
ar
X

iv
:1

80
3.

08
20

0v
1

 [
m

at
h.

O
C

]
 2

2
M

ar
 2

01
8

Randomness and Permutations in Coordinate Descent

Methods

Mert Gürbüzbalaban∗, Asuman Ozdaglar†,

Nuri Denizcan Vanli‡ and Stephen J. Wright§

March 23, 2018

Abstract

We consider coordinate descent (CD) methods with exact line search on convex quadratic
problems. Our main focus is to study the performance of the CD method that use random
permutations in each epoch and compare it to the performance of the CD methods that use
deterministic orders and random sampling with replacement. We focus on a class of convex
quadratic problems with a diagonally dominant Hessian matrix, for which we show that using
random permutations instead of random with-replacement sampling improves the performance
of the CD method in the worst-case. Furthermore, we prove that as the Hessian matrix becomes
more diagonally dominant, the performance improvement attained by using random permuta-
tions increases. We also show that for this problem class, using any fixed deterministic order
yields a superior performance than using random permutations. We present detailed theoretical
analyses with respect to three different convergence criteria that are used in the literature and
support our theoretical results with numerical experiments.

1 Introduction

We consider coordinate descent (CD) methods for solving unconstrained optimization problems of
the form

min
x∈Rn

f(x), (1)

where f : Rn → R is smooth and convex. CD methods have a long history in optimization [5,13,18]
and have been used in many applications [10, 16, 20, 22, 24]. They have seen a resurgence of recent
interest because of their scalability and desirable empirical performance in machine learning and
large-scale data analysis [3, 26, 31].

CD methods are iterative algorithms that perform (approximate) global minimizations with
respect to a single coordinate (or several coordinates in the case of block CD) at each iteration.
Specifically, at iteration k, an index ik ∈ {1, 2, . . . , n} is chosen and the decision variable is updated
to approximately minimize the objective function in the ik-th coordinate direction (or at least to
produce a significant decrease in the objective) [2, 3]. The steps of this method are summarized
in Algorithm 1, where ei = [0, . . . , 0, 1, 0, . . . , 0]T is the i-th standard basis vector (with the i-th

∗Department of Management Science and Information Systems, Rutgers University, 100 Rockafellar Road, Piscat-
away, NJ 08854. mg1366@rutgers.edu.

†Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Mas-
sachusetts Avenue, Cambridge, Massachusetts 02139. asuman@mit.edu.

‡Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Mas-
sachusetts Avenue, Cambridge, Massachusetts 02139. denizcan@mit.edu.

§Department of Computer Sciences and Wisconsin Institute for Discovery, University of Wisconsin - Madison, 1210
West Dayton Street, Madison, WI 53706. swright@cs.wisc.edu.

1

http://arxiv.org/abs/1803.08200v1

entry equal to one). At each iteration k, ik-th coordinate of x is selected and a step is taken along
the negative gradient direction in this coordinate. The counter k = ℓn+ j keeps track of the total
number of iterations consisting of outer iterations indexed by ℓ and inner iterations indexed by the
counter j. Each outer iteration is called a “cycle” or an “epoch” of the algorithm.

Algorithm 1 Coordinate Descent (CD)

Choose initial point x0 ∈ R
n

for ℓ = 0, 1, 2, . . . do

for j = 0, 1, 2, . . . , n− 1 do

Set k = ℓn+ j
Choose index ik = i(ℓ, j) ∈ {1, 2, . . . , n}
Choose stepsize αk > 0
xk+1 ← xk − αk[∇f(xk)]ikeik , where [∇f(xk)]ik = eTik∇f(xk)

end for

end for

CD methods use various schemes, both deterministic and stochastic, for choosing the coordinate
ik to be updated at iteration k. Prominent schemes include the following.

• Cyclic CD (CCD): The index i(ℓ, j) is chosen in a cyclic fashion over the elements in the set
{1, 2, . . . , n} satisfying i(ℓ, j) = j + 1.

• Cyclic CD with a given order π (CCD-π): A permutation π of the set {1, 2, . . . , n} is selected.
Then, the index i(ℓ, j) is chosen as the (j + 1)-th element of π for every epoch ℓ. (CCD
corresponds to the special case of π = (1, 2, . . . , n).)

• Randomized CD (RCD): The index i(ℓ, j) is chosen randomly with replacement from the set
{1, 2, . . . , n} with uniform probabilities (each index has the same probability of being chosen).
This method is also known as the stochastic CD method.

• Random Permutations Cyclic CD (RPCD): At the beginning of each epoch ℓ, a permutation
of {1, 2, . . . , n} is chosen, denoted by πℓ, uniformly at random over all permutations. Then,
the index i(ℓ, j) is chosen as the (j +1)-th element of πℓ. Each permutation πℓ is independent
of the permutations used at all previous and later epochs. This approach amounts to sampling
indices from the set {1, 2, . . . , n} without replacement for each epoch.

While our focus in this paper will be on CD methods with the aforementioned selection rules, we
note that several other variants of CD methods have been studied in the literature, including the
Gauss-Southwell rule [17], in which ik is selected in a greedy fashion to maximize [∇f(xk)]i, and
versions of RCD [15], in which ik is selected from a non-uniform distribution that may depend on
the component-wise Lipschitz constants of f .

We are interested in the relative convergence behavior of these different variants of CD. While
there have been some recent works that study and compare performances of CCD and RCD (for
example, [1, 9, 15, 23, 27, 28, 30]); with the exception of a few recent papers (which focus on special
quadratic problems, see [12,32]), there is limited understanding of the effects of random permutations
in CD methods.

In this paper, we study convergence rate properties of RPCD for a special class of quadratic
optimization problems with a diagonally dominant Hessian matrix, and compare its performance to
that of RCD and CCD. Interest in RPCD is motivated by both empirical observations and practical
implementation: In many machine learning applications, RPCD is observed numerically to out-
perform its with-replacement sampling counterpart RCD [14, 21]. Moreover, without-replacement
sampling-based algorithms (such as RPCD and random reshuffling [4, 8]) are often easier to im-
plement efficiently than their with-replacement counterparts (such as RCD and stochastic gradient

2

descent) [12,21] as it requires sequential data access, in contrast to the random data access required
by with-replacement sampling (see e.g. [7, 25]).

We start by surveying briefly the existing results on the effects of random permutations for
CD methods [12, 19, 28, 32]. Among these, Oswald and Zhou [19] studies the effects of random
permutations on the convergence rate of the successive over-relaxation (SOR) method (that is used
to solve linear systems) and presents a convergence rate on the expected function value of the
iterates generated by the SOR method. The CD method, when applied to quadratic minimization
problems, is equivalent to the SOR method (applied to the linear system that represents the first-
order optimality condition of the quadratic problem) when the relaxation parameter is chosen as
ω = 1. Therefore, the convergence rate results in [19] readily extend for RPCD, when applied
to quadratic problems. Sun and Ye [28] construct a quadratic problem, for which CCD requires
O(n2) times more iterations compared to RCD in order to achieve an ǫ-optimal solution (that is, a
point xk that satisfies Ef(xk) − f(x∗) ≤ ǫ). For this problem, they also show that the distance of
the iterates (to the optimal solution) for CCD decays O(n2) times slower than the distance of the
expected iterates for RPCD and RCD. Lee and Wright [12] consider the same problem and present
that the expected function values of RPCD and RCD decay with similar rates, while the asymptotic
convergence rate of RPCD is shown to be slightly better than for RCD. In a following paper [32],
the results in [12] are generalized to a larger class of quadratic problems through a more elaborate
analysis.

Our main results provide convergence rate comparisons with respect to various criteria between
RPCD, RCD, and CCD for a class of strongly convex quadratic optimization problems with a
diagonally dominant Hessian matrix. In particular, we first provide an exact worst-case convergence
rate comparison between RPCD, RCD, and CCD in terms of the distance of the expected iterates to
the optimal solution, as a function of a parameter that represents the extent of diagonal dominance
of the Hessian matrix. Our results show that, on this problem, CCD is always faster than RPCD,
which in turn is always faster than RCD. Furthermore, we show that the relative convergence rate
of RPCD to RCD goes to infinity as the Hessian matrix becomes more diagonally dominant. On the
other extreme, as the Hessian matrix becomes less diagonally dominant, the ratio of convergence
rates converges to a value in [3/2, e−1), with the upper bound e−1 achieved in the limit as n→∞.
Our second set of results compares the convergence rates of RPCD and RCD with respect to two
other criteria that are widely used in the literature: the expected distance of the iterates to the
solution and the expected function values of the iterates. For these criteria, we show that RPCD is
faster than RCD in terms of the tightest upper bounds we obtain, and the amount of improvement
increases as the matrices become more diagonally dominant.

