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Abstract

Mixed Integer Dynamic Approximation Scheme (MIDAS) is a new sampling-based algorithm for
solving finite-horizon stochastic dynamic programs with monotonic Bellman functions. MIDAS ap-
proximates these value functions using step functions, leading to stage problems that are mixed integer
programs. We provide a general description of MIDAS, and prove its almost-sure convergence to an
ε-optimal policy when the Bellman functions are known to be continuous, and the sampling process
satisfies standard assumptions.

1 Introduction

In general, multistage stochastic programming problems are extremely difficult to solve. If one discretizes
the random variable using a finite set of outcomes in each stage and represents the process as a scenario
tree, then the problem size grows exponentially with the number of stages and outcomes [9]. On the
other hand, if the random variables are stagewise independent then the problem can be formulated as a
dynamic programming recursion, and attacked using an approximate dynamic programming algorithm.

When the Bellman functions are known to be convex (if minimizing) or concave (if maximizing) then
they can be approximated by cutting planes. This is the basis of the popular Stochastic Dual Dynamic
Programming (SDDP) algorithm originally proposed by Pereira and Pinto [7]. This creates a sequence of
cutting-plane outer approximations to the Bellman function at each stage by evaluating stage problems
on independently sampled sequences of random outcomes. A comprehensive recent summary of this
algorithm and its properties is provided by [10]. A number of algorithms that are variations of this idea
have been proposed (see e.g. [3, 4, 6]).

The first formal proof of almost-sure convergence for SDDP-based algorithms was provided by Chen
and Powell in [3] for their CUPPS algorithm. Their proof however relied on a key unstated assumption
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paper.
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identified by Philpott and Guan in [8], who provided a new proof of almost-sure convergence for problems
with polyhedral Bellman functions without requiring this assumption. Almost-sure convergence for
general convex Bellman functions was recently proved using a different approach by Girardeau et al. [5].

In order to guarantee the validity of the outer approximation of the Bellman functions, SDDP-based
methods require these functions to be convex (if minimizing) or concave (if maximizing). However,
there are many instances of problems when the optimal value of the stage problem is not a convex (or
concave) function of the state variables. For example, if the stage problem involves state variables with
components appearing in both the objective function and the right-hand side of a convex optimization
problem then the optimal value function might have a saddle point. More generally, if the stage problems
are not convex then we cannot guarantee convexity of the optimal value function. This will happen when
stage problems are mixed-integer programs (MIPS), or when they incorporate nonlinear effects, such as
modeling head effects in hydropower production functions [2].

Our interest in problems of this type is motivated by models of hydroelectricity systems in which we
seek to maximize revenue from releasing water through generating stations on a river chain. This can
be modeled as a stochastic control problem with discrete-time dynamics:

xt+1 = ft(xt, ut, ξt), x1 = x̄, t = 1, 2, . . . , T .

In this problem, ut ∈ U(xt) is a control and ξt is a random noise term. We assume that ft is a continuous
function of its arguments. The control ut generates a reward rt(xt, ut) in each stage and a terminal
reward R(xT+1), where rt and R are continuous and monotonic increasing in their arguments. Given
initial state x̄, we seek an optimal policy yielding V1(x̄), where

Vt(x) = Eξt
[

max
u∈U(x)

{rt(x, u, ξt) + Vt+1(ft(x, u, ξt))}
]

VT+1(x) = R(x).

Here Vt(x) denotes the maximum expected reward from the beginning of stage t onwards, given the
state is x, and we take action ut after observing the random disturbance ξt. We assume that U(x) is
sufficiently regular so that Vt is continuous if Vt+1 is.

For example, in a single-reservoir hydro-scheduling problem, x = (s, p) might represent both the reservoir
stock variable s and a price variable p, and u = (v, l) represents the reservoir release v through a generator
and reservoir spill l. In this case the dynamics might be represented by[

st+1

pt+1

]
=

[
st − vt − lt + ωt

αtpt + (1− αt)bt + ηt

]
,

where ωt is (random) reservoir inflow, and ηt is the error term for an autoregressive model of price, so
ξt = [ ωt ηt ]>. Here we might define

rt(s, p, v, l, ωt, ηt) = pg(v),

giving the revenue earned by released energy g(v) sold at price p, and U(x) = U0 ∩ [0, x]. For such a
model, it is easy to show (under the assumption that we can spill energy without penalty) that Vt(s, p)
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is continuous and monotonic increasing in s and p. On the other hand Vt(s, p) is not always concave
which makes the application of standard SDDP invalid.

A number of authors have looked to extend SDDP methods to deal with non-convex stage problems.
The first approach replaces the non-convex components of the problem with convex approximations, for
example using McCormick envelopes to approximate the production function of hydro plants as in [2].
The second approach convexifies the value function, e.g. using Lagrangian relaxation techniques. A
recent paper [12] by Thomé et al. proposes a Lagrangian relaxation of of the SDDP subproblem, and
then uses the Lagrange multipliers to produce valid Benders cuts. A similar approach is adopted by
Steeger and Rebennack in [11]. Abgottspon et al [1] introduce a heuristic to add locally valid cuts that
enhance a convexified approximation of the value function.

