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Abstract

Multi-stage stochastic linear programs (MSLPs) are notoriously hard to solve in gen-

eral. Linear decision rules (LDRs) yield an approximation of an MSLP by restricting

the decisions at each stage to be an affine function of the observed uncertain parame-

ters. Finding an optimal LDR is a static optimization problem that provides an upper

bound on the optimal value of the MSLP, and, under certain assumptions, can be for-

mulated as an explicit linear program. Similarly, as proposed by Kuhn, Wiesemann,

and Georghiou (“Primal and dual linear decision rules in stochastic and robust op-

timization” Math. Program. 130, 177–209, 2011) a lower bound for an MSLP can

be obtained by restricting decisions in the dual of the MSLP to follow an LDR. We

propose a new approximation approach for MSLPs, two-stage LDRs. The idea is to

require only the state variables in an MSLP to follow an LDR, which is sufficient to

obtain an approximation of an MSLP that is a two-stage stochastic linear program

(2SLP). We similarly propose to apply LDR only to a subset of the variables in the

dual of the MSLP, which yields a 2SLP approximation of the dual that provides a

lower bound on the optimal value of the MSLP. Although solving the corresponding

2SLP approximations exactly is intractable in general, we investigate how approxi-

mate solution approaches that have been developed for solving 2SLP can be applied to

solve these approximation problems, and derive statistical upper and lower bounds on
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the optimal value of the MSLP. In addition to potentially yielding better policies and

bounds, this approach requires many fewer assumptions than are required to obtain an

explicit reformulation when using the standard static LDR approach. A computational

study on two example problems demonstrates that using a two-stage LDR can yield

significantly better primal policies and modestly better dual policies than using policies

based on a static LDR.

Keywords: Multi-stage stochastic programming, linear decision rules, two-stage approxi-

mation

1 Introduction

We present a new approach for approximately solving multi-stage stochastic linear pro-

grams (MSLPs). MSLPs model dynamic decision-making processes in which a decision is

made, a stochastic outcome is observed, another decision is made, and so on, for T stages.

At each stage, the decision vectors are constrained by linear constraints that depend on the

history of observed stochastic outcomes. A solution of an MSLP is a policy, which defines

the decisions to be made at each stage as a function of the observed outcomes up to that

stage. The objective in an MSLP is to choose a policy that minimizes the expected cost

over all stages. Although MSLPs can be used to model a wide variety of problems (e.g.,

[61]), they are notoriously hard to solve in general [17, 57].

There are a variety of methods available for MSLPs in the case that the stochastic

process is represented by a scenario tree [12, 28, 32, 55]. Such algorithms include nested

Benders decomposition [8, 10, 22], progressive hedging [49], and aggregation and parti-

tioning [2, 9], and enable the solution of MSLPs with possibly very large scenario trees.

Unfortunately, as discussed in [57], the size of a scenario tree needed to obtain even a mod-

estly accurate approximation grows exponentially in the number of stages. For example,

a 10-stage problem in which the uncertainty in each stage is represented by just 50 real-

izations would yield a scenario tree having nearly 2 · 1015 scenarios, making any approach

that requires even a single pass through the scenario tree impossible.

Under some conditions, including stage-wise independence of the random variables,

stochastic dual dynamic programming (SDDP) [42] can overcome the difficulty in explod-

ing scenario tree size, by constructing a single value function approximation for each stage.

The SDDP algorithm converges almost surely on a finite scenario tree [14, 53] (see also
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[24, 26, 44] for related results). In some cases, such as additive dependence [33] and

Markov dependence [43], the assumption of stage-wise independence can be satisfied via

an appropriate reformulation, e.g., see Example 10 in [54] (see also [25] for other types of

dependence). However, such reformulations are not applicable for stage-wise dependence

of random recourse matrices (i.e., in the coefficients of the constraints) or objective coef-

ficients. Similar approaches that exploit stage-wise independence and value function ap-

proximations include multi-stage stochastic decomposition [51] and approximate dynamic

programming [47].

An alternative approach to handling the complexity of MSLP is to restrict the func-

tional form of the policy. One such approach is the use of linear decision rules (LDRs).

The idea of an LDR is to require that all decisions made in each stage be a linear (or affine)

function of the observed random outcomes up to that stage. The problem then reduces to

a static problem of finding the best LDR, whose expected cost then yields an upper bound

on the optimal value of the MSLP. In this paper, we refer this use of an LDR as a static

LDR. While LDRs have a long history (see, e.g., [21]), they have recently gained renewed

interest in the mathematical optimization literature after their application to adjustable

robust optimization in [4]. The adaptation of this approach to MSLP was presented in

[57], and Kuhn et al. [35] analyzed the application of a static LDR in the dual of the

MSLP, which yields a lower bound on the optimal value of the MSLP. Moreover, under

certain assumptions, the static approximations obtained after restricting the primal and

dual policies to be an LDR are both tractable linear programs, as shown in [57] and [35],

respectively. The assumptions include stage-wise independence (or a slight generalization),

compact and polyhedral support, and that uncertainty is limited to the right-hand side of

the constraints. While in some cases static LDR policies provide high quality approxima-

tions to MSLP, they have potential to be significantly suboptimal. Better policies (primal

and dual) can be obtained by considering more flexible (nonlinear) rules such as (static)

piecewise linear decision rules [13] and polynomial decision rules [3].

We propose a new use of an LDR, which we refer to as two-stage linear decision rules.

The key idea is to partition the decision variables into state and recourse decision variables,

with the property that if the state variables are fixed, then the problem decouples into a

separate problem for each stage, involving only recourse decision variables. If one applies

an LDR only to the state variables, then the problem reduces to a two-stage stochastic

linear program (2SLP), in contrast to a static problem which is obtained when using a

static LDR. The advantage of two-stage LDRs is that they free the recourse variables from
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the LDR requirement, thus allowing for a potentially improved policy. Indeed, there exist

feasible 2SLPs that are infeasible if one enforces an LDR on the recourse variables [21].

This idea of reducing an MSLP to a 2SLP is similar to that proposed by Ahmed [1], except

that in [1] the state variables are completely decided in the first-stage and fixed, whereas

we allow them to vary according to an LDR. We also consider applying a two-stage LDR

in the dual of an MSLP, exploiting the observation that imposing an LDR restriction only

on the dual variables associated with the state equations is sufficient to obtain a 2SLP that

approximates the multi-stage dual problem. We investigate how approximate solutions

to the associated primal and dual approximation problems can be used to obtain feasible

policies with associated statistical estimates on the optimality gap. Our analysis suggests

that this can be done under mild assumptions, for example that the primal problem exhibits

relatively complete recourse (i.e., for any current state there exists a feasible next decision

and state) and has a bounded feasible region with probability 1. We illustrate the two-

stage LDR approach on two example problems: an inventory planning problem similar to

that studied in [4, 35], and a capacity expansion problem proposed in [15]. We find that,

for these problems, using two-stage LDRs yields significantly better primal policies (upper

bounds), and modestly improves on the lower bounds, when compared to using static

LDRs. For the capacity expansion problem, we also compare the two-stage LDR policies

and bounds to those obtained using the SDDP algorithm, when run for a similar amount

of computational time. We find that the SDDP algorithm yields similar lower bounds

and better policies for this problem, as expected since the SDDP algorithm is known to

converge to an optimal solution. Thus, the two-stage LDR approximation is expected to

be useful primarily for problems where the SDDP algorithm does not apply.

A significant challenge to using two-stage LDRs is that the resulting 2SLP is in general

intractable to solve exactly. Indeed, 2SLP is #P -hard [17, 27] due to the difficulty in

evaluating the expectation of the recourse function. However, as argued in [57], under

mild conditions Monte Carlo sampling-based methods can provide solutions of modest

accuracy to a 2SLP (such a statement cannot be made for MSLP). Thus, an important

benefit of the two-stage LDR approach is that it enables the application of the long history

of research into solving 2SLPs to the multi-stage setting. While using a sampling-based

method may lead to a suboptimal solution of the 2SLP approximations, our hope is that

this suboptimality may be more than offset by the improvement gained by eliminating the

LDR requirement on the recourse decisions that is imposed when using a static LDR. In

addition, when using a sampling-based approach, the assumptions that are required for
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obtaining a tractable reformulation when applying a static LDR are no longer needed. In

particular, the random variables need not have polyhedral (or even bounded) support, the

constraint matrices may be random and dependent across time stages, and the LDR may

be based on nonlinear functions of the random variables.

The two-stage LDR approach we propose can also be applied to certain multi-stage

stochastic integer programs, in which some of the decision variables are required to be

integer valued. In particular, for the primal problem, the approach applies directly provided

integrality restrictions are imposed only on the recourse variables. When the state variables

have integrality restrictions as well, the form of the decision rule applied to the state

variables must be modified, but the two-stage approach still applies. We refer to [7] for

one possible such decision rule based on piecewise-linear binary functions. We remark

that combining our approach with that of [7] would have potential benefit in terms of

both tractability and policy quality, as removing the piecewise-linear binary decision rule

requirement from the recourse variables both eliminates the need to design such a rule,

and gives those decisions more flexibility.

The rest of this paper is organized as follows. Section 2 defines the MSLP, reviews

the static LDR approach, and presents the proposed two-stage LDR approach, including

discussion of how to solve the approximate problem and obtain statistical upper bounds on

the original MSLP. Section 3 conducts a similar analysis for the dual of an MSLP, yield-

ing an approach for finding statistical lower bounds on an MSLP. We present illustrative

applications in Sections 4 and 5, and make concluding remarks in Section 6.

2 Primal two-stage linear decision rules

We formulate an MSLP with T ≥ 2 stages as follows, where throughout the paper, for

integers a ≤ b, [a, b] := {a, a+ 1, . . . , b} and [b] := {1, . . . , b}:

min
x,s

E

[

∑

t∈[T ]

ct(ξ
t)⊤xt(ξ

t) + ht(ξ
t)⊤st(ξ

t)
]

(1a)

s.t. At(ξ
t)st(ξ

t) +Bt(ξ
t)st−1(ξ

t−1) + Ct(ξ
t)xt(ξ

t) = bt(ξ
t), t ∈ [T ], P-a.s., (1b)

(xt(ξ
t), st(ξ

t)) ∈ Xt(ξ
t), t ∈ [T ], P-a.s. (1c)
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where for t ∈ [T ]

Xt(ξ
t) := {xt ∈ R

pt, st ∈ R
qt : Dt(ξ

t)st +Et(ξ
t)xt ≥ dt(ξ

t)}.

Here, {ξt}
T
t=1 is a stochastic process with probability distribution P and support Ξ, where

ξ1 = 1 for all ξ ∈ Ξ (i.e., data in stage 1 is deterministic), ξr is a random vector taking

values in R
ℓr for r ∈ [2, T ], and ξt := (ξ1, . . . , ξt) for t ∈ [T ]. Letting ℓ1 = 1, we denote

ℓt :=
∑t

r=1 ℓr for t ∈ [T ]. The s and x variables are referred to as state and recourse

variables, respectively. Similarly, (1b) and (1c) are referred to as state equations and

recourse constraints, respectively. The objective is to minimize the expected total cost.

