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Abstract We propose a new method for simplifying semidefinite programs (SDP) inspired by symmetry
reduction. Specifically, we show if an orthogonal projection map satisfies certain invariance conditions, re-
stricting to its range yields an equivalent primal-dual pair over a lower-dimensional symmetric cone—namely,
the cone-of-squares of a Jordan subalgebra of symmetric matrices. We present a simple algorithm for mini-
mizing the rank of this projection and hence the dimension of this subalgebra. We also show that minimizing
rank optimizes the direct-sum decomposition of the algebra into simple ideals, yielding an optimal “block-
diagonalization” of the SDP. Finally, we give combinatorial versions of our algorithm that execute at reduced
computational cost and illustrate effectiveness of an implementation on examples. Through the theory of
Jordan algebras, the proposed method easily extends to linear and second-order-cone programming and,
more generally, symmetric cone optimization.

1 Introduction

Many practically relevant optimization problems can be posed as semidefinite programs (SDPs)—convex
optimization problems over the cone of positive semidefinite (psd) matrices. While SDPs are efficiently
solved in theory, specific instances may be intractable in practice unless one exploits special structure.
Existing techniques for structure exploitation include facial reduction [6, 12, 32] and symmetry reduction
[3, 8, 19, 41]. In this paper, we present a method that builds on this latter technique.

To explain, we first recall a key step in symmetry reduction: finding an orthogonal projection map whose
range intersects the solution set. This projection (called a Reynolds or group-average operator) maps feasible
points to feasible points without changing the objective function, which implies that its range (called the
fixed-point subspace) contains solutions. This leads to a simple statement of our method: minimize rank—or,
equivalently, the dimension of the range—over a tractable subset of maps with this property. As we show, this
minimization problem is efficiently solved for arbitrary SDP instances by a simple algorithm. Further, the
subset of projections considered strictly contains those implicit in existing symmetry reduction procedures
(Section 2.1.3); hence, our method is more general.

Symmetry reduction not only reduces the dimension of the feasible set, it also simplifies the semidefinite
constraint. This simplification process is informally called block-diagonalization, and it amounts to finding a
canonical direct-sum decomposition of the fixed-point subspace. The projection we identify enables similar
simplifications. Precisely, the range is always a subalgebra of the Jordan algebra of real, symmetric matrices
and hence also has a canonical direct-sum decomposition into simple ideals. Further, its intersection with
the psd cone (the cone-of-squares of the subalgebra) has a corresponding decomposition into irreducible
symmetric cones [14, Chapter 3]. As we review (Section 2.3.3), finding this decomposition generalizes cur-
rent block-diagonalization techniques based on *-algebras [10, 25]. As we show, minimizing the rank of the
projection optimizes this decomposition in a precise sense.
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Finally, our method easily extends to any symmetric cone optimization problem (including linear and
second-order-cone programs). Indeed, via Jordan algebra theory, our algorithm for finding projections extends
“word-by-word”, mirroring similar extensions of interior-point methods [1].

We organize this paper as follows. Section 2 contains preliminaries. Section 3 gives an algorithm for
finding a minimum-rank projection. Section 4 shows that minimizing rank yields an algebra with an optimal
direct-sum decomposition. Section 5 gives combinatorial (but less powerful) versions of our algorithm that
can be less costly to execute. Computational results appear in Section 6.

2 Preliminaries

We consider a primal-dual pair of semidefinite programs (SDPs) expressed in conic form ([29, Chapter 4]):

minimize C ·X
subject to X ∈ Y + L

X ∈ S
n
+

maximize −Y · S
subject to S ∈ C + L⊥

S ∈ S
n
+.

(1)

Here, X ∈ S
n and S ∈ S

n are decision variables in the vector space S
n of real symmetric matrices equipped

with trace inner-product X · Y := Tr XY , Sn
+ ⊆ S

n denotes the (self-dual) cone of psd matrices, L ⊆ S
n is

a linear subspace with orthogonal complement L⊥ ⊆ S
n, and Y + L and C + L⊥ are affine sets defined by

fixed C ∈ S
n and Y ∈ S

n. We refer to X and S as the primal and dual decision variables, respectively, noting
that we have identified the dual space (Sn)∗ with S

n. (Note that in this form, the complementary slackness
condition X · S = 0 does not necessarily imply the primal and dual objective values are equal. Rather, they
differ by a constant that depends on the particular choice of C and Y .)

Throughout this paper we also, for a subspace S ⊆ S
n, let PS : S

n → S
n denote the corresponding

orthogonal projection map, i.e., the unique self-adjoint and idempotent map with range equal to S.

2.1 Constraint Set Invariance

Our goal is to find a subspace S ⊆ S
n that contains primal and dual solutions of (1) if they exist. To do

this, we will find a projection that maps feasible points to feasible points without changing the cost function
(which implies the range contains solutions), a key idea from symmetry reduction [3, 8, 19, 41]. Precisely,
we will search over the orthogonal projections that satisfy the following set of conditions, which we’ll show
are also implicit in existing symmetry reduction approaches (Section 2.1.3).

Definition 2.1 (Constraint Set Invariance Conditions) We say the orthogonal projection map PS :
S

n → S
n satisfies the Constraint Set Invariance Conditions for the primal-dual pair (1) if

(a) PS(Sn
+) ⊆ S

n
+, i.e., PS is a positive map;

(b) PS(Y + L) ⊆ Y + L;
(c) PS(C + L⊥) ⊆ C + L⊥.

Under these conditions, PS : Sn → S
n maps primal/dual feasible points to primal/dual feasible points (by

definition). For C and all X ∈ Y + L, these conditions also imply that

X − PS(X) ∈ L C − PS(C) ∈ L⊥, (2)

which in turn implies that PS preserves the cost function on the primal feasible set:

C ·X = PS(C) · PS(X) = C · PSPS(X) = C · PS(X).

(Here, the first equality holds given (2), and the second and third given that PS is self-adjoint and idem-
potent.) A similar argument shows Y · S = Y · PS(S) for all dual feasible S. In summary, we’ve proven the
following.
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Proposition 2.1 (Preservation of optimal values) Suppose PS : Sn → S
n satisfies the Constraint Set

Invariance Conditions for the primal-dual pair (1). Let θp := inf
{

C ·X : X ∈ S
n
+ ∩ (Y + L)

}
and θd :=

sup
{
−Y · S : S ∈ S

n
+ ∩ (C + L⊥)

}
. Then,

θp = inf
{

C ·X : X ∈ S
n
+ ∩ (Y + L) ∩ S

}
, θd = sup

{
−Y · S : S ∈ S

n
+ ∩ (C + L⊥) ∩ S

}
.

Further, S contains points that attain θp and θd when such points exist.

In other words, we’ve shown that restricting the primal/dual feasible set to S doesn’t change the primal/dual
optimal value or its attainment.

2.1.1 Infeasibility certificates

A dual improving direction is S ∈ S
n
+ ∩L

⊥ satisfying Y ·S < 0. Analogously, a primal improving direction is
X ∈ S

n
+∩L satisfying C ·X < 0. The existence of primal (resp. dual) improving directions implies infeasibility

of the dual (resp. primal). It turns out that if PS : Sn → S
n satisfies the Constraint Set Invariance Conditions,

then the subspace S contains improving directions whenever they exist for the original problem. To show
this, we need the following lemma.

Lemma 2.1 (Invariance of linear subspaces) Suppose PS : Sn → S
n satisfies the Constraint Set Invari-

ance Conditions. Then L and L⊥ are both invariant subspaces of PS , i.e., PS(L) ⊆ L and PS(L⊥) ⊆ L⊥.

Proof For all Z ∈ L, we have that PS(Z) = PS(Y )− PS(Y −Z) ∈ L, where containment in L follows given
that Y + L contains both PS(Y ) and PS(Y − Z) by the Constraint Set Invariance Conditions. This shows
that L is an invariant subspace; the proof for L⊥ is identical.

We can now show the desired result.

Proposition 2.2 (Improving directions) Suppose PS : Sn → S
n satisfies the Constraint Set Invariance

Conditions. The following statements hold.

– If S ∈ S
n is a dual improving direction, then so is PS(S).

– If X ∈ S
n is a primal improving direction, then so is PS(X).

Proof Let S be a dual improving direction. Lemma 2.1 and the Constraint Set Invariance Conditions imply
that Sn

+ ∩L
⊥ contains PS(S), that L⊥ contains S−PS(S) and that L contains Y −PS(Y ). These latter two

facts imply that S ·Y = S ·PS(Y ); hence, PS(S) is a dual improving direction. Proof of the second statement
is identical.

2.1.2 Restricted primal-dual pair

We’ve seen that intersecting the primal and dual feasible with S does not change the primal and dual optimal
value if PS satisfies the Constraint Set Invariance Conditions (Proposition 2.1). Further, S contains solutions
or infeasibility certificates for (1) when such objects exists (Propositions 2.1-2.2). These facts allow us to
solve (1) by first restricting the primal and dual to S. The following shows that these restrictions are a
primal-dual pair if we view S as the ambient space.