The organization of the paper is as follows. In Section 2, we discuss the CCD, RCD, and RPCD
algorithms in more detail and describe the three criteria that are used for analyzing convergence
throughout the paper. In Section 3, we survey known results on the convergence rate of RPCD.
We analyze the convergence rates of CCD, RCD, and RPCD with respect to the first convergence
criterion in Section 4.1 and the behavior of RCD and RPCD with respect to the second and third
convergence criteria in Section 4.2. We validate our theoretical results via numerical experiments in
Section 5 and present conclusions in Section 6.

2 Preliminaries

To study performance of different CD methods, we focus on the special case of problem (1) when f
is a strongly convex quadratic function:1

f(x) =
1

2
xTAx, (2)

1The results can be generalized for quadratic functions of the form f(x) = 1

2
xTAx− bT x; however, for simplicity

and compatibility with the earlier results in the literature, we consider the case b = 0.

3

where A is a positive definite matrix. We denote its extreme eigenvalues by

µ := λmin(A) > 0, L := λmax(A), (3)

and note that µ is the modulus of convexity for f , while L is the Lipschitz constant for ∇f . The
problem (1) has a unique solution x∗ = 0 with optimal value f(x∗) = 0.

In the remainder of this section, we derive explicit formulas for the iterates of different variants
of CD applied to (1) (in terms of matrix operators representing each epoch) and then introduce
different convergence criteria for these variants. We show how asymptotic convergence rates can be
characterized in terms of the spectral properties of A and the matrix operators for each epoch.

2.1 CD Methods

In this section, we describe the variants of the CD method (in particular, CCD, CCD-π, RCD, and
RPCD) when applied to the quadratic problem in (2). The CD method (cf. Algorithm 1) with exact
line search has the following update rule at each iteration

xk+1 = xk − 1

Aikik

(Axk)ikeik , (4)

where the update coordinate ik is determined according to one of the schemes mentioned above.
For the CCD algorithm, each coordinate is processed in a round-robin fashion using the standard

cyclic order (1, 2, . . . , n). Denoting by D the diagonal part of A and by −N the strictly lower
triangular part of A, that is,

A = D −N −NT ,

the evolution of the iterates over an epoch (of n consecutive iterations) can be written as

x
(ℓ+1)n
CCD = BCCD xℓn

CCD, with BCCD = (D −N)−1NT , (5)

where ℓ denotes the epoch counter. Note that the update rule in (5) is equivalent to one iteration
of the Gauss-Seidel method applied to the first-order optimality condition of (1), which is the linear
system Ax = 0 [31].

For the CCD-π algorithm, we let Pπ denote the permutation matrix corresponding to order π
and split the permuted Hessian matrix as follows:

Aπ = PT
π APπ = Dπ −Nπ −NT

π , (6)

where −Nπ is a strictly lower triangular matrix and Dπ is a diagonal matrix. Then, similar to (5),
we have

x
(ℓ+1)n
CCD-π = BCCD-π x

ℓn
CCD-π, with BCCD-π = (Dπ −Nπ)

−1NT
π . (7)

Note that BCCD and BCCD-π are not symmetric matrices as the first column of both matrices are
zero, whereas the first row contains nonzero entries.

For the RCD algorithm, the indices ik are chosen independently at random at each iteration
k. Denoting by xk

RCD the k-th iterate generated by RCD, the update rule for RCD over a single
iteration can be written as

xk+1
RCD = BRCD-k x

k
RCD, with BRCD-k = I − 1

Aikik

eike
T
ik
A. (8)

The expectation of BRCD-k with respect to the random variable ik is denoted as follows:

BRCD = EkBRCD-k, (9)

where we note that BRCD is a symmetric matrix, by symmetry of A and uniform distribution of ik.

4

For the RPCD algorithm, each coordinate is processed exactly once in each epoch according to a
uniformly and independently chosen order. Recalling that πℓ denotes the permutation of coordinates
used in epoch ℓ and using the iteration matrix corresponding to CCD-πℓ (see (7)), epoch ℓ of RPCD
can be written as

x
(ℓ+1)n
RPCD = BRPCD-ℓ x

ℓn
RPCD, with BRPCD-ℓ = Pπℓ

BCCD-πℓ
PT
πℓ
. (10)

We introduce the following notation for the expected value of BRPCD-ℓ with respect to permutation
πℓ:

BRPCD = EℓBRPCD-ℓ, (11)

where we note that BRPCD is a symmetric matrix since πℓ is chosen uniformly at random over all
permutations (see Lemma 4.1).

2.2 Convergence Rate Criteria

We next discuss how to measure and compare the convergence rates of different variants of CD.
Three different improvement sequences have been used to measure the performance of CD methods
in the literature:

(i) I1(xk
CD) =

∣∣∣∣Exk
CD − x∗

∣∣∣∣ , (Distance of expected iterates)

(ii) I2(xk
CD) = E

∣∣∣∣xk
CD − x∗

∣∣∣∣2 , (Expected distance of iterates)

(iii) I3(xk
CD) = Ef(xk

CD)− f(x∗). (Expected function value)

(see e.g. [1, 9, 15, 22, 27, 28, 31]). While these three measures can be related to each other (Jensen’s
inequality yields I21 ≤ I2 and strong convexity enables lower and upper bounding I3 between
constant positive multiples of I2), we will provide different analyses for each of the measures to
obtain the tightest estimates.

In the above definitions, expectations can be removed for deterministic algorithms such as CCD.
By Jensen’s inequality, we have that I21 (xk

CD) ≤ I2(xk
CD) for all k. For a strongly convex function

f , I3 can be lower and upper bounded between constant positive multiples of I2.
To study convergence rate of CCD, RCD, and RPCD with respect to improvement sequence I1,

we use the operators derived in the previous section that represent one iterate or one epoch. For
CCD and RPCD, we have from (5) and (10) together with (11) that

Eℓx
(ℓ+1)n
CD = BCD xℓn

CD,

where Eℓ denotes the expectation with respect to the random variables in epoch ℓ given xℓn
CD. (We

have BCD = BCCD for CCD and BCD = BRPCD for RPCD.) Note that the random variables in
each epoch are independent and identically distributed across different epochs for RCD and RPCD.
Therefore, by using the law of iterated expectations, we obtain

Ex
(ℓ+1)n
CD = Bℓ

CD x0,

where E here denotes the expectation with respect to all random variables arising in the algorithm.
Hence, the worst-case convergence rate with respect to I1 can be expressed as

sup
x0∈Rn

(∣∣∣∣Exℓn
CD

∣∣∣∣
||x0||

)1/ℓ

= sup
x0∈Rn

(∣∣∣∣Bℓ
CD x0

∣∣∣∣
||x0||

)1/ℓ

=
∣∣∣∣Bℓ

CD

∣∣∣∣1/ℓ . (12)

When BCD is a symmetric matrix (as in RPCD), we have
∣∣∣∣Bℓ

CD

∣∣∣∣1/ℓ = ρ(BCD). Hence, (12) yields
a per-epoch worst-case convergence rate of ρ(BRPCD) for RPCD. When BCD is asymmetric (which

is the case for CCD), we have by Gelfand’s formula limℓ→∞

∣∣∣∣Bℓ
CD

∣∣∣∣1/ℓ = ρ(BCD). Thus, ρ(BCCD)
represents an asymptotic worst-case convergence rate measure for CCD.

5

For RCD, a similar derivation involving a single iteration (rather than one epoch) yields from
(8) and (9) that

Ekx
k+1
RCD = BRCD xk

CCD.

Similar reasoning to the above yields a per-iteration worst-case convergence rate of ρ(BRCD), or
equivalently a per-epoch rate of ρ(BRCD)

n, for RCD. (Note that, because BRCD is symmetric, we
have ρ(BRCD) = ||BRCD||.)

In our analysis of convergence rate of RCD with respect to improvement sequence I2, it follows
from (8) that

E
∣∣∣∣xk+1

RCD

∣∣∣∣2 = (xk
RCD)

T
E
[
(BRCD-k)

TBRCD-k
]
xk
RCD

≤
∣∣∣∣E
[
(BRCD-k)

TBRCD-k
]∣∣∣∣ ∣∣∣∣xk

RCD

∣∣∣∣2 .

For RPCD, we have similarly from (10) that

E

∣∣∣
∣∣∣x(ℓ+1)n

RPCD

∣∣∣
∣∣∣
2

= (xℓn
RPCD)

T
E
[
(BRPCD-ℓ)

TBRPCD-ℓ
]
xℓn
RPCD

≤
∣∣∣∣E
[
(BRPCD-ℓ)

TBRPCD-ℓ
]∣∣∣∣ ∣∣∣∣xℓn

RPCD

∣∣∣∣2 .

