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To Marco López on the occasion of his 70th anniversary

the date of receipt and acceptance should be inserted later

Abstract Given an infinite family of extended real-valued functions fi, i ∈ I,

and a family H of nonempty finite subsets of I, the H-partial robust sum of fi,
i ∈ I, is the supremum, for J ∈ H, of the finite sums

∑
j∈J fj . These infinite sums

arise in a natural way in location problems as well as in functional approximation
problems, and include as particular cases the well-known sup function and the
so-called robust sum function, corresponding to the set H of all nonempty finite
subsets of I, whose unconstrained minimization was analyzed in previous papers of
three of the authors [DOI: 10.1007/s11228-019-00515-2 and DOI: 10.1007/s00245-
019-09596-9]. In this paper, we provide ordinary and stable zero duality gap and
strong duality theorems for the minimization of a given H-partial robust sum
under constraints, as well as closedness and convex criteria for the formulas on the
subdifferential of the sup-function.
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1 Introduction

In previous papers of three of the authors, [10] and [11], we have studied the so-

called robust sum
∑R
i∈I fi of an infinite family (fi)i∈I of proper functions from a

given locally convex Hausdorff topological vector space (lcHtvs in brief) X, called
space of decisions, to R∞ := R∪{+∞} , defined as∑R

i∈I
fi (x) := sup

J∈F(I)

∑
i∈J

fi (x) ,∀x ∈ X,

where F (I) denotes the collection of all nonempty finite subsets of I. The term
“robust sum” is inspired in the fact that, interpreting F (I) as an uncertainty set

for the uncertain optimization problem

(PJ) f (x) = inf
x∈X

∑
i∈J

fi (x) ,

where the parameter J runs on F (I) , the robust (or pessimistic) counterpart of this
parametric problem is the deterministic problem

(RP) inf
x∈X

∑R

i∈I
fi (x). (1)

Duality and optimality theorems for (RP) and for the result of perturbing its

objective function, the robust sum
∑R
i∈I fi, with a continuous linear functional

can be found in [10] and [11], respectively.
We consider in this paper a twofold extension of the theory developed in [11]

(i.e., we consider linear perturbations of the objective function): firstly, we replace∑R
i∈I fi with a more general type of functions that could be called partial robust

sums and, secondly, we replace unconstrained optimization by constrained one.
Regarding the partial robust sum functions, we associate with each nonempty

subfamily H of F(I) the H-robust sum of (fi)i∈I , the function
∑H
i∈I fi defined as(∑H

i∈I
fi

)
(x) := sup

J∈H

∑
j∈J

fj(x), ∀x ∈ X,

in other words, we replace the uncertainty set F (I) by a given infinite subset H in

the definition of robust sum. In contrast with
∑H
i∈I fi, which is always well-defined,

the limit sum in the sense of nets

lim
J∈H

∑
i∈J

fi (x) , ∀x ∈ X,

is not necessarily well-defined, even in the case that H is a directed by inclusion
as H = F (I) . Note however that, by [10, Lemma 2.5], if supi∈I fi (x) ≥ 0, then∑R

i∈I
fi (x) = lim

J∈F(I)

∑
i∈J

f+i (x) ,
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where f+i (x) = max {fi (x) , 0} for all x ∈ X. In particular, lim
J∈H

∑
i∈J

fi (x) is well-

defined whenever H is cofinal in the sense that, for any J ∈ F (I) , there exists
K ∈ H such that J ⊂ K (which implies that H is directed by inclusion, too) and
the functions fi, i ∈ I, are non-negative, in which case∑H

i∈I
fi (x) = lim

J∈H

∑
i∈J

fi (x) = lim
J∈F(I)

∑
i∈J

fi (x) =
∑R

i∈I
fi (x), ∀x ∈ X.

Observe that, when the functions fi, i ∈
⋃
J∈H

J, are non-negative, given an arbitrary

x ∈ X such that
∑H
i∈I fi(x) < +∞, the set{

i ∈
⋃
J∈H

J : fi (x) > 0

}
=
⋃
p∈N

{
i ∈

⋃
J∈H

J : fi (x) ≥ 1

p

}
(2)

is a countable union of finite sets and, so, it is countable. However, since the
set in (2) depends on x, it is in general impossible to reduce

∑H
i∈I fi to a series

function even in the case that H is cofinal. Observe also that, from [10, Lemma
2.3], independently of the sign of the functions (fi)i∈I , one has∑R

i∈I
fi (x) ∈R =⇒ {i ∈ I : fi (x) > 0} is countable.

