with (14)
and (15) establishes (16) in this case. Thus, (16) holds for all k ∈ N+.

It now follows from (16), the bounds in (12), and a proof similar to that used
in Theorem 1 (in particular, to establish (6a) and (6b)) that

∞∑
k=1

‖g(xk)‖22 <∞ and
∞∑
k=1

|(λk)−| <∞.

One may now establish the desired results in (13) using the same arguments as
used in the proof of Theorem 1. ut

Let us add a few remarks about Algorithm 2.

– Our convergence theory allows Lk+1 ← Lk and σk+1 ← σk in Step 23 for
all k ∈ N+, in which case the Lipschitz constant estimates are monotonically
increasing. However, in Algorithm 2, we allow these estimates to decrease since
this might yield better results in practice.

– If the Lipschitz constants L and σ for g := ∇f and H := ∇2f , respectively, are
known, then one could simply set Lk = L and σk = σ during each iteration; in
this case, the loop would not actually be needed. Although this would simplify
the presentation, it would generally result in more iterations being required to
obtain (approximate) first- and/or second-order stationarity. However, if the
cost of evaluating f is substantial, then static parameters might work well.

– Each time through the loop, condition (10a) or (10b) is tested, but not both,
since this would require an extra evaluation of f . If the cost of evaluating the
objective function is not a concern, then one could choose between the two
steps based on actual objective function decrease rather than model decrease.

2.3 Complexity Analysis

We have the following complexity result for Algorithm 2. We claim that a similar
result could be stated and proved for Algorithm 1 as well, where one employs the
inequality (5) in place of (16) in the proof below. However, for brevity and since we
believe it might often be the better method in practice, we focus on the following
result for our dynamic method, Algorithm 2.

Theorem 3 Consider any scalars εg ∈ (0, ε̄g] and εH ∈ (0, ε̄H ] for some constants

(ε̄g, ε̄H) ∈ (0,∞)× (0,∞). With respect to Algorithm 2, the cardinality of the index set

G(εg) := {k ∈ N+ : ‖g(xk)‖2 > εg}

is at most O(ε−2
g ). In addition, the cardinality of the index set

H(εH) := {k ∈ N+ : |(λk)−| > εH}

is at most O(ε−3
H ). Hence, the number of iterations and derivative (i.e., gradient and

Hessian) evaluations required until iteration k ∈ N+ is reached with

‖g(xk)‖2 ≤ εg and |(λk)−| ≤ εH
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is at most O(max{ε−2
g , ε−3

H }). Moreover, if Step 23 is modified such that

(Lk+1, σk+1) ∈ [Lmin, Lk]× [σmin, σk], (17)

for some (Lmin, σmin) ∈ (0,∞) × (0,∞) with L1 ≥ Lmin and σ1 ≥ σmin, then the

number of iterations in the loop for all k ∈ N+ is uniformly bounded, meaning that the

complexity bound above also holds for the number of function evaluations.

Proof As in the proof of Theorem 2, one has that, for all k ∈ N+, the inequality (16)
holds, which we restate here as

f(xk)− f(xk+1) ≥ max

{
δ2

2Lk
‖g(xk)‖22,

2γ3

3σ2
k

|(λk)−|3
}
. (18)

From this inequality and the bounds in (12), it follows that

k ∈ G(εg) =⇒ f(xk)− f(xk+1) ≥ δ2

2Lmax
ε2g

while k ∈ H(εH) =⇒ f(xk)− f(xk+1) ≥ 2γ3

3σ2
max

ε3H .

Since f is bounded below by finf and (18) ensures that {f(xk)} is monotonically
decreasing, the inequalities above imply that G(εg) and H(εH) are both finite. In
addition, by summing the reductions achieved in f over the iterations in the above
index sets, we obtain

f(x1)− finf ≥
∑

k∈G(εg)

f(xk)− f(xk+1) ≥ |G(εg)|
δ2

2Lmax
ε2g

and f(x1)− finf ≥
∑

k∈H(εH)

f(xk)− f(xk+1) ≥ |H(εH)| 2γ3

3σ2
max

ε3H .