The matrices E
[
(BRCD-k)

TBRCD-k
]
and E

[
(BRPCD-ℓ)

TBRPCD-ℓ
]
are both symmetric. Convergence

rates be obtained from ρ
(
E
[
(BRCD-k)

TBRCD-k
])

and ρ
(
E
[
(BRPCD-ℓ)

TBRPCD-ℓ
])

(or equivalently
from the norms of these matrices), the first being a per-iteration convergence rate for RCD under
criterion I2, and the second being a per-epoch rate for RPCD under the same criterion. Results
along these lines appear in Section 4.2.

Finally, in our analysis of convergence rate of RCD with respect to I3, iteration (8) yields

Ef(xk+1
RCD) = (xk

RCD)
T
Ek

[
(BRCD-k)

TABRCD-k
]
xk
RCD

= (A1/2xk
RCD)

T
Ek

[
A−1/2(BRCD-k)

TABRCD-kA
−1/2

]
A1/2xk

RCD

≤
∣∣∣
∣∣∣Ek

[
A−1/2(BRCD-k)

TABRCD-kA
−1/2

]∣∣∣
∣∣∣
∣∣∣
∣∣∣A1/2xk

RCD

∣∣∣
∣∣∣
2

.

A similar analysis applied to the RPCD update formula (10) yields

Ef(x
(ℓ+1)n
RPCD) ≤

∣∣∣
∣∣∣Eℓ

[
A−1/2(BRPCD-ℓ)

TABRPCD-ℓA
−1/2

]∣∣∣
∣∣∣
∣∣∣
∣∣∣A1/2xℓn

RPCD

∣∣∣
∣∣∣
2

.

We will show that the matrices in these two bounds are symmetric. Thus, our convergence rate
characterizations for RCD and RPCD with respect to I3 (see Section 4.2) will involve the norms
(equivalently, the spectral radii) of these two matrices.

Remark 2.1. Note that for improvement sequence I1, the asymptotic worst-case convergence rate
of the algorithm can be simply computed as the spectral radius of the expected iteration matrix.
Furthermore, this bound is tight in the sense that there can be no smaller contraction rate c1, for
which an inequality of the type I1(xℓn

CD
) ≤ cℓ1 I1(x0) asymptotically holds for all x0 ∈ R

n. Therefore,
in Section 4.1, we compare the worst-case convergence rates of CCD, RCD and RPCD with respect
to I1 through a tight analysis (in Proposition 4.4). We analyze the ratio of the convergence rates
of RCD and RPCD in Proposition 4.3. On the other hand, for improvement sequences I2 and
I3, we consider per-iteration and per-epoch upper bounds that are not necessarily asymptotically
tight. Using a similar argument to (12), we can formulate the worst-case contraction factors for
I2 and I3, but they would involve computation of powers of matrices (e.g., E

[
(Bℓ

CD-k)
TBℓ

CD-k
]
and

E
[
A−1/2(Bℓ

CD-k)
TABℓ

CD-kA
−1/2

]
), which does not admit a closed form characterization. Hence,

in Section 4.2, we compare the convergence rates of RCD and RPCD based on per-iteration and
per-epoch improvement rates, as has been done previously in the literature [12,28,32].

6

3 Prior work on CD methods with random permutations

In this section, we survey the known results on the performance of RPCD. There are several recent
works that study the effects of random permutations in the convergence behavior of CD methods
[12,19,28,32]. To unify the randomization parameters (in RCD and RPCD) and the component-wise
Lipschitz constants in different papers, we (without loss of generality) make the following assumption
throughout the rest of the paper

Aii = 1, for all i ∈ {1, 2, . . . , n}. (13)

This can always be satisfied by scaling the optimization variable, i.e., by setting x = D−1/2x̃ in (2)
and minimizing over x̃ ∈ R

n (see e.g. [9, 32]).
Recently, Oswald and Zhou [19] analyzed the effects of random permutations for the successive

over-relaxation (SOR) method, which is equivalent to the CD method with exact line search for
a particular choice of algorithm parameter. They consider quadratic problems whose Hessian ma-
trix is positive semidefinite and present convergence guarantees for SOR iterations with random
permutations, which implies the following guarantee on the performance of RPCD.

Theorem 3.1. [19, Theorem 4] Let f be a quadratic function of the form (2), where the Hessian
matrix A has unit diagonals. Then, for any solution x∗, the RPCD algorithm enjoys the following
guarantee

Ef(xℓn
RPCD)− f(x∗) ≤

(
1− µ

(1 + L)2

)ℓ (
f(x0)− f(x∗)

)
. (14)

Theorem 3.1 provides a convergence rate guarantee on the performance of RPCD for general
quadratic functions. Under the same assumptions in Theorem 3.1, the best known upper bound on
the performance of RCD is given by [15, Theorem 5]:

E

[
1

2

∣∣∣∣xk
RCD − x∗

∣∣∣∣2 + f(xk
RCD)− f(x∗)

]
≤
(
1− 2µ

n(1 + µ)

)k (
1

2

∣∣∣∣x0 − x∗
∣∣∣∣2 + f(x0)− f(x∗)

)
.

(15)
This shows that the the upper bound on the performance of RCD per-epoch is approximately(
1− 2µ

n(1+µ)

)n
≈ 1 − 2µ

1+µ , whereas it follows from (14) that the upper bound on the performance

of RPCD can be as large as 1 − µ
(1+n)2 since L ≤ tr (A) = n. These bounds suggest that RPCD

may require O(n2) times more iterations than RCD to guarantee an ǫ-optimal solution. However,
empirical results show that RPCD often outperforms RCD in machine learning applications [6, 21].
Furthermore, it has been conjectured that the expected performance of RPCD should be no worse
than the expected performance of RCD [21] (see also [11, 33] for related work on this conjecture).
This motivates to derive tight bounds for the convergence rate of RPCD and compare them with
the known bounds on the convergence rate of RCD.

A similar phenomenon has been observed for CCD in comparison to RCD. In particular, the
tightest known convergence rate results on the performance of CCD (see [1, 27, 28]) suggest that

CCD may require Õ(n2) times more iterations than RCD to guarantee an ǫ-optimal solution. To
understand this gap in the convergence rate bounds, Sun and Ye [28] focused on the quadratic
problem in (2) with the following permutation invariant2 Hessian matrix

A = δI + (1− δ)11T , where δ ∈ (0, n/(n− 1)). (16)

In particular, the authors considered a worst-case initialization and the case when δ is close to 0, for
which L = O(n).3 For this problem, they showed that CCD with the worst-case initialization indeed

2A is a permutation invariant matrix if PAPT = A, for any permutation matrix P .
3Since A has two eigenvalues: δ+n(1− δ) with multiplicity 1 and δ with multiplicity n− 1, the Lipschitz constant

becomes L = δ + n(1− δ), for δ ≤ 1; and as δ → 0, L → n.

7

requires O(n2) times more iterations than RCD to return an ǫ-optimal solution. They also provided
rate comparisons between RPCD and CCD without providing a comparison between RPCD and
RCD, which is presented in the following theorem.

Theorem 3.2. [28, Proposition 3.4] Let KCCD(ǫ), KRCD(ǫ) and KRPCD(ǫ) be the minimum number
of epochs for CCD, RCD and RPCD (respectively) to achieve (expected) relative error

‖E(xk
CD

)− x∗‖
‖x0 − x∗‖ ≤ ǫ,

for initial point x0 ∈ R
n (for CCD, the expectation operator can be ignored). There exists a quadratic

problem, whose Hessian matrix A satisfies (16) for some δ around zero, such that

KCCD(ǫ)

KRCD(ǫ)
≥ n2

2π2
≈ n2

20
, (17a)

KCCD(ǫ)

KRPCD(ǫ)
≥ n(n+ 1)

2π2
≈ n(n+ 2)

20
. (17b)

Theorem 3.2 shows that the worst-case performance (in improvement sequence I1) of RPCD and
RCD is O(n2) times faster than that of CCD. In a follow-up work, Lee and Wright [12] considered the
same problem as [28] (see (16)) for the small δ case and presented asymptotic and non-asymptotic
analyses of RPCD with respect to improvement sequence I3, presented in the following theorem.