Proposition 2.3 (Duality and restrictions) Suppose that PS : Sn → S
n satisfies the Constraint Set In-

variance Conditions (Definition 2.1). Then, treating the range S as the ambient space, the pair of optimization
problems

minimize PS(C) ·X
subject to X ∈ PS(Y ) + L ∩ S

X ∈ S
n
+ ∩ S

maximize −PS(Y ) · S
subject to S ∈ PS(C) + L⊥ ∩ S

S ∈ S
n
+ ∩ S

(3)

is a primal-dual pair, i.e.,

(Sn
+ ∩ S)

∗
∩ S = S

n
+ ∩ S, (L ∩ S)

⊥
∩ S = L⊥ ∩ S. (4)

Moreover,

(Y + L) ∩ S = PS(Y ) + L ∩ S, (C + L⊥) ∩ S = PS(C) + L⊥ ∩ S. (5)
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Proof For any set T ⊆ S
n, the condition PS(T ) ⊆ T implies PS(T ) = S ∩T given that PS is the orthogonal

projection onto S. Using this fact, we have that

(Y + L) ∩ S = PS(Y + L) = PS(Y ) + PS(L) = PS(Y ) + L ∩ S,

where the last equality uses the additional fact that PS(L) ⊆ L (Lemma 2.1). The other equality in (5)
follows by identical argument. The inclusions ⊇ of (4) are obvious. To see the inclusions ⊆, let T be any set
satisfying PS(T ) ⊆ T . Then, for any X ∈ (T ∩ S)

∗
∩ S,

〈X, Y 〉 = 〈PS(X), Y 〉 = 〈X, PS(Y )〉 ≥ 0, ∀Y ∈ T ,

where the first equality holds since X ∈ S, the second equality since PS is self-adjoint and the inequality since
PS(Y ) ∈ T ∩ S. Hence, X ∈ T ∗.

We illustrate this proposition with the following example.

Example 2.1 Consider the following primal-dual pair of semidefinite programs:

minimize x1 + x2

subject to






x1 1 x3 x4

1 x2 x4 −x3

x3 x4 1 x5

x4 −x3 x5 0






� 0

maximize −(s5 + 2s1)
subject to







1 s1 s2 s3

s1 1 −s3 s2

s2 −s3 s5 0
s3 s2 0 s6






� 0.

The projection PS : S4 → S
4 satisfies the Constraint Set Invariance Conditions (Definition 2.1) if S equals

the span of {E21 + E12} ∪ {Eii}
3
i=1. Hence, one obtains primal and dual optimal solutions by solving the

following restrictions to S:

minimize x1 + x2

subject to






x1 1 0 0
1 x2 0 0
0 0 1 0
0 0 0 0






� 0

maximize −(s5 + 2s1)
subject to







1 s1 0 0
s1 1 0 0
0 0 s5 0
0 0 0 0






� 0.

2.1.3 Relationship with prior work

A common symmetry reduction technique, described in [19], assumes existence of a subgroup G ⊂ R
n×n of

the group of orthogonal matrices that, for all U ∈ G, satisfies

UCUT = C,
{

UXUT : X ∈ Y + L
}
⊆ Y + L. (6)

Under this condition, one can restrict the primal problem to the fixed-point subspace

FG := {X ∈ S
n : UXUT = X ∀U ∈ G}, (7)

without changing its optimal value [19, Theorem 3.3], in analogy with Proposition 2.1. (One can also derive
analogues of Proposition 2.3 based on these conditions; see, e.g., [11, Proposition 2].) It turns out that
the orthogonal projection onto FG (called the Reynolds operator) satisfies the Constraint Set Invariance
Conditions.

To see this, first observe that PFG
is the map X 7→ 1

|G|

∑

U∈G UXUT . As shown in [19],

PFG
(Sn

+) ⊆ S
n
+, PFG

(Y + L) ⊆ Y + L, PFG
(C) = C, (8)

given (6) and the fact that PFG
(X) is a convex combination of points in {UXUT : U ∈ G}. The proof of the

next proposition shows that PFG
also satisfies PFG

(C +L⊥) ⊆ C +L⊥ (and hence the full set of Constraint
Set Invariance Conditions).
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Proposition 2.4 (Constraint Set Invariance From Groups) Let G ⊂ R
n×n be a finite group of or-

thogonal matrices that satisfies (6). Then, PFG
: Sn → S

n satisfies the Constraint Set Invariance Conditions
(Definition 2.1), and, in addition, the equality PFG

(C) = C.

Proof Given (8), we only need to show that PFG
(C +L⊥) ⊆ L⊥. To begin, PFG

(Y +L) ⊆ Y +L implies that
PFG

(L) ⊆ L (Lemma 2.1). Since PFG
is self-adjoint, PFG

(L) ⊆ L holds if and only if PFG
(L⊥) ⊆ L⊥. Since

PFG
(C) = C, we conclude that PFG

(C + L⊥) ⊆ C + L⊥, as desired.

Another technique, surveyed in [8], treats R
n×n as a *-algebra with matrix multiplication as a product

and transposition as a *-involution. It then finds any *-subalgebra, i.e., any subspace closed under matrix
multiplication and transposition, that contains the primal affine set Y +L. IfM⊆ R

n is such a *-subalgebra,
then S :=M∩ S

n contains primal and dual solutions [8, Theorem 2]. Further, the projection PS satisfies

PS(Sn
+) ⊆ S

n
+, PS(Y + L) = Y + L, (9)

where the inclusion PS(Sn
+) ⊆ S

n
+ holds becauseM is a *-subalgebra. It turns out that PS(C +L⊥) ⊆ C +L⊥

(and hence the full set of Constraint Set Invariance Conditions) also holds.

Proposition 2.5 (Constraint Set Invariance From *-algebras) Let M ⊆ R
n×n be any *-subalgebra

containing Y + L ⊆ S
n. Let S = M ∩ S

n. Then PS : S
n → S

n satisfies the Constraint Set Invariance
Conditions (Definition 2.1), and, in addition, the equality PS(Y + L) = Y + L.

Proof Given (9), we only need to show that PS(C + L⊥) ⊆ C + L⊥.
To begin, since S contains Y + L, we have that PS(Y + L) = Y + L, which in turn implies that

L = PS(L). (10)

From (10), we conclude that L is an invariant subspace of PS which in turn in implies that L⊥ is an invariant
subspace of the adjoint of PS . But PS is self-adjoint; hence,

PS(L⊥) ⊆ L⊥. (11)

We conclude that

PS(CL + L⊥) = CL + PS(L⊥) ⊆ CL + L⊥,

where the equality follows from (10) and the inclusion from (11). Since CL + L⊥ = C + L⊥, the conclusion
follows.

Note that this proposition puts no condition on objective matrix C of the primal problem. Similarly, [8,
Theorem 2] puts no condition on the dual objective function.

2.2 Reformulations over isomorphic, symmetric cones

The fixed-point subspace of symmetry reduction and *-subalgebras have structured intersections with S
n
+:

each intersection is isomorphic to a direct product of psd cones of Hermitian matrices with real, complex, or
quaternion entries. Such a product is an instance of a symmetric cone, a special type of self-dual cone that
admits efficient optimization algorithms [1, 17]. To maintain this feature, Section 2.3.1 gives an additional
condition on the projection PS : Sn → S

n that ensures Sn
+∩S is always isomorphic to a symmetric cone. This

next proposition shows that the primal-dual pair (1) can be explicitly reformulated over such an isomorphic
cone under the Constraint Set Invariance Conditions.

Proposition 2.6 (Reformulations over isomorphic cones) Suppose PS : S
n → S

n satisfies the Con-
straint Set Invariance Conditions (Definition 2.1). For an inner-product space V, let Ψ : V → S

n be an
injective linear map with range equal to S and C ⊆ V a self-dual cone that satisfies

Ψ(C) = S
n
+ ∩ S. (12)
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If X̂ ∈ V and Ŝ ∈ V solve the primal-dual pair of conic optimization problems

minimize 〈Ψ∗(C), X̂〉

subject to X̂ ∈ (Ψ∗Ψ)
−1

Ψ∗(Y + L)

X̂ ∈ C

maximize −〈(Ψ∗Ψ)
−1

Ψ∗(Y ), Ŝ〉

subject to Ŝ ∈ Ψ∗(C + L⊥)

Ŝ ∈ C,

(13)

then Ψ(X̂) and Ψ(Ψ∗Ψ)
−1

(Ŝ) solve the primal-dual pair (3)—and hence the primal-dual pair (1).

Proof We will show that Ψ and (Ψ∗Ψ)
−1

Ψ∗ are mappings between primal feasible points of (13) and (3) that
do not change the objective value. To see that Ψ has this property, let X̂ be a feasible point of (13). Then,

Ψ(X̂) ∈ PS(Y + L), Ψ(X̂) ∈ S
n
+ ∩ S, 〈C, Ψ(X̂)〉 = 〈Ψ∗(C), X̂〉,

where the first containment follows given that Ψ(Ψ∗Ψ)
−1

Ψ∗ equals PS and the second by (12). Since PS(Y +
L) ⊆ Y + L, we conclude that Ψ(X̂) is feasible for (3) with same objective as X̂.

Now suppose X is feasible for (3). Then X = Ψ(X̂) for a unique X̂ ∈ C since Ψ is injective. Indeed, we

must have that X̂ = (Ψ∗Ψ)
−1

Ψ∗(X), since

Ψ(Ψ∗Ψ)−1Ψ∗(X) = PS(X) = X.

Hence, X̂ = (Ψ∗Ψ)
−1

Ψ∗(X) is a feasible point of (13) with objective

〈Ψ∗(C), X̂〉 = 〈Ψ∗(C), (Ψ∗Ψ)−1Ψ∗X〉 = 〈C, Ψ(Ψ∗Ψ)−1Ψ∗X〉 = 〈C, PSX〉 = 〈C, X〉,

as desired.
For the dual, we similarly prove that Ψ∗ and Ψ(Ψ∗Ψ)−1 are mappings between the feasible sets that do

not change the objective. The proof is almost the same, but exploits the additional fact that

Ψ∗Ψ(C) = C, (14)

which we show in the Appendix (Lemma 7.4). To begin, if Ŝ is dual feasible for (13), then Ψ(Ψ∗Ψ)
−1

(Ŝ)
satisfies

Ψ(Ψ∗Ψ)
−1

(Ŝ) ∈ PS(C + L⊥), Ψ(Ψ∗Ψ)
−1

(Ŝ) ∈ S
n
+ ∩ S, 〈Y, Ψ(Ψ∗Ψ)

−1
(Ŝ)〉 = 〈(Ψ∗Ψ)

−1
Ψ∗(Y ), Ŝ〉,

Here, the first containment follows because Ŝ ∈ Ψ∗(C+L⊥) and Ψ(Ψ∗Ψ)
−1

Ψ∗ = PS ; the second by (12) and (14).