If H = F(I), H is obviously cofinal and the corresponding H-robust sum of
(fi)i∈I is nothing else but the robust sum, i.e.,∑F(I)

i∈I
fi =

∑R

i∈I
fi.

When I = N, the family H = {{1, ..., n} : n ∈ N} is also cofinal and the corre-
sponding H-robust sum of (fi)i∈N is the sequential robust sum∑seqR

i∈I
fi =

∑H

i∈N
fi,

which has potential interest in game theory (for instance, in repetitive and sequen-
tial games, see, e.g., [30] and [20]).

Given m ∈ N, the family Hm of all subsets of I of cardinality m is not cofinal
and one has ∑R

i∈I
fi = sup

m∈N

∑Hm

i∈I
fi.

In particular, since H1 is the family of all singletons of I, we have∑H1

i∈I
fi = sup

i∈I
fi. (3)

We now show that
∑Hm
i∈I fi, for m = 1, 2, can be useful in the location of services

with an infinite set of demand points {xi, i ∈ I} ⊂ X. Let d : X2 −→ R+ be a
mapping such that, for x, y ∈ X, d (x, y) represents an estimated distance (or time)
between x and y. Let fi(x) := d (x, xi) for all x ∈ X and i ∈ I. The optimal location
at x ∈ X of an emergency service (as a fire station) covering {xi, i ∈ I} means that
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x minimizes the worst distance (or time) between x and the demand points xi,
i ∈ I, i.e., x must be an optimal solution of

(RPH1
) inf

x∈R2

∑H1

i∈I
fi(x).

Similarly, if x ∈ X is the optimal location of a unique transfer station (e.g., a
transshipments bus station) for a new centralized transport network requiring to
go from xi to xj changing at x, for all i, j ∈ I, i 6= j, then x must be an optimal
solution of

(RPH2
) inf

x∈R2

∑H2

i∈I
fi(x).

The above models would be more realistic by replacing x ∈ R2 in (RPH1
) and

(RPH2
) by some constraint involving x, i.e., by minimizing

∑Hm
i∈N fi, m = 1, 2,

subject to suitable constraints.
Regarding the constraints considered in this paper, we assume the existence

of a second lcHtvs Z enlarged with a greatest element +∞Z , a nonempty convex
cone S in Z which defines a weak ordering on Z, and a proper mapping G :
X −→ Z ∪ {+∞Z}. Then, we associate with each nonempty subset H of F(I) the
constrained H-robust sum problem

(RPH) inf
∑H

i∈I
fi(x) (4)

s.t. G(x) ∈ −S.

As an illustration of this constrained optimization model, we consider the fol-
lowing functional best approximation problem of a given real-valued function of
one variable by polynomials of a limited degree under interpolation and/or side
constraints. Let I be a proper interval in R. The problem, inspired in [13, Section
4] and [1, Subsection 4.3.3], consists in finding a best Lp approximation, on a given
subset T ⊂ I (possibly the whole interval I), for the Lp pseudometric

d (h, g) = sup
J∈F(T )

(∑
t∈J
|h (t)− g (t)|p

) 1
p

, h, g : I−→ R,

of a given function h : I−→ R, by means of polynomials of degree less than n,

say g (t) =
∑n
k=1 xkt

k−1 (that can be identified with their vectors of coefficients
x = (x1, ..., xn) ∈ Rn) under interpolation conditions of the form g (t) = h (t) for
all t ∈ U and/or side conditions of the form g (t) ≥ h (t) for all t ∈ V, with U, V ⊂ I,
U having at most n − 1 elements. In the presence of both types of constraints,
X := Rn, H := F (T ) , U ∈ H1 ∪ ...∪Hn−1, and the approximation problem can be
formulated as

(RPH) inf
∑F(T )
t∈T

∣∣∣h (t)−
∑n
k=1 xkt

k−1
∣∣∣p

s.t. G(x) ∈ −S,

with Z := RU×RV equipped with the product topology,G(x) = h (t)−
∑n
k=1 xkt

k−1

for all x ∈ X (so that G : X −→ Z), and S := {0U} × RV+, where 0U denotes the
null vector in RU .

