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ABSTRACT. We introduce an inexact variant of Stochastic Mirror Descent (SMD), called Inexact Stochastic
Mirror Descent (ISMD), to solve nonlinear two-stage stochastic programs where the second stage problem
has linear and nonlinear coupling constraints and a nonlinear objective function which depends on both
first and second stage decisions. Given a candidate first stage solution and a realization of the second stage
random vector, each iteration of ISMD combines a stochastic subgradient descent using a prox-mapping
with the computation of approximate (instead of exact for SMD) primal and dual second stage solutions.
‘We provide two convergence analysis of ISMD, under two sets of assumptions. The first convergence analysis
is based on the formulas for inexact cuts of value functions of convex optimization problems shown recently
in [6]. The second convergence analysis provides a convergence rate (the same as SMD) and relies on new
formulas that we derive for inexact cuts of value functions of convex optimization problems assuming that
the dual function of the second stage problem for all fixed first stage solution and realization of the second
stage random vector, is strongly concave. We show that this assumption of strong concavity is satisfied for
some classes of problems and present the results of numerical experiments on two simple two-stage problems
which show that solving approximately the second stage problem for the first iterations of ISMD can help
us obtain a good approximate first stage solution quicker than with SMD.

Keywords: Inexact cuts for value functions and Inexact Stochastic Mirror Descent and Strong Concavity
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1. INTRODUCTION

We are interested in inexact solution methods for two-stage nonlinear stochastic programs of form

(1.1) { gllme J;gl) i= fi(@1) + Q(z1)

with X1 C R™ a convex, nonempty, and compact set, and Q(x1) = Eg, [Q(z1,&2)] where E is the expectation
operator, & is a random vector with probability distribution P on Z C R*, and

_ minl’z f2($2,$1,§2)
(12) Q($1’§2) o { To € Xg(l‘l,fg) = {IQ € XQ : Al‘g + B:l?l = b, g(x2,x1,§2) S 0}
In the problem above vector &5 contains in particular the random elements in matrices A, B, and vector b.
Problem is the first stage problem while problem is the second stage problem which has abstract
constraints (o € Ah), and linear (Axs + Bxy = b) and nonlinear (g(z2,x1,&2) < 0) constraints both of
which couple first stage decision x; and second stage decision x3. Our solution methods are suited for the
following framework:

a) first stage problem (1.1)) is convex;

b) second stage proble is convex, i.e., Xy is convex and for every & € = functions fa(+, -, &2) and
g(+, -, &) are convex;

¢) for every realization & of &, the primal second stage problem obtained replacing & by & in
with optimal value D(ml,ég) and its dual (obtained dualizing coupling constraints) are solved ap-
proximately.



There is a large literature on solution methods for two-stage risk-neutral stochastic programs. Essentially,
these methods can be cast in two categories: (A) decomposition methods based on sampling and cutting
plane approximations of Q@ (which date back to [3],[8]) and their variants with regularization such as [I7]
and (B) Robust Stochastic Approximation [I5] and its variants such as stochastic Primal-Dual subgradient
methods [9], Stochastic Mirror Descent (SMD) [13], [10], or Multistep Stochastic Mirror Descent (MSMD)
[5]. These methods have been extended to solve multistage problems, for instance Stochastic Dual Dynamic
Programming [14], belonging to class (A), and recently Dynamic Stochastic Approximation [I1]], belonging
to class (B).

However, for all these methods, it is assumed that second stage problems are solved exactly. This latter
assumption is not satisfied when the second stage problem is nonlinear since in this setting only approximate
solutions are available. On top of that, for the first iterations, we still have crude approximations of the
first stage solution and it may be useful to solve inexactly, with less accuracy, the second stage problem for
these iterations and to increase the accuracy of the second stage solutions computed when the algorithm
progresses in order to decrease the overall computational bulk.

Therefore the objective of this paper is to fill a gap considering the situation when second stage problems
are nonlinear and solved approximately (both primal and dual, see Assumption c) above). More precisely, to
account for Assumption (c), as an extension of the methods from class (B) we derive an Inexact Stochastic
Mirror Descent (ISMD) algorithm, designed to solve problems of form . This inexact solution method
is based on an inexact black box for the objective in (1.1]). To this end, we compute inexact cuts (affine
lower bounding functions) for value function (-, &s) i. For this analysis, we first need formulas for
exact cuts (cuts based on exact primal and dual solutions). We had shown such formulas in [4, Lemma 2.1]
using convex analysis tools, in particular standard calculus on normal and tangeant cones. We derive in
Proposition [3.2] a proof for these formulas based purely on duality. This is an adaptation of the proof of
the formulas we gave in [6] Proposition 2.7] for inexact cuts, considering exact solutions instead of inexact
solutions. To our knowledge, the computation of inexact cuts for value functions has only been discussed
in [6] so far (see Proposition . We propose in Section [3| new formulas for computing inexact cuts based
in particular on the strong concavity of the dual function. In Section [2] we provide, for several classes of
problems, conditions ensuring that the dual function of an optimization problem is strongly concave and
give formulas for computing the corresponding constant of strong concavity when possible. It turns out that
our results improve Theorem 10 in [I9] (the only reference we are aware of on the strong concavity of the
dual function) which proves the strong concavity of the dual function under stronger assumptions. The tools
developped in Sections [2| and [3| allow us to build the inexact black boxes necessary for the Inexact Stochastic
Mirror Descent (ISMD) algorithm and its convergence analysis presented in Section Finally, in Section
we report the results of numerical tests comparing the performance of SMD and ISMD on two simple
two-stage nonlinear stochastic programs.

Throughout the paper, we use the following notation:

e The domain dom(f) of a function f : X — R is the set of points in X such that f is finite:
dom(f)={r € X :—o0o < f(z) < +o0}.
e The largest (resp. smallest) eigenvalue of a matrix @) having real-valued eigenvalues is denoted by

Amax (@) (resp. Amin(Q))-

e The || - ||2 of a matrix A is given by ||A||s = maxzo %.
Diag(x1,xa,...,2,) is the n x n diagonal matrix whose entry (¢,4) is ;.

For a linear application A, Ker(A) is its kernel and Im(.A) its image.

(-,-,) is the usual scalar product in R™: (z,y) = Y., x;y; which induces the norm ||z|[s = />, 7.
Let f: R™ — R be an extended real-valued function. The Fenchel conjugate f* of f is the function
given by f*(2%) = sup, cgn (2°, ) — ().

e For functions f: X — Y and ¢g: Y — Z, the function go f : X — Z is the composition of functions

g and f given by (go f)(z) = g(f(x)) for every z € X.
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2. ON THE STRONG CONCAVITY OF THE DUAL FUNCTION OF AN OPTIMIZATION PROBLEM

The study of the strong concavity of the dual function of an optimization problem on some set has
applications in numerical optimization. For instance, the strong concavity of the dual function and the
knowledge of the associated constant of strong concavity are used by the Drift-Plus-Penalty algorithm in
[19] and by the (convergence proof of) Inexact SMD algorithm presented in Section [4] when inexact cuts are
computed using Proposition |3.8

The only paper we are aware of providing conditions ensuring this strong concavity property is [19]. In
this section, we prove similar results under weaker assumptions and study an additional class of problems
(quadratic with a quadratic constraint, see Proposition .

2.1. Preliminaries. In what follows, X C R"™ is a nonempty convex set.

Definition 2.1 (Strongly convex functions). Function f: X — R U {+oo} is strongly convex with constant
of strong convexity o > 0 with respect to norm || - || if for every x,y € dom(f) we have

at(l—1t)
5 Iy

—z|?

flte+ 1 =t)y) <tf(x)+ (1 -1)f(y) -

forall0 <t <1.

We can deduce the following well known characterizations of strongly convex functions f : R" — RU{+o0}
(see for instance [7]):

Proposition 2.2. (i) Function f : X — RU {+oo} is strongly convex with constant of strong convexity
a > 0 with respect to norm || - || if and only if for every x,y € dom(f) we have

F@) > f@)+ 57y —2) + Sy — o], Vs € 0f (@).

(i) Function f: X — RU {400} is strongly convex with constant of strong convexity o > 0 with respect
to norm || - || if and only if for every x,y € dom(f) we have

F©) = f@) + £y — o) + Sy =l

where f'(x;y — x) denotes the derivative of f at x in the direction y — x.
(iii) Let f : X — RU{4o00} be differentiable. Then f is strongly convex with constant of strong convexity
a > 0 with respect to norm || - || if and only if for every x,y € dom(f) we have

(Vf(y) = V()" (y - 2) > ally — |

(iv) Let f : X — RU{+oo} be twice differentiable. Then [ is strongly conver on X C R™ with constant
of strong convexity o > 0 with respect to norm || - || if and only if for every x € dom(f) we have

KTV2f(z)h > al|h||?,Vh € R™.

Definition 2.3 (Strongly concave functions). f : X — R U {—o0} is strongly concave with constant of
strong concavity o > 0 with respect to norm || - || if and only if —f is strongly convex with constant of strong
convezity a > 0 with respect to norm || - ||.

The following propositions are immediate and will be used in the sequel:

Proposition 2.4. If f : X — RU {+o0} is strongly convex with constant of strong convexity o > 0 with
respect to norm || - || and £ : R™ — R is linear then f + £ is strongly conver on X with constant of strong
convezity o > 0 with respect to norm || - ||.

Proposition 2.5. Let X C R™,Y C R", be two nonempty convex sets. Let A: X — 'Y be a linear operator
and let f:Y — RU{400} be a strongly convex function with constant of strong convexity o > 0 with respect
to a norm || - ||n on R™ induced by scalar product {-,-), on R™. Assume that Ker(A* o A) = {0}. Then
g = f oA is strongly conver on X with constant of strong convexity aAmin(A* o A) with respect to norm



Proof. For every x,y € X, using Proposition (ii) we have
FAW) = F(A@) + f(A@): Aly = 2) + 5 [ Al — )2
and since ¢'(z;y — x) = f/(A(x); Ay — x)), we get
9(9) 2 9(2) + ' (wy — ) + Jadun(A” 0 A)lly — ]2,
with aAmin(A* 0 A) > 0 (Amin(A* 0 A) is nonnegative because A* o A is self-adjoint and it cannot be zero
because A* o A is nondegenerate). O

In the rest of this section, we fix ||- || = || [|2 and provide, under some assumptions, the constant of strong
concavity of the dual function of an optimization problem for this normﬂ

2.2. Problems with linear constraints. Consider the optimization problem

29 LR

where f:R" - RU {400}, b € R?, and A is a ¢ X n real matrix.
We will use the following known fact, see for instance [16]:

Proposition 2.6. Let f : R" — RU {400} be a proper convex lower semicontinuous function. Then f* is
strongly convex with constant of strong convexity o > 0 for norm || - |2 if and only if f is differentiable and
V[ is Lipschitz continuous with constant 1/a for norm || - ||2.