Theorem 3.3. [12, Theorem 3.3] Consider the quadratic problem (2) with the Hessian matrix A
given by (16), where δ ∈ (0, 0.4) and n ≥ 10. For any x0 ∈ R

n, RPCD has the following non-
asymptotic convergence guarantee

Ef(xℓn
RPCD)− f(x∗) ≤ (1− 2δ + 4δ2)ℓR0, (18)

where R0 is a constant depending on x0 and δ. Furthermore, RPCD iterates enjoy an asymptotic
convergence rate of

lim
ℓ→∞

(
Ef(xℓn

RPCD)− f(x∗)
)1/ℓ

= 1− 2δ − 2δ

n
+ 2δ2 +O

(
δ2

n

)
+O(δ3). (19)

Theorem 3.3 shows that for the particular class of quadratic problems whose Hessian matrix
satisfies (16), the convergence rate (in improvement sequence I3) of RPCD is faster than that of
RCD in (15) in terms of the best known upper bounds. This is the first theoretical evidence that
supports the empirical results showing RPCD often outperforms RCD [21]. In a follow-up work [32],
Lee and Wright generalize the results of Theorem 3.3 to quadratic problems, whose Hessian matrix
satisfies

A = δI + (1 − δ)uuT , where δ ∈ (0, n/(n− 1)), (20)

where u ∈ R
n is a vector with elements of size O(1) (this generalizes (16) that corresponds to

u = 1). The conclusions are similar to [12], but the analysis is different because A is no longer a
permutation-invariant matrix.

4 Performance of RPCD vs RCD on a class of diagonally

dominant matrices

As described in the previous section, the existing works [12, 28] analyze the performance of RPCD
for quadratic problems, whose Hessian satisfies (16) for small δ. Here, we consider the other extreme,
i.e., the δ > 1 case, and provide tight convergence rate comparisons between RPCD, RCD and CCD
with respect to all there improvement sequences defined in Section 2.2. In deriving convergence

8

rate guarantees, we do not resort to the tools that are used in the earlier works on RPCD [12,
28, 32]. Instead, we present a novel analysis based on Perron-Frobenius theory that enables us to
compute convergence rate bounds for all three criteria. For notational simplicity, we introduce the
reformulation α = δ − 1, which yields

A = (1 + α)I − α11T , where α ∈ (0, 1/(n− 1)). (21)

It is simple to check that A has one eigenvalue at 1− (n− 1)α with the corresponding eigenvector 1
and other n− 1 eigenvalues equal to 1 + α. In particular, as α goes to zero, the condition number
of A gets smaller and in the limit A is the identity matrix. On the other hand, as α → 1

n−1 , the
matrix gets ill-conditioned. Therefore, the parameter

t := max
i

∑
j 6=i Aij

Aii
= α(n− 1) ∈ (0, 1) (22)

is a measure of diagonal dominance. In the remainder of this section, we analyze the performance
of RPCD, RCD and CCD in improvement sequence I1 and the performance of RPCD and RCD in
improvement sequences I2 and I3 with respect to this diagonal dominance measure.

4.1 Convergence rates of RPCD, RCD and CCD in improvement se-

quence I1
In this section, we compare convergence rates of RPCD, RCD and CCD, where improvement se-
quence I1(xk) =

∣∣∣∣Exk − x∗
∣∣∣∣ is chosen as the convergence criterion (as in Theorem 3.2). As we

highlighted in Section 2.2, we first compute the expected iteration matrices of the RPCD and RCD
algorithms, and show that they are symmetric. Then, we compute their spectral radii to conclude
the per-epoch worst-case convergence rate of RPCD and RCD, and analyze their ratio in Proposition
4.3. We also show that the asymptotic worst-case convergence rate of CCD is faster than that of
RPCD and RCD in Proposition 4.4.

We begin our discussion by writing the expected RPCD iterates (see (10) and (11)) as follows

Eℓx
(ℓ+1)n
RPCD = BRPCD xℓn

RPCD. (23)

Note that since the Hessian matrix A is permutation invariant, the iteration matrix of the CCD-π
algorithm for any cyclic order π is equal to the iteration matrix of the standart CCD algorithm, i.e.,
BCCD = BCCD-π for all orders π. Therefore, we have BRPCD = Eπ [PπBCCDP

T
π] = EP [PBCCDP

T],
where we drop the subscript π from the matrices for notational simplicity. In order to obtain a
formula for BRPCD, we first reformulate the CCD iteration matrix in (5) as follows

BCCD = (I −N)−1NT = I − (I −N)−1(I −N −NT) = I − Γ−1A,

where Γ = I −N . Using this reformulation, the expected iteration matrix of RPCD can computed
as follows

BRPCD = EP

[
PBCCDP

T
]
= EP

[
P (I − Γ−1A)PT

]
= I − EP

[
PΓ−1PT

]
A,

where we used the fact that PPT = I and APT = PTA. For the case the Hessian matrix A satisfies
(21), Γ−1 can be explicitly computed as

Γ−1 = toeplitz(c, r), (24)

where toeplitz(c, r) denotes the Toeplitz matrix with the first column c and the first row r, which
are given by

c =
[
1, α, α(1 + α), α(1 + α)2, . . . , α(1 + α)n−2

]T
, r = [1, 0, 0, . . . , 0].

In order to compute EP

[
PΓ−1PT

]
, we use the following lemma, which states that expectation over

all permutations separately averages the diagonal and off-diagonal entries of the permuted matrix.

9

Lemma 4.1. [12, Lemma 3.1] Given any matrix Q ∈ R
n×n and permutation matrix P selected

uniformly at random from the set of all permutations, we have

EP [PQPT] = τ1I + τ211
T ,

where

τ2 =
1TQ1− trace(Q)

n(n− 1)
and τ1 =

trace(Q)

n
− τ2. (25)

Letting Q = Γ−1 in Lemma 4.1, we observe that the matrix EP [PΓ−1PT] has diagonals equal to
one and all the off-diagonal entries equal to each other:

EP [PΓ−1PT] = (1− γ)I + γ11T , (26)

where γ can be found as the average of the off-diagonal entries of Γ−1. The following lemma (whose
proof is given in Appendix A) provides an explicit expression for γ.

Lemma 4.2. For any α ∈ (0, 1/(n− 1)), we have

γ =
(1 + α)n − αn− 1

αn(n− 1)
,

where γ denotes the off-diagonal entries of EP [PΓ−1PT] in (26).

Using Lemma 4.2, it follows from the definition of A in (21) and equation (26) that

BRPCD = I − EP [PΓ−1PT]A = ((n− 1)γ − β)I + β11T ,

where
β = α− γ + αγ(n− 2).

Since BRPCD is a symmetric matrix, then by (12), it suffices to compute the spectral radius of
BRPCD to obtain the worst-case performance of RPCD with respect to improvement sequence I1.
To this end, we note that for any α ∈ (0, 1/(n− 1)), BRPCD > 0 since BRPCD = EP [PBCCDP

T] and
BCCD ≥ 0 with at least one strictly positive entry in both the diagonal and off-diagonal parts (see
also (47) for an explicit formula of BCCD). Then, by the Perron-Frobenius Theorem [29, Lemma
2.8], we have

ρ(BRPCD) =

n∑

j=1

[BRPCD]ij , for all i ∈ [n]

= (n− 1)(γα+ β)

= (n− 1)(α− γ + αγ(n− 1))

= 1− [(1− α(n− 1)) (1 + γ(n− 1))] .

Substituting the formula for γ from Lemma 4.2 above, we obtain the spectral radius of the RPCD
iteration matrix as follows

ρ(BRPCD) = 1− (1− α(n− 1))
(1 + α)n − 1

αn
= 1− 1− t

n




(
1 + t

n−1

)n
− 1

t
n−1


 , (27)

where t = α(n− 1) denotes the diagonal dominance factor (as defined in (22)).
For the RCD algorithm, on the other hand, we have (by (8) and (9)) the following expected

iterates

Ekx
k+1
RCD = BRCD xk

RCD, where BRCD = I − 1

n
A.

10

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6
n=2
n=10
n=100

0 0.2 0.4 0.6 0.8 1
1

2

3

4

5

6
n=2
n=10
n=100

Figure 1: Plot of s(t, n) and s̃(t, n) versus t ∈ (0, 1) for different values of n.

Since A is a symmetric matrix, then by (12), the per-epoch worst-case asymptotic rate of RCD with
respect to improvement sequence I1 can be found as

ρ(BRCD)
n =

(
1− 1

n
λmin(A)

)n

=

(
1− 1− t

n

)n

.

In Proposition 4.3, we compare the performance of RPCD and RCD with respect to improvement
sequence I1. To this end, we define

s(t, n) =
− log ρ(BRPCD)

− log ρ(BRCD)n
, (28)

(where log denotes the natural logarithm), which is equal to the ratio between the number of epochs
required to guarantee

∣∣∣∣Exℓn − x∗
∣∣∣∣ ≤ ǫ for RCD and RPCD algorithms. In particular s(t, n) > 1

implies RPCD has a faster worst-case convergence rate than RCD. In the following theorem, we show
that RPCD is faster than RCD for any t ∈ (0, 1) and n ≥ 2, and quantify the rate of improvement.