Rearranging, one obtains that

|G(εg)| ≤
(

2Lmax(f(x1)− finf)

δ2

)
ε−2
g and |H(εH)| ≤

(
3σ2

max(f(x1)− finf)

2γ3

)
ε−3
H ,

as desired. Finally, the last conclusion follows by the fact that, with (17), the
number of iterations within the loop for any k ∈ N+ is bounded above by

(
1 +

⌊
1

log(ρ)
log

(
L

Lmin

)⌋)
+

(
1 +

⌊
1

log(ρ)
log

(
σ

σmin

)⌋)
,

which is the maximum number of updates to Lk and/or σk to bring values within
[Lmin, L] and [σmin, σ] up to satisfy Lk ≥ L and σk ≥ σ. ut
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2.4 Behavior Near Strict Saddle Points

As previously mentioned (recall §1.2), much recent attention has been directed
toward the behavior of nonconvex optimization algorithms in the neighborhood of
saddle points. In particular, in order to prove guarantees about avoiding saddle
points, an assumption is often made about all saddle points being strict (or ridable)
or even non-degenerate. Strict saddle points are those at which the Hessian has at
least one negative eigenvalue; intuitively, these are saddle points from which an
algorithm should usually be expected to avoid. Nondegenerate saddle points are
ones at which the Hessian has no zero eigenvalues, a much stronger assumption.

One can show that in certain problems of interest, all saddle points are strict.
This is interesting. However, much of the work that has discussed the behavior of
nonconvex algorithms in the neighborhood of strict saddle points have focused on
standard types of descent methods, about which one can only prove high probabil-
ity results [18]. By contrast, when one considers explicitly computing directions of
negative curvature, this is all less of an issue. After all, notice that our convergence
and complexity analyses for our framework did not require careful consideration
of the nature of any potential saddle points.

In any case, for ease of comparison to other recent analyses, let us discuss
the convergence/complexity properties for our method in the context of a strict
saddle point assumption. Suppose that the set of maximizers and saddle points
of f , say {x̄i}i∈I for some index set I, which must necessarily have g(xi) = 0 for
all i ∈ I, also has λ̄i < 0 for all i ∈ I, where {λ̄i}i∈I are the leftmost eigenvalues
of {H(x̄i)}i∈I and are uniformly bounded away from zero. In this setting, we may
draw the following conclusions from Theorems 2 and 3.

– Any limit point of the sequence {xk} computed by Algorithm 2 is a minimizer
of f . This follows since Theorem 2 ensures that for any limit point, say x,
the gradient must be zero and the leftmost eigenvalue must be nonnegative.
It follows from these facts and the assumptions on the maximizers and saddle
points {xi} that x must be a minimizer, as claimed.

– From the discussion in the previous bullet and Theorem 3 we know, in fact, that
the iterates of Algorithm 2 must eventually enter a region consisting only of
minimizers (i.e., one that does not contain any maximizers or saddle points) in
a number of iterations that is polynomial in ε ∈ (0,∞), where the negative value
−ε is greater than the largest of the leftmost eigenvalues of {H(xi)}i∈I . This
complexity result holds without assuming that the minimizers, maximizers, and
saddle points are all nondegenerate (i.e., the Hessian matrix at these points
are nonsingular), which, e.g., should be contrasted with the analysis in [26, see
Assumption 3]. The primary reason for our stronger convergence/complexity
properties is that our method incorporates negative curvature directions when
they exist, as opposed to only descent directions.

2.5 Step Computation Techniques

There is flexibility in the ways in which the steps dk and sk (or ŝk) are computed
in order to satisfy the desired conditions (in (2) and (3)/(9)). For example, sk
might be the steepest descent direction −g(xk), for which (3) holds with δ =
ζ = η = 1. Another option, with a symmetric positive definite B−1

k ∈ Rn×n
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that has κ(B−1
k ) ≤ δ−1 with a spectrum falling in [ζ, η], is to compute sk as the

modified Newton direction −B−1
k g(xk). A particularly attractive option for certain

applications (when Hessian-vector products are readily computed) is to compute sk
via a Newton-CG routine [25] with safeguards that terminate the iteration before
a CG iterate is computed that violates (3) for prescribed (δ, ζ, η).

There are multiple ways to compute the negative curvature direction. In theory,
the most straightforward approach is to set dk = ±vk, where vk is a leftmost eigen-
vector of H(xk). With this choice, it follows that dTkH(xk)dk = λk‖dk‖2, meaning
that (2a) is satisfied, and one can scale dk to ensure that (2b) and (2c) hold. A
second approach for large-scale settings (i.e., when n is large) is to compute dk via
matrix-free Lanczos iterations [16]. Such an approach can produce a direction dk
satisfying (2a), which can then be scaled to yield (2b) and (2c).