The closest antecedents of this paper are [10] and [11], which provide duality
theorems and results on the structure of the optimal set for the unconstrained
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minimization of the robust sum function
∑R
i∈I fi =

∑F(I)
i∈I fi. Table 1, in turn,

summarizes the little existing literature, chronologically ordered, on the limit sum
function ∑

i∈I
fi (x) := lim

J∈F(I)

∑
i∈J

fi (x) ,∀x ∈ X.

There, C (X) and Γ (X) represent the sets of continuous functions and lower semi-
continuous (lsc in brief) proper convex functions on X. The information on f∗

usually consists in formulas for its epigraph while argminXf represents the set of
all minima of f =

∑
i∈I fi on X.

Paper Year I fi X ∂f f∗ argminXf

[33] 1998 N C (X) Banach X X X
[34] 2004 any C (X) Banach X X X
[19] 2008 any Γ (X) Banach X X
[29] 2016 N Γ (X) Banach X X X

[24] 2019 any RX lcHtvs X X X

Table 1

The paper is organized as follows. Section 2 introduces the necessary notations
and basic concepts together with the perturbation function and the robust dual
scheme to be developed along the paper. Section 3 characterizes zero duality gap
and strong duality for a fixed linear perturbation x∗ ∈ X∗ of the robust sum
function and stable versions of these duality theorems with respect given subsets
of X∗. Section 4 characterizes the subdifferential of the constrained robust sum.
Specializing the latter characterization to the unconstrained case with H = H1 we
obtain, in Section 5, Valadier type formulas ([28], [16]) for the subdifferential of the
sup function under appropriate closedness criteria (Corollaries 3, 5). It is worth
mentioning that generalized versions of Valadier’s formula have been obtained
by Marco López and his collaborators along the last years (see [5], [7], [6], and
references therein).

2 Preliminaries

2.1 Basic notations

Let X be a lcHtvs with topological dual space X∗, null vectors 0X and 0∗X , re-
spectively, and duality product 〈·, ·〉 . We consider X∗ and X∗ × R equipped with
the w∗-topology and its product by the ordinary topology on R, respectively.

The closure, the convex hull, and the closed convex hull of a subset A ⊂ X

will be denoted by A, coA, and coA, respectively. Given A,B ⊂ X, A is said to be
closed (respectively, closed and convex) regarding B if B ∩A = B ∩A (respectively,
B ∩ coA = B ∩A).

The recession cone of a closed convex set A ⊂ X is

A∞ := {v ∈ X : a+ v ∈ A, ∀a ∈ A} =
⋂
α>0

α (A− a)

for any choice of a ∈ A.
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Denote R := R∪{−∞,+∞} and by RX the set of all functions from X to R.
The definition of (R∞)X is similar. The indicator function of A ⊂ X is δA ∈ (R∞)X

defined by δA(x) = 0 if x ∈ A and δA(x) = +∞ if x /∈ A. So, δA ∈ Γ (X) if and
only if A is a nonempty closed and convex subset of X.

Given a function h ∈ RX , its domain, its epigraph, its strict epigraph and its
Fenchel conjugate are

domh := {x ∈ X : h(x) < +∞},

epih := {(x, r) ∈ X ×R : h(x) ≤ r},

epis h := {(x, r) ∈ X ×R : h(x) < r},

and h∗ ∈ RX
∗

such that

h∗(x∗) := sup{〈x∗, x〉 − h(x) : x ∈ X}, ∀x∗ ∈ X∗,

respectively.

The conjugate of a function ξ ∈ RX
∗

is defined on X by

ξ∗ (x) := sup{〈x∗, x〉 − ξ(x∗) : x∗ ∈ X∗}, ∀x ∈ X.

If dom ξ∗ 6= ∅, one has ξ∗∗ = (ξ∗)∗ = coξ, where coξ denotes the w∗-closed convex
hull of ξ, i.e., epi (coξ) = co (epi ξ) . If ξ is convex and dom ξ∗ 6= ∅, then ξ∗∗ coincides
with the w∗-closed hull, ξ, of ξ, i.e., epi ξ = epi ξ.