Proposition 2.7. Let 0 be the dual function of (2.3)) given by
(2.4) 00N = inf {f(x) + AT (Az ~ b)),

for A € R1. Assume that the rows of matriz A are independent, that f is convex, differentiable, and V f
is Lipschitz continuous with constant L > 0 with respect to norm || - ||2. Then dual function 6 is strongly

concave on RY with constant of strong concavity %AAT) with respect to norm || - ||2 on RY.
Proof. The dual function of (2.3) can be written

O\ = inf {f(x) + AT (Ax —b)} = - ATb— sup {—2T AT\ — f(x)}
(25) zER™ zER™

= —ATb— f*(—AT)\) by definition of f*.
Since the rows of A are independent, matrix AA” is invertible and Ker(AAT) = {0}. The result follows
from the above representation of # and Propositions [2.4] 2.5 and [2:6] O

The strong concavity of the dual function of was shown in Corollary 5 in [19] assuming that f is
second-order continuously differentiable and strongly convex. Therefore Proposition (whose proof is very
short), which only assumes that f is convex, differentiable, and has Lipschitz continuous gradient, improves
existing results (neither second-order differentiability nor strong convexity is required).

2.3. Problems with quadratic objective and a quadratic constraint. We now consider the following
quadratically constrained quadratic optimization problem

inf,ern f(z) := %xTQOx +al'z + by
g1(z) = %xTle +afx+b; <0,

with Qo positive definite and );, positive semidefinite. The dual function 6 of this problem is known in
closed-form: for p > 0, we have

(2.7 ) = inf 1F(2) + i9s ()} = — 5 AG)T Q)™ Alw) + B(y)

where

(2.6)

A(p) = ao + par, Q(pn) = Qo + pQ1, and B(u) = by + juiby.

1Using the equivalence between norms in R™, we can derive a valid constant of strong concavity for other norms, for instance
[l - lloo and || - |l
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We can show, under some assumptions, that dual function 6 is strongly concave on some set and compute
analytically the corresponding constant of strong concavity:

Proposition 2.8. Consider optimization problem (2.6). Assume that Qqo,Q1, are positive definite, that
there exists xo such that g1(xo) < 0, and that ag # Qonlal. Let L be any lower bound on the optimal value
of (2.6) and let p = (L — f(x0))/91(x0) > 0. Then the optimal solution of the dual problem

0

e o)

is contained in the interval [0, i] and the dual function 0 given by (2.7) is strongly concave on the interval
[0, i] with constant of strong concavity ap = (Q;l/z(ao — Qonlal))T(Qfl/onQfl/Z + ﬂ[n)_3Q;1/2(a0 -
Qonlal) > 0.

Proof. Making the change of variable 2 = y — Q] ‘a1, we can rewrite (2.6) without linear terms in g; under
the form:

{ inf,ern 227 Qox + (a0 — QuQ7 " a1) x4+ by + 34T QT QuQ1 'ar — al Q1 s
%CL’TQl.’E + bl — %G{Ql_lal S 0,

with corresponding dual function given by
1_ 1 1 _ _ 1 _ _
0(p) = —iag(Qo + Q1) g + (b1 — §G1TQ1 1a1)M +bo — ang lay + ia{Ql 1@0@1 lay

where we have set g = ag — QuQ7 "a1 (see ([2.7)).
Using [7, Remark 2.3.3, p.313] we obtain that the optimal dual solutions are contained in the interval

[0, z]. Setting ag = Qflﬂdo and A = Q;l/ZQOQflﬂ, we compute the first and second derivatives of the
nonlinear term 6, (1) = —3ad (Qo + pQ1) ‘ag = —3ad (A + pul,)'ao of  on [0, 1]

0, (1) = $af (A + ply) 2o and 6)) () = —ag (A + pln) >ao.

For these computations we have used the fact that for F : T — GL,(R) differentiable on Z C R, we have
—1

O — _F) P LU F(#)71. Since —0/ () is decreasing on [0, ], we get —6!(u) > ap = —604(ji) on

[0, Z]. This computation, together with Proposition (iv), shows that @ is strongly concave on [0, i] with

constant of strong concavity ap. |

2.4. General case: problems with linear and nonlinear constraints. Let us add to problem (2.3
nonlinear constraints. More precisely, given f : R” — R, a ¢ X n real matrix A, b € R?, and g : R — R?
with convex component functions g;,7 =1,...,p, we consider the optimization problem

inf f(x)
(2.8) { x € X,Ax <b,g(x) <0.

Let v be the value function of this problem given by

_ _ [ inf f(x)
(2.9) v(e) = v(er, ) = { € X, Ar—b+c; <0,9(z)+c2 <0,

for ¢; € R9, ¢y € RP. In the next lemma, we relate the conjugate of v to the dual function

= { ixnfef)((x,) +AT(Az = b) + pTg(x)

of this problem:
Lemma 2.9. If v* is the conjugate of the value function v then v*(\,u) = —0(\ p) for every (\,pu) €

q P
R+XR+.
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Proof. For (A, ) € RLxRE | we have
—v*(\p) = - sup Moy + ey — v(eq, c2)

(c1,c2)ERI XRP
inf —A\Tc; — pTes + f(2)

= x€ X, Az —b+c1 <0,9(x) + 2 <0,
cp ERY, ¢y € RP,

[ inf f(@) + AT Az — b) + pTg(x)

o z € X,

(A p).

O

From Lemma and Proposition we obtain that dual function 6 of problem is strongly concave
with constant o with respect to norm || - |2 on RP*Y if and only if the value function v given by
is differentiable and Vv is Lipschitz continuous with constant 1/« with respect to norm || - |2 on RPTY.
Using Lemma 2.1 in [4] the subdifferential of the value function is the set of optimal dual solutions of .
Therefore 6 is strongly concave with constant o with respect to norm | - ||z on RP*4 if and only if the value
function is differentiable and the dual solution of seen as a function of (cy,cg) is Lipschitz continuous
with Lipschitz constant 1/« with respect to norm || - ||z on RPT4.

We now provide conditions ensuring that the dual function is strongly concave in a neighborhood of the
optimal dual solution.

Theorem 2.10. Consider the optimization problem

(2.10) in]Réf {f(x): Az < b,g;(x) <0,i=1,...,p}.
zER™

We assume that
(A1) f:R™ = RU{+4o0} is strongly conver and has Lipschitz continuous gradient;
(A2) g; : R" 5> RU{+o00},i=1,...,p, are convex and have Lipschitz continuous gradients;
(A3) if x4 is the optimal solution of (2.10) then the rows of matriz ( J é ) ) are linearly independent
g *
where Jy(x) denotes the Jacobian matriz of g(x) = (91(x),. .., gp(x)) at z;
(A4) there is xo € 1i({g < 0}) such that Azy <b.
Let 6 be the dual function of this problem:

[ f @)+ AT (A )+ ()
(2.11) 00\ 1) —{ inf f(a
Let (A, pis) > 0 be an optimal solution of the dual problem
sup  O(A, p).
A>0,1>0

Then there is some neighborhood N of (s, pt+) such that 6 is strongly concave on N'N Rf_ a,

Proof. Due to (A1) the optimization problem ([2.11)) has a unique optimal solution that we denote by x (A, u).
Assumptions (A2) and (A3) imply that there is some neighborhood V. (z.) = {x € R" : ||z — x.||2 < €} of

x, for some € > 0 such that the rows of matrix ( Jj?x) > are independent for z in V. (z.).
g

We argue that (), ) — x(\, 1) is continuous on R?xRP. Indeed, let (), i) € R?xRP and take a sequence
(Ak, ) converging to (X, fi). We want to show that z(M\y, ) converges to x(\,fi). Take an arbitrary
accumulation point Z of the sequence x(Ag,px), ie., T = limg o0 2(Ao(r), Hok)) for some subsequence
(Ao (k) Ho(k)) Of T(Ag, ). Then by definition of z(Xy (1), to(k)), for every x € R™ and every k > 1 we have

F@ k) o)) + Aoy (ATAa (k) o) = ) + 151y 9 (FAa(hys Hoky)) < F (@) + AL (Az = b) + 1] 1y 9(2).
Passing to the limit in the inequality above and using the continuity of f and g; we obtain for all z € R™:

F@) + N (Az —b) + 5" g(z) < fx) + AT (Az — b) + " g(x),
6



which shows that Z = x(\, 7). Therefore there is only one accumuation point Z = x(X, i) for the sequence

2 (g, i) which shows that this sequence converges to (), i). Consequently, we have shown that (X, ) —

x(A, 1) is continuous on R?xRP. This implies that there is a neighborhood N (A, px) of (A«, p«) such that

for (A, ) € N(As, ps) we have [|z(A, p) — (s, pis)]|2 < €. Moreover, due to (A4), we have z(\., ps) = T

It follows that for (A, u) € N(As, x) we have ||z(\, 1) — 2(Au, p)]l2 = ||2(A, 1) — 24]]2 < & which in turn
A

implies that the rows of matrix T, (x(\ 1)) are independent. We now show that 6 is strongly concave
g 5

+
on N (A, pux) NRET,

Take (A1, p1), (A2, pt2) in NV (A, 1) NRET? and denote z1 = (A1, p1) and 2 = 2(\a, p2). The optimality
conditions give

Vf($1) + AT)\l + Jg(xl)T/,cl =0,
Vf(ﬂfg) + AT)\Q + Jg(xg)T/,LQ =0.

Recall that (2.11) has a unique solution and therefore 6 is differentiable. The gradient of 6 is given by (see

for instance Lemma 2.1 in [4]) Aep) — b
VO ) = ( o(e ) )

(2.12)

and we obtain, using the notation (z,y) = 27y:

Ao — A
213) = (9000a.pa) = V00w, ). (12700 ) ) = (Al — 1) da = i) = (gloa) — gtan) gz — ).
By convexity of constraint functions we can write for i =1,...,p:

gi(x2) > gi(x1) + (Vgi(x1), 22 — 1) ()
(2.14) gi(21) > gi(22) + (Vai(w2), 21 — 3. (b)

Multiplying (2.14)-(a) by p1(i) > 0 and (2.14)-(b) by p2(i) > 0 we obtain

(2.15) —(g(@2) = g(x1), 2 — p1) = (Jg(w1) 11 — Jg(22)" pz, w2 — 1)
Recalling (A1), we can find 0 < L(f) < 400 such that for all z,y € R™:
(2.16) IVf(y) = V@2 < LAy — ]2
Using and and denoting by a > 0 the constant of strong convexity of f with respect to norm
|(|21||72) we get:
- <V9()\27M2) = VO(A1, 1), ( ;\z _ 21 >> —(w2 — 1, AT (N2 = 1)) + (Jg (1) p1 — Jg(22)" p2, w2 — 1),

(z2 — 21,V f(22) = Vf(21))
al|lze — x1]|3 by strong convexity of f,
IV f(@2) = Vf(21)||3 using [2.16),

el (A7 gy @) ( - ) T (Jy(@2) = Jy(@1)) e 3.

b

\E VIV IE AV

a

Now recall that for every = € V.(z,) the rows of the matrix ( 1? ) ) are independent and therefore the

Jg(x

T T
A A A A
matrix is invertible. Moreover, the function x — Amin
(Jg@c) ) ( Jg<m>) (( Jy() ) ( Jg<x>> )

is continuous (due to (A2)) and positive on the compact set Ve(z,). It follows that we can define

sie= g o (it ) () )

and A_(x.) > 0. Since z2 € V.(x.), we deduce that
A2 — A
H2 — M1

(2.18) lalla > VA (22)