The functions bt : R
ℓt → R

mt , dt : R
ℓt → R

nt, At : R
ℓt → R

mt×qt, Bt : R
ℓt → R

mt×qt−1 ,

Ct : R
ℓt → R

mt×pt , Dt : R
ℓt → R

nt×qt , and Et : R
ℓt → R

nt×pt define the random coefficients

as a function of ξt. Frequently in the literature, these are assumed to be affine functions

of ξt, but we will not need this assumption in this work. In (1b) for t = 1, we adopt

the convention that s0(ξ
0) = 0. The constraints are required to be almost surely satisfied

with respect to the distribution of the stochastic process, denoted by “P-a.s.” We note

that any MSLP can be brought into the form of (1) by introducing additional variables

and constraints. Throughout the paper, we assume that (1) is feasible and has an optimal

solution, and we denote its optimal objective value as zMSLP .

2.1 Static linear decision rules

A tractable approximation of MSLP can be obtained by restricting the decision policies to

a certain form, i.e., by restricting the decisions to be a special function of the uncertain

parameters. A linear decision rule is a policy in which the decisions at each stage t are

restricted to be a linear function of the observed random variables ξt up that stage. We

refer to the policies in which all the decisions are required to follow an LDR as static LDR

policies. Specifically, a static LDR policy has the form:

st(ξ
t) = βtΦt(ξ

t), (2a)

xt(ξ
t) = ΘtΦt(ξ

t), (2b)

where Θt ∈ R
pt×Kt and βt ∈ R

qt×Kt are free parameters of the LDR, and Φt(ξ
t) =

(Φt1(ξ
t), . . . ,ΦtKt

(ξt)) : Rℓt → R
Kt for all t ∈ [T ] is a vector of given LDR basis func-

tions. We refer to the Θ and β variables as the LDR variables. We assume K1 = 1
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and Φt1(ξ
t) ≡ 1 for all t ∈ [T ]. Often, the basis functions are the uncertain parameters

themselves, i.e., Kt = ℓt and Φtk(ξ
t) = (ξt)k, where (ξt)k denotes the kth component of ξt

vector. In this case, we refer to the basis functions as the standard basis functions. Note

that the convention ξ1 ≡ 1 implies that the decisions made at stage t are actually affine

functions of the random variables (ξ2, . . . , ξt). Finally, for notational convenience we adopt

the convention that Φ0 ≡ 0, so that any term involving Φ0 disappears.

Substituting the LDRs of the form (2) into MSLP given in (1) yields the following

approximation of MSLP, which we call P-LDR:

min
Θ,β

E

[

∑

t∈[T ]

ct(ξ
t)⊤ΘtΦt(ξ

t) + ht(ξ
t)⊤βtΦt(ξ

t)
]

(3)

s.t. At(ξ
t)βtΦt(ξ

t) + Ct(ξ
t)ΘtΦt(ξ

t) +Bt(ξ
t)βt−1Φt−1(ξ

t−1) = bt(ξ
t), t ∈ [T ], P-a.s.,

Dt(ξ
t)βtΦt(ξ

t) + Et(ξ
t)ΘtΦt(ξ

t) ≥ dt(ξ
t), t ∈ [T ], P-a.s.,

Θt ∈ R
pt×Kt, βt ∈ R

qt×Kt, t ∈ [T ].

We let zLDR denote the optimal value of P-LDR, where here and elsewhere, we adopt

the convention that if a minimization (maximization) problem is infeasible, the associated

optimal value is defined to be +∞ (−∞). Note that all the decision variables are determin-

istic, i.e., they have to be determined before observing any random outcomes, and hence

this problem is a static problem. P-LDR is a semi-infinite program having infinitely many

constraints. It is observed in [57] (see also [13, 35]) that P-LDR can be reformulated as a

linear program (LP) using robust optimization techniques under the following assumptions:

A1. The standard basis functions are used.

A2. For all t ∈ [T ], the constraint matrices, At, Bt, Ct,Dt, Et, are independent of the

random vector ξT , and bt(ξ
t) and dt(ξ

t) are affine functions of ξt.

A3. The support, Ξ, is a nonempty compact polyhedron.

The LP reformulation has constraints of the form (β,Θ, w) ∈ D, where w are auxiliary

variables and D is an explicitly given polyhedron. The size of this LP scales well (typically

grows only quadratically) with the number of stages T . Moreover, the LP does not require

any discretization of P (e.g., by Monte Carlo sampling), and instead only uses a polyhedral

description of Ξ and the second order moment matrix of the random variables. These

results have been generalized in [23] to the case of conic support, where A3 is replaced by
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an assumption that Ξ is described by a finite set of conic inequalities, in which case P-LDR

(3) is reformulated as a conic program.

As P-LDR (3) is a restriction of MSLP, it provides an upper bound to MSLP. However,

the benefit of tractability comes at the expense of loss of optimality. That is, the obtained

upper bound can be substantially far from the optimal value of MSLP. Indeed, for 2SLPs,

the optimal recourse decisions are very rarely linear in the random variables, but there

always exists an optimal piecewise linear decision rule [21].

2.2 Two-stage linear decision rules

We propose two-stage LDRs which yield upper bounds to MSLP that cannot be worse

than the ones obtained by P-LDR (3). The key idea is to apply an LDR only on the state

variables to obtain a two-stage approximation of MSLP, rather than a static approximation.

Substituting the LDR of the form (2a) into the MSLP given in (1) yields

min
x,β

∑

t∈[T ]

E
[

ct(ξ
t)⊤xt(ξ

t)
]

+
∑

t∈[T ]

E
[

ht(ξ
t)⊤βtΦt(ξ

t)
]

(4)

s.t. At(ξ
t)βtΦt(ξ

t) + Ct(ξ
t)xt(ξ

t) +Bt(ξ
t)βt−1Φt−1(ξ

t−1) = bt(ξ
t), t ∈ [T ], P-a.s.,

Dt(ξ
t)βtΦt(ξ

t) + Et(ξ
t)xt(ξ

t) ≥ dt(ξ
t), t ∈ [T ], P-a.s.,

xt(ξ
t) ∈ R

pt, t ∈ [T ], P-a.s.,

βt ∈ R
qt×Kt , t ∈ [T ].

We denote this problem as P-LDR-2S and the optimal value of this problem as z2S . This

problem is a 2SLP, which can be equivalently written as follows, where we drop dependence

of the first-stage variables on ξ1 ≡ 1 and use β1 = s1(ξ
1) = Φ1(ξ

1)β1,

z2S = min
x1,β

c⊤1 x1 +
∑

t∈[T ]

E
[

ht(ξ
t)⊤βtΦt(ξ

t)
]

+ E[Q(β, ξT )]

s.t. A1β1 + C1x1 = b1,

D1β1 + E1x1 ≥ d1,

x1 ∈ R
p1 ,

βt ∈ R
qt×Kt , t ∈ [T ],
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where Q(β, ξT ) :=
∑

t∈[2,T ]Qt(β, ξ
t) and for t ∈ [2, T ],

Qt(β, ξ
t) := min

xt

ct(ξ
t)⊤xt (5a)

s.t. Ct(ξ
t)xt = bt(ξ

t)−At(ξ
t)βtΦt(ξ

t)−Bt(ξ
t)βt−1Φt−1(ξ

t−1), (5b)

Et(ξ
t)xt ≥ dt(ξ

t)−Dt(ξ
t)βtΦt(ξ

t), (5c)

xt ∈ R
pt. (5d)

The following proposition, immediate from the definitions of the associated problems,

summarizes the relationship between the optimal values of MSLP, P-LDR (3), and P-LDR-

2S (4).

Proposition 2.1. The following inequalities hold:

zMSLP ≤ z2S ≤ zLDR.

The difference between zLDR and z2S can be arbitrarily large. In particular, an example

is given in [21] of a 2SLP having relatively complete recourse for which P-LDR (3) is

infeasible (zLDR = ∞), while the 2SLP (and hence P-LDR-2S, (4)) is feasible.

Unfortunately, the techniques used to derive a static approximation of P-LDR (3) do

not yield an efficiently computable reformulation of P-LDR-2S (4), even under assumptions

A1-A3. In the next section, we review approaches for obtaining an approximate solution,

say β̂, of P-LDR-2S (4). Then, in Section 2.4 we discuss techniques for obtaining a feasible

policy (and hence estimating an upper bound on zMSLP ) using such a solution.

2.3 Approximate solution of P-LDR-2S

There is a huge literature on (approximately) solving 2SLP problems. In this section, we

present a brief overview of relevant approaches, with a focus on identifying the required

assumptions. We refer the reader to [55] for more details.

A common approach for approximately solving a 2SLP is sample average approximation,

in which P is approximated by a discrete probability measure P̂ that assigns positive weights

only to a finite (relatively small) number of realizations of ξT which are called scenarios.

In this way, the intractable expectation term is replaced with a sum. Scenarios may be

constructed by a variety of techniques, such as Monte Carlo, quasi-Monte Carlo, and Latin

hypercube sampling (e.g., [30, 34, 38, 41, 56]). For the purpose of this paper, we consider
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only the conceptually simplest case in which scenarios are generated via independent Monte

Carlo sampling.

Let ξTj , j = 1, . . . , N , be an independent and identically distributed (i.i.d.) random

sample of the random vector ξT , and define the sample average approximation (SAA)

problem:

ẑ2SN := min
x1,β

c⊤1 x1 +
∑

t∈[T ]

E
[

ht(ξ
t)⊤βtΦt(ξ

t)
]

+
1

N

∑

j∈[N ]

Q(β, ξTj ) (6a)

s.t. A1β1 + C1x1 = b1, (6b)

D1β1 + E1x1 ≥ d1, (6c)

x1 ∈ R
p1 , (6d)

βt ∈ R
qt×Kt, t ∈ [T ]. (6e)

Once the sample is fixed, the SAA problem can be solved by any approach for solving

the above, now deterministic, problem. In particular the L-shape decomposition algorithm

[59] or a regularized variant [36, 50] can be applied, with the further advantage that the

subproblem obtained with fixed β̂ decomposes by both scenario and stage due to the rela-

tionship Q(β, ξT ) =
∑

t∈[2,T ]Qt(β, ξ
t). The coefficients on βt in the objective function (6a)

can also be estimated by sampling in case the terms E[htj(ξ
t)Φtk(ξ

t)] cannot be computed

efficiently.

If (i) there exists a β̄ such that E[Q(β, ξT )] < ∞ for all β in a neighborhood of β̄, and

(ii) the set of optimal solutions to P-LDR-2S (4) is nonempty and bounded, then because

Q(·, ξT ) is a convex function for all ξT ∈ Ξ, Theorem 5.4 of [55] applies and implies that

ẑ2SN → z2S with probability 1 as N → ∞ (7)

and also that the set of optimal solutions to (6) converges to the set of optimal solutions

of P-LDR-2S (4).