2.6 Numerical Results

In this section, we demonstrate that there can be practical benefits of following di-
rections of negative curvature if one follows the dynamic approach of Algorithm 2.
To do this, we implemented software in Matlab that, for all k ∈ N+, has the
option to compute sk via several options (see §2.6.1 and §2.6.2) and dk = ±vk
(recall §2.5). Our test problems include a subset of the CUTEst collection [12].
Specifically, we selected all of the unconstrained problems with n ≤ 500 and second
derivatives explicitly available. This left us with a test set of 97 problems.

Using this test set, we considered two variants of Algorithm 2: (i) a version in
which the if condition in Step 7 is always presumed to test true, i.e., the descent
step sk is chosen for all k ∈ N+ (which we refer to as Algorithm 2(sk)), and
(ii) a version that, as in our formal statement of the algorithm, chooses between
descent and negative curvature steps by comparing model reduction values for
each k ∈ N+ (which we refer to as Algorithm 2(sk, dk)). In our experiments, we
used L1 ← 1 and σ1 ← 1, updating them and setting subsequent values in their
respective sequences using the following strategy. For increasing one of these values
in Step 12 or Step 19, we respectively set the quantities

L̂k ← Lk +
2
(
f(xk + αksk)− f(xk) +ms,k(αk)

)
α2
k‖sk‖2

or

σ̂k ← σk +
6
(
f(xk + βkdk)− f(xk) +md,k(βk)

)
β3
k‖dk‖3

,

then, with ρ← 2, use the update

Lk ← max{ρLk,min{103Lk, L̂k}} in Step 12 of Algorithm 2 or

σk ← max{ρσk,min{103σk, σ̂k}} in Step 19 of Algorithm 2.
(19)

The quantity L̂k is defined so that (10a) holds at equality with α = αk and Lk
replaced by L̂k in the definition of ms,k(αk), i.e., L̂k is the value that makes the
model decrease agree with the exact function decrease at xk+αksk. The procedure
we use to set σ̂k is analogous. We remark that the updates in (19) ensure that
Lk ∈ [ρLk, 103Lk] and σk ∈ [ρσk, 103σk], which we claim maintains the convergence
and complexity guarantees of Algorithm 2. Moreover, when Step 12 (respectively,
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Step 19) is reached, then it must be the case that L̂k > Lk (respectively, σ̂k > σk).
On the other hand, in Step 23 we use the following updates:

Lk+1 ← max{10−3, 10−3Lk, L̂k} and σk+1 ← σk when xk+1 ← xk + αksk;

σk+1 ← max{10−3, 10−3σk, σ̂k} and Lk+1 ← Lk when xk+1 ← xk + βkdk.

Over the next two sections, we discuss numerical results when two different options
for computing the descent direction sk are used.

2.6.1 Choosing sk as the direction of steepest descent

The tests in this section use the steepest descent direction, i.e., sk = −g(xk) for all
k ∈ N+. Although this is a simple choice, it gives a starting point for understanding
the potential benefits of using directions of negative curvature.

We ran Algorithm 2(sk) and Algorithm 2(sk, dk) on the previously described
CUTEst problems with commonly used stopping conditions. Specifically, an algo-
rithm terminates with an approximate second-order stationary solution if

‖g(xk)‖ ≤ 10−5 max{1, ‖g(x1)‖} and |(λk)−| ≤ 10−5 max{1, |(λ1)−|}. (20)

We also terminate an algorithm if an iteration limit of 10,000 is reached or if a
trial step smaller than 10−16 is computed. The results can be found in Figure 1.

In Figure 1a, letting ffinal(sk) and ffinal(sk, dk) be the final computed objective
values for Algorithm 2(sk) and Algorithm 2(sk, dk), respectively, we plot

ffinal(sk)− ffinal(sk, dk)

max{|ffinal(sk)|, |ffinal(sk, dk)|, 1}
∈ [−2, 2] (21)

for each problem that Algorithm 2(sk, dk) used at least one negative curvature di-
rection. In this manner, an upward pointing bar implies that Algorithm 2(sk, dk)
terminated with a lower value of the objective function, while its magnitude repre-
sents how much better was this value. We can observe from Figure 1a that among
the 39 problems, Algorithm 2(sk) terminated with a significantly lower objective
value compared to Algorithm 2(sk, dk) only 2 times. (While the value in (21) falls
in the interval [−2, 2], the bars in the figure all fall within [−1, 1] since, for each
problem, the final function value reached by each algorithm had the same sign.)