2
7



Recalling that (A1, u1) is in N (s, ps), there is n > 0 such that

(2.19) lpally < Un(pe) = [z + -
Due to (A2), there is L(g) > 0 such that for every z,y € R", we have

IVgi(y) = Vagi(z)ll2 < L(g)lly — 22,1, p.
Combining this relation with (2.19)), we get

(2.20) 1bll2 < pall Lg) 1z = z1ll2 < L(g)Up (p)l22 = 21 2.
lla+bll2 = llallz = lIbll2 > VA ()

Therefore
A2 — A
H2 — H1
and combining this relation with (2.17]) we obtain

1 Ao — A
Hm—mhz{J&@O< 2_1)
U2 1251

(f)
o (2 on)

+E(g)Un(ﬂ*) B2 — 1

— L(9)Uy () |22 = 21 ]2
2

Q—L@WMmMm—w1%

which gives

2.21 To — T >
(221) Jr2 = a1lle > 775
Plugging (2.21) into (2.17) we get

Ao — A1 e, (z-)
- <W(’\27“2) = VO, ), ( . >> 2 T+ U, P

2

2

(i)
M2 — f1

Using Proposition (iii), the relation above shows that 6 is strongly concave on N (A, ptx) N Rﬁfq with

2

constant of strong concavity (L(f)ff(fg)w(j L with respect to norm || - [|o. ]
o (e

The local strong concavity of the dual function of was shown recently in Theorem 10 in [19] assum-
ing (A3), assuming instead of (A1) that f is strongly convex and second-order continuously differentiable
(which is stronger than (Al)), and assuming instead of (A2) that g;,4 = 1,...,p, are convex second-order
continuously differentiable, which is stronger than (A2)E| Therefore Theorem m gives a new proof of the
local strong concavity of the dual function and improves existing results.

3. COMPUTING INEXACT CUTS FOR VALUE FUNCTIONS OF CONVEX OPTIMIZATION PROBLEMS

3.1. Preliminaries. Let Q : X — R U {400} be the value function given by

infyern f(y,x)
22 = v I
(3:22) ) { yeS():={yeY : Ay+Bx =0, g(y,z) <0}.
Here, and in all this section, X C R™ and Y C R™ are nonempty, compact, and convex sets, and A and B
are respectively gxn and gxm real matrices. We will make the following assumptionsﬂ

(H1) f:R*"xR™ — RU {400} is lower semicontinuous, proper, and convex.
(H2) For i = 1,...,p, the i-th component of function g(y,x) is a convex lower semicontinuous function
gi i R"xR™ — R U {+00}.

In what follows, we say that C is a cut for @ on X if C is an affine function of « such that Q(x) > C(z) for
all z € X. We say that the cut is exact at Z if Q(Z) = C(Z). Otherwise, the cut is said to be inexact at Z.

In this section, our basic goal is, given Z € X and e-optimal primal and dual solutions of written
for x = Z, to derive an inexact cut C(z) for Q at Z, i.e., an affine lower bounding function for Q such that
the distance Q(z) — C(Z) between the values of Q and of the cut at Z is bounded from above by a known
function of the problem parameters. Of course, when € = 0, we will check that O(Z) = C(Z).

2Note that we used (A4) to ensure that z(A«, jtx) = Z+, which is also used in the proof of Theorem 10 in [I9].
3Note that (H1) and (H2) imply the convexity of Q given by . Indeed, let 1,22 € X,0<t <1, and y1 € S(z1),y2 €
S(z2), such that Q(z1) = f(y1,z1) and Q(z2) = f(y2,x2). By convexity of g and Y, we have that have ty; + (1 —1t)y2 € S(tz1+
(1—t)z2) and therefore Q(tx1+(1—t)x2) < f(ty1+(1—t)y2, tx1+(1—t)x2) < tf(y1,z1)+(1—1t)f(y2, z2) = tO(x1)+(1—t)O(z2)
where for the last inequality we have used the convexity of f.
8



We first provide in Proposition below a characterization of the subdifferential of value function Q at
T € X when optimal primal and dual solutions for written for © = Z are available (computation of
exact cuts).

Consider for problem the Lagrangian dual problem

(3.23) sup O5(\, 1)
(X p)ERIXRY

for the dual function
(3.24) 0. (A, ) = inf Lp(y, A, p)
yey
where
Ly (y, A i) = f(y, ) + N (Ay + Bz — b) + p' g(y, z).
We denote by A(z) the set of optimal solutions of the dual problem ([3.23)) and we use the notation
Sol(z) :={y € S(x) : f(y,z) = Q(z)}
to indicate the solution set to (3.22)).

Lemma 3.1 (Lemma 2.1 in [4]). Consider the value function Q given by (3.22)) and take T € X such that
S(Z) # 0. Let Assumptions (H1) and (H2) hold and assume the Slater-type constraint qualification condition:

there exists (z4,y.) € X x1i(Y) such that Ay, + Bz, = b and (y«, z.) € ri({g < 0}).
Then s € 0Q(Z) if and only if
(0,5) € 9(5,7) + {[AT; BT]A + AeRe}
(3.25) H{ X w0 a) =0} + Ny ()< {0},
i€1(7,7)
where § is any element in the solution set Sol(T) and with
1(5,7) = {z’e 1,....p} : 9:i(5.%) :o}.
In particular, if f and g are differentiable, then
(3.26) 90(z) = {vx @2 +B A+ Y wVegi(3.7) - (\u) € A(:E)}.
i€l(y,x)
The proof of Lemma is given in [4] using calculus on normal and tangeant cones. In Proposition

below, we show how to obtain an exact cut for @ at £ € X using convex duality when f and g are
differentiable.

Proposition 3.2. Consider the value function Q given by and take T € X such that S(z) # 0. Let
Assumptions (H1) and (H2) hold and assume the following constraint qualification condition: there exists
yo € ri(Y) N ri({g(-,) < 0}) such that Ayo + BT = b. Assume that f and g are differentiable on' Y x X.
Let (X, i) be an optimal solution of dual problem (3.23) written with x = & and let

(3.27) s(Z) =Vof(@,8)+ B A+ Y mV.i(y7),
i€l(y,z)

where § is any element in the solution set Sol(Z) and with

1(g.5)={ie{1,....p} + 0uz.7) =0},
Then s(z) € 09(T) .
Proof. The constraint qualification condition implies that there is no duality gap and therefore
(3.28) f(7,7) = Q(7) = 0z(\, ).
Moreover, ¢ is an optimal solution of inf{Lz(y, \, i) : ¥ € Y} which gives

Ys

(VyLz(§, A\ ),y —9) > 0Vy €,
9



and therefore

(3.29) min(V, Lz (4, A, i),y — §) = 0.
yey

Using the convexity of the function which associates to (z,%) the value L, (y, \, i) we obtain for every z € X
and y € Y that

(3.30) Loy, A 1) > La(, A i) + (Vo La (5, A, 1), @ — T) + (Vy La (5, A, /1),y — 3)-
By definition of 6, for any x € X we get -
Q(z) > 0,(\, )
which combined with (3.30)) gives
Q) > La(g.Apa)+
(329 - _ 3 _ _ _
i=1
= Q@)+ (s(z),z —I)

where the last equality follows from (3.28)), Ay + Bz = b (feasibility of 4), (i, 9(7,Z)) = 0, and f; = 0 if
i ¢ I(y, T)(complementary slackness for 7). O

3.2. Inexact cuts with fixed feasible set. As a special case of (3.22)), we first consider value functions
where the argument only appears in the objective of optimization problem ([3.22)):

_ innyR" f(y7 l‘)
(3.31) Qx) = { yev.
We fix £ € X and denote by § € Y an optimal solution of (3.31) written for z = Z:
(3.32) Qz) = f(, @)

If f is differentiable, using Proposition we have that V, f(y,z) € 09(z) and
C(z) = Q@) + (Vaf(,7),2 — T)
is an exact cut for Q at . If instead of an optimal solution g of (3.31]), we only have at hand an approximate
g-optimal solution §(e), Proposition below gives an inexact cut for Q at Z:

Proposition 3.3 (Proposition 2.2 in [6]). Let Z € X and let §(e) € Y be an e-optimal solution for problem
(3.31) written for x = & with optimal value Q(Z), i.e., Q(ZT) > f(§(e),T) —e. Assume that f is convex and
differentiable on Y xX. Then setting n(e, =) = ¢1(g(e),Z) where {1 : Y XX — Ry is the function given by

the affine function

(3.34) C(z) == f(9(e), %) — n(e, @) + (Vo f(9(e),2),2 — &)

is a cut for Q at T, i.e., for every x € X we have Q(x) > C(x) and the quantity n(e,T) is an upper bound
for the distance Q(Z) — C(Z) between the values of @ and of the cut at T.

Remark 3.4. If ¢ = 0 then g(e) is an optimal solution of problem (3.31) written for x = &, n(e,z) =
1(g(e),z) = 0 and the cut given by Proposition is exact. Otherwise it is inezact.

In Proposition below, we derive inexact cuts with an additional assumption of strong convexity on f:

(H3) f is convex and differentiable on YxX and for every € X there exists a(x) > 0 such that the
function f(-,x) is strongly convex on Y with constant of strong convexity a(z) > 0 for || - ||2:

alx
Flu) 2 Fr,2) + (0~ 90V ) + S o — a3, Vo€ X, Vg € v

We will also need the following assumption, used to control the error on the gradients of f:

(H4) For every y € Y the function f(y,-) is differentiable on X and for every x € X there exists 0 <
M (z) < +oo such that for every y1,y2 € Y, we have

IVaf(ye,x) = Vaf(ys, )|l2 < Mi(z)|ly2 — yill2-
10



Proposition 3.5. Let x € X and let y( ) €Y be an e-optimal solution for problem (3.31)) written for x =

with optimal value Q(T), i.e., Q(Z) > f(§(e), &) —e. Let Assumptions (H3) and (H4) hold. Then setting
(3.35) (6,%) = & + M (2)Diam(X) | —=
M n 87 =& 1 a(.’j}) b

the affine function

(3.36) Cz) == f(4(e), @) —nle, @) + (Va f(4(e), 7), 2 — T)

is a cut for Q at T, i.e., for every x € X we have Q(x) > C(x) and the distance Q(Z) — C(Z) between the
values of Q and of the cut at T is at most n(e, ), or, equivalently, V. f(3,T) € Oy 7 2(T).