For a ∈ X, the subdifferential of h ∈ RX at a is defined as

∂h(a) :=

{
{x∗ ∈ X∗ : h(x) ≥ h(a) + 〈x∗, x− a〉, ∀x ∈ X}, if h(a) ∈ R,
∅, else.

One has
x∗ ∈ ∂h(a) ⇐⇒ 〈x∗, a〉 − h(a) = h∗(x∗). (5)

For A ⊂ X, the normal cone to A at a point a ∈ A is defined as

N(A, a) := ∂δA(a) = {x∗ ∈ X∗ : 〈x∗, x− a〉 ≤ 0, ∀x ∈ A}.

The infimal convolution of two functions g, h ∈ RX is the function g�h ∈ RX

such that
(g�h) (x) := inf {g (x1) + h (x2) : x1 + x2 = x} .

Let Z be a second lcHtvs, S be a nonempty convex cone in Z, and denote by
5S the ordering on Z induced by the cone S, i.e.,

z1 5S z2 if and only if z1 − z2 ∈ −S.

We also enlarge Z by attaching a greatest element +∞Z . Given a map G : X →
Z ∪ {+∞Z}, we define the domain and the epigraph of G to be domG := {x ∈ X :
G(x) ∈ Z}, and

epiS G := {(x, z) ∈ X × Z : z ∈ G(x) + S},

respectively. We assume that domG 6= ∅.
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For λ ∈ Z∗, we define λG : X → R∞ as

(λG)(x) :=

{
〈λ,G(x)〉, if x ∈ domG,

+∞, else.

Let us consider F : X × Z → R∞ given by

F (x, z) =

{
0, if G(x) + z ∈ −S,
+∞, else,

(6)

i.e., the indicator function of the hypograph of −G, that is,

hypoS(−G) := {(x, z) ∈ X × Z : z ∈ −G(x)− S}.

The conjugate F ∗ of F is the function F ∗ : X∗ × Z∗ −→ R∞ such that

F ∗(x∗, λ) =

{
(λG)∗(x∗), if λ ∈ S+,

+∞, else,
(7)

where S+ := {λ ∈ X∗ : 〈λ, z〉 ≥ 0,∀z ∈ S} is the dual cone of S. Since F is an indica-
tor function, F ∗ is sublinear and epiF ∗ is a convex cone in X∗×Z∗×R. Moreover,
denoting by projX∗×R the projection mapping X∗×Z∗× R 3(x∗, z∗, r) 7−→ (x∗, r),
one has

projX∗×R
(
epiF ∗

)
=

⋃
λ∈S+

epi(λG)∗. (8)

We now state two basic properties related to this set. The first one is consequence
of (8) and the fact that epiF ∗ is a convex cone.

Property 1
⋃
λ∈S+ epi(λG)∗ is a convex cone in X∗ ×R.

Let us define A := {x ∈ X : G(x) ∈ −S} and assume that A 6= ∅.

Property 2 If epiS G is closed and convex, then

epi δ∗A =
⋃
λ∈S+

epi(λG)∗.

Proof. Define ϕ : X∗ → R by ϕ(x∗) = infλ∈Z∗ F
∗(x∗, λ). Then ϕ is convex (even

sublinear) and we have that

epis ϕ ⊂
⋃
λ∈S+

epi(λG)∗ ⊂ epiϕ.

Consequently,

epiϕ = epiϕ =
⋃
λ∈S+

epi(λG)∗. (9)

By definition of ϕ it comes

ϕ∗(x) = F ∗∗(x, 0Z), ∀x ∈ X. (10)

Since epiS G is closed and convex, hypoS(−G) is closed and convex, too, and one
has F = F ∗∗. By (10) we then have

ϕ∗(x) = F (x, 0Z) = δA(x), ∀x ∈ X,

and δ∗A = ϕ∗∗. Since ϕ is convex and domϕ∗ = A 6= ∅, we have ϕ∗∗ = ϕ, epi δ∗A =
epiϕ, and, taking (9) into account, we are done. �
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Remark 1 Property 2 is often established under the assumption that the mapping
G : X → Z∪{+∞Z} is star S-convex lsc [17, Lemma 2.1] in the sense that the next
condition holds:

λG ∈ Γ (X), ∀λ ∈ S+. (11)

It is worth observing that, when taking λ = 0Z∗ in (11), one must have δdomG ∈
Γ (X) and, in particular, domG must be closed, which is a restrictive condition.
One can find in [2, Example 3.3] an example of map G : X → Z ∪ {+∞Z} such
that epiS G is closed and convex while (11) does not hold.