We are also interested in the number of iterations and objective function eval-
uations needed to obtain these final objective function values. The relative perfor-
mances of the algorithms with respect to these measures are shown in Figure 1b
and Figure 1c. In particular, letting #its(sk) be the total number of iterations
required by Algorithm 2(sk) and #its(sk, dk) be the total number of iterations
required by Algorithm 2(sk, dk), we plot in Figure 1b the values

#its(sk)−#its(sk, dk)

max{#its(sk),#its(sk, dk), 1}
∈ [−1, 1], (22)

and, letting #fevals(sk) be the total number of objective function evaluations for
Algorithm 2(sk) and #fevals(sk, dk) be the total number of objective function
evaluations for Algorithm 2(sk, dk), we plot in Figure 1c the values

#fevals(sk)−#fevals(sk, dk)

max{#fevals(sk),#fevals(sk, dk), 1}
∈ [−1, 1]. (23)
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(a) Plot associated with the quantity (21).
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(b) Plot associated with the quantity (22).
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(c) Plot associated with the quantity (23).

Fig. 1: Plots for the choice sk ≡ −g(xk) for all k ∈ N+. Only problems for which
at least one negative curvature direction is used are presented. The problems are
ordered based on the values in plot (a).

These two plots show that Algorithm 2(sk, dk) tends to perform better than Al-
gorithm 2(sk) in terms of both the number of required iterations and function
evaluations. Overall, we find these results interesting since Algorithm 2(sk, dk)
tends to find lower values of the objective function (see Figure 1a) while typically
requiring fewer iterations (see Figure 1b) and function evaluations (see Figure 1c).

2.6.2 Choosing sk using a modified-Newton strategy

In this subsection, we show the results of tests similar to those in §2.6.1 except
that now we compute the descent direction sk by a modified-Newton approach.
Specifically, we compute sk as the unique vector satisfying Bksk = −g(xk) with

Bk = H(xk) + δkI, (24)

where I is the identify matrix and δk is the smallest nonnegative real number such
that Bk is positive definite with a condition number less than or equal to 108.
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(a) Plot associated with the quantity (21).
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(b) Plot associated with the quantity (22).
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(c) Plot associated with the quantity (23).

Fig. 2: Plots for when sk is chosen to satisfy Bksk = −g(xk) with Bk defined
via (24). Only problems for which at least one negative curvature direction is used
are presented. The problems are ordered based on the values in plot (a).

The results from solving our CUTEst test set with this choice of Bk using the
stopping condition (20) are presented in Figure 2. We can observe that, overall,
Algorithm 2(sk, dk) outperforms Algorithm 2(sk) in this experiment. Neither algo-
rithm consistently outforms the other in terms of their final objective values, but
Algorithm 2(sk, dk) typically requires fewer iterations (see Figure 2b) and objective
function evaluations (see Figure 2c).

3 Stochastic Optimization

Let us now consider the problem to minimize a twice continuously differentiable
and bounded below (by finf ∈ R) objective function f : Rn → R defined by the
expectation, in terms of the distribution of a random variable ξ with domain Ξ,
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of a stochastic function F : Rn × Ξ → R, namely,

min
x∈Rn

f(x), where f(x) := Eξ[F (x, ξ)]. (25)

In this context, we expect that, at an iterate xk, one can only compute stochas-
tic gradient and Hessian estimates. We do not claim that we are able to prove
convergence guarantees to second-order stationarity as in the deterministic case.
That said, we are able to present a two-step method with convergence guarantees
to first-order stationarity whose structure motivates a dynamic method that we
show can offer beneficial practical performance by exploring negative curvature.