Since PS(C + L⊥) ⊆ C + L⊥, we conclude that Ψ(Ψ∗Ψ)−1(Ŝ) is feasible for (3) with same objective as Ŝ.
On the other hand, if S is dual feasible for (3), then Ŝ := Ψ∗S must be the unique Ŝ ∈ V satisfying

S = Ψ(Ψ∗Ψ)
−1

Ŝ since Ψ(Ψ∗Ψ)
−1

Ψ∗S = S. Further, Ŝ ∈ C since Ψ∗(Sn
+ ∩ S) = C by (12) and (14). Hence Ŝ

is dual feasible for (13). Further, its objective satisfies

〈(Ψ∗Ψ)
−1

Ψ∗(Y ), Ŝ〉 = 〈(Ψ∗Ψ)
−1

Ψ∗(Y ), Ψ∗S〉 = 〈Y, PSS〉 = 〈Y, S〉,

as desired.

2.3 Euclidean Jordan Algebras

We now develop a condition that guarantees Sn
+ ∩S is isomorphic to a symmetric cone C and discuss how to

construct a linear map Ψ satisfying Ψ(C) = S
n
+ ∩S. For this, we first view S

n as a Euclidean Jordan algebra,
i.e., as an inner-product space J equipped with bilinear product (x, y) 7→ x◦ y that is commutative, satisfies
the Jordan identity

x2 ◦ (y ◦ x) = (x2 ◦ y) ◦ x ∀x, y ∈ J

(where x2 := x ◦ x), and, for all fixed x, is a self-adjoint, i.e., 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all y, z ∈ J . To satisfy
these axioms, we equip S

n with the trace inner-product X ·S := Tr XY and product X ◦Y := 1
2 (XY +Y X).

For any Euclidean Jordan algebra J , the set of squares {x2 : x ∈ J } is always a symmetric cone [14, Chapter
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3], often called the cone-of-squares of J . For the aforementioned product, the cone-of-squares of Sn is just
the psd cone S

n
+.

It turns out that Sn
+∩S is isomorphic to a symmetric cone whenever S is a subalgebra of Sn, i.e., whenever

S contains X ◦ Y for all X, Y ∈ S. This follows because S satisfies the Euclidean-Jordan-algebra axioms
(when viewed as the ambient space) and has cone-of-squares Sn

+∩S. As a consequence, we can write S
n
+∩S as

the linear image Ψ(C) of the cone-of-squares C of any isomorphic algebra J using an injective homomorphism
Ψ : J → S

n, i.e., an injective linear map satisfying Ψ(x ◦ y) = Ψ(x) ◦ Ψ(y). Formally:

Proposition 2.7 Let S be a subalgebra of Sn. Let J be any Euclidean Jordan algebra isomorphic to S with
cone-of-squares C ⊆ J . Let Ψ : J → S

n be an injective homomorphism with range equal to S. Then,

Ψ(C) = S
n
+ ∩ S.

Example 2.2 Let S denote the subalgebra of Sn spanned by

E1 =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







, E2 =







0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1







, T1 =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







, T2 =







0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0







.

Let J denote the spin-factor algebra R×R
3 with cone-of-squares Q := {(x0, x) ∈ J : ‖x‖2 ≤ x0} and product

(x0, x) ◦ (y0, y) := (x0y0 + xT y, x0y + y0x).

Finally, let Ψ : J → S
n denote the injective linear map satisfying

Ψei = Ei, Ψti = Ti i ∈ {1, 2},

where

e1 =
[

1
2

1
2 0 0

]T
, e2 =

[
1
2 −

1
2 0 0

]T
, t1 =

[
0 0 1 0

]T
, t2 =

[
0 0 0 1

]T
.

Then, the image of Q under Ψ is S
n
+ ∩ S. Further, Ψ is an injective homomorphism from J into S

n with
range equal to S.

Given S, one can find a canonical isomorphic algebra J and an injective homomorphism Ψ numerically [34,
Chapter 6]; see Section 2.3.2 for more details.

2.3.1 Positive projections, unitality, and subalgebras

We can guarantee that S is a subalgebra and hence that S
n ∩ S is isomorphic to a symmetric cone by

revisiting the positivity constraint PS(Sn
+) ⊆ S

n
+ of the Constraint Set Invariance Conditions. Specifically,

we obtain this guarantee by imposing positivity and, in addition, unitality.

Definition 2.2 (Unitality Condition) We say that PS : Sn → S
n is unital if the range S contains a unit

E ∈ S for the Jordan product X ◦ Y = 1
2 (XY + Y X), i.e., if there exists E ∈ S for which X ◦E = X for all

X ∈ S.

Theorem 2.1 (Characterization of positive, unital projections) Let S ⊆ S
n be subspace with orthog-

onal projection map PS : Sn → S
n. The following statements are equivalent.

1. The projection PS is positive (Definition 2.1-(a)) and unital (Definition 2.2).
2. The subspace S is subalgebra of Sn.

Proof See appendix.

As we show in the appendix, this theorem follows from basic linear algebra and arguments of Størmer [38]
(who proves an analogous result for complex Jordan algebras). Note also that the unitality condition holds
when S arises from a group or a *-subalgebra via Proposition 2.4 or 2.5.
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2.3.2 Structure of subalgebras

We now discuss the structure of subalgebras in more detail. To begin, call an abstract Euclidean Jordan
algebra J simple if its only ideals are {0} and J , where an ideal I ⊆ J is a subspace satisfying x ◦ y ∈ I for
all y ∈ J and x ∈ I. Similarly, call an ideal simple if it is simple when viewed as an algebra. It is well known
that any subalgebra S equals an orthogonal direct-sum of its simple ideals (e.g., [14, Proposition III.4.4]).
Further, the isomorphism classes of these ideals are fully understood [14, Chapter V]. As a consequence, S
is always, up-to linear transformation, a direct-sum of “canonical” algebras. Formally:

Proposition 2.8 (Structure theorem for subalgebras [14]) Let ⊕r
i=1Si be the orthogonal direct-sum

decomposition of a subalgebra S ⊆ S
n into simple ideals. Then, there exists simple Jordan algebras J1, . . . ,Jr

and injective homomorphisms Ψi : Ji → S
n satisfying

Si = Ψi(Ji), (15)

where each Ji is one of the following1

– A spin-factor algebra R× R
m with product (x0, x) ◦ (y0, y) := (x0y0 + xT y, x0y + y0x)

– The set of Hermitian matrices Hd(D) of order d with entries in D and product 1
2 (XY + Y X), where D

denotes the real numbers, the complex numbers, or the quaternions.

Efficient algorithms exist for finding the ideals Si, the algebras Ji and the homomorphisms Ψi given S [34,
Chapter 6].

2.3.3 Connections with *-subalgebras

In some cases, *-algebra techniques (currently used in the SDP literature) can find the decomposition of a
Jordan subalgebra S into its simple ideals, a crucial step in finding (15). To explain, view R

n×n as a *-algebra
with matrix multiplication as a product and transposition as a *-involution, and let M⊆ R

n×n denote the
*-subalgebra generated by S. The Wedderburn decomposition [42] of M is its direct-sum decomposition
M = ⊕q

i=1Mi into simple idealsMi. If S =M∩Sn, then the ideals ofM identify the ideals of S. Formally:

Proposition 2.9 (Ideals from the Wedderburn decomposition) Let M be the *-subalgebra of R
n×n

generated by a Jordan subalgebra S of S
n. Let M have Wedderburn decomposition M = ⊕q

i=1Mi. If S =
M∩ S

n, then ⊕q
i=1(Mi ∩ S

n) is the decomposition of S into simple ideals.

Proof We need to show that S = ⊕q
i=1(Mi ∩ S

n) and that Mi ∩ S
n is a simple ideal.

To begin, write X ∈ S as X =
∑q

i=1 Xi for Xi ∈ Mi. Then, X =
∑q

i=1
1
2 (Xi + XT

i ), where Xi + XT
i ∈

Mi∩S
n sinceMi is closed under transposition. Hence, S ⊆ ⊕q

i=1(Mi∩S
n). The reverse containment follows

because S =M∩ S
n = (⊕q

i=1Mi) ∩ S
n ⊇ ⊕q

i=1(Mi ∩ S
n).

That Si := Mi ∩ S
n is an ideal of S is obvious: if X ∈ S and Y ∈ Si then XY + Y X ∈ Mi since

Mi is an ideal of M, hence 1
2 (XY + Y X) ∈ Si. Further, by the Artin-Wedderburn theorem, each Mi is

isomorphic to the *-algebra of real, complex, or quaternion matrices of some order; hence, Si is isomorphic
to the Hermitian matrices of real, complex, or quaternion entries of some order and is therefore simple.

Algorithms for finding the Wedderburn decomposition of *-subalgebras of Rn×n include [13, 25]; see also [10,
20] for decompositions of complex *-algebras.

Remark 1 A subalgebra S that satisfies S =M∩ S
n is called reversible. If a subalgebra is not reversible,

one of its simple ideals is isomorphic to a spin-factor algebra. Conversely, if a subalgebra is isomorphic to a
spin-factor of dimension larger than 5, it is not reversible [22, Theorem 6.2.5].

1 We omit the Albert algebra from this list since it is exceptional, i.e., it is an algebra that is not special. By definition, all
subalgebras of Sn are special [22, 2.3.1]; hence, no subalgebra of Sn is isomorphic to the Albert algebra.
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3 Minimum rank projections and admissible subspaces

We now show how to find a projection PS : Sn → S
n satisfying the Constraint Set Invariance and Unitality

Conditions (Definitions 2.1 and 2.2), which, as argued in the previous section, allows one to reformulate the
primal-dual pair (1) over a symmetric cone isomorphic to S

n
+ ∩ S. As we’ll show, among projections that

satisfy these conditions, there exists a unique one of minimum rank. Further, a simple algorithm finds this
projection for any instance of the primal-dual pair (1). This will follow by characterizing subspaces whose
orthogonal projections satisfy these conditions. We define such a subspace as admissible:

Definition 3.1 A subspace S is admissible if its orthogonal projection PS : Sn → S
n satisfies the Constraint

Set Invariance and Unitality Conditions (Definitions 2.1-2.2).

Theorem 2.1 provided a partial characterization of admissibility, showing that the ranges of positive,
unital projections are the Jordan subalgebras of Sn. To complete a characterization, we need the following
result on invariance of the primal-dual affine sets.

Lemma 3.1 For affine sets Y +L and C +L⊥, let YL⊥ ∈ S
n and CL ∈ S

n denote the projections of Y ∈ S
n

and C ∈ S
n onto the subspaces L⊥ and L, respectively. The following are equivalent.

1. C + L and Y + L⊥ are invariant under the orthogonal projection PS : Sn → S
n.

2. The subspace S contains CL and YL⊥ and is an invariant subspace of PL : Sn → S
n, i.e., S contains

YL⊥ , CL and PL(S).

Proof See appendix (Section 7.2).

Remark 2 The invariant subspaces of PL are precisely the invariant subspaces of PL⊥ [15, Proposition 3.8],
which explains the asymmetry of statement Lemma 3.1-(2) with respect to L and L⊥.

We also use the following well-known characterization of subalgebras, which follows given that XY + Y X =
(X + Y )

2
−X2 − Y 2.

Lemma 3.2 A subspace S ⊆ S
n is a Jordan subalgebra of S

n (with product 1
2 (XY + Y X)) if and only if

S ⊇ {X2 : X ∈ S}.

Combining Theorem 2.1 with Lemmas 3.1-3.2 yields our characterization of admissibility.

Theorem 3.1 A subspace S is admissible (Definition 3.1) if and only if it satisfies the following conditions:

S ∋ YL⊥ , CL,

S ⊇ PL(S),

S ⊇ {X2 : X ∈ S},

where YL⊥ and CL are as in Lemma 3.1 and L is the linear subspace of the primal-dual pair (1).

3.1 Optimal subspaces and minimum rank projections

Theorem 3.1 shows that the (arbitrary) intersection of admissible subspaces is admissible. This motivates
the following definition.

Definition 3.2 The optimal admissible subspace Sopt is the intersection of all admissible subspaces:

Sopt =
⋂

{S : S is admissible}.

Admissibility of Sopt yields the following corollary of Theorem 3.1.

Corollary 3.1 The map PSopt : Sn → S
n is the minimum-rank orthogonal projection satisfying the Con-

straint Set Invariance and Unitality Conditions (Definitions 2.1-2.2).
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3.2 Solution algorithm

Theorem 3.1 also suggests a procedure for finding Sopt. First, initialize S to the subspace spanned by CL

and YL⊥ . Then, add PL(S) and the span of {X2 : X ∈ S} to S in an alternating fashion, terminating when
the resulting ascending chain of subspaces stabilizes. Formally:

Theorem 3.2 The optimal admissible subspace Sopt (Definition 3.2) is the output of the following algorithm:

S ← span{CL, YL⊥}
repeat
S ← S + PL(S)
S ← S + span{X2 : X ∈ S}

until ascending chain stabilizes

where CL, YL⊥ are as in Lemma 3.1 and L is the linear subspace of the primal-dual pair (1).

Proof The algorithm computes an ascending chain of subspaces in finite dimensions which must stabilize to
a subspace Ŝ. Stabilization implies that

Ŝ = Ŝ + PL(Ŝ), Ŝ = Ŝ + span{X2 : X ∈ Ŝ}

which, since Ŝ ∋ CL, YL⊥ , shows that Ŝ is admissible (Theorem 3.1). At every iteration, S is a subset of
Sopt (by induction); hence, Ŝ is a subset. But since Ŝ is admissible, it contains Sopt (Definition 3.2). We

conclude that Ŝ = Sopt.

Note executing this algorithm may be impractical if storing a basis for S is impractical. To deal with this,
we introduce variations in Section 5 that restrict to subspaces spanned by bases with efficient combinatorial
representations.

4 Optimal decompositions

Admissible subspaces are necessarily subalgebras of Sn (Theorem 3.1). As a consequence, each admissible
subspace has an orthogonal direct-sum decomposition into simple ideals (Section 2.3.2). We now prove the
direct-sum decomposition of Sopt is optimal in a precise sense.

Our notion of optimality is in terms of the rank vector of an algebra W = ⊕w
i=1Wi

rW := (rankW1, rankW2, . . . , rankWw),

where each Wi is a simple ideal and rankWi is the maximum number of distinct eigenvalues of an X ∈ Wi;
as an example, the rank vectors of Sn1 ⊕ S

n2 and R
4
+ are (n1, n2) and (1, 1, 1, 1), respectively. Specifically,

we show that the rank vector of Sopt is weakly majorized by that of any other admissible subspace. Among
other things, this means that Sopt minimizes the rank vector’s largest element and the sum of its elements.

Definition 4.1 The vector x ∈ Z
m weakly majorizes y ∈ Z

n if

min {ℓ,m}
∑

i=1

[x↓]i ≥

min {ℓ,n}
∑

i=1

[y↓]i ∀ℓ ∈ {1, . . . , max {m, n}},

where x↓ and y↓ denote x and y with entries sorted in descending order.
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Example 4.1 For the following subalgebras Ui (each parametrized by t ∈ R
m), the rank vector rUi weakly

majorizes rUi+1
:

U1 :=









t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 t6

0 0 t5 t7 t8

0 0 t6 t8 t9









rU1
= (2, 3)

U2 :=









t1 t2 0 0 0
t2 t3 0 0 0
0 0 t4 t5 0
0 0 t5 t7 0
0 0 0 0 t9









rU2
= (2, 2, 1)

U3 :=









t1 t2 0 0 0
t2 t3 0 0 0
0 0 t1 t2 0
0 0 t2 t3 0
0 0 0 0 t4









rU3
= (2, 1)

U4 :=









t1 0 0 0 0
0 t1 0 0 0
0 0 t1 0 0
0 0 0 t1 0
0 0 0 0 t2









rU4
= (1, 1)

We now state our result.

Theorem 4.1 Let W ⊆ S
n be any admissible subspace (Definition 3.1). Let the optimal admissible subspace

Sopt (Definition 3.2) and W have the following decompositions into simple ideals:

Sopt = ⊕s
i=1Si, W = ⊕w

k=1Wk.

Then, rW := (rankW1, . . . , rankWw) weakly majorizes rSopt := (rankS1, . . . , rankSs).

To prove this theorem, we will only use the fact that Sopt is a subalgebra of all other admissible subspaces,
which is immediate from its definition and Theorem 3.1.

4.1 Proof of Theorem 4.1

We prove the theorem by showing a more general result (Theorem 4.2) about the rank vectors of Euclidean
Jordan algebras and their subalgebras. To our knowledge, these results are new. Towards this, we let x ◦ y
denote the Jordan product of an abstract Euclidean Jordan algebra J and recall some standard definitions.
An idempotent is an x ∈ J satisfying x◦x = x. An idempotent is primitive if it is nonzero and doesn’t equal
the sum of two different nonzero idempotents. Finally, as mentioned in Section 2.3.2, an algebra J is simple
if its only ideals are J and {0}. We start with a needed technical lemma.

Lemma 4.1 Let J be a Euclidean Jordan algebra and let V ⊆ J be a subalgebra that is simple (viewed as an
algebra). Let J = ⊕w

k=1Jk denote the orthogonal direct-sum decomposition of J into simple ideals. Finally,
let Φk : J → J denote the orthogonal projection onto Jk. The following statements hold for all k ∈ [w],
where [w] := {1, . . . , w}:

1. If e ∈ J is an idempotent, then Φke is an idempotent.
2. If e, f ∈ J are idempotents and 〈e, f〉 = 0, then 〈Φke, Φkf〉 = 0.
3. Suppose e, f ∈ V are nonzero idempotents. If Φke 6= 0, then Φkf 6= 0.

Proof Since Jk is a simple ideal, the projection map Φk from J onto Jk is a Jordan homomorphism by [22,
Lemma 2.5.6]; hence, Φke ◦ Φke = Φk(e2) = Φke, showing the first statement.

For the second statement, recall J = ⊕w
k=1Jk is an orthogonal direct-sum decomposition of J . We

conclude

e =
w∑

k=1

Φke, f =
w∑

k=1

Φke.
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Since 〈Φie, Φjf〉 ≥ 0 (since the cone-of-squares is self-dual) and

〈e, f〉 =

w∑

i=1

w∑

j=1

〈Φie, Φjf〉,

〈Φie, Φjf〉 = 0 if 〈e, f〉 = 0.
For the third statement, view V as a simple algebra and let e =

∑q
i=1 ei and f =

∑r
j=1 fj denote the

decompositions of e and f into primitive idempotents of V. Then, there exists t ∈ V (depending on i and j)
such that ei = 2t ◦ (t ◦ fj)− t2 ◦ fj [14, Corollary IV.2.4]. Since Φk is a homomorphism,

Φkei = Φk(2t ◦ (t ◦ fj)− t2 ◦ fj)

= Φk(2t) ◦ (Φkt ◦ Φkfj)− Φkt2 ◦ Φkfj

showing Φkfj 6= 0 if Φkei 6= 0. Since

Φke =

q
∑

i=1

Φkei, Φkf =

r∑

j=1

Φkfj,

and Φkei and Φkfj are idempotents and hence in the cone-of-squares, it follows Φkf 6= 0 if Φke 6= 0.

The mentioned results on rank vectors and subalgebras follow.

Theorem 4.2 (Subalgebras and rank vectors) Let S = ⊕s
i=1Si and W = ⊕w

k=1Wk be Jordan subalge-
bras of J , where Si and Wk are simple ideals of S and W (viewed as algebras), respectively. Suppose S ⊆ W.
The following statements hold:

1. For each k ∈ [w], let Ik := {i ∈ [s] : Si 6⊆ (Wk)⊥}. Then, for all k ∈ [w],

rankWk ≥
∑

i∈Ik

rankSi.

2. The vector rW weakly majorizes rS , where

rW := (rankW1, . . . , rankWw), rS := (rankS1, . . . , rankSs).

Proof First note Si contains a set Ei := {ei
j}

rank Si

j=1
of pairwise-orthogonal idempotents. Further, if i ∈ Ik,

then Φke 6= 0 for a nonzero idempotent e in Si. We conclude all elements of {Φkf : f ∈ ∪i∈Ik
Ei} are nonzero

(Lemma 4.1-3); moreover, they are idempotent (Lemma 4.1-1) and pairwise orthogonal (Lemma 4.1-2).
It follows Wk contains at least

∑

i∈Ik
rankSi nonzero idempotents that are pairwise orthogonal. Hence,

rankWk ≥
∑

i∈Ik
rankSi.

For the second statement, we note the first implies the following: for each ℓ ∈ max{s, w}, there is a subset
T ⊆ [w] for which

∑

k∈T

rankWk ≥
∑

k∈T

∑

i∈Ik

rankSi ≥

min {ℓ,s}
∑

i=1

[r↓
S ]i.

Specifically, letting π be a permutation of [s] satisfying [r↓
S ]i = [rS ]π(i), we can choose T to be subset of [w]

that satisfies

∪k∈T Ik ⊇ {π(i)}
min{ℓ,s}
i=1 .

Further, we can choose T to have |T | ≤ min {ℓ, w}, which implies that

min {ℓ,w}
∑

i=1

[r↓
W ]i ≥

∑

k∈T

rankWk.

Hence, the majorization inequality
∑min {ℓ,w}

i=1 [r↓
W ]i ≥

∑min {ℓ,s}
i=1 [r↓

S ]i holds.

We see that Theorem 4.1 follows immediately from the second statement of Theorem 4.2 since, as mentioned,
Sopt is a subalgebra of all other admissible subspaces (Definition 4.1).
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5 Combinatorial variations

This section introduces combinatorial restrictions on admissible subspaces (Definition 3.1), aiming to reduce
the cost of storing a basis. We consider three types of subspaces (Figure 1). The first two types have bases
encoded by relations and partitions, respectively. The third type is a common generalization, whose discussion
we defer to the end of this section.

To begin, let [n] = {1, . . . , n}. For a relation R ⊆ [n]× [n], let BR := {Eij + Eji : (i, j) ∈ R}, where Eij

is the standard basis matrix of Rn×n nonzero (and equal to 1) only at its (i, j)-th entry. For a partition P of
[n]×[n], let BP denote the corresponding set of characteristic matrices—i.e., let BP := {

∑

(i,j)∈C Eij : C ∈ P}

where C ⊆ [n]× [n] denotes a subset in P .

Definition 5.1 A coordinate subspace is the span of BR for some relation R ⊆ [n] × [n]. A partition
subspace is the span of BP for some partition P ⊆ [n]× [n].

Example 5.1 The following subspaces S1 and S2 are coordinate and partition subspaces, respectively.

S1 =











a b 0
b c d
0 d e



 : (a, b, c, d) ∈ R
4






S2 =











a a b
a a b
b b c



 : (a, b, c) ∈ R
3






.

Specifically, S1 equals the span of BR for the relation

R = {(1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (3, 3)} ,

and S2 equals the span of BP for the partition

P =

{

{(1, 1), (1, 2), (2, 1), (2, 2)}, {(1, 3), (2, 3), (3, 1), (3, 2)}, {(3, 3)}

}

.

We seek the following variants of Sopt:

Scoord :=
⋂

{S ⊆ S
n : S is admissible and a coordinate subspace},

Spart :=
⋂

{S ⊆ S
n : S is admissible and a partition subspace}.

The families of admissible, coordinate, and partition subspaces are all closed under intersection. Hence, Scoord

is both admissible and a coordinate subspace. Similar remarks apply for Spart.
Though coordinate subspaces are a highly restricted family, our conference paper [35] illustrates Scoord can

have small dimension for SDPs arising in polynomial optimization. Partition subspaces also arise naturally
in symmetry reduction. Indeed, the fixed-point subspace (Section 2.1.3)

MG = {X ∈ R
n×n : P XP T = X ∀P ∈ G}

is a partition subspace (of Rn×n) andMG ∩S
n a partition subspace of Sn when G is a group of permutation

matrices. The partition P of [n] × [n] that induces MG arises from the orbits {P EijP T : P ∈ G} of the
standard basis matrices Eij ∈ R

n×n; precisely, (i, j) and (k, l) are in the same class of P if the orbit
{P EijP T : P ∈ G} contains Ekl. (Such a partition is called a Schurian coherent configuration [23].)

5.1 Modified algorithms

To find Spart or Scoord, we modify the Theorem 3.2 algorithm line-by-line to operate on partitions or relations
instead of subspaces. These modified algorithms first represent the image of a coordinate/partition subspace
S under the maps X 7→ X2 and PL : S

n → S
n with a polynomial matrix, an idea inspired by [43]; see

also [2, Section 5]. They then refine/grow a partition/relation based on the unique/nonzero entries of this
polynomial matrix. These algorithms are explicitly given in Figure 2. They leverage the following notation
(Definitions 5.2-5.3).
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Sn

Spart Scoord

S0/1

Sopt

subspace operations data type of basis

Sopt dense linear algebra dense matrices
Spart partition refinement partition of [n]× [n]
Scoord set union relation (subset of [n]× [n])
S0/1 partition refinement and set union partition of relation

Fig. 1: Hasse diagram of subspace inclusions, key algorithmic operation needed to find subspace, and data
type (mathematical object) used to represent a basis.

Definition 5.2 For a finite set B ⊂ S
n, let fX2(B) and fL(B) denote the polynomial matrices

fX2(B) :=

(
∑

B∈B

tBB

)2

fL(B) :=
∑

B∈B

tBPL(B),

where [tB ]B∈B is a vector of commuting2 indeterminates indexed by B.

If S is the span of B, then the set of point evaluations of fX2 (B) equals {X2 : X ∈ S}, i.e.,

{X2 : X ∈ S} = {fX2(B)|tB=t∗ : t∗ ∈ R
|B|},

and similarly for fL(B). The following example illustrates this notation.

Example 5.2 For B = {U, V, W}, where

U =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







, V =







0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0







, W =







1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0







,

we have fX2 (B) := (tU U + tV V + tW W )
2
. Expanding (and using the identities tU tV = tV tU and tU tW =

tW tU) shows that

fX2(B) =







tU
2 + tW

2 0 tU tW tU tV

0 tU
2 + tW

2 tU tV tU tW

tU tW tU tV tU
2 + tV

2 0
tU tV tU tW 0 tU

2 + tV
2







.

Definition 5.3 For an n × n polynomial matrix X, let Supp(X) denote the subset of (i, j) ∈ [n] × [n] for
which Xij is not the zero polynomial. Similarly, let Part(X) denote the partition of [n]× [n] induced by the
unique polynomial entries of X, i.e., (i, j) and (k, l) are in the same class of Part(X) if and only if Xij and
Xkl are the same polynomial.

Example 5.2 (continued) For the polynomial matrix fX2(B) of the previous example, the relation Supp (fX2(B))
is the complement of {(1, 2), (2, 1), (3, 4), (4, 3)} ⊆ [n] × [n] (where n = 4.) The partition Part (fX2 (B)) has
characteristic matrices






1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0











0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0











0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0











0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0











0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1




 ,

tU
2 + tW

2 0 tU tW tU tV tU
2 + tV

2,

(16)

where we’ve labeled each matrix by the associated polynomial entry of fX2(B).

2 Note that the related algorithm [2, Section 5] uses noncommuting indeterminates.
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R← Supp (CL) ∪ Supp (Y
L⊥ )

repeat
R ← R∪ Supp (fL(BR))
R ← R∪ Supp (fX2 (BR))

until ascending chain of relations R stabilizes.

P ← Part(CL)
∨

Part(Y
L⊥ )

repeat

P ← P
∨

Part (fL(BP ))

P ← P
∨

Part (fX2 (BP ))

until ascending chain of partitions P stabilizes.

Fig. 2: Algorithms for finding bases BR ⊂ S
n and BP ⊂ S

n of Scoord and Spart, respectively. One algorithm
grows a relation R ⊆ [n] × [n] and the other refines a partition P of [n] × [n]. (Here, P1

∨
P2 denotes the

coarsest common refinement of partitions P1 and P2.) The inputs are CL, YL⊥ ∈ S
n and the linear subspace

L ⊆ S
n.

5.2 Randomization via sampling

Explicitly constructing symbolic representations of fL(B) and fX2(B) is not necessary for finding the par-
titions and relations they induce. One can instead evaluate the maps X 7→ X2 and PL : S

n → S
n at a

random combination of elements in B. Consider, for instance, a point evaluation of fX2(BP) at t∗ ∈ R
|BP |,

i.e., consider

fX2 (BP)|t=t∗ :=

(
∑

B∈BP

t∗
BB

)2

.