Remark 2 If epiS G is closed, then S is necessarily closed: picking a ∈ domG 6= ∅
we have

({a} × Z) ∩ epiS G = {a} × (G(a) + S),

which is closed. So, G(a) + S and S are closed.

2.2 Perturbation functions and robust dual scheme

Let U be an (arbitrary) uncertainty set, and X, Yu be lcHtvs for all u ∈ U . By 0u
we denote the zero vector in Yu. Assume that a perturbation function

Fu : X × Yu −→ R∞ (12)

is given for each u ∈ U. We associate with each x∗ ∈ X∗ the robust optimization

problem

(RPx∗) inf
x∈X

sup
u∈U

{
Fu(x, 0u)− 〈x∗, x〉

}
,

and its corresponding robust dual problem, defined (following [8] and [9]) as:

(RDx∗) sup
u∈U
y∗u∈Y

∗
u

−F ∗u (x∗, y∗u). (13)

Denoting by projuX∗×R the projection of (X∗ × Y ∗u ) × R on X∗ × R, we now
consider the qualifying set (introduced in [8] and [9])

Q :=
⋃
u∈U

projuX∗×R
(
epiF ∗u

)
, (14)

where the novelty, with respect to [18], is that the parameter space Yu in the per-
turbation function depends on u ∈ U. Let us consider the robust objective function

h (x) := sup
u∈U

Fu(x, 0u), ∀x ∈ X.

Under some suitable closedness and convexity conditions, stable strong robust
duality holds for the pair (RPx∗)− (RDx∗), i.e.,

inf(RPx∗) = max(RDx∗).

In particular, the next characterization of the stable strong duality w.r.t. V can be
derived from [8, Proposition 3.2] (see also [12, Theorem 3.2], [18, Theorem 3.3]).



Duality for constrained robust sum optimization problems 9

Theorem 1 Assume that Fu ∈ Γ (X × Yu) , u ∈ U, domh 6= ∅ and let ∅ 6= V ⊂ X∗.
Next statements are equivalent:

(i) inf(RPx∗) = max(RDx∗), ∀x∗ ∈ V.

(ii)Q is w∗-closed and convex regarding V ×R.

Proof. As Fu ∈ Γ (X × Yu) for all u ∈ U, it is easy to see that h(x) = sup
u∈U

Fu(x, 0u) =

sup
u∈U

F ∗∗u (x, 0u) for each x ∈ X, yielding h∗∗ = sup
u∈U

F ∗∗u (·, 0u) (see [12, Proposition

3.1]). The equivalence of (i) and (ii) now follows from [8, Proposition 3.2]. �

3 Zero duality gap and stable strong duality for constrained robust sum

optimization problem

Let (fi)i∈I be a family of proper functions on X, and ∅ 6= H ⊂ F(I). Let f :=
supJ∈H

∑
i∈J fi and A = {x ∈ X : G(x) ∈ −S}. Given x∗ ∈ X∗, we consider the

following constrained robust sum optimization problem:

(RPx∗) inf
x∈A

{
f(x)− 〈x∗, x〉

}
.

Throughout this section we assume that the problem (RPx∗) is feasible, i.e., A ∩
dom f 6= ∅.

For each J ∈ H, let YJ := XJ × Z. Consider the perturbation function FJ as
in (12), i.e., FJ : X ×XJ × Z → R∞, defined by

FJ (x, (xi)i∈J , z) =
∑
i∈J

fi(x+xi)+δ−S(z+G(x)), ∀(x, (xi)i∈I , z) ∈ X×XJ×Z. (15)

It is clear that, denoting by 0J = (0XJ , 0Z) the zero vector in YJ , one has

FJ (x, 0J ) = FJ (x, 0XJ , 0Z) =
∑
i∈J

fi(x) + δA(x), ∀J ∈ H.