3.1 Two-Step Method: Stochastic Gradient/Newton with “Curvature Noise”

At an iterate xk, let ξk be a random variable representing a seed for generating a
vector sk ∈ Rn. For example, if f is the expected function value over inputs from a
dataset, then ξk might represent sets of points randomly drawn from the dataset.
With Eξk [·] denoting expectation taken with respect to the distribution of ξk given
the current iterate xk, we require the vector sk to satisfy

−∇f(xk)TEξk [sk] ≥ δ‖∇f(xk)‖22, (26a)

Eξk [‖sk‖2] ≤ η‖∇f(xk)‖2, and (26b)

Eξk [‖sk‖22] ≤Ms1 +Ms2‖∇f(xk)‖22 (26c)

for some δ ∈ (0, 1], η ∈ [1,∞), and (Ms1,Ms2) ∈ (0,∞) × (1,∞) that are all
independent of k. For example, as in a stochastic gradient method, these conditions
are satisfied if sk is an unbiased estimate of ∇f(xk) with second moment bounded
as in (26c). They are also satisfied in the context of a stochastic Newton method
wherein a stochastic gradient estimate is multiplied by a stochastic inverse Hessian
estimate, assuming that the latter is conditionally uncorrelated with the former
and has eigenvalues contained within an interval of the positive real line uniformly
over all k ∈ N+.

Let us also define ξHk , conditionally uncorrelated with ξk given xk, as a random
variable representing a seed for generating an unbiased Hessian estimate Hk such
that EξHk [Hk] = ∇2f(xk). We use Hk to compute a direction dk. For the purpose

of ideally following a direction of negative curvature (for the true Hessian), we ask
that dk satisfies a curvature condition similar to that used in the deterministic
setting. Importantly, however, the second moment of dk must be bounded similar
to that of sk above. Overall, with λk being the left-most eigenvalue of Hk, we set
dk ← 0 if λk ≥ 0, and otherwise require the direction dk to satisfy

dTkHkdk ≤ γλk‖dk‖
2
2 < 0 given Hk (27a)

and EξHk [‖dk‖22] ≤Md1 +Md2‖∇f(xk)‖22 (27b)

for some γ ∈ (0, 1] and (Md1,Md2) ∈ (0,∞) × (1,∞) that are independent of k.
One manner in which these conditions can be satisfied is to compute dk as an
eigenvector corresponding to the left-most eigenvalue λk, scaled such that ‖dk‖22
is bounded above in proportion to the squared norm ‖sk‖22 where sk satisfies (26).
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Note that our conditions in (27) do not involve expected descent with respect to
the true gradient at xk. This can be viewed in contrast to (2), which involves (2b).
The reason for this is that, in a practical setting, such a condition might not
be verifiable without computing the exact gradient explicitly, which might be
intractable or prohibitively expensive. Instead, without this restriction, a critical
component of our algorithm is the generation of an independent random scalar ωk
uniformly distributed in [−1, 1]. With this choice, one finds E(ξHk ,ωk)[ωkdk] = 0 such

that, effectively, ωkdk merely adds noise to sk in a manner that ideally follows a
negative curvature direction. This leads to Algorithm 3 below.

Algorithm 3 Two-Step Method for Stochastic Optimization

Require: x1 ∈ Rn, {αk} ⊂ (0,∞), and {βk} ⊂ (0,∞)
1: for all k ∈ N+ do

2: generate uncorrelated random seeds ξk and ξHk
3: generate ωk uniformly in [−1, 1]
4: set sk satisfying (26)
5: set dk satisfying (27)
6: set xk+1 ← xk + αksk + βkωkdk
7: end for

Algorithm 3 maintains the convergence guarantees of a standard stochastic
gradient (SG) method. To show this, let us first prove the following lemma.

Lemma 2 For all k ∈ N+, it follows that

E(ξk,ξHk ,ωk)[f(xk+1)]− f(xk)

≤ − (δαk − 1
2LMs2α

2
k − 1

6LMd2β
2
k)‖∇f(xk)‖22 + 1

2LMs1α
2
k + 1

6LMd1β
2
k .

(28)

Proof From Lipschitz continuity of ∇f , it follows that

f(xk+1)− f(xk) = f(xk + αksk + βkωkdk)− f(xk)

≤ ∇f(xk)T (αksk + βkωkdk) + 1
2L‖αksk + βkωkdk‖22.