In this paper we propose a new extension of SDDP called Mixed Integer Dynamic Approximation Scheme
(MIDAS). MIDAS uses the same algorithmic framework as SDDP but, instead of using cutting planes,
MIDAS uses step functions to approximate the value function. The approximation requires an assumption
that the value function is monotonic in the state variables. In this case each stage problem can be solved
to global optimality as a MIP. We show that if the true Bellman function is continuous then MIDAS
converges almost surely to a (T + 1)ε-optimal solution for a problem with T stages.

The rest of the paper is laid out as follows. We begin by outlining the approximation of Vt(x) that
is iuswed by MIDAS. In section 3 we prove the convergence of MIDAS to a (T + 1)ε-optimal solution
to a multistage deterministic optimization problem. Lastly, in section 4, we extend our proof to a
sampling-based algorithm applied to the multistage stochastic optimization problem, and demonstrate
its almost-sure convergence. A simple hydro-electric scheduling example illustrating the algorithm is
presented in section 5. We conclude the paper in section 6 by discussing the potential value of using
MIDAS to solve stochastic multistage integer programs.

2 Approximating the Bellman function

The MIDAS algorithm approximates each Bellman function Vt(x) by a piecewise constant function
QHt (x), which is updated in a sequence (indexed by H) of forward and backward passes through the
stages of the problem being solved. Since the terminal value function R(x) is continuous, the Bellman
functions Vt(x), t = 1, 2, . . . , T + 1 will be continuous. Moreover since X is compact we have

Proposition 1. There exists ε > 0 and δ > 0 such that for every t = 1, 2, . . . , T + 1, and x,y with
‖x− y‖∞ < δ,

|Vt(x)− Vt(y)| < ε.

From now on we shall choose a fixed δ > 0 and ε > 0 so that Proposition 1 holds. For example if
Vt(x), t = 1, 2, . . . , T + 1 can be shown to be Lipschitz with constant K, then we can choose δ > 0 and
ε = Kδ.

MIDAS updates the value function at points xh that are the most recently visited values of the state
variables computed using a forward pass of the algorithm. Consider a selection of points xh ∈ X,
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h = 1, 2, . . . ,H, with
∥∥xhi − xhj∥∥∞ > δ, hi 6= hj . Suppose that we have computed values

qh = Q(xh), h = 1, 2, . . . ,H, (1)

where Q is any monotonic increasing upper semi-continuous function. Since X is compact, we can
define M = maxx∈X Q(x). For each x ∈ X , we define Hδ(x) ⊆ {1, 2, . . . ,H} by

Hδ(x) = {h′ : xh′i > xi − δ, i = 1, 2, . . . , n},

and
QH(x) = min

{
M,min

{
qh
′

: h′ ∈ Hδ(x)
}}

. (2)

We call Hδ(x) the supporting indices of QH at x. Observe that if x1 ≤ x2 then Hδ(x2) ⊆ Hδ(x1),
so QH is monotonic increasing. Since the sets of supporting indices are also nested by inclusion as H
increases, it is easy to see that for every H,

QH+1(x) ≤ QH(x), x ∈ X, (3)

and h ∈ Hδ(xh) implies

QH(xh) ≤ qh, h = 1, 2, . . . ,H. (4)

Suppose that there was some h′ ∈ Hδ(xh) with qh
′
< qh, so QH(xh) < qh. Although xh

′
i > xhi − δ,

i = 1, 2, . . . , n, this does not violate monotonicity since δ > 0. However when qh = R(xh) then there is
a bound on the difference between QH(xh) and qh given by the following lemma.

Lemma 1. Suppose
qh = R(xh), h = 1, 2, . . . ,H. (5)

Then for any x ∈ X,
QH(x) ≥ R(x)− ε,

and for any h = 1, 2, . . . ,H,
QH(xh) ≥ qh − ε.

Proof. Consider x ∈ X. Observe that h ∈ Hδ(x) implies xi < xhi + δ, i = 1, 2, . . . , n, so there is some
y ≥ x with

∥∥y − xh∥∥∞ < δ and

R(x) ≤ R(y)≤R(xh) + ε

by virtue of continuity. Recalling (5) and (2) yields the first inequality, from which the second follows
immediately upon substituting (5). �

Two examples of the approximation of Q(x) by QH(x) are given in Figure 1 and Figure 2 .
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Figure 1: Approximation of Q(x) = x+0.1sin(10x) shown in grey, by piecewise constant QH(x), shown
in black. Here δ = 0.05 and xh = 0.2, 0.4, 0.6, 0.8..

x1

x2

q4

q3

q2

q1

Figure 2: Contour plot of QH(x) when H = 4. The circled points are xh, h = 1, 2, 3, 4. The darker
shading indicates increasing values of QH(x) (which equals Q(xh) in each region containing xh.)

The definition of QH in terms of supporting indices is made for notational convenience. In practice
QH(x) is computed using mixed integer programming (hence the name MIDAS). We propose one possible
formulation for doing this in the Appendix.
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3 Multistage optimization problems

In Section 2 we discussed how MIDAS approximates the value function. In this section we describe the
MIDAS algorithm for a deterministic multistage optimization problem, and prove its convergence.

Given an initial state x̄, we consider a deterministic optimization problem of the form:

MP: max
x,u

T∑
t=1

rt(xt, ut) + R(xT+1)

s.t. xt+1 = ft(xt, ut), t = 1, 2, . . . , T
x1 = x̄,

ut ∈ Ut(xt), xt ∈ Xt, t = 1, 2, . . . , T.