Proof. For short, we use the notation § instead of §(¢). Using the fact that § € Y, the first order optimality
conditions for § imply (§ — )TV, f(y,Z) > 0, which combined with Assumption (H3), gives

@8 = @3+ G- 9TV G7) + g - gl
> Q@)+ 7 - 9l
yielding
2 2e
: g—illa </ —(f(@,2) — Qx)) < :
(3.37) 17— 3> < \/ o (f0.0) - e@) < \/ e
Now recalling that V. f(7,Z) € 0Q(Z), we have for every z € X,

Q(x) Qz) + (z — )"V f(y, )
e+ (x—2) TV f(y,x

15,2) (7.7)
(3.39) = J§.8) e+ (@ = D)V (57) + (@ = )T (Vo (5,) = Va S (5.7))
(5.7) - (5.7)
(9,7) -

IV IV

> f e+ (x—2)TV, f(9,2) — Mi(2)]|§ — ¥ll2]lz — 2|2

f £ — M;(z)Diam(X) j(a) + (x —2)T'V.f(9,2),

where for the third inequality we have used Cauchy-Schwartz inequality and Assumption (H4). Finally,
observe that C(z) = f(y,%) —n(e,z) > Q(Z) —n(e, T). O

Remark 3.6. As expected, if e = 0 then n(e,z) = 0 and the cut given by Proposition is exact. Otherwise
it is inexzact. The error term n(e, T) is the sum of the upper bound € on the error on the optimal value and

of the error term M (Z)Diam(X) of(‘;) which accounts for the error on the subgradients of Q.

3.3. Inexact cuts with variable feasible set. For x € X, recall that for problem (3.22)) the Lagrangian
function is

and the dual function is given by

(3.39) 0. (A, p) = inf Ly (y, A\ p).
yey
Define £; : Y x X xRIxRY — Ry by

(340) 62(?37‘%3 5‘7[1“) - —mm(V L ( 75‘7ﬂ)ay_y> _max<V L ( vj\vﬂ)vg_y>'
yey yey

We make the following assumption which ensures no duality gap for (3.22)) for any =z € X:
(H5) if Y is polyhedral then for every z € X there exists y,, € Y such that Bx + Ay, = b and g(y,,z) <0
and if Y is not polyhedral then for every z € X there exists y,, € ri(Y) such that Bz 4+ Ay, = b and
9y, ) <0.

The following proposition, proved in [6], provides an inexact cut for Q given by (3.22):
11



Proposition 3.7. [Proposition 2.7 in [0]] Let T € X, let §(e) be an e-optimal feasible primal solution for
problem written for x = T and let (}(e),ﬂ(e)) be an e-optimal feasible solution of the corresponding
dual problem, i.e., of problem written for x = Z. Let Assumptions (H1), (H2), and (H5) hold.
If additionally f and g are differentiable on Y xX then setting n(e,z) = gQ(ﬁ(E),f,;\(f),ﬂ(f)), the affine
function

(3.41) C(x) == La(j(e), (), ii(€)) — (e, @) + (VaLa((e), Ae), fu(e)), = — &)

with
p

Vo Lz ((e), Me), fil€) = Vo f(§(€), &) + BT A(e) +Z 1i(€)Vagi(§(e), T),

is a cut for Q at T and the distance Q(Z) — C(Z) between the values of Q and of the cut at T is at most

€+ éQ(@(Q? z, 3‘(6)7 ﬂ(e))

In Proposition [3.8] below, we derive another formula for inexact cuts with an additional assumption of
strong convexity:

(H6) Strong concavity of the dual function: for every x € X there exists ap(z) > 0 and a set D, containing
the set of optimal solutions of dual problem such that the dual function 6, is strongly concave
on D, with constant of strong concavity ap(x) with respect to || - ||2.

We refer to Section [2] for conditions on the problem data ensuring Assumption (H6).

If the constants «(Z) and ap(Z) in Assumptions (H3) and (H6) are sufficiently large and n is small then
the cuts given by Proposition are better than the cuts given by Proposition ie, Q(z) — C(z) is
smaller. We refer to Section [3.4] for numerical tests comparing the cuts given by Pr0p081t10ns 3.7 and 3-8 on
quadratic programs.

To proceed, take an optimal primal solution ¢ of problem (3.22)) written for z = Z and an optimal dual
solution (A, fi) of the corresponding dual problem, i.e., proble written for z = Z.

With this notation, using Proposition we have that V,Lz(y,\, i) € 0Q(Z). Since we only have
approximate primal and dual solutions, §(¢) and (5\(6), ii(€)) respectively, we will use the approximate sub-
gradient V, Lz (4(€), \(€), fi(€)) instead of V, Lz (7, X, iz). To control the error on this subgradient, we assume
differentiability of the constraint functions and that the gradients of these functions are Lipschitz continuous.
More precisely, we assume:

(H7) g is differentiable on Y xX and for every € X there exists 0 < Ms(z) < 400 such that for all

Y1, Y2 € Y, we have

1Vegi(y1, 2) — Vagi(ye, )ll2 < Ma(z)|lyr — y2ll2, i=1,...,p
If Assumptions (H1)-(H7) hold, the following proposition provides an inexact cut for Q at z:
Proposition 3.8. Let T € X, let §j(¢) be an e-optimal feasible primal solution for problem (3.22)) written for
x =T and let (A(e), [1(€)) be an e-optimal feasible solution of the corresponding dual problem, i.e., of problem

(3-23) written for x = T. Let Assumptions (H1), (H2), (H3), (H4), (H5), (HG), and (H7) hold. Assume
that (A(€), fi(€)) € Dz where Dz is defined in (H6) and let

(3.42) U= max |[Vagi(§(e),7)l2.

.....

Let also Lz be any lower bound on Q(Z). Define

- ( T T
(343) Us = min(_gz(yivj)ﬂ; =1,.. 7p)
and
max(||BT
n(e,z) =¢e+ ((Ml(:i’) + Mo (z)Uz) aé) 2 \(Jﬁ\fU)>Diam(X)\/E.
Then



where
P

VaLz(i(€), Ae), fu(e)) = Vaf(i(e),2) + BT A(€) + Y f1i(€)Vagi(§(e), ),

i=1
is a cut for Q at T and the distance Q(T) — C(Z) between the values of Q and of the cut at T is at most
n(e, T).

Proof. For short, we use the notation §, A, i instead of §(¢), A(€), i(¢). Since VyLz(7, N\, i) € 0Q(Z), we
have

(3.44) Qr) =z Q)+ (Vala(y, M),z -

Next observe that

) > f(9,%) — e+ (VaLz(§, A i), @ — T).

-

8

IVeLe(@3o5) = VaLe@ A < @5 = dl+ 157X -3
+||Z )(V20:(5,2) = Vagi(5,0))|
+||Z( ) = D)) Vai(5:2)]
< Mu(@)llg - 9l + IBTIIA = Al + Me(@|all 17 - 91 + U /Bl — il
(3.45) < (@) + (@)l 7 — 91l + VEmax(I BT, UVBIA - A1 + 1~ gl

Using Remark 2.3.3, p.313 in [7] and Assumption (H5) we have for ||z||; the upper bound

(yaca T) - Q= ) <U,.

(3.46) Il < gt i=1p)

Using Assumptions (H3) and (H6), we also get

2e

and [|A = A2+ [l — Al € ——.
ap(z)

(3.47) 15 -7 <

2e
a(z)
Combining (3.45)), (3.46), and (3.47)), we get

(3.48) www&w—%%<AW—§$L§

Plugging the above relation into (3.44)) and using Cauchy-Schwartz inequality, we get

O) = f(5.#) — e+ (VaLa( A i) —2) + (VoLo(g A1) — VaLa(i, A i), — 2)
(3.49) > J(7) — 2 — IVaLalds M) — VaLa(g, b @) IDiam(X) + (7, L (3, 4), = — 7)
> f@5.3) —ne.®) + (VoLa(@ A i), 2 — 7).

Finally, since § € S(&) we check that Q(z) — C(z) = Q(Z) — f(y,Z) + n(e, z) < n(e,z), which achieves the
proof of the proposition. O

Observe that the “slope” V,Lz(5(€), A(¢), fi(€)) of the cut given by Proposition is the same as the
“slope” of the cut given by Proposition

Remark 3.9. If §(¢) and (5\(5),,&(5)) are respectively optimal primal and dual solutions, i.e., € = 0, then
Proposition gives, as expected, an exact cut for Q at T.

As shown in Corollary the formula for the inexact cuts given in Proposition can be simplified
depending if there are nonlinear coupling constraints or not, if f is separable (sum of a function of x and of
a function of y) or not, and if g is separable.
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Corollary 3.10. Consider the value functions Q : X — R where Q(x) is given by the optimal value of the

following optimization problems:

miny f(:% J)) miny fO(y) + f1 (x) miny fO(y) + f1 (JZ)
Ay + Bx = b, b) Ay + Bx = b, ©) Ay + Bx = b,

@Y b+ k@ <0, O gm0 <o, D\ hy) + k() <0,
y ey, y ey, y ey,

(3.50) min,, f(y, ) miny, f(y,x) miny, fo(y) + fi1(x)
' (d) 3 gly,z) <0, (e)q h(y) +k(x) <0 (f)s gy, x) <0,

y ey, y ey, y ey,
miny, fo(y) + f1(x) { miny f(y,z) { miny, fo(y) + f1(x)

(9) ¢ h(y) +k(z) <0, (h)y Ay+ Bz =1, (i) Ay+ Bz =0,
yey, yey, yey.

For problems (b),(c),(f),(g), (i) above define f(y,x) = fo(y)+ f1(z) and for problems (a), (c), (e), (g) define
g(y,x) = h(y) + k(x). With this notation, assume that (H1), (H2), (H3), (H4), (H5), (H6), and (H7) hold
for these problems. If g is defined, let L, (y,\, 1) = f(y,x) + AT (Bx + Ay —b) + uTg(y, ) be the Lagrangian
and define

U= max [|Vugi(§(e),

Z)|| and Uz = —

where Lz is any lower bound on Q(z). If g is not defined, define L,(y,\) = f(y,z) + AT (Bx + Ay — b).
Let z € X, let g be an e-optimal feasible primal solution for problem (3.22) written for x = T and let

(5\,;1) be an e-optimal feasible solution of the corresponding dual problem, i.e., of problem (3.23)) written for
Tr=2x.

Then C(x) = f(4,%) — n(e, T) + (s(Z),x — T) is an inexact cut for Q at T where the formulas for n(e, T)
and s(Z) in each of cases (a)-(i) above are the following:

@ { e ) e+ (M(a )i+ VEmax(IBT. ypU) \/;T(E))Diam(X)\/%,
s(z) = Vo f(5,2) + BTA+ 30, 1 Vaki(2),

(b){ 77(6,53): + (Mg( s \/—4—\[max(HBTH,\/ﬁU)m)Diam(X)\/%,
5(7) ( )+BTA+27, 1,U/Z wgl(g7i‘)7

© { n(g,gz) = —|—2max(||BT|| V/PU)Diam(X), /75,
s(z) = Vo f1(T) +BT/\+21 1 iV ki (T),

(d){ n(e,z) = +( T) + My (Z)Uz )\/—)+U QD(x))Dlam(X)\/%,
S(j): ( +Z’L 1/11 lgl(y7 )a

(3.51) (e){ ne,z) = +( a( ) aD(T U)Dlam(X)\/E,

s(z) = Vo f(§,7) + 3211 AiVa k()

(f){ n(e,z) = +( (I U +U )>Dlam(X)\/£,
S(f): f i +ZZ 1#1 xgz(yv )a

] 160 5 D
$(2) = Vo o() + S, iV k().