The supports of fX2(BP) and fX2(BP)|t=t∗ are the same for almost all t∗. Similarly, the partitions induced

by fX2(BP) and fX2(BP)|t=t∗ are the same, i.e.,

Part (fX2 (BP)) = Part
(

fX2(BP)|t=t∗

)

,

for almost all t∗. The following illustrates this equality for a particular t∗.

Example 5.2 (continued) For B defined previously, the point evaluation fX2(B)|t=t∗
B

at t∗
B = (2, 3, 4) is

fX2(B)|t=t∗
B

= (2U + 3V + 4W )
2

=







20 0 8 6
0 20 6 8
8 6 13 0
6 8 0 13







.

We see the partition Part
(

fX2(B)|t=t∗
B

)

is the same as the partition Part (fX2(BP)) given by (16).

5.3 Generalization of partition and coordinate subspaces

Coordinate and partition subspaces have a trivial common generalization: subspaces with an orthogonal basis
of 0/1 matrices, or, equivalently, a basis of 0/1 matrices with disjoint support. This motivates the following
definition:

S0/1 :=
⋂

{S ⊆ S
n : S is admissible and has an orthogonal basis of 0/1 matrices}.

A procedure for finding S0/1 combines features of the algorithms presented for finding Spart and Scoord:
specifically, it iteratively grows a relation R and refines a partition P of this relation.

Initialize R to Supp(CL)
⋃

Supp(YL⊥)
Initialize P to PartR(CL)

∨
PartR(YL⊥ )

repeat
for f ∈ {fL, fX2} do

Replace R with R∪ Supp (f(BP))
Add class R \ (∪P ∈PP ) to P
Replace P with refinement P

∨
PartR (f(BP))

end

until ascending chain of subspaces span(BP) stabilizes.
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Here PartR(T ) denotes the partition of R ⊆ [n] × [n] induced by the unique entries of a matrix T with
support contained in R.

6 Examples

We now apply our techniques to SDPs rising in applications. We do all computation on an Intel 3GHz desktop
with 128 gigabytes of RAM. The algorithms of Theorem 3.2 and Figure 2, used to identify an admissible
subspace S, and the algorithm of [34, Chapter 6], used to find the linear map Ψ and cone C satisfying
Ψ(C) = S

n
+ ∩ S, were all implemented in MATLAB. We use the solver SeDuMI [40] to solve the SDPs.

Format of original SDPs Each primal-dual pair is originally expressed in either SeDuMi [40] or SDPA [18]
format and may have a mix of free and conic variables, where the cones are either nonnegative orthants or
cones of psd matrices.3 From these formats, we eliminate free variables, reformatting the primal problem as

minimize 〈C, X〉
subject to 〈Ai, X〉 = bi ∀i ∈ [m]

X ∈ S
n1

+ × · · · × S
nr
+ ,

(17)

where C, Ai ∈ S
n1 × · · · × S

nr are fixed, and 〈·, ·〉 denotes the inner-product obtained by equipping each
S

ni with the trace inner-product. (This reformatting amounts to eliminating free variables and relabeling
nonnegative orthants as products of psd cones of order one.) We will in some cases report the number of non-
zero (nnz) entries in a description of (17); this equals the number of non-zero floating-point numbers needed
to store C and {Ai}

m
i=1. We also report a tuple of ranks for (17), which is simply the tuple (n1, . . . , nr).

Format of reformulations We reformulate each SDP by finding an admissible subspace S, simple algebras
Ji, and an injective homomorphism Ψ : ⊕q

i=1Ji → S
n satisfying

S
n
+ ∩ S = Ψ(C1 × · · · × Cq),

where Ci is the cone-of-squares of Ji. The reformulation is as in Proposition 2.6:

minimize 〈Ψ∗(C), X̂〉

subject to 〈Ψ∗(Ai), X̂〉 = bi ∀i ∈ T ⊆ [m]

X̂ ∈ C1 × · · · × Cq,

(18)

where T indexes a maximal linearly-independent subset of equations. We will in some cases report the number
of non-zero (nnz) entries in a description of (18); this equals the number of non-zero floating-point numbers
needed to store Ψ∗(C) and {Ψ∗(Ai)}i∈T . We also report the tuple (r1, . . . , rq), where ri is the rank of Ji.

Remark 3 For most examples, C1×· · ·×Cq is a product of psd cones S
r1

+ ×· · ·×S
rq

+ and the tuple (r1, . . . , rq)
indicates their orders. We discuss the only exception in Section 6.1.3. We also note S

2 is isomorphic to a
spin-factor algebra—hence, S2

+ is isomorphic to a Lorentz cone.

Reference subspaces and inclusions For convenience, we will let Sfull := S
n1 × · · · × S

nr denote the full
ambient space of the original instance (17). As discussed in [8], an SDP can be restricted to the *-algebra
generated by its data matrices; see also Proposition 2.5. To compare with this restriction, we let

Sdata :=Mdata ∩ (Sn1 × · · · × S
nr ),

where Mdata ⊆ R
n×n is the *-subalgebra of R

n×n generated by the problem data C and {Ai}
m
i=1 (using

matrix multiplication as a product and transposition as the *-involution). Recall that

Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull.

We’ll see that different inclusions hold strictly for different examples. By definition, we also have that

Sopt ⊆ Sdata ⊆ Sfull.

Examples will show that Sopt can be (much) smaller than Sdata.

3 These formats also allow for Lorentz cones. None of the examples presented, however, use this type of cone.
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6.1 Libraries of problem instances

The first set of SDPs come from three public sources: the parser SOSTOOLS [31], the DIMACS library [33]
and a set of structured SDP instances from [9]. Table 6.1.1 reports the dimensions of the subspaces Sopt,
S0/1, Scoord, Sdata and Sfull. Note the inclusions Sopt ⊆ S0/1 ⊆ Scoord ⊆ Sfull hold as expected, and, as
Table 6.1.1 indicates, different ones hold strictly for different instances. For a large fraction, Sfull equals
Sdata, implying generating a *-subalgebra from the problem data [8] does not simplify these instances.

Remark 4 We note the libraries [9, 33] have additional instances on which our method was not effective
(Sopt = Sfull); we do not report results for these instances.

Remark 5 The kissing number and copositivity instances of Table 6.1.1 (denoted kissing_x_y_z and
coposxy) can also be simplified using group theoretic techniques [7, 11] (related to Proposition 2.4) that
are tailored to these specific SDP families.

6.1.1 The Lovász number

We give special attention to the Table 6.1.2 instances denoted hamming_m_x and hamming_m_x_y, taken
from [33]. For a specific graph G with vertices {1, . . . , n} and edge set E, each instance has the following
form

maximize Tr 11T X
subject to Tr X = 1, X ∈ S

n
+

Tr(Eij + Eji)X = 0 ∀(i, j) ∈ E,
(19)

where 11T ∈ S
n is the all-ones-matrix and Eij is a standard basis matrix of Rn×n.

The graphs for these instances are closely related to the Hamming graph H(m, d), whose nodes are
the Boolean vectors of length m that are adjacent iff their Hamming distance is at least d. The graphs of
hamming_m_x and hamming_m_x_y are modifications of such graphs: nodes are adjacent iff their Hamming
distance is x or is x or y. When G is a Hamming graph, it is well known that one can convert SDP (19) into
a linear program using the theory of association schemes [36]. Unsurprisingly, we find similar simplifications
for the modified graphs; precisely, Sn

+ ∩ Sopt is isomorphic to a non-negative orthant of order equal to the
dimension of Sopt, i.e.,

S
n
+ ∩ Sopt = Ψ(R

dim Sopt

+ )

for an injective map Ψ : Rdim Sopt → S
n.

As reported [27], these instances are challenging for a wide array of solvers due to their size; indeed, we
are only able to solve two of them directly (Table 6.1.3). Constructing the reformulation over Sopt, however,
converts each SDP into a trivial linear program. Further, finding Sopt and constructing the reformulation
takes negligible effort compared to original solver time (Table 6.1.3). Note the other automated approach—
generating a ∗-algebra from the data matrices 11T , I, and {Eij + Eji}(i,j)∈E—fails for these instances, i.e.,

Sdata = Sfull (Table 6.1.2).

6.1.2 Decompositions and majorization

In Table 6.1.2 we report the tuple of ranks for the subspaces Sopt, S0/1 and Scoord for select examples
to confirm our main theorem on optimal decompositions (Theorem 4.1). Specifically, we select examples
satisfying the strict inclusions:

Sopt ⊂ S0/1 ⊂ Scoord.

Given these strict inclusions, Theorem 4.1 predicts the ranks of S0/1 and Scoord weakly majorize those of
Sopt in the sense of Definition 4.1. Similarly, it predicts the ranks of Scoord weakly majorize those of S0/1.