This gives a dynamic programming formulation

Vt(x) = max
u∈U(x)

{rt(x, u) + Vt+1(ft(x, u))},

VT+1(x) = R(x),

where we seek a policy that maximizes V1(x̄). We assume that rt(x, u) and ft(x, u)) are continuous
and increasing in x and for every t, Vt(x) is a monotonic increasing continuous function of x, so that
Proposition 1 holds.

The deterministic MIDAS algorithm (Algorithm 1) applied to MP is as follows.

Algorithm 1 Deterministic MIDAS

1. Set H = 1, QHt (x) = M , an upper bound on Vt(x), t = 1, 2, . . . , T + 1.

2. Forward pass: Set xH1 = x̄. For t = 1 to T ,

(a) Solve max
u∈U(xHt )

{
rt(x

H
t , u) +QHt+1(ft(x

H
t , u))

}
to give uHt ;

(b) If
∥∥ft(xHt , uHt )− xht+1

∥∥
∞ < δ for h < H then set xHt+1 = xht+1, else set xHt+1 = ft(x

H
t , u

H
t ).

3. If there is some h < H with xHT+1 = xhT+1 then stop.

4. Backward pass: Update QHT+1(x) to QH+1
T+1 (x) by adding qHT+1 = R(xHT+1) at point xHT+1. Then

for every t = T down to 1 do

(a) Solve ϕ = max
u∈U(xHt )

{
rt(x

H
t , u) +QH+1

t+1 (ft(x
H
t , u))

}
;

(b) Update QHt (x) to QH+1
t (x) by adding qHt = ϕ at point xHt .

5. Increase H by 1 and go to step 2.
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Observe that the first forward pass of Algorithm 1 follows a myopic strategy. We now show that this
algorithm will converge in step 3 after a finite number of iterations to a solution (uH1 , u

H
2 , . . . , u

H
T ) that is

a (T + 1)ε-optimal solution to the dynamic program starting in state x̄. First observe that the sequence
{(xH1 , xH2 , . . . , xHT )} lies in a compact set, so it has some convergent subsequence. It follows that we

can find H and h ≤ H with
∥∥∥xH+1

t − xht
∥∥∥
∞
< δ for every t = 1, 2, . . . , T + 1. We demonstrate this

using the following two lemmas.

Lemma 2. Let Nδ(S) = {x : ‖x− s‖∞ < δ, s ∈ S}. Then any infinite set S lying in a compact set
contains a finite subset Z with S ⊆ Nδ(Z).

Proof. Consider an infinite set S lying in a compact set X. Since S is a subset of the closed set X, its
closure S̄ lies in X, and so S̄ is compact. Now for some fixed δ > 0, it is easy to see that Nδ(S) is a
open covering of S̄, since any limit point of S must be in Nδ({s}) for some s ∈ S. Since S̄ is compact,
there exists a finite subcover, i.e. a finite set Z = {z1, z2, . . . , zN} ⊆ S with S ⊆ S̄ ⊆ ∪Nk=1Nδ(zk). �

Lemma 3. For every t = 1, 2, . . . , T + 1 and for all iterations H,

QHt (x) ≥ Vt(x)− (T + 2− t)ε.

Proof. We prove the result by induction. First observe that VT+1(x) = R(x) in (1), so Lemma 1 yields

QHT+1(x) ≥ VT+1(x)− ε,

for all iterations H, which shows the result is true for t = T + 1. Now suppose for some t ≤ T + 1 that
(3) holds for every iteration H and every x ∈ X, and let

u∗t−1 ∈ arg max{rt−1(xht−1, u) + Vt(ft−1(x
h
t−1, u))}.

It follows that for h = 1, 2, . . . ,H,

qht−1 = max
u∈U(xht−1)

{
rt−1(x

h
t−1, u) +Qht (ft−1(x

h
t−1, u))

}
≥ rt−1(x

h
t−1, u

∗
t−1) +Qht (ft−1(x

h
t−1, u

∗
t−1))

≥ rt−1(x
h
t−1, u

∗
t−1) + Vt(ft−1(x

h
t−1, u

∗
t−1))− (T + 2− t)ε

= Vt−1(x
h
t−1)− (T + 2− t)ε

Now consider an arbitrary x ∈ X, and suppose h ∈ Hδ(x). Then x < xht−1 + δ1, so

Vt−1(x) ≤ Vt−1(xht−1) + ε,

giving
qht−1 ≥ Vt−1(x)− (T + 2− t)ε− ε.

By definition

QHt−1(x) = min
{
qht−1 : h ∈ Hδ(x)

}
,

so (3) holds for t− 1. �
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Lemma 4. Suppose there is some h < H with
∥∥xHT+1 − xhT+1

∥∥
∞ < δ. Then the sequence of actions

(uH1 , u
H
2 , . . . , u

H
T ) is a (T + 1)ε-optimal solution to the dynamic program starting in state x̄.

Proof. Suppose there is some h < H with
∥∥xHT+1 − xhT+1

∥∥
∞ < δ. Then Algorithm 2 stops in Step

3. At this point we have a sequence of actions (uH1 , u
H
2 , . . . , u

H
T ), and a sequence of states (x̄ =

xH1 , x
H
2 , . . . , x

H
T , x

H
T+1), with xHt+1 = ft(x

H
t , u

H
t ) and

uHt ∈ arg max
u∈U(xHt )

{
rt(x

H
t , u) +QHt+1(ft(x

H
t , u))

}
.