(h){ n(e,a) ==+ (2 + Il ) Diam () V2,
S(5) = 2 5:7) + BT

(i){ n(e.7) = £ + | BT|| /25 Diam(X),
s() = Vo f1(z) + BTA.
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Proof. 1t suffices to follow the proof of Proposition [3.8] specialized to cases (a)-(i). For instance, let us check
the formulas in case (g). For (g), s(Z) = V,Lz(9, 1) = Vo f1(Z) + > b1 1iVaki(Z) and

IVaLa(, ) = VoLla(@ Wl = |32 (i — 1) Vaki(2)]| < Ul — fll
< Uyplli—all < Uvp\/ 525

It then suffices to combine ([3.44]) and (3.52]). O

3.4. Numerical results.

(3.52)

Si S
ST S,

matrix, let ¢; € R™, co € R™ be vectors of ones, and let Q be the value function given by

T T
) a1z x c1 x
(3.53) yeY :={yeR":y>0, 30"y =1},
mingegn 4z +cly + %:Z:Tslm + 2T Soy + %yTssy

Yy 2 Oa 2?21 Y; = 1
Clearly, Assumption (H3) is satisfied with a(z) = Apmin(S3), and

IVaf(ya,2) = Vaf(yr, z)|| = [[S2(y2 — y1)ll2 < [1S2]l2]ly2 — y1ll2

implying that Assumption (H4) is satisfied with M;(Z) = ||S2|l2 = 0(S2) where o(S2) is the largest singular
value of Sp. We take X = Y with Diam(X) = max,, s,ex |72 — z1]l2 < V2. With this notation, if §
is an e-optimal solution of written for x = Z, we compute at T the cut C(x) = f(§,Z) — n(e,Z) +
(Vof(9,2),2— %) = f(9,%) —n(e, &) + (c1 + S1Z + S29,z — T) where

e (e, ) =m(e,x) = ¢+ 2M;(Z), / oGy using Proposition

e 7(e, ) is given by

3.4.1. Argument of the value function in the objective only. Let S = > be a positive definite

L v max (V,f(9,2),9—y) _ [ max (co+ STZ+ S30,9 —y)
n(e,2) = m(e, %) = { y>0, >0 =1, { y>0, 3y =1,
using Proposition 3.3

We compare in Table [1| the values of 71 (e, Z) and 72(e, Z) for several values of m = n, ¢, and «(z). In
these experiments S is of the form AAT + Ay, for some A > 0 and A has random entries in [—20, 20].

Optimization problems were solved using Mosek optimization toolbox [I], setting Mosek parameter MSK_
DPARINTPNT_QO_TOL _REL_GAP which corresponds to the relative error ¢, on the optimal value to 0.1,
0.5, and 1. In each run, € was estimated computing the duality gap (the difference between the approximate
optimal values of the dual and the primal). Though 7;(e,Z) does not depend on Z (because on this example
a and M; do not depend on Z), the absolute error e depends on the run (for a fixed ¢, different runs corre-
sponding to different Z yield different errors e, (e, Z) and na(e, Z)). Therefore, for each fixed (e,, a(Z),n),
the values ¢, ny(e,Z), and ny(e, T) reported in the table correspond to the mean values of €, n; (e, Z), and
12(e, Z) obtained taking randomly 50 points in X. We see that the cuts computed by Proposition are
much more conservative on nearly all combinations of parameters, except on three of these combinations
when n = 10 and (%) = 106 is very large.

3.4.2. Argument of the value function in the objective and constraints. We close this section comparing the
error terms in the cuts given by Propositions[3.7]and [3.8]on a very simple problem with a quadratic objective
and a quadratic constraint.

Let S = ( ,55:% 22 ) be a positive definite matrix, let c¢;,co € R™, and let Q : X — R be the value
2 3
function given by
(3.54) Q(z) = min {f(y,z) : g1(y,z) < 0},

yeR™
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3 a() n M 2 € a(7) n m 72
0.0024 | 102.9 10 1.76 | 0.025 || 0.0061 | 190.2 10 2.73 10.026
0.0080 | 10 087 10 0.86 | 0.054 || 0.0024 106 10 0.076 | 0.354
0.016 | 129.0 10 9.81 | 0.047 || 0.0084 | 174.5 10 4.85 | 0.037
0.029 | 10054 10 2.49 | 0.128 || 0.002 106 10 0.09 |0.342
0.008 | 112.3 10 8.07 | 0.043 || 0.008 | 150.0 10 6.36 | 0.022
0.018 | 10 090 10 1.29 | 0.078 || 0.0019 106 10 0.06 | 0.442

0.15 531.9 | 100 | 175.6 | 0.3 0.18 | 665.3 | 100 | 183.5 | 0.3
0.23 | 10687 | 100 | 44.5 0.2 0.03 10° 100 2.1 0.9
0.17 | 676.2 | 100 | 185.7 | 0.2 0.09 | 734.3 | 100 | 106.5 | 0.2
0.11 | 10638 | 100 | 37.9 0.2 0.02 10° 100 1.7 0.3
0.05 660 100 | 106.7 | 0.2 0.40 T 100 | 253.8 | 0.4
0.07 | 10 585 | 100 | 32.6 0.2 0.02 10° 100 1.3 0.4

6.78 | 6017.9 | 1000 | 4177.8 | 9.5 2.69 | 5991.4 | 1000 | 2778.8 | 6.8
8.12 | 15 722 | 1000 | 3059.5 | 11.1 0.99 108 1000 | 132.1 3.2
7.40 5799 | 1000 | 4160.2 | 9.8 7.83 6020 | 1000 | 4590.7 | 9.3
12.5 | 15860 | 1000 | 4001.6 | 14.6 1.3 105 [ 1000 | 153.6 | 3.47
9.9 6065 | 1000 | 4996.4 | 11.8 8.3 5955 | 1000 | 4034.9 | 8.3
7.2 | 15895 | 1000 | 2564.3 | 3.4 9.7 108 [ 1000 | 117.2 | 1.8
TABLE 1. Values of n(e,z) = n1(e,Z) (resp. n(e,Z) = na(e, 56)) for the inexact cuts given
by Proposition (resp. Proposition E ) for value function ) for various values of n
(problem dlmenblon) a(Z) = Amin(S3), and €.

where
z \" x a\ [z
1 1
,x) = 3 S +
o =3(5) s(3)+(5) (3)
(3.55) = de+dy+ 1S+ mTSQyZ + 2y7 83y,
a2 = 3lly—wol3+ 3llz -zl — &,

X = {xeR": |z —xgl2 <1}.

In what follows, we take R =5 and x,yo € R™ given by x¢(i) = yo(¢) = 10,7 = 1,...,n. Clearly, for fixed
Z € X and any feasible y for (3.54)), (3.55) written for = Z, we have

|G == |GGl

( o ) H — R > 0, we obtain the bound Q(z) > £; where

=g (|50 )] =010+ (5)

Next, for every T € X we have g1 (yo, Z) < 0 which gives the upper bound

E.’E - )
(3.56) U, = L2 = 0. %)
91(Yo, )
for any optimal dual solution i > 0 of the dual of (3.54)), (3.55) written for x = Z. Making the change of
variable z = y — yg, we can express (3.54)) under the form (2.6) where
(3.57) Qo = S3,a0 = ao(zr) = c2 + Sngl‘ + S3%0, b20 = bg(x) = %iﬂTSll‘ +cfz+yf(c2+ STx) + %yoTS?ayo,
Ql = In,al = O,bl = bl(.T) = 5(“1’ - SU()HQ - R )
Therefore, using Proposition we have that dual function 0 for (3.54) is given by

(3.58) 02 (1) = — 5a0(@)" (S5 + ul) ao(@) + bo(z) + b (7)
16

Knowing that with our problem data

2



with ag, bg, b1 given by (3.57) and setting
ap(z) = ao(z)" (S5 + Uz I,) 2ao(7),
if ag(Z) # 0 then 95 is strongly concave on the interval [0,Uz] with constant of strong concavity ap(Z) where

Uz is given by (3.56). Let § be an e-optimal primal solution of ( written for x = Z and let i be an
g-optimal solutlon of 1ts dual. If ag(Z) # 0, we obtain for Q the Cut

(3.59)
Ci(x) = f@z) - Lz(i), i), © — ) where
(e, T) = e+ DX ( a(x a—w(jl\)) with D(X) = 2, M1(Z) = ||S2||2, &(Z) = Amin(S3),
Vilz(g, 1) = Si1%+c +52y+u(x —xo)

We now apply Proposition m 3.7 to obtain another inexact cut for Q at & € X rewriting (3.54)) under the
form (3.22)) with Y the compact set Y = {y € R" : ||y — yoll2 < R}:

(360) Q(‘r) = ynel]g}b {f(yvx) : gl(y’w) < 07 ||y - y0||2 < R}
Applying Proposition to reformulation (3.60) of (3.54]), we obtain for Q the inexact cut Cy at & where
Ca() = [f(9,%) —m2(e,2) + (Vo Lz (g, it), v — T) with
n2(€, 7) = —min{(VyLz(9, /),y — 9) : Iy — woll> < R},
(3.61) = (VyLa(9,/1),9 — yo) + RIIVy Lz (9, i),
vai(gaﬂ) = Sl.i'—f—C]_ +52g+ﬂ(i‘_.'1}0)7
VyLs(j ) = Ssi+ 537+ ca+ i) — yo)-

As in the previous example, we take S of form S = AAT 4+ \I,,, where the entries of A are randomly selected
in the range [—20,20]. We also take ¢;(i) = ¢3(i) = 1,4 = 1,...,n. For 8 values of the pair (n,\), namely
(n,A\) € {(1,1),(10,1),(100,1), (1000, 1), (1, 100), (10, 100), (100, 100), (1000, 100) }, we generate a matrix S
of form AAT + AI,,, where the entries of A are realizations of independent random variables with uniform
distribution in [—20, 20]. In each case, we select randomly Z € X and solve , and its dual written
for © = = using Mosek interior point solver. The value of a(Z) = Apin(S3), the dual function 0z(-), and the
dual iterates computed along the iterations are reported in Figure [6] in the Appendix. Figure [7] shows the
plots of 1 (e, Z) and n2(ek, T) as a function of iteration k where ¢, is the duality gap at iteration k.

The cuts computed by Proposition are more conservative than cuts given by Proposition [3.7]on nearly
all instances and iterations. We also see that, as expected, the error terms 7y (e, Z) and 72(eg, T) go to zero
when € goes to zero (see the proof of Theorem for a proof of this statement).

4. INEXACT STOCHASTIC MIRROR DESCENT FOR TWO-STAGE NONLINEAR STOCHASTIC PROGRAMS

The algorithm to be described in this section is an inexact extension of SMD [I3] to solve

(4.62) { min f(z1) := fi(z1) + Q(z1)

T € X4

with Xy C R” a convex, nonempty, and compact set, and Q(z1) = E¢,[Q(x1,&2)], & is a random vector
with probability distribution P on = C R¥, and

ming, fo(z2,21,&2)
4.63 Q(xy, = 2
(4.63) (21, &2) { Ty € Xo(w1,8&2) := {wa € Xy 1 Awy + Bxy = b, g(x2,21,82) <0},
Recall that &5 contains the random variables in (A, B,b) and eventually other sources of randomness. Let
|| - || be a norm on R™ and let w: X7 — R be a distance-generating function. This function should

e be convex and continuous on X7,

e admit on X{ = {z € X; : dw(x) # 0} a selection w’(x) of subgradients, and

e be compatible with || - ||, meaning that w(-) is strongly convex with constant of strong convexity
p(w) > 0 with respect to the norm || - |:

(W' (x) = ' ()" (& —y) = plw)lx -yl Ya,y € X7.
We also define

(1) the w-center of X; given by z1, = argmin , x, w(z1) € X5
17



(2) the Bregman distance or prox-function

(4.64) Valy) = w(y) — w(@) — (y — 2)"w'(2),

for v € X7,y € X3
(3) the w-radius of X; defined as

(4.65) D, x, = \/2 L{lé%()i w(z) — min w(x)}

(4) The proximal mapping
(4.66) Prox, () = argmin e x, {w(y) +y" (¢ —'(2))} [o € X7,( €R",

taking values in X7.

We describe below ISMD, an inexact variant of SMD for solving problem in which primal and dual
second stage problems are solved approximately.

For 1 € X1, & € E, and € > 0, we denote by z5(x1,&2,€) an e-optimal feasible primal solution of ,
ie., Z‘Q(l‘l,fg,é‘) S Xg(l‘l,gg) and

Q(x1,&) < falxe,21,&2) < Q(x1,&) +e.

We now define e-optimal dual second stage solutions. For z; € X; and & € = let

L:E17€2(x2a)‘7/’[’) = f2($2,.’1§1,§2) + <)\,AJ}2 + Bl‘l - b> + <M7g($2,$17£2)>,
and let 6,, ¢, be the dual function given by

_ min L$17€2(x2’)\7:u’)
(167 brncaOon) = { T B

For 21 € X3, & € E, and € > 0, we denote by (A(z1,&2,¢), u(x1,&2,€)) an e-optimal feasible solution of the
dual problem

max Oy, ¢, (A, 1)
(468) { I > O7 A= A.TQ =+ B.Il — b, o € AH(XQ)

Under Slater-type constraint qualification conditions to be specified in Theorems and [£4] the opti-
mal values of primal second stage problem (4.63) and dual second stage problem (4.68) are the same and
()‘(mla 527 6)) ,U(Z'l, 527 6)) satisfies:

M($1,§27E) Z 07)\(5(;1762’5) = ASL'Q + B.’El - b7
for some x5 € Aff(X5) and
9(1‘1752) — € S 91:1,52 (A(xthaE)vﬂ('xlngae)) S Q($1,€2).

We also denote by Dx, = max, yex, ||y — || the diameter of Xy, by sf, (1) a subgradient of f; at z;, and
we define
(4.69)
H(z1,82,6) = Vg, fa(xa(21, &2, ), 21, §2) + BT N1, &a,€) + 300 pril@1,€2,6) Ve, gi(w2(21, €2, €), 71, &2),
G(x1,82,8) = sp,(w1) + H(21, 82, ).

Inexact Stochastic Mirror Descent (ISMD) for risk-neutral two-stage nonlinear stochastic
problems.

Parameters: Sequence (g;) and 6 > 0.
For N =2,3,...,

N1
Take 27" = Z1w.
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Fort=1,..., N —1, sample a realization §év’t of 52 (with corresponding realizations AN:! of A, BNt
of B, and bt of b), compute an g;-~optimal solution x2 ! of the problem

N,t
mlnﬂh fQ(x21I1N7£2 )
N,t N,t t N,t
ANty + B b

4.70 Q2 eV = )
(1.70) e L i o,
To € XQ,
and an e,-optimal solution (AN, uNt) = (A(z2!, €370 e,), w(az ', €37" €,)) of the dual problem
0~ N (A
(4.71) el ’géVN( & Nt Nt N
u> 0,0 = ANty + BNt — 0N g € Aff(XR)

used to compute Gz, &, &,) given by ([E69) replacing (z1, &2, <) by (24, &4, 2,)[]

Compute v(N) = \/ON and
(4.72) = Prox,s (n(N)G (€ e0)).
Compute
1N
= 7o Z%(N)xfw and
N
(4.73) N i
fv=5 Ty lZ’YT ( V) + folad T, f[»f,fé\”)ﬂ with FN:Z’YT(N)
T=1 =
End For
End For

Remark 4.1. In practise ISMD is run fixing the number N of inner iterations, i.e., we fit N and compute
z1(N) and fn.

Convergence of Inexact Stochastic Mirror Descent for solving (4.62)) can be shown when error terms (&)
asymptotically vanish:

Theorem 4.2 (Convergence of ISMD). Consider problem and assume that (i) Xy and Xy are
nonempty, convez, and compact, (ii) f1 is convex, finite-valued, and has bounded subgradients on Xy, (iii)
for every 1 € X1 and x9 € X, fo(xo,x1,-) and gi(z2,x1,-),i = 1,...,p, are measurable, (iv) for every
& € E the functions fa(-,-, &) and gi(-,+,&),i = 1,...,p, are conver and continuously differentiable on
Xo X X1, (v) Ik > 0 and r > 0 such that for all 1 € X1, for all 52 € =, there exists xo € Xy such that
B(xo,7) N Af(Xy) # 0, Azy + Bay = b, and g(x2, 1,&) < —rke where e is a vector of ones. If ~; = \ﬁ for
some 0 > 0, if the support Z of & is compact, and if lim;_,o ¢ = 0, then

Jim E[f(N)] = Jim E{fx] = f.
where f1. is the optimal value of (4.62)).

Proof. For fixed N, to alleviate notation, we denote vectors xf[ Eallt et ANt BNt pNt o (N ANt Nt

used to compute 21 (N) and fy by zt, b, &5, AL Bt bt 4y, AL, jit, respectively. Let 2% be an optimal solution
of (4.62)). Standard Computations on the proximal mapping give

N
1
(4'74) Z’V‘F xlv&Q’ET) ( _xl) Dw X1 U(w) Z“/ZHG@LG»ET)HE
=1

Next using Prop051t10n we have
(4.75) Q(a1,83) > Q(21,83) — ez (er, 27) + (H(21, &3, 67), 21 — 27)

4Any optimization solver for convex nonlinear programs able to provide e;-optimal solutions can be used (for instance an
interior point solver).
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where

- max (Vg, Lyr er (23, A7, 5—x
neplepaf) = I Ferber (b AT, 78 =)
4'76 T T T T
( ) _ max <Vx2f2(1'27l‘1,§2) (A )T>‘ +Zz L g Va,9i(23,27,£3), 25 — x2)
Ty € Xs.

Setting &3°7 ! = (€3,...,£5 ") and taking the conditional expectation Eez [- |€377 1] on each side of (&.75) we
obtain almost surely
(4.77) Q(a1) > Q(a7) — Eezlneg (er, 21)1& ) + (Egg [H (27, €5, 6-)&7 )" (a7 — 7).

Combining (4.74)), (4.77), and using the convexity of f we get

N
0 < E[f(1(N)) — f(z])] < % Z%Emw;) — f))]
(4.78) =

N
1 B 1
< iy 2 Bl e el + (D2 x, + Zv 67,65l
We now show by contradiction thatﬂ
(4.79) EI-P ez (€r,27) = 0 almost surely.

Take an arbitrary realization of ISMD. We want to show that
(4.80) lim 77 (er,27) =0

T—+00

for that realization. Assume that (4.80) does not hold. Let x5, (resp. #7) be an optimal solution of (4.70))
(resp. - Then there is ¢g > 0 and o1 : N — N increasing such that for every 7 € N, we have
(4.81)

»

< x2f2( 01(7' 01 7)7501(7 ) (Ao'l(T))T)\Ul(T) + ZM?I(T)szgi(l‘ o1(7) xfl(T),fgl(T)),xgl(T) _ 5o (7—)> > .
i=1

By e-optimality of zf, we obtain

(482) fQ('rg*v x§7 gé) < f2($g7 xﬁv g%) < f2($g*7 xﬁv Eé) + &t

Using Assumptions (i), (iii), (iv), and Proposition 3.1 in [6] we get that the sequence (A7, u7), is almost surely

bounded. Let D be a compact set to which this sequence belongs. By compacity, we can find o5 : N =+ N

increasing such that setting ¢ = o1 o g5 the sequence (xg(T),m‘f(T),)\”(T),u"(ﬂ,ﬁ;m) converges to some

(T, T14, Ass sy E24) € Xo X X1 X D x E. We will denote by A, By, b, the values of A, B, and b in &,. By

continuity arguments there is 79 € N such that for every 7 > 7y:

’<Vx2f( U(T) U(T) 50(7’) +(A° T))T/\a('r Jrzz 1uf(T)Vx29i(I o(r) xtlf (1) 50(7))’ o(r) 7fg(7)>
o < m2f2(l’2,1’1*,£2*) +AT>\ + Zz 1”*( )vwggi(f%xl*ng*) Z2 —.’E . )>‘ < 50/2
We deduce from (4.81)) and (4.83) that for all 7 > 7

P
(4.84) <Vz~2f2($2a1‘1*a§2*) + AT+ ZM*(i)nggi(i“le*,fz*),532 - 5:‘2’(”> >g0/2> 0.

=1

(4.83)

Assumptions (i)-(iv) imply that primal problem (4.70) and dual problem (4.71)) have the same optimal value
and for every x5 € X5 and 7 > 79 we have:

fa ( a(T) (T) ég(ﬂ')) + <Aa(7—)xg(7') + Ba(ﬂ—)xi(T) _ bO(T)’ XJ(T)> + <Ma(7—)7g(xg(7)7le7(r)7§20(r))>

< fo (zgf), (1’(7), 7Y + e, by definition of 257, 25 and since p7™ > 0,277 € X2 (2], €57,

<0 277 o () y (AT ey 4 2€5(7), (A, 1)) is an €o(r)-optimal dual solution and there is no duality gap],
< f2(x2 xl(‘r) gﬂ(f)) (A”(T)ajg + BU(T)xflf(T) _ bU(T), XI(T)) + (MU(T),Q(JJz,xT(T) G(T))> + 2,(n)

5The proof is similar to the proof of Proposition 4.6 in [6].
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where in the last relation we have used the definition of 9$g<7) Gk Taking the limit in the above relation
1 152
as 7 — 400, we get for every xo € Ab:
f2(-f27371*,£2*) + <A*§72 + B,xys — by, )\*> + <M*,g(f27$1*,62*)>
S f2($2,1’1*,€2*) + <A*Qf2 + B*le* - b*, A*) + <M*,g($2,1‘1*,52*)>-

Recalling that To € X5 this shows that Zo is an optimal solution of

min f2(x27x1*7£2*) + <A*£L'2 + B*l'l* - b*7 >\*> + <,Uf*7g(‘,£27x1*7£2*)>
(4.85)
o € Xs.

The first order optimality conditions for Zs can be written

P
(4.86) <Vx2f2(532, T1a0) + ATA A D (D) Vi gi (B2, 210, E00), 0 — z> >0
=1

(10)

for all x5 € X,. Specializing the above relation for zo = ig € Xy, we get

p
<Vx2f2(3327331*,€2*) +ATN 4D () Vi gi(2, 1 €0), 757 — $2> 20,

i=1

but the left-hand side of the above inequality is < —e(/2 < 0 due to which yields the desired con-
tradiction. Therefore we have shown and since the sequence 7z (e;,27) is almost surely bounded,
this implies lim,, 1o E[ng; (6-,27)] = 0 and consequently limy o ﬁ Zi\;l Y- E[neg (er,27)] = 0. Us-
ing the boundedness of the sequence (!, u!) and Assumption (ii) we get that ||G(27,£7,¢,)||? is almost
surely bounded. Combining these observations with relation and using the definition of v, we have

limy 400 E[f(21(N))] = f1.. Finally, recalling relation (£.78), to show limy_ 4o E[fn] = f1« all we have
to show is

. 1
(4.87) VLSS

N
> wE[Q(]) - fa(a],27,&])] = 0.
1

T=

The above relation immediately follows from
(4.88) E[Q(a7)] = Egrr-1[Q(a])] = Egrr 1 [Egz [Q(aT, 5)[€77 )] < Egpr [£2(23, 27, 7)) < E[Q(a])] + &,
which holds since Q(x7,£&7) < fa(2xd,27,£3) < Q(27,£3) + &, by definition of x3. O

Remark 4.3. Output fN of ISMD is a computable approximation of the optimal value f1. of optimization

problem (4.62)).

Theorem 4.4. [Convergence rate for ISMD] Consider problem (4.62) and assume that Assumptions (i)-(iv)
of Theorem[[.3 are satisfied. We alse make the following assumptions:

(a) Ja > 0 such that for every & € E, for every x1 € Xy, for every y1,ys € X we have

@
fa(y2,1,62) > folyr, 1,&2) + (y2 — v1)" Va, fa(yr, w1, &) + 5 lly2 = ll3;
(b) there is 0 < My < +o0o such that for every & € 2, for every x1 € X1, for every yi,y2 € Xo we have

Ve, fo(y2, 21,&2) — Vo, fa(y1, 21, &2) |2 < Milly2 — y1ll2:

(c) there is 0 < My < 400 such that for every & € E, for every x1 € X1, for every i = 1,...,p, for
every yi,ys € Xo, we have
IVa19i(y2, 21, 62) — Vi gi(y1, 21, &2) |2 < Ma|ly2 — y1ll2;

(d) Jap > 0 such that for every x1 € X1, for every & € E, dual function 0, ¢, given by 1
strongly concave on Dy, ¢, with constant of strong concavity ap where Dy, ¢, is a set containing the
set of solutions of second stage dual problem such that (\t, ut) € Dyt et

(e) There are functions Go, My such that for every x1 € X1, for every xo € Xy we have

max(|| BT[], y/pmaxi—y .. p [[Va, gi(22, 21, &2)ll2) < Go(&2) and [[Vs, fa(22,21,&)l2 < Mo(&2)

with E[Go(&2)] and E[My(&2)] finite;
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(f) There are functions ?2712 such that for all x1 € X1,x9 € X5 we have
[,(&2) < fa(wa,21,&2) < fa(&)

with E[f5(&2)] and E[f,(&)] finite.
(g) There exists 0 < L(f2) < 400 such that for every & € E, for every x1 € X1, function fo(-,x1,&2) is
Lipschitz continuous with Lipschitz constant L( f2).
Let A be a compact set such that matrix A in & almost surely belongs to A and let M3 < +o0o such that
Isf, (z1)ll2 < M3 for all x1 € X1. Let Vx, be the vector space Vy, = {x —y : z,y € Aff(X3)}. Define the
functions p and p. by

[ max t||z| _ min p(4,2)
p) = { £20, tz€ ABO.1)NVa), P T =1, 2 € ava,.

0,
VN

Assume that v = and g, = f—% for some 61,05 > 0. Let

h = (E[fa(6)] - Bl @)/
F2(82)—f,(€2)+02+L(f2)r

Z/{Q(T7 52) = min(ps,rx/2) with Px = 1141161-% Px (A)7
u = ((Ml + Mol )/ 2 + E[Gf\/o—f?)])Diam(é\fg),

M(r) = JE(Ms + Mo(&2) + V2 (r, €2)Go(2))2.

Let fN computed by ISMD. Then there is ro > 0 such that

_ _ Di,xl 01 M2 (ro)
A 205 + U~/ 02 U\/@IH(N) 7t (W)
. . < < fu
(459) o < Bliy) < o 22TV V0N TR

where f1. is the optimal value of (4.62).

Proof. Let 7 be an optimal solution of (4.62). Under our assumptions, we can apply Proposition to
value function (-, &%) and Z = x}, which gives

(490) Q(%T,fé) Z f2($§,$§,§§) + <H(xl‘iv£§agt)ax>{ - (ﬂi> - ﬂg;(gtafi),
where
Mey(enat) = eot (My+ M2 (fo(ah,al, ) — ,(€h) )/ EDiam (),
+2max ([(BY7 ], /b maxizr,...p [ Vo, 03w, a1, ) 2 Diam(z) /25,

for some 74 € X, depending on £, Taking the conditional expectation Ee [1€51 in ([#.90) and using
(e)-(F), we get

(4.91) Q(x7) > Eg[f2(xh, 21, €)1 7] + Egy [(H (21, &5, €0). a7 — 21)[€7 7] = (e0 + UV/E).
Summing (4.91) with the relation
fi(@}) = fulzh) + (sp (), 2] — 2f)
and taking the expectation operator Egé:t—l [[] on each side of the resulting inequality gives
(4.92) f@)) 2 Elfa(ay, 21, &) + fi(@))] + E[G (2], &, e0), 27 — 21)] — (e + UV/E).
From (4.92)), we deduce

N N
(4.93) Elfn — fi.] < % > e +UVE) + % > wE[G(ah, 8, er), 2f — 7).
t=1 t=1
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Using Proposition 3.1 in [6] and our assumptions, we can find ro > 0 such that M2(rq) is an upper bound
for E[||G (2%, &L, ¢:)||?]. Using this observation, (4.93)), and (4.90) (which still holds), we get

; Ty g Vo 2(r0)6%
(4.94) E[fn — fis] < %(Gz(lnt/l iz)JrU\/fiQ(lJr/l i>)+2011\/N<D3)’X1+Mu((03))0>

N

D 2
w,Xq +91M*(r0)

20,+U\/0s | U\O21In(N) 1 w
S 2 ~ 2 4 ZN + 0 ZWM( )
Finally
N
Es 1
— CEF(2T)] = fre
0 Sy DBl - h
1 N
(4.95) = EZ%E[ﬁ(wIHQ(wI)] — fis
=1
(4.88)

N
1 S B ) + (T )]~ fuu = Elfy — ful.
T=1

Combining (4.94]) and (4.95]) we obtain (4.89). O

5. NUMERICAL EXPERIMENTS

We compare the performances of SMD, ISMD, SAA (Sample Average Approximation, see [I8]), and the L-
shaped method (see [2]) on two simple two-stage quadratic stochastic programs which satisfy the assumptions
of Theorems [£.2] and [£.4

The first two-stage program is
(5.96) { min ") + E[Q(21, &)]

rp €{z €R" 121 >0,% 1 21(4) =1}

where the second stage recourse function is given by

1\ T T T( *1
zljlelﬂgl 5 < i) ) (5252 +AIQ”) i) +§2 i)

(597) Q(x1,€2) = n
To Z O,ZIEQ(?,) =1.
i=1

The second two-stage program is

(5.98) { min ¢’y + E[Q(21,&)]

xr1 € {i[l e R™: ||£81 —.’to”g < 1}

where cost-to-go function Q(x1,&2) has nonlinear objective and constraint coupling functions and is given
by

T
s 1 T1 T T T 1
(5.99) Qz1,8) = aatin 2 ( 7 ) (5252 +A12n2 ( S R
$lz2 — woll3 + $llz1 — zoll3 — &= <0.

For both problems, &; is a Gaussian random vector in R?™ and A > 0. We consider several instances of these
problem with n = 5, 10, 200, 400, and n = 600. For each instance, the components of & are independent
with means and standard deviations randomly generated in respectively intervals [5,25] and [5,15]. We fix
A = 2 while the components of ¢ are generated randomly in interval [1, 3]. For problem ([5.98)-(5.99) we also
take R =5 and zo(i) = yo(i) = 10,i = 1,...,n.

In SMD and ISMD, we take w(z) = .1 | #; In(z;) for problem (5.96)-(5.97). For this distance generating
function, x4 =Prox, () can be computed analytically for z € R™ with « > 0 (see [I3][5] for details): defining
z € R™ by z(i) = In(z(¢)) we have x4 (i) = exp(z4 (7)) where

zy =w—1In (Z ew(i)> 1 with w = z — ¢ — max[z(¢) — {(i)],
i=1
23



n N Problem | L-shaped SAA SMD
5 | 20 000 5.96 57.3 3698.7 | 185
5 | 20 000 5.98 53.1 3943.8 | 22.7
10 | 20 000 5.96 278.1 3.32x10° | 28.2
10 | 20 000 5.98 70.5 4126.5 | 334

TABLE 2. CPU time in seconds required to solve instances of problems (5.96))-(5.97) and
(15.98)-(5.99) (for n = 5,10 and N = 20 000) obtained with the L-shaped method, SAA, and
SMD.

and with 1 a vector in R™ of ones.

For problem (5.98)-(5.99), SMD and ISMD are run taking distance generating function w(z) = 3 ||z[j3 (in
this case, SMD is just the Robust Stochastic Approximation). For this choice of w, if 4 = Prox,(¢) we
have

e {r i flo = ¢~ aoll2 < 1.
T a0+ H;:Cc%r?\lz otherwise.

In SMD and ISMD, the interior point solver of the Mosek Optimization Toolbox [I] is used at each

iteration to solve the quadratic second stage problem (given first stage decision x} and realization & of &

at iteration t) and constant steps are used: if there are N iterations, the step = for iteration ¢ is v, = \/%

For ISMD, we limit the number of iterations of Mosek solver used to solve subproblemsﬁ More precisely, we
consider four strategies for the limitation of these numbers of iterations given in Table [5| in the Appendix,
which define four variants of ISMD denoted by ISMD 1, ISMD 2, ISMD 3, and ISMD 4. The variants that
most limit the number of iterations are ISMD 1 and ISMD 2. All methods were implemented in Matlab and
run on an Intel Core i7, 1.8GHz, processor with 12,0 Go of RAM.

To check the implementations and compare the accuracy and CPU time of all methods, we first consider
problems — and — with n = 5,10, and a large sample of size N = 20 000 of fgﬂ In
these experiments, the L-shaped method terminates when the relative error is at most 5%. The CPU time
needed to solve these instances with the L-shaped method, SAA, and SMD are given in Table [2| For these
instances, we also report in Table[3|the approximate optimal values given by all methods knowing that for the
L-shaped method we report the value of the last upper bound computed. For SMD, the approximate optimal
value after N iterations is given by f ~. On the four experiments, all methods give very close approximations
of the optimal value, which is a good indication that the methods were well implemented. SMD is by far
the quickest and SAA by far the slowest. For the instance of Problem — with n = 10, we report
in the left plot of Figure |l the evolution of the approximate optimal value along the iterations of SMDE
We also report on the right plot of this figure the evolution of the upper and lower bounds computed along
the iterations of the L-shaped method for the instance of Problem (5.96))-(5.97) with n = 10. For problem
5.98—, the evolution of the approximate optimal value along the iterations of SMD is represented in
Figure[2l Observe that with SMD the approximate optimal value is not the value of the objective function at
a feasible point and therefore some of these approximations can be below the optimal value of the problem.

We now consider larger instances taking n = 200, 400, and 600. For these simulations we do not use
SAA and L-shaped method anymore which were not as efficient as SMD on previous simulations and require
prohibitive computational time for n = 200, 400, 600, and we compare the performance of SMD and the four
variants ISMD 1, ISMD 2, ISMD 3, and ISMD 4 of ISMD defined above.

6According to current Mosek documentation, it is not possible to use absolute errors. Therefore, early termination of the
solver can either be obtained limiting the number of iterations or defining relative errors.

"The deterministic equivalents of these instances are already large size quadratic programs. For instance, for n = 10, the
deterministic equivalent of Problem - is a quadratically constrained quadratic program with 200 010 variables and
20 0001 quadratic constraints.

8Naturally, after running ¢ — 1 of the N — 1 total iterations, the approximate optimal value computed by SMD is

t
% Z v (N) <f1 (xf]"r) + fg(:):év’T,ziv’T, §£]‘T)) obtained on the basis of sample éév’l, . ,fé\]'t of &3.
=1 (N) I3
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n N Problem | L-shaped SAA SMD

5 120000 | (5.96 210.9 210.7 210.6
5 120000 | (5.98 1.122x10% | 1.121x10% | 1.120x10°
10 [ 20 000 | (5.96 78.8 78.9 78.6

10 [ 20 000 | (5.98) | 3.020x10° | 3.016x106 | 3.015x10°

TABLE 3. Approximate optimal value of instances of problems (5.96)-(5.97) and (5.98))-

(5.99) (for n = 5,10 and N = 20 000) obtained with the L-shaped method, SAA, and
SMD.
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FIGURE 1. Left plot: optimal value of our instance of Problem ([5.96))-(5.97) with n = 10
estimated using SAA as well as evolution of the approximate optimal value computed along
the iterations of SMD. Right plot: for the same instance, evolution of the lower and upper
bounds computed along the iterations of the L-shaped method.
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FIGURE 2. Left plot: optimal value of our instance of Problem (5.98))-(5.99) with n = 5

estimated using SAA as well as evolution of the approximate optimal value computed along
the iterations of SMD. Right plot: same outputs for Problem (5.98)-(5.99) and n = 10.
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Instance SMD ISMD 1 ISMD 2 ISMD 3 ISMD 4
n = 200, Problem ([5.96 1.2 3.2 1.7 1.2 1.2
n = 400, Problem (5.96 0.86 3.14 1.27 0.86 0.86
n = 600, Problem ({5.96 0.81 6.59 3,33 0.81 0.81
n = 200, Problem (5.98) | 1.7523x10° | 1.3335x10° | 1.5762x10° | 1.7472x10° | 1.7508x10°
n = 400, Problem (5.98) | 6.9978x10% | 6.2402x107 | 6.7624x10° | 6.9943x10° | 6.9972x10?
n = 600, Problem ({5.98) | 1.5524x10™° | 1.1339x10%0 | 1.3838x10'° | 1.5481x 100 | 1.5512x10°

TABLE 4. Approximate optimal values of instances of Problems ({5.96]) and ([5.98]) estimated
with SMD, ISMD 1, ISMD 2, ISMD 3, and ISMD 4.

For n = 200 and n = 400, we run all methods 10 times taking samples of & of size N = 2000 for n = 200,
of size N = 1000 for Problem - and n = 400, and of size N = 500 for Problem — and
n = 400. For n = 600, it takes much more time to load and solve subproblems and we only run SMD and
ISMD once taking a sample of size N = 500 for Problem — and of size N = 300 for Problem
E59-EIP

In Figure 3] we report for our instances of Problem — the mean (computed over the 10 runs
of the methods for n = 200,400) approximate optimal values along the iterations of SMD and our variants
of ISMDH We also report on this figure the empirical distribution (over the 10 runs of the methods for
n = 200, 400) of the total time required to solve the problem instances with SMD and our variants of ISMD.

As expected, ISMD 1 and ISMD 2 complete the N iterations quicker (since they run Mosek for less
iterations) but start with worse approximations of the optimal values. ISMD 3 and ISMD 4 also complete
the N iterations quicker than SMD but provide approximations of the optimal values very close to SMD
along the iterations of the method and in particular at termination, see also Table [f] which gives the mean
approximate optimal value at the last iteration N for all methods. We should also note that most of
the computational time for these methods is spent in loading the data for Mosek solver through a series
of loops and this step requires the same computational time for all methods. Therefore, the difference in
computational time only comes from the time spent by Mosek to solve subproblems. With a C++ or Fortran
implementation, this time would remain similar but the loops for loading the data would be much quicker
and the total solution time would decrease by a much more important factor. However, even with our Matlab
implementation, the total time decreases significantly.

For our instances of Problem —, we report in Figure |4 the mean (over the 10 runs for n = 200
and n = 400) approximate optimal values computed along the iterations of SMD and our variants of ISMD.
For the instances n = 200 and n = 400, we also report in Figure [5| the empirical distribution of the total
solution time and of the time required for Mosek to solve subproblems for SMD and all variants of ISMD.
The remarks made for Problem still apply for these simulations performed on Problem (5.98). We also
refer to Table 4] which provides the mean approximate optimal value at the last iteration N for all methods.
As for Problem , ISMD 3 and ISMD 4 provide after our N — 1 iterations a good approximation of the
optimal value, very close to the approximation obtained with SMD but require less computational time.

6. CONCLUSION

We introduced an inexact variant of SMD called ISMD to solve (general) nonlinear two-stage stochastic
programs. We have shown on two examples of two-stage nonlinear problems that ISMD can allow us to
obtain quicker than SMD a good solution and a good approximation of the optimal value.

The method and convergence analysis was based on two studies of convex analysis:

9Due to the increase in computational time when N increases, we do not take the largest sample size N = 2000 for all
instances. However, for all instances and values of N chosen, we observe a stabilization of the approximate optimal value before
stopping the algorithm, which indicates a good solution has been found at termination.

L0When SMD (and similarly for ISMD) is run on samples of &3 of size N, we have seen how to compute at iteration t — 1 an

t
1
- Z v+ (N) (f1 (a:iv"r) + f2 (xév’f, xf”‘r, {éV’T)) of the optimal value on the basis of sample {év’l, . ,fé\”t
27:1 v (N) =1

of £2. The mean approximate optimal value after ¢t — 1 iterations is obtained running SMD on 10 independent samples of &3 of
size N and computing the mean of these values on these samples.
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FIGURE 4. Top left plot: approximate optimal values of our instance of Problem (5.98)) with
n = 200 along the iterations of SMD and our variants of ISMD. Top right and bottom plots
provide the same graphs for respectively n = 400 and n = 600.

(a) the computation of inexact cuts for value functions of a large class of convex optimization problems
having nonlinear objective and constraints which couple the argument of the value function and the

decision variable;

(b) the study of the strong concavity of the dual function of an optimization problem (used to derive

one of our formulas for inexact cuts).

It is worth mentioning that the formulas we derived for inexact cuts could also be used to propose inexact
level methods [12] to solve nonlinear two-stage stochastic programs —, when primal and dual
second stage problems are solved approximately (inexactly).

It would also be interesting to test ISMD and the aforementioned inexact level methods on several relevant
instances of nonlinear two-stage stochastic programs.
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APPENDIX
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FIGURE 6. Dual function ; of problem (3.54)) for some Z randomly drawn in ball {z €
R™ : ||x — x9l]2 < 1}, S = AAT + Ay, for some random matrix A with random entries in

[—20,20], and several values of the pair (n,)). The dual iterates are represented by red

diamonds.
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FIGURE 7. Plots of n1(ex,z) and n2(ek, Z) as a function of iteration k where e is the
duality gap at iteration k& for problem for some Z randomly drawn in ball {x € R™ :
|lz—z0ll2 < 1}, S = AAT + A1y, for some random matrix A with random entries in [—20, 20],
and several values of the pair (n, A).
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ISMD 1

Tteration number [1,[0.1N]] | [[0.1N] +1,[0.2NT] | [[0.2N] 4+ 1,[0.3N]] | [[0.3N] +1,[0.4N1]
IP solver maximal
number of iterations [0- 1 max] [0.2max| [0.3]max | [0.4]max |
Iteration number [[0.4NT]+1,[0.5N]] | [[0.5N]+1,[0.6NT]] | [[0.6N] 4+ 1,[0.7NT]
IP solver maximal
number of iterations [0-5max] [0-6/max] (0.7 max]
Iteration number [[0.7TN]+1,[0.8N]] | [[0.8N]+1,[0.9NT]] | [[0.9N] + 1, N]
IP solver maximal
number of iterations [0-8 max] [0-9 max] Tmax
ISMD 2
Tteration number | [L, [0.1N7] | [[0.1N] + L, [0.2N]] | [[0.2N] + 1, [0.3N]]
IP solver maximal
number of iterations [0-2Fmax] [0-4Tmax ] [067max]
Tteration number | [[0.3N] 4 L, [0-AN]] | [[0-AN] + L [05N1] | [[05N] + L N]
IP solver maximal
number of iterations [08Timax] [0-9 max] Tmax
ISMD 3
Iteration number [1,]0.02N1]] | [[0.02N] + 1,[0.04N1] | [[0.04N] + 1,]0.06 N]]
IP solver maximal
number of iterations [0-5max] (0.6 max] [0.7 max]
Iteration number [[0.06N] +1,[0.08N1]] | [[0.08N] +1,[0.1N]] | [[0.1N] + 1, N]
IP solver maximal
number of iterations [0-8max] (0.9 max] Tmax
ISMD 4
Iteration number [1,[0.1N]] | [[0.1N] +1,[0.2N1]] | [[0.2N] 4+ 1,[0.3N]] | [[0.3N] + 1, N]
IP solver maximal
number of iterations [0.7 max] [0-8 max] [0-9max] Tmax

TABLE 5. Maximal number of iterations for Mosek interior point solver used to solve second
stage problems as a function of the iteration number i = 1,..., N, of ISMD and the maximal
number of iterations I« allowed for Mosek solver to solve subproblems with SMD. In this
table, [z] is the smallest integer larger than or equal to z. For problem - and
n = 200, 400,600 and problem — and n = 200, we take I,,x = 15, for problem
(5-98)-(5.99) and n = 400 we take Iyax = 25, and for problem 5.99‘ and n = 600 we
take Iax = 28. For instance for ISMD 1, N = 2000, and problem (5.96))-(5.97)), for iterations
[[0.4N7+1,[0.5N]], i.e., for iterations 0.4 x 2000+1,...,0.5 x 2000 = 801, . .., 1000, Mosek
interior point solver is run to solve second stage problems limiting the maximal number of
iterations to [0.5]max | = 8.
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