Proposition 4.3. The following statements are true:

(i) The function s(t, n) is strictly decreasing in t over (0, 1).

(ii) limt→0 s(t, n) =∞.

(iii) Let g(n) := limt→1 s(t, n). We have g(n) ∈ [3/2, e− 1), for any n ≥ 2. Furthermore, g(n) is
strictly increasing in n ≥ 2 satisfying

g(2) = 3/2 and lim
n→∞

g(n) = e− 1.

A consequence of Proposition 4.3 is that RPCD is faster than RCD in the worst-case, for every
t ∈ (0, 1) by a factor s(t, n) > 1. Furthermore, the amount of acceleration s(t, n) goes to infinity as
α→ 0 for any n fixed. This shows that as the matrix A becomes more and more well-conditioned (as
α→ 0), the amount of speed-up s(t, n) we obtain with RPCD with respect to RCD goes to infinity.
This is consistent with the observation that cyclic orders work well for diagonal-like matrices that
are well-conditioned (see e.g. [29]). Proposition 4.3 is illustrated in Figure 1 (left panel), where we
plot the parameter s(t, n) as a function of t for different values of n.

We next compare the convergence rate of CCD with respect to RPCD and RCD. To this end,
as we discuss in Section 2.2 (cf. (12)), we use ρ(BCCD) as the asymptotic per epoch worst-case
convergence rate of CCD, whereas for comparison to RCD, we use a per-epoch rate of ρ(BRCD)

n.

11

0 10 20 30 40 50
10-2

100

102

104

Actual
Theory

0 10 20 30 40 50
10-4

10-2

100

102

Actual
Theory

Figure 2: Tightness of the bounds in Proposition 4.5 when n = 1000 and α = 0.9
n−1 : Left figure for

(31) and right figure for (32).

Note that as discussed in (23), BCCD = BCCD-π for all π, and hence ρ(BCCD) = ρ(BCCD-π) for all π.
Although, explicit calculation of ρ(BCCD) appears to be challenging, we prove that the known upper
bounds [9, Theorem 4.12] on ρ(BCCD) is tighter than ρ(BRPCD), which together with Proposition
4.3 imply the following result.

Proposition 4.4. Let f be a quadratic function of the form (2), whose Hessian matrix given by
(21). Then, the expected iteration matrices of CCD, RPCD and RCD satisfy

ρ(BCCD) < ρ(BRPCD) < ρ(BRCD)
n, (29)

for any α ∈ (0, 1/(n− 1)) and n ≥ 2.

4.2 Convergence rates of RPCD and RCD in improvement sequences I2
& I3

In this section, we compare the rate of RPCD and RCD with respect to improvement sequences I2
and I3. When the Hessian matrix A satisfies (21), the smallest eigenvalue of A can be found as
follows

µ = 1− t = 1− α(n− 1). (30)

Plugging this value in the convergence guarantee of RCD in (15), we can obtain a convergence
guarantee on both improvement sequences I2 and I3 as the left hand-side of (15) upper bounds
both 2I2 and I3. However, for the particular problem class we consider in this paper, we derive
a tighter convergence rate guarantee for RCD in the next proposition, whose proof is deferred to
Appendix D.

Proposition 4.5. Let f be a quadratic function of the form (2), whose Hessian matrix given by
(21). Then, RCD iterations satisfy

E‖xk
RCD − x∗‖2 ≤

(
1− 2µ

n
+

µ2

n

)k

‖x0 − x∗‖2, (31)

and

E
(
f(xk

RCD)− f(x∗)
)
≤
(
1− µ

n

)k (
f(x0)− f(x∗)

)
. (32)

12

0 10 20 30 40 50
10-5

100

105

Actual
Theory

0 10 20 30 40 50
10-6

10-4

10-2

100

102

Actual
Theory

Figure 3: Tightness of the bounds in Proposition 4.7 when n = 1000 and α = 0.9
n−1 : Left figure for

(33) and right figure for (34).

Remark 4.6. We observe that the upper bound in (31) is smaller (tighter) than the upper bound in
(15) for any α ∈ (0, 1/(n− 1)) because

1− 2µ

n
+

µ2

n
< 1− 2µ

n
+

2µ2

n
= 1− 2µ(1− µ)

n
= 1− 2µ(1− µ2)

n(1 + µ)
< 1− 2µ

n(1 + µ)
,

where the inequalities are due to the fact that µ = 1− α(n− 1) ∈ (0, 1).

We next analyze the performance of RPCD in the following proposition and show that the
convergence rate guarantee of RPCD is tighter than the convergence rate guarantee of RCD in
Proposition 4.5. The proof of Proposition 4.7 is given in Appendix E.

Proposition 4.7. Let f be a quadratic function of the form (2), whose Hessian matrix given by
(21). Then, RPCD iterations satisfy

E‖xℓn
RPCD − x∗‖2 ≤

(
1− 2µ

n

(
(1 + α)n − 1

α

)
+

µ2

n

(
(1 + α)2n − 1

α(α + 2)

))ℓ

‖x0 − x∗‖2, (33)

and

Ef(xℓn
RPCD)− f(x∗) ≤

(
1− µ

n

(
(1 + α)2n − 1

α(α + 2)

))ℓ (
f(x0)− f(x∗)

)
. (34)

We next compare the convergence rates we derive for the RCD and RPCD algorithms. In
particular, we consider the convergence rate of both algorithms in improvement sequence I2 since
we obtain tighter upper bounds for it. Comparing the convergence rate bounds for RCD and RPCD
in (31) and (33), respectively, we can observe that RPCD is faster (in terms of the best known rate
guarantees) than RCD by a factor of

s̃(t, n) :=
− log

(
1− 2µ

n

(
(1+α)n−1

α

)
+ µ2

n

(
(1+α)2n−1
α(α+2)

))

−n log
(
1− 2µ

n + µ2

n

) ,

which is plotted in Figure 1 (right panel) in the interval t ∈ (0, 1) for different values of n. We
observe from this figure that the convergence rate bound for RPCD is better than than the one for
RCD for all t ∈ (0, 1) and n ≥ 2. Furthermore, the difference in convergence rate bounds increases
as t gets smaller, i.e., as the Hessian matrix becomes more diagonally dominant. We can also show
that s̃(t, n) behaves similar to s(t, n) as t→ 1, where the limiting values can be found in Proposition
4.3.

13

0 50 100

10-200

100

CCD
RPCD
RCD

0 50 100
10-100

100

CCD
RPCD
RCD

0 50 100
10-1

100

CCD
RPCD
RCD

0 50 100

10-200

100

CCD
RPCD
RCD

0 50 100
10-100

100

CCD
RPCD
RCD

0 50 100
100

101

CCD
RPCD
RCD

Figure 4: CCD vs RPCD vs RCD with worst-case initialization for n = 1000 (top row) and n = 10000
(bottom row): α = 0.01

n−1 in the left column, α = 0.50
n−1 in the middle column, and α = 0.99

n−1 in the
right column.

0 50 100

10-200

100

CCD
RPCD
RCD

0 50 100

10-100

100

CCD
RPCD
RCD

0 50 100

100

CCD
RPCD
RCD

Figure 5: CCD vs RPCD vs RCD with random initialization for n = 1000: α = 0.01
n−1 (left figure),

α = 0.50
n−1 (middle figure), and α = 0.99

n−1 (right figure).

5 Numerical Experiments

Here we compare the performance of CCD, RPCD, and RCD for the quadratic problem (2) with
Hessian matrix (21). In Figure 4, we use a worst-case initialization x0 = 1, for n ∈ {1000, 10000} and
α ∈

{
0.01
n−1 ,

0.50
n−1 ,

0.99
n−1

}
. We observe that CCD is the faster than RPCD, which is faster than RCD.

This behavior is in accordance with the theoretical results in Propositions 4.4-4.7. Furthermore, as
α decreases, we can see that the ratio between the convergence rates of RPCD and RCD increases,
consistent with Proposition 4.3 (see also Figure 1). We can also observe from the right column
in Figure 4 that when α is close to 1/(n − 1), the ratio between the convergence rates of RPCD
and RCD is close to the theoretical limits obtained in Proposition 4.3 (see part (iii), which shows
that the ratio is in the interval [3/2, e − 1)). Figure 5 plots similar results to Figure 4, but for a
random initialization rather than worst-case initialization. Convergence rates depicted in Figure 5
are similar to those of Figure 4, due to the fact that xℓn becomes colinear with the vector of ones as
ℓ increases (as 1 is the leading eigenvector of the expected iteration matrix), so that the worst-case
convergence rate dictates the performance of the algorithms.

14

6 Conclusion

In this paper, we surveyed the known results on the performance of RPCD for special cases of strongly
convex quadratic objectives and add to these results by presenting a class of convex quadratic
problems with diagonally dominant Hessians. Using the distance of the expected iterates to the
optimal solution as the convergence criterion, we compared the ratio between the performances of
RPCD and RCD with respect to a parameter that represents the extent of diagonal dominance. We
illustrated that as the Hessian matrix becomes more diagonally dominant, this ratio goes to infinity,
whereas as it gets smaller it goes to a constant in the interval [3/2, e − 1). We also showed that
CCD outperforms both RPCD and RCD for this class of problems. When expected distance of the
iterates or expected function value of the iterates is used as the convergence criterion, we presented
that the worst-case convergence rate bounds derived for RPCD are tighter compared to the ones for
RCD. This is in accordance with our first set of results, i.e., when distance of the expected iterates
is used as the convergence criterion. Computational experiments validate our theoretical results,
which fill a gap between the theoretical guarantees for RPCD and its empirical performance.

References

[1] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type methods.
SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[2] D. P. Bertsekas. Nonlinear programming. Athena Scientific, 1999.

[3] D. P. Bertsekas. Convex Optimization Algorithms. Athena Scientific, 2015.

[4] D. P. Bertsekas. Incremental aggregated proximal and augmented lagrangian algorithms. CoRR,
abs/1509.09257, 2015.

[5] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Inc., 1989.

[6] L. Bottou. Curiously fast convergence of some stochastic gradient descent algorithms. In
Proceedings of the symposium on learning and data science, Paris, 2009.

[7] L. Bottou. Stochastic gradient descent on toy problems, September 2012.
http://leon.bottou.org/projects/sgd.

[8] M. Gürbüzbalaban, A. Ozdaglar, and P. A. Parrilo. Why random reshuffling beats stochastic
gradient descent. arXiv:1510.08560, 2015.

[9] M. Gürbüzbalaban, A. Ozdaglar, P. A. Parrilo, and N. D. Vanli. When cyclic coordinate descent
outperforms randomized coordinate descent. In Advances in Neural Information Processing
Systems, pages 7002–7010, 2017.

[10] C.-J. Hsieh, H.-F. Yu, and I. S. Dhillon. Passcode: Parallel asynchronous stochastic dual
co-ordinate descent. In ICML, volume 37, pages 2370–2379, 2015.

[11] A. Israel, F. Krahmer, and R. Ward. An arithmetic-geometric mean inequality for products of
three matrices. Linear Algebra and its Applications, 488:1 – 12, 2016.

[12] C.-P. Lee and S. J. Wright. Random Permutations Fix a Worst Case for Cyclic Coordinate
Descent. ArXiv e-prints, July 2016.

[13] Z.-Q. Luo and P. Tseng. On the convergence of the coordinate descent method for convex
differentiable minimization. Journal of Optimization Theory and Applications, 72(1):7–35, 1992.

15

[14] D. Needell and J. A. Tropp. Paved with good intentions: Analysis of a randomized block
Kaczmarz method. Linear Algebra and its Applications, 441:199 – 221, 2014.

[15] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems.
SIAM Journal on Optimization, 22(2):341–362, 2012.

[16] Y. Nesterov and S.U. Stich. Efficiency of the accelerated coordinate descent method on struc-
tured optimization problems. SIAM Journal on Optimization, 27(1):110–123, 2017.

[17] J. Nutini, M. Schmidt, I. Laradji, M. Friedlander, and H. Koepke. Coordinate descent converges
faster with the gauss-southwell rule than random selection. In International Conference on
Machine Learning, pages 1632–1641, 2015.

[18] J. M. Ortega andW. C. Rheinboldt. Iterative solution of nonlinear equations in several variables.
SIAM, 2000.

[19] P. Oswald and W. Zhou. Random reordering in sor-type methods. Numerische Mathematik,
135(4):1207–1220, 2017.

[20] Z. Qin, K. Scheinberg, and D. Goldfarb. Efficient block-coordinate descent algorithms for the
group lasso. Mathematical Programming Computation, 5(2):143–169, 2013.

[21] B. Recht and C. Ré. Toward a noncommutative arithmetic-geometric mean inequality: Conjec-
tures, case-studies, and consequences. JMLR Workshop and Conference Proceedings, 23:11.1–
11.24, 2012.

[22] P. Richtárik and M. Takáč. Parallel coordinate descent methods for big data optimization.
Mathematical Programming, 156(1-2):433–484, 2016.

[23] A. Saha and A. Tewari. On the nonasymptotic convergence of cyclic coordinate descent methods.
SIAM Journal on Optimization, 23(1):576–601, 2013.

[24] G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J. S. Pang. Decomposition by par-
tial linearization: Parallel optimization of multi-agent systems. IEEE Transactions on Signal
Processing, 62(3):641–656, Feb 2014.

[25] Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in
Neural Information Processing Systems, pages 46–54, 2016.

[26] H.-J. M. Shi, S. Tu, Y. Xu, and W. Yin. A Primer on Coordinate Descent Algorithms.
ArXiv:1610.00040, 2016.

[27] R. Sun and M. Hong. Improved iteration complexity bounds of cyclic block coordinate descent
for convex problems. In Advances in Neural Information Processing Systems, pages 1306–1314,
2015.

[28] R. Sun and Y. Ye. Worst-case complexity of cyclic coordinate descent: o(n2) gap with random-
ized version. arXiv preprint arXiv:1604.07130, 2016.

[29] R. S. Varga. Matrix iterative analysis. Springer Science & Business Media, 2009.

[30] P.-W. Wang and C.-J. Lin. Iteration complexity of feasible descent methods for convex opti-
mization. Journal of Machine Learning Research, 15:1523–1548, 2014.

[31] S. J. Wright. Coordinate descent algorithms. Mathematical Programming, 151(1):3–34, 2015.

[32] S. J. Wright and C.-P. Lee. Analyzing Random Permutations for Cyclic Coordinate Descent.
ArXiv e-prints, June 2017.

[33] T. Zhang. A note on the non-commutative arithmetic-geometric mean inequality. arXiv preprint
arXiv:1411.5058, November 2014.

16

A Proof of Lemma 4.2

Applying Lemma 4.1 with Q = Γ−1, where Γ−1 is defined in (24), we get

γ =

∑n−2
j=0 (n− 1− j)α(1 + α)j

n(n− 1)
=

α

n

n−2∑

j=0

(1 + α)j − α

n(n− 1)

n−2∑

j=0

j(1 + α)j

=
(1 + α)n−1 − 1

n
− (1 + α)n−1

n
+

(1 + α)n − 1− α

αn(n− 1)
=

(1 + α)n − αn− 1

αn(n− 1)
,

where the third equality follows by the following lemma. This completes the proof.

Lemma A.1. For any real scalar η 6= 1 and integer k ≥ 0, we have

k∑

j=0

jηj = (k + 1)
ηk+1

η − 1
− (ηk+1 − 1)η

(η − 1)2
.

Lemma A.1. Consider the cumulative sums uk(η) :=
∑k

j=0 η
j = ηk+1−1

η−1 . It is easy to see that
∑k

j=0 jη
j = ηu′

k(η) where u
′
k(η) is the derivative of uk(η). Differentiating the right-hand side of the

formula for uk yields the result.

B Proof of Proposition 4.3

Part (i). : Defining h(t, n) =
(1+ t

n−1)
n
−1

t

n−1

, where t ∈ (0, 1) and n ≥ 1 is an integer, we have by the

definition in (28) that s(t, n) = ρ1(t, n)/ρ2(t, n), where

ρ1(t, n) = − log

(
1− 1− t

n
h(t, n)

)
and ρ2(t, n) = −n log

(
1− 1− t

n

)
.

Throughout the rest of the proof, for simplicity, whenever the dependence of h, ρ1 and ρ2 on n
is clear, we will abbreviate them by h(t), ρ1(t) and ρ2(t), respectively. Similarly, whenever the
dependence on t is also clear, we will abbreviate them by h, ρ1 and ρ2, respectively. In order to
prove statement (i) of Proposition 4.3, it suffices to show that the partial derivative satisfies

∂ts(t, n) =
∂t(ρ1)ρ2 − ρ1∂t(ρ2)

ρ22
< 0,

for all t ∈ (0, 1). This holds if and only if

∂t(ρ1)

ρ1
<

∂t(ρ2)

ρ2
⇐⇒ ∂t (log ρ1) < ∂t (log ρ2) , (35)

for all t ∈ (0, 1), where we used the fact that ρ1 and ρ2 are positive for t ∈ (0, 1). We can compute
these partial derivatives in the right-hand side as follows

∂t (log ρ1) =
1

ρ1
∂t(ρ1) =

−1
ρ1

(
1

1− 1−t
n h(t)

)(
h(t) + h′(t)(t− 1)

n

)
,

and similarly

∂t (log ρ2) =
1

ρ2
∂t(ρ2) =

−1
ρ2

(
1

1− 1−t
n

)
.

Hence, in order to prove (35), it is sufficient to show that

1

ρ1

(
1

1− 1−t
n h(t)

)
g(t) >

1

ρ2

(
1

1− 1−t
n

)
, where q(t) :=

h(t) + h′(t)(t− 1)

n
,

17

which, after inserting the formulas for ρ1 and ρ2, is equivalent to

− n log

(
1− 1− t

n

)(
1− 1− t

n

)
q(t) > − log

(
1− 1− t

n
h

)(
1− 1− t

n
h

)
, (36)

for t ∈ (0, 1). The main ingredients to prove this inequality is to approximate the non-linear functions
q and h with piecewise linear functions, which are easier to deal with, in other words, linearizing q
and h above leads to simpler expressions for the derivatives of both sides of this inequality. In order
to approximate q, we first write a binomial expansion for h(t) as follows

h(t) =

(
1 + t

n−1

)n
− 1

t
n−1

=

n∑

i=1

(
n

i

)(
t

n− 1

)i−1

.

This implies that q(t) is of the form q(t) = 1
2 + 2

3 t +
∑n−1

j=2 cjt
j , where c2 > 0 and cj ≥ 0, for all

j ∈ {3, . . . , n− 1}. Therefore, the first and second derivatives of g are positive over t ∈ (0, 1) and g
is strictly convex. We then consider linearizations of q(t) at t = 0 and t = 1, which are given by

q0(t) =
1

2
+

2

3
t and q1(t) =

h(1)− 2(n− 1)(1− t)

n
.

(Note that in the special case n = 2, q(t) is linear so that q0(t) = q1(t) for all t. However, for n > 2,

q0 6= q1). In particular, it can be checked that q0(t̂) = q1(t̂), for t̂ = 1 − 6h(1)−7n
4(2n−3) . Since q(t) is

convex,

q(t) ≥ q(t) = max (q0(t), q1(t)) =

{
q0(t), if t ∈ [0, t̂),

q1(t), if t ∈ [t̂, 1].
(37)

The right-hand side of (36) is of the form

z(t) = − log (y(t)) y(t) = E(y(t)), where y(t) = 1− 1− t

n
h, E(y) = − log(y)y. (38)

As h is convex, we have the bounds

h(t) = (1 − t)h(0) + th(1) ≥ h(t) and y(t) ≥ y(t) = 1− 1− t

n
h, t ∈ (0, 1). (39)

Using the facts that the function E(·) has a maximum of 1/e over the interval [0, 1] and is strictly
decreasing over the interval (1/e, 1], it follows from (39) that

E(y(t)) = z(t) ≤ z(t) :=

{
E(ȳ(t)) if y ∈ (1/e, 1] ⇐⇒ t ∈ (t∗, 1]

1/e if y ∈ [0, 1/e] ⇐⇒ t ∈ [0, t∗]
(40)

where t∗ is the largest t ∈ (0, 1) such that y(t) = 1/e and admits the formula

t∗ = −1

2

2n− h(1)

h(1)− n
+

1

2

√(
2n− h(1)

h(1)− n

)2

+
4

e

n

h(1)− n
.

Combining the lower bound (37) on q(t) and the upper bound (40) on z(t), a sufficient condition for
(36) is to show that the following relaxed inequality holds

− n log

(
1− 1− t

n

)(
1− 1− t

n

)
q(t)− z(t) > 0, for all t ∈ (0, 1). (41)

The left-hand side is a piecewise continuously differentiable function (pieces defined by the intervals
[0, t̂], (t̂, t∗] and (t∗, 1])) and it is positive at t = 0. The rest of the proof is about showing that the
left-hand side in (41) stays positive for t ∈ (0, 1), this is achieved by computing and lower bounding
the first order derivatives of the left-hand side. The details are skipped due to space considerations
and follows from standard calculus techniques.

18

Part (ii). : Since limt→0+ ρ2(t) = −n log(1− 1/n), whereas limt→0+ ρ1(t) = − log(1− h(0)/n) =∞
as h(0) = n, we obtain limt→0+ s(t, n) = limt→0 (ρ1(t)/ρ2(t)) =∞.

Part (iii). : We observe that g(n) = limt→1−
ρ1(t)
ρ2(t)

= limt→1−
ρ′

1(t)
ρ′

2
(t) , since limt→1− ρ1(t) = limt→1− ρ2(t) =

0. The derivatives of ρ1(t) and ρ2(t) with respect to t are given by

ρ′1(t) = −
h(t) + h′(t)(t− 1)

n− (1− t)h(t)
and ρ′2(t) = −

n

n− (1− t)
.

Therefore, we obtain

g(n) = lim
t→1−

h(t)+h′(t)(t−1)
n−(1−t)h(t)

n
n−(1−t)

=
h(1)

n
=

(
1 +

1

n− 1

)n−1

+
1

n
− 1.

In order to show that g(n) is strictly increasing in n, consider the extension of g to the positive real
line, i.e., consider the function ḡ(z) =

(
1 + 1

z

)z
+ 1

z+1 − 1, where z ≥ 0. Taking its derivative with
respect to z, we get

ḡ′(z) =

(
log

(
1 +

1

z

)
− 1

z + 1

)(
1 +

1

z

)z

− 1

(z + 1)2
.

Using the lower bounds log(1 + y) ≥ 2y
2+y for y ≥ 0 and (1 + 1/y)y ≥ 2 for y ≥ 1, we obtain

ḡ′(z) ≥ 2

(
2

2z + 1
− 1

z + 1

)
− 1

(z + 1)2
=

1

(z + 1)(z + 1/2)
− 1

(z + 1)2
> 0,

for any z ≥ 1. Consequently, g(n) is strictly increasing in n ≥ 2. Furthermore, it follows directly
from the definition that g(2) = 3/2 and since limn→∞(1 + 1/n)n = e, we get limn→∞ g(n) = e − 1.
This completes the proof of part (iii).

C Proof of Proposition 4.4

The proof of ρ(BRPCD) < ρ(BRCD)
n follows by Proposition 4.3, hence is omitted. Since the off-

diagonal entries of A are nonpositive and A is a positive definite matrix, then it follows by [9, Theorem
4.12] that ρ(BCCD) ≤ 1−µ

1+µ = 1 − 2µ
1+µ , where µ = 1 − (n − 1)α. On the other hand, from (27), we

have ρ(BRPCD) = 1 − µ (1+α)n−1
nα . Hence, in order to show that ρ(BCCD) < ρ(BRPCD), for all

α ∈ (1, 1/(n− 1)) and n ≥ 2, it suffices to show

2

1 + µ
>

(1 + α)n − 1

nα
⇐⇒ 1

1− (n−1)α
2

>
(1 + α)n − 1

nα
.

Since α ∈ (1, 1/(n− 1)), it is sufficient to show that

nα >

(
1− (n− 1)α

2

)
((1 + α)n − 1) . (42)

Using the Binomial expansion (1 + α)n =
∑n

j=0

(
n
j

)
αj , we get

(
1− (n− 1)α

2

)
((1 + α)n − 1) =

n∑

j=1

(
n

j

)
αj − n− 1

2

n∑

j=1

(
n

j

)
αj+1

<

n∑

j=1

(
n

j

)
αj − n− 1

2

n−1∑

j=1

(
n

j

)
αj+1

= nα+
n∑

j=2

((
n

j

)
− n− 1

2

(
n

j − 1

))
αj ,

19

where the inequality follows since we omit the last term of the second sum and the last equality
follows by peeling out the first entry of the first sum. We can observe that

(
n

j

)
− n− 1

2

(
n

j − 1

)
=

(
n+ 1− j

j
− n− 1

2

)(
n

j − 1

)
=

(
(n+ 1)(2− j)

2j

)(
n

j − 1

)
≤ 0,

for all j ∈ {2, . . . , n}. This proves (42), which concludes the proof.

D Proof of Proposition 4.5

RCD iterations can be written (by (8)) as follows

xk+1
RCD =

(
I − eike

T
ikA
)
xk
RCD,

where ik is drawn uniformly at random from the set {1, 2, . . . , n}. Letting Ek denote the expectation
with respect to ik given xk and taking norm squares of both sides, we obtain

Ek‖xk+1
RCD‖2 = (xk

RCD)
T
Ek

[(
I −AT eike

T
ik

) (
I − eike

T
ik
A
)]

xk
RCD

= (xk
RCD)

T

(
1

n

n∑

i=1

(
I −AT eie

T
i − eie

T
i A+AT eie

T
i A
)
)
xk
RCD

= (xk
RCD)

T

(
I − 2A

n
+

A2

n

)
xk
RCD ≤ ||Q|| ‖xk

RCD‖2 with Q := I − 2A

n
+

A2

n
,

where we used the fact that A = AT and
∑n

i=1 eie
T
i = I. Using this recursion and noting that

x∗ = 0, we get
E‖xk+1

RCD − x∗‖2 ≤ ‖Q‖k ‖x0 − x∗‖2. (43)

The eigenvalues of Q are of the form 1 − 2λ/n + λ2/n, where λ is an eigenvalue of A. Since Q
is symmetric and A has only two distinct eigenvalues that are equal to µ = (1 − α(n − 1)) and
L = 1 + α, we obtain

‖Q‖ = max{1− 2µ/n+ µ2/n, 1− 2L/n+ L2/n} = 1− 2µ/n+ µ2/n. (44)

Using (44) in (43) concludes the proof of (31). The proof of (32) can be done by following similar
lines to the above proof as follows

f(xk+1
RCD) = (xk

RCD)
T
Ek

[(
I −AT eike

T
ik

)
A
(
I − eike

T
ik
A
)]

xk
RCD

= (xk
RCD)

T
Ek

[
A−AT eike

T
ikA−Aeike

T
ikA+AT eike

T
ikAeike

T
ikA
]
xk
RCD

= (xk
RCD)

T
Ek

[
A−Aeike

T
ik
A
]
xk
RCD

= (xk
RCD)

T

(
A− A2

n

)
xk
RCD ≤

∣∣∣∣
∣∣∣∣I −

A

n

∣∣∣∣
∣∣∣∣ f(x

k
RCD) =

(
1− µ

n

)
f(xk

RCD),

where in the third equality, we use the fact that A = AT and eTi Aei = 1, for all i ∈ [n], and in the
fourth equality, we use

∑n
i=1 eie

T
i = I, respectively. This concludes the proof.

E Proof of Proposition 4.7

RPCD iterations can be written (by (10)) as follows

x
(ℓ+1)n
RPCD = Pπℓ

BCCDP
T
πℓ

xℓn
RPCD.

Considering improvement sequence I2, this yields

Eℓ‖x(ℓ+1)n
RPCD ‖2 = (xℓn

RPCD)
T
EP [PBT

CCDBCCDP
T]xℓn

RPCD ≤ ‖S‖‖xℓn
RPCD‖2,

20

where S = EP [PBT
CCDBCCDP

T]. Using this recursion, we obtain

E‖xℓn
RPCD‖2 ≤ ‖S‖ℓ

∥∥x0
RPCD

∥∥2.

The contraction factor ‖S‖ can be computed by applying Lemma 4.1 with Q = BT
CCDBCCD, which

yields
S = EP [PBT

CCDBCCDP
T] = τ1I + τ211

T , (45)

where

τ2 =
1TBT

CCDBCCD1− trace(BT
CCDBCCD)

n(n− 1)
and τ1 =

trace(BT
CCDBCCD)

n
− τ2.

Since S is a symmetric matrix, we have ‖S‖ = ρ(S). Furthermore, we can observe that BT
CCDBCCD

has strictly positive entries both in its diagonals and off-diagonals, consequently we have S > 0.
Then, by Perron-Frobenius Theorem [29, Lemma 2.8], we have

‖S‖ = ρ(S) = τ1 + nτ2 =
1

n
1TS1. (46)

In order to compute (46), we first compute the matrix BCCD as follows

BCCD = I − Γ−1A =

{
α
(
(1 + α)i−1 − (1 + α)i−j

)
, if i ≥ j,

α(1 + α)i−1, if i < j.
(47)

Combining (46) and (47), we obtain

‖S‖ = 1

n
1TBT

CCDBCCD1 =
1

n
‖BCCD1‖2 =

1

n

n∑

i=1

((BCCD1)i)
2
,

where
(BCCD1)i = 1− µ(1 + α)i−1. (48)

This yields

‖S‖ = 1

n

n∑

i=1

(
1− 2µ(1 + α)i−1 + µ2(1 + α)2(i−1)

)
= 1− 2µ

n

(
(1 + α)n − 1

α

)
+

µ2

n

(
(1 + α)2n − 1

α(α + 2)

)
,

which proves (33).
We next prove the results regarding the function suboptimality in (34). To this end, we consider

the expected function sub-optimality (note that f(x∗) = 0), which yields

Eℓf(x
(ℓ+1)n
RPCD) = (xℓn

RPCD)
T
EP [PBT

CCDP
TAPBCCDP

T]xℓn
RPCD

= (xℓn
RPCD)

T
EP [PBT

CCDABCCDP
T]xℓn

RPCD

≤ ‖EP [A
−1/2PBT

CCDABCCDP
TA−1/2]‖‖A1/2xℓn

RPCD‖2

= ‖EP [A
−1/2PBT

CCDABCCDP
TA−1/2]‖ f(xℓn

RPCD)

= ‖EP [PA−1/2BT
CCDABCCDA

−1/2PT]‖ f(xℓn
RPCD)

= ‖G‖ f(xℓn
RPCD),

where G := EP [PA−1/2BT
CCDABCCDA

−1/2PT] and the equalities follow since A and A−1/2 are
symmetric matrices. It can be shown that A1/2BCCDA

−1/2 is a non-negative matrix, hence applying
Lemma 4.1 to the matrix Q = A−1/2BT

CCDABCCDA
−1/2, it can be shown (similar to the previous

proof) that

‖G‖ = ρ(G) =
1

n
‖A1/2BCCDA

−1/21‖2 = 1

n
‖1−A1/2Γ−1A1/21‖2, (49)

21

where A1/2 = γI − σ11T with γ =
√
1 + α and σ = (γ −√µ)/n. This yields A1/21 = (γ − nσ)1 =√

µ1. Multiplying both sides of the above equality by Γ−1 from the left, we obtain

Γ−1A1/21 =
√
µ c, (50)

where it follows from (24) that

c =




1
1 + α

1 + α+ α(1 + α)
...

1 + α+ α(1 + α) + · · ·+ α(1 + α)n−2



=




1
1 + α

(1 + α)2

...
(1 + α)n−1



.

Multiplying (50) from the left by A1/2, we get

A1/2Γ−1A1/21 =
√
µ (γc− σ ||c||1 1) , where ||c||1 =

(1 + α)n − 1

α
. (51)

Using (51) in (49), we obtain

||G|| = 1

n

n∑

i=1

(1−√µ (γci − σ ||c||1))
2
= 1− 2

√
µ

n

n∑

i=1

(γci − σ ||c||1) +
µ

n

n∑

i=1

(γci − σ ||c||1)
2

= 1− 2
√
µ

n
(γ − nσ) ||c||1 +

µ

n

n∑

i=1

(
γ2c2i − 2γσ ||c||1 ci + σ2 ||c||21

)

= 1− 2µ

n
||c||1 +

µ

n

(
γ2 ||c||22 − 2γσ ||c||21 + nσ2 ||c||21

)
, (52)

where

||c||22 =
(1 + α)2n − 1

α(α+ 2)
and ||c||21 =

(1 + α)2n − 2(1 + α)n + 1

α2
.

Modifying the terms in (52), we get

||G|| = 1− 2µ

n
||c||1 +

µ

n

(
γ2 ||c||22 − γσ ||c||21 + σ(nσ − γ) ||c||21

)

= 1− 2µ

n
||c||1 +

µ

n

(
(1 + α) ||c||22 −

1 + α− (1− α(n− 1))

n
||c||21

)

= 1− 2µ

n
||c||1 +

µ

n

(
(1 + α) ||c||22 − α ||c||21

)

= 1− 2µ

n
||c||1 +

µ

n

(
(1 + α)

(1 + α)2n − 1

α(α + 2)
− (1 + α)2n − 2(1 + α)n + 1

α

)

= 1− µ

n

(
(1 + α)2n − 1

α(α + 2)

)
,

which concludes the proof of Proposition 4.7.

22

	1 Introduction
	2 Preliminaries
	2.1 CD Methods
	2.2 Convergence Rate Criteria

	3 Prior work on CD methods with random permutations
	4 Performance of RPCD vs RCD on a class of diagonally dominant matrices
	4.1 Convergence rates of RPCD, RCD and CCD in improvement sequence I1
	4.2 Convergence rates of RPCD and RCD in improvement sequences I2 & I3

	5 Numerical Experiments
	6 Conclusion
	A Proof of Lemma 4.2
	B Proof of Proposition 4.3
	C Proof of Proposition 4.4
	D Proof of Proposition 4.5
	E Proof of Proposition 4.7

