
Noname manuscript No.
(will be inserted by the editor)

Uniqueness of DRS as the 2 Operator Resolvent-Splitting
and Impossibility of 3 Operator Resolvent-Splitting

Ernest K. Ryu

Received: date / Accepted: date

Abstract Given the success of Douglas–Rachford splitting (DRS), it is natural to ask
whether DRS can be generalized. Are there other 2 operator resolvent-splittings shar-
ing the favorable properties of DRS? Can DRS be generalized to 3 operators? This
work presents the answers: no and no. In a certain sense, DRS is the unique 2 op-
erator resolvent-splitting, and generalizing DRS to 3 operators is impossible without
lifting, where lifting roughly corresponds to enlarging the problem size. The impos-
sibility result further raises a question. How much lifting is necessary to generalize
DRS to 3 operators? This work presents the answer by providing a novel 3 operator
resolvent-splitting with provably minimal lifting that directly generalizes DRS.

Keywords Douglas–Rachford splitting · Splitting methods · Maximal monotone
operators · Lower bounds · First-order methods

Mathematics Subject Classification (2000) 47H05 · 47H09 · 65K10 · 90C25

1 Introduction

In 1979, Lions and Mercier presented Douglas–Rachford splitting (DRS) which solves
the monotone inclusion problem

find
x∈Rd

0 ∈ (A+B)x

with

zk+1 = (1− θ/2)zk + (θ/2)(2JαA − I)(2JαB − I)zk

Ernest K. Ryu
7324 Mathematical Sciences,
UCLA
Los Angeles, CA 90095
E-mail: eryu@math.ucla.edu

ar
X

iv
:1

80
2.

07
53

4v
4

 [
m

at
h.

O
C

]
 2

0
M

ay
 2

01
9

2 Ernest K. Ryu

for any α > 0 and θ ∈ (0, 2), where A and B are maximal monotone operators
and JαA and JαB are their resolvents [44,27,38]. Since its introduction, DRS has
enjoyed great popularity and has provided great value to the field of optimization.

Given the success of DRS, one may ask the following two questions:

1. Are there other 2 operator resolvent-splittings?
2. Can we generalize DRS to 3 operators?

In fact, the second question has been a long-standing open problem posed by Lions
and Mercier themselves: “[T]he convergence seems difficult to prove ... in the case of
a sum of 3 operators.” After all, identifying why a tool works and generalizing it is a
common and often fruitful exercise in mathematics.

This work presents the answers to these questions: no and no. In a certain sense,
DRS is the unique 2 operator resolvent-splitting. In a certain sense, there is no 3 oper-
ator resolvent-splitting without lifting, where lifting roughly corresponds to enlarging
the problem size.

This impossibility result further raises the following question:

3. To generalize DRS to 3 operators, how much lifting is necessary?

This work presents the answer by providing a novel 3 operator resolvent-splitting
with provably minimal lifting.

Background. To discuss what constitutes a generalization of DRS, we first point
out a few key properties of DRS. Perhaps a generalization of DRS should satisfy
these as well.

1. DRS is a resolvent-splitting in that it is constructed with scalar multiplication,
addition, and resolvents.

2. DRS is frugal in that it uses JαA and JαB only once per iteration.
3. DRS converges unconditionally in that it works for any maximal monotoneA and
B.

4. DRS uses no lifting in that the fixed-point mapping maps from Rd to Rd, where
x ∈ Rd. In other words, DRS does not enlarge the problem size.

Consider the proximal point method (PPM) [41,42,49,7], which finds an x ∈ Rd
such that 0 ∈ Ax with

xk+1 = JαAx
k

for any α > 0 and maximal monotone A. DRS generalizes PPM, and both methods
are frugal, converge unconditionally, use no lifting, and rely on resolvents. Therefore,
to require the 4 properties in a generalization of DRS seems reasonable.

Many other splittings have been presented since DRS, and they have certainly
provided great value to the field of optimization. These splittings solve a wide range
of different problem classes and are designed to be effective under a wide range of
different computational considerations. Many of them include DRS as a special case
and therefore are generalizations of DRS, in that sense. However, they do not satisfy
the 4 stated properties and therefore are not generalizations of DRS, in this sense.

Forward-backward splitting (FBS) [43],

xk+1 = JαB(I − αA)xk,

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 3

which requires A to be cocoercive, is frugal, uses no lifting, but is not a resolvent-
splitting. Primal-dual hybrid gradient method (PDHG) [59,45,30,13], also known as
Chambolle–Pock,

xk+1 = JA(xk − αuk)

uk+1 = (I − JB)(uk + α(2xk+1 − xk))

is frugal but uses lifting. Davis–Yin splitting (DYS) [25], which finds an x ∈ Rd such
that 0 ∈ (A+B + C)x, where C is cocoercive,

zk+1 = (I − JαB + JαA ◦ (2JαB − I − αC ◦ JαB))zk

is frugal, uses no lifting, but is not a resolvent-splitting. Other methods, such as
FBFS [54], PPXA [20,21], PDFP2O/PAPC [39,15,28], RFBS [1], Condat–Vũ [24,
55], GFBS [47], PD3O [57], PDFP [16], AFBA [36], FBHFS [10], FDRS [8,46],
FRB [40], projective splitting [29,19,32,33], and the methods of [9,22,5,18] all fail
to satisfy the 4 properties.

Organization of the paper. In Section 2, we show that DRS is the only frugal,
unconditionally convergent resolvent-splitting without lifting for the 2 operator prob-
lem. We do so by characterizing all frugal resolvent-splittings without lifting and
showing that DRS is the only one among them that unconditionally converges.

In Section 3, we show that there is no resolvent-splitting without lifting for the 3
operator problem, even if the splitting is not frugal and not convergent. In particular,
we show such a scheme without lifting cannot be a fixed-point encoding.

In Section 4, we define and quantify the notion of lifting for the 3 operator prob-
lem. We then provide a novel frugal, unconditionally convergent resolvent-splitting
with provably minimal lifting for the 3 operator problem that directly generalizes
DRS.

Definitions. We briefly review some standard notation and results of operator the-
ory. Interested readers can find in-depth discussion of these concepts in standard ref-
erences such as [50,3].

Write 〈·, ·〉 for the standard Euclidean inner product in Rd. We say A is an oper-
ator on Rd if A maps points of Rd to subsets of Rd. Given a matrix M ∈ Rd×d also
write M : Rd → Rd to denote the linear operator defined by the matrix M . In par-
ticular, write I for both the identity operator and the identity matrix. WriteM(Rd)
for the set of all maximal monotone operators on Rd. For any maximal monotone
operator A and α > 0, write

JαA = (I + αA)−1

for the resolvent of A. A mapping T : Rd → Rd is nonexpansive if

‖Tx− Ty‖2 ≤ ‖x− y‖2

for all x, y ∈ Rd. A mapping F : Rd → Rd is firmly nonexpansive if

‖Fx− Fy‖2 ≤ 〈x− y, Fx− Fy〉

4 Ernest K. Ryu

for all x, y ∈ Rd. Resolvents are firmly nonexpansive. Given a mapping T : Rd →
Rd and a starting point z0 ∈ Rd, we call

zk+1 = Tzk

the fixed-point iteration with respect to T . A fixed-point iteration with respect to a
nonexpansive mapping need not converge. A mapping T : Rd → Rd is averaged if it
can be expressed as T = (1 − θ)I + θR, where R : Rd → Rd is nonexpansive and
θ ∈ (0, 1). Note that R and T share the same fixed points. The fixed-point iteration
with respect to an averaged mapping T : Rd → Rd converges in that zk → z? where
Tz? = z?, if a fixed point exists.

For any A ∈ M(Rd), write zerA = {x | 0 ∈ Ax} for the set of zeros of A.
Consider the monotone inclusion problem of finding an element of zer(A + B),
where A,B ∈ M(Rd). Peaceman–Rachford splitting (PRS) [44,38] is the fixed-
point iteration

zk+1 = (2JαA − I)(2JαB − I)zk

with α > 0. PRS is not guaranteed to converge. Douglas–Rachford splitting (DRS)
is the fixed-point iteration

zk+1 = (1− θ/2)zk + (θ/2)(2JαA − I)(2JαB − I)zk.

with α > 0 and θ ∈ (0, 2). (Some may call this “relaxed PRS”.) DRS is guaranteed
to converge in the sense that zk → z? for some z? where JαBz? ∈ zer(A + B), if
zer(A+B) is not empty.

2 Uniqueness of DRS as the unique frugal, unconditionally convergent 2
operator resolvent-splitting without lifting

In this section, we define what a frugal, unconditionally convergent 2 operator resolvent-
splitting without lifting is and prove DRS is the only such splitting.

2.1 Definitions

When reading the definitions, it is helpful to think of DRS as a specific example. In the
terminology and notation we soon establish, DRS is an unconditionally convergent
frugal resolvent-splitting without lifting and d′ = d, T (A,B, z) = (1 − θ/2)I +
(θ/2)(2JαA − I)(2JαB − I), and S(A,B, z) = JαB .

Given a dimension d, define the problem class (2op-Rd) to be the collection of
monotone inclusion problems of the form

find
x∈Rd

0 ∈ (A+B)x (2op-Rd)

with A,B ∈M(Rd).

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 5

Fixed-point encoding. A pair of functions (T, S) is a fixed-point encoding for the
problem class (2op-Rd) if

∃z? ∈ Rd
′

such that
(
T (A,B, z?) = z?

S(A,B, z?) = x?

)
⇔ 0 ∈ (A+B)(x?)

for all A,B ∈M(Rd). We call

T :M(Rd)×M(Rd)× Rd
′
→ Rd

′

the fixed-point mapping and

S :M(Rd)×M(Rd)× Rd
′
→ Rd,

the solution mapping. To clarify, a fixed-point encoding is defined for the entire prob-
lem class (2op-Rd), rather than a single instance of the monotone inclusion problem.

When we fix A,B ∈ M(Rd), fixed points of T (A,B, ·) : Rd′ → Rd′ corre-
sponds to zeros of A + B. We say that points in zer(A + B) are encoded as fixed
points of T (A,B, ·). For notational simplicity, we often drop the dependency on A
and B and write Tz and Sz for T (A,B, z) and S(A,B, z).

In this section, we only consider d′ = d, as we limit our attention to fixed-point
encodings without lifting (formally defined soon). In general, however, the dimension
d of problems in (2op-Rd) and the dimension d′ of the fixed-point mapping need not
be the same. The purpose of allowing d′ 6= d will become clearer later in Section 4,
where an analogously defined d′ is larger than d.

Under this definition, DRS is a collection of fixed-point encodings. For each
choice of d, α > 0, θ ∈ (0, 2), and η ∈ R the pair of functions (T, S) defined
by

T (A,B, z) = (1− θ/2)z + (θ/2)(2JαA − I)(2JαB − I)z,

S(A,B, z) = ηJαAz + (1− η)JαB(2JαA − I)z

is a instance of DRS and it is a fixed-point encoding for the problem class (2op-Rd).