We show by induction that for every t = 1, 2, . . . , T

rt(x
H
t , u

H
t ) + V H

t+1(ft(x
H
t , u

H
t )) ≥ Vt(xHt )− (T + 2− t)ε, (6)

QHt+1(x
H
t+1) ≤ Vt+1(x

H
t+1) + ε. (7)

When t = T , since h < H, we have by (3)

QHT+1(x
H
T+1) ≤ QhT+1(x

H
T+1)

= QhT+1(x
h
T+1)

= VT+1(x
h
T+1)

≤ VT+1(x
H
T+1) + ε

where the last inequality holds because
∥∥xHT+1 − xhT+1

∥∥
∞ < δ. Now let

u∗ ∈ arg max
u∈U(xHT )

{
rT (xHT , u) + VT+1(fT (xHT , u))

}
so

VT (xHT ) = rT (xHT , u
∗) + VT+1(fT (xHT , u

∗)).

Then

rT (xHT , u
H
T ) +QHT+1(fT (xHT , u

H
T )) ≥ rT (xHT , u

∗) +QHT+1(fT (xHT , u
∗))

≥ rT (xHT , u
∗) + VT+1(fT (xHT , u

∗)− ε

by Lemma 3. Also we have just shown that (7) holds for t = T , so

rT (xHT , u
H
T ) + VT+1(x

H
T+1) ≥ VT (xHT )− 2ε

yielding (6) in the case t = T .

Now suppose (6) and (7) hold at t. By (4)

QHt (xHt ) ≤ qHt = rt(x
H
t , u

H
t ) +QHt+1(ft(x

H
t , u

H
t )),

so by (7)

QHt (xHt ) ≤ rt(x
H
t , u

H
t ) + Vt+1(ft(x

H
t , u

H
t )) + ε

≤ Vt(x
H
t ) + ε
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so (7) holds at t− 1. And

rt−1(x
H
t−1, u

H
t−1) +QHt (ft−1(x

H
t−1, u

H
t−1)) ≥ rt−1(x

H
t−1, u

∗
t−1) +QHt (ft−1(x

H
t−1, u

∗
t−1))

≥ rt−1(x
H
t−1, u

∗
t−1) + Vt(ft−1(x

H
t−1, u

∗
t−1))

−(T + 2− t)ε

by Lemma 3. Combining with (7) gives

rt−1(x
H
t−1, u

H
t−1) + Vt(x

H
t ) ≥ Vt−1(xHt−1)− (T + 2− (t− 1))ε

establishing (6) for t− 2.

Since xH1 = x̄, It follows by induction that

r1(x̄, u
H
1 ) + V2(f1(x̄, u

H
1 )) = V1(x̄)− (T + 1)ε

showing that action uH1 is the first stage decision of {uHt , t = 1, 2, . . . , T} which defines a (T + 1)ε-
optimal policy. �

4 Multistage stochastic optimization problems

We extend model MP, described in Section 3, to include random noise ξt on the state transition function
ft(xt, ut, ξt). This creates the following multistage stochastic program MSP.

MSP: max Eξt

[
T∑
t=1

rt(xt, ut) +R (xT+1)

]
s.t. xt+1 = ft(xt, ut, ξt), t = 1, 2 . . . , T,

x1 = x
ut ∈ U(xt), t = 1, 2 . . . , T,
xt ∈ Xt, t = 1, 2 . . . , T.

We make the following assumptions:

1. ξt is stagewise independent.

2. The set Ωt of random outcomes in each stage t = 1, 2, . . . , T is discrete and finite

3. Xt is a compact set.

The particular form of ξt we assume yields a finite set of possible sample paths or scenarios, so it is
helpful for exposition to view the random process ξt as a scenario tree with nodes n ∈ N and leaves
in L, where n represents different future states of the world, and ξn denotes the realization of ξt in
node n. Each node n has a probability p(n). By convention we number the root node n = 0 (with

9
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p(0) = 1). The unique predecessor of node n 6= 0 is denoted by n−. We denote the set of children of
node n ∈ N \ L by n+, and let Mn = |(n+)|. The depth d(n) of node n is the number of nodes on
the path from node n to node 0, so d(0) = 1 and we assume that every leaf node has the same depth,
say dL. The depth of a node can be interpreted as a time index t = 1, 2, . . . , T + 1 = δL.

The formulation of MSP in N becomes

MSPT: max
∑

n∈N\{0} p(n)rn(xn−, un) +
∑

n∈L p(n)R (xn)

s.t. xn = fn−(xn−, un, ξn), n ∈ N \ {0},
x0 = x,
un ∈ U(xn), n ∈ N ,
xn ∈ Xn, n ∈ N .

Observe in MSPT that we have a choice between hazard-decision and decision-hazard formulations that
was not relevant in the deterministic problem. To be consistent with most implementations of SDDP, we
have chosen a hazard-decision setting. This means that u is chosen in node n after the information from
node n is revealed. In general, this could include information about the stage’s reward function (e.g. if
the price was random) so we write rn(xn−, un). Alternatively if the reward function were not revealed
at stage n, then we would write rn−(xn−, un) instead. The discussion that follows can be adapted to
this latter case with a minor change of notation.