One then has, for all triple (x∗, (x∗i )i∈J , λ) ∈ X∗ × (X∗)J × Z∗,

F ∗J (x∗, (x∗i )i∈J , λ) =


∑
i∈J

f∗i (x∗i ) + (λG)∗
(
x∗ −

∑
i∈J x

∗
i

)
, if λ ∈ S+,

+∞, else,
(16)

and the qualifying set defined in (14), Q =
⋃
J∈H projJX∗×R epiF ∗J , can be ex-

pressed in this setting as

Q :=
⋃
J∈H

∑
i∈J

epi f∗i +
⋃
λ∈S+

epi(λG)∗. (17)

The problem (RPx∗) becomes here

(RPx∗) inf
x∈X

sup
J∈H

{
FJ (x, 0J )− 〈x∗, x〉

}
,
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and its robust dual problem (RDx∗) can be written in the following form (see (13)
and (16)):

(RDx∗) sup
(J,λ)∈H×S+

((x∗i )i∈J ,u
∗)∈(X∗)J×X∗∑

i∈J x
∗
i+u

∗=x∗

−

[∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗)

]
.

Now, for each (J, λ) ∈ H×S+, ((x∗i )i∈J , u
∗) ∈ (X∗)J ×X∗ such that

∑
i∈J x

∗
i +

u∗ = x∗, and each x ∈ A, we have

f(x)− 〈x∗, x〉 ≥
∑
i∈J

(fi(x)− 〈x∗i , x〉) + (λG)(x)− 〈u∗, x〉

≥ −

[∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗)

]
. (18)

It follows that the weak duality relation

inf(RPx∗) ≥ sup(RDx∗) (19)

always holds (see, more generally, [8], [9]). One says that zero duality gap holds

(respectively, strong duality gap holds) for the pair of primal-dual problems (RPx∗)−
(RDx∗) if inf(RPx∗) = sup(RDx∗) (respectively, inf(RPx∗) = max(RDx∗)). These
desirable duality properties are said to be stable with respect to a given set ∅ 6=
V ⊂ X∗ (also called V-stable) whenever they hold for any x∗ ∈ V.

For each J ∈ H we have, in general,

∑
i∈J

epi f∗i ⊂ epi
(
�i∈Jf

∗
i

)
⊂ epi

(∑
i∈J

fi

)∗
⊂ epi f∗. (20)

On the other hand, for each λ ∈ S+ we have λG ≤ δA, (λG)∗ ≥ δ∗A, epi(λG)∗ ⊂
epi δ∗A, and, consequently, ⋃

λ∈S+

epi(λG)∗ ⊂ epi δ∗A. (21)

We have from (17), (20), and (21) that

Q ⊂ epi f∗ + epi δ∗A ⊂ epi(f + δA)∗. (22)

Proposition 1 Assume that (fi)i∈I ⊂ Γ (X) and epiS G is closed and convex. Then,

epi(f + δA)∗ = epi f∗ + epi δ∗A.

Proof. One has f ∈ Γ (X). Since epiS G is convex and closed, A×{0Z} = (epiS G)∩
(X × {0Z}) is convex and closed, too. Consequently, δA ∈ Γ (X). The conclusion
follows from [3, page 281]. �

Let us now evaluate epi f∗ and epi(f + δA)∗.
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Proposition 2 Assume that (fi)i∈I ⊂ Γ (X). Then

epi f∗ = co

( ⋃
J∈H

∑
i∈J

epi f∗i

)
.

Proof. Let ψ := inf
J∈H
�i∈Jf

∗
i . We then have (see [32, Theorem 2.3.1 (ix)])

ψ∗ = sup
J∈H

∑
i∈J

f∗∗i = sup
J∈H

∑
i∈J

fi = f,

and, since domψ∗ 6= ∅, coψ = ψ∗∗ = f∗ and epi f∗ = co (epiψ) . By definition of ψ
we get

epis ψ ⊂
⋃
J∈H

∑
i∈J

epi f∗i ⊂ epiψ.

Consequently,

co epiψ = co
(
epiψ

)
= co

( ⋃
J∈H

∑
i∈J epi f∗i

)
= co

( ⋃
J∈H

∑
i∈J epi f∗i

)
and the proof is complete. �

Proposition 3 Assume that (fi)i∈I ⊂ Γ (X) and epiS G is convex closed. Then,

epi(f + δA)∗ = coQ.