Frugal resolvent-splitting without lifting. Loosely speaking, (T, S) is a resolvent-
splitting for the problem class (2op-Rd) if it is a fixed-point encoding constructed
with resolvents of A and B, addition, and scalar multiplication. Loosely speaking,
(T, S) is frugal if it uses JαA and JβB once, in that a single evaluation of JαA and
a single evaluation of JβB is used to evaluate both Tz and Sz for any z. (T, S)
is without lifting if T (A,B, ·) : Rd → Rd and S(A,B, ·) : Rd → Rd for any
A,B ∈M(Rd), i.e., if d′ = d.

We now make the definitions precise. Let I be the “identity mapping” defined as
I :M(Rd)×M(Rd)× Rd → Rd and I(A,B, z) = z for any A,B ∈ M(Rd) and
z ∈ Rd. Let Jα,1 be the resolvent with respect to the first operator defined as Jα,1 :
M(Rd)×M(Rd)×Rd → Rd and Jα,1(A,B, z) = JαA(z) for any A,B ∈M(Rd)
and z ∈ Rd. Define Jβ,2 likewise with Jβ,2(A,B, z) = JβB(z). Define the class of
mappings

F0 = {I} ∪ {Jα,1 |α > 0} ∪ {Jβ,2 |β > 0}.

6 Ernest K. Ryu

Recursively define

Fi+1 = {F +G |F,G ∈ Fi} ∪ {F ◦G |F,G ∈ Fi} ∪ {γF |F ∈ Fi, γ ∈ R}

for i = 0, 1, 2, The “composition” F ◦G is defined with

(F ◦G)(A,B, z) = F (A,B,G(A,B, z))

for any z ∈ Rd and A,B ∈M(Rd). Note that F0 ⊂ F1 ⊂ F2 ⊂ · · · . Finally define

F =

∞⋃
i=0

Fi.

To clarify, elements of F mapM(Rd)×M(Rd)× Rd to Rd. If R ∈ F and A,B ∈
M(Rd), then R(A,B, ·) : Rd → Rd. These mappings are constructed with (finitely
many) resolvents of A and B, addition, and scalar multiplication.

As an aside, we could have defined F as the “near-ring” generated by Jα,1 and
Jβ,2 for all α > 0 and β > 0 and γI for all γ ∈ R. The set is not a ring because
T ◦ (U + V) 6= T ◦ U + T ◦ V for non-linear functions.

We say (T, S) is a resolvent-splitting without lifting for the problem class (2op-Rd),
if (T, S) is a fixed-point encoding for the problem class (2op-Rd), and T, S ∈ F .
(Remember, T ∈ F implies T (A,B, ·) : Rd → Rd.)

When T, S ∈ F , one can evaluate T (A,B, z) and S(A,B, z) for given z ∈ Rd
and A,B ∈ M(Rd) in finitely many steps, where each step is scalar multiplication,
vector addition, or a resolvent evaluation. We say (T, S) is frugal if it has a step-by-
step (serial) evaluation procedure such that exactly one step computes JαA, exactly
one step computes JβB , and both T (A,B, z) and S(A,B, z) are output at the end.

Unconditional convergence. We say (T, S) converges unconditionally for the prob-
lem class (2op-Rd) if

T kz0 → z?, Sz? ∈ zer(A+B)

for any z0 ∈ Rd′ and A,B ∈M(Rd) as k →∞, when zer(A+B) 6= ∅. To clarify,

T k = T ◦ T ◦ · · · ◦ T︸ ︷︷ ︸
k times

.

We say the convergence is unconditional because there are no conditions on the op-
erators A,B ∈M(Rd) or the starting point z0 ∈ Rd.

For example, with DRS, the zk-iterates do not, in general, converge to a solution.
Rather, zk → z?, where JαBz? is a solution to the monotone inclusion problem,
when a solution exists.

The notion of unconditional convergence is unrelated to weak and strong conver-
gence. In infinite dimensional spaces, we would require the convergence T kz0 → z?

to hold weakly, but weak and strong convergence coincide in finite dimensions. We
avoid infinite dimensional spaces because defining the notion of lifting would be
awkward when d =∞.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 7

Equivalence. Given a fixed-point iteration, we can scale it with a nonzero scalar to
get another one that is essentially the same, i.e.,

zk+1 = T (zk) ⇔ azk+1 = aT (a−1azk)

for any a ∈ R such that a 6= 0. Given resolvent-splitting, we can swap the role of A
and B to get another one that is conceptually no different, i.e.,

(T (A,B, ·), S(A,B, ·)) ⇔ (T (B,A, ·), S(B,A, ·)).

Two resolvent-splittings without lifting are equivalent if one can be obtained from
the other through scaling with a nonzero scalar and/or swapping the role of A and B.

2.2 Uniqueness result

Theorem 1 Up to equivalence, (T, S) is a frugal resolvent-splittings without lifting
for the problem class (2op-Rd) if and only if it is of the form

x1 = JαAz

x2 = JβB((1 + β/α)x1 − (β/α)z)

T (z) = z + θ(x2 − x1)

S(z) = ηx1 + (1− η)x2

for some α, β > 0, θ 6= 0, and η ∈ R.

Note that Theorem 1 says nothing about convergence. Theorem 2 characterizes the
splittings of Theorem 1 that do converge.

Theorem 2 (T, S) of Theorem 1 converges unconditionally if and only if α = β and
θ ∈ (0, 2) if d ≥ 2.

When d = 1, the splittings (T, S) of Theorem 1 may converge under more general
conditions, but we do not pursue this discussion.

Corollary 1 Up to equivalence, the class of DRS splittings (the collection param-
eterized by α > 0, θ ∈ (0, 2), and η ∈ R) are the only frugal, unconditionally
convergent resolvent-splittings without lifting for the problem class (2op-Rd) when
d ≥ 2.

Proof A frugal resolvent-splittings without lifting must be equivalent to a splitting
of the form of Theorem 1. If it is furthermore unconditionally convergent, then, by
Theorem 2, we have α = β and θ ∈ (0, 2), which corresponds to DRS. ut

8 Ernest K. Ryu

2.3 Proof of Theorem 1

2.3.1 Outline

The main part of proof, which shows that any frugal resolvent-splitting without lifting
is of the form of Theorem 1, can be divided into in roughly three steps. In the first
step, we represent a given resolvent-splitting (T, S) with a linear system of equations,
and simplify the system using Gaussian elimination. In the second step, we show that
the system of linear equalities must imply certain equalities one would expect from
a fixed-point encoding. This is done by using a Farkas-type lemma to take a certain
element from the null space of the linear system and using it to construct the counter
example. In the third step, we use the conclusion of the second step to eliminate and
characterize the parameters of (T, S).

2.3.2 Proof

Showing that (T, S) of Theorem 1 is indeed a fixed-point encoding is straightforward.
Let x? ∈ Rd satisfy 0 ∈ (A + B)x?. Let Ãx? ∈ Ax? and B̃x? ∈ Bx? such that
Ãx? + B̃x? = 0, and let z0 = x? + αÃx?. Then x1 = x2 = x?, Tz0 = z0, and
Sz0 = x?. On the other hand, assume T (A,B, z?) = z?. Then x1 = x2. Write x? =
x1 = x2, Ãx? = (1/α)(z? − x?), and B̃x? = (1/α)(x? − z?). Then Ãx? ∈ Ax?,
B̃x? ∈ Bx?, and Ãx? + B̃x? = 0, which implies x? = S(z?) is a solution.

We now need to show the other direction, that any frugal resolvent-splitting with-
out lifting for the problem class (2op-Rd) is of the form of Theorem 1, up to equiva-
lence.

First, we discuss the following Farkas-type lemma.

Lemma 1 Let M ∈ Rm×n and c ∈ Rn be fixed coefficients, and let v ∈ Rn be
a variable. If there is a w ∈ Rm such that wTM = cT then the linear equalities
Mv = 0 imply the linear equality cT v = 0. If there is no such w, then there is an
instance of v ∈ Rn such that Mv = 0 but cT v 6= 0.

An equivalent way to state Lemma 1 is to say that Mv = 0 implies cT v = 0 if
and only if we can linearly combine the rows of Mv = 0 to obtain cT v = 0. We
say Lemma 1 is of Farkas-type as it resembles Farkas’ result on systems of linear in-
equalities [31]. For a systematic study on Farkas-type theorems, see [4,26]. Lemma 1
can be directly and easily proved with standard linear algebra.

We now proceed onto the main proof. Let (T, S) be a frugal resolvent-splitting
without lifting.

Consider an evaluation procedure of (T, S) that establishes frugality. In the step-
by-step computation, either JαA or JβB is evaluated before the other. Without loss
of generality, assume JαA is evaluated before JβB in this ordering, since we can
otherwise consider (T̃ , S̃) defined with

T̃ (A,B, z) = T (B,A, z), S̃(A,B,Z) = S(B,A, z),

the equivalent splitting with the order of A and B swapped.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 9

Consider the evaluation of Tz0 and Sz0 for z0 ∈ Rd. Write z1 and z2 for the
inputs and x1 and x2 for the outputs of the resolvent evaluations with respect toA and
B, i.e., x1 = JαAz1 and x2 = JβBz2. Define Ãx1 and B̃x2 with x1+αÃx1 = z1 and
x2 + βB̃x2 = z2. By definition of resolvents, we have Ãx1 ∈ Ax1 and B̃x2 ∈ Bx2.

All computational steps except the evaluations of JαA and JβB amount to form-
ing linear combinations of previous information since scalar multiplication and vector
addition are the only other operations allowed in (T, S). Therefore, we can express
the evaluation of Tz0 and Sz0 as

0 =


∗ 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 α 0 0
∗ ∗ ∗ 1 0 0 0 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (1)

Each scalar in the matrix represents a d×d block. The symbol ∗ denotes a fixed scalar
coefficient that we have not yet parameterized. Row 1 defines z1, the input to JαA.
Row 2 represents x1 = JαAz1 ⇔ x1 + αAx1 3 z1. Row 3 defines z2, the input to
JβB . Row 4 represents x2 = JβBz2 ⇔ x2 + βBx2 3 z2. Row 5 defines Tz0. Row
6 defines Sz0. We will simplify the system first and then explicitly parameterize the
coefficients to keep the notation tractable.

Next, we simplify the system (1). Permute the rows of (1) to get the equivalent
linear system

0 =


∗ 1 0 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (2)

Since permuting the rows is a reversible process, (1) and (2) are equivalent. In the
step-by-step evaluation procedure of (T, S), the evaluation of T or S completes be-
fore the other. As the first case, assume the evaluation of S completes first, which
means the evaluation of S does not depend on the evaluation of T . Then the linear

10 Ernest K. Ryu

system is of the form

0 =


∗ 1 0 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ ∗
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

The boldface symbols denote where to pay attention in the linear systems. Perform
Gaussian elimination to get

0 =


∗ 1 0 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

This corresponds to left-multiplication by the invertible matrix
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 ∗
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 .