Taking expectations with respect to the distribution of the random quantities
(ξk, ξ

H
k , ωk) given xk and using (26)–(27), it follows that

E(ξk,ξHk ,ωk)[f(xk+1)]− f(xk)

≤ ∇f(xk)T (αkEξk [sk] + βkE(ξHk ,ωk)[ωkdk])

+ 1
2L(α2

kEξk [‖sk‖22] + β2
kE(ξHk ,ωk)[‖ωkdk‖

2
2])

+ LαkβkE(ξk,ξHk ,ωk)[s
T
k (ωkdk)]

≤ − αkδ‖∇f(xk)‖22
+ 1

2Lα
2
k(Ms1 +Ms2‖∇f(xk)‖22) + 1

6Lβ
2
k(Md1 +Md2‖∇f(xk)‖22).

Rearranging, we reach the desired conclusion. ut
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From this lemma, we obtain a critical bound similar to one that can be shown
for a generic SG method; e.g., see Lemma 4.4 in [2]. Hence, following analyses such
as that in [2], one can show that the total expectation for the gap between f(xk)
and a lower bound for f decreases. For instance, we prove the following theorem
using similar proof techniques as for Theorems 4.8 and 4.9 in [2].

Theorem 4 Suppose that Algorithm 3 is run with αk = βk = ᾱ for all k ∈ N+ where

0 < ᾱ ≤ δ

2Lmax{Ms2,Md2}
. (29)

Then, for all K ∈ N+, one has that

E

[
1

K

K∑
k=1

‖∇f(xk)‖22

]
≤ 2ᾱLmax{Ms1,Md1}

δ
+

2(f(x1)− finf)

Kδᾱ

K→∞
−−−−→ 2ᾱLmax{Ms1,Md1}

δ
.

On the other hand, if Algorithm 3 is run with {αk} satisfying

∞∑
k=1

αk =∞ and

∞∑
k=1

α2
k <∞ (30)

and {βk} = {χαk} for some χ ∈ (0,∞), then it holds that

lim
K→∞

E

[
K∑
k=1

αk‖∇f(xk)‖22

]
<∞,

from which it follows, with AK :=
∑K
k=1 αk, that

lim
K→∞

E

[
1

AK

K∑
k=1

αk‖∇f(xk)‖22

]
= 0,

which implies that lim infk→∞ E[‖∇f(xk)‖22] = 0.

Proof First, suppose that Algorithm 3 is run with αk = βk = ᾱ for all k ∈ N+.
Then, taking total expectation in (28), it follows with (29) and since 1

2 >
1
6 that

E[f(xk+1)]− E[f(xk)]

≤ − (δ − Lmax{Ms2,Md2}ᾱ)ᾱE[‖∇f(xk)‖22] + Lmax{Ms1,Md1}ᾱ2

≤ − 1
2δᾱE[‖∇f(xk)‖22] + Lmax{Ms1,Md1}ᾱ2.

Summing both sides of this inequality for k ∈ {1, . . . ,K} yields

finf − f(x1) ≤ E[f(xK+1)]− f(x1)

≤ −1
2δᾱ

K∑
k=1

E[‖∇f(xk)‖22] +KLmax{Ms1,Md1}ᾱ2.

Rearranging and dividing further by K yields the desired conclusion.
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Now suppose that Algorithm 3 is run with {αk} and {βk} = {χαk} such that
the former satisfies (30). Since the second condition in (30) ensures that {αk} ↘ 0,
we may assume without loss of generality that, for all k ∈ N+,

αk ≤ min

{
δ

2LMs2
,

3δ

2LMd2χ2

}
.

Thus, taking total expectation in (28) leads to

E[f(xk+1)]− E[f(xk)]

≤ − (δαk − 1
2LMs2α

2
k − 1

6LMd2β
2
k)E[‖∇f(xk)‖22] + 1

2LMs1α
2
k + 1

6LMd1β
2
k

≤ − 1
2δαkE[‖∇f(xk)‖22] + (1

2LMs1 + 1
6LMd1χ

2)α2
k.

Summing both sides for k ∈ {1, . . . ,K} yields

finf − f(x1) ≤ E[f(xK+1)]− f(x1)

≤ −1
2δ

K∑
k=1

αkE[‖∇f(xk)‖22] + (1
2LMs1 + 1

6LMd1χ
2)

K∑
k=1

α2
k,

from which it follows that

K∑
k=1

αkE[‖∇f(xk)‖22] ≤ 2(f(x1)− finf)

δ
+
LMs1 + 1

3LMd1χ
2

δ

K∑
k=1

α2
k.