Stronger results on the convergence of ẑ2SN to z2S require additional assumptions. For

example, a central limit theorem result (e.g., Theorem 5.7 in [55]) can be obtained under

the assumptions that E[Q(β̄, ξT )2] < ∞ for some β̄, and that there exists a measurable

function f : Ξ → R+ such that E[f(ξT )2] is finite and

|Q(β, ξT )−Q(β′, ξT )| ≤ f(ξT )‖β − β′‖

10



for all β, β′ and almost every ξT ∈ Ξ. Bounds on the sample size required for (6) to

yield an ǫ-optimal solution to P-LDR-2S (4) with probability at least 1− α are derived in

[52, 55, 56, 57]. These bounds scale linearly with the dimension of the first-stage variables,

β and x1 in this case. Dependence on the confidence α is ln(1/α) so that high confidence

can be achieved, but the dependence on ǫ is O(1/ǫ2), which is why sampling is limited to

obtaining “medium accuracy” solutions [57]. These stronger results all require, at least,

that Q(β, ξT ) is finite for every first-stage solution β and almost every ξT ∈ Ξ.

In order to facilitate the solution of P-LDR-2S (4) via a sampling procedure, we also

consider adding additional constraints β ∈ B ⊆ R
τP , where τP :=

∑

t∈[T ] qtKt, to P-LDR-

2S (4) (and to the SAA (6)). For example, some of the convergence results require the

first-stage feasible region to be bounded, in which case we may define B by limiting the

absolute value of each component of β to be less than a large constant. If the constant is

not chosen large enough, then this may degrade the quality of the solution obtained, but

this could be detected after solving the SAA problem by determining if any of the bound

constraints are tight. More significantly, most of the SAA convergence results require the

following relatively complete recourse assumption on the set B:

Assumption 2.2. For all β ∈ B, Q(β, ξT ) < +∞ P-a.s..

If P-LDR-2S (4) already has relatively complete recourse, then we can take B = R
τP ,

and hence impose no additional constraints. Otherwise, adding the constraints β ∈ B

has the potential to make the approximation more conservative. Derivation of a set B that

satisfies Assumption 2.2 is a difficult task in general. However, relatively complete recourse

can often be achieved by appropriate modeling, e.g., by introducing “artificial” variables

that allow violation of a constraint, where the violation amount is then penalized in the

objective function. Derivation of a set B satisfying Assumption 2.2 may then be possible

using ad hoc techniques. We provide an example of how this can be done in an inventory

planning problem in Section 4.2. Another possibility, if assumptions A1-A3 hold, is to

use the robust optimization techniques used in [35, 57] to derive a tractable set D such

that (β,Θ) is feasible to P-LDR (3) if and only if there are values of auxiliary variables

w such that (β,Θ, w) ∈ D. Then, B = projβ(D) would satisfy Assumption 2.2. This

construction of B is more conservative than necessary, because it restricts β to values for

which there is also a Θ that makes the static LDR policy defined in (2) feasible P-a.s..

However, the resulting policy could still potentially be better (and for sure would not be

worse) than the static LDR policy obtained from P-LDR (3), since enforcing β ∈ projβ(D)
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would not require the recourse decisions to follow an LDR policy (it only requires existence

of a feasible LDR policy).

P-LDR-2S (4), with the additional constraints β ∈ B, can also be approximately solved

by stochastic approximation [48] or one of its robust extensions, e.g., [40, 46], when As-

sumption 2.2 holds and B is bounded.

Finally, we remark that if we cannot derive a set B satisfying Assumption 2.2, results

about sampling-based approximation of chance-constrained programs derived in [11] can

be used to show that an optimal solution of the SAA problem (6) yields a policy that is

feasible for a large fraction of the random outcomes. This has been previously used in

[6, 7, 60] when using sampling to approximately solve static approximations derived from

finitely adaptable and piecewise-linear decision rules. Although the two-stage LDR policy

itself is not necessarily feasible P-a.s. in this case, in the next section we discuss how an

approximate solution β̂ could still be used to guide a feasible policy.

2.4 Feasible policies and upper bounds on z
MSLP

Let (x̂1, β̂) be an approximate first-stage solution to P-LDR-2S (4). We discuss how such

a solution can be used to obtain a feasible policy for the MSLP (1), which in turn can be

used to estimate an upper bound on zMSLP . We consider two possibilities for obtaining

such a policy, depending on whether or not a set B satisfying Assumption 2.2 is used.

We first consider the case that β̂ ∈ B for a set B satisfying Assumption 2.2. In this case,

(x̂1, β̂) defines a feasible solution to P-LDR-2S (4) and a feasible two-stage LDR policy for

MSLP. In particular, at stage t, if the current history is ξt, the state variable decisions

are given by using β̂ in the LDR (2a) and the recourse decisions are obtained by solving

(5), again substituting β̂ for β. As this solution defines a feasible policy, the expected cost

of this solution provides an upper bound on z2S and zMSLP . The expected cost of the

policy defined by (x̂1, β̂) can be estimated by generating an independent sample of ξT , say

{ξTj }
N ′

j=1 , and computing

c⊤1 x̂1 +
∑

t∈[T ]

E
[

ht(ξ
t)⊤β̂tΦt(ξ

t)
]

+
1

N ′

∑

j∈[N ′]

Q(β̂, ξTj ).

Because β̂ is fixed in this evaluation step, it would generally be computationally feasible to

use N ′ ≫ N . The values Q(β̂, ξTj ) for j ∈ [N ′] can also be used to construct a confidence

interval on the objective value of (x̂1, β̂), and hence a statistical upper bound on zMSLP .
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We next consider the case when we do not know β̂ ∈ B for a set B satisfying Assumption

2.2, so that we do not know a priori that the two-stage LDR defined by β̂ defines a feasible

policy. To construct a policy in this case, we make the following relatively complete recourse

assumption for the original problem MSLP.

Assumption 2.3. For all ξT ∈ Ξ, and each t ∈ [2, T ], if the random vectors

{(sr(ξ
r), xr(ξ

r)}r∈[t−1]

satisfy the constraints of MSLP for r ∈ [t − 1], then there exists (st, xt) that satisfies the

constraints of MSLP in stage t:

At(ξ
t)st + Ct(ξ

t)xt = bt(ξ
t)−Bt(ξ

t)st−1(ξ
t−1),

(xt, st) ∈ Xt(ξ
t).

In other words, this assumption states that in any stage t, for any value of the previous

state variables st−1(ξ
t−1) that could be obtained from past realizations of the random

outcomes and past feasible decisions, there always exists a feasible set of decisions in the

current stage (see e.g., [29]).

Under Assumption 2.3, we can implement a policy which is guided by β̂, which we refer

to as a state-target tracking (STT) policy. Specifically, at stage t = 1, we implement the

solution xSTT
1 = x̂1 and sSTT

1 = β̂1. Then, for each stage t ∈ [2, T ], we first observe ξt

(thus, we have ξt), and then solve the problem (deterministic for this fixed ξt):

min
xt,st

ct(ξ
t)⊤xt + ht(ξ

t)⊤st + ρ‖st − β̂tΦt(ξ
t)‖ (8a)

s.t. At(ξ
t)st + Ct(ξ

t)xt = bt(ξ
t)−Bt(ξ

t)sSTT
t−1 (ξt−1),

(xt, st) ∈ Xt(ξ
t), (8b)

where ρ ≥ 0 is a parameter of the policy and ‖ · ‖ is any norm, and let the optimal solution

be xSTT
t (ξt), sSTT

t (ξt). For any ξT ∈ Ξ, all problems in this sequence are feasible when

Assumption 2.3 holds, and hence this yields a feasible policy to MSLP. Observe that when

ρ = 0, the policy reduces to a pure myopic policy that only considers the cost of decisions

in each stage, without considering the impact of st on future costs. Using larger values

of ρ > 0 has the effect of encouraging the decisions to be made in a way that keeps the

state close to what would have been achieved if we could exactly follow the LDR policy
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defined by β̂ on the state variables. The cost of the STT policy under a realization ξ of

the stochastic process is

∑

t∈[T ]

(

ct(ξ
t)⊤xSTT

t (ξt) + ht(ξ
t)⊤sSTT

t (ξt)
)

.

The expected cost of the STT policy is an upper bound on the optimal value of MSLP, and a

confidence interval on this expected cost can be obtained by simulation with independent

replications. We do not know an a priori upper bound on the optimality gap between

the expected cost of the STT policy and the optimal value zMSLP . However, the dual

two-stage LDR discussed in Section 3 may be used to estimate a lower bound on zMSLP ,

which can be used to provide an a posteriori statistical bound on the optimality gap of

the STT policy. The value of the parameter ρ can be selected by estimating the expected

cost of the policy under different values of ρ and choosing the most promising value, or

by using optimization via simulation techniques [20, 31]. For example, in our numerical

experiments, we used a fixed relatively small sample (N ′ = 100), and applied a variant of a

golden section algorithm to find a value of ρ that approximately minimizes the estimated

cost given by this sample. See Section 5.2 for more details. Once the value of ρ is chosen,

the expected cost of the resulting policy is evaluated using a larger sample. Note that

using the STT policy, even the decisions sSTT
t (ξt) may not necessarily have the form of an

LDR. Thus, simulating this policy yields an estimate of an upper bound on zMSLP , but

not necessarily on z2S .

3 Dual two-stage linear decision rules

In this section, we apply a two-stage LDR to the dual of MSLP, with the goal of obtaining

lower bounds on the optimal value of MSLP. The dual of MSLP, which we refer to as
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D-MSLP, is the problem (see [18]):

max
λ,γ

E

[

∑

t∈[T ]

bt(ξ
t)⊤λt(ξ

t) + dt(ξ
t)⊤γt(ξ

t)
]

(9a)

s.t. E

[

Bt+1(ξ
t+1)⊤λt+1(ξ

t+1)
∣

∣

∣
ξt
]

+At(ξ
t)⊤λt(ξ

t) +Dt(ξ
t)⊤γt(ξ

t) = ht(ξ
t), t ∈ [T ], P-a.s., (9b)

Ct(ξ
t)⊤λt(ξ

t) +Et(ξ
t)⊤γt(ξ

t) = ct(ξ
t), t ∈ [T ], P-a.s., (9c)

γt(ξ
t) ≥ 0, t ∈ [T ], P-a.s., (9d)

λt(ξ
t) ∈ R

mt , γt(ξ
t) ∈ R

nt , t ∈ [T ], P-a.s., (9e)

where BT+1(ξ
T+1) = 0. For t ∈ [T ], the dual decisions λt(·) (corresponding to constraints

(1b) in MSLP) and γt(·) (corresponding to constraints (1c) in MSLP) are functions of

the data ξt observed up to stage t. Weak duality holds for MSLP and D-MSLP, i.e., the

optimal objective value of D-MSLP provides a lower bound on zMSLP . Moreover, under

some conditions, strong duality holds (i.e., optimal value of D-MSLP equals zMSLP ) [18],

although we only require weak duality.

3.1 Static linear decision rules

In [35] it has been proposed to use a static LDR to obtain a tractable approximation of

D-MSLP, and thus an efficiently computable lower bound on zMSLP . Specifically, the idea

is to require all the dual decisions to be an LDR, i.e.,

λt(ξ
t) = ΛtΦt(ξ

t), (10a)

γt(ξ
t) = ΓtΦt(ξ

t), (10b)
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where Λt ∈ R
mt×Kt,Γt ∈ R

nt×Kt, for all t ∈ [T ] are the parameters of the decision rule.

Imposing (10) yields the following static approximation of D-MSLP, which we call D-LDR:

max
Λ,Γ

E

[

∑

t∈[T ]

bt(ξ
t)⊤ΛtΦt(ξ

t) + dt(ξ
t)⊤ΓtΦt(ξ

t)
]

(11)

s.t. E

[

Bt+1(ξ
t+1)⊤Λt+1Φt+1(ξ

t+1)
∣

∣

∣
ξt
]

+At(ξ
t)⊤ΛtΦt(ξ

t) +Dt(ξ
t)⊤ΓtΦt(ξ

t) = ht(ξ
t), t ∈ [T ], P-a.s.,

Ct(ξ
t)⊤ΛtΦt(ξ

t) + Et(ξ
t)⊤ΓtΦt(ξ

t) = ct(ξ
t), t ∈ [T ], P-a.s.,

ΓtΦt(ξ
t) ≥ 0, t ∈ [T ], P-a.s.,

Λt ∈ R
mt×Kt, Γt ∈ R

nt×Kt, t ∈ [T ].

We refer to the optimal value of D-LDR as vLDR. The semi-infinite program D-LDR (11)

can be reformulated as an efficiently solvable LP if assumptions A1-A3 stated in Section 2

hold, the problem MSLP is strictly feasible, and the following additional assumption holds

[35]:

A4. The conditional expectation E(ξT |ξt) is almost surely linear in ξt for all t ∈ [T ] (e.g.,

this occurs when {ξt}t∈[T ] are mutually independent, known as stage-wise indepen-

dence).

If assumption A3 is replaced by an assumption that Ξ is described by conic inequalities,

D-LDR (11) can be reformulated as a conic program [23].

3.2 Two-stage linear decision rules

Examining the structure of D-MSLP, given in (9), we observe that if the values λt(ξ
t)

are fixed, then (9) decomposes by stage. We thus propose to apply an LDR only to the

λ variables, leaving the decision variables γ as recourse variables. Imposing the LDR of
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(10a) collapses D-MSLP into the following 2SLP, which we refer to as D-LDR-2S:

v2S := max
γ1,Λ

d⊤1 γ1 +
∑

t∈[T ]

E
[

bt(ξ
t)⊤ΛtΦt(ξ

t)
]

+ E[G(Λ, ξT )] (12)

s.t. E
[

B2(ξ
2)⊤Λ2Φ2(ξ

2)
]

+A⊤
1 Λ1 +D⊤

1 γ1 = h1,

C⊤
1 Λ1 + E⊤

1 γ1 = c1,

γ1 ∈ R
n1

+ ,

Λt ∈ R
mt×Kt, t ∈ [T ],

where we have dropped the dependence on ξ1 ≡ 1 on the first-stage decision variables.

Here, G(Λ, ξT ) is the second-stage value function,

G(Λ, ξT ) :=
∑

t∈[2,T ]

Gt(Λ, ξ
t) (13)

where for each t ∈ [2, T ]

Gt(Λ, ξ
t) := max

γt
dt(ξ

t)⊤γt (14a)

s.t. Dt(ξ
t)⊤γt = ht(ξ

t)−At(ξ
t)⊤ΛtΦt(ξ

t)

− E

[

Bt+1(ξ
t+1)⊤Λt+1Φt+1(ξ

t+1)
∣

∣

∣
ξt
]

, (14b)

Et(ξ
t)⊤γt = ct(ξ

t)− Ct(ξ
t)⊤ΛtΦt(ξ

t), (14c)

γt ∈ R
nt

+ . (14d)

The following proposition, immediate from the definitions of the associated problems,

summarizes the relationship between the optimal values of MSLP, D-LDR (11), and D-

LDR-2S(12) .

Proposition 3.1. The following inequalities hold:

zMSLP ≥ v2S ≥ vLDR.

As D-LDR-2S (12) is a 2SLP, the discussion in Section 2.3 of methods to obtain an

approximate solution to P-LDR-2S (4) applies also to D-LDR-2S (12). In particular, one
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possibility is to obtain an i.i.d. sample {ξTj }
N
j=1 of ξT and solve the SAA problem:

v̂2SN := max
γ1,Λ

d⊤1 γ1 +
∑

t∈[T ]

E
[

bt(ξ
t)⊤ΛtΦt(ξ

t)
]

+
1

N

∑

j∈[N ]

G(Λ, ξTj ) (15a)

s.t. E
[

B2(ξ
2)⊤Λ2Φt(ξ

2)
]

+A⊤
1 Λ1 +D⊤

1 γ1 = h1, (15b)

C⊤
1 Λ1 +E⊤

1 γ1 = c1, (15c)

γ1 ∈ R
n1

+ , (15d)

Λt ∈ R
mt×Kt , t ∈ [T ]. (15e)

As in the primal, note that the SAA problem can be solved by decomposition algorithms as

the second-stage problem decomposes by both scenario and by stage due to the relationship

(13). The expected value coefficients in the objective and constraints (15b) may be further

estimated by sampling in case they cannot be computed efficiently.

3.3 Obtaining lower bounds on z
MSLP

Next, we discuss how to use an approximate solution of D-LDR-2S (12) to estimate a lower

bound on zMSLP . As in the primal case, in order to assure that we obtain a two-stage LDR

policy that is feasible for all possible realizations, we consider the possibility of adding a

set of constraints Λ ∈ L ⊆ R
τD to D-LDR-2S (12) and its SAA counterpart (15) where

τD :=
∑

t∈[T ]Ktmt. The following assumption on L assures that the problem D-LDR-2S

(12) has relatively complete recourse when the constraints Λ ∈ L are enforced.

Assumption 3.2. For all Λ ∈ L, G(Λ, ξT ) > −∞ P-a.s..

The following assumption provides a sufficient condition under which the set L = R
τD

satisfies Assumption 3.2 (i.e., no additional constraints are necessary).

Assumption 3.3. The set Xt(ξ
t) is bounded for all t ∈ [T ] and P almost all ξT ∈ Ξ.

A special case of this assumption occurs when x and s variables have explicit upper

and lower bounds. An important feature of this assumption is that the sets Xt(ξ
t) are not

required to be uniformly bounded. For example, bounds on the decision variables of the

form 0 ≤ xt(ξ
t) ≤ M(ξt) (and similarly for s variables), are sufficient for satisfying this

assumption, even if M(ξt) is not bounded over ξT ∈ Ξ.

Proposition 3.4. If Assumption 3.3 is satisfied, then L = R
τD satisfies Assumption 3.2.
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Proof. We show that for any given Λ ∈ R
τD and ξT ∈ R

ℓT , (14) is feasible for any t ∈ [T ].

Let Rb(ξ
t) and Rc(ξ

t) denote the right-hand sides of the constraints (14b) and (14c),

respectively. Then, the dual of (14)

min Rb(ξ
t)⊤st(ξ

t) +Rc(ξ
t)⊤xt(ξ

t)

s.t. (xt(ξ
t), st(ξ

t)) ∈ Xt(ξ
t),

xt(ξ
t) ∈ R

pt , st(ξ
t) ∈ R

qt,

is bounded due to Assumption 3.3. It is also feasible as MSLP is assumed to be feasible.

This implies that (14) cannot be infeasible.

Now, suppose we have an approximate solution (γ̂1, Λ̂) to D-LDR-2S (12), where Λ̂ ∈ L

for some set L that satisfies Assumption 3.2. In this case, (γ̂1, Λ̂) defines a feasible solution

to D-LDR-2S (12), and hence its objective value provides a lower bound on v2S , and hence

is a lower bound on zMSLP . The objective value of (γ̂1, Λ̂) can be estimated by generating

an independent sample of ξT , say {ξTj }
N ′

j=1 (where possibly N ′ ≫ N), and computing

d⊤1 γ̂1 +
∑

t∈[T ]

E
[

bt(ξ
t)⊤Λ̂tΦt(ξ

t)
]

+
1

N ′

∑

j∈[N ′]

G(Λ̂, ξTj ).

The values G(Λ̂, ξTj ) for j ∈ [N ′] can also be used to construct a confidence interval on the

objective value of (γ̂1, Λ̂), and hence a statistical lower bound on zMSLP .

We close this section by discussing an approach for estimating the gap between a primal

two-stage LDR policy defined by (x̂1, β̂) and a dual two-stage LDR policy defined by (γ̂1, Λ̂).

Following [39], the motivation is that if the same sample (common random numbers) is

used in estimating the upper and lower bounds, then the variance of the gap estimator

can be reduced if the upper and lower bound sample estimates are positively correlated.

Specifically, given a sample {ξTj }
N ′

j=1, the gap observations are then calculated as

Gapj =
[

c⊤1 x̂1 +
∑

t∈[T ]

E
[

ht(ξ
t)⊤β̂tΦt(ξ

t)
]

+Q(β̂, ξTj )
]

−
[

d⊤1 γ̂1 +
∑

t∈[T ]

E
[

bt(ξ
t)⊤Λ̂tΦt(ξ

t)
]

+ G(Λ̂, ξTj )
]

,

for j ∈ [N ′]. These values can then be used to construct a confidence interval on the gap.

19



4 Illustrative example: Inventory planning

We first present a numerical example on an inventory planning problem to investigate the

performance of two-stage LDR policies and bounds, in comparison to static LDR policies

and bounds.

4.1 Problem description

We consider a variation of the inventory planning problem used for numerical illustration

in [4, 35]. The system consists of I factories and a single product type, and the goal is to

meet demands over the planning horizon at minimum expected cost. The model is stated

as follows:

min E

[

∑

t∈[T ]

∑

i∈[I]

citxit(ξ
t)

]

(16)

s.t. st−1(ξ
t)− st(ξ

t) +
∑

i∈[I]

xit(ξ
t) = ξt, t ∈ [T ], P-a.s., (17)

s ≤ sit(ξ
t) ≤ s̄ t ∈ [T ], i ∈ [I], P-a.s., (18)

0 ≤ xit(ξ
t) ≤ x̄i t ∈ [T ], i ∈ [I], P-a.s.. (19)

Here, ξt is a scalar random variable representing demand for the product in each t ∈ [T ].

The recourse decision variable xit(ξ
t) determines amount of the product to produce in

factory i at stage t, while the state variable st(ξ
t) represents the inventory level at the end

of stage t. Constraints (17) are the inventory balance equations, (18) limit the inventory

level to be between lower bound s and upper bound s̄, and (19) are the limits on production

in each stage to be at most x̄i.

The model in [4, 35] also has a constraint on the total amount that can be produced

from any single factory over all the stages in the planning horizon. Modeling this constraint

in our standard model format requires introducing an additional state variable for each

factory i, representing the cumulative amount of production from each factory. Imposing

an LDR on that state variable would in turn imply that the variables xit(ξ
t) also follow an

LDR, and hence for that model the static and two-stage LDR policies are identical. This

illustrates an example where there is no benefit to using a two-stage LDR over a static

LDR. In the version we consider, the xit(ξ
t) are still flexible when the state variables st(ξ

t)

follow an LDR, and hence there is potential for a two-stage LDR to yield better solutions.

20



Following the data in [4, 35], we consider an instance with I = 3, s = 500, s̄ = 2000,

and x̄i = 567 for i ∈ [I]. The random demand ξt in stage t ∈ [T ] is uniformly distributed

in the interval Ξt = [(1 − θ)ξ∗ζt, (1 + θ)ξ∗ζt], where θ = 0.3 is the variability parameter,

ξ∗ = 1000 is the nominal demand, and ζt = 1 + (1/2) sin(π(t − 1)/12) is the seasonality

factor. Finally, the cost coefficients are defined as cit = αiζt, where α1 = 1, α2 = 1.5, and

α3 = 2.

4.2 Implementation details

For both the static and two-stage LDR policies, we use the standard basis functions, ξt,

in stage t. For the static LDR, we implemented the deterministic reformulations proposed

in [35, 57] to obtain upper bounds (with a primal LDR policy) and lower bounds (with a

dual LDR policy).

For the primal two-stage LDR policy, we first observe that this problem as stated does

not satisfy relatively complete recourse, Assumption 2.3, although we remark that this

assumption is satisfied in a slightly modified version of the problem in which variables are

introduced to allow some amount of demand to go unserved, with a large penalty. Rather

than making this modification, however, we demonstrate how for this problem a set of

constraints satisfying Assumption 2.2 can be derived. Using the standard basis functions,

the state variables st(ξ
t) take the form

st(ξ
t) = βtξ

t

where βt ∈ R
1×t. Thus, the constraints (18) take the form

s ≤ βtξ
t ≤ s̄, t ∈ [T ],∀ξt ∈ [1− θξ∗ζt, (1 + θ)ξ∗ζt].

These constraints can be reformulated with deterministic linear constraints in an extended

variable space using standard robust optimization techniques [5]. To ensure βt, t ∈ [T ] are

selected such that constraints (17) can be satisfied for some xt(ξ
t), i ∈ [I] satisfying (19),

it is sufficient to enforce

ξt −
∑

i∈[I]

x̄i ≤ βt−1ξ
t−1 − βtξ

t ≤ ξt, t ∈ [T ],∀ξt ∈ [(1 − θ)ξ∗ζt, (1 + θ)ξ∗ζt],

where the lower bound is based on the maximum total production and the upper bound
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is based on the minimum total production in each period. Again, these constraints can be

reformulated as deterministic linear constraints using robust optimization techniques.

For both the primal and dual two-stage LDR policy, we use 250 scenarios to construct

an SAA, and solve the resulting problem by explicitly solving the determistic equivalent

formulation. Given the resulting LDR coefficients, we then use an independent sample of

105 scenarios to evaluate the quality of the primal policy and dual bound.

4.3 Results

Table 1 provides the results comparing the bounds obtained for this instance, for varying

values of T = 2, . . . , 10. The columns under Static LDR provide the lower bound (LB),

upper bound (UB), and optimality gap (Gap (%)), respectively, where optimality gap for

an instance is calculated as (UB - LB)/UB. For the two-stage LDR policy, 95% confidence

intervals for the lower bound (LB CI) and upper bound (UB CI) are provided, along with

an estimate of the optimality gap, which is computed by using the lower end of the lower

bound confidence interval and the upper end of the upper bound confidence interval. We

Static LDR 2S LDR

T LB UB Gap (%) LB CI UB CI Gap (%)

2 1972.4 2026.0 2.65 1974.4 ± 2.7 1993.9 ± 1.9 1.21
3 3825.0 3940.2 2.92 3831.6 ± 4.0 3856.1 ± 3.2 0.82
4 6089.8 6345.0 4.02 6102.4 ± 5.5 6146.9 ± 4.7 0.89
5 8664.4 9021.3 3.96 8669.1 ± 6.6 8737.6 ± 5.9 0.93
6 11482.4 11975.0 4.11 11515.2 ± 10.2 11594.8 ± 7.3 0.84
7 14431.1 15076.3 4.28 14482.3 ± 12.3 14618.8 ± 8.6 1.08
8 17431.6 18200.3 4.22 17527.4 ± 13.7 17660.4 ± 9.9 0.89
9 20251.8 21147.9 4.24 20326.2 ± 14.9 20535.3 ± 10.9 1.14
10 22764.8 23738.3 4.10 22809.5 ± 15.0 23067.0 ± 11.5 1.23

Table 1: Comparison of static and two-stage LDR policies for inventory problem.

find that the two-stage LDR policy can yield modestly better lower bound estimates than

the static LDR lower bounds, and somewhat more significantly better primal policies.

In terms of solution time, the static LDR lower and upper bounds were computed very

quickly, less than 0.02 seconds in all cases. For the two-stage LDR policies, solving the two

SAA problems took at most 3.98 seconds, and evaluating the bounds took at most 5.17

seconds. Thus, as expected, in this case where the assumptions required for obtaining a
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deterministic formulation of static LDR apply, the solution time for the static LDR policy

are significantly faster than for the two-stage LDR. On the other hand, the solution times

for the two-stage LDR policy were still modest, and yielded better policies.

5 Illustrative example: Capacity expansion

We next consider a capacity expansion problem. On this problem, we again compare the

two-stage LDR policies and bounds to those obtained from static LDR policies, and also

compare to the policy and lower bound obtained from using the SDDP algorithm.

5.1 Problem description

We consider a variant of the stochastic capacity expansion problem given in [15]. We wish

to determine an investment schedule over T stages for the installation of new capacities

of I different power generation technologies, together with some operational decisions to

meet demand for power over time. The demand is modeled by a load duration curve, which

is approximated by partitioning each stage into J segments (of possibly different length).

The demand corresponding to segment j ∈ [J ] in t ∈ [T ] is denoted by dtj . The amount

of new capacity of technology i ∈ [I] added in stage t ∈ [T ] is represented by u+ti , and is

assumed to be available for use immediately, i.e., at the beginning of stage t. The unit cost

of u+ti is denoted by cu
+

ti . The state variable sti represents the current installed capacity of

technology i ∈ [I] in the beginning of stage t ∈ [T ], which incurs holding cost of csti per

unit. We assume that it is possible to discard (i.e., remove) some capacity of i ∈ [I] in

t ∈ [T ], denoted by u−ti , at a (possibly zero) unit cost of cu
−

ti . The operating level of i ∈ [I]

at t ∈ [T ] for meeting the demand in segment j ∈ [J ] is represented by the decision variable

xtij , while the amount of unsatisfied demand is represented as ztj , whose unit costs are c
x
tij

and cztj , respectively. Then, the stochastic capacity expansion problem is formulated as an
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MSLP as follows:

min E

∑

t∈[T ]

[

∑

i∈[I]

(

cu
+

ti u+ti(ξ
t) + cu

−

ti u−ti(ξ
t) + csti sti(ξ

t) +
∑

j∈[J ]

cxtijxtij(ξ
t)
)

+
∑

j∈[J ]

cztjztj(ξ
t)

]

(20a)

s.t. sti(ξ
t)− st−1,i(ξ

t−1)− u+ti(ξ
t) + u−ti(ξ

t) = 0, t ∈ [T ], P-a.s., i ∈ [I], (20b)

sti(ξ
t)− xtij(ξ

t) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I], j ∈ [J ], (20c)
∑

i∈[I]

xtij(ξ
t) + ztj(ξ

t) ≥ dtj(ξ
t), t ∈ [T ], P-a.s., j ∈ [J ], (20d)

0 ≤ ztj(ξ
t) ≤ dtj(ξ

t), t ∈ [T ], P-a.s., j ∈ [J ], (20e)

0 ≤ u+ti(ξ
t) ≤ Mu+

ti , t ∈ [T ], P-a.s., i ∈ [I], (20f)

0 ≤ u−ti(ξ
t) ≤ Mu−

ti , t ∈ [T ], P-a.s., i ∈ [I], (20g)

0 ≤ sti(ξ
t) ≤ M s

ti, t ∈ [T ], P-a.s., i ∈ [I], (20h)

xtij(ξ
t) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I], j ∈ [J ], (20i)

The objective function (20a) minimizes the expected total cost. The constraints (20b) are

the only state equations, which keep track of the available capacity of each technology.

Constraints (20c) limit the operating levels to the available capacity level, while (20d)

ensure that either demand is met, or unmet demand is recorded in the ztj variable values.

Constraints (20e)-(20h) represent the bounds on the shortfall, installation, removal, and

inventory level variables, respectively. Note that (20h) constitute upper bounds also on the

x variables due to (20c), and thus this formulation satisfies Assumption 3.3. In addition,

we assume that Mu−

ti ≥ M s
t−1,i which ensures that this formulation satisfies relatively

complete recourse, Assumption 2.3, since at stage t, given any feasible value of st−1,i(ξ
t−1),

it is feasible to set u−ti(ξ
t) = st−1,i(ξ

t−1) for i ∈ [I], ztj(ξ
t) = dtj(ξ

t) for j ∈ [J ] and all

remaining variables to zero.

To the extent possible, we use data from [15], which focuses on a German system,

although we extend their 3-stage example to T = 5, 10, 15, 20. In [15], there are I =

3 technologies (coal-fired power plant, combined cycle gas turbine and open cycle gas

turbine). Each stage is divided into L = 8 periods, and W = 5 wind regimes are considered

for each period. We model this as J = LW = 40 segments at each stage, corresponding

to each period/wind regime pair. For t ≥ 2, the demand corresponding to the segment
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j = (ℓ, w) ∈ [L]× [W ] is modeled as

dtj(ξ
t) = max

{

d0,ℓ

t
∏

r=2

ξgr − ηwK
w
t

t
∏

r=2

ξwr , 0

}

where d0,ℓ is the base demand value of period ℓ, ξgt is a random variable reflecting the

demand growth of stage t, ηw is the parameter denoting the wind efficiency, Kw
t is the

wind power generation target, and ξwt is a random variable representing the growth in the

wind power generation in stage t. The values of d0,ℓ and ηw are from Tables 2 and 3 of

[15], and are reproduced in Appendix A. We use Kw
2 = 36.64 and Kw

t = 45.75 for all t ≥ 3.

We assume ξgt has lognormal distribution with µ = 0.2 and σ = 0.1 + 0.01t, and ξwt has

lognormal distribution with µ = 0.15 and σ = 0.25+0.025t. For the first stage, we use the

deterministic demand values of d1,j=(ℓ,w) = d0,ℓE[ξ
g
1 ]− ηwE[ξ

w
1 ] = 1.229d0,ℓ − 1.207ηw . The

units of all demands (and all primal decision variables) are gigawatts.

We assume there are no holding costs and no costs for removing capacity, i.e., we use

cu
−

ti = csti = 0 for all i ∈ [I], t ∈ [T ]. We use discounting to determine the other costs, setting

cu
+

ti = 5ιi/1.1
t, cx

ti,j=(ℓ,w) = 0.001ciτℓτw/1.1
t and cz

t,j=(ℓ,w) = τℓτw/1.1
t where the values of

the annualized costs ιi, operation costs ci, τℓ and τw values are from [15] (see Appendix

A). All costs are in million of Euros. Finally, we assume the maximum installation per

stage is a constant Mu+

ti = C, and derive redundant upper bounds on s and u−, i.e.,

M s
ti =

∑t
r=1 M

u+

ri and Mu−

ti = M s
t−1,i. In our experiments we consider two different sets

of instances defined using C = 50 and C = 100.

5.2 Implementation details

We compare the primal and dual bounds obtained using two-stage and static LDR. For

the LDR basis functions, for each t ∈ [T ], we let Kt = 3, and

Φt1(ξ
t) = 1, Φt2(ξ

t) =
t
∏

r=2

ξgr , Φt3(ξ
t) =

t
∏

r=2

ξwr .

Because assumptions A3 and A4 do not hold for this problem (the random variables do not

have bounded support and E(ξT |ξt) is not linear in ξt), the reformulation approach from

[13, 35, 57] used for the static LDR cannot be applied to solve P-LDR (3) and D-LDR (11).

We therefore use a sampling strategy to approximately solve these problems. Specifically,
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the sample approximations of P-LDR (3) and D-LDR (11) are identical to P-LDR (3) and

D-LDR (11), respectively, except that the infinite set of constraints P-a.s. are replaced by

the finite set corresponding to the sample. Approximate solutions to P-LDR-2S (4) and

D-LDR-2S (12) are obtained by solving the SAA problems (6) and (15), respectively. We

solve all sample approximations using the same sample of size N = 150T .

Models P-LDR-2S (4) and D-LDR-2S (12) corresponding to model (20) and its dual

are given in Appendix B. Although the MSLP given in (20) has relatively complete re-

course (Assumption 2.3), its two-stage primal approximation P-LDR-2S (4) does not have

relatively complete recourse. Thus, for obtaining a primal policy using P-LDR-2S (4),

we implement the STT policy proposed in Section 2.4. The parameter ρ is determined

by conducting a golden section search using a fixed evaluation sample of 100 scenarios.

Specifically, starting with a lower bound of 0 and an upper bound of 1000, a golden section

search is performed in which a simulation of the STT policy with these 100 scenarios is used

to guide the search. In case the current upper estimate of ρ in the search process yields

the minimum estimated cost, the search is restarted with the new lower estimate set to the

current upper estimate of ρ, and the new upper estimate set to four times the current upper

estimate. The search is terminated when either the upper estimate and lower estimates of

ρ differ by less than 1.0, or the difference in the estimated objective values between the

upper and lower estimates is less than 10−6 times the sum of the two objective estimates.

The resulting value of ρ is then used in the simulation with N ′ = 5000T replications to

estimate the quality of the resulting policy. The time to select ρ in this process was vastly

dominated by the time to simulate the policy, but is included in all numerical results that

follow.

Since Assumption 3.3 is satisfied, any solution to the SAA problem (15) provides a

feasible solution to D-LDR-2S (12), and hence evaluating this solution using N ′ indepen-

dent replications yields a statistical lower bound on zMSLP . In our experiments we use

N ′ = 5000T scenarios for estimating the value of this policy. Unfortunately, the sample

approximations of P-LDR (3) and D-LDR (11) do not yield policies (primal or dual) that

are feasible under all scenarios. Thus, when evaluating these policies with the independent

replications, we report two measures: the average objective value over scenarios that are

feasible, and the fraction of scenarios that are infeasible. By averaging only over feasible

scenarios, these estimates are optimistically biased, i.e., they underestimate the bound on

the primal problem, and overestimate the bound for the dual problem. As a result, these

estimates do not necessarily provide valid (statistical) upper and lower bounds on zMSLP ,
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but we use them to provide a “best case” estimate when comparing to the estimates ob-

tained from the two-stage LDR policies.

All of our numerical results are carried out using IBM ILOG CPLEX 12.6 as the LP

solver. We perform all experiments using a single thread on a Mac OS X 10.12 with 4 GHz

Intel Core i7 CPUs and 16 GB RAM.

The SAA problems (6) and (15) are solved with a sample size of N = 150T . The primal

SAA problem (6) is solved with Benders decomposition, using a single aggregate cut per

time-stage. The Benders decomposition is run until no violated cuts are found. The dual

SAA problem (15) is solved with the bundle-level method [19, 37]. The level method for

solving the dual SAA problem is terminated when the relative gap between the lower and

upper bounds is less than 10−5. The details of the Benders decomposition and the level

method are provided in Appendix B.1 and B.2, respectively.

5.3 Comparison between static and two-stage LDR

Tables 2 and 3 present 95% confidence intervals (CIs) on the expected costs of primal

policies and dual lower bounds, respectively, obtained using the two-stage and static LDR

policies. These results are reported only for the instances having T = 5, 10. The costs

are normalized such that for each instance, the estimated lower bound obtained by the

two-stage LDR policy has value 100.0. In these tables, the CIs are presented with their

mean and half-width (±). In Table 2, the upper end of the CI the two-stage LDR policy is

an upper bound on the expected cost of using that policy, and hence is a statistical upper

bound on zMSLP . We also report under column ‘Inf. (%)’ the percentage of the scenarios

(out of 5000T evaluated scenarios) for which the static LDR policy is infeasible. To give

an idea of the relative improvement in the expected policy cost obtained by using the

two-stage LDR, the column ‘%U∆’, presents the percentage increase in the upper bound

on the cost obtained with the static policy over the upper bound on the cost obtained

with the two-stage LDR policy. We observe that the expected cost of the static LDR

policy is between 36% and 102% higher than that of the static LDR policy, with the most

significant differences occurring with larger time stages. We also observe that the static

LDR policy is frequently infeasible. Finally, although not presented in the table, we find

that the estimated expected cost of the STT policies was consistently similar (within 2.3%)

to the objective value of the SAA problem (6), indicating that the STT policy is effectively

“tracking” the obtained two-stage LDR policy.
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2S LDR Static LDR

C T Mean ± Mean ± Inf. (%) %U∆

50 5 100.8 0.3 138.0 0.2 3.0 36.7
10 114.6 0.6 232.9 0.4 3.8 102.7

100 5 101.3 0.3 138.4 0.2 2.9 36.5
10 109.2 0.4 195.8 0.3 4.0 78.8

Table 2: Confidence intervals for expected costs of the primal policies.

Considering the CIs of the lower bounds obtained from using two-stage and static LDR

policies presented in Table 3, we again find that the static LDR policy is often infeasible.

Column ‘%L∆’ presents the percentage difference between the lower end of the CI obtained

from the static and two-stage LDR policies, and indicates that the (95% confidence) lower

bounds obtained by the static LDR range from being similar to 2.9% lower than those

obtained by the two-stage LDR policy.

2S LDR Static LDR

C T Mean ± Mean ± Inf. (%) % L∆

50 5 100.0 0.3 98.7 0.3 2.4 -1.3
10 100.0 0.5 97.1 0.4 3.5 -2.9

100 5 100.0 0.3 100.0 0.3 2.1 0.0
10 100.0 0.4 98.1 0.4 3.2 -1.8

Table 3: Confidence intervals for expected costs of the dual policies.

5.4 Comparison with SDDP

We next compare the two-stage LDR approximation with the results obtained using SDDP.

In order to apply SDDP, we need a formulation having a finite number of scenarios per stage

and stage-wise independent random variables. We obtain a model with stage-wise inde-

pendence by introducing new state variables vgt and vwt to represent
∏t

r=2 ξ
g
r and

∏t
r=2 ξ

w
r ,

respectively, which is implemented by adding the state equations

vgt = ξgt v
g
t−1, vwt = ξwt v

w
t−1, t ∈ [2, T ] (21)
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and vg1 = vw1 = 1. With these state variables, the demand in stage t ≥ 2 is then rep-

resented as max{d0,ℓv
g
t − ηwK

w
t v

w
t , 0}. In particular, the right-hand side of constraints

(20d) are replaced with the expression d0,ℓv
g
t − ηwK

w
t v

w
t , and the redundant upper bounds

ztj(ξ
t) ≤ dtj(ξ

t) in (20e) are removed. Thus the only random variables appearing in stage

t constraints are ξgt and ξwt , which are stage-wise independent. We use SAA to construct

scenario trees with a finite number of outcomes per stage. In an SAA problem, we ap-

proximate the joint distribution of ξgt and ξwt with 200 scenarios, obtained by independent

Monte Carlo sampling. Note that the SAA approximation has 200T−1 total sample paths.

The number of scenarios per stage was determined based on initial experiments solving

multiple replications of the SAA problem, and was found to provide a good trade-off be-

tween difficulty in solving each individual SAA problem by SDDP and the variability of

the SAA estimates. The optimal value of an SAA problem is random because it is defined

by a random sample. The expected value of this optimal value is a lower bound on the true

optimal value [39]. Thus, by solving multiple SAA problems with independent samples, a

confidence interval on the expected value of the SAA problem, and hence a lower bound

on the true optimal value, can be obtained. We thus generate 25 independently generated

SAA problems, and for each one we obtain a lower bound by solving it with SDDP for a

limited time. These replication values are then used to construct a confidence interval on

the lower bound on zMSLP .

We use the SDDP implementation sddp.jl [16] to solve each SAA problem. This

algorithm is implemented in Julia. In benchmarks reported in [16], it was found that

the computation times for sddp.jl were about 30% higher than those for the C++ code

DOASA [45], on a test instance for which DOASA was designed for. The code sddp.jl

does not directly support having random constraint coefficients, as in (21). However, the

algorithm does support solving a problem with an underlying state evolving according to

a Markov chain, and with parameters in the constraints dependent on the state of the

Markov chain. Thus, we model the stochastic process as a Markov chain having 200 states

corresponding to the 200 scenarios of joint realizations of (ξgt , ξ
w
t ) in each stage t ∈ [2, T ].

The transition probability from each state in stage t to each state in stage t+ 1 is 1/200.

To limit the risk that the cutting plane models used in the SDDP algorithm grow too

large, we set the parameter “cut selection frequency” to 50, which means that after every

50 iterations of the SDDP algorithm, cuts that are not currently binding are removed.