As the other case, assume evaluation of T completes first, which means the evaluation
of T does not depend on the evaluation of S. Then the linear system is of the form

0 =


∗ 1 0 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 11

Perform Gaussian elimination to get

0 =


∗ 1 0 0 0 0 0 0 0
∗ ∗ ∗ 1 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ 1 ∗ ∗ 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ ∗ ∗ ∗ ∗ 0 ∗ ∗ 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (3)

This corresponds to left-multiplication by the invertible matrix


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 ∗ 0 0 1

 .

Regardless of which of the two cases we start from, we arrive at the same linear
system (3). Continue the Gaussian elimination to get

0 =


∗ 1 0 0 0 0 0 0 0
∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ 0 ∗ 0 ∗ 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

This corresponds to left-multiplying (3) by the invertible matrix



1 0 0 0 0 0

∗ 1 0 0 0 0

∗ 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

∗ 0 0 0 0 1





1 0 0 0 0 0

0 1 0 0 0 0

0 ∗ 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 ∗ 0 0 0 1





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 ∗ ∗ 1





1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 ∗ ∗ 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

12 Ernest K. Ryu

We now explicitly parameterize the unspecified parameters one at a time.

0 =


−a 1 0 0 0 0 0 0 0
∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ 0 ∗ 0 ∗ 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

The role of a is to define z1 = az0. So the evaluation of (T, S) starts with JαA(az0).
If a = 0, then JαA ignores the input z0 and always uses 0 as the input. Since (T, S)
accessesA only through the evaluation of JαA, how is it possible that (T, S) evaluates
JαA only at 0 and still encodes the zeros of A+B?

We now show a 6= 0. Assume a = 0 for contradiction. Let

A(x) = c1x, B(x) = c2,

where c1 > 0 is unspecified and 0 6= c2 ∈ Rd. Then JαA0 = 0, and the mappings T
and S are independent of the value of c1. So the set of fixed points of T and the set
of Sz?, where z? is a fixed point of T , do not depend on c1. However, the solution
{−c−1

1 c2} = zer(A+B) does depend on c1. Since (T, S) is assumed to be a fixed-
point encoding, T must have a fixed-point z? and it must satisfy −c−1

1 c2 = Sz?,
which is a contradiction.

Knowing a 6= 0, we can absorb the top-left a into z0 and left-multiply by an
invertible matrix to get the equivalent system

0 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 a 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1




−1 1 0 0 0 0 0 0 0
∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ 0 ∗ 0 ∗ 0 0 0 1





az0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

This further simplifies to the equivalent system

0 =


−1 1 0 0 0 0 0 0 0
∗ 0 ∗ 1 0 0 0 0 0
∗ 0 ∗ 0 ∗ 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
∗ 0 ∗ 0 ∗ 0 0 0 1





az0

z1

x1

z2

x2

aT (a−1az0)

Ãx1

B̃x2

S(a−1az0)


.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 13

By redefining (T (z0), S(z0)) to be the equivalent scaled splitting (aT (a−1az0), S(a−1az0)),
we get the equivalent system

0 =


−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0
θ3 0 θ4 0 θ5 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
θ6 0 θ7 0 θ8 0 0 0 1





z0
z1

x1

z2

x2

Tz0
Ãx1

B̃x2

Sz0


, (4)

where we have now explicitly parameterized the remaining parameters as θ1, . . . , θ8.

The system (4) defines (T, S), i.e., it specifies the evaluation of (T, S) at any
input z0. Of course, x1, x2, and Sz0 need not be solutions to the monotone inclusion
problem, since the input z0 is arbitrary. To summarize our progress, we have shown
that any frugal resolvent-splitting without lifting is equivalent to a frugal resolvent-
splitting of the form (4).

We now take a moment to consider what happens with DRS under this setup.
Although this discussion is not part of the proof, it will provide us with a sense of
direction. Under this formulation, DRS has the form

0 =


−1 1 0 0 0 0 0 0 0
1 0 −2 1 0 0 0 0 0
−1 0 θ 0 −θ 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 α 0
0 0 −1 + η 0 −η 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

Row 1 defines z1 = z0 as the input to JαA. Row 4 corresponds to x1 = JαAz1. Row
2 defines z2 = 2x1−z0 as the input to JαB . Row 5 corresponds to x2 = JαBz2. Row
3 defines Tz0 = z0 + θ(x2−x1). Row 6 defines Sz0 = ηx2 + (1− η)x1. This linear
system represents the evaluation of (T, S) at any arbitrary input z0, i.e., the system
defines (T, S).

To show that DRS is a fixed-point encoding, one considers evaluations of (T, S)
at fixed points and shows x1 = x2 = Sz0 and Ãx1 + B̃x2 = 0. To do this, we add a

14 Ernest K. Ryu

row representing the fixed-point condition z0 = Tz0

0 =



−1 1 0 0 0 0 0 0 0
1 0 −2 1 0 0 0 0 0
−1 0 θ 0 −θ 1 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 α 0
0 0 −1 + η 0 −η 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

Now the system represents evaluations of (T, S) at fixed points. We then left-multiply
the system with

(1/θ)
[
0 0 1 −1 0 0 0

]
to get x1 = x2, left-multiply the system with[

0 0 −η/θ η/θ 0 0 1
]

to get Sz0 = x1, and left-multiply the system with

(1/α)
[
1 1 1/θ −1/θ 1 1 0

]
to get 0 = Ãx1 + B̃x2.

With DRS, it is possible to perform Gaussian elimination with the linear equalities
defining (T, S) and the fixed-point condition Tz0 = z0 to conclude x1 = x2 = Sz0

and Ãx1 + B̃x2 = 0. With other fixed-point encodings, should we not be able to do
the same? How else could Tz0 = z0 certify Sz0 ∈ zer(A+B)? This turns out to be
true: we must be able to establish x1 = x2, x1 = Sz0, and Ãx1 + B̃x2 = 0 through
a linear combination of the linear equalities as otherwise we can construct counter
examples that contradict the assumption that (T, S) is a fixed-point encoding.

We now return to the proof. Consider (4) with the fixed-point condition T (z0) =
z0 added

0 =



−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0
θ3 0 θ4 0 θ5 1 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
θ6 0 θ7 0 θ8 0 0 0 1


︸ ︷︷ ︸

=M



z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


︸ ︷︷ ︸

=v

. (5)

System (5) represents evaluations of (T, S) at a fixed points.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 15

We claim that the linear equalities (5) must imply x1 = x2, Sz0 = x1, and Ãx1 +
B̃x2 = 0. We prove these three implications one-by-one by assuming otherwise and
constructing counter examples.

Assume for contradiction that (5) does not imply the linear equality x1 = x2. By
Lemma 1, this means there is a specific instance

v′ = (z′0, z
′
1, x
′
1, z
′
2, x
′
2, T (z′0), Ãx′1, B̃x

′
2, S(z′0)) ∈ R9d

such that Mv′ = 0 but x′1 6= x′2. The vector v′ represents an evaluation of
(T (A,B, ·), S(A,B, ·)) for any A,B ∈M(Rd) satisfying

Ãx′1 ∈ Ax′1, B̃x′2 ∈ Bx′2.

The evaluation is at a fixed point, i.e., T (A,B, z′0) = z′0, since we enforced T (z0) =
z0 in (5). Define

A(x) = x− x′1 + Ãx′1, B(x) = x− x′2 + B̃x′2.

A and B are monotone operators constructed to match the evaluations A(x′1) = Ãx′1
and B(x′2) = B̃x′2. Write x? = S(A,B, z′0). Since (T, S) is a fixed-point encoding,
we have

0 = (A+B)x?.

However, x′1 6= x′2, so either x′1 6= x? or x′2 6= x? or both. Without loss of generality
assume x′1 6= x?. Loosely speaking, x1 6= x? means (T, S) was able to identify
that x? is a solution without examining the output of A at x?, the purported solution.
Since the evaluation of (T (A,B, z′0), S(A,B, z′0)) depends on A only through Ax′1,
what prevents us from changing the operator value at x?? Define

C(x) = 2(x− x′1) + Ãx′1.

Since C(x′1) = Ãx′1, we still have T (C,B, z′0) = z′0 and S(C,B, z′0) = x?, i.e.,
changing A to C does not affect the evaluation of T and S at z′0. However,

0 /∈ (C +B)x?,

since C(x?) 6= A(x?). In other words, T (C,B, z′0) = z′0, but S(C,B, z′0) is not a
zero of C + B. So (T, S) fails to be a fixed-point encoding for C,B ∈ M(Rd),
and we have a contradiction. This proves that the linear system of equalities (5) does
imply the linear equality x1 = x2.

Next, assume for contradiction that (5) does not imply the linear equality Sz0 =
x1. By Lemma 1, this means there is a specific instance

v′ = (z′0, z
′
1, x
′
1, z
′
2, x
′
2, T (z′0), Ãx′1, B̃x

′
2, S(z′0)) ∈ R9d

such that Mv′ = 0 but S(z′0) 6= x′1 = x′2. (We now know that x′1 = x′2.) Again,
loosely speaking, S(z′0) 6= x′1 means (T, S) was able to identify that S(z′0) is a solu-
tion without examining the output of A at S(z′0), the purported solution, so we draw
a contradiction by changing the operator value at S(z′0). Using the same definition
of A, B, and C, the same arguments carry over and we can establish T (A,B, z′0) =

16 Ernest K. Ryu

T (C,B, z′0) = z′0 and S(A,B, z′0) = S(C,B, z′0). Define x? = S(A,B, z′0). Since
we assumed (for contradiction) that x? 6= x′1, we have

(A+B)(x?) 6= (C +B)(x?).

Remember that A, B, and C are single-valued. So it is not possible for both 0 =
(A + B)(x?) and 0 = (C + B)(x?) to be true. Therefore (T, S) fails to be a fixed-
point encoding for the instance A,B ∈ M(Rd) or C,B ∈ M(Rd), and we have
a contradiction. This proves that the linear system of equalities (5) does imply the
linear equality Sz0 = x1.

Finally, assume for contradiction that (5) does not imply the linear equality Ãx1+
B̃x2 = 0. By Lemma 1, this means there is a specific instance

v′ = (z′0, z
′
1, x
′
1, z
′
2, x
′
2, T (z′0), Ãx′1, B̃x

′
2, S(z′0)) ∈ R9d

such that Mv′ = 0 but Ãx′1 + B̃x′2 6= 0. Loosely speaking, Ãx′1 + B̃x′2 6= 0 means
(T, S) was able to identify that S(z′0) is a solution without obtaining outputs of A
and B that sum to 0, and we draw a contradiction by demonstrating that this is not
possible when A and B are single-valued. We now know that x′1 = x′2 = S(z′0).
Define

A(x) = x− x′1 + Ãx′1, B(x) = x− x′2 + B̃x′2.