The second of the conditions in (30) implies that the right-hand side here converges
to a finite limit when K →∞. Then, the rest of the desired conclusion follows since
the first of the conditions in (30) ensures that AK →∞ as K →∞. ut

3.2 Dynamic Method

Borrowing ideas from the two-step deterministic method in §2.1, the dynamic de-
terministic method in §2.2, and the two-step stochastic method in §3.1, we propose
the dynamic method for stochastic optimization presented as Algorithm 4 below.
After computing a stochastic Hessian estimate Hk ∈ Rn×n and an independent
stochastic gradient estimate gk ∈ Rn, the algorithm employs the conjugate gradi-
ent (CG) method [25] for solving the linear system Hks = −gk with the starting
point s ← 0. If Hk � 0, then it is well known that this method solves this sys-
tem in at most n iterations (in exact arithmetic). However, if Hk 6� 0, then the
method might encounter a direction of nonpositive curvature, say p ∈ Rn, such
that pTHkp ≤ 0. If this occurs, then we terminate CG immediately and set dk ← p.
This choice is made rather than spend any extra computational effort attempting
to approximate an eigenvector corresponding to the left-most eigenvalue of Hk.
Otherwise, if no such direction of nonpositive curvature is encountered, then the
algorithm chooses dk ← 0. In either case, the algorithm sets sk as the final CG
iterate computed prior to termination. (The only special case is when nonpositive
curvature is encountered in the first iteration; then, sk ← −gk and dk ← 0.)

For setting values for the dynamic parameters {Lk} and {σk}, which in turn
determine the stepsize sequences {αk} and {βk}, the algorithm employs stochastic
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function value estimates. In this manner, the algorithm can avoid computing the
exact objective value at any point (which is often not tractable). In the statement
of the algorithm, we use fk : Rn → R to indicate a function that yields a stochastic
function estimate during iteration k ∈ N+.

Algorithm 4 Dynamic Method for Stochastic Optimization

Require: x1 ∈ Rn and (L1, σ1) ∈ (0,∞)× (0,∞)
1: for all k ∈ N+ do
2: generate a stochastic gradient gk and stochastic Hessian Hk

3: run CG on Hks = −gk to compute sk and dk (as described in the text above)
4: set αk ← 1/Lk and βk ← 1/σk
5: set x̂k ← xk + αksk
6: if fk(x̂k) > fk(xk) then
7: set Lk+1 ∈ [Lk,∞)
8: (optional) reset x̂k ← xk
9: else

10: set Lk+1 ∈ (0, Lk]
11: end if
12: set xk+1 ← x̂k + βkdk
13: if fk(xk+1) > fk(x̂k) then
14: set σk+1 ∈ [σk,∞)
15: (optional) reset xk+1 ← x̂k
16: else
17: set σk+1 ∈ (0, σk]
18: end if
19: end for

As previously mentioned, we do not claim convergence guarantees for this
method. However, we believe that it is well motivated by our previous algorithms.
One should also note that the per-iteration cost between this method and an inex-
act Newton-CG method is negligible since any computed dk 6= 0 comes essentially
for free from the CG routine. The only significant extra cost might come from
the stochastic function estimates, though these can be made cheaper than any
stochastic gradient estimate and might even be ignored completely if one is able
to tune fixed values for L and σ that work well for a particular application.

3.3 Numerical Experiments

We implemented Algorithm 4 in Python 2.7.13. As a test problem, we trained a
convolutional neural network to classify handwritten digits in the well-known mnist

dataset; see [17]. Our neural network, implemented using tensorflow,1 is composed
of two convolutional layers followed by a fully connected layer. In each iteration, we
computed stochastic gradient and Hessian estimates using independently drawn
mini-batches of size 500. By contrast, the entire training dataset involves 60,000
feature/label pairs. The testing set involves 10,000 feature/label pairs.