Proof. Recall that

Q =
⋃
J∈H

∑
i∈J

epi f∗i +
⋃
λ∈S+

epi(λG)∗.

In the one hand, by Property 1, we have

coQ = co

( ⋃
J∈H

∑
i∈J

epi f∗i

)
+
⋃
λ∈S+

epi(λG)∗. (23)

On the other hand, by Propositions 1 and 2, Property 2, and (23), we have

epi(f + δ∗A) = epi f∗ + epi δ∗A

= co

( ⋃
J∈H

∑
i∈J epi f∗i

)
+

⋃
λ∈S+

epi(λG)∗

= co

( ⋃
J∈H

∑
i∈J

epi f∗i

)
+

⋃
λ∈S+

epi(λG)∗

= coQ

and we are done. �
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Theorem 2 (Characterization of stable strong duality) Let ∅ 6= V ⊂ X∗. The

next statements are equivalent:

(i) inf(RPx∗) = max(RDx∗), ∀x∗ ∈ V.

(ii) epi(f + δA)∗ ∩ (V ×R) = Q∩ (V ×R).

If, additionally, (fi)i∈I ⊂ Γ (X) and epiS G is convex and closed, the following state-

ment is equivalent to (i) and (ii) :

(iii) Q is w∗-closed convex regarding V ×R.

Proof. [(i)⇒ (ii)] By (22), we have only to prove that inclusion [⊂] holds in (ii).
Let (x∗, s) ∈ epi(f + δA)∗ ∩ (V × R). We have − inf(RPx∗) ≤ s and, by (i), there
exist (J, λ) ∈ H×S+ and ((x∗i )i∈J , u

∗) ∈ (X∗)J ×X∗ such that x∗ =
∑
i∈J x

∗
i + u∗

and
∑
i∈J fi(x

∗
i ) + (λG)∗(u∗) ≤ s.

Now there exist ((si)i∈J , t) ∈ RJ ×R such that∑
i∈J

si + t = s, f∗i (x∗i ) ≤ si ∀i ∈ J, (λG)∗(u∗) ≤ t.

We then have

(x∗, s) =
∑
i∈J

(x∗i , si) + (u∗, t) ∈
∑
i∈J

epi f∗i + epi(λG)∗.

So, (x∗, s) ∈ Q and we are done.
[(ii)⇒ (i)] Take x∗ ∈ V. Assume firstly that inf(RPx∗) = −∞. By (18)-(19) we

have sup(RDx∗) = −∞ = max(RDx∗).
Since inf(RPx∗) 6= +∞, it remains the case when r := inf(RPx∗) ∈ R. In

this case, we have (x∗,−r) ∈ epi(f + δA)∗ ∩ (V × R) and, by (ii), there exist
(J, λ) ∈ H× S+, (x∗i , si)i∈J ∈

∏
i∈J epi f∗i , λ ∈ S

+ and (u∗, t) ∈ epi(λG)∗ such that
(x∗,−r) =

(∑
i∈J x

∗
i + u∗,

∑
i∈J si + t

)
. Since

−r ≥
∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗) ≥ − sup(RDx∗) ≥ −r,

r = −

[∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗)

]
= sup(RDx∗),

yielding inf(RPx∗) = max(RDx∗). As x∗ ∈ V is taken arbitrarily, (i) holds.
We now assume that (fi)i∈I ⊂ Γ (X) and epiS G is convex and closed.
[(ii)⇐⇒ (iii)] By Proposition 3, epi(f + δA)∗ = coQ, so that (ii) is equivalent

to
coQ∩ (V ×R) = Q∩ (V ×R)

and we are done. �

Remark 3 The equivalence [(ii)⇐⇒ (iii)] in Theorem 2 can also be obtained di-
rectly from Theorem 1.

Remark 4 In the case when H is directed by inclusion and the functions fi, i ∈ I,
are non-negative, the family of convex sets

(∑
i∈J epi f∗i

)
J∈H is directed. Conse-

quently,
⋃
J∈H

∑
i∈J epi f∗i and Q are convex. In such a case, statement (iii) reads

“Q is w∗-closed regarding V ×R”.
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Remark 5 If H = F(I) and fi ≥ 0, i ∈ I, Q is convex and
∑H
i∈I fi coincides with

the infinite sum
∑
i∈I fi studied in various papers (see Table 1).

In the same lines as in Theorem 2 we now characterize the zero duality gap
property.

Theorem 3 (Characterization of zero duality gap) Given x∗ ∈ X∗, the next

statements are equivalent:

(i) inf(RPx∗) = sup(RDx∗).

(ii) epi(f + δA)∗ ∩ ({x∗} ×R) = Q∩ ({x∗} × R).

If, additionally,, (fi)i∈I ⊂ Γ (X) and epiS G is convex and closed, the following state-

ments is equivalent to (i) and (ii) :

(iii) coQ∩ ({x∗} × R) = Q∩ ({x∗} × R).

Proof. [(i)⇒ (ii)] Since epi(f + δA)∗ ∩ ({x∗} × R) is w∗-closed, by (22) we have
only to prove that inclusion [⊂] holds in (ii). Let (f + δA)∗ (x∗) ≤ s. By (i), we
have − sup(RDx∗) ≤ s and, by definition of (RDx∗), for each n ∈ N there exist
(Jn, λn) ∈ H× S+, ((x∗n,i)i∈Jn , u

∗
n) ∈ (X∗)Jn ×X∗ such that x∗ =

∑
i∈Jn x

∗
n,i + u∗n

and
∑
i∈Jn fi(x

∗
n,i)+(λnG)∗(u∗n) ≤ s+ 1

n .Now, there exist
(
(sn.i)i∈Jn , tn

)
∈ RJn×R

such that fi(x
∗
n,i) ≤ sn.i, for all i ∈ Jn, (λnG)∗(u∗n) ≤ tn, and

∑
i∈Jn sn.i + tn =

s+ 1
n . We then have(

x∗, s+
1

n

)
∈
∑
i∈Jn

epi f∗i + epi(λnG)∗ ⊂ Q, ∀n ∈ N,

(
x∗, s+

1

n

)
∈ Q ∩ (

{
x∗
}
×R), ∀n ∈ N,

and, finally, (
x∗, s

)
∈ Q ∩ ({x∗} × R).

[(ii)⇒ (i)] If inf(RPx∗) = −∞ then by (18)-(19) we have sup(RDx∗) = −∞ =
max(RDx∗). As inf(RPx∗) 6= +∞, it remains the case when r := inf(RPx∗) ∈ R.
In such a case, we have(

x∗,−r
)
∈ epi(f + δA)∗ ∩ (

{
x∗
}
×R)

and, by (ii) , there is a net (sd)d∈D such that (x∗, sd) ∈ Q for all d ∈ D and

sd −→ −r. Now, there exist (Jd, λd) ∈ H × S+, ((x∗d,i)i, sd,i) ∈ epi f∗i for all i ∈ Jd
and (u∗d, td) ∈ epi(λdG)∗, such that(

x∗, sd
)

=
∑
i∈Jd

(
x∗d,i, sd,i

)
+
(
u∗d, td

)
and we have

sd =
∑
i∈Jd

sd,i + td ≥
∑
i∈Jd

fi(x
∗
d,i) + (λdG)∗(u∗d) ≥ − sup(RDx∗).

Passing to the limit one gets −r ≥ − sup(RDx∗) and we are done.
The argument for [(ii)⇐⇒ (iii)] under the additional assumption is the same

as in Theorem 2. �

See [23, Corollary 1] for a deterministic counterpart of Theorem 3.
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4 Subdifferential of the objective function of the robust problem

We now proceed with a detailed study of the subdifferential of the objective func-
tion of (RP0X∗ ):

(RP0X∗ ) inf
x∈X

h(x),

where h := f + δA, f = supJ∈H
∑
i∈J fi, and A = {x ∈ X : G(x) ∈ −S}.

Given x ∈ dom f , consider

H(x) :=

{
J ∈ H :

∑
i∈J

fi(x) = f(x)

}
.

Note that, if H = F(I), then H(x) = {J ∈ F(I) : fi(x) ≤ 0,∀i ∈ I \ J}. If H = H1

(the set defined in (3)), then H(x) = {{i} : fi(x) = supj∈I fj(x)} and in this case
we denote it by

I(x) := {i ∈ I : fi(x) