
Outer-Product-Free Sets for Polynomial

Optimization and Oracle-Based Cuts

Daniel Bienstock∗, Chen Chen†, Gonzalo Muñoz‡

February 3, 2020

Abstract

This paper introduces cutting planes that involve minimal structural
assumptions, enabling the generation of strong polyhedral relaxations for
a broad class of problems. We consider valid inequalities for the set S∩P ,
where S is a closed set, and P is a polyhedron. Given an oracle that
provides the distance from a point to S, we construct a pure cutting
plane algorithm which is shown to converge if the initial relaxation is a
polyhedron. These cuts are generated from convex forbidden zones, or
S-free sets, derived from the oracle. We also consider the special case
of polynomial optimization. Accordingly we develop a theory of outer-
product-free sets, where S is the set of real, symmetric matrices of the form
xxT . All maximal outer-product-free sets of full dimension are shown to be
convex cones and we identify several families of such sets. These families
are used to generate strengthened intersection cuts that can separate any
infeasible extreme point of a linear programming relaxation efficiently.
Computational experiments demonstrate the promise of our approach.

1 Introduction

Consider a generic mathematical program of the following form

min cTx

subject to x ∈ S ∩ P.

Here P := {x ∈ Rn|Ax ≤ b} is a polyhedral set, c ∈ Rn is a given cost
vector, and S ⊂ Rn is a closed set. The natural linear programming (LP)
relaxation min{cTx |x ∈ P} provides a computationally tractable lower bound
to the original problem’s optimal objective value. However, P may be a poor
outer-approximation or relaxation of the true feasible region S ∩P . This paper

∗dano@columbia.edu, IEOR, Columbia University, New York, NY, USA
†chen.8018@osu.edu, ISE, The Ohio State University, Columbus, OH, USA
‡gonzalo.munoz@polymtl.ca, Institute of Engineering Sciences, Universidad de O’Higgins,

Rancagua, Chile; Conicyt BCH 72130388

1

ar
X

iv
:1

61
0.

04
60

4v
7

 [
m

at
h.

O
C

]
 3

0
Ja

n
20

20

concerns the generation of stronger polyhedral relaxations via cutting-plane
algorithm, i.e. the dynamic generation of cuts or valid (i.e. not removing points
in S∩P) linear inequalities to produce a sequence of (say, k) tighter relaxations:
P ⊃ P1 ⊃ ... ⊃ Pk ⊇ S ∩ P . This cutting plane approach is crucial to branch-
and-cut methods (e.g. [6,16,67,71,88]) for global optimization, and may be used
to augment convex relaxations in general.

There are many ways to generate cuts such as: disjunctions [9], lift-and-
project [60], algebraic arguments (e.g. [5, 41, 43, 62]), combinatorics (see [92]),
and convex outer-approximation (e.g. [49]). We adopt the geometric perspective,
in which cuts are derived from convex forbidden zones, or S-free sets. The
convexity requirement on S-free sets is essential in standard intersection cuts [8],
although nonconvex sets can be exploited in special cases (e.g. [56]).

The S-free approach was developed in the context of mixed-integer pro-
gramming; we shall consider a different setting involving minimal structural
assumptions on S. Suppose there is an oracle that provides the distance from
a point to S. For instance, such distance can be approximated to arbitrary
accuracy in polynomial time in the case of integer variables (using rounding
operations), polynomial optimization (using eigenvalues, see Section 2.1), and
cardinality constraints (see Section 6.2). In Theorem 6 we establish that, given
the initial relaxation P is a polytope, the oracle (or an arbitrarily close approx-
imation thereof) enables a finite-time cutting plane algorithm that constructs
a polyhedron arbitrarily close to conv(S ∩ P). Hence an explicit functional
characterization of S is not necessary to produce a strong relaxation.

Additionally, we consider the case when S-free sets are used to derive an in-
tersection cut. Such a cut improves the relaxation in polynomial time by using
a (weaker) basic relaxation of P . We develop a polynomial-time strengthen-
ing procedure for generic intersection cuts (see Section 3.2) that exploits the
recession cone of an S-free set.

We also focus on the special case of polynomial optimization:

min p0(x)

(PO) s.t. pi(x) ≤ 0 i = 1, ...,m,

where each pi is a polynomial function with respect to the decision vector x ∈
Rn. Polynomial optimization generalizes important classes of problems such as
quadratic programming, and has numerous applications in engineering.

PO can be treated as a special case of mixed-integer nonlinear programming
(MINLP). MINLP cuts are typically generated for a single nonlinear term or
function (e.g. [11, 57, 61, 66, 74, 81, 84–86]) over a simple subset of linear con-
straints such as box constraints. In contrast, we develop general-purpose cuts
that account for global nonconvexity imposed by S (i.e. potentially addressing
several nonlinear functions at once). To the best of our knowledge there are two
papers (applicable to polynomial optimization) that are similar to our work in
this regard: the disjunctive cuts of Saxena, Bonami, and Lee [76,77], which ap-
ply to bounded mixed-integer programming problems with nonconvex quadratic
constraints (MIQCP); and the lift-and-project method by Ghaddar, Vera, and

2

Anjos [39], where cuts for a given moment relaxation are generated using a
higher-moment relaxation. Polynomial-time separation for these procedures is
not guaranteed in general.

We work with a representation of PO that uses a symmetric matrix of deci-
sion variables, and let S be the set of symmetric matrices that can be represented
as a real, symmetric outer product xxT —accordingly we study outer-product-
free sets and the intersection cuts that can be derived from them. We first de-
rive a simple oracle-based outer-product-free set in Section 4.1. Subsequently,
we identify several families of maximal outer-product-free sets in Theorems 19
and 23; such families are sufficient to characterize all such (full-dimensional)
sets in the space of 2 × 2 symmetric real matrices. With the aforementioned
results we develop a cut generation procedure (see Section 5) that separates an
infeasible extreme point of a (lifted) polyhedral relaxation of PO in polynomial
time without relying on variable bounds.

We demonstrate the practical effectiveness of our approach over a variety
of instances using a straightforward pure cutting-plane setup. Comparisons are
made with semidefinite programming relaxations, as well as the cuts of Saxena,
Bonami, and Lee. The speed of our separation routines and the quality of the
resulting linear programming relaxations strongly suggest the viability of our
cut families within a full-fledged branch-and-cut solver.

The remainder of the paper is organized as follows. Section 2 describes
S-free sets and develops oracle-based cuts. Section 3 describes the standard
intersection cut, and our cut strengthening procedure. Section 4 studies outer-
product-free sets. Section 5 describes cut generation using outer-product-free
sets. Section 6 provides numerical examples and detailed computational exper-
iments. Section 7 concludes.

1.1 Notation

Denote the interior of a set int(·), its boundary bd(·), its closure cl(·), and its
recession cone rec(·). The convex hull of a set is denoted conv(·), and its closure
is clconv(·); likewise, the conic hull of a set is cone(·), and its closure clcone(·).
The set of extreme points of a convex set is ext(·). For a point x and nonempty
set S in Rn, we define d(x, S) := infs∈S{‖x−s‖2}; note that for S closed we can
replace the infimum with minimum. Denote the ball with center x and radius
r to be B(x, r). The ith row of a matrix A is ai,∗, and the jth column is a∗,j .
For a square matrix X, X[i,j] denotes the 2× 2 principal submatrix induced by
indices i 6= j. The 2 × 2 submatrix of X induced by rows i1 6= i2 and columns
j1 6= j2 is denoted X[[i1,i2],[j1,j2]]. 〈·, ·〉 denotes the matrix inner product and
‖ · ‖F the Frobenius norm. A positive semidefinite matrix may be referred to as
a PSD matrix for short, and likewise NSD refers to negative semidefinite.

3

P

S x̄

B(x̄, d(x̄, S))

P \ B(x̄, d(x̄, S))

S x̄

Figure 1: On the left: a closed set S (blue), a polyhedron P (green), an extreme
point x̄ (red) and an S-free ball (grey). On the right: a hyperplane separating
x̄ from P \ int(B(x̄, d(x̄, S)))

2 S-free Sets and Oracle-Based Cuts

Definition 1. A set C ⊂ Rn is S-free if int(C) ∩ S = ∅ and C is convex.

For any S-free set C we have S ∩ P ⊆ clconv(P \ int(C)), and so any
valid inequalities for clconv(P \ int(C)) are valid for S ∩ P . See Figure 1 for
a diagram. Hillestad and Jacobsen [47], and later on Sen and Sherali [80],
provide results regarding the polyhedrality of clconv(P \ int(C)). Averkov [7]
provides theoretical consideration on how one can derive cuts from C. In specific
instances, conv(P \ int(C)) can be fully described; for example, Bienstock and
Michalka [18] provide a characterization of the convex hull when S is given by
the epigraph of a convex function excluding a polyhedral or ellipsoidal region
(also see [15,50,69]).

In what follows we show a generic algorithm based on separation from P \
int(C) that yields a convergent cutting plane algorithm using a simple S-free
set C. Note, however, that separating over P \ int(C) is NP-hard [38].

2.1 Oracle-Based Cuts

Suppose we have an oracle that provides for any given point x̄ /∈ S the nonzero
Euclidean distance d(x̄, S) between x̄ and the nearest point in S.

Remark. The (closed) ball B(x̄, d(x̄, S)) is S-free.

Suppose P is a (bounded) polytope. We shall demonstrate that this S-free
ball can be used to construct a pure cutting plane algorithm that will converge
in the limit to the convex hull of S ∩ P . Furthermore, an arbitrarily precise
approximation of B(x̄, d(x̄, S)) suffices to obtain an arbitrarily precise approx-
imation of conv(S ∩ P). This is not as strong as convergence in finite time,
which can be established for simpler problems (e.g. [42, 72]); such a guarantee
is not possible here since conv(S ∩ P) may be nonlinear. Finite convergence,
however, is not strictly necessary for practical purposes in branch-and-cut (e.g.
split cuts [30]). Our result in this section contrasts with the standard intersec-
tion cut approach we describe below in Section 3, in which good cuts are found
by selecting large S-free sets and, instead of P , a (weaker) basic relaxation of P

4

is used. Here we show that it is possible to converge to conv(S ∩P) by shifting
the computational burden from selecting elaborate S-free sets to generating cuts
over the entire polyhedron, i.e. separation over conv(P \ int(B(x̄, d(x̄, S)))).

2.2 Separation

We seek a cut αT (x− x̄) ≥ δ that separates x̄ from P \ int(B(x̄, d(x̄, S))). Such
a cut can be determined via the following master cut generation problem,

δ∗(x̄)
.
= max

α,δ
δ

(MC) s.t. αT (x− x̄) ≥ δ ∀x ∈ conv(P \ int(B(x̄, d(x̄, S)))), (1a)

‖α‖1 ≤ 1. (1b)

The cut normalization constraint (1b) is replaceable, for instance, with the
2-norm. Norm selection has been subject to extensive testing and discussion in
mixed-integer programming (e.g. [36]), but we leave alternative formulations of
MC out of this initial proposal.

Figure 2 demonstrates that separation involves more than one nontrivial
facet in general, and indeed the problem is NP-hard [38]. The increased compu-
tational expense, however, guarantees strong cuts that ensure favourable con-
vergence properties; it also offsets the need to find an appropriate S-free set,
which is also NP-hard (e.g. [35]).

Next, we argue that, given ε > 0, problem MC can be solved to additive
tolerance ε in finite time. We rely on the following observation whose proof is
straightforward.

Lemma 2. Let Q ⊆ Rn be a polyhedron and consider a ball B(u,R). Then
every extreme point v of conv(Q\ int(B(u,R))) is either (a) an extreme point of
Q, or (b) is contained in a 1-dimensional face of Q, in which case d(u, v) = R.

In view of this result, problem MC can be rewritten as a finite linear pro-
gram, by simply enumerating all extreme points of P \ int(B(x̄, d(x̄, S))). This
approach, however, does not yield a finite algorithm because extreme points
of type (b) may have irrational coordinates. This issue is resolved by replacing
each type (b) extreme point v, with a rational point v̂, in the same 1-dimensional
face of P but slightly closer to x̄. In particular, given ε > 0 we can guarantee
that ‖v − v̂‖1 ≤ ε. By applying this method to all type (b) extreme points we
obtain a rational polyhedron Pε(x̄) containing P \ int(B(x̄, d(x̄, S))) such that

δ∗ε (x̄)
.
= max

α,δ
δ

(MCε) s.t. αT (x− x̄) ≥ δ ∀x ∈ Pε(x̄) (2a)

‖α‖1 ≤ 1 (2b)

satisfies δ∗ε (x̄) ≤ δ∗(x̄) ≤ δ∗ε (x̄) + ε. One can further argue that the extreme
points of Pε(x̄), represented as rationals, require a number of digits that is

5

Figure 2: A parallelogram P minus a ball B. The convex hull of P \ B shown
in thick red lines; its nontrivial facets are described by the cuts indicated by
dotted blue lines.

polynomial in the size of the description of P , the number of digits in an ε-
approximation to log d(x̄, S), and ε. For related material, see [79].

As an alternative to the above method, one can address problem MC using
Benders decomposition [17], by relying on a separation algorithm to handle

constraint (1a). Given a proposed candidate cut (α̂, δ̂), we wish to find a point

x̂ ∈ conv(P \ int(B(x̄, d(x̄, S)))) for which α̂T (x̂− x̄) < δ̂, or else certify that the
candidate cut is valid for constraint (1a). This task may be formulated as the
subproblem

z∗sc(α̂, δ̂) := max
x

d(x, x̄)

(SC) s.t. α̂T (x− x̄) ≤ δ̂, (3a)

x ∈ P, (3b)

Clearly, the cut (α̂, δ̂) is valid for MC iff z∗sc(α̂, δ̂) ≤ d(x̄, S). Problem
(3) can be solved within any desired tolerance in finite time (by enumerating
extreme points of P , or by using branch-and-bound [58]).

Thus, the separation problem for MC can be (approximately) solved in finite
time; using the machinery of the ellipsoid method (see [44,79]) one thus obtains
another finite method for solving MC to a given tolerance, in finite time, and
over the rationals.

2.3 Convergence of Cut Closures

We can (approximately) separate over P \ int(B(x̄, d(x̄, S))) by solving (approxi-
mately) MC. We now study the strength of such oracle-based cuts in two ways.
First, we consider the cut closure of such cuts, and show that a sequence of such
closures converges to the best possible convex relaxation, conv(P ∩ S). Second,
we show that a cutting plane procedure, leveraging MC, can converge to within
arbitrary distance of conv(P ∩ S) in finite time.

2.3.1 Cut Closures

Throughout this subsection we assume that P is bounded. We follow closely the
proof strategy of Averkov [7, Theorem 3.6], which establishes convergence with

6

respect to certain cuts given some (different) structural assumptions regarding
S. Our result applies to closed sets S equipped with an oracle, which is a dif-
ferent domain of application than that of Averkov. We also allow for a cutting
plane procedure (in particular, procedure MC) with fixed numerical precision,
where separation is only guaranteed over a ball with radius exceeding some min-
imum threshold λ ≥ 0. More precisely, we assume that there is an oracle that,
given x ∈ Rn, returns an estimate d̃(x, S) with d(x, S) ≤ d̃(x, S) ≤ d(x, S) + λ.
This yields an underestimate for d(x, S): d(x, S) − λ ≤ d̃(x, S) − λ ≤ d(x, S).
We will term the quantity d̃(x, S) a λ-overestimate for d(x, S). Other notions
of approximations for d(x, S) are similarly handled.

The Hausdorff distance dH(X,Y) := max{supx∈X d(x, Y), supy∈Y d(y,X)}
between two sets X,Y provides a natural way to describe convergence. An
alternative definition of dH is available using the notion of ε-fattening. The
ε-fattening of a set X is Xε := ∪x∈XB(x, ε), and so dH(X,Y) = inf{ε ≥ 0|X ⊆
Yε, Y ⊆ Xε}. Now let P0(λ) := P , and define the rank k closure (see [24])
recursively as

Pk+1(λ) :=
⋂

x∈ext(Pk(λ))

conv(Pk(λ) \ int(B(x,max{d(x, S)− λ, 0})))

Furthermore define the compact convex set P∞(λ) := ∩∞k=0Pk(λ), which is
the infinite rank cut closure. Two lemmas are used, with proofs that can be
found in Schneider [78]. The first lemma gives us Hausdorff convergence in the
sequence of cut closures [78, Lemma 1.8.2 & p. 69 Note 4].

Lemma 3. Let (Ck)k∈N be a sequence of nonempty compact sets in Rn, and
denote C∞ := ∩∞i=0Ck. If Ck ⊇ Ck+1∀k then it holds that C∞ = limk→∞ Ck
and limk→∞ dH(Ck, C∞) = 0.

Corollary 4. Let (Ck)k∈N and C∞ be as in Lemma 3. For each ε > 0 there
exists kε such that for all k ≥ kε, dH(Ck, C∞) ≤ ε.

The next lemma [78, Lemma 1.4.6] ensures the existence of a ball cut that
can separate an extreme point of a convex relaxation.

Lemma 5. Let C ⊂ Rn be a closed, convex set and let x ∈ C. Then x is an
extreme point of C iff for every open neighbourhood U around x there exists a
hyperplane H defining the boundary of two (separate) halfspaces H−, H+ such
that x ∈ int(H−), C \ U ⊆ int(H+).

Theorem 6. P∞(λ) ⊆ conv(P ∩ Sλ), where Sλ is the λ-fattening of S.

Proof. By construction P∞(λ) ⊆ P0(λ) = P , so it is sufficient to show that
ext(P∞(λ)) ∈ Sλ. We shall do so by way of contradiction. Suppose there exists
x̄ ∈ ext(P∞(λ)) such that x̄ /∈ Sλ; observe that x̄ /∈ Sλ implies d(x̄, S) − λ >
0. Then let U be an open ball of radius r := (d(x̄, S) − λ)/3 centered at x̄.
By Theorem 5 there exist two opposite-facing halfspaces H+, H− such that
x̄ ∈ int(H−) and P∞(λ) \ U ⊆ int(H+). Since U is open and P∞(λ) ∩ H−

7

is in the interior of U (as otherwise P∞(λ) \ U ⊆ int(H+) is violated), there
exists sufficiently small ε > 0 such that (P∞(λ))ε ∩ H− is also contained in
U . Now Theorem 3 gives us some rank k0 for which we have the sandwich
(P∞(λ))ε ⊇ Pk0(λ) ⊇ P∞(λ). Furthermore, since H− separates an extreme
point of P∞(λ), it also separates an extreme point of the superset Pk0(λ). Thus
there exists some extreme point xk0 ∈ ext(Pk0(λ)) that lies in Pk0(λ)∩H− ⊂ U ,
and so d(xk0 , x̄) < r. Thus we have, starting from the triangle inequality

d(xk0 , S) + d(xk0 , x̄) ≥ d(x̄, S)

=⇒ d(xk0 , S)− λ ≥ d(x̄, S)− d(xk0 , x̄)− λ,
> d(x̄, S)− λ− r,
= 2r.

Since U has diameter 2r, then U ⊂ int(B(xk0 , d(xk0 , S) − λ)). As H+

is valid for Pk0(λ) \ U , then H+ is also valid for the nested set Pk0(λ) \
int(B(xk0 , d(xk0 , S) − λ)). It follows that Pk0+1(λ) ⊆ H+. However, x̄ ∈ H−,
which implies x̄ /∈ Pk0+1(λ) ⊇ P∞(λ), giving us a contradiction.

2.3.2 Cutting-plane Procedure

We now provide a formal cutting-plane procedure:

Procedure CUT
Initialization: Set P̂0 = P and k = 0.
Repeat:
1. Find an extreme point x̄ of P̂k such that

δ∗(x̄) = argmax{δ∗(u) : u ∈ ext(P̂k)}

2. If δ∗(x̄) ≤ ε, STOP. Algorithm exits.

3. Let (α̂, δ̂) be optimal in the computation of δ∗(x̄).

Add the cut α̂T (x− x̄) ≥ δ̂ to P̂k to obtain P̂k+1.
Set k ← k + 1, and go to 1.

Theorem 7. Procedure CUT terminates after a finite number of iterations
K, and at termination dH(P̂K , conv(P ∩ S)) ≤

√
nε. Consequently, P̂K ⊆

conv(P ∩ S√nε).

Proof. We first note that at each iteration of CUT where Step 3 is executed, the
added inequality cuts off all points x with d(x, x̄) ≤

√
nε by Cauchy-Schwarz

inequality.
Now suppose, aiming for a contradiction, that CUT does not terminate

finitely. Hence there is an infinite sequence xk(i), i = 1, 2, . . . where xk(i) is

an extreme point of P̂k(i). Let P̂∞ be the limit of the P̂k. Thus for i large

enough, dH(xk(i), P̂∞) <
√
nε. This contradicts the point made above. Hence

convergence is finite and another application of the same idea yields the second
claim.

8

Since CUT is initialized with P , we have P̂K ⊆ P , and so dH(P̂K , conv(P ∩
S)) ≤

√
nε implies the final claim.

3 Intersection Cuts

As mentioned in Section 2.2, separating over P \ int(C) is NP-hard [38]. A
standard workaround is to find a simplicial cone P ′ containing P and separate
over P ′ \ int(C) instead. Provided the apex of P ′ is contained in the interior of
C, Balas’ intersection cut [8] can be applied. In this section, we describe such
cuts and provide a refined strengthening procedure for them.

The first use of simplicial cones to generate cuts can be attributed to Tuy [90]
for minimization of a concave function over a polyhedron; such cuts are named
Tuy cuts, concavity cuts, or convexity cuts. The distinction is that Tuy cuts
are objective cuts whereas Balas’ intersection cuts are feasibility cuts.

Larger S-free sets can generate deeper cuts [25], which leads to the notion
of inclusion-wise maximality.

Definition 8. An S-free set C is maximal if C ′ 6⊃ C for all S-free C ′.

Under certain conditions (see [13, 25, 27, 50]), maximal S-free sets are suffi-
cient to generate all nontrivial cuts for a problem. When S = Zn, C is called
a lattice-free set. Maximal lattice-free sets are well-studied in integer program-
ming theory [2,3,12,20,31,43,50,59], and the notion of S-free sets was introduced
as a generalization [32].

Many cuts in mixed-integer linear programming can be interpreted as in-
tersection cuts, as intersection cuts produce all nontrivial facets of the corner
polyhedron [26]. Several papers [1,28,68,69] have worked to extend the intersec-
tion cut via split cuts to mixed-integer conic optimization. Intersection cuts have
also been considered for bilevel optimization [34], and factorable MINLPs [81].
Towle and Luedtke [89] consider cuts for reverse convex sets that exploit S-free
sets that do not contain the apex of P ′.

3.1 Classical derivation

Let P ′ ⊇ P be a simplicial conic relaxation of P : a displaced polyhedral cone
with apex x̄ that is defined by the intersection of n linearly independent half-
spaces. Any n linearly independent constraints describing P can be used to
define a simplicial conic relaxation, i.e. a (possibly infeasible) basis of P .

A simplicial cone may be written as follows:

P ′ = {x̄+

n∑
j=1

λjr
j : λ ≥ 0}. (4)

Each extreme ray of P ′ is of the form {x̄+ λjr
j |λj ≥ 0}. Alternatively, the

simplicial conic relaxation can be given in inequality form

P ′ = {x|Āx ≤ b̄}, (5)

9

where Ā is an invertible n × n submatrix of A, and b̄ are the corresponding
entries of b. Note that any basis of P would be suitable to derive P ′. In this
case the apex is x̄ = Ā−1b̄, and the rays rj in (4) can be obtained directly from
Ā: for each j, one can identify −rj as the jth column of the inverse of Ā.

We shall assume x̄ /∈ S, so that x̄ is to be separated from S via separation
from P ′ \ int(C), with C an S-free set with x̄ in its interior. Since x̄ ∈ int(C),

there must exist λ̂ > 0 such that x̄+ λ̂jr
j ∈ int(C) ∀j. Also, each extreme ray

is either entirely contained in C, i.e. x̄+ λjr
j ∈ int(C)∀λj ≥ 0, or else there is

a finite intersection point with the boundary, ∃λ∗j : x̄+ λ∗jr
j ∈ bd(C). We refer

to λ∗j as the step length in the latter case, and for convenience, we define the
step length λ∗j =∞ in the former case.

Let M be the index set of finite step lengths, i.e. λm < ∞ ∀m ∈ M ;
likewise the complement M̄ is the set of indices of infinite step lengths. The
intersection cut is the halfspace whose boundary contains each finite intersection
point (indexed by M) that is parallel to all extreme rays contained in C (indexed
by M̄), and that separates x̄. Given λ∗j ∈ (0,∞]∀j = 1, . . . , n, Balas [8, Theorem

2] provides a closed-form expression for the intersection cut πTx ≤ π0:

π0 =

n∑
i=1

(1/λ∗i)b̄i − 1, πj =

n∑
i=1

(1/λ∗i)āi,j , (6)

where āi,j are the entries of Ā in (5) and 1/∞ := 0 [8, p. 34]. Rearranging
terms, one can see the intersection cut is formed using weighted rows of Āx− b̄:

n∑
i=1

(āi,∗x− b̄i)/λ∗i ≤ −1. (7)

Hence the apex x̄ = Ā−1b̄ violates the cut by a normalized value of 1.
Let V := {x|πTx ≤ π0} be the halfspace defined by the intersection cut.

For completeness we include a proof of validity of V (a fact established in the
original paper by Balas [8, Theorem 1]), and furthermore establish a condition
in which the cut gives the convex hull of P ′ \ int(C).

Proposition 9. V ⊇ P ′ \ int(C). Furthermore, if all step lengths are finite,
i.e. |M̄ | = 0, then V ∩ P ′ = conv(P ′ \ int(C)).

Proof. Let V̄ be the complement of V , i.e. an open halfspace. It suffices to
establish that Q := V̄ ∩ P ′ ⊆ int(C). By construction of the cut,

Q = {x̄+
∑
i∈M

λir
i +

∑
j∈M̄

λjr
j |λ ≥ 0, λi < λ∗i ∀i ∈M}.

Let x̂ be a point in Q. Denote v := x̄+
∑
i∈M λ̂ir

i and w :=
∑
j∈M̄ λ̂jr

j so that

x̂ = v + w. Now v is in the polytope P ′′ := {x̄+
∑
i∈M λir

i | 0 ≤ λ ≤ λ∗}. The
extreme points of P ′′ are x̄ and some intersection points forming the intersection
cut. The vector v cannot be described solely as the convex combination of
intersection points, as this would imply v ∈ V . Hence either v = x̄ or v is the

10

strict convex combination of x̄ ∈ int(C) and some of the intersection points,
thus v ∈ int(C).

Observe that w is in the recession cone of C since by construction each
extreme ray indexed by M̄ is contained in C. Hence x̂ = v + w is also in the
interior of C, or equivalently Q ⊆ int(C), which in turn implies V ⊇ P ′ \ int(C).

Now suppose all step lengths are finite. In this case we may write

V ∩ P ′ = {x̄+

n∑
i=1

λir
i |λ ≥ λ∗} = {

n∑
i=1

λi(x̄+

n∑
j=1

λjr
i)/

n∑
j=1

λj |λ ≥ λ∗}.

Hence every point in V ∩ P ′ is the convex combination of points pi := x̄ +∑n
j=1 λjr

i, i = 1, ..., n. Since
∑n
j=1 λj ≥ λ∗i ∀i and the ray ri emanates from

an interior point of C passing through the boundary at step length λ∗i , then
pi ∈ P ′ \ int(C) ∀i. Hence V ∩ P ′ ⊆ conv(P ′ \ int(C)).

Figure 1 also serves as an illustration of an intersection cut when the S-free
set C is a ball. In this example, using a simplicial conic relaxation P ′ obtained
from the basis defining x̄ yields an intersection cut which coincides with the
oracle-based cut depicted in the figure.

3.2 Strengthening the Intersection Cut

The intersection cut is not in general sufficient to capture the convex hull of
P ′\int(C). When |M̄ | ≥ 1, negative step lengths y < 0 can be used to strengthen
intersection cuts. Glover [40] proposed a method to derive such negative step
lengths for polyhedral C, later extended by Sen and Sherali [80] to general
reverse convex programs. Negative step lengths have also been considered in
the context of minimal valid inequalities [12,14,32]. We provide here a formula
for general-purpose strengthening that provides the provably best rotation of the
cut with the finite intersection points fixed. Furthermore, the coefficients can be
calculated with a polynomial number of single-variable optimization problems
over the recession cone of C.

3.2.1 Motivating Example

A simple example of intersection cut strengthening is shown in Figure 3. Here
S ⊂ R2 is given by the halfspace in x1 + x2 ≥ 1. We let C be the (unique)
maximal S-free set, x1 + x2 ≤ 1. Now define P ′ with inequalities x1 ≥ 0 and
x2 ≤ 0. The apex of P ′ is at the origin, and the extreme ray directions are
r1 = (1, 0), r2 = (0,−1). The intersection points with C are at (1, 0) along r1

and infinity along r2. The intersection cut is given by x1 ≥ 1. The best cut
possible from C, however is x1 + x2 ≥ 1, i.e. the set S itself. To obtain this cut
from P ′ one can use the cut passing through the (original) finite intersection
point (1, 0) together with (0, 1), which can be obtained by taking a step of
length −1 from the origin along r2. This strengthened cut can also be viewed
as a standard intersection cut generated from a tightening of P ′ where r2 is
rotated to r2

∗.

11

Figure 3: Example of cut strengthening. In green, simplicial cone P ′ with rays
r1, r2; origin marked with green dot. In grey, set S, and the S-free set C is the
complement of S. Blue dashes indicate the standard intersection cut; a blue dot
marks the intersection point with bd(C). The strengthened intersection cut is
shown with red dashes; a red dot marks the intersection point obtained with a
negative step length. The rotated extreme ray r2 → r2

∗ is shown in red.

3.2.2 Strengthening Procedure

The index set of finite step lengths M is assumed to be nonempty, as otherwise
the original problem is proven to be infeasible, i.e. S∩P = ∅. Our strengthened
intersection cut is of the form∑

m∈M
(ām,∗x− b̄m)/λ∗m +

∑
j∈M̄

(āj,∗x− b̄j)/yj ≤ −1 (8)

where yj < 0 is a negative step length. Each negative step length is a parameter
that rotates the intersection cut about the axis defined by the other (n−1) fixed
intersection points (including intersections at infinity). The strongest such cut
is obtained with maximal valid rotation, i.e. (algebraically) maximal values of
y. We prove in Theorem 10 that such values are given by:

y∗j := max{γ |λ∗mrm − γrj ∈ rec(C) ∀m ∈M}. (9)

If no such γ exists we take y∗j = −∞ with the understanding that 1/y∗j = 1/λ∗j =
0. Note that y∗ < 0 by the following argument. Suppose γ ≥ 0 and furthermore
for some m ∈ M we have wm := λ∗mr

m − γrj ∈ rec(C), then rm is a conic
combination of wm and rj . But this is impossible since rm /∈ rec(C).

Now let K ⊆ M̄ be the set of strictly negative finite step lengths given by
(9), i.e. −∞ < y∗k < 0 ∀k ∈ K. Furthermore, let Vy be the halfspace defined by
the strengthened cut (8), parameterized by negative step lengths y.

Theorem 10. Vy ∩ P ′ ⊇ P ′ \ int(C) if and only if y ≤ y∗.
Proof. Theorem 9 establishes validity of the original intersection cut (6). Let
W := (V ∩ P ′) \ Vy with V the halfspace defined by the original intersection
cut, i.e, W is the space removed by strengthening the intersection cut.

First, note that we always have Vy ∩ P ′ ⊆ V ∩ P ′. We claim proving the
theorem amounts to determining whether W ⊆ int(C); if so

Vy ∩ P ′ = V ∩ P ′ \W ⊇ V ∩ P ′ \ int(C) = P ′ \ int(C),

12

where the last equality is given by Theorem 9. If not, then Vy removes points
from P ′ \ int(C).

Define the index set Ky := {k | yk > −∞}. Throughout we assume the
nontrivial case that |Ky| ≥ 1, as otherwise the strengthened intersection cut is
equivalent to the original cut. The set cl(W) is described by:

Āx ≤ b̄ (10a)∑
m∈M

(ām,∗x− b̄m)/λ∗m ≤ −1 (10b)∑
m∈M

(ām,∗x− b̄m)/λ∗m +
∑
k∈Ky

(āk,∗x− b̄k)/yk ≥ −1. (10c)

Note that W is described by the above system with (10c) strictly satisfied. We
shall now characterize the extreme points and extreme rays of cl(W).

Extreme points of cl(W):
The extreme points are determined by n linearly independent binding con-
straints among (10a)-(10c) (with all remaining constraints satisfied). If n in-
equalities are binding among (10a) we recover x̄, i.e. the apex of P ′, which
violates (10b) (it is cut off by V). Therefore at least one of (10b) or (10c) is
binding at each extreme point. Additionally, since 1/λ∗m > 0 ∀m ∈M , in order
for (10b) to be satisfied there must exist some m̂ ∈M such that ām̂,∗x− b̄m̂ < 0.
We analyze two cases:
Case 1: (10b) is binding. If, additionally, (10c) is not binding, then

∑
k∈Ky

(āk,∗x−
b̄k)/yk > 0. Then, since y < 0, there must exist some k̂ ∈ Ky such that
āk̂,∗x − b̄k̂ < 0. Now, n − 1 constraints among Āx ≤ b̄ must be binding, which

implies m̂ = k̂; however, this is impossible since M and Ky ⊆ M̄ are disjoint.
Thus, (10c) is also binding, which implies∑

k∈Ky

(āk,∗x− b̄k)/yk = 0.

Furthermore, given Āx ≤ b̄ and y < 0, we have āk,∗x−b̄k = 0 ∀k ∈ Ky. However,
since (10c) is a linear combination of (10b) and the rows of (10a) indexed by
Ky (all of which are binding), we conclude that we must have n − 1 binding
constraints among (10a) at an extreme point of cl(W). Indeed, for each m̂ ∈M ,
there is a corresponding extreme point determined by āi,∗x = b̄i, i ∈ M, i 6= m̂
(from (10a)) and (ām̂,∗x− b̄m̂)/λ∗m̂ = −1 (from (10b)). These coincide with the
extreme points of V ∩ P ′, i.e. finite intersection points of P ′ with C.
Case 2: (10b) is not binding. In this case (10c) is binding, i.e.∑

m∈M
(ām,∗x− b̄m)/λ∗m +

∑
k∈Ky

(āk,∗x− b̄k)/yk = −1,

=⇒
∑
k∈Ky

(āk,∗x− b̄k)/yk > 0.

13

Then there must exist some k̂ ∈ Ky such that āk̂,∗x − b̄k̂ < 0. However, there

also exists m̂ ∈M such that ām̂,∗x− b̄m̂ < 0, leaving only n−2 constraints that
can be binding among (10a). So there are no extreme points in this case.

We conclude that the extreme points of cl(W) are the extreme points of
V ∩P ′, which by construction of V are in bd(C). Furthermore, (10c) is binding
at all extreme points, so none of the extreme points are in W .

Extreme rays of cl(W):
The extreme rays are determined by n − 1 linearly independent binding con-
straints among the following system (with all remaining constraints satisfied),
which describes rec(cl(W)):

Ād ≤ 0 (11a)∑
m∈M

ām,∗d/λ
∗
m ≤ 0 (11b)∑

m∈M
ām,∗d/λ

∗
m +

∑
k∈Ky

āk,∗d/yk ≥ 0. (11c)

Let d̂ be an extreme ray of W . We shall characterize when d̂ ∈ rec(C).

If d̂ ∈ cone({rj |j ∈ M̄}), by construction of M̄ we have d̂ ∈ rec(C). Now

suppose instead that d̂ is outside of said cone. This implies that there exists
some m̂ ∈M such that ām̂,∗d̂ < 0, and so (11b) is not binding. Then for (11c)

to be satisfied, we require some k̂ ∈ Ky such that āk̂,∗d̂ < 0. This leaves 2

constraints (indexed by m̂, k̂) nonbinding among (11a) and so the remaining

n− 2 constraints, together with (11c), are binding. From (11a) we have that d̂

is in the cone generated by rm̂ and rk̂. Recalling from Section 3.1 that such rays
are given by the columns of −Ā−1, we may write d̂ = −βm̂Ā−1em̂ − βk̂Ā

−1ek̂,
for some βm̂, βk̂ ≥ 0, with ei the i-th canonical vector. Since (11c) is binding
we have:

ām̂,∗d̂/λ
∗
m̂ + āk̂,∗d̂/yk̂ = 0,

=⇒ ām̂,∗(−βm̂Ā−1em̂ − βk̂Ā
−1ek̂)/λ∗m̂ + āk̂,∗(−βm̂Ā

−1em̂ − βk̂Ā
−1ek̂)/yk̂ = 0.

Now from ĀĀ−1 = I we have ām̂,∗Ā
−1 = eTm̂, āk̂,∗Ā

−1 = eT
k̂

, and so

−βm̂ = βk̂λ
∗
m̂/yk̂ =⇒ d̂ = βk̂(rk̂ − λ∗m̂

yk̂
rm̂).

Suppose y ≤ y∗, and so Ky ⊆ K. Then by construction of y∗, i.e. (9), we

have d̂ ∈ rec(C) (consider e.g. βk̂ = |yk̂|).
Now suppose there exists some k̄ ∈ Ky such that yk̄ > y∗

k̄
. Then there must

also exist some m̄ such that λ∗m̄r
m̄ − yk̄rk̄ /∈ rec(C). We can easily check that

d̂ = λ∗m̄r
m̄ − yk̄rk̄ satisfies (11a)-(11c). Therefore, we have at least one extreme

14

ray d̂ outside of rec(C).

Characterization of W :
We have shown that the extreme rays of cl(W) are in rec(C) iff y ≤ y∗. If there
is an extreme ray of cl(W) outside rec(C) then, since C is closed and convex,
W 6⊆ int(C). Hence the contrapositive is proved (=⇒).

Suppose y ≤ y∗. The extreme points of cl(W) are the finite intersection
points of P ′ with C. Thus every point in conv(ext(cl(W))) may be written as
x̄ + xe for some xe ∈ conv({λ∗mrm|m ∈ M}). Let w be a point in W . By
convexity we may write w in terms of the extreme points and rays of cl(W):
w = x̄ + xe + dr + αdk, for some dr ∈ rec(W) ⊆ rec(C), α ≥ 0, and dk ∈
cone({rk|k ∈ Ky}) ⊆ rec(C). Now by definition of W we have that w strictly
satisfies Equation (10c), and so αdk > 0. Furthermore, by construction of y∗,
for γ ≥ maxk∈Ky

{−y∗k} we have that λ∗mr
m + γdk ∈ rec(C)∀m ∈ M and thus

xe + γdk + dr ∈ rec(C). Since x̄ ∈ int(C), we have x(γ) := x̄+ xe + γdk + dr ∈
int(C). So w lies between x̄+ xe + dr ∈ C and the interior point x(γ) ∈ int(C),
so w ∈ int(C). Since our choice of w is arbitrary, we have W ⊆ int(C). Hence
the converse is true (⇐=).

It can also be shown (formal proofs are omitted for brevity) that if |M | = 1,
then Vy ∩P ′ = conv(P ′ \ int(C)). When |M | > 1, more than one cut is needed,
in general, to describe this convex hull.

3.3 Summary of Intersection Cut Generation

Summarizing the above discussion, an intersection cut for P requires:

1. A simplicial conic relaxation P ′ ⊇ P with some apex x̄ /∈ S.

2. An S-free set C containing x̄ in its interior.

3. For each extreme ray of P ′, either the intersection with the boundary of
C, or else proof that the ray is contained entirely in C.

4. In case a ray in contained entirely in C, access to rec(C) is needed for the
strengthening procedure.

Step 1 is satisfied if one selects n linearly independent inequalities from the
description of P , i.e. a basis of P . A standard approach is to select an optimal
basis obtained by solving the corresponding LP relaxation over P . This is not
necessarily the best choice: for example, infeasible basic solutions can also be
used [10, 35]. Step 2, in the case of polynomial optimization, is the focus of
Section 4. Step 3 and 4, in the case of polynomial optimization, is addressed in
Section 5. Note that finding an intersection point precisely on the boundary is
not necessary. A simple way in practice to ensure numerical ‘safety’ of the cut
is to use a point between x̄ and the intersection point with C. Computing such
a point is computationally straightforward provided one can quickly determine
membership in C.

15

4 Outer-Product-Free Sets

We now turn to polynomial optimization (PO), with the aim of generating
strong polyhedral relaxations using the strengthened intersection cut framework
described above. Our approach to PO leverages the moment/sum-of-squares
approach to polynomial optimization (see [54, 55]) from where a definition of
the feasible set as S ∩ P is naturally obtained.

Let mr = [1, x1, . . . , xn, x1x2, ..., x
2
n, . . . , x

r
n] be a vector of all monomials up

to degree r. Any polynomial may be written in the form pi(x) = mT
r Aimr

(provided r is sufficiently large), where Ai is a symmetric matrix derived from
coefficients of pi. We can apply this transformation to PO to obtain a lifted
representation LPO:

min 〈A0, X〉
(LPO) s.t. 〈Ai, X〉 ≤ bi, i = 1, ...,m, (12a)

X = mrm
T
r . (12b)

Denote nr :=
(
n+r
r

)
, i.e. the length of mr. Here Ai ∈ Snr×nr are symmetric

real matrices of data, and X ∈ Snr×nr is a symmetric real matrix of decision
variables. The problem has linear objective function, linear constraints (12a),
and nonlinear constraints (12b). One can replace the moment matrix condition
X = mrm

T
r with the equivalent conditions of X � 0, rank(X) = 1 and linear

consistency constraints enforcing that entries from X representing the same
monomial terms are equal.

Dropping the nonconvex rank one constraint yields the standard SDP relax-
ation [83]. The relaxation is said to be exact when there is an optimal solution
where rank(X) = 1 since the solution can be factorized to obtain an optimal
solution vector for PO. In special cases (e.g. [54,55,60]) the relaxation is guar-
anteed to be exact for sufficiently large r.

Note that (as presented) there is a combinatorial explosion in the size of
LPO (hence the size of any associated relaxation) with respect to r. This is
not a critical issue for our purposes, as several remedies are available that can
accommodate our cuts such as: projection, partial lifting, and lower-degree re-
formulation with auxiliary variables. Such procedures have associated tradeoffs
between relaxation quality, cut quality, size, and speed, and we leave detailed
exploration of this outside the scope of the paper in order to focus on cut gen-
eration for a given choice of r.

The feasible region of LPO has a natural description as an intersection of
a polyhedron POP , that corresponds to linear constraints (12a) together with
consistency constraints, and the following closed set,

SOP := {X ∈ Snr×nr : X = xxT , x ∈ Rnr}.

We shall refer to matrices in SOP as (real) symmetric outer-products (with
nonnegative diagonal). Accordingly, we shall study sets that are outer-product-
free (OPF): closed, convex sets in Snr×nr with interiors that do not intersect
with SOP .

16

In what follows, we suppose we have an extreme point X̄ ∈ POP with spectral
decomposition X̄ :=

∑nr

i=1 λidid
T
i and ordering λ1 ≥ ... ≥ λnr

. We seek to
separate X̄ if it is not in SOP .

4.1 Oracle-Based Outer-Product-Free Sets

Recall from Section 2.1 that our oracle-based cut requires the distance to S,
which in the case of LPO corresponds to the distance to the nearest positive
semidefinite matrix with rank at most one. This distance can be obtained as a
special case of the following positive semidefinite matrix approximation problem,
given an integer q > 0:

(PMA) min
Y
{‖X̄ − Y ‖ : rank(Y) ≤ q, Y � 0}. (13)

Here ‖·‖ is a unitarily invariant matrix norm such as the Frobenius norm, ‖·‖F .
Dax [29] proves the following:

Theorem 11 (Dax’s Theorem). Let k be the number of nonnegative eigenvalues
of X̄. For 1 ≤ q ≤ n − 1, an optimal solution to PMA is given by Y =∑min{k,q}
i=1 λidid

T
i .

This can be considered an extension of an earlier result by Higham [46] for
q = n. When X̄ is not negative semidefinite, the solution from Dax’s theorem
coincides with the Eckart-Young-Mirsky [33, 65] solution to PMA without the
positive semidefinite constraint. The optimal positive semidefinite approximant
allows us to construct an outer-product-free ball:

Boracle(X̄) :=

{
B(X̄, ‖X̄‖F), if X̄ is NSD,
B(X̄, ‖

∑n
i=2 λidid

T
i ‖F), otherwise.

Corollary 12. Boracle(X̄) is outer-product-free.

Proof. Setting q = 1 in Dax’s Theorem, we see that the nearest symmetric outer
product is either λ1d1d

T
1 if λ1 > 0, or else the zeros matrix.

In the generic construction the oracle ball is centered around X̄ since no
further structure is assumed upon S when using an oracle. However, for LPO
we can in certain cases use a simple geometric construction to obtain a larger
ball containing the original one, as follows. Consider a ball B(X, r). Let s > 0
and suppose Q is in the boundary of the ball. We construct the “shifted” ball
B(Q+ (s/r)(X −Q), s). This ball has radius s and its center is located on the
ray through X emanating from Q.

Remark. If s > r then the shifted ball contains the original ball. Algebraically
we may write that for any s > r we have

B((s/r)X + (1− s/r)Q, s) ⊃ B(X, r) ∀Q ∈ Sn×n,

or B(Q+ (s/r)(X −Q), s) ⊃ B(X, r) ∀Q in the boundary of B(X, r).

17

Hence we can design a shifted oracle ball by choosing a point on the boundary
of Boracle and proceeding accordingly. Let us use the nearest symmetric outer
product as the boundary point in our construction:

Bshift(X̄, s) :=

{
B(sX̄/‖X̄‖F , s), if X̄ is NSD,

B
(
λ1d1d

T
1 + s

‖X̄−λ1d1dT1 ‖F
(X̄ − λ1d1d

T
1) , s

)
, otherwise.

Proposition 13. Suppose X̄ /∈ SOP . If λ2 ≤ 0 then Bshift(X̄, ‖X̄‖F + ε) is
outer-product-free and strictly contains Boracle(X̄) for ε > 0. If 0 < λ2 <
λ1, then for

∥∥∑n
i=2 λidid

T
i

∥∥
F
< s ≤ λ1

λ2

∥∥∑n
i=2 λidid

T
i

∥∥
F

, Bshift(X̄, s) is outer-

product-free and strictly contains Boracle(X̄).

Proof. Strict containment is assured by construction, so it suffices to show that
Bshift is outer-product-free. First suppose X̄ is negative semidefinite. Then,

Bshift(X̄, ‖X̄‖F + ε) = B((‖X̄‖F + ε)X̄/‖X̄‖F , ‖X̄‖F + ε),

= B
(

(1 +
ε

‖X̄‖F
)X̄, ‖X̄‖F + ε

)
.

The matrix (1+ε/‖X̄‖F)X̄ is negative semidefinite due to our negative semidefi-
nite assumption on X̄, so from Dax’s theorem we know the nearest outer product
is the all zeros matrix. Hence for Bshift to be outer-product-free, its radius can
be no more than the Frobenius norm of its center, (1 + ε/‖X̄‖F)X̄, which by
observation is indeed the case.

Now suppose X̄ has at least one positive eigenvalue. Then for s > 0

Bshift(X̄, s) = B
(
λ1d1d

T
1 +

s

‖X̄ − λ1d1dT1 ‖F
(X̄ − λ1d1d

T
1), s

)
,

= B

(
λ1d1d

T
1 +

s

‖
∑n
i=2 λidid

T
i ‖F

n∑
i=2

λidid
T
i , s

)
.

If λ2 ≤ 0 then the nearest outer product to the center of the shifted ball, by
Dax’s theorem, is λ1d1d

T
1 . Thus, the maximum radius of an outer-product-free

ball centered at

λ1d1d
T
1 +

s

‖
∑n
i=2 λidid

T
i ‖F

n∑
i=2

λidid
T
i

is ‖(s/‖
∑n
i=2 λidid

T
i ‖F)

∑n
i=2 λidid

T
i ‖F = s, and so Bshift(X̄, ‖X̄‖F+ε) is outer-

product-free for all ε > 0.
If 0 < λ2 < λ1, then again by Dax’s theorem the nearest outer product to

the center of the shifted ball is λ1d1d
T
1 iff

λ1 ≥
s

‖
∑n
i=2 λidid

T
i ‖F

λ2, i.e, iff s ≤ λ1

λ2

∥∥∥∥∥
n∑
i=2

λidid
T
i

∥∥∥∥∥
F

.

18

This gives us a maximum radius of∥∥∥∥∥ s

‖
∑n
i=2 λidid

T
i ‖F

n∑
i=2

λidid
T
i

∥∥∥∥∥
F

= s.

These results provide our first outer-product-free sets. Nonetheless, there is
no guarantee they will be maximal. We now turn to characterizing and finding
maximal outer-product-free sets.

4.2 Maximal Outer-Product-Free Sets

4.2.1 General properties of maximal outer-product-free sets

Lemma 14. Let C be a full-dimensional convex set. Every interior ray of
cone(C) emanating from the origin passes through the interior of C.

Proof. Consider an interior ray r of cone(C) emanating from the origin and
suppose it contains a point v ∈ C. If r intersects the interior of C we are
done, hence assume it does not. Then there exists a hyperplane H containing
r which supports C at v. Since H contains r, it contains the origin. Thus H
supports cone(C) at r, which contradicts the assumption that r is interior to
cone(C).

The following Theorem and Corollary provide the first building blocks to-
wards maximality.

Theorem 15. Let C ⊂ Snr×nr be a full-dimensional outer-product-free set.
Then clcone(C) is outer-product-free.

Proof. Suppose clcone(C) is not outer-product-free; since it is closed and convex,
then by definition of outer-product-free sets there must exist d ∈ Rnr such that
ddT is in its interior. If d is the zeros vector, then ~0 ∈ int(clcone(C)) =⇒ ~0 ∈
int(C), which contradicts the condition that C be outer-product-free. Otherwise
the ray r0 emanating from the origin with nonzero direction ddT is entirely
contained in and hence is an interior ray of clcone(C). By convexity, the interior
of cone(C) is the same as the interior of its closure, so r0 is also an interior ray
of cone(C). By Theorem 14, r0 passes through the interior of C. But every
point along r0 is a symmetric outer-product, which again implies that C is not
outer-product-free.

Corollary 16. Every full-dimensional maximal outer-product-free set is a con-
vex cone.

Remark. The characterization in Theorem 15 allows us to expand the oracle-
based outer-product-free sets in Section 4.1. Provided s is chosen as prescribed
by Theorem 13, the closure of the conic hull, clcone(Bshift(X̄, s)), is also outer-
product-free. In the proof of Theorem 13 we showed that if X̄ is NSD, then

19

for ε > 0 the outer-product-free set Bshift(X̄, ‖X̄‖F + ε) contains the origin (the
all zeros matrix) in its boundary. In this case the closure of the conic hull is
a halfspace tangent to the ball at the origin. Otherwise if X̄ is not NSD then
we must consider two cases: either λ2 is nonpositive or it is positive. If λ2 is
nonpositive, then we can set ε to any large number, and so we have a shifted ball
with arbitrarily large radius that is tangent to λ1d1d

T
1 . Thus in the limit as ε

approaches infinity we obtain an outer-product-free halfspace that is tangent to
λ1d1d

T
1 with normal parallel to the vector from X̄ to λ1d1d

T
1 . If λ2 is positive,

then for
∥∥∑n

i=2 λidid
T
i

∥∥
F
< s ≤ λ1

λ2

∥∥∑n
i=2 λidid

T
i

∥∥
F

, the outer-product-free

ball Bshift(X̄, s) does not contain the origin. In this case the conic hull is equal
to its closure [48, Prop 1.4.7].

We can also consider maximal outer-product-free sets via their supporting
halfspaces.

Definition 17. A supporting halfspace of a closed, convex set S contains S and
its boundary is a supporting hyperplane of S.

Corollary 18. Let C be a full-dimensional maximal outer-product-free set. Ev-
ery supporting halfspace of C is of the form 〈A,X〉 ≥ 0 for some A ∈ Snr×nr .

Proof. From Theorem 16 we have that C is a convex cone, and so the result
follows from classic convex analysis [75, Cor 11.7.3].

From Theorem 18 we may thus characterize a maximal outer-product-free
set as C = {X ∈ Snr×nr |〈Ai, X〉 ≥ 0 ∀i ∈ I}, where I is an index set that is not
necessarily finite. It will be useful to classify the supporting halfspaces in terms
of the coefficient matrix: A is either positive semidefinite, negative semidefinite,
or indefinite.

We are now ready to provide our first explicit family of maximal outer-
product-free sets.

Theorem 19. The halfspace 〈A,X〉 ≥ 0 is maximal outer-product-free iff A is
negative semidefinite.

Proof. Suppose A has a strictly positive eigenvalue, with corresponding eigen-
vector d. Then 〈A, ddT 〉 > 0, and so the halfspace is not outer-product-free.

If A is negative semidefinite we have 〈A, ddT 〉 = dTAd ≤ 0 ∀d ∈ Rnr , so
the halfspace is outer-product-free. For maximality, suppose the halfspace is
strictly contained in another outer-product-free set C̄. Then there must exist
some X̄ ∈ int(C̄) such that 〈A, X̄〉 < 0. However, 〈A, (−X̄)〉 > 0, and so the
zeros matrix is interior to C̄ since it lies between X̄ and −X̄. Thus C̄ cannot
be outer-product-free.

Corollary 20. Let C be a full-dimensional maximal outer-product-free set with
supporting halfspaces {〈Ai, X〉 ≥ 0 : i ∈ I}. Here, the set I is possibly infinite.
If there exists i ∈ I such that Ai is negative semidefinite, then C is exactly the
halfspace 〈Ai, X〉 ≥ 0.

20

Proof. Suppose C is contained in the halfspace 〈Ai, X〉 ≥ 0 with Ai NSD. By
Theorem 19 the halfspace is outer-product-free, and so C is maximal only if it
is the supporting halfspace itself.

4.2.2 Maximal outer-product-free sets derived from 2×2 submatrices

Another important family of maximal outer-product-free sets can be obtained
using the following characterization of rank-1 PSD matrices by Kocuk, Dey, and
Sun [51]:

Proposition 21 (KDS Proposition). A nonzero, Hermitian matrix X is posi-
tive semidefinite and has rank one iff all the 2×2 minors of X are zero and the
diagonal elements of X are nonnegative.

Denote the entries of a 2 × 2 submatrix of X from some rows i1 < i2 and

columns j1 < j2 as X[[i1,i2],[j1,j2]] :=

[
a b
c d

]
.

Lemma 22. Let λ ∈ R2 with ‖λ‖2 = 1. Then each of the following describes
an outer-product-free set:

λ1(a+ d) + λ2(b− c) ≥ ‖b+ c, a− d‖2, (14a)

λ1(b+ c) + λ2(a− d) ≥ ‖a+ d, b− c‖2. (14b)

Proof. First consider (14a). From Theorem 21 we have the necessary condi-
tion for an outer product that ad = bc. Hence the set of symmetric matrices
satisfying ad ≥ bc contains no outer product in its interior. Note that

ad ≥ bc ⇐⇒ (a+ d)2 − (a− d)2 ≥ (b+ c)2 − (b− c)2

⇐⇒ ‖a+ d, b− c‖2 ≥ ‖b+ c, a− d‖2.

Clearly ‖a+d, b−c‖2 ≥ λ1(a+d)+λ2(b−c), and so (14a) describes a subset
of the set satisfying ad ≥ bc, thus, it is outer-product-free. (14b) follows in the
same way, replacing a for b and c for d in the proof for (14a).

The following Theorem provides an extensive list of maximal outer-product-
free sets that can be obtained from Lemma 22.

Theorem 23. (14a) describes a maximal outer-product-free set if
i) λ1 = 1, λ2 = 0, and neither b nor c are diagonal entries;
ii) λ1 = 0, λ2 = 1, and b is a diagonal entry;
iii) λ1 = 0, λ2 = −1, and c is a diagonal entry;
iv) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.

Similarly, (14b) describes a maximal outer-product-free set if
v) λ1 = 1, λ2 = 0, and either b or c is a diagonal entry;
vi) λ1 = 0, λ2 = 1, and a but not d is a diagonal entry;
vii) λ1 = 0, λ2 = −1, and d but not a is a diagonal entry;
viii) λ2

1 + λ2
2 = 1, and none of a, b, c, d are diagonal entries.

21

Proof. The outer-product-free property is given by Theorem 22, so maximality
remains. Let C be a set described by (14a) or (14b). It suffices to construct, for
every symmetric matrix X̄ 6∈ C, Z := zzT such that Z ∈ int(conv(C ∪ X̄)). As
C is a cone, this is equivalent to showing Z − X̄ ∈ int(C), and so conv(C ∪ X̄)
is not outer-product-free (irrespective of X̄). This would imply that C cannot
be contained in a larger S-free set.

Denote the submatrices of X̄, Z:

X̄[[i1,i2],[j1,j2]] :=

[
ā b̄
c̄ d̄

]
, Z[[i1,i2],[j1,j2]] :=

[
aZ bZ
cZ dZ

]
.

Furthermore, for convenience let us define the following:

p̄ := (ā+ d̄)/2, q̄ := (ā− d̄)/2, r̄ := (b̄+ c̄)/2, s̄ := (b̄− c̄)/2.

Construction for (14a): Suppose X̄ violates (14a). We propose the following:[
aZ bZ
cZ dZ

]
=

[
q̄ + λ1‖q̄, r̄‖2 r̄ + λ2‖q̄, r̄‖2
r̄ − λ2‖q̄, r̄‖2 −q̄ + λ1‖q̄, r̄‖2

]
, (15)

=⇒ λ1(ā+ d̄)/2 + λ2(b̄− c̄)/2 < ‖(b̄+ c̄)/2, (ā− d̄)/2‖2
= λ1(aZ + dZ)/2 + λ2(bZ − cZ)/2

where the last equality follows from λ2
1 + λ2

2 = 1. This implies

λ1((aZ − ā) + (dZ − d̄)) + λ2((bZ − b̄)− (cZ − c̄)) > 0

and since ‖(bZ − b̄) + (cZ − c̄), (aZ − ā)− (dZ − d̄)‖2 = 0, we conclude Z − X̄ ∈
int(C).

Construction for (14b): If X̄ violates (14b), we use the following construction:[
aZ bZ
cZ dZ

]
=

[
p̄+ λ2‖p̄, s̄‖2 s̄+ λ1‖p̄, s̄‖2
−s̄+ λ1‖p̄, s̄‖2 p̄− λ2‖p̄, s̄‖2

]
, (16)

=⇒ λ1(b̄+ c̄)/2 + λ2(ā− d̄)/2 < ‖(ā+ d̄)/2, (b̄− c̄)/2‖2
= λ1(bZ + cZ)/2 + λ2(aZ − dZ)/2,

=⇒ λ1((bZ − b̄) + (cZ − c̄)) + λ2((aZ − ā)− (dZ − d̄)) > 0.

We conclude Z − X̄ ∈ int(C) as before, since ‖(aZ − ā) + (dZ − d̄), (bZ − b̄) −
(cZ − c̄)‖2 = 0. It remains to set the other entries of Z and to show it is an
outer product.

Claim. For each condition (i)-(viii), aZdZ = bZcZ and all diagonal elements
among aZ , bZ , cZ , dZ are nonnegative.

22

Proof: First consider conditions (i)-(iv). By construction of (15):

aZdZ = − q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖q̄, r̄‖22 = q̄2 + r̄2 ⇐⇒ −q̄2 + λ2
1‖q̄, r̄‖22 = r̄2 − λ2

2‖q̄, r̄‖22.

Now we only need to prove that diagonal elements of Z are nonnegative. To see
this, first notice that in case (i) only aZ or dZ can be diagonal elements, and
they are both nonnegative because of ‖q̄, r̄‖2 ≥ max{|q̄|, |r̄|}. In case (ii) and
(iii), bZ and cZ , respectively, can be diagonal elements and, again in view of
‖q̄, r̄‖2 ≥ max{|q̄|, |r̄|} these are nonnegative. In case (iv) there are no diagonal
elements so there is nothing to prove.

Now, for conditions (v)-(viii),

aZdZ = p̄2 − λ2
2‖p̄, s̄‖22 = −s̄2 + λ2

1‖p̄, s̄‖22 = bZcZ .

The second equality is derived from the following identity:

‖p̄, s̄‖22 = p̄2 + s̄2 ⇐⇒ −s̄2 + λ2
1‖p̄, s̄‖22 = p̄2 − λ2

2‖p̄, s̄‖22.

Nonnegativity of diagonal elements follows from the same argument as be-
fore, by using the fact that ‖p̄, s̄‖2 ≥ max{|p̄|, |s̄|}. �

To maintain symmetry we set Zi1,j1 = Zj1,i1 , Zi1,j2 = Zj2,i1 , Zi2,j1 = Zj1,i2 ,
Zi2,j2 = Zj2,i2 . Now denote ` = [i1, i2, j1, j2]. If aZ = bZ = cZ = dZ = 0, then
we simply set all other entries of Z equal to zero and so Z is the outer product
of the vector of zeroes. Otherwise, consider the following cases.

Case 1: ` has 4 unique entries. Suppose w.l.o.g we have an upper-triangular
entry (i1 < i2 < j1 < j2) and furthermore suppose that bZ is nonzero. Set

Z` :=

1 dZ/bZ aZ bZ

dZ/bZ d2
Z/b

2
Z cZ dZ

aZ cZ a2
Z aZbZ

bZ dZ aZbZ b2Z

 , z` := [1 dZ/bZ aZ bZ],

and all remaining entries of Z (and z) to zero. Recall that aZdZ = bZcZ , and
so Z = zzT . Other orderings of indices or the use of a different nonzero entry
is handled by relabeling/rearranging column/row order.

Case 2: ` has three unique entries. Then, exactly one of aZ , bZ , cZ , dZ is a
diagonal entry, and so cases (i)-(iii), (v)-(vii) apply. For cases (i) and (vi)-(vii),
where either aZ or dZ is on the diagonal, by construction |bZ | = |cZ |. As
aZdZ = bZcZ , we have bZ = cZ = 0 iff exactly one of aZ or dZ is zero. Likewise,
for cases (ii)-(iii) and (v), where either bZ or cZ is a diagonal element, then
|aZ | = |dZ | and so aZ = dZ = 0 iff exactly one of bZ or cZ are zero.

23

Suppose aZ is a nonzero diagonal entry. We propose:

Z`′ :=

 aZ bZ cZ
bZ b2Z/aZ dZ
cZ dZ c2Z/aZ

where `′ are the unique entries of `, and all other entries of Z are set to zero. If
aZ = 0 and is on the diagonal, then we replace b2Z/aZ and c2Z/aZ with |dZ |. If
bZ , cZ or dZ is on the diagonal, we use the same construction but with relabel-
ing/rearranging column/row order.

Case 3: ` has two unique entries. All remaining entries of Z are set to zero.

In all cases, all diagonal entries of Z are nonnegative and all 2 × 2 minors
are zero; by Theorem 21, Z is an outer product.

Additionally, we show a choice of λ in Theorem 22 which ensures separation.

Lemma 24. Consider a matrix X̄ and a 2× 2 submatrix

X̄[[i1,i2],[j1,j2]] :=

[
ā b̄
c̄ d̄

]
such that ād̄ 6= b̄c̄. Then,

• If ād̄ > b̄c̄, X̄ is in the interior of the cone defined by (14a) with

λ1 =
ā+ d̄

‖ā+ d̄, b̄− c̄‖2
, λ2 =

b̄− c̄
‖ā+ d̄, b̄− c̄‖2

. (17a)

• If ād̄ < b̄c̄, X̄ is in the interior of the cone defined by (14b) with

λ1 =
b̄+ c̄

‖b̄+ c̄, ā− d̄‖2
, λ2 =

ā− d̄
‖b̄+ c̄, ā− d̄‖2

. (17b)

Proof. Let us first consider the case ād̄ > b̄c̄, and λ defined as in (17a), then

λ1(ā+ d̄) + λ2(b̄− c̄)− ‖b̄+ c̄, ā− d̄‖2 = ‖ā+ d̄, b̄− c̄‖2 − ‖b̄+ c̄, ā− d̄‖2,

and since
‖ā+ d̄, b̄− c̄‖22 − ‖b̄+ c̄, ā− d̄‖22 = 4ād̄− 4b̄c̄ > 0,

we conclude X̄ is in the interior of the cone defined by (14a). When ād̄ < b̄c̄ we
obtain the second case which involves (14b) the same way.

Remark. Note that in the proof above the λ choices are, in a sense, the best
possible. The following optimization problem

max{λ1x+ λ2y : λ2
1 + λ2

2 = 1}

has the optimal solution λ1 = x/‖x, y‖2, λ2 = y/‖x, y‖2. This proves that λ
defined in (17a) maximizes the difference between both sides of inequality (14a).
The same holds for λ defined in (17b) with respect to (14b). Note that this is
“best” in a violation sense, and may not translate to finding the deepest cut.

24

4.2.3 All maximal outer-product-free sets when nr = 2

As a consequence of Theorem 23 we can characterize all outer-product-free sets
in S2×2. The next corollary follows from Theorem 23.

Corollary 25. Snr×nr
+ is maximal outer-product-free iff nr ≤ 2.

Proof. Let a, d be diagonal entries so b = c by symmetry. Then case (i) in
Theorem 23 describes the maximal outer-product-free set C̄ given by a + d ≥
‖2b, a−d‖2, i.e. a 2×2 principal submatrix is PSD. If nr > 2, C̄ strictly contains
Snr×nr

+ . Hence, Snr×nr
+ cannot be maximal.

If nr = 2, then C̄ = Snr×nr
+ . For nr < 2, maximality is trivial.

Lemma 26. In S2×2 the cone of positive semidefinite matrices is the unique
maximal outer-product-free set containing at least one positive semidefinite ma-
trix in its interior.

Proof. From Theorem 25 we have that the cone of PSD matrices is maximal for
nr = 2. Hence, if there exists a maximal outer-product-free set containing a PSD
matrix in its interior, it consequently contains in its interior a boundary point
of S2×2

+ —otherwise, it is a subset of the PSD cone. However, every boundary
point of the PSD cone has at least one zero-valued eigenvalue; it follows that
for nr = 2 every such point is a symmetric outer product.

Theorem 27. In S2×2 every full-dimensional maximal outer-product-free set
is either the cone of positive semidefinite matrices or a halfspace of the form
〈A,X〉 ≥ 0, where A is a symmetric negative semidefinite matrix.

Proof. From Theorem 26, we have that every maximal outer-product-free set is
either the cone of positive semidefinite matrices or it does not contain a PSD
matrix in its interior. Now suppose C ∈ Snr×nr is a maximal outer-product-
free set that is not the cone of positive semidefinite matrices. C is thus a
closed, convex set with interior that does not intersect with S2×2

+ . Then by the

separating hyperplane theorem there exists a supporting hyperplane of S2×2
+ ,

which by Theorem 18 and Theorem 26 is of the form 〈A,X〉 = 0, such that C is
contained in the halfspace 〈A,X〉 ≥ 0. But if A has a positive eigenvalue then
the halfspace includes at least one PSD matrix; thus to maintain separation A
is necessarily negative semidefinite. Furthermore, for any negative semidefinite
A the halfspace 〈A,X〉 ≥ 0 is outer-product-free by Theorem 19 so C must be
the halfspace itself in order to be maximal outer-product-free.

5 Step Lengths, Strengthening, and Separation

In this section we discuss the implementation of Step 3 and 4 of the intersection
cut as described in Section 3.3. In particular, given a simplicial cone P ′ with
apex X̄ /∈ SOP , we discuss how to select appropriate outer-product-free sets
among those given in Section 4 and how to generate the corresponding step
lengths λ in order to generate a cut for P that separates X̄.

25

5.1 Oracle-Based Cuts

As shown in Section 4.1, the oracle ball Boracle(X̄) can be used to generate
a separating intersection cut for any X̄ that is not a symmetric, real outer-
product, and calculation of the radius and center of either ball can be done
using the spectral decomposition of X̄. For Boracle, the step lengths λ are all
equal to the radius of the ball. We can strengthen the cut further by using the
conic extension clcone(Bshift(X̄, s)) (see Theorem 13 and Theorem 15).

If X̄ is NSD, then by Theorem 13 for any ε > 0 the shifted ball B((1 +
ε

‖X̄‖F
)X̄, ‖X̄‖F + ε) is outer-product-free. The closed conic hull of this ball

(irrespective of ε) is a halfspace tangent to the ball at the origin. A normal
vector of this halfspace is thus X̄/‖X̄‖F , and so the equation of the halfspace is
〈X̄/‖X̄‖F , X〉 ≥ 0. The best possible cut from this maximal (recall Theorem 19)
outer-product-free halfspace is a halfspace in the opposite direction,

〈X̄/‖X̄‖F , X〉 ≤ 0.

Otherwise, if X̄ is not NSD, then we must determine the sign of λ2. If
λ2 is nonpositive, then we may use the halfspace that contains λ1d1d

T
1 on its

boundary and that is perpendicular to the vector from X̄ to λ1d1d
T
1 , i.e. 〈X̄ −

λ1d1d
T
1 , X − λ1d1d

T
1 〉 ≥ 0. Again, the best possible cut is a halfspace in the

opposite direction:
〈X̄ − λ1d1d

T
1 , X − λ1d1d

T
1 〉 ≤ 0.

If X̄ is not NSD and λ2 is positive, then we may use the maximum shift
prescribed by Theorem 13: s = λ1

λ2

∥∥∑n
i=2 λidid

T
i

∥∥
F

. This gives us a shifted ball
with centre

XC := λ1d1d
T
1 +

λ1

λ2
(X̄ − λ1d1d

T
1)

and radius

q :=
λ1

λ2

∥∥X̄ − λ1d1d
T
1

∥∥
F
.

The ball does not touch the origin (see proof of Theorem 13), thus cone(B(XC , q))
is outer-product-free and contains X̄. Given the kth extreme ray of P ′, ema-
nating from X̄ along the direction D(k), we wish to determine the intersec-
tion point Z0 := X̄ + λkD

(k) with the boundary of cone(B(XC , q)). First
we must check if the ray is contained in the cone, i.e. if the intersection
is at infinity. The scalar projection of the direction vector onto the axis of
the cone is 〈D(k), XC〉/‖XC‖F . If the scalar is negative, then the ray passes
through the cone. If the scalar is nonnegative, then the radius of the cone
at the projected point is r1 := 〈D(k), XC〉q/(‖XC‖F

√
‖XC‖2F − q2) (see Equa-

tion (23) in Appendix A). The distance from D(k) to the cone’s axis is d1 :=
‖D(k) − (〈D(k), XC〉/〈XC , XC〉)XC‖F .

If d1 ≥ r1 then the ray intersects with the boundary of the cone and the
step length is finite. The scalar projection of Z0 onto the axis of cone(B(XC , q))
is given by 〈Z0, XC〉/‖XC‖F . The radius of the cone at the projected point is
r2 := 〈Z0, XC〉q/(‖XC‖F

√
‖XC‖2F − q2). The distance from Z0 to the axis is

26

d2 := ‖Z0 − (〈Z0, XC〉/〈XC , XC〉)XC‖F . Intersection occurs at d2 = r2, and
squaring both sides yields a quadratic equation, the positive root of which yields
the step length.

Otherwise, the step length is infinite and we may apply the strengthening
procedure of Section 3.2. Let m be the index of an extreme ray of P ′ with finite
intersection. Applying Equation (9) yields

λ
′

k := max{y | ‖λmD(m) − yD(k) − (〈λmD(m) − yD(k), XC〉/〈XC , XC〉)XC‖F

≤ 〈λmD(m) − yD(k), XC〉q/(‖XC‖F
√
‖XC‖2F − q2)} (18)

The maximum occurs when the inequality is set to equality. Squaring both
sides of the equality we again have a quadratic equation, and the step length is
its (algebraically) greatest root.

5.2 Outer-Approximation Cuts

The maximal outer-product-free sets described by Theorem 19 are halfspaces,
and so the best possible cuts that can be derived from these are of the form
〈A,X〉 ≤ 0, where A is NSD. However, observe that if A has rank k > 1, then

the cut is of the form
∑k
i=1 λid

T
i Xdi ≤ 0, where each λi is a negative eigen-

value. Then the inequality is implied by and thus weaker than the individual
inequalities of the form λid

T
i Xdi ≤ 0. These individual inequalities are valid

as they are necessary for the positive semidefinite condition on X, and so the
halfspaces described by Theorem 19 characterize the outer-approximation cuts
of the SDP relaxation to LPO. Therefore separation is only possible if X̄ is
not PSD. We adopt a standard approach to separation (see e.g. [53,73,77,82]),
using all negative eigenvectors of X̄ as cut coefficient vectors.

5.3 2× 2 Submatrix Cuts

Consider the infinite family of maximal outer-product-free sets established in
Theorem 23. Supposing that non-negativity of diag(X) is enforced in P , then
from Theorem 21 it is known X̄ /∈ SOP implies at least one 2 × 2 minor of X̄
is nonzero. From Theorem 24 we know there is always a cone of the form (14a)
or (14b) which contains X̄ in its interior. Searching for an appropriate 2 × 2
submatrix is straightforward: we can enumerate over all 2× 2 submatrices and
check for a nonzero 2 × 2 minor. To generate potentially several cuts from X̄,
we also consider maximal outer-product-free sets from (i)-(iii) and (v)-(vii) of
Theorem 23. After we have identified a cone C given by either (14a) or (14b)
containing X̄, we need to compute the corresponding step lengths.

Fix a direction D, given by an extreme ray of P ′. We first evaluate if D ∈ C,
i.e. evaluating the expression (14a) or (14b). If D 6∈ C, we seek the step length
µ ≥ 0 such that X̄ + µD lies on the boundary of the 2 × 2 cone C. Since
C is represented as a second-order cone, computing such µ reduces to simply
computing the roots of a single-variable quadratic. On the other hand, if D ∈ C,

27

since C is a cone we have X̄ + µD ∈ C for all µ ≥ 0. Therefore, we have an
infinite step length.

In the case of infinite step length, we can use the strengthening procedure
described in Section 3.2.2. The key step in the strengthening procedure is
solving over the recession cone for (9), which in general requires solving |M̄ |
optimization problems over rec(C). However, in this case rec(C) = C, and C
is described as a second order cone. Therefore, solving the optimization in (9)
amounts to simply finding the roots of a single-variable quadratic.

6 Numerical Examples and Experiments

6.1 Example: Polynomial Optimization

We provide a simple example in S2×2. Consider the following polynomial opti-
mization problem:

min x2
1 + x2

2

s.t. − x2
1 − x2

2 + x1x2 ≤ −2,

− x2
1 − x2

2 − x1x2 ≤ −2,

− x2
1 + x2

2 − x1x2 ≤ 0.

An LPO representation (ignoring linear terms) is

min X11 +X22

s.t. −X11 −X22 +X12 ≤ −2, (19a)

−X11 −X22 −X12 ≤ −2, (19b)

−X11 +X22 −X12 ≤ 0, (19c)

X = xxT . (19d)

Dropping the outer product constraint (19d) results in a linear program —
indeed, by construction the linear constraints describe a simplicial cone. The
optimal basic solution X̄ to this linear relaxation is at the apex of the simplicial

cone, X̄ =

[
1 0
0 1

]
. Taking the negative basis inverse,

−

 −1 −1 1
−1 −1 −1
−1 1 −1

−1

=

 0.5 0 0.5
0 0.5 −0.5
−0.5 0.5 0

 ,
we obtain the following extreme ray directions

D(1) =

[
0.5 −0.5
−0.5 0

]
, D(2) =

[
0 0.5

0.5 0.5

]
, D(3) =

[
0.5 0
0 −0.5

]
.

28

2× 2 Cut. The procedure in Section 5.3 gives us the step lengths

λ∗1 = λ∗2 = 2φ ≈ 3.24, λ∗3 = 2,

where φ := 1+
√

5
2 is the golden ratio. Using Equation (6) we obtain the cut

(0.5 + φ−1)X11 + (φ−1 − 0.5)X22 + 0.5X12 ≥ 2φ−1 + 1.

After adding this cut, the strengthened LP produces a rank one solution,

[
2 0
0 0

]
.

Outer Approximation Cut. As X̄ is strictly positive definite, no outer ap-
proximation cut can separate it.

Oracle-Based Ball Cut. Both eigenvalues of X̄ are equal to 1, and so the
radius of the ball is 1. Note that we must normalize the radius to obtain the step
lengths, i.e. λk = 1/‖D(k)‖F . Hence the oracle ball cut is strictly dominated
by the 2× 2 cut: λ1 = λ2 = 2/

√
3 ≈ 1.15, λ3 =

√
2 ≈ 1.41.

Oracle-Based Expanded Ball Cut. From Theorem 13 we have equal eigen-
values, and so the shifting has no effect, i.e. XC = X̄ and q = 1. D(1) has finite
intersection with cone(B(XC , q)) since r1 ≈ 0.35 < d1 ≈ 0.79. The quadratic
equation for determining steplength is −λ2

1 + 2λ1 + 4 = 0, so λ1 = 2φ.
For D(2) we have r1 ≈ 0.35 < d1 ≈ 0.79, so there is a finite step length. The

quadratic equation is −λ2
2 + 2λ2 + 4 = 0, so λ2 = 2φ.

For D(3) we have r1 = 0 and d1 = 1/
√

2, so there is a finite step length. The
quadratic equation is −λ2

3 + 4 = 0, so λ3 = 2.
Thus the strengthening recovers the 2 × 2 cut. Note that Theorem 27 says

that in S2×2 both oracle-based outer-product-free sets are contained in the 2×2
cone since they contain the strictly positive definite X̄. Hence the 2× 2 cone is
the best possible outer-product-free extension of the oracle ball.

6.2 Example: Cardinality Constraint

The oracle (intersection) cut of Section 2.1 can be computed quickly provided
d(x̄, S) can be determined quickly for a given set S. This is the case when S
represents k-cardinality constrained vectors:

S := {x ∈ Rn | card(x) ≤ k},

where card(·) is the number of nonzero entries. For a given vector x̄, the nearest
point in S is a vector x̂ equal to x̄ at the k largest magnitude entries, and zero
elsewhere.

A simple application is the statistical problem of cardinality-constrained
least-absolute deviation regression (see [52]):

min{|Ax− b| : card(x) ≤ k}.

29

The cardinality constraint is used to prevent statistical overfitting. In our ex-
ample let

A =

 1 2 3
2 −1 1
3 0 −1

 , b =

 9
8
3

 ,
and let k = 2. For the S-free approach we use the following formulation,

min x4 + x5 + x6

s.t. x1 + 2x2 + 3x3 − 9 ≤ x4, (20a)

−x1 − 2x2 − 3x3 + 9 ≤ x4, (20b)

2x1 − x2 + x3 − 8 ≤ x5, (20c)

−2x1 + x2 − x3 + 8 ≤ x5, (20d)

3x1 − x3 − 3 ≤ x6, (20e)

−3x1 + x3 + 3 ≤ x6, (20f)

x4, x5, x6 ≥ 0, (20g)

card([x1, x2, x3]) ≤ 2. (20h)

The problem is formulated in extended space with augmented variables
x4, x5, x6 in order to represent the objective function with linear constraints.
Constraints (20a)-(20f) relate the augmented variables to the original objective
function. Constraints (20g) are redundant inequalities used to form a simplicial
cone after solving the linear programming relaxation. Dropping the nonconvex
constraint (20h) yields a linear programming relaxation.

The LP relaxation has an optimal solution x∗ = [2,−1, 3, 0, 0, 0]T with ob-
jective value 0. The closest vector to x∗ obeying the cardinality constraint is
[2, 0, 3, 0, 0, 0]T with Euclidean distance 1, giving us a step size of 1 along all
directions for the intersection cut. The simplicial cone with apex x∗ may be
written as Āx ≤ b̄, where

Ā =

1 2 3 −1 0 0
2 −1 1 0 −1 0
3 0 −1 0 0 −1
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1

 , b̄ =

9
8
3
0
0
0

 .

Applying Equation (6), we generate the cut

6x1 + x2 + 3x3 − 2x4 − 2x5 − 2x6 ≤ 19.

After adding the cut, the linear programming relaxation has optimal solution
x∗ ≈ [1.98,−1.08, 2.95, 0.33, 0, 0]T with improved objective value 1

3 .

30

6.3 Numerical Experiments

We present experiments using a pure cutting-plane algorithm using the cuts
described in Section 5. The experiments are designed to investigate the stand-
alone performance of our cuts, particularly speed and relaxation quality. The
cutting plane algorithm solves an LP relaxation and obtains an (extreme point)
optimal solution X̄, adds cuts separating X̄, and repeats until either:

• A time limit of 600 seconds is reached, or

• The objective value does not improve for 10 iterations, or

• The violation of all cuts is not more than 10−6. Here, if πTx ≤ π0 is the
cut and x∗ is the candidate solution, we define the violation as (πTx∗ −
π0)/‖π‖1.

For numerical stability, we add a maximum of 20 cuts per iteration (selected
using violations) and purge non-active cuts every 15 iterations. Computations
are run on a 32-core server with an Intel Xeon Gold 6142 2.60GHz CPU and 512
GB of RAM. Although the machine is powerful, we run the algorithm single-
threaded and the experiments do not require a significant amount of memory;
we confirmed that similar performance can be obtained with a laptop. The code
is written in C++ using the Eigen library for linear algebra [45]. The LP solver
is Gurobi 8.1.1 and, for comparisons, we solve SDP relaxations using the C++
Fusion API of Mosek 8 [70]. Our code is available at https://github.com/

g-munoz/poly_cuts_cpp.
Our cuts can accommodate polynomials of arbitrary degree, however for

implementation purposes reading quadratically-constrained quadratic programs
(QCQP) problems is more convenient. Thus, our implementation is built for
QCQPs only. However, we note that for our purposes this is without loss of
generality. Any polynomial optimization problem of degree d that is lifted to
LPO with monomials of degree r ≥ dd/2e can be transformed to a QCQP
whose lifted representation with r = 1 is the same. One can obtain said QCQP
by projecting LPO onto mr: adding all linear consistency constraints on X in
LPO; replacing X with mrm

T
r ; and treating mr as a vector of decision variables.

6.3.1 Experiments in QCQPs

Our main experiments are performed over nonconvex QCQPs. In this case, test
instances are taken from two sources. First, we consider all 27 problem instances
from Floudas et al. [37] (available via GLOBALLib [64]) that have quadratic
objective and constraints. Second, we consider all 99 instances of BoxQP devel-
oped by several authors [21,91]. These problems have box constraints x ∈ [0, 1]n

and a nonconvex quadratic objective function. We refer the reader to [22] for
a semidefinite programming approach to this class of instances and [23] for a
completely positive approach to QPs. Recent papers [19, 93] have considered
solving BoxQP with integer linear programming.

31

https://github.com/g-munoz/poly_cuts_cpp
https://github.com/g-munoz/poly_cuts_cpp

In order to evaluate the performance of our general-purpose cuts, we com-
pare our results with the V2 setting used by Saxena, Bonami and Lee [76] and
with SDP relaxations. We chose V2 in [76] as a comparison as we find it the
most similar to our approach. V2 uses an lifted linear relaxation for QCQPs
and applies two types of cuts: an outer-approximation of the PSD cone and dis-
junctive cuts for which the separation involves a MIP. We emphasize that these
families of cuts are complementary and not competitive, and the comparison is
only meant to provide a reference on the effectiveness of our cuts.

In the GLOBALLib instances, we choose the initial LP relaxation to be
the standard RLT relaxation of QCQP: setting r = 1 in LPO and including
McCormick estimators for bilinear terms (see [4,63]). To obtain variable bounds
for some of the GLOBALLib instances we apply a simple bound tightening
procedure: minimize/maximize a given variable subject to the RLT relaxation.
Problem sizes vary from 6× 6 to 63× 63 for these instances.

In the BoxQP instances, we adopt for comparison purposes the initial relax-
ation used by Saxena, Bonami and Lee [76], namely the weak RLT relaxation
(wRLT)1. Problem sizes vary from 21× 21 to 126× 126 symmetric matrices of
decision variables for BoxQP instances.

Lastly, we use Gap Closed as a measure of quality of the bounds generated
by each approach. This is defined as follows: let OPT denote the optimal value
of an instance, IR the optimal value of the initial linear relaxation, and GLB
the objective value obtained after applying the cutting plane procedure. Then
Gap Closed = GLB−IR

OPT−IR .

Results. In Table 1, we show a performance comparison in the selected GLOB-
ALLib instances between our cutting plane algorithm and the RLT-strengthened
SDP relaxation (RLT+SDP). Due to the large performance variability and the
small number of instances in this case, we omit averages of performance mea-
sures. Furthermore, we do not show results for 2 instances for which the RLT
relaxation is tight (no cuts are needed). The results in Table 1 are very en-
couraging: in all but 4 instances our linear relaxations close more gap than
RLT+SDP. Moreover, our simple cutting plane approach (almost) always runs
in a few seconds and in most instances closes considerably more gap than the
SDP relaxation.

For comparison purposes, we turned off our simple bound tightening routine
in order to obtain the same initial relaxation value as V2 (and thus the gaps
are different than the ones in Table 1). Certain GLOBALLib instances still not
matching initial bound values are excluded from comparison. On comparable
GLOBALLib instances our algorithm terminates with a considerable gap closed
on many cases, but it does produce smaller gap closed than V2 on some in-
stances. The advantage of our cuts is that runtimes are substantially shorter.
This is expected, as V2 solves a MIP in the cut generation, while our cuts only
require eigendecomposition and roots of single-variable quadratics. Moreover,
in most cases where intersection cuts do not perform well, V2 also shows mod-

1This BoxQP relaxation only adds the “diagonal” McCormick estimates Xii ≤ xi.

32

est performance. It is important to mention that the running times in Table 2
for V2 correspond to the reports in [76], published in 2010. While new hard-
ware may improve these times, we believe the conclusions we draw from Table 2
would not change substantially.

We note that while, in theory, the outer-approximation cuts alone should
close the same amount of gap as RLT+SDP, this does not always hold in prac-
tice. Pure cutting plane algorithms (especially with dense cuts) can suffer from
numerical instability and careful implementation is key. In addition, GLOB-
ALLib instances can be numerically challenging. In our implementation, we
included conservative criteria regarding cut efficacy, stalling detection, among
others, in order to ensure valid cutting planes. These issues are handled in a
more sophisticated fashion in fully-fledged solvers.

In Table 3 we show a similar comparison for the 42 BoxQP instances re-
ported in [76]. In this case, given that these are randomly generated instances
of the same type, we measure average gap closed. We do not present average
times, however, since there is a time limit present which is reached on many in-
stances. Since the initial relaxation considered for V2 is wRLT, we compare with
the wRLT-strengthened SDP relaxation (wRLT+SDP). On these instances, our
cuts always perform better than both V2 and wRLT+SDP. The latter reaches
optimality in seconds, but the relaxation is not strong, as there are missing Mc-
Cormick inequalities. Our intersection cuts, with a time limit of 600 seconds, are
able to close 91.39% gap on average in these instances, while V2 closes 65.28%
and wRLT+SDP 51.87%. Despite using a weaker initial relaxation, wRLT, our
cuts close a large amount of gap in a short amount of time.

Additional experiment data, comparing our cuts on larger BoxQP instances
with the wRLT+SDP relaxation, can be found in Appendix B. The dimensions
of these instances range from 50×50 to 125×125. In these larger instances, the
LP relaxations quickly become the bottleneck and 600 seconds is not enough to
perform a considerable number of cut rounds. Thus, we also report experiments
with 1 hour time limit. Using the latter limit, we obtain a better closed gap
than wRLT+SDP on average (48.28% vs 40.65%), but the difference is not as
substantial as before. Nonetheless, this is not due to the separation procedure
itself —the cut generation remains efficient and effective. Issues arise due to the
straightforward initial relaxation we use, which creates too many lifted variables
and results in large lifted LP relaxations. As a matter of ongoing work, we are
considering the use of partial lifting, exploiting problem sparsity to derive a
smaller initial LP relaxation.

6.3.2 Preliminary experiments on polynomial instances

We also performed some preliminary experiments in polynomial optimization
instances. We handled these instances as we mention above: we use additional
variables to obtain an equivalent QCQP and use the same setting as in the
previous section.

In this case, instances are drawn from two sources. Firstly, as in the previous
section, we consider instances from [37] (available via GLOBALLib [64]). The

33

Table 1: Comparison of intersection cuts and RLT+SDP on nonconvex
quadratic GLOBALLib instances.

Instance RLT+SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 0.00% 0.01 52.90% 0.02
Ex2 1 5 0.00% 0.02 99.57% 0.01
Ex2 1 6 0.00% 0.02 94.34% 0.10
Ex2 1 7 0.00% 0.28 38.44% 0.86
Ex2 1 8 0.00% 0.62 55.89% 2.81
Ex2 1 9 0.00% 0.02 30.20% 0.96
Ex3 1 1 0.00% 0.02 1.29% 2.79
Ex3 1 2 22.41% 0.01 100.00% 0.01
Ex3 1 4 0.00% 0.01 34.64% 0.02
Ex5 2 2 case1 0.00% 0.02 9.82% 0.43
Ex5 2 2 case2 0.00% 0.02 0.22% 0.89
Ex5 2 2 case3 0.00% 0.02 1.07% 0.49
Ex5 2 4 0.00% 0.01 28.99% 0.23
Ex5 2 5 0.00% 3.39 0.00% 7.50
Ex5 3 2 0.10% 0.54 0.00% 1.08
Ex5 3 3 3.75% 91.47 0.59% 602.33
Ex5 4 2 0.00% 0.03 0.52% 4.66
Ex8 4 1 98.43% 0.41 58.82% 38.59
Ex9 1 4 0.00% 0.04 66.33% 1.24
Ex9 2 1 6.25% 0.03 34.28% 7.69
Ex9 2 2 16.67% 0.03 85.96% 1.45
Ex9 2 3 0.00% 0.13 0.00% 0.47
Ex9 2 4 99.83% 0.03 0.00% 0.12
Ex9 2 6 99.76% 0.15 99.76% 600.01
Ex9 2 7 6.25% 0.01 34.28% 7.66

34

Table 2: Comparison of intersection cuts and V2 of [76] on nonconvex quadratic
GLOBALLib instances. Entries labelled NR were not reported in [76].

Instance V2 Intersection Cuts
Name Gap Closed Time Gap Closed Time
Ex2 1 1 72.62% 704.40 52.90% 0.02
Ex2 1 5 99.98% 0.17 99.68% 0.00
Ex2 1 6 99.95% 3397.65 86.90% 0.12
Ex2 1 8 84.70% 3632.28 16.46% 6.86
Ex2 1 9 98.79% 1587.94 30.28% 0.97
Ex3 1 1 15.94% 3600.27 1.21% 93.22
Ex3 1 2 99.99% 0.08 100.00% 0.00
Ex3 1 4 86.31% 21.26 34.64% 0.02
Ex5 2 2 case1 0.00% 0.02 25.71% 5.97
Ex5 2 2 case2 0.00% 0.05 0.00% 0.14
Ex5 2 2 case3 0.36% 0.36 25.01% 0.74
Ex5 2 4 79.31% 68.93 29.35% 0.21
Ex5 2 5 6.27% 3793.17 0.00% 6.50
Ex5 3 2 7.27% 245.82 0.00% 1.05
Ex5 3 3 0.21% 3693.76 0.19% 601.19
Ex5 4 2 27.57% 3614.38 1.84% 161.09
Ex9 1 4 0.00% 0.60 0.00% 0.09
Ex9 2 1 60.04% 2372.64 49.80% 3.31
Ex9 2 2 88.29% 3606.36 73.63% 10.69
Ex9 2 6 87.93% 2619.02 99.84% 600.03
Ex9 2 8 NR NR 100.00% 0.01

35

Table 3: Comparison of intersection cuts and V2 of [76] and SDP on BoxQP
instances (all with wRLT).

Instance V2 Intersection Cuts wRLT+SDP
Name Gap Closed Time Gap Closed Time Gap Closed Time
spar020-100-1 95.40% 3638.2 99.93% 11.9 58.66% 0.4
spar020-100-2 93.08% 3636.7 96.59% 25.3 70.36% 0.3
spar020-100-3 97.47% 3632.6 100.00% 1.3 70.70% 0.3
spar030-060-1 60.00% 3823.1 82.87% 434.4 35.07% 2.3
spar030-060-2 91.16% 3716.0 100.00% 52.2 67.05% 2.1
spar030-060-3 77.41% 3696.5 94.02% 348.2 55.50% 2.1
spar030-070-1 57.39% 3786.0 76.34% 310.5 32.29% 2.3
spar030-070-2 86.60% 3708.2 99.42% 172.5 63.54% 2.5
spar030-070-3 88.66% 3744.0 99.32% 94.4 75.51% 1.9
spar030-080-1 69.67% 3600.8 85.52% 294.6 43.19% 2.4
spar030-080-2 86.25% 3627.1 100.00% 34.5 55.24% 2.1
spar030-080-3 91.42% 3666.4 100.00% 32.1 71.15% 2.2
spar030-090-1 81.15% 3676.8 95.06% 171.2 55.95% 2.0
spar030-090-2 82.66% 3646.8 98.98% 206.3 58.08% 2.5
spar030-090-3 86.37% 3701.8 100.00% 69.7 61.82% 2.0
spar030-100-1 81.10% 3692.5 95.51% 600.0 60.99% 2.3
spar030-100-2 72.87% 3697.3 92.35% 525.1 51.76% 2.5
spar030-100-3 84.10% 3606.5 95.16% 230.4 64.38% 1.9
spar040-030-1 31.05% 3719.2 83.79% 684.7 25.52% 10.0
spar040-030-2 27.74% 3937.9 84.14% 608.1 26.23% 10.1
spar040-030-3 28.00% 3798.7 77.87% 609.6 9.94% 8.6
spar040-040-1 33.31% 3817.8 66.88% 601.7 23.22% 9.5
spar040-040-2 35.19% 3968.1 93.85% 602.2 38.45% 9.8
spar040-040-3 26.71% 3972.9 75.09% 608.5 22.81% 9.6
spar040-050-1 36.72% 3819.7 79.24% 602.8 30.88% 11.4
spar040-050-2 40.87% 3610.6 85.10% 610.9 35.95% 10.3
spar040-050-3 33.95% 3640.0 82.09% 604.8 30.13% 10.5
spar040-060-1 47.75% 3761.0 82.65% 601.3 42.64% 9.5
spar040-060-2 55.79% 3708.0 94.64% 610.5 54.28% 8.7
spar040-060-3 72.63% 3764.1 99.34% 601.9 65.22% 8.1
spar040-070-1 64.03% 3642.7 93.07% 612.0 60.32% 9.4
spar040-070-2 57.91% 3756.4 94.96% 602.0 53.83% 8.4
spar040-070-3 62.94% 3693.7 94.46% 600.9 58.81% 8.9
spar040-080-1 58.37% 3808.3 87.61% 602.0 49.34% 8.9
spar040-080-2 66.96% 4062.4 95.18% 600.9 57.79% 8.5
spar040-080-3 72.31% 4057.1 96.63% 602.4 67.45% 9.6
spar040-090-1 66.64% 3781.0 91.18% 603.9 60.26% 7.6
spar040-090-2 66.46% 3931.3 92.12% 602.2 60.78% 8.7
spar040-090-3 73.49% 4003.7 96.87% 602.2 66.45% 8.1
spar040-100-1 76.24% 3853.6 97.23% 602.4 70.05% 8.4
spar040-100-2 63.89% 3658.3 92.98% 607.4 59.42% 8.5
spar040-100-3 59.92% 3842.7 90.41% 602.9 57.40% 8.6

Average 65.28% 91.39% 51.87%

36

second set of instances are the ones labeled miscellaneous in [87]. From these
sources we consider instances with polynomials of degree 3 or more, that have
more than 1 and less than 100 variables, and whose initial lifted linear relaxation
is not unbounded. This leaves 11 instances with 2–24 variables and polynomial
degrees ranging between 3–8. The limitation on the number of variables was
set to avoid memory issues in both our method and in Mosek due to the rapid
increase in dimension in moment-based approaches. As we mention above, a
sparse version of our approach is the subject of current work.

In Table 4 we present our computational results. In this table we compare
the strength of the dual bound produced by our method with the SDP+RLT
relaxation solved with Mosek. We can observe that our cutting planes always
dominate the SDP-based method except in one instance. As we mentioned
before, this is expected but does not necessarily hold in practice due to our
numerical safety measures. In this case, however, the dominance of our cuts is
more modest than in the quadratic case. Nonetheless, we believe these results
are promising, as we are still able to do strictly better in some instances with
our direct implementation.

It it worth mentioning that these instances are much more challenging from
the numerical perspective, and we believe this is the main reason why our cuts
are not as dominant as before. For example, in instance ex8 4 2, many cutting
planes are discarded by our stability criteria, and the algorithm quickly stops
when detecting odd oscillations in the dual bounds produced by each round
of cuts. We believe the increased instability arises from the equivalent QCQP
formulation (or, equivalently, the linear consistency constraint among mono-
mials). This adds many linear equality constraints that reduce the dimension
of the lifted polyhedral relaxations, which can create issues in the intersection
cut framework if not treated with care. Furthermore, high degree polynomials
may exacerbate numerical issues; for instance, replacing y = x8 with a tower
of variables, w1 = x2, w2 = w2

1, y = w2
2, could result in an accumulation of

errors. We expect that developing a version of these cuts that can better handle
dimension increase and numerical instability will provide a powerful alternative
to complement existing methods.

7 Conclusions

We have introduced cuts for the generic set S ∩ P , where for the closed set S
there is an oracle that provides the distance from a point to the nearest point
in S. We have shown that the oracle can be used to construct a convergent
cutting plane algorithm that can produce arbitrarily close approximations to
conv(S ∩ P) in finite time. This algorithm relies on a (potentially) computa-
tionally expensive cut generation procedure, and so we have also considered a
simple oracle-based intersection cut that can be easily computed. We provide
applications of this intersection cut on polynomial optimization problems as
well as a cardinality-constrained problem. Furthermore, we provide a generic
strengthening procedure of the intersection cut that uses the recession cone of

37

Table 4: Comparison of intersection cuts and RLT+SDP on polynomial opti-
mization instances.

Instance RLT+SDP Intersection Cuts
Name Gap Closed Time Gap Closed Time
ex4 1 8 100.00% 0.01 100.00% 0.03
ex4 1 9 0.00% 0.02 16.59% 0.02
ex7 3 1 0.00% 0.05 0.00% 0.55
ex7 3 2 0.00% 0.01 0.00% 0.01
ex8 1 4 100.00% 0.01 100.00% 0.04
ex8 1 5 98.72% 0.02 98.90% 0.29
ex8 1 7 55.79% 0.03 66.54% 180.50
ex8 4 2 90.73% 8.23 0.00% 0.43
st e03 31.64% 0.31 81.52% 4.52
st e10 100.00% 0.01 100.00% 0.07
st e19 97.47% 0.01 99.13% 6.45

an S-free set.
We have also introduced intersection cuts in the context of polynomial op-

timization. Accordingly, we have developed an S-free approach for polynomial
optimization, where S is the set of real, symmetric outer products. Our results
on full-dimensional maximal OPF sets include a full characterization of such
sets when nr = 2 as well as extensive families of maximal OPF sets. We derived
intersection cuts from these families of maximal outer-product-free sets, includ-
ing a strengthening procedure that determines negative step lengths in the case
of intersections at infinity.

Computational experiments have demonstrated the potential of our cuts as
a fast way to reduce optimality gaps on a variety of polynomial optimization
problems. We note that, although such experiments contrast our cuts with SDP
and V2, the methods are in fact complementary. For instance, SDP can be used
to warm-start outer-approximation cuts, and our cuts can, in turn, be added
back to strengthen SDP (this also holds true for V2). A full implementation
is being considered for future empirical work, incorporating the cuts into a
branch-and-cut solver and developing a more sophisticated implementation, e.g.
stronger initial relaxations with problem-specific valid inequalities, exploiting
sparsity, advanced cut management, improved scalability, among others.

Acknowledgements

The authors thank Eli Towle for pointing out an error in the presentation of the
intersection cut strengthening procedure, Felipe Serrano for useful comments
and suggestions that led to Theorem 24, and to the anonymous reviewers whose
thorough feedback greatly improved the article. The authors would also like to
thank the Institute for Data Valorization (IVADO) for their support through
the IVADO Postdoctoral Fellowship program.

38

References

[1] Andersen, K., Jensen, A.N.: Intersection cuts for mixed integer conic
quadratic sets. In: M. Goemans, J. Correa (eds.) Integer Programming
And Combinatorial Optimization, pp. 37–48. Springer (2013)

[2] Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed in-
teger linear sets based on lattice point free convex sets. Mathematics of
Operations Research 35(1), 233–256 (2010)

[3] Andersen, K., Louveaux, Q., Weismantel, R., Wolsey, L.A.: Inequalities
from two rows of a simplex tableau. In: M. Fischetti, D.P. Williamson
(eds.) Integer Programming and Combinatorial Optimization, pp. 1–15.
Springer (2007)

[4] Anstreicher, K.M.: Semidefinite programming versus the reformulation-
linearization technique for nonconvex quadratically constrained quadratic
programming. Journal of Global Optimization 43(2-3), 471–484 (2009)

[5] Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math-
ematical Programming 122(1), 1–20 (2010)

[6] Audet, C., Hansen, P., Jaumard, B., Savard, G.: A branch and cut al-
gorithm for nonconvex quadratically constrained quadratic programming.
Mathematical Programming 87(1), 131–152 (2000)

[7] Averkov, G.: On finite generation and infinite convergence of generalized
closures from the theory of cutting planes. arXiv preprint arXiv:1106.1526
(2011)

[8] Balas, E.: Intersection cuts—a new type of cutting planes for integer pro-
gramming. Operations Research 19(1), 19–39 (1971)

[9] Balas, E.: Disjunctive programming: Properties of the convex hull of fea-
sible points. Discrete Applied Mathematics 89(1-3), 3–44 (1998)

[10] Balas, E., Saxena, A.: Optimizing over the split closure. Mathematical
Programming 113(2), 219–240 (2008)

[11] Bao, X., Sahinidis, N.V., Tawarmalani, M.: Multiterm polyhedral relax-
ations for nonconvex, quadratically constrained quadratic programs. Opti-
mization Methods & Software 24(4-5), 485–504 (2009)

[12] Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Maximal lattice-free
convex sets in linear subspaces. Mathematics of Operations Research 35(3),
704–720 (2010)

[13] Basu, A., Conforti, M., Cornuéjols, G., Zambelli, G.: Minimal inequalities
for an infinite relaxation of integer programs. SIAM Journal on Discrete
Mathematics 24(1), 158–168 (2010)

39

[14] Basu, A., Cornuéjols, G., Zambelli, G.: Convex sets and minimal sublinear
functions. Journal of Convex Analysis 18(2), 427–432 (2011)

[15] Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of
quadratic surfaces having fixed intersections with two hyperplanes. Discrete
Applied Mathematics 161(16-17), 2778–2793 (2013)

[16] Belotti, P., Kirches, C., Leyffer, S., Linderoth, J., Luedtke, J., Mahajan,
A.: Mixed-integer nonlinear optimization. Acta Numerica 22, 1–131 (2013)

[17] Benders, J.F.: Partitioning procedures for solving mixed-variables pro-
gramming problems. Numerische Mathematik 4(1), 238–252 (1962)

[18] Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex
functions over nonconvex sets. SIAM Journal on Optimization 24(2), 643–
677 (2014)

[19] Bonami, P., Günlük, O., Linderoth, J.: Globally solving nonconvex
quadratic programming problems with box constraints via integer program-
ming methods. Mathematical Programming Computation 10(3), 333–382
(2018)

[20] Borozan, V., Cornuéjols, G.: Minimal valid inequalities for integer con-
straints. Mathematics of Operations Research 34(3), 538–546 (2009)

[21] Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely
positive programs. Mathematical Programming Computation 2(1), 1–19
(2010)

[22] Burer, S., Vandenbussche, D.: Globally solving box-constrained noncon-
vex quadratic programs with semidefinite-based finite branch-and-bound.
Computational Optimization and Applications 43, 181–195 (2009)

[23] Chen, J., Burer, S.: Globally solving nonconvex quadratic programming
problems via completely positive programming. Mathematical Program-
ming Computation 4(1), 33–52 (2012)

[24] Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial prob-
lems. Discrete Mathematics 4(4), 305–337 (1973)

[25] Conforti, M., Cornuéjols, G., Daniilidis, A., Lemaréchal, C., Malick, J.:
Cut-generating functions and S-free sets. Mathematics of Operations Re-
search 40(2), 276–391 (2014)

[26] Conforti, M., Cornuéjols, G., Zambelli, G.: Equivalence between intersec-
tion cuts and the corner polyhedron. Operations Research Letters 38(3),
153–155 (2010)

[27] Cornuéjols, G., Wolsey, L., Yıldız, S.: Sufficiency of cut-generating func-
tions. Mathematical Programming 152(1-2), 643–651 (2015)

40

[28] Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex
body. Operations Research Letters 39(2), 121–126 (2011)

[29] Dax, A.: Low-rank positive approximants of symmetric matrices. Advances
in Linear Algebra & Matrix Theory 4(3), 172–185 (2014)

[30] Del Pia, A., Weismantel, R.: On convergence in mixed integer program-
ming. Mathematical Programming 135(1-2), 397–412 (2012)

[31] Dey, S.S., Wolsey, L.A.: Lifting integer variables in minimal inequalities
corresponding to lattice-free triangles. In: A. Lodi, A. Panconesi, G. Ri-
naldi (eds.) Integer Programming and Combinatorial Optimization, pp.
463–475. Springer (2008)

[32] Dey, S.S., Wolsey, L.A.: Constrained infinite group relaxations of MIPs.
SIAM Journal on Optimization 20(6), 2890–2912 (2010)

[33] Eckart, C., Young, G.: The approximation of one matrix by another of
lower rank. Psychometrika 1(3), 211–218 (1936)

[34] Fischetti, M., Ljubić, I., Monaci, M., Sinnl, M.: A new general-purpose
algorithm for mixed-integer bilevel linear programs. Operations Research
65(6), 1615–1637 (2017)

[35] Fischetti, M., Lodi, A.: Optimizing over the first Chvátal closure. Mathe-
matical Programming 110(1), 3–20 (2007)

[36] Fischetti, M., Salvagnin, D., Zanette, A.: A note on the selection of Benders
cuts. Mathematical Programming 124(1-2), 175–182 (2010)

[37] Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gümüs, Z.H.,
Harding, S.T., Klepeis, J.L., Meyer, C.A., Schweiger, C.A.: Handbook of
test problems in local and global optimization, vol. 33. Springer Science &
Business Media (2013)

[38] Freund, R.M., Orlin, J.B.: On the complexity of four polyhedral set con-
tainment problems. Mathematical Programming 33(2), 139–145 (1985)

[39] Ghaddar, B., Vera, J.C., Anjos, M.F.: A dynamic inequality generation
scheme for polynomial programming. Mathematical Programming 156(1-
2), 21–57 (2016)

[40] Glover, F.: Polyhedral convexity cuts and negative edge extensions.
Zeitschrift für Operations Research 18(5), 181–186 (1974)

[41] Gomory, R.E.: Outline of an algorithm for integer solutions to linear pro-
grams. Bulletin of the American Mathematical Society 64(5), 275–278
(1958)

41

[42] Gomory, R.E.: An algorithm for integer solutions to linear programs. In:
R.L. Graves, P. Wolfe (eds.) Recent Advances in Mathematical Program-
ming, pp. 269–302. McGraw-Hill (1963)

[43] Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner
polyhedra. Mathematical Programming 3(1), 23–85 (1972)

[44] Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its
consequences in combinatorial optimization. Combinatorica 1(2), 169–197
(1981)

[45] Guennebaud, G., Jacob, B., et al.: Eigen v3. http://eigen.tuxfamily.org
(2010)

[46] Higham, N.J.: Computing a nearest symmetric positive semidefinite ma-
trix. Linear Algebra and its Applications 103, 103–118 (1988)

[47] Hillestad, R.J., Jacobsen, S.E.: Reverse convex programming. Applied
Mathematics and Optimization 6(1), 63–78 (1980)

[48] Hiriart-Urruty, J.B., Lemaréchal, C.: Fundamentals of convex analysis.
Springer Science & Business Media (2012)

[49] Kelley, Jr., J.E.: The cutting-plane method for solving convex programs.
Journal of the Society for Industrial & Applied Mathematics 8(4), 703–712
(1960)

[50] Kılınç-Karzan, F.: On minimal valid inequalities for mixed integer conic
programs. Mathematics of Operations Research 41(2), 477–510 (2015)

[51] Kocuk, B., Dey, S.S., Sun, X.A.: Matrix minor reformulation and SOCP-
based spatial branch-and-cut method for the AC optimal power flow prob-
lem. Mathematical Programming Computation 10(4), 557–596 (2018)

[52] Konno, H., Yamamoto, R.: Choosing the best set of variables in regression
analysis using integer programming. Journal of Global Optimization 44(2),
273–282 (2009)

[53] Krishnan, K., Mitchell, J.E.: A unifying framework for several cutting
plane methods for semidefinite programming. Optimization Methods and
Software 21(1), 57–74 (2006)

[54] Lasserre, J.B.: Global optimization with polynomials and the problem of
moments. SIAM Journal on Optimization 11(3), 796–817 (2001)

[55] Laurent, M.: Sums of squares, moment matrices and optimization over
polynomials. In: Emerging Applications of Algebraic Geometry, pp. 157–
270. Springer (2009)

[56] Li, Y., Richard, J.P.P.: Cook, Kannan and Schrijver’s example revisited.
Discrete Optimization 5(4), 724–734 (2008)

42

[57] Locatelli, M., Schoen, F.: On convex envelopes for bivariate functions over
polytopes. Mathematical Programming 144(1-2), 65–91 (2014)

[58] Locatelli, M., Thoai, N.V.: Finite exact branch-and-bound algorithms
for concave minimization over polytopes. Journal of Global Optimization
18(2), 107–128 (2000)

[59] Lovász, L.: Geometry of numbers and integer programming. Mathematical
Programming: Recent Developments and Applications pp. 177–210 (1989)

[60] Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0-1
optimization. SIAM Journal on Optimization 1(2), 166–190 (1991)

[61] Luedtke, J., Namazifar, M., Linderoth, J.: Some results on the strength of
relaxations of multilinear functions. Mathematical Programming 136(2),
325–351 (2012)

[62] Marchand, H., Wolsey, L.A.: Aggregation and mixed integer rounding to
solve MIPs. Operations Research 49(3), 363–371 (2001)

[63] McCormick, G.P.: Computability of global solutions to factorable noncon-
vex programs: Part I – Convex underestimating problems. Mathematical
Programming 10(1), 147–175 (1976)

[64] Meeraus, A.: GLOBALLib. http://www.gamsworld.org/global/

globallib.htm

[65] Mirsky, L.: Symmetric gauge functions and unitarily invariant norms. The
Quarterly Journal of Mathematics 11(1), 50–59 (1960)

[66] Misener, R., Floudas, C.A.: Global optimization of mixed-integer
quadratically-constrained quadratic programs (MIQCQP) through
piecewise-linear and edge-concave relaxations. Mathematical Program-
ming 136(1), 155–182 (2012)

[67] Misener, R., Smadbeck, J.B., Floudas, C.A.: Dynamically generated cut-
ting planes for mixed-integer quadratically constrained quadratic programs
and their incorporation into GloMIQO 2. Optimization Methods and Soft-
ware 30(1), 215–249 (2015)

[68] Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formula-
tions for mixed integer conic quadratic programming. Operations Research
Letters 43(1), 10–15 (2015)

[69] Modaresi, S., Kılınç, M.R., Vielma, J.P.: Intersection cuts for nonlinear in-
teger programming: Convexification techniques for structured sets. Math-
ematical Programming 155(1-2), 575–611 (2016)

[70] MOSEK ApS: The MOSEK Fusion API for C++ 8.1.0.63 (2018). URL
https://docs.mosek.com/8.1/cxxfusion/index.html

43

http://www.gamsworld.org/global/globallib.htm
http://www.gamsworld.org/global/globallib.htm
https://docs.mosek.com/8.1/cxxfusion/index.html

[71] Padberg, M., Rinaldi, G.: A branch-and-cut algorithm for the resolution of
large-scale symmetric traveling salesman problems. SIAM Review 33(1),
60–100 (1991)

[72] Porembski, M.: Cone adaptation strategies for a finite and exact cutting
plane algorithm for concave minimization. Journal of Global Optimization
24(1), 89–107 (2002)

[73] Qualizza, A., Belotti, P., Margot, F.: Linear programming relaxations of
quadratically constrained quadratic programs. Mixed Integer Nonlinear
Programming pp. 407–426 (2012)

[74] Rikun, A.D.: A convex envelope formula for multilinear functions. Journal
of Global Optimization 10(4), 425–437 (1997)

[75] Rockafellar, R.T.: Convex analysis, vol. 28. Princeton University Press
(1970)

[76] Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed
integer quadratically constrained programs: extended formulations. Math-
ematical Programming 124(1-2), 383–411 (2010)

[77] Saxena, A., Bonami, P., Lee, J.: Convex relaxations of non-convex mixed
integer quadratically constrained programs: projected formulations. Math-
ematical Programming 130(2), 359–413 (2011)

[78] Schneider, R.: Convex bodies: the Brunn–Minkowski theory, second edn.
151. Cambridge University Press (2014)

[79] Schrijver, A.: Theory of Linear and Integer Programming. John Wiley &
Sons, Chichester (1986)

[80] Sen, S., Sherali, H.D.: Nondifferentiable reverse convex programs and face-
tial convexity cuts via a disjunctive characterization. Mathematical Pro-
gramming 37(2), 169–183 (1987)

[81] Serrano, F.: Intersection cuts for factorable MINLP. In: A. Lodi, V. Na-
garajan (eds.) Integer Programming and Combinatorial Optimization, pp.
385–398. Springer International Publishing (2019)

[82] Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new
class of semidefinite cuts. Journal of Global Optimization 22(1-4), 233–
261 (2002)

[83] Shor, N.Z.: Quadratic optimization problems. Soviet Journal of Computer
and Systems Sciences 25, 1–11 (1987)

[84] Tardella, F.: Existence and sum decomposition of vertex polyhedral convex
envelopes. Optimization Letters 2(3), 363–375 (2008)

44

[85] Tawarmalani, M., Richard, J.P.P., Xiong, C.: Explicit convex and concave
envelopes through polyhedral subdivisions. Mathematical Programming
138(1-2), 531–577 (2013)

[86] Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of
lower semi-continuous functions. Mathematical Programming 93(2), 247–
263 (2002)

[87] Tawarmalani, M., Sahinidis, N.V.: Convexification and global optimiza-
tion in continuous and mixed-integer nonlinear programming: theory, al-
gorithms, software, and applications, vol. 65. Springer Science & Business
Media (2002)

[88] Tawarmalani, M., Sahinidis, N.V.: A polyhedral branch-and-cut approach
to global optimization. Mathematical Programming 103(2), 225–249
(2005)

[89] Towle, E., Luedtke, J.: Intersection disjunctions for reverse convex sets.
arXiv preprint arXiv:1901.02112 (2019)

[90] Tuy, H.: Concave programming under linear constraints. Soviet Mathe-
matics 5, 1437–1440 (1964)

[91] Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for non-
convex quadratic programs with box constraints. Mathematical Program-
ming 102(3), 559–575 (2005)

[92] Wolsey, L.A., Nemhauser, G.L.: Integer and combinatorial optimization.
John Wiley & Sons (2014)

[93] Xia, W., Vera, J.C., Zuluaga, L.F.: Globally solving nonconvex quadratic
programs via linear integer programming techniques. INFORMS Journal
on Computing (2019)

45

Appendix

A Radius of the Conic Hull of a Ball

Suppose we have a ball of radius r and with centre that is distance m > r from
the origin. We wish to determine the radius of the conic hull of the ball at a
specific point along its axis. Consider a 2-dimensional cross-section of the conic
hull of the ball containing the axis; this is shown in Figure 4 in rectangular (x, y)
coordinates. A line passing through the origin and tangent to the boundary of
the ball in the nonnegative orthant may be written in the form y = ax for some
a > 0; let (r̄, m̄) be the point of intersection between line and ball. At (r̄, m̄)
we have

(ar̄ −m)2 + r̄2 = r2 ⇐⇒ (1 + a2)r̄2 − 2amr̄ +m2 − r2 = 0. (21)

Now Equation (21) should only have one unique solution with respect to r̄
since the line is tangent to the ball; thus the discriminant must be zero,

4a2m2 − 4(1 + a2)(m2 − r2) = 0 =⇒ a =

√
m2 − r2

r
. (22)

Solving Equation (21) for r̄ with Equation (22),

r̄ =
2am

2(1 + a2)
,

=
r

m

√
m2 − r2,

m̄ = ar̄,

=
m2 − r2

m
.

Hence at distance d from the origin along the axis of the cone, the radius of the
cone is r̄

m̄d, or
r√

m2 − r2
d. (23)

B Additional BoxQP Experiments

46

Figure 4: In grey, a ball with radius r and distance m > r from the origin. In
red, the boundary of its conic hull. In black, an intersection point between the
boundary of the ball and its conic hull.

47

Table 5: Comparison of intersection cuts and wRLT+SDP on larger BoxQP
instances.

Instance Intersection Cuts (10 min) Intersection Cuts (1h) wRLT+SDP
Name Gap Closed Time Gap Closed Time Gap Closed Time
spar050-030-1 53.86% 608.8 75.60% 3604.97 19.12% 24.3
spar050-030-2 39.73% 601.1 65.51% 3606.45 11.34% 26.9
spar050-030-3 44.81% 919.5 71.64% 3604.77 10.72% 28.5
spar050-040-1 69.61% 619.4 83.99% 3605.79 35.79% 28.7
spar050-040-2 61.82% 600.8 79.89% 3656.72 29.33% 30.2
spar050-040-3 78.07% 601.9 93.50% 3602.42 37.17% 25.9
spar050-050-1 56.68% 636.8 65.82% 3602.11 27.05% 30.5
spar050-050-2 65.38% 608.1 76.55% 3645.30 35.61% 29.7
spar050-050-3 71.90% 604.2 83.73% 3605.17 44.44% 30.4
spar060-020-1 9.99% 663.6 21.45% 3618.78 5.86% 73.2
spar060-020-2 15.31% 620.3 36.21% 3696.31 9.54% 77.5
spar060-020-3 9.28% 603.8 25.18% 3616.49 9.33% 72.4
spar070-025-1 18.84% 631.3 31.03% 4407.37 19.70% 177.7
spar070-025-2 7.61% 600.3 17.84% 3695.73 10.19% 186.2
spar070-025-3 11.71% 635.5 32.77% 3682.20 14.89% 191.8
spar070-050-1 50.38% 627.6 63.66% 3602.71 44.42% 225.7
spar070-050-2 52.75% 617.6 66.25% 3626.46 42.50% 208.6
spar070-050-3 57.12% 625.1 78.45% 3616.35 54.30% 177.5
spar070-075-1 64.96% 630.3 77.09% 3639.95 59.15% 176.1
spar070-075-2 61.18% 611.8 75.05% 3601.85 57.71% 179.6
spar070-075-3 65.75% 614.4 77.71% 3601.76 58.13% 209.8
spar080-025-1 7.96% 629.1 22.92% 3857.10 14.06% 446.9
spar080-025-2 5.38% 608.9 16.23% 3725.68 14.00% 433.7
spar080-025-3 7.21% 631.7 23.95% 3956.51 18.85% 430.4
spar080-050-1 42.52% 615.1 56.58% 3708.40 45.42% 463.3
spar080-050-2 45.86% 640.7 62.28% 3614.02 50.72% 445.1
spar080-050-3 47.64% 614.0 64.25% 3674.85 50.50% 480.6
spar080-075-1 58.54% 617.4 75.07% 3690.96 63.84% 418.3
spar080-075-2 61.64% 636.6 75.80% 3782.86 63.79% 441.6
spar080-075-3 61.31% 631.5 71.86% 3650.25 63.13% 409.3
spar090-025-1 0.77% 644.5 14.72% 3707.69 21.99% 891.6
spar090-025-2 0.79% 662.3 13.76% 3745.97 21.14% 852.0
spar090-025-3 0.82% 614.5 13.13% 3667.08 20.52% 838.6
spar090-050-1 22.17% 623.4 53.40% 3711.48 51.53% 1077.5
spar090-050-2 21.42% 635.2 57.08% 3764.55 53.60% 975.0
spar090-050-3 13.15% 649.8 58.00% 3625.29 53.84% 980.7
spar090-075-1 39.52% 646.4 66.95% 3636.33 60.43% 908.7
spar090-075-2 40.78% 618.9 66.43% 3622.32 60.31% 870.4
spar090-075-3 44.28% 655.1 67.35% 3653.55 61.45% 968.6
spar100-025-1 0.51% 686.9 16.20% 3708.42 26.80% 1819.1
spar100-025-2 0.40% 605.3 12.03% 3731.99 22.98% 1762.3
spar100-025-3 1.12% 632.1 14.42% 3634.96 26.58% 1492.7
spar100-050-1 6.81% 655.3 47.61% 3716.91 50.20% 1621.7
spar100-050-2 3.84% 673.0 48.71% 3679.68 52.75% 1825.4
spar100-050-3 8.13% 736.4 49.07% 3641.59 52.57% 2066.3
spar100-075-1 17.62% 732.6 67.72% 3714.62 63.28% 1681.3
spar100-075-2 7.08% 612.4 65.11% 3719.54 64.38% 1630.4
spar100-075-3 22.71% 722.0 62.07% 3722.93 64.39% 1590.9
spar125-025-1 0.69% 744.3 0.84% 3600.29 29.61% 3670.7
spar125-025-2 0.53% 687.7 0.73% 3861.42 33.63% 3870.9
spar125-025-3 0.36% 1001.0 0.36% 3718.06 33.50% 3863.5
spar125-050-1 0.11% 865.5 22.25% 3944.22 56.81% 3746.6
spar125-050-2 0.11% 738.9 21.90% 3605.57 58.53% 3762.0
spar125-050-3 0.17% 901.2 21.67% 3789.88 57.55% 3619.1
spar125-075-1 0.00% 631.4 45.45% 3927.23 67.61% 3824.3
spar125-075-2 4.31% 1209.0 36.61% 3773.20 64.92% 3861.4
spar125-075-3 1.53% 1224.0 40.29% 3657.00 65.55% 3673.8

48

	1 Introduction
	1.1 Notation

	2 S-free Sets and Oracle-Based Cuts
	2.1 Oracle-Based Cuts
	2.2 Separation
	2.3 Convergence of Cut Closures
	2.3.1 Cut Closures
	2.3.2 Cutting-plane Procedure

	3 Intersection Cuts
	3.1 Classical derivation
	3.2 Strengthening the Intersection Cut
	3.2.1 Motivating Example
	3.2.2 Strengthening Procedure

	3.3 Summary of Intersection Cut Generation

	4 Outer-Product-Free Sets
	4.1 Oracle-Based Outer-Product-Free Sets
	4.2 Maximal Outer-Product-Free Sets
	4.2.1 General properties of maximal outer-product-free sets
	4.2.2 Maximal outer-product-free sets derived from 22 submatrices
	4.2.3 All maximal outer-product-free sets when nr = 2

	5 Step Lengths, Strengthening, and Separation
	5.1 Oracle-Based Cuts
	5.2 Outer-Approximation Cuts
	5.3 22 Submatrix Cuts

	6 Numerical Examples and Experiments
	6.1 Example: Polynomial Optimization
	6.2 Example: Cardinality Constraint
	6.3 Numerical Experiments
	6.3.1 Experiments in QCQPs
	6.3.2 Preliminary experiments on polynomial instances

	7 Conclusions
	A Radius of the Conic Hull of a Ball
	B Additional BoxQP Experiments