A recursive form of MSPT is:

Vn(xn) =
∑

m∈n+

p(m)
p(n) maxu∈U(xn) {rm(xn, u) + Vm (fn(xn, u, ξm))} n ∈ N \ L,

Vn(xn) = R(xn), n ∈ L.

where we seek a policy that maximizes V0(x̄).

The MIDAS algorithm applied to the scenario tree gives Algorithm 2 described below:

10
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Algorithm 2 Sampled MIDAS

Set H = 1, QHn (x) = M , n ∈ N . While H < Hmax do

1. Forward pass: Set xH0 = x, and n = 0. While n /∈ L:

(a) Sample m ∈ n+ to give ξHm ;

(b) Solve maxu∈U(xHn )

{
rm(xHn , u) +QHm(fn(xHn , u, ξ

H
m))
}

to give uHm;

(c) If
∥∥fn(xHn , u

H
m, ξ

H
m)− xhm

∥∥
∞ < δ for h < H then set xH+1

m = xhm, else set xH+1
m =

fn(xHn , u
H
m, ξ

H
m);

(d) Set n = m.

2. Backward pass: For the particular node n ∈ L at the end of step 1 update QHn (x) to QH+1
n (x) by

adding qH+1
n = Q(xHn ) at point xH+1

n . While n > 0

(a) Set n = n−;

(b) Compute

ϕ =
∑
m∈n+

p(m)

p(n)

[
max

u∈U(xHn )

{
rm(xH+1

n , u) +QH+1
m (fn(xH+1

n , u, ξm))
}]

(c) Update QHn (x) to QH+1
n (x) by adding qH+1

n = ϕ at point xH+1
n ;

3. Increase H by 1 and go to step 1.

Observe that Sampled MIDAS has no stopping criterion. However we have the following result.

Lemma 5. There is some H∗ such that for every H > H∗, and every m ∈ n+, n ∈ N \ L,∥∥∥fn(xHn , u
H
m, ξ

H
m)− xhm

∥∥∥
∞
< δ for some h < H∗.

Proof. Let x̃ = {xn, n ∈ N} denote the collection of state variables generated by the current policy. Each
forward pass H updates values of xn (from xHn to xH+1

n ) for nodes n corresponding to the realization of
ξHn on the sample path H. For nodes n not on this sample path we let xH+1

n = xHn , thus defining x̃H+1.
This defines an infinite sequence S = {x̃H}H=1.2.... of points, all of which lie in a compact set. By Lemma
2 S contains a finite subsequence Z with S ⊆ Nδ(Z). Let H∗ be the largest index in Z. Suppose it is not
true that for every n ∈ N and every H > H∗ there is some h ≤ H∗ with

∥∥ft(xHt , uHt , ξt)− xht+1

∥∥
∞ < δ.

Then for some node n ∈ N , and some H > H∗,
∥∥fn(xHn , u

H
m, ξ

H
m)− xhm

∥∥
∞ ≥ δ for every h ≤ H∗, so∥∥xH+1

n − xhm
∥∥
∞ ≥ δ, giving x̃H+1

m /∈ Nδ(Z), a contradiction. �

By Lemma 5, after H∗ iterations every sample path produced in step 1 yields state values that have been
visited before. It is clear that no additional points will be added in subsequent backward passes and so

11
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the MIDAS algorithm will simply replicate points that it has already computed with no improvement in
its approximation of Qn(x) at each n. If this situation could be identified then we might terminate the
algorithm at this point. This then raises the question of whether the solution obtained at this point is a
(T + 1)ε-optimal solution to MSP. The answer to this latter question depends on the sampling strategy
used in step 1a.

Following [8] we assume that this satisfies the Forward Pass Sampling Property.

Forward Pass Sampling Property (FPSP):

For each n ∈ L, with probability 1 ∣∣{H : ξHn = ξn
}∣∣ =∞.

FPSP states that each leaf node in the scenario tree is visited infinitely many times with probability 1 in
the forward pass. There are many sampling methods satisfying this property. For example, one sampling
method would be independently sampling a single outcome in each stage with a positive probability for
each outcome ξm in the forward pass, which meets FPSP by the Borel-Cantelli lemma. Another sampling
method that satisfies FPSP is to repeat an exhaustive enumeration of each scenario in the forward pass.

Recall that d(n) is the depth of node n. The following result ensures that QHn is a (T +2−d(n))ε-upper
bound on Vn.

Lemma 6. For every n ∈ N , and for all iterations H,

QHn (x) ≥ Vn(x)− (T + 2− d(n))ε.

Proof. We prove the result by induction. Consider any leaf node m in N , with depth d(m) = T + 1.
By Lemma 1

QHT+1(xm) ≥ VT+1(xm)− ε.

Consider any node n in N with depth d(n) and state x = xh. , and suppose the result is true for all nodes
with depth greater than d(n). Let m be a child of n and

u∗m ∈ arg max
u∈U(xn)

{rm(xn, u) + Vm (fn(xn, u, ξm))} .