Table 6.1.2 confirms both these predictions. The first row, for instance, reports the following tuples
r1 ∈ Z

l1 and r2 ∈ Z
l2 for Sopt and S0/1, respectively:

r1 := (3, 2, 2, . . . , 2
︸ ︷︷ ︸

12×

, 1, 1, . . . , 1
︸ ︷︷ ︸

44×

) r2 := (27, 25, 5, 1, 1, . . . , 1
︸ ︷︷ ︸

44×

).
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instance Sopt S0/1 Scoord Sdata Sfull References

sosdemo2 25 25 28 103 103

Instances
from [31]

sosdemo4 11 11 85 630 630
sosdemo5 226 816 816 816 816
sosdemo6 49 49 327 462 462
sosdemo7 40 40 68 68 68
sosdemo9 26 26 26 78 78
sosdemo10 78 78 78 254 254

hamming_7_5_6 5 5 8256 8256 8256

Instances
from [33]

hamming_8_3_4 5 5 32896 32896 32896
hamming_9_5_6 6 6 131328 131328 131328
hamming_9_8 6 6 131328 131328 131328
hamming_10_2 7 7 524800 524800 524800

copo14 73 73 1834 1834 1834
copo23 188 188 8119 8119 8119
copos68 1576 1576 209644 209644 209644

ThetaPrimeER23_red 86 762 777 101 1712

Instances
from [9]

ThetaPrimeER29_red 104 1125 1143 122 2486
ThetaPrimeER31_red 110 1262 1281 129 2776

crossing_K_7n 113 577 3138 113 3138
crossing_K_8n 479 18577 72630 479 72630
kissing_3_5_5 811 811 3796 3796 3796
kissing_4_7_7 3723 3723 19760 19760 19760

Table 6.1.1: Dimensions of admissible subspaces Sopt, S0/1 and Scoord compared with dimensions of the
ambient space Sfull and Sdata—the (symmetric part) of the *-algebra generated by C and {Ai}

m
i=1.

instance Sopt S0/1 Scoord Sfull

ThetaPrimeER23_red (3, 212×, 144×) (27, 25, 5, 144×) (27, 25, 5, 159×) (57, 159×)
ThetaPrimeER29_red (3, 215×, 153×) (33, 31, 5, 153×) (33, 31, 5, 171×) (69, 171×)
ThetaPrimeER31_red (3, 216×, 156×) (35, 33, 5, 156×) (35, 33, 5, 175×) (73, 175×)

crossing_K_7n (36×, 24×, 165×) (134× , 157×) (79, 157×) (79, 157×)
crossing_K_8n (72×, 52×, 49×, 37×, 24×, 1249×) (105, 97, 92, 86, 1240×) (380, 1240×) (380, 1240×)

Table 6.1.2: Tuple of ranks for select examples after restricting to indicated subspace. Here, st× means s
repeated t times, i.e., 32× := (3, 3).

instance torig Sopt S0/1 Scoord

ThetaPrimeER23_red 0.21 0.16, 0.09 0.12, 0.12 0.02, 0.13
ThetaPrimeER29_red 0.19 0.14, 0.10 0.11, 0.15 0.02, 0.14
ThetaPrimeER31_red 0.25 0.17, 0.15 0.13, 0.19 0.02, 0.19

crossing_K_7n 0.33 0.25, 0.12 0.18, 0.14 0.02, 0.33
crossing_K_8n 56.7 2.48, 0.58 2.34, 10.37 0.02, 56.7

instance torig Sopt

hamming_7_5_6 10.12 0.09, 0.04
hamming_8_3_4 4 hours 0.15, 0.02
hamming_9_5_6 Fail 0.48, 0.02
hamming_9_8 Fail 0.49, 0.02
hamming_10_2 Fail 2.29, 0.03

Table 6.1.3: The original solver time torig (in seconds) and a list tpre, tsolve of preprocessing and solver times
for restrictions to indicated subspaces. Failures were due to insufficient memory.

It easily follows r2 weakly majorizes r1, i.e., for all positive integers q ∈ Z,

min{q,l2}
∑

i=1

[r2]i ≥

min{q,l1}
∑

i=1

[r1]i.

As also expected, for the instances of Table 6.1.2, reformulating over Sopt reduces solver time the most,
but requires the most preprocessing (Table 6.1.3). In fact, for some instances, solver time reductions do not
offset the extra preprocessing time, justifying the larger (but easier to construct) reformulations over S0/1
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and Scoord. (To further reduce preprocessing time, Section 6.4 introduces an alternative reformulation (21)
to (18) that reduces the dimension of the feasible set but doesn’t simplify the cone constraint.)

6.1.3 An algebra with a complex direct-summand

The example sosdemo5 is an SDP that bounds a quantity from robust control theory—the structured singular
value µ(M, ∆) [30]:

µ(M, ∆) :=
1

inf{‖∆‖ : ∆ ∈∆, det(I −M∆) = 0}
. (20)

Here, M is a complex matrix and ∆ is a set of complex matrices. Though the parameters of µ(M, ∆) are
complex, one can formulate an SDP with real data matrices to bound µ(M, ∆). This is done in sosdemo5

for particular M and ∆. After decomposing Sopt into a direct-sum of minimal ideals, we find one of the
direct-summands is isomorphic to an algebra of complex Hermitian matrices. Precisely, Sopt = ⊕11

i=1Si for
minimal ideals Si. Letting r := (rankS1, . . . , rankS11) and d := (dimS1, . . . , dimS11), we have

r = (1, 1, 1, 1, 4, 4∗, 4, 6, 10, 10, 10)

d = (1, 1, 1, 1, 10, 16∗, 10, 21, 55, 55, 55).

Note with the exception of the entries marked ∗, the relation di =
(

ri+1
2

)
holds, showing Si is isomorphic to

the algebra of real symmetric matrices of order ri. The exception satisfies di = r2
i , showing the corresponding

ideal Si is isomorphic to the algebra of complex Hermitian matrices of order ri. We remark this is the only
example considered where the direct-summands are not all isomorphic to S

n for some n.

6.2 Coordinate subspaces and sparse decompositions

We next consider SDPs constructed by demonstration scripts packaged with the control system analysis
tools available at

http : //www.aem.umn.edu/˜AerospaceControl/,

which build upon the parser SOSOPT [37]. For these SDPs, the optimal subspace Sopt equals the optimal
coordinate subspace Scoord. As indicated in Table 6.2.1, these SDPs illustrate we can always restrict to
Scoord without increasing the number of non-zero entries in the problem description, since restricting to
Scoord amounts to setting certain off-diagonal entries of the data to zero. Though these examples are of
small size, they illustrate Scoord is a proper subspace of Sfull for many SDPs arising in sums-of-squares
optimization.

Remark 6 Note some of these scripts construct more than one SDP; reported results are for the first SDP
constructed.

6.3 Comparison with LP method of Grohe, Kersting, Mladenov, and Selman

In [21], Grohe et al. describe a reduction method for linear programming (LP) and show it outperforms
a symmetry reduction method of [5] on a collection of LPs; indeed, they show their method theoretically
subsumes [5]. The linear programs used for comparison are relaxations of integer programs studied in [26].
By treating each linear inequality as a semidefinite constraint of order one, we applied our method to the
same LP relaxations. Of the 57 relaxations, we find the same reductions on 56. For the remaining instance
(cov1054sb), we outperform [21]. For space reasons, Table 6.3.1 reports results for just a small subset of
these LP relaxations. To match [21], we give the number of dual variables and inequality constraints. In
terms of SDP (17) and the SDP (18), the number of dual variables and constraints equals the number of
linear equations and the sum of the ranks, respectively.



20 Frank Permenter, Pablo A. Parrilo

Orig. Scoord

ranks nnz ranks nnz

Chesi[1|4]_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97
Chesi3_GlobalStability (14, 5) 341 (8, 6, 3, 2) 193
Chesi[5|6]_Bootstrap (19, 9) 928 (13, 62×, 3) 520

Chesi[5|6]_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520
Coutinho3_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

HachichoTibken_Bootstrap (19, 9) 685 (12, 7, 6, 3) 373
HachichoTibken_IterationWithVlin (19, 9) 685 (12, 7, 6, 3) 373

Hahn_IterationWithVlin (9, 5) 156 (6, 32×, 2) 84
KuChen_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

Parrilo1_GlobalStabilityWithVec (3, 2) 20 (2, 13×) 14
Parrilo2_GlobalStabilityWithMat (3, 2) 16 (2, 13×) 10

Pendubot_IterationWithVlin (14, 4) 372 (10, 42×) 292
VDP_IterationWithVball (5, 4) 82 (32× , 2, 1) 55
VDP_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97

VDP_LinearizedLyap (9, 5) 156 (6, 32×, 2) 84
VDP_MultiplierExample (5, 2) 37 (3, 2, 12×) 23

VannelliVidyasagar2_Bootstrap (19, 9) 928 (13, 62×, 3) 520
VannelliVidyasagar2_IterationWithVlin (19, 9) 928 (13, 62×, 3) 520

VincentGrantham_IterationWithVlin (9, 5) 181 (6, 32×, 2) 97
WTBenchmark_IterationWithVlin (19, 9) 685 (13, 62×, 3) 385

Table 6.2.1: Ranks and number of non-zero (nnz) entries in problem description of original instance and its
restriction (18) to Scoord. The notation rs× indicates r repeated s times.

Constraints Variables
Orig. CR Sopt Orig. CR Sopt

cov1053 252 1 1 679 5 5
cov1054 252 1 1 889 6 6

cov1054sb 252 252 1 898 898 6
cov1075 120 1 1 877 7 7
cov1076 120 1 1 835 7 7
cov1174 330 1 1 1221 6 6
cov954 126 1 1 507 6 6

Table 6.3.1: Dual variables and constraints of original LP, the LP formulated via the color refinement (CR)
method of [21], and the LP formulated via restriction to Sopt. Columns labeled (CR) use numbers reported
in [21].

6.4 Completely-positive rank, the subspace S0/1, and decomposition trade-offs

Our last example illustrates restrictions to S0/1, the optimal subspace with an orthogonal basis of 0/1
matrices. The considered SDP family yields lower-bounds of completely-positive rank, or cp-rank for short.
The cp-rank of W ∈ S

n
+ measures the size of the smallest non-negative factorization of W . Precisely, it is

the smallest r for which V ∈ R
n×r
+ exists satisfying W = V V T . (It is infinite if such a factorization does

not exist for any r.) As shown in [16], the cp-rank of W ∈ S
n is lower bounded by the optimal value of the

following SDP:

minimize t
subject to

(
t vect W T

vect W X

)

� 0

Xij,ij ≤W 2
ij ∀i, j ∈ {1, . . . , n}

X �W ⊗W
Xij,kl = Xil,jk ∀(1, 1) ≤ (i, j) < (k, l) ≤ (n, n).

Here, W ⊗W denotes the Kronecker product and vect W denotes the n2× 1 vector obtained by stacking the
columns of W . The double subscript ij indexes the n2 rows (or columns) of X and the inequalities on (i, j)
and (k, l) hold iff they hold element-wise. (See [16] for clarification on this notation.)
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SDP ranks num eq nnz tpre tsolve

Orig. (17) (10, 9, 19×) 37 242 — .53
Reform. (18) (5, 4, 24×, 16×) 14 859 0.34 0.13
Reform. (21) (10, 9, 19×) 14 242 0.11 0.11

(a) Instance: Z

SDP ranks num eq nnz tpre tsolve

Orig. (17) (82, 81, 181×) 2026 15752 — 24.34
Reform. (18) (12, 11, 104×, 64×, 48×, 22×, 111×) 167 158199 .98 .90
Reform. (21) (82, 81, 181×) 167 15752 0.11 2.54

(b) Instance: Z ⊗ Z

SDP ranks num eq nnz tpre tsolve

Orig. (17) (730, 729, 1729×) 142885 1182290 Out of memory
Reform. (18) Out of memory Out of memory
Reform. (21) (730, 729, 1729×) 1883 1182290 6.5 1113

(c) Instance: Z ⊗ Z ⊗ Z

Table 6.4.1: The first row corresponds to the original SDP (17) and the other rows to reformulations over
S0/1. Here, tpre is time spent (in seconds) finding S0/1 and constructing the reformulation. Solve time tsolve

is also in seconds.

In this example, we solve three instances of this SDP taking W equal to the matrices Z, Z ⊗ Z, and
Z ⊗ Z ⊗ Z, where

Z =





4 0 1
0 4 1
1 1 3



 .

Table 6.4.1 reports computational savings obtained by restricting to S0/1.

Alternative reformulation For these examples, we compare (18) against an alternative reformulation that
reduces the dimension of the dual feasible set, but leaves the cone constraint unchanged. It takes the following
form

minimize 〈PS0/1
(C), X〉

subject to 〈PS0/1
(Ai), X〉 = bi ∀i ∈ T ⊆ [m]

X ∈ S
n1

+ × · · · × S
nr
+ ,

(21)

where T ⊆ [m] indexes a maximal subset of linearly-independent equations, and has dual

maximize
∑

i∈T yibi

subject to PS0/1
(C)−

∑

i∈T PS0/1
(Ai) ∈ S

n1

+ × · · · × S
nr
+ .

We can interpret the latter SDP as the dual of (17) restricted to the subspace S0/1, recalling by Proposition 2.1
that S0/1 contains both primal and dual solutions.

Table 6.4.1 shows solving (21) achieves computational savings and, indeed, can be preferred to solv-
ing (18). As indicated, for the largest instance, we cannot even find the homomorphism Ψ needed to con-
struct (18) due to memory constraints. For this example, the formulation (21) also preserves sparsity.
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7 Appendix

7.1 Proof of Theorem 2.1

We now prove Theorem 2.1, which stated that a subspace S ⊆ S
n is a Jordan subalgebra if and only if

its orthogonal projection PS is unital and positive. Analogues for complex Jordan algebras are well known;
see [38] [39] and also the thesis [24]. One direction is also shown in [28]. The converse direction is shown in
part by translating an argument of [38] from the complex to real case. Since they are short and self-contained,
we give full proofs of both directions.

To begin, we need the following lemma relating invariance under squaring to eigenvalue decompositions.

Lemma 7.1 For a non-zero X ∈ S
n, let EX ⊂ S

n be the set of pairwise orthogonal idempotent matrices for
which

X =
∑

E∈EX

λEE,

where the range of E ∈ EX is an eigenspace of X and {λE}E∈EX
is the set of non-zero (distinct) eigenvalues

of X. For a subspace S ⊆ S
n, the following are equivalent.

1. S contains the set EX for all non-zero X ∈ S.
2. S is invariant under squaring, i.e., S ⊇ {X2 : X ∈ S}.

Proof That statement one implies two is immediate given that X2 =
∑

E∈EX
λ2

EE. Conversely, suppose

X has non-zero eigenvalue λ of maximum magnitude. Then, if statement two holds, the idempotent Ê =

limn→∞ (|λ|−1X)
2n

is contained in S and has range equal to an eigenspace or, if ±|λ| are both eigenvalues,
the sum of two eigenspaces. Replacing X with X − λÊ and iterating yields a set of idempotents whose span
contains EX ; moreover, this set is contained in S.

We now use this lemma and the mentioned argument of [38] to prove Theorem 2.1
To prove (2 ⇒ 1), consider X � 0 and suppose PS(X) is non-zero. For a non-zero eigenvalue λE of

PS(X), let E ∈ S
n denote the idempotent with range equal to the associated eigenspace. If (2) holds, then

Lemma 7.1 implies PS(E) = E. Hence,

0 ≤ E ·X = PS(E) ·X = E · PS(X) = λE‖E‖
2.

We conclude the eigenvalues of PS(X) are non-negative, i.e., that PS(X) � 0. To show the unitality condition,
let Z be a matrix in S of maximum rank and let

Ê =
∑

E∈EZ

E.

For all X ∈ S, it holds that tÊ � X2 for some t > 0. This shows the range of Ê contains the range of X2

and hence the range of X . It follows ÊX = X .
To prove (1 ⇒ 2), suppose the unit element E has rank r. Then we can find an orthogonal matrix

Q = (Q1, Q2) ∈ R
n×n for which E = Q1QT

1 and

S =

{

Q

(
X 0
0 0

)

QT : X ∈ Ŝ ⊆ S
r

}

,
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where Ŝ := QT
1 SQ1. Further, the projection PS satisfies

PS(X) = Q1QT
1 PŜ(X)Q1QT

1

where PŜ : Sr → S
r is the orthogonal projection onto Ŝ. It follows that if Ŝ is invariant under squaring, so

is S, and if PS is positive, so is PŜ . Hence, Statement 2 follows by showing Ŝ is invariant under squaring.

We show this applying the argument from [38, Theorem 2.2.2] and using the fact Ŝ contains the identity
matrix of order r. Dropping the subscript Ŝ from PŜ , we first note since P is positive and P (I) = I, it
satisfies the Kadison inequality, which states P (X2) − P (X)P (X) � 0 for all X ∈ S

r (e.g., Theorem 2.3.4
of [4]). Hence, for X in the range of P

P (X2)−X2 � 0.

Letting Z = P (X2)−X2 and taking the trace shows

Tr Z = I · Z = P (I) · Z = I · P (Z) = Tr
(
P 2(X2)− P (X2)

)
= Tr

(
P (X2)− P (X2)

)
= 0.

Since Z � 0, we conclude Z = 0, i.e., that P (X2) = X2. Therefore X2 is in the range of P .

7.2 Invariant affine sets of projections

Recall Condition 2.1-(b) and Condition 2.1-(c) require invariance of the affine sets Y +L and C +L⊥ under
the projection PS . We now prove the characterization of these conditions provided by Lemma 3.1.

Lemma 7.2 For an affine set Y + L, let YL⊥ ∈ S
n denote the projection of Y ∈ S

n onto the subspace L⊥.
Let PS : Sn → S

n denote the orthogonal projection onto a subspace S of S
n. The following statements are

equivalent.

1. PS(Y + L) ⊆ Y + L
2. PS(YL⊥ ) = YL⊥ and PS(L) ⊆ L

Proof To begin, first note PS—being an orthogonal projection—is a contraction with respect to the Frobenius
norm ‖X‖F (recalling our use of the trace inner-product); further, YL⊥ is the unique minimizer of this norm
over Y + L. Hence, if PS(Y + L) ⊆ Y + L, then PS(YL⊥ ) = YL⊥ ; in addition, since Y + L = YL⊥ + L,

YL⊥ + PS(L) = PS(YL⊥ + L) ⊆ YL⊥ + L,

which implies PS(L) ⊆ L. The converse direction is obvious given that Y + L = YL⊥ + L.

If we apply the previous lemma to both the primal and dual affine sets we obtain the conditions PS(L) ⊆ L
and PS(L⊥) ⊆ L⊥. However, Lemma 3.1 only contains one of these conditions, since they turn out to be
equivalent. Consider the following.

Lemma 7.3 [15, Proposition 3.8] Let PL : Sn → S
n and PS : Sn → S

n denote the orthogonal projections
onto subspaces L and S of Sn. The following four statements are equivalent.

– L is an invariant subspace of PS

– L⊥ is an invariant subspace of PS

– S is an invariant subspace of PL

– S⊥ is an invariant subspace of PL

Combining these two lemmas proves Lemma 3.1.
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7.3 Linear images of self-dual cones

The following was used to prove Proposition 2.6.

Lemma 7.4 Let W and V be inner-product spaces and C ⊆ V and K ⊆ W self-dual convex cones. Let
T : V → W be a injective linear map with adjoint T ∗ :W → V. If K = T (C), then T ∗T (C) = C.

Proof For all x, y ∈ C,
〈T ∗T (x), y〉 = 〈T (x), T (y)〉 ≥ 0

by self-duality of K. By self-duality of C, we conclude T ∗T (x) ∈ C. On the other hand, since T ∗ is surjective,
we have for any x ∈ C existence of w ∈ V for which x = T ∗w. Further, for all y ∈ C,

0 ≤ 〈T ∗w, y〉 = 〈w, T y〉

which, since K = T (C), shows w ∈ K. Hence, w = T z for z ∈ C, showing x = T ∗T z.
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