In each iteration, our implementation runs the CG method for at most 10 it-
erations. If a direction of nonpositive curvature is found within this number of
iterations, then it is employed as dk; otherwise, dk ← 0. In preliminary training

1 https://www.tensorflow.org/

https://www.tensorflow.org/
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runs, we occasionally witnessed instances in which a particularly large stochastic
gradient led to a large step, which in turn spoiled all previous progress made by
the algorithm. Hence, to control the iterate displacements, we scaled sk and/or dk
down, when necessary, to ensure that ‖sk‖ ≤ 10 and ‖βkdk‖ ≤ 0.2‖αksk‖. We wit-
nessed similar poor behavior when the Lipschitz constant estimates were initialized
to be too small; hence, for our experiments, we chose L1 ← 80 and σ1 ← 100 as
the smallest values that yielded stable algorithm behavior for both algorithms. If
stochastic function evaluations suggested an objective increase, then an estimate
was increased by a factor of 1.2; see Steps 7 and 14 in Algorithm 4. The imple-
mentation never decreases these estimates. In addition, while the implementation
always takes the step αksk (i.e., it does not follow the optional Step 8), it does
reset xk+1 ← x̂k (recall Step 15) if/when the stochastic function estimates predict
an increase in f due to the step βkdk.

For comparison purposes, we ran the algorithm twice using the same starting
point and initial seeds for the random number generators: once with βk being reset
to zero for all k ∈ N+ (so that no step along dk is ever taken) and once with it set
as in Algorithm 4. We refer to the former algorithm as SG since it is a stochastic-
gradient-type method that does not explore negative curvature. We refer to the
latter as NC since it attempts to exploit negative curvature.

The training losses as a function of the iteration counter are shown in Figure 3.
As can be seen in the plot, the performance of the two algorithms is initially very
similar. However, after some initial iterations, following the negative curvature
steps consistently offers additional progress, allowing NC to reduce the loss and
increase both the training and testing accuracy more rapidly than SG. Eventually,
the plots in each of the figures near each other (after around two epochs, when
the algorithms were terminated). This should be expected as both algorithms
eventually near stationary points. However, prior to this point, NC has successfully
avoided the early stagnation experienced by SG.

4 Conclusion

We have confronted the question of whether it can be beneficial for nonconvex op-
timization algorithms to compute and explore directions of negative curvature. We
have proposed new algorithmic frameworks based on the idea that an algorithm
might alternate or choose between descent and negative curvature steps based on
properties of upper-bounding models of the objective function. In the case of de-
terministic optimization, we have shown that our frameworks possess convergence
and competitive complexity guarantees in the pursuit of first- and second-order
stationary points, and have demonstrated that instances of our framework out-
perform descent-step-only methods in terms of finding points with lower objective
values typically within fewer iterations and function evaluations. In the case of
stochastic optimization, we have shown that an algorithm that employs “curva-
ture noise” can outperform a stochastic-gradient-based approach.
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5. Ehsan Elhamifar and René Vidal. Sparse subspace clustering. In Computer Vision and
Pattern Recognition, 2009. CVPR 2009. IEEE Conference on, pages 2790–2797. IEEE,
2009.



24 Frank E. Curtis, Daniel P. Robinson

6. Anders Forsgren, Philip E Gill, and Walter Murray. Computing modified newton directions
using a partial cholesky factorization. SIAM Journal on Scientific Computing, 16(1):139–
150, 1995.

7. R. Ge, F. Huang, C. Jin, and Y. Yuan. Escaping From Saddle Points — Online Stochastic
Gradient for Tensor Decomposition. In JMLR: Workshop and Conference Proceedings,
New York, NY, USA, 2015. JMLR.

8. Philip E Gill, Vyacheslav Kungurtsev, and Daniel P Robinson. A stabilized SQP method:
global convergence. IMA Journal on Numerical Analysis, page drw004, 2016.

9. Philip E. Gill, Vyacheslav Kungurtsev, and Daniel P. Robinson. A stabilized SQP method:
superlinear convergence. Mathematical Programming, pages 1–42, 2016.

10. Donald Goldfarb. Curvilinear path steplength algorithms for minimization which use
directions of negative curvature. Mathematical programming, 18(1):31–40, 1980.

11. N. I. M. Gould, S. Lucidi, M. Roma, and PH. L. Toint. Exploiting negative curvature
directions in linesearch methods for unconstrained optimization. Optimization Methods
and Software, 14(1-2):75–98, 2000.

12. Nicholas IM Gould, Dominique Orban, and Philippe L Toint. Cutest: a constrained and
unconstrained testing environment with safe threads for mathematical optimization. Com-
putational Optimization and Applications, 60(3):545–557, 2015.
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