Then for any h = 1, 2, . . . ,

max
u∈U(x(n))

{
rm(xn, u) +Qhm (fn(xn, u, ξm))

}
≥ rm(xn, u

∗
m) +Qhm (fn(xn, u

∗
m, ξm))

≥ rm(xn, u
∗
m) + Vm (fn(xn, u

∗
m, ξm))

−(T + 2− d(m))ε

Multiplying both sides by p(m)
p(n) and adding over all children of n gives for any h,

qhn ≥ Vn(xn)− (T + 1− d(n))ε,

where we have replaced d(m) by d(n) + 1. Now consider an arbitrary x ∈ X. Since h ∈ Hδ(x) implies
x < xhn + δ1,

Vn(x) ≤ Vn(xhn) + ε,

12
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giving
qhn ≥ Vn(x)− (T + 1− d(n))ε− ε.

By definition

QHn (x) = min
{
qhn : h ∈ Hδ(x)

}
,

so
QHn (x) ≥ Vn(x)− (T + 2− d(n)ε

as required. �

Theorem 1. If step 1a satisfies FPSP then sampled MIDAS converges almost surely to a (T+1)ε-optimal
policy of MSP.

Proof. We prove the result by induction. Consider the sequence {uHn , n ∈ N}H>H∗ of actions, and the
corresponding sequence {xHn , n ∈ N}H>H∗ of states, defined by Lemma 5. With probability one, each
xHn is some point that has been visited in a previous iteration of sampled MIDAS, and no new points are
added. We show by induction that for every n ∈ N ,

QHn (xHn ) ≤ Vn(xHn ) + ε, (8)

and for every n ∈ N \ L,∑
m∈n+

p(m)

p(n)

(
rm(xHn , u

H
m) + V H

m (fn(xHn , u
H
m, ξm))

)
≥ Vn(xHn )− (T + 2− d(n))ε. (9)

Consider any leaf node m in L. By the FPSP this is visited an infinite number of times, so at least
once by some iteration H > H∗ with probability 1. The collection {xHm : H = 1, 2, . . .} = {xhm,
h = 1, 2, . . . ,H∗}. For all such h, the terminal value function Vm(xhm) is known exactly, so Lemma 1
yields

QHm(xHm) ≤ Qhm(xHm)

= Qhm(xhm)

= Vm(xhm)

≤ Vm(xHm) + ε

where the last inequality holds because
∥∥xHm − xhm∥∥∞ < δ, so (8) holds for m in L. Now let

u∗m ∈ arg max
u∈U(xHn )

{
rm(xHn , u) + Vm(fn(xHn , u, ξm))

}
so

Vn(xHn ) =
∑
m∈n+

p(m)

p(n)
{rm(xHn , u

∗
m) + Vm(fn(xHn , u

∗
m, ξm))}.

Then since
QHm(fn(xHn , u

∗
m, ξm)) ≥ Vm(fn(xHn , u

∗
m, ξm)− ε

13
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by Lemma 3, we have

rm(xHn , u
H
m) +QHm(fn(xHn , u

H
m, ξm)) ≥ rm(xHn , u

∗
m) +QHm(fn(xHn , u

∗
m, ξm))

≥ rm(xHn , u
∗
m) + Vm(fn(xHn , u

∗
m, ξm)− ε.

Also we have just shown
QHm(xHm) ≤ Vm(xHm) + ε

for all m ∈ n+, so

rm(xHn , u
H
m) + Vm(fn(xHn , u

H
m, ξm)) ≥ rm(xHn , u

∗
m) + Vm(fn(xHn , u

∗
m, ξm)− 2ε.

Taking expectations of both sides with conditional probabilities p(m)
p(n) yields (9) when d(n) = T .

Now suppose (8) holds for every node with depth t + 1 ≤ T + 1, and (9) holds at every scenario tree
node with depth t ≤ T . Let n be a node at depth t. By (4)

QHn (xHn ) ≤ qHn

=
∑
m∈n+

p(m)

p(n)
max

u∈U(xhn)

{
rm(xHn , u) +QHm

(
ft(x

h
t , u, ξm)

)}
and (9) gives

max
u∈U(xHn )

{
rm(xHn , u) +QHm

(
ft(x

H
t , u, ξm)

)}
≤ max

u∈U(xHn )

{
rm(xHn , u) + Vt+1

(
ft(x

H
n , u, ξm)

)
+ ε
}

so

QHn (xHn ) ≤
∑
m∈n+

p(m)

p(n)
max

u∈U(xhn)

{
rm(xHn , u) + Vt+1

(
ft(x

h
n, u, ξm)

)
+ ε
}

= Vn(xHn ) + ε,

thus showing (6) for every node n ∈ N with d(n) = t− 1. Furthermore suppose∑
m∈n+

p(m)

p(n)

(
rm(xHn , u

H
m) + Vm(fn(xHn , u

H
m, ξm))

)
≥ Vn(xHn )

−(T + 2− d(n))ε.

for any n ∈ N with d(n) = t. We have

rn(xHn−, u
H
n ) +QHn (fn−(xHn−, u

H
n , ξn)) ≥ rn(xHn−, u

∗
n) +QHn (fn−(xHn−, u

∗
n, ξn))

≥ rn(xHn−, u
∗
n) + Vn(fn−(xHn−, u

∗
n, ξn))

−(T + 2− d(n))ε

by Lemma 3. And we have just shown

QHn (xHn ) ≤ Vn(xHn ) + ε.