Finally, to be consistent with the implementation of the two-stage LDR approximation,

we run sddp.jl serially, although we note that both sddp.jl and the two-stage LDR
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approximation have significant potential for speedup via parallelization.

The time limit for each SDDP replication is set as follows. We let tLDR be the total time

required to solve the SAA problems (6) and (15), and evaluate the value of the obtained

dual policy with an independent sample of size N ′ = 5000T . We run the SDDP algorithm

on each of the 25 SAA replications with two time limits: TL:=1.5∗tLDR/25 and 10∗TL. The

first time limit is used to approximately match the total time (over all replications) allotted

to the SDDP algorithm with the time used by the two-stage LDR approach (where the

factor 1.5 is used to compensate for the fact that sddp.jl is implemented in Julia whereas

the two-stage LDR approach is implemented in C++). The second time limit is used to

demonstrate the potential of SDDP to obtain improved lower bounds and policies when

given more time. Estimating the expected cost of the SDDP and STT policies requires a

separate simulation of these policies, which has very similar computational effort for the

two policies, and thus this time is excluded from tLDR.

The lower bound results are reported in Table 4, in which again the objective values are

scaled such that the estimated lower bound obtained by the two-stage LDR algorithm is

100.0. In the table, tLDR is rounded to the nearest second. In aggregate, 40% of this time

is spent solving (6), 48% is spent solving (15), and 12% is spent evaluating the dual bound

with the independent sample. The table also presents the mean and half-width (±) of the

lower bound obtained using two-stage LDR and the SDDP algorithm given time limits TL

and 10∗TL. The columns %L∆ present the percentage difference between the lower end of

the 95% CI on the lower bound obtained by the SDDP algorithm and that obtained by the

two-stage LDR algorithm. Here a negative number indicates the lower bound was smaller

D-LDR-2S SDDP TL SDDP 10X TL

C T tLDR Mean ± Mean ± %L∆ Mean ± %L∆

50 5 188 100.0 0.3 100.6 0.7 0.2 100.8 0.7 0.4
10 866 100.0 0.5 101.5 1.3 0.6 103.2 1.3 2.4
15 1728 100.0 1.3 94.3 2.6 -7.1 103.9 2.9 2.3
20 2897 100.0 1.5 80.8 3.4 -21.4 94.2 3.8 -8.2

100 5 171 100.0 0.3 101.5 0.7 1.1 101.7 0.7 1.3
10 1094 100.0 0.4 100.8 1.1 0.1 101.6 1.2 0.9
15 2235 100.0 0.9 102.4 2.3 1.0 108.6 2.5 7.1
20 3827 100.0 1.8 88.3 3.4 -13.5 101.4 3.8 -0.6

Table 4: Comparison of lower bounds obtained from two-stage LDR and SDDP algorithm.
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(worse), and a positive number indicates an improvement over two-stage LDR. We find that

when given a time limit similar to the time used by the two-stage LDR approximation, the

SDDP algorithm obtains slightly better lower bounds on instances with fewer time stages,

but somewhat worse lower bounds on the instances with more time stages. On the other

hand, when given more time, the SDDP algorithm is able to achieve noticeably better

lower bounds on instances with the fewer time stages, and closes much of the gap on the

instances with more stages.

We next compare estimates of the expected cost of policies obtained with the two-stage

LDR and SDDP methods. For the two-stage LDR policy, the policy and estimate of asso-

ciated upper bound are determined as described in Section 5.2. For the SDDP algorithm,

a policy can be obtained by first solving a (single) SAA approximation problem, and then

using the resulting value-function approximation to drive a policy that is then evaluated

via forward simulation replications using independently generated values of the random

variables (i.e., independent from those used in the SAA approximation). Unfortunately,

the ability to run a forward simulation using samples different from those used to solve

the SDDP problem is not supported in sddp.jl. To obtain an estimate of the value of

the policy that can be obtained using SDDP, for each of the 25 SAA replications solved

by SDDP, we simulated the resulting policy using the sample distribution used in the SAA

problem to estimate the expected cost of that policy. We then constructed a 95% confi-

dence interval of the resulting upper bounds, and these are the values reported in Table 5.

The column ‘tEVAL’ in this table presents the time, in seconds, to estimate the expected

P-LDR-2S SDDP TL SDDP 10X TL

C T tEVAL Mean ± Mean ± %U∆ Mean ± %U∆

50 5 53 100.8 0.3 100.7 0.7 0.3 100.8 0.7 0.4
10 239 114.6 0.6 104.3 1.4 -8.2 104.1 1.3 -8.4
15 491 121.0 1.3 109.5 3.0 -8.0 108.4 3.0 -8.8
20 932 102.9 1.4 100.6 4.1 0.4 100.4 4.0 0.1

100 5 53 101.3 0.3 101.7 0.7 0.8 101.7 0.7 0.7
10 238 109.2 0.4 102.0 1.2 -5.9 102.0 1.2 -5.9
15 495 133.2 1.2 113.4 2.6 -13.6 112.4 2.6 -14.4
20 900 116.6 1.6 109.6 4.0 -3.9 109.0 3.9 -4.5

Table 5: Comparison of approximate upper bounds obtained from two-stage LDR and
SDDP algorithm.
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cost of the STT policy. The remaining columns present the confidence intervals of the

estimated upper bounds in format similar to Table 4. As we see from the columns %U∆,

the estimated expected cost of the SDDP policies is in many cases significantly lower than

the estimated expected cost of the two-stage LDR policy, suggesting that SDDP obtains

significantly better primal policies for this problem.

In summary, for this problem, we find that SDDP provides similar, or slightly worse,

lower bounds, and significantly better primal policies, in a comparable amount of time

as the two-stage LDR approximation, and the lower bounds can be improved by running

SDDP for more time. Thus, for this problem, SDDP is clearly favored over the two-stage

approximation. Thus, LDR approximations (both static and two-stage) may be most useful

for problems in which the assumptions required to apply SDDP do not hold. For example,

in a hydropower planning case study presented in [58], the time series of water inflows, Xt,

was modeled as Xt = eYt , where Yt follows a first order AR(1) autoregressive time series,

making the model nonlinear in Xt, and hence not solvable directly by SDDP.

6 Concluding remarks

We propose two-stage LDRs, a new approximate solution method for MSLPs. This ap-

proach has two advantages over staic LDRs. Due to the flexibility in the recourse decisions,

our method potentially yields better (at least not worse) bounds and policies than standard

static LDR policies. In addition, as our approach is based on sampling and 2SLP, it works

with very mild assumptions and can take advantage of existing literature on methods for

approximately solving 2SLP problems. We illustrate the new approach on two example

problems, an inventory planning problem and a capacity planning problem, which indicate

that two-stage LDR policies have potential to yield significantly better policies than static

LDR policies.

In future research it will be interesting to test the use of two-stage LDR policies on more

problems, and to investigate if there are problem classes where two-stage LDR policies are

provably optimal or near-optimal.

In the primal problem, a two-stage LDR can be directly applied to multi-stage stochas-

tic mixed integer programs, provided the integrality restrictions are imposed only on the

recourse variables. Since availability of algorithms for multi-stage stochastic mixed integer

programs is very limited, it will be interesting to explore this extension further, in partic-

ular possibly using ideas from [7] to obtain a decision rule in the case the state variables
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also have integrality constraints.
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A Data for the capacity expansion problem

i = 1 i = 2 i = 3

ιi (ke/MW) 245.8 113.9 57.8
ci (e/MWh) 41.9 58.9 90.8

Table 6: Fixed annual cost and operation cost (Table 1 in [15])

ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 5 ℓ = 6 ℓ = 7 ℓ = 8

d0, ℓ (GW) 77.1 71.4 65.7 60.1 54.4 48.8 43.1 37.4
τℓ (h) 68 677 1585 1781 1367 1688 1289 305

Table 7: Initial demand (Table 2 in [15])

w = 1 w = 2 w = 3 w = 4 w = 5

ηw (%) 92.9 81.8 54.9 21.2 0.0
τw (%) 19.8 21.78 18.2 26.7 13.5

Table 8: Wind regimes (Table 3 in [15])

B Additional models for the capacity expansion example

B.1 Primal model and Benders decomposition

P-LDR-2S of the capacity expansion model is obtained by substituting

sti(ξ
t) =

∑

k∈[Kt]

Φtk(ξ
t)βtki
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in (20). Dropping ξt dependences for variables to simplify the notation, we obtain

min
∑

i∈[I]

(

cu
+

1i u
+
1i + cu

−

1i u−

1i +
∑

j∈[J]

cx1ijx1ij(ξ
t)
)

+
∑

j∈[J]

cz1jz1j (22a)

+
∑

t∈[T ]

∑

i∈[I]

csti
∑

k∈[Kt]

E
[

Φtk(ξ
t)
]

βtki +
∑

t∈[2,T ]

E[Qt(β, ξ
t)]

s.t. β11i − u+
1i + u−

1i = 0, i ∈ [I], (22b)

β11i − x1ij ≥ 0, i ∈ [I], j ∈ [J ], (22c)
∑

i∈[I]

x1ij + z1j ≥ d1j , j ∈ [J ], (22d)

0 ≤ z1j ≤ d1j , j ∈ [J ], (22e)

0 ≤ u+
1i ≤ Mu+

1i , 0 ≤ u−

1i ≤ Mu−

1i , 0 ≤ β11i ≤ M s
1i, i ∈ [I], (22f)

x1ij ≥ 0, i ∈ [I], j ∈ [J ], (22g)

where, for t ∈ [2, T ], Qt(β, ξ
t) is defined as the optimal objective value of the following problem:

min
∑

i∈[I]

(

cu
+

ti u+
i + cu

−

ti u−

i +
∑

j∈[J]

cxtijxij

)

+
∑

j∈[J]

cztjzj (23a)

s.t. u+
i − u−

i =
∑

k∈[Kt]

Φtk(ξ
t)βtki −

∑

k∈[Kt−1]

Φtk(ξ
t−1)βt−1,k,i, i ∈ [I], (23b)

xij ≤
∑

k∈[Kt]

Φtk(ξ
t)βtki, i ∈ [I], j ∈ [J ], (23c)

∑

i∈[I]

xij + zj ≥ dtj(ξ
t), j ∈ [J ], (23d)

0 ≤ zj ≤ dtj(ξ
t), j ∈ [J ], (23e)

0 ≤ u+
i ≤ Mu+

ti , i ∈ [I], (23f)

0 ≤ u−

i ≤ Mu−

ti , i ∈ [I], (23g)

xij ≥ 0, i ∈ [I], j ∈ [J ], (23h)

0 ≤ M s
ti −

∑

k∈[Kt]

Φtk(ξ
t)βtki, i ∈ [I], (23i)

0 ≤
∑

k∈[Kt]

Φtk(ξ
t)βtki, i ∈ [I], (23j)

We note that P-LDR-2S of the capacity expansion model does not have relatively complete
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recourse since the recourse constraints (23i) and (23j) might be violated under some scenarios.

Let ξTn , n ∈ [N ], be an independent and identically distributed (i.i.d.) random sample of the

random vector ξT . We solve the obtained primal SAA problem with Benders decomposition, using

a single aggregate cut per time-stage. That is, we have a master problem of the following form:

min
∑

i∈[I]

(

cu
+

1i u
+
1i + cu

−

1i u−

1i +
∑

j∈[J]

cx1ijx1ij(ξ
t)
)

+
∑

j∈[J]

cz1jz1j (24a)

+
∑

t∈[T ]

∑

i∈[I]

csti
∑

k∈[Kt]

E
[

Φtk(ξ
t)
]

βtki +
∑

t∈[2,T ]

ηt

s.t. (22b)− (22g), (24b)

(ηt, βt11, . . . , βtKtI) ∈ Ot, t ∈ [2, T ], (24c)

(βt11, . . . , βtKtI) ∈ F t, t ∈ [2, T ], (24d)

0 ≤
∑

k∈[Kt]

Φtk(ξ
t
n)βtki ≤ M s

ti, t ∈ [2, T ], i ∈ [I], n ∈ [N ], (24e)

ηt ≥ 0, t ∈ [2, T ]. (24f)

The variable ηt represents
1
N

∑

n∈[N ][Qt(β, ξ
t
n)], that is the expected second-stage cost at period

t ∈ [2, T ]. Note that since all the original decision variables are defined to be nonnegative, and all

the cost parameters are assumed to be nonnegative, Qt(β, ξ
t) ≥ 0 for any given β, thus (24f) are

valid. Constraints (24c) and (24d) correspond to the set of Benders optimality and feasibility cuts,

respectively. As β variables belong to the master problem, we add constraints (23i) and (23j) for

each scenario in the sample to the master problem as (24e) which can be seen as an additional set

of feasibility cuts.

The subproblem decomposes not only by scenario but also by stage. For t ∈ [2, T ] and n ∈ [N ],

we have the corresponding subproblem (23a)-(23h), denoted by SP(t, n).

At every iteration of the Benders decomposition algorithm, we solve the master problem, get a

candidate β solution which is fixed in the subproblems, and solve all the subproblems. For t ∈ [2, T ],

if there is at least one index n ∈ [N ] for which SP(t, n) is infeasible, then we generate a Benders

feasibility cut and add it to the master problem. Otherwise, we generate a Benders optimality cut,

but add it to the master problem only if it is violated at the current master problem solution. We

repeat this procedure until all the subproblems are feasible and no violated optimality cuts are

found.
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B.2 Dual model and level method

Let λ, γ, θ+, θ−,Γu+

,Γu−

,Γs be the dual variables associated with the constraints (20b)-(20h) in

(20), respectively. Then, the dual of (20) is:

max E

∑

t∈[T ]

[

∑

j∈[J]

dtj(ξ
t)
(

θ+tj(ξ
t)− θ−tj(ξ

t)
)

−
∑

i∈[I]

(

Mu+

ti Γu+

ti (ξt) +Mu−

ti Γu−

ti (ξt) +M s
tiΓ

s
ti(ξ

t)
)

]

(25a)

s.t. λti(ξ
t)− E[λt+1,i(ξ

t+1) | ξt]

+
∑

j∈[J]

γtij(ξ
t)−Γs

ti(ξ
t) ≤ csti, t ∈ [T ], P-a.s., i ∈ [I], (25b)

−Γu+

ti (ξt) − λti(ξ
t) ≤ cu

+

ti , t ∈ [T ], P-a.s., i ∈ [I], (25c)

−Γu−

ti (ξt) + λti(ξ
t) ≤ cu

−

ti , t ∈ [T ], P-a.s., i ∈ [I], (25d)

θ+tj(ξ
t) − θ−tj(ξ

t) ≤ cztj , t ∈ [T ], P-a.s., j ∈ [J ], (25e)

θ+tj(ξ
t)− γtij(ξ

t) ≤ cxtij , t ∈ [T ], P-a.s., i ∈ [I], j ∈ [J ], (25f)

γtij(ξ
t) ≥ 0, t ∈ [T ], P-a.s., i ∈ [I], j ∈ [J ], (25g)

θ+tj(ξ
t), θ−tj(ξ

t) ≥ 0, t ∈ [T ], P-a.s., j ∈ [J ], (25h)

Γu+

ti (ξt),Γu−

ti (ξt),Γs
ti(ξ

t)≥ 0 t ∈ [T ], P-a.s., i ∈ [I]. (25i)

Observing that θ− variables are redundant, we remove them to simplify the model. D-LDR-2S

of the capacity expansion model is obtained by substituting

λti(ξ
t) =

∑

k∈[Kt]

Φtk(ξ
t)Λtki
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in (25). Dropping ξt dependences for variables to simplify the notation, we obtain

max
∑

j∈[J]

d1jθ
+
1j −

∑

i∈[I]

(

Mu+

1i Γu+

1i +Mu−

1i Γu−

1i +M s
1iΓ

s
1i

)

+
∑

t∈[2,T ]

E[Gt(Λ, ξ
t)] (26a)

s.t. Λ11i −
∑

k∈[K2]

E
[

Φ2k(ξ
2)
]

Λ2ki +
∑

j∈[J]

γ1ij −Γs
1i ≤ cs1i, i ∈ [I], (26b)

−Γu+

1i − Λ11i ≤ cu
+

1i , i ∈ [I], (26c)

−Γu−

1i + Λ11i ≤ cu
−

1i , i ∈ [I], (26d)

θ+1j ≤ cz1j , j ∈ [J ], (26e)

θ+1j − γ1ij ≤ cx1ij , i ∈ [I], j ∈ [J ] (26f)

γ1ij ≥ 0, i ∈ [I], j ∈ [J ] (26g)

θ+1j ≥ 0, j ∈ [J ], (26h)

Γu+

1i ,Γ
u−

1i ,Γ
s
1i ≥ 0 i ∈ [I], (26i)

where, for t ∈ [2, T ], Gt(Λ, ξ
t) is defined as the optimal objective value of the following problem:

max
∑

j∈[J]

dtjθ
+
j −

∑

i∈[I]

(

Mu+

ti Γu+

i +Mu−

ti Γu−

i +M s
tiΓ

s
i

)

(27a)

s.t.
∑

j∈[J]

γij −Γs
i ≤ csti −

∑

k∈[Kt]

Φtk(ξ
t)Λtki

+
∑

k∈[Kt+1]

E

[

Φt+1,k(ξ
t+1)

∣

∣

∣
ξt
]

Λt+1,k,i, i ∈ [I], (27b)

−Γu+

i ≤ cu
+

ti +
∑

k∈[Kt]

Φtk(ξ
t)Λtki, i ∈ [I], (27c)

−Γu−

i ≤ cu
−

ti −
∑

k∈[Kt]

Φtk(ξ
t)Λtki, i ∈ [I], (27d)

θ+j ≤ cztj , j ∈ [J ], (27e)

θ+j − γij ≤ cxtij , i ∈ [I], j ∈ [J ], (27f)

γij ≥ 0, i ∈ [I], j ∈ [J ], (27g)

θ+j ≥ 0, j ∈ [J ], (27h)

Γu+

i ,Γu−

i ,Γs
i ≥ 0 i ∈ [I]. (27i)

Let ξTn , n ∈ [N ], be an independent and identically distributed (i.i.d.) random sample of the

random vector ξT . We solve the obtained dual SAA problem with the bundle-level method, because

the Benders decomposition method converged slowly for this problem. We use cuts aggregated
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over scenarios, thus introduce ζt variable to represent the expected second-stage cost value, i.e.,
1
N

∑

n∈[N ]Gt(Λ, ξ
t
n), for t ∈ [2, T ].

We observe that the subproblem (27) can be further decomposed into two: one problem includ-

ing only the u+ and u− variables, and the other problem including the remaining set of variables.

(DSPupart) : max −
∑

i∈[I]

(

Mu+

ti Γu+

i +Mu−

ti Γu−

i

)

s.t. (27c), (27d), (27i)

(DSPrest) : max
∑

j∈[J]

dtjθ
+
j −

∑

i∈[I]

M s
tiΓ

s
i

s.t. (27b), (27e)− (27h)

We exploit this decomposition to disaggregate the optimality cuts in the master problem. Thus,

we introduce additional variables ζupartt and ζrestt for t ∈ [2, T ] and obtain the following master

problem:

(MP) : max
∑

j∈[J]

d1jθ
+
1j −

∑

i∈[I]

(

Mu+

1i Γu+

1i +Mu−

1i Γu−

1i +M s
1iΓ

s
1i

)

+
∑

t∈[2,T ]

ζt (28a)

s.t. (26b)− (26i), (28b)

ζt = ζupartt + ζrestt , t ∈ [2, T ], (28c)

(ζupartt ,Λt11, . . . ,ΛtKtI) ∈ U t, t ∈ [2, T ], (28d)

(ζrestt ,Λt11, . . . ,ΛtKtI) ∈ Rt, t ∈ [2, T ], (28e)

ζupartt ≤ 0, t ∈ [2, T ], (28f)

ζrestt ≤
1

N

∑

n∈[N ]

∑

j∈[J]

dtj(ξ
t
n)c

z
tj , t ∈ [2, T ], (28g)

where U t and Rt represent the optimality cuts derived from problems (DSPupart) and (DSPrest),

respectively. Moreover, we introduce the upper bounds on the new auxiliary variables, which are

derived from the subproblems (DSPupart) and (DSPrest).

The level method also uses a quadratic program for regularization which projects the previous

iterate on the level set of the current approximation of the objective function. We use the following
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problem for this projection:

(QP) : max ||Λ− Λ̂||22

s.t. (28b)− (28g),
∑

j∈[J]

d1jθ
+
1j −

∑

i∈[I]

(

Mu+

1i Γu+

1i +Mu−

1i Γu−

1i +M s
1iΓ

s
1i

)

≥ L,

where Λ̂ and L denote the current Λ solution (i.e., the previous iterate) and the level target,

respectively. The optimal solution values of Λ variables determine the next iterate.

The details of the level method are provided in Algorithm 1 where LB and UB denote lower

bound and upper bound, respectively.

Algorithm 1 : Level Algorithm

1. Initialize Λ̂ = 0, LB = −∞, UB = ∞

2. Solve all the subproblems, i.e., (DSPupart) and (DSPrest) for all t ∈ [2, T ] and n ∈ [N ].

Generate Benders optimality cuts, add them to both (MP) and (QP).

Compute the objective value of the current iterate, and set it as LB.

3. do

Solve (MP). Update UB if (MP) optimal objective value is lower than UB.

Set L = 0.3 ×UB + 0.7 × LB.

Solve (QP) with updated level constraint, to obtain iterate Λ̂.

Solve all the subproblems at current iterate.

Generate Benders optimality cuts, and add violated cuts to both (MP) and (QP).

Compute the objective value of the current iterate; if it is larger than LB, update LB.

until |UB - LB| / UB < 10−5
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