Then T (A,B, z0) = z0, but

(A+B)(S(z′0)) = Ãx′1 + B̃x′2 6= 0,

i.e., the purported solution S(z′0) is not a solution. So (T, S) fails to be a fixed-point
encoding for the instance A,B ∈ M(Rd), and we have a contradiction. This proves
that the linear system of equalities (5) does imply the linear equality Ãx1 +B̃x2 = 0.

With the assertions proved, we proceed to complete the proof. Gaussian elimina-
tion on (5) gives us the equivalent system

0 =



−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0

θ3 + 1 0 θ4 0 θ5 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
θ6 0 θ7 0 θ8 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (6)

Because the system of linear equalities must imply x1 = x2 and because of where
the zeros and nonzeros are placed, we have θ3 = −1 and θ4 = −θ5 = θ for some

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 17

θ 6= 0. Let us further spell out this argument. The linear equality x1 = x2 can be
expressed as

0 =
[
0 0 −1 0 1 0 0 0 0

]



z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (7)

By Lemma 1, the system of linear equalities (6) implies (7) if and only if we can
linearly combine the rows of (6) to get (7). Row 7 of (6) cannot be used in the linear
combination, as any nonzero contribution from row 7 will place a nonzero component
in the 9th column. Row 6 of (6) also cannot be used in the linear combination, as any
nonzero contribution from row 6 will place a nonzero component in the 8th column.
Repeating this argument tells us that rows 7, 6, 5, 4, 2, and 1 cannot be used in the
linear combination. Therefore, a scalar multiple of row 3 of (6) must equal (7), and
this tells us θ3 = −1 and θ4 = −θ5 = θ for some θ 6= 0.

Plugging in the values of θ3, θ4 and θ5, we get

0 =



−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0
0 0 θ 0 −θ 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
θ6 0 θ7 0 θ8 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (8)

Because the linear equalities must imply x1 = Sz0 and because of where the zeros
and nonzeros are placed, θ6 = 0, θ7 = −1 + η, and θ8 = −η for some η ∈ R. Let us
further spell out this argument. The linear equality Sz0 = x1 can be expressed as

0 =
[
0 0 −1 0 0 0 0 0 1

]



z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


(9)

By Lemma 1, the system of linear equalities (8) implies (9) if and only if we can lin-
early combine the rows of (8) to get (9). Row 6 cannot be used in the linear combina-
tion, as any nonzero contribution will place a nonzero component in the 8th column.

18 Ernest K. Ryu

Row 5 cannot be used in the linear combination, as any nonzero contribution will
place a nonzero component in the 7th column. Repeating this argument tells us that
rows 6, 5, 4, 2, and 1 cannot be used in the linear combination. This leaves us with
the rows

0 =

[
0 0 θ 0 −θ 0 0 0 0
θ6 0 θ7 0 θ8 0 0 0 1

]


z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


to imply (9). This is possible only if θ6 = 0, θ7 = −1 + η, and θ8 = −η for some
η ∈ R.

Plugging in the values of θ6, θ7 and θ8, we get

0 =



−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0
0 0 θ 0 −θ 0 0 0 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
0 0 −1 + η 0 −η 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (10)

Because the system of linear equalities must imply 0 = Ãx1 + B̃x2 and because of
where the zeros and nonzeros are placed, we have θ1 = β/α and θ2 = −1 − β/α.
Let us further spell out this argument. The linear equality 0 = Ãx1 + B̃x2 can be
expressed as

0 =
[
0 0 0 0 0 0 1 1 0

]



z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (11)

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 19

Left-multiply (10) by the invertible matrix

1 0 0 0 0 0 0
0 1 0 0 0 0 0

−(1 + θ2) 1 1/θ 0 −(1 + θ2) 1 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1


to get

0 =



−1 1 0 0 0 0 0 0 0
θ1 0 θ2 1 0 0 0 0 0

1 + θ1 + θ2 0 0 0 0 0 −(1 + θ2)α β 0
−1 0 0 0 0 1 0 0 0
0 −1 1 0 0 0 α 0 0
0 0 0 −1 1 0 0 β 0
0 0 −1 + η 0 −η 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


.

Left-multiply by the invertible matrix

0 0 1 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 1 0 0
0 1 0 0 0 0 0
0 0 0 0 0 1 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1


to permute the rows and get

0 =



1 + θ1 + θ2 0 0 0 0 0 −(1 + θ2)α β 0
−1 1 0 0 0 0 0 0 0
0 −1 1 0 0 0 α 0 0
θ1 0 θ2 1 0 0 0 0 0
0 0 0 −1 1 0 0 β 0
−1 0 0 0 0 1 0 0 0
0 0 −1 + η 0 −η 0 0 0 1





z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


. (12)

By the lemma and the equivalence of (10) and (12), the system of linear equalities
(10) implies (11) if and only if we can linearly combine the rows of (12) to get (11).
Row 7 cannot be used in the linear combination, as any nonzero contribution will
place a nonzero component in the 9th column. Row 6 cannot be used in the linear
combination, as any nonzero contribution will place a nonzero component in the 6th

20 Ernest K. Ryu

column. Repeating this argument tells us that rows 7, 6, 5, 4, 3, and 2 cannot be used
in the linear combination. This leaves us with

0 =
[
1 + θ1 + θ2 0 0 0 0 0 −(1 + θ2)α β 0

]



z0

z1

x1

z2

x2

Tz0

Ãx1

B̃x2

Sz0


to imply (11) and this requires θ1 = β/α and θ2 = −1− β/α.

Finally, plugging in the parameters and expressing the splitting in functional form,
we get the splitting of Theorem 1. ut

2.4 Proof of Theorem 2

When α = β, the splitting (T, S) of Theorem 1 reduces to the setup of DRS. The
fixed-point iteration with respect to the DRS operator converges for all maximal
monotone A and B if and only if θ ∈ (0, 2). That DRS converges for θ ∈ (0, 2)
is well known [3, §26.3], and that DRS may diverge for some maximal monotone
operators when θ /∈ (0, 2) can be verified by considering the operators A = 0 and
B = N{0}, where N{0} denotes the normal cone operator with respect to the set {0}.

Now assume α 6= β. We provide counter examples, single-valued maximal mono-
tone operators A and B such that {0} = zer(A + B) and T kz0 diverges for any
z0 6= 0. Note that the parameters α and β are fixed and are provided by the splitting.
Our counter examples rely on α and β.

For the moment, consider the case d = 2. Consider the problem

find
x∈R2

0 = (A+B)x,

where

A =

[
− tan(ω)/α

0
0

tan(ω)/α
]

B =

[
tan(ω)/β

0
0

− tan(ω)/β
]

and α, β > 0, and ω ∈ (0, π/2). We identify A and B as maximal monotone opera-
tors from R2 → R2. Note that x? = 0 is the unique solution.

With basic algebra, we can show that

Tz =

[
−(θ/2)(1− β/α) cos(ω) sin(ω)

1
1

(θ/2)(1− β/α) cos(ω) sin(ω)
]
z.

With basic eigenvalue computation, we get

|λ1|2 = |λ2|2 = 1 + ((θ/2)(1− β/α) cos(ω) sin(ω))
2
> 1,

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 21

where λ1, λ2 are the eigenvalues of the matrix that defines T . So if z0 6= 0, the
iteration zk+1 = Tzk diverges in that ‖zk‖ → ∞ and ‖Szk‖ → ∞.

When d > 2, we arrive at the same conclusion with
A 0 0 · · · 0

0 0
. 0

...
...

. 0
0 0 · · · 0

 ∈ Rd×d,


B 0 0 · · · 0

0 0
. 0

...
...

. 0
0 0 · · · 0

 ∈ Rd×d,

which is the same counter example embedded into d dimensions. ut

3 Impossibility of 3 operator resolvent-splitting without lifting

Define the problem class (3op-Rd) to be the collection of monotone inclusion prob-
lems of the form

find
x∈Rd

0 ∈ (A+B + C)x (3op-Rd)

with A,B,C ∈ M(Rd). A pair of functions (T, S) is a fixed-point encoding for the
problem class (3op-Rd) if

∃z? ∈ Rd
′

such that
(
T (A,B,C, z?) = z?

S(A,B,C, z?) = x?

)
⇔ 0 ∈ (A+B + C)(x?).

We call
T :M(Rd)×M(Rd)×M(Rd)× Rd

′
→ Rd

′

the fixed-point mapping and

S :M(Rd)×M(Rd)×M(Rd)× Rd
′
→ Rd,

the solution mapping. The four key terms, resolvent-splitting, frugal, unconditional
convergence, and no lifting, are defined analogously.

To define the notion of resolvent-splitting without lifting for the problem class
(3op-Rd), we define the class of mappings G similarly to how we defined F . Let I
be the “identity mapping” defined as I : M(Rd) ×M(Rd) ×M(Rd) × Rd → Rd
and I(A,B,C, z) = z for any A,B,C ∈ M(Rd) and z ∈ Rd. Let Jα,1 be the
resolvent with respect to the first operator defined as Jα,1 : M(Rd) ×M(Rd) ×
M(Rd)×Rd → Rd and Jα,1(A,B,C, z) = JαA(z) for any A,B,C ∈M(Rd) and
z ∈ Rd. Define Jβ,2 likewise with Jβ,2(A,B,C, z) = JβB(z) and Jγ,3 likewise as
Jγ,3(A,B,C, z) = JγC(z). Let

G0 = {I} ∪ {Jα,1 |α > 0} ∪ {Jβ,2 |β > 0} ∪ {Jγ,3 | γ > 0}.

Recursively define

Gi+1 = {F +G |F,G ∈ Gi} ∪ {F ◦G |F,G ∈ Gi} ∪ {γF |F ∈ Gi, γ ∈ R}

22 Ernest K. Ryu

for i = 0, 1, 2, . . . , where “composition” F ◦G is defined analogously. Finally, define

G =

∞⋃
i=0

Gi.

Elements of G mapM(Rd)×M(Rd)×M(Rd)×Rd to Rd. IfR ∈ F andA,B,C ∈
M(Rd), then R(A,B,C, ·) : Rd → Rd. If (T, S) is a fixed-point encoding for the
problem class (3op-Rd) and T, S ∈ G, then (T, S) is a resolvent-splitting without
lifting for the problem class (3op-Rd).

Frugality is defined analogously with the notion of evaluation procedures. We
only use the notion of frugality informally for the problem class (3op-Rd).

Unconditional convergence is also defined analogously. We say (T, S) converges
unconditionally for the problem class (3op-Rd) if

T kz0 → z?, Sz? ∈ zer(A+B + C)

for any z0 ∈ Rd and A,B,C ∈M(Rd), when zer(A+B + C) 6= ∅.