14
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So

rn(xHn−, u
H
n ) + Vn(fn−(xHn−, u

H
n , ξn)) ≥ rn(xHn−, u

∗
n) + Vn(fn−(xHn−, u

∗
n, ξn))

−(T + 2− d(n) + 1)ε

= rn(xHn−, u
∗
n) + Vn(fn−(xHn−, u

∗
n, ξn))

−(T + 2− d(n−))ε.

Taking expectations of both sides with conditional probabilities p(n)
p(n−) yields (9) for every n ∈ N with

d(n) = t− 1.

Since xH0 = x̄, It follows by induction that∑
m∈0+

p(m)
(
rm(x̄, uHm) + Vm(f0(x̄, u

H
m, ξm))

)
= V0(x̄)− (T + 1)ε

showing that actions {uHm, m ∈ 0+} are the initial decisions of {uHn , n ∈ N \ {0}} defining a (T + 1)ε-
optimal policy. �

In practical implementations of MIDAS, we choose to stop after a fixed number Ĥ of iterations. Since

QĤ1 gives a (T +1)ε-upperbound on any optimal policy, we can estimate an optimality gap by simulating
the candidate policy and comparing the resulting estimate of its expected value (and its standard error)

with QĤ1 + (T + 1)ε.

We also remark that Algorithm 2 simplifies when ξt is stagewise independent. In this case the points
(xHn , q

H
n ) can be shared across all nodes having the same depth t. This means that there is a single

approximation QHt shared by all these nodes and updated once for all in each backward pass. The
almost-sure convergence result for MIDAS applies in this special case, but one might expect the number
of iterations needed to decrease dramatically in comparison with the general case.

5 Numerical example

To illustrate MIDAS we apply it to an instance of a single-reservoir hydroelectric scheduling problem, as
described in section 1. In the model we consider, the state x = (st, pt) represents both a reservoir stock
variable st and a price variable pt with the following dynamics[

st+1

pt+1

]
=

[
st − vt − lt + ωt

αtpt + (1− αt)bt + ηt

]
,

where vt is reservoir release, lt is reservoir spill, ωt is (random) reservoir inflow, and ηt is the error term
for an autoregressive model of price that reverts to a mean price bt. This means that ξt = [ ωt ηt ]>.
We define the reward function as the revenue earned by the released energy g(v) sold at price p,

rt(s, p, v, ωt, ηt) = pg(v).
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We approximate the value function by piecewise constant functions in two dimensions, where qh repre-
sents the expected value function estimate at sh and ph. Following the formulation in the Appendix, the
approximate value function QHt (st, pt) for storage st and price pt is defined as:

QHt (st, pt) = max ϕ
s.t.

ϕ ≤ qht + (M − qht )(1− wh),
st ≥ sht z

h
s + δs,

pt ≥ pht z
h
p + δp,

zhs + zhp = 1− wh,
wh, z

h
s , z

h
p ∈ {0, 1} .

(10)

Figure 3 illustrates an example of how the value function is approximated. At (st,pt) = (175, 17.5), the
expected value function estimate is 4000.

st

pt

q4 = 4000

q3 = 1500

q2 = 1500

q1 = 250

(st, pt)

5

10

15

20

50 100 150 200

Figure 3: Value function approximation for H = 4. QHt (st, pt), as shown by the cross, equals q4 = 4000.

We applied Algorithm 2 to an instance with twelve stages (i.e. T = 12). The price is modelled as an
autoregressive lag 1 process that reverts to a mean defined by bt where the noise term ηt is assumed to
have a standard normal distribution that is discretized into 10 outcomes. The number of possible price
realizations in each stage increases with t, so a scenario tree representing this problem would have 1012

scenarios. We chose δs = 10 and δp = 5, and set the reservoir storage bounds to be between 10 and
200. The generation function g(v) is a convex piecewise linear function of the turbine flow v, which is
between 0 and 70. Table 1 summarizes the values of the parameters chosen.
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Parameters Value

T 12

αt for t = 1, 2, . . . , T 0.5

ηt for t = 1, 2, . . . , T ∼ Norm(0, 1)

bt

[61.261, 56.716, 59.159, 66.080,
72.131, 76.708, 76.665, 76.071,
76.832, 69.970, 69.132, 67.176]

(δs, δp) (10, 5)

Xδ {x ∈ R : x ∈ [10, 200]}
l for t = 1, 2, . . . , T 0

ωt for t = 1, 2, . . . , T 0

U(st) {v ∈ R : v ∈ [0,min {st, 70}]}

g(v)


1.1v if v ∈ [0, 50],

v + 5 if v ∈ (50, 60],

0.5(v − 60) + 65 if v ∈ (60, 70],

0 otherwise.

s 100

p 61.261

N 30

Table 1: Model parameters for single reservoir, twelve stage hydroscheduling problem.

We ran MIDAS for 200 iterations. Figure 4 illustrates all of the sampled price scenarios from the forward
pass of the MIDAS algorithm. As the price model is mean reverting, it is generating price scenarios
around the average price bt indicated by the solid black line. As illustrated in Figure 5, the upper and
lower bounds of the numerical example converge to the value of an optimal policy.
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Figure 4: Visited price states of Algorithm 2.
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Figure 5: Upper and lower bound values by iteration.