3.1 Impossibility result

If one could find a frugal, unconditionally convergent resolvent-splitting without lift-
ing for (3op-Rd), it would be a satisfying generalization of DRS to 3 operators. How-
ever, this is impossible. Even if we drop frugality and convergence as requirements,
this is impossible.

Theorem 3 There is no resolvent-splitting without lifting for (3op-Rd).

Clarification. Assume T (A,B,C, ·) : Rd → Rd and S(A,B,C, ·) : Rd → Rd
are constructed with finitely many resolvents,

Jα(1)A, Jα(2)A, . . . , Jα(nA)A

Jβ(1)B , Jβ(2)B , . . . , Jβ(nB)B

Jγ(1)C , Jγ(2)C , . . . , Jγ(nC)C

where the parameters α(i), β(j), γ(k) may be different. Theorem 3 states that (T, S)
fails to be a fixed-point encoding.

Clarification. Another way to state Theorem 3 is to say that no element of the
near-ring G is a fixed-point encoding for (3op-Rd).

3.2 Proof of Theorem 3

3.2.1 Outline

The proof can be divided into in roughly three steps. In the first step, we set up the
notation and express the evaluation of T with a set of linear and non-linear equalities.
In the second step, we show that the linear equalities, coupled with the fixed point

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 23

condition and some additional assumptions, cannot show that the three operators are
evaluated at a same single point. In the third step, we use the conclusion of the second
step and a Farkas-type lemma to take a certain element from the null space of the
linear system and use it to construct a counter example.

3.2.2 Proof

Assume for contradiction that (T, S) is a resolvent-splitting without lifting. Let n be
the total number of resolvent evaluations required to compute T and S. The specific
value of n depends on how you count, i.e., whether you simplify things and whether
some resolvent evaluations are counted redundantly. All that matters is that n is finite.

Since T, S ∈ G there is a finite evaluation procedure for (T, S), and we can find
a sequential ordering for the resolvent evaluations. Using this ordering, we label the
resolvents J1, J2, . . . , Jn, where Ji is one of JαA, JβB , or JγC for some α > 0,
β > 0, or γ > 0 for each i = 1, . . . , n. We call zi the point at which Ji is evaluated
and xi = Ji(zi) for i = 1, . . . , n. In the process of evaluating Tz0 and Sz0, we get
z0, z1, x1, z2, x2, . . . , zn, xn, in this order. Since scalar multiplication and vector ad-
dition are the only operations allowed aside from resolvent evaluations, zi is defined
as a linear combination of z0, z1, x1, z2, x2, . . . , zi−1, xi−1 for each i = 1, . . . , n, by
nature of the ordering. Likewise, Tz0 can be expressed as a linear combination of
z0, z1, x1, z2, x2, . . . , zn, xn. Without loss of generality, assume JαA, JβB , and JγC
are all used least once with some α > 0, β > 0, and γ > 0. Otherwise, if, for ex-
ample, JαA is never used, we let zn+1 = 0 and Jn+1 = JA to fix the issue. This is
equivalent to evaluating the resolvent at the end and not using the output.

Say JαA, JβB , and JγC are evaluated nA, nB , and nC times, respectively. So
nA + nB + nC = n. Let a(1), a(2), . . . , a(nA) ∈ {1, 2, . . . , n} be distinct indicies
and let α(1), α(2), . . . , α(nA) > 0 be parameters so that

xa(`) = Ja(`)(za(`)) = Jα(`)A(za(`)).

In other words, xa(1), xa(2), . . . , xa(nA) are the outputs of the resolvents of A. Like-
wise, let b(1), b(2), . . . , b(nB) ∈ {1, 2, . . . , n} and c(1), c(2), . . . , c(nC) ∈ {1, 2, . . . , n}
be distinct indices and let β(1), β(2), . . . , β(nB) > 0 and γ(1), γ(2), . . . , γ(nC) > 0
be parameters so that

xb(`) = Jb(`)(zb(`)) = Jβ(`)B(zb(`))

for ` = 1, . . . , nB and

xc(`) = Jc(`)(zc(`)) = Jγ(`)C(zc(`))

for ` = 1, . . . , nC .

24 Ernest K. Ryu

We express the evaluation of Tz0 with the following system of linear and non-
linear equalities:

0 =



∗ 1 0 0 0 0 · · · 0 0 0
∗ ∗ ∗ 1 0 0 · · · 0 0 0
∗ ∗ ∗ ∗ ∗ 1 · · · 0 0 0

...

...
∗ ∗ ∗ ∗ ∗ ∗ · · · 1 0 0
∗ ∗ ∗ ∗ ∗ ∗ · · · ∗ ∗ 1





z0

z1

x1

z2

x2

z3

...
zn
xn
Tz0


x1 = J1(z1), x2 = J2(z2), . . . , xn = Jn(zn),

where the ∗ denote unspecified scalar coefficients. (Each scalar in the matrix should
be interpreted as a d×d block. We have seen this notation in the proof of Theorem 1.)
Each linear equality except the last one defines zi for i = 1, . . . , n. The last linear
equality defines T (z0). With Gaussian elimination, we obtain the simpler equivalent
system

0 =



∗ 1 0 0 0 0 · · · 0 0 0
∗ 0 ∗ 1 0 0 · · · 0 0 0
∗ 0 ∗ 0 ∗ 1 · · · 0 0 0

...

...
∗ 0 ∗ 0 ∗ 0 · · · 1 0 0
∗ 0 ∗ 0 ∗ 0 · · · 0 ∗ 1





z0

z1

x1

z2

x2

z3

...
zn
xn
Tz0


x1 = J1(z1), x2 = J2(z2), . . . , xn = Jn(zn).

The boldface symbols denote where to pay attention in the linear systems. To sum-
marize our progress, we have set up the notation and shown that these linear and
non-linear equalities define the evaluation of T at any input z0.

We now take a moment to consider what happens with DRS under a similar for-
mulation. Although this discussion is not part of the proof, it will provide us with a
sense of direction. Under this formulation, DRS has the form

0 =

−1 1 0 0 0 0
1 0 −2 1 0 0
−1 0 θ 0 −θ 1



z0

z1

x1

z2

x2

Tz0


x1 = JαA(z1), x2 = JαB(z2).

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 25

With DRS we can combine the linear equalities with the fixed point condition z0 =
Tz0 to show that x1 = x2 when the input z0 is a fixed point. More specifically, we
add z0 = Tz0 to the linear system

0 =


−1 1 0 0 0 0
1 0 −2 1 0 0
−1 0 0 0 0 1
−1 0 θ 0 −θ 1



z0

z1

x1

z2

x2

Tz0


and left-multiply

(1/θ)
[
0 0 −1 1

]
to get

0 =
[
0 0 1 0 −1 0

]

z0

z1

x1

z2

x2

Tz0

 .
This is equivalent to combining

Tz0 = z0 + θ(x2 − x1)

z0 = Tz0

to conclude x1 = x2 when the input z0 is a fixed point. Remember, x1 and x2 are
the points where A and B are (indirectly) evaluated. (JαA is directly evaluated at z1,
so z1 ∈ x1 + αAx1, and we indirectly obtain the output (1/α)(z1 − x1) ∈ Ax1.
Likewise, we indirectly obtain the output (1/α)(z2 − x2) ∈ Bx2.)

These arguments show that with DRS, T evaluates A and B at the same point
when the input z0 is a fixed point. (Further arguments would establish that the same
point is a solution by showing that the outputs of A and B sum to 0.) In general,
given a fixed-point encoding (T, S) and a fixed point z0, shouldn’t the evaluation of
T examine the output of all (2 or 3) operators at the solution Sz0? Otherwise how
could z0 = Tz0 certify that Sz0 is a solution?

We now return to the setup of (3op-Rd). Can we combine the linear equalities
and the fixed-point condition z0 = Tz0 to show that A, B, and C are evaluated at a
same single point? It turns out that we cannot. (This by itself is not a contradiction.
Just because we can’t show something with one approach doesn’t mean it can’t be
shown.) However, this approach runs into a problem. If we proceed to construct a
counter example to draw a contradiction, we run into certain difficulties. We need a
modified approach.

Instead, assume the input z0 furthermore satisfies the additional linear equalities

xa(1) = xa(2) = · · · = xa(nA)

xb(1) = xb(2) = · · · = xb(nB) (13)
xc(1) = xc(2) = · · · = xc(nC)

26 Ernest K. Ryu

in addition to the fixed-point condition z0 = Tz0. Since (T, S) is a fixed point en-
coding, z0 = Tz0 should certify that Sz0 is a solution, regardless of the additional
assumptions (13). Now can we use the linear equalities defining T , z0 = Tz0, and
(13) to show that xa(1) = xb(1) = xc(1)? No we cannot. Let’s see why.

We add the fixed-point condition z0 = Tz0 to the system of linear equalities and
perform Gaussian elimination:

0 =



∗ 1 0 0 0 0 · · · 0 0 0
∗ 0 ∗ 1 0 0 · · · 0 0 0
∗ 0 ∗ 0 ∗ 1 · · · 0 0 0

...

...
∗ 0 ∗ 0 ∗ 0 · · · 1 0 0
−1 0 0 0 0 0 · · · 0 0 1
∗ 0 ∗ 0 ∗ 0 · · · 0 ∗ 0


︸ ︷︷ ︸

=M



z0

z1

x1

z2

x2

z3

...
zn
xn
Tz0


︸ ︷︷ ︸

=v

(14)

x1 = J1(z1), x2 = J2(z2), . . . , xn = Jn(zn).

Define the last row of M to be m. Let N be a matrix such that

0 = N



z0

z1

x1

...
zn
xn
Tz0


⇔ (13).

More specifically, let N ∈ R(n−3)d×(2n+2)d contain only 0, 1, and −1 and let the
nonzeros only be on the columns corresponding to the x-variables (columns number
3, 5, . . . , 2n+1). Note that (13) represents n−3 linear equalities, and this is reflected
as the number of rows in N . The positions of the nonzeros in N depend on the
ordering of the resolvent evaluations, and N is not unique. Let

L =

[
M
N

]
, Ñ =

[
m
N

]
,

where m is the last row of M . So 0 = Lv means v satisfies the linear equalities (14)
and (13). Let’s try to combine rows of 0 = Lv to establish xa(1) = xb(1) = xc(1).
By Lemma 1, 0 = Lv implies xa(1) = xb(1) and xb(1) = xc(1) if and only if we can
linearly combine the rows of 0 = Lv to get xa(1) = xb(1) and xb(1) = xc(1).

Every row of M except the last one cannot be used in the linear combination to
prove a linear equality only involving the x-variables, as any nonzero contribution

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 27

will place a nonzero component on a column corresponding to zi or Tz0 (column
number 1, 2, 4, 6 . . . , 2n, 2n+ 2). This leaves us with the rows of

0 =

[
m
N

]
v

to show xa(1) = xb(1) and xb(1) = xc(1). The linear equality 0 = Nv enforces

xa(1) = xa(2) = · · · = xa(nA)

xb(1) = xb(2) = · · · = xb(nB)

xc(1) = xc(2) = · · · = xc(nC),

which are n − 3 equalities. Therefore, N (N), the nullspace of N , has codimension
(n − 3)d. The linear equality 0 = mv can establish xa(1) = xb(1) or xb(1) = xc(1),
but not both. If 0 = Ñv implies both xa(1) = xb(1) and xb(1) = xc(1), then in total
0 = Ñv enforces x1 = · · · = xn, which are n−1 equalities. SoN (Ñ), the nullspace
of Ñ , would have codimension (n−1)d or less, but this reduction in codimension by
2d is a contradiction since m is just one row.

Therefore, the linear system 0 = Lv does not imply both xa(1) = xb(1) and
xb(1) = xc(1). This by itself is not a contradiction. Rather, we use this fact to con-
struct a counter example, A,B,C ∈M(Rd) such that (T, S) fails to be a fixed-point
encoding. The additional assumption (13) will help us in this construction.

We construct the counter example for the case d = 1. When d > 1, we can use the
same 1 dimensional construction repeated for the d coordinates. More specifically, if
A ∈M(R), then Ã defined with

Ã(x) = (A(x1), A(x2), . . . , A(xd)),

where x = (x1, x2, . . . , xd) ∈ Rd, satisfies Ã ∈ M(Rd). This sort of construction
based on the 1 dimensional counter example will provide a d dimensional counter
example.

Assume d = 1. By Lemma 1, there is a specific instance

v′ = (z′0, z
′
1, x
′
1, z
′
2, x
′
2, . . . , z

′
n, x
′
n, T (z′0)) ∈ R2n+2

that satisfies Mv′ = 0 and the linear equalities of (13), but x′a(1) 6= x′b(1) or x′b(1) 6=
x′c(1) or both. Without loss of generality, say x′b(1) 6= x′c(1).

Define A such that
Jα(i)A(z′a(i)) = x′a(1)

for all i = 1, . . . , nA. In particular, we achieve this by defining

A(x′a(1)) =

[
min

i=1,...,nA

(
z′a(i) − x

′
a(1)

)
/α(i), max

i=1,...,nA

(
z′a(i) − x

′
a(1)

)
/α(i)

]
.

For the moment, leaveA(x) for x 6= x′a(1) unspecified. DefineB(x′b(1)) andC(x′c(1))

likewise. By construction, z′0 = T (A,B,C, z′0), even though A, B, and C are not
yet fully specified. Write x′ = S(z′0). We have x′ 6= x′b(1) or x′ 6= x′c(1) since
x′b(1) 6= x′c(1). Without loss of generality, let x′ 6= x′c(1).

28 Ernest K. Ryu

Now we define

A(x) =

{
(x− x′a(1)) + min{A(x′a(1))} for x < x′a(1)

(x− x′a(1)) + max{A(x′a(1))} for x > x′a(1)

and

B(x) =

{
(x− x′b(1)) + min{A(x′b(1))} for x < x′b(1)

(x− x′b(1)) + max{A(x′b(1))} for x > x′b(1).

(This makesA andB maximal monotone.) By construction, (A+B)(x′) is a bounded
subset of R, and C(x′) is unspecified. Depending on whether x′ < x′c(1) or x′ >
x′c(1), we can make C(x′) an arbitrarily small or large value, respectively (and still
have C be monotone). In either case, we make C(x′) single-valued and so small or
so large that 0 /∈ (A+B+C)(x′). We extend the definition of C to all of R to make
it maximal monotone.

So we have maximal monotone operatorsA,B, andC, such that z′0 = T (A,B,Cz′0)
but the x′ = S(z′0) does not satisfy 0 ∈ (A+B+C)x′. This contradicts the assump-
tion that (T, S) is a fixed-point encoding. ut

4 Attainment of 3 operator resolvent-splitting with minimal lifting

Loosely speaking, we say (T , S) is a a resolvent-splitting with `-fold lifting for the
problem class (3op-Rd) if (T , S) is a fixed-point encoding and

T (A,B,C, ·) : R`d → R`d, S(A,B,C, ·) : R`d → Rd

is constructed with scalar multiplication, vector addition, and resolvent evaluations.
Note that 1-fold lifting corresponds to no lifting. Frugality is defined analogously.
We define these terms informally since they are not used in a rigorous statement.
Theorem 3 states a resolvent-splitting for (3op-Rd) requires lifting. Then how much?
The answer is 2-fold lifting.

A standard trick to solve (3op-Rd) is to “copy” variables and form an enlarged
problem

find
x1,x2,x3∈Rd

0 ∈

Ax1

Bx2

Cx3

+N{(x1,x2,x3) | x1=x2=x3}(x1, x2, x3),

where NK is the normal cone operator with respect to the set K. By applying DRS
in an appropriately scaled space, we get the parallel proximal algorithm (PPXA) [20,
21], which generalizes Spingarn’s method of partial inverse [51]. The PPXA splitting

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 29

is given by (T , S)

xA = J(γ/ωA)A(zA)

xB = J(γ/ωB)B(zB)

xC = J(γ/ωC)C(zC)

z̄ = ωAzA + ωBzB + ωCzC

x̄ = ωAxA + ωBxB + ωCxC

TA(z) = zA + θ(2x̄− z̄ − xA) (PPXA)
TB(z) = zB + θ(2x̄− z̄ − xB)

TC(z) = zC + θ(2x̄− z̄ − xC)

S(z) = JαAA(zA),

where ωA, ωB , ωC > 0 satisfy ωA + ωB + ωC = 1 and θ ∈ (0, 2). This fru-
gal, unconditionally convergent resolvent-splitting uses 3-fold lifting, since T =
(TA, TB , TC) : R3d → R3d.

So constructing a resolvent-splitting for (3op-Rd) is impossible with 1-fold lift-
ing, but it is possible with 3-fold lifting. It turns out that 2-fold lifting is sufficient,
and we therefore call 2-fold lifting the minimal lifting for (3op-Rd).

4.1 Attainment result

Theorem 4 The pair (T , S), where T : R2d → R2d and S : R2d → Rd, defined as

x1 = JαA(z1)

x2 = JαB(x1 + z2)

x3 = JαC (x1 − z1 + x2 − z2)

T1(z) = z1 + θ(x3 − x1)

T2(z) = z2 + θ(x3 − x2)

S(z) = (1/3)(x1 + x2 + x3)

with z = (z1, z2) and T = (T1, T2), is a fixed-point encoding, and (T , S) converges
unconditionally for θ ∈ (0, 1) and α > 0.

Therefore, (T , S) for any θ ∈ (0, 1) is a frugal, unconditionally convergent, resolvent-
splitting with minimal lifting for (3op-Rd). When B = 0, the splitting of Theorem 4
reduces to DRS. In this sense, this splitting is a direct generalization of DRS with
minimal lifting.

Remark. To the best of the author’s knowledge, the splitting of Theorem 4 cannot
be reduced to an instance of a known splitting method. This is why Theorem 4 is
proved from first principles.

30 Ernest K. Ryu

4.2 Proof of Theorem 4

Throughout the proof, write y = (y1, y2) and z = (z1, z2). Without loss of general-
ity, assume α = 1. We first show that (T , S) is a fixed-point encoding.

Assume z is a fixed point of T . Since z is a fixed point, we have T1(z) = z1 and
T2(z) = z2, and this implies x1 = x2 = x3. Write

a = z1 − x1

b = x1 + z2 − x2

c = x1 − z1 + x2 − z2 − x3.

Add the three and use x1 = x3 to get

a+ b+ c = 0.

Since a ∈ Ax1, b ∈ Bx2, and c ∈ Cx3, by the definitions of x1, x2, and x3, this
proves x1 = x2 = x3 is a solution to (3op-Rd).

Now assume x? is a solution to (3op-Rd), and let a ∈ Ax?, b ∈ Bx?, and c ∈ Cx?
so that a+ b+ c = 0. We then define

z? = (a+ x?, b)

It is straightforward to verify that T (z?) = z? and S(z?) = x?.
Next we show that (T , S) converges unconditionally for θ ∈ (0, 1). We show this

by showing T is nonexpansive for θ = 1, and appealing to the KM iteration theorem
[3, Proposition 5.16], which states that an averaged nonexpansive iteration converges
to a fixed point, if a fixed point exists.

Let θ = 1. Define M : R2d → R2d with

M(x1, x2) =

[
x1 + x2

x1 + x2

]
,

which is the linear operator corresponding to the matrix[
I I
I I

]
∈ R2d×2d.

Define U as

U(z) =

[
JA(z1)− z1

JB(z2 + x1)− z2

]
∈ R2d,

and we can write

T = −U +

[
JC
JC

]
◦M ◦U .

To clarify, ◦ here denotes the composition of operators from R2d to R2d. Define

N =

[
−I I
I −I

]
∈ R2d×2d.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 31

Then

‖T (y)− T (z)‖2

=‖U(y)−U(z)‖2 +

∥∥∥∥[JCJC
]
◦M ◦U(y)−

[
JC
JC

]
◦M ◦U(z)

∥∥∥∥2

− 2

〈
U(y)−U(z),

[
JC
JC

]
◦M ◦U(y)−

[
JC
JC

]
◦M ◦U(z)

〉
≤‖U(y)−U(z)‖2

+

〈
M ◦ (U(y)−U(z)),

[
JC
JC

]
◦M ◦U(y)−

[
JC
JC

]
◦M ◦U(z)

〉
− 2

〈
U(y)−U(z),

[
JC
JC

]
◦M ◦U(y)−

[
JC
JC

]
◦M ◦U(z)

〉
=‖U(y)−U(z)‖2

+ (U(y)−U(z))TN

([
JC
JC

]
◦M ◦U(y)−

[
JC
JC

]
◦M ◦U(z)

)
=‖U(y)−U(z)‖2.

The first line follows from simply plugging in the expression for T and expanding
the squares. The second line, the inequality, follows from firm nonexpansiveness of
JC . The third line follows from the reasoning

vT
[
I I
I I

]
u− 2vTu = vT

[
−I I
I −I

]
u = vTNu

for any v, u ∈ R2d. The last line follows from recognizing that the second term is 0
with the reasoning

[
a
b

]T
N

[
c
c

]
=

[
a
b

]T [−c+ c
c− c

]
= 0

32 Ernest K. Ryu

for any a, b, c ∈ Rd. Next we have

‖U(y)−U(z)‖2

=‖y − z‖2 +

∥∥∥∥[JA(y1)− JA(z1)
JB(y2 + JA(y1))− JB(z2 + JA(z1))

]∥∥∥∥2

− 2

〈
y − z,

[
JA(y1)− JA(z1)

JB(y2 + JA(y1))− JB(z2 + JA(z1))

]〉
=‖y − z‖2 − ‖JA(y1)− JA(z1)‖2 − ‖JB(y2 + JA(y1))− JB(z2 + JA(z1))‖2

− 2
(
〈y1 − z1, JA(y1)− JA(z1)〉 − ‖JA(y1)− JA(z1)‖2

)
− 2 〈y2 − z2, JB(y2 + JA(y1))− JB(z2 + JA(z1))〉
+ 2‖JB(y2 + JA(y1))− JB(z2 + JA(z1))‖2

≤‖y − z‖2 − ‖JA(y1)− JA(z1)‖2 − ‖JB(y2 + JA(y1))− JB(z2 + JA(z1))‖2

− 2 〈y2 − z2, JB(y2 + JA(y1))− JB(z2 + JA(z1))〉
+ 2 〈y2 + JA(y1)− z2 − JA(z1), JB(y2 + JA(y1))− JB(z2 + JA(z1))〉

=‖y − z‖2 − ‖JA(y1)− JA(z1)‖2 − ‖JB(y2 + JA(y1))− JB(z2 + JA(z1))‖2

+ 2 〈JA(y1)− JA(z1), JB(y2 + JA(y1))− JB(z2 + JA(z1))〉
=‖y − z‖2 − ‖JA(y1)− JA(z1) + JB(y2 + JA(y1))− JB(z2 + JA(z1))‖2

≤‖y − z‖2.

The first line follows from plugging in the definition ofU and expanding the squares.
The second line follows from separating the norm and inner product on R2d to sep-
arate norms and inner products on Rd. The third line, the inequality, follows from
applying the firm nonexpansiveness inequality twice, once for JA and once for JB .
The fourth line follows from combining the two inner products. The fifth line follows
from completing the square. The final inequality follows from droipping the negative
sum of square. ut

4.3 Numerical examples

Whether the splitting of Theorem 4 is fast or efficient is somewhat beside the point.
The purpose of Theorem 4 is to establish attainment of minimal lifting, and it says
nothing about the rate of convergence.

Nevertheless, we present some experiments with the splitting of Theorem 4 in
this section. These experiments are meant to be merely illustrative, and whether the
splitting of Theorem 4 has any advantage over existing methods such as PPXA and
whether the notion of minimal lifting translates to any practical performance advan-
tage is a question to be addressed in future work.

Signal denoising with outliers. Consider the problem

minimize
x∈Rd

‖xS − a‖1 + λ‖Ux− b‖1
subject to x ≥ 0,

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 33

where S ⊆ {1, 2, . . . , d}, a ∈ R|S|, b ∈ Rd, and U ∈ Rd×d is a unitary matrix rep-
resenting a wavelet transform. The statistical interpretation is that we noisily observe
x on a subset S of its indices, noisily observe x in the wavelet domain, and have a
priori knowledge that x is nonnegative. The `1-norm is used for robustness against
outliers. We reformulate this problem as

minimize
x∈Rd

‖xS − a‖1︸ ︷︷ ︸
=f(x)

+λ‖Ux− b‖1︸ ︷︷ ︸
=g(x)

+ δRd
+

(x)︸ ︷︷ ︸
=h(x)

and apply the splitting of Theorem 4, PPXA, and PDHG with A = ∂f , B = ∂g, and
C = ∂h. Because U is unitary, Jα∂g has a closed-form formula. For the experiments,
we used synthetic data with d = 220 and |S| ≈ d/5. The code for data generation
and optimization is provided on the author’s website for scientific reproducibility.

Figure 1 shows the results. The splitting of Theorem 4, which uses 2-fold lifting,
is competitive with PPXA and PDHG, which use 3-fold lifting. For all methods,
the parameters were roughly tuned for best performance. We do not plot distance to
solution, since solution does not seem to be unique.

0 2000 4000 6000 8000 10000

Iteration count

10-2

100

102

104

O
bj

ec
tiv

e
va

lu
e

su
bo

pt
im

al
ity

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (PDHG)

0 2000 4000 6000 8000 10000

Iteration count

10-12

10-10

10-8

10-6

10-4

10-2

|f(
xk+

1
)-

f(
xk)|

/f(
xk)

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (PDHG)

Fig. 1 Objective value and |f(xk+1)− f(xk)|/f(xk) vs. iterations for the denoising problem.

Portfolio optimization. Consider the Markowitz portfolio optimization [11] prob-
lem

minimize
x∈Rd

(1/2)
∑n
i=1(aTi x− b)2

subject to x ∈ ∆
µTx ≥ b,

where d is the number of assets, a1, . . . , an ∈ Rd are n realizations of the returns on
the assets, ∆ = {x ∈ Rd |x1, . . . , xd ≥ 0, x1+· · ·+xd = 1} is the standard simplex
for portfolios with no short positions, µ ∈ Rd is the (estimated) average return of the
assets, and b ∈ R is the desired expected return. We reformulate this problem as

minimize
x∈Rd

1

2

n∑
i=1

(aTi x− b)2

︸ ︷︷ ︸
=f(x)

+ δ∆(x)︸ ︷︷ ︸
=g(x)

+ δ{x |µT x≥b}(x)︸ ︷︷ ︸
=h(x)

34 Ernest K. Ryu

0 20 40 60 80 100

Run time in seconds

10-15

10-10

10-5

100

|O
bj

ec
tiv

e
va

lu
e

su
bo

pt
im

al
ity

| 2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (Bot-Hendrich)
DYS
Condat-Vu

0 20 40 60 80 100

Run time in seconds

10-15

10-10

10-5

100

|f(
xk+

1
)-

f(
xk)|

/f(
xk)

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (Bot-Hendrich)
DYS
Condat-Vu

0 20 40 60 80 100

Run time in seconds

10-15

10-10

10-5

D
is

ta
nc

e
to

 s
ol

ut
io

n

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (Bot-Hendrich)
DYS
Condat-Vu

Fig. 2 |Objective value suboptimality|, |f(xk+1)−f(xk)|/f(xk), and distance to solution vs. iterations
for the portfolio optimization problem. We take the absolute value in the first plot, because the slightly
infeasible iterates produce objective values lower than the optimal value. The rough cost per iteration is
0.025s for CV and DYS and 0.15s for the splitting of Theorem 4, PPXA, and Bot–Hendrich.

and apply the splitting of Theorem 4 and PPXA withA = ∇f ,B = ∂g, andC = ∂h.
We also run the method of Boţ and Hendrich [5, Algorithm 3.1], which has been
used to solve portfolio optimization problems [6]. To evaluate Jα∇f , we compute the
Cholesky factorization of (I + αATA) once and use the direct formula

Jα∇f (z) = (I + αATA)−1(z + αAT b1)

where

A =

a
T
1
...
aTn

 , 1 =

1
...
1

 .
Finally, we also run DYS [25] and Condat–Vũ [24,55], for which direct evaluations
of ∇f were used instead of Jα∇f . To compute the projection onto the simplex, we
use the algorithm and code of [17]. For the experiments, we used synthetic data with
n = 30000 and d = 10000, which make the data approximately 2GB in size. The
Cholesky factorization of I + αATA requires about 30 minutes to compute for this
problem size. The code for data generation and optimization is provided on the au-
thor’s website for scientific reproducibility.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 35

100 101 102 103

Iteration count

100

105

O
bj

ec
tiv

e
va

lu
e

su
bo

pt
im

al
ity

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (PDHG)

100 101 102 103

Iteration count

10-10

10-5

100

|(
f(

xk+
1
)-

f(
xk))

/f(
xk)|

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (PDHG)

100 101 102 103

Iteration count

10-4

10-2

100

102

D
is

ta
nc

e
to

 s
ol

ut
io

n

2-fold lifting (=1)
2-fold lifting (=0.5)
2-fold lifting (=0.25)
3-fold lifting (PPXA)
3-fold lifting (PDHG)

Fig. 3 Objective value, |(f(xk+1)− f(xk))/f(xk)|, and distance to solution vs. iterations for the Pois-
son denoising with 1D total variation problem.

Figure 2 shows the results. The splitting of Theorem 4, which uses 2-fold lift-
ing, is competitive with PPXA and Boţ–Hendrich, which use 3-fold lifting. However,
DYS and Condat–Vũ are faster than the splittings that only use resolvents. Run-time
measurements exclude the time it took to compute the Cholesky factorization, about
35.9s. An Intel Core i7-2600 CPU operating at 3.40GHz was used for the experi-
ments. For all methods, the parameters were roughly tuned for best performance.

Poisson denoising with 1D total variation Consider the problem

minimize
x∈Rd

λ
∑d
i=1 `(xi; yi) +

∑d−1
i=1 |xi+1 − xi|

where y ∈ Rd, λ > 0, and

`(x; y) =

−y
T log(x) + x for y > 0, x > 0

0 for y = 0, x ≥ 0
∞ otherwise.

The statistical interpretation is that we wish to recover a 1D signal with small total
variation corrupted by Poisson noise. The first term is the negative log-likelihood for
Poisson random variables [12,37,14,58] and the second term is the 1D total variation
penalty, also called fused lasso in the statistics literature [52,48,53]. 1D total variation

36 Ernest K. Ryu

denoising has been studied in [2,35,34,56,23]. For simplicity, assume d is odd. We
reformulate this problem as

minimize
x∈Rd

λ

d∑
i=1

`(xi; yi)︸ ︷︷ ︸
=f(x)

+
∑

i=1,3,...,d−2

|xi+1 − xi|︸ ︷︷ ︸
=g(x)

+
∑

i=2,4,...,d−1

|xi+1 − xi|︸ ︷︷ ︸
=h(x)

and apply the splitting of Theorem 4, PPXA, and PDHG with A = ∇f , B = ∂g, and
C = ∂h. We compute Jα∇f with

Jα∇f (z) =
1

2

(
z − αλ+

√
(z − αλ)2 + 4αλy

)
,

where the operations are elementwise. Although f is differentiable, its domain is not
closed and the gradient is not Lipschitz continuous. Therefore, splittings that use∇f
are not applicable, unless a line-search is implemented. For the experiments, we used
synthetic data with n = 3000, d = 1001, and λ = 1. The code for data generation
and optimization is provided on the author’s website for scientific reproducibility.

Figure 3 shows the results. The splitting of Theorem 4, which uses 2-fold lifting,
is competitive with PPXA and PDHG, which use 3-fold lifting. For all methods, the
parameters were roughly tuned for best performance.

5 Conclusion

This work establishes that DRS is the unique frugal, unconditionally convergent
resolvent-splitting without lifting for the 2 operator problem and that there is no
resolvent-splitting without lifting for the 3 operator problem. Furthermore, this work
presents a novel, frugal, unconditionally convergent resolvent-splitting for the 3 op-
erator problem that directly generalizes DRS. This splitting proves that 2-fold lifting
is the minimal lifting necessary for the 3 operator problem. In other words, the pre-
sented splitting is optimal in terms of frugality and lifting.

The potential for future work based on the ideas presented in this work is large.
Analyzing and establishing uniqueness or optimality of other splittings is one direc-
tion of future work. Characterizing all splittings of a given setup is another. In particu-
lar, there is no reason to believe the splitting of Theorem 4 is unique, so characterizing
all frugal, unconditionally convergent resolvent-splittings for the 3 operator problem
would be interesting.

Acknowledgements I would like to thank Wotao Yin for helpful comments and suggestions. I would
also like to thank the anonymous associate editor and referees whose comments improved the paper sig-
nificantly. In particular, the signal denoising numerical example was suggested by one of the anonymous
reviewers. This work is supported in part by NSF grant DMS-1720237 and ONR grant N000141712162.

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 37

References

1. Banert, S.: A relaxed forward-backward splitting algorithm for inclusions of sums of monotone oper-
ators. Master’s thesis, Technische Universität Chemnitz (2012)

2. Barbero, Á., Sra, S.: Fast Newton-type methods for total variation regularization. In: Proceedings
of the 28th International Conference on International Conference on Machine Learning (ICML), pp.
313–320 (2011)

3. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces,
2nd edn. Springer New York (2017)

4. Boţ, R., Wanka, G.: Farkas-type results with conjugate functions. SIAM J. Optim. 15(2), 540–554
(2005)

5. Boţ, R.I., Hendrich, C.: A Douglas–Rachford type primal-dual method for solving inclusions with
mixtures of composite and parallel-sum type monotone operators. SIAM J. Optim. 23(4), 2541–2565
(2013)

6. Boţ, R.I., Hendrich, C.: Convex risk minimization via proximal splitting methods. Optim. Lett. 9(5),
867–885 (2015)

7. Brezis, H., Lions, P.L.: Produits infinis de resolvantes. Isr. J. Math. 29(4), 329–345 (1978)
8. Briceño-Arias, L.M.: Forward-Douglas–Rachford splitting and forward-partial inverse method for

solving monotone inclusions. Optimization 64(5), 1239–1261 (2015)
9. Briceño-Arias, L.M., Combettes, P.L.: A monotone+skew splitting model for composite monotone

inclusions in duality. SIAM J. Optim. 21(4), 1230–1250 (2011)
10. Briceño-Arias, L.M., Davis, D.: Forward-backward-half forward algorithm with non self-adjoint lin-

ear operators for solving monotone inclusions. SIAM J. Optim. 28(4) (2018)
11. Brodie, J., Daubechies, I., De Mol, C., Giannone, D., Loris, I.: Sparse and stable Markowitz portfolios.

Proc. Natl. Acad. Sci. USA 106(30), 12267–12272 (2009)
12. Byrne, C.L.: Iterative image reconstruction algorithms based on cross-entropy minimization. IEEE

Trans.Image Process. 2(1), 96–103 (1993)
13. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications

to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)
14. Chaux, C., Pesquet, J., Pustelnik, N.: Nested iterative algorithms for convex constrained image recov-

ery problems. SIAM J. Imaging Sci. 2(2), 730–762 (2009)
15. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization

with applications to image restoration. Inverse Probl. 29(2), 025011 (2013)
16. Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for minimization of the sum of

three convex separable functions. Fixed Point Theory and Applications 54 (2016)
17. Chen, Y., Ye, X.: Projection onto a simplex. arXiv (2011)
18. Combettes, P.L., Condat, L., Pesquet, J.C., Vũ, B.C.: A forward-backward view of some primal-dual

optimization methods in image recovery. IEEE Int. Conf. Image Process. (2014)
19. Combettes, P.L., Eckstein, J.: Asynchronous block-iterative primal-dual decomposition methods for

monotone inclusions. Math. Program. 168(1), 645–672 (2018)
20. Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational in-

verse probl. Inverse Probl. 24(6), 065014 (2008)
21. Combettes, P.L., Pesquet, J.C.: Proximal splitting methods in signal processing. In: H. Bauschke,

R. Burachik, P. Combettes, V. Elser, D. Luke, H. Wolkowicz (eds.) Fixed-Point Algorithms for Inverse
Probl. in Science and Engineering, pp. 185–212. Springer (2011)

22. Combettes, P.L., Pesquet, J.C.: Primal-dual splitting algorithm for solving inclusions with mixtures
of composite, Lipschitzian, and parallel-sum type monotone operators. Set Valued Var. Anal. 20(2),
307–330 (2012)

23. Condat, L.: A direct algorithm for 1-d total variation denoising. IEEE Signal Process. Lett. 20(11),
1054–1057 (2013)

24. Condat, L.: A primal–dual splitting method for convex optimization involving Lipschitzian, prox-
imable and linear composite terms. J. Optim. Theory Appl. 158(2), 460–479 (2013)

25. Davis, D., Yin, W.: A three-operator splitting scheme and its optimization applications. Set Valued
Var. Anal. 25(4), 829–858 (2017)

26. Dinh, N., Goberna, M.A., López, M.A., Son, T.Q.: New Farkas-type constraint qualifications in con-
vex infinite programming. ESAIM: Control Optim. Calc. Var. 13(3), 580597 (2007)

27. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three
space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

38 Ernest K. Ryu

28. Drori, Y., Sabach, S., Teboulle, M.: A simple algorithm for a class of nonsmooth convex-concave
saddle-point problems. Oper. Res. Lett. 43(2), 209–214 (2015)

29. Eckstein, J.: A simplified form of block-iterative operator splitting and an asynchronous algorithm re-
sembling the multi-block alternating direction method of multipliers. J. Optim. Theory Appl. 173(1),
155–182 (2017)

30. Esser, E., Zhang, X., Chan, T.F.: A general framework for a class of first order primal-dual algorithms
for convex optimization in imaging science. SIAM J. Imaging Sci. 3(4), 1015–1046 (2010)

31. Farkas, J.: Theorie der einfachen ungleichungen. Journal für die reine und angewandte Mathematik
124, 1–27 (1902)

32. Johnstone, P.R., Eckstein, J.: Projective splitting with forward steps: Asynchronous and block-iterative
operator splitting. arXiv (2018)

33. Johnstone, P.R., Eckstein, J.: Convergence rates for projective splitting. SIAM J. Optim. (2019)
34. Kamilov, U., Bostan, E., Unser, M.: Generalized total variation denoising via augmented lagrangian

cycle spinning with haar wavelets. In: 2012 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pp. 909–912 (2012)

35. Karahanoglu, F.I., Bayram, İ., Ville, D.V.D.: A signal processing approach to generalized 1-d total
variation. IEEE Trans. Signal Process. 59(11), 5265–5274 (2011)

36. Latafat, P., Patrinos, P.: Asymmetric forward–backward–adjoint splitting for solving monotone inclu-
sions involving three operators. Comput. Optim. Appl. 68(1), 57–93 (2017)

37. Le, T., Chartrand, R., Asaki, T.J.: A variational approach to reconstructing images corrupted by Pois-
son noise. J. Math. Imaging Vis. 27(3), 257–263 (2007)

38. Lions, P.L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer.
Anal. 16(6), 964–979 (1979)

39. Loris, I., Verhoeven, C.: On a generalization of the iterative soft-thresholding algorithm for the case
of non-separable penalty. Inverse Probl. 27(12), 125007 (2011)

40. Malitsky, Y., Tam, M.K.: A forward-backward splitting method for monotone inclusions without co-
coercivity. arXiv (2018)

41. Martinet, B.: Régularisation d’inéquations variationnelles par approximations successives. Rev. Fr.
d’Inform. Rech. Oper. Sér. Rouge 4(3), 154–158 (1970)

42. Martinet, B.: Determination approchée d’un point fixe d’une application pseudo-contractante. C. R.
l’Acad. Sci. Sér. A 274, 163–165 (1972)

43. Passty, G.B.: Ergodic convergence to a zero of the sum of monotone operators in Hilbert space. J.
Math. Anal. Appl. 72(2), 383–390 (1979)

44. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equa-
tions. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

45. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: An algorithm for minimizing the mumford-shah
functional. IEEE Int. Conf. Comput. Vis. (2009)

46. Raguet, H.: A note on the forward-Douglas–Rachford splitting for monotone inclusion and convex
optimization. Optim. Lett. 13(4), 717–740 (2019)

47. Raguet, H., Fadili, J., Peyré, G.: A generalized forward-backward splitting. SIAM J. Imaging Sci.
6(3), 1199–1226 (2013)

48. Rapaport, F., Barillot, E., Vert, J.P.: Classification of arrayCGH data using fused SVM. Bioinformatics
24(13), i375–i382 (2008)

49. Rockafellar, R.T.: Monotone operators and the proximal point algorithm. SIAM J. Control Optim.
14(5), 877–898 (1976)

50. Ryu, E.K., Boyd, S.: Primer on monotone operator methods. Appl. Comput. Math. 15, 3–43 (2016)
51. Spingarn, J.E.: Applications of the method of partial inverses to convex programming: Decomposition.

Math. Program. 32(2), 199–223 (1985)
52. Tibshirani, R., Saunders, M., Rosset, S., Zhu, J., Knight, K.: Sparsity and smoothness via the fused

lasso. J. R. Stat. Soc. Ser. B. Stat. Methodol. 67(1), 91–108 (2005)
53. Tibshirani, R., Wang, P.: Spatial smoothing and hot spot detection for CGH data using the fused lasso.

Biostatistics 9(1), 18–29 (2008)
54. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM

J. Control Optim. 38(2), 431–446 (2000)
55. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.

Comput. Math. 38(3), 667–681 (2013)
56. Wahlberg, B., Boyd, S., Annergren, M., Wang, Y.: An ADMM algorithm for a class of total variation

regularized estimation problems. IFAC Proc. Vol. 45(16), 83–88 (2012)

Uniqueness and Impossibility of 2 and 3 Operator Resolvent-Splitting 39

57. Yan, M.: A new primal–dual algorithm for minimizing the sum of three functions with a linear oper-
ator. J. Sci. Comput. 76(3), 1698–1717 (2018)

58. Zanella, R., Boccacci, P., Zanni, L., Bertero, M.: Efficient gradient projection methods for edge-
preserving removal of Poisson noise. Inverse Probl. 25(4), 045010 (2009)

59. Zhu, M., Chan, T.: An efficient primal-dual hybrid gradient algorithm for total variation image restora-
tion. UCLA CAM Report 08-34 (2008)

	1 Introduction
	2 Uniqueness of DRS as the unique frugal, unconditionally convergent 2 operator resolvent-splitting without lifting
	3 Impossibility of 3 operator resolvent-splitting without lifting
	4 Attainment of 3 operator resolvent-splitting with minimal lifting
	5 Conclusion