Simulating the candidate policy at iteration 200 produces the prices shown in Figure 6 and the generation
schedules illustrated in Figure 7. The simulation shows highest levels of generation are during periods of
peak prices (periods 5 to 10). In scenarios where the observed price is higher than average the station
generates more power. For example, in one price scenario 44 MWh of energy is generated in period 4
for a price of $70.07, which is higher than the mean price of $59.159.
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Figure 6: Prices scenarios generated from the policy simulation.
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Figure 7: Corresponding offers of the price scenarios from the policy simulation.
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6 Conclusion

In this paper, we have proposed a method called MIDAS for solving multistage stochastic dynamic
programming problems with nondecreasing Bellman functions. We have demonstrated the almost-sure
convergence of MIDAS to a (T + 1)ε-optimal policy in a finite number of steps. Based on the numerical
example in section 5, we may expect that the number of iterations will decrease as δ increases. Increasing
δ increases the distance between distinct states that are visited, hence reducing the number of piecewise
constant functions needed to cover the domain of the value function. However, the quality of the
optimal policy will depend on the value of δ, since a smaller δ will give a lower ε. Furthermore, since
the current formulation treats each stage problem as a MIP, the stage problems will increase in size with
each iteration. Therefore it is important to choose an appropriate δ to produce good optimum policies
within reasonable computation time.

MIDAS can be extended in several ways. Currently, we approximate the stage problems using a MIP
formulation that treats the Bellman functions as piecewise constant. One formulation of such a MIP is
given in the Appendix. A more accurate approximation might be achieved using an alternative formulation
that for example uses specially ordered sets to yield a piecewise affine approximation. As long as this
provides an ε-outer approximation of the Bellman function, we can incorporate it into a MIDAS scheme,
which will converge almost surely by the same arguments above.

Although our convergence result applies to problems with continuous Bellman functions, MIDAS can
be applied to multistage stochastic integer programming (MSIP) problems. Solving a deterministic
equivalent of a MSIP can be difficult, as the scenario tree grows exponentially with the number of stages
and the number of outcomes, and MIP algorithms generally scale poorly. However, since solving many
small MIPs will be faster than solving a single large MIP, we might expect MIDAS to produce good
candidate solutions to MSIP problems with much less computational effort. Our hope is that MIDAS
will provide a practical computational approach to solving these difficult multistage stochastic integer
programming problems.

Appendix: A MIP representation of QH(x)

Assume that X = {x : 0 ≤ xi ≤ Ki, i = 1, 2, . . . , n}, and let Q(x) be any upper semi-continuous
function defined on X. Suppose for some points xh, h = 1, 2, . . . ,H, we have Q(xh) = qh. Recall
M = maxx∈X Q(x),

Hδ(x) = {h′ : xh′i > xi − δ, i = 1, 2, . . . , n},

QH(x) = min
{
M,min

{
qh
′

: h′ ∈ Hδ(x)
}}

.

For δ > 0, and for any x ∈ Xδ = {x : δ ≤ xi ≤ Ki, i = 1, 2, . . . , n}, define Q̄H(x) to be the optimal
value of the mixed integer program
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MIP(x): max ϕ
s.t. ϕ ≤ qh + (M − qh)(1− wh), h = 1, 2, . . . ,H,

xk ≥ xhkz
h
k + δ, k = 1, 2, . . . , n,∑n

k=1 z
h
k = 1− wh, h = 1, 2, . . . ,H,

wh ∈ {0, 1} , h = 1, 2, . . . ,H,
zhk ∈ {0, 1} , k = 1, 2, . . . , n,

h = 1, 2, . . . ,H.

Proposition 2. For every x ∈ Xδ,
Q̄H(x) = QH(x).

Proof. For a given point x ∈ Xδ, consider wh, zhk , k = 1, 2, . . . , n, h = 1, 2, . . . ,H that are feasible for
MIP(x). If wh = 0, h = 1, 2, . . . ,H, then ϕ ≤M is the only constraint on ϕ and so Q̄H(x) = M . But
wh = 0, h = 1, 2, . . . ,H means that for every such h, zhk = 1 for some component k giving

xk ≥ xhk + δ.

Thus
Hδ(x) = {h : xk < xhk + δ for every k} = ∅.

Thus QH(x) = M which is the same value as Q̄H(x).

Now assume that the optimal solution to MIP(x) has wh = 1 for some h. It suffices to show that

Q̄H(x) = min{qh : h ∈ Hδ(x)}.

First if h ∈ Hδ(x) then wh = 1. This is because choosing wh = 0 implies zhk = 1 for some k, so for at
least one k

xk ≥ xhk + δ,

so h /∈ Hδ(x).

Now if h /∈ Hδ(x) then any feasible solution to MIP(x) can have either wh = 0 or wh = 1. Observe
however that if

qh < min{qh′ : h′ ∈ Hδ(x)}

for any such h then choosing wh = 1 for any of these would yield a value of ϕ strictly lower than the
value obtained by choosing wh = 0 for all of them. So wh = 0 is optimal for h /∈ Hδ(x). It follows that
Hδ(x) = {h : wh = 1}. Thus the optimal value of MIP(x) is

Q̄H(x) = min{qh : wh = 1} = min{qh : h ∈ Hδ(x)} = QH(x).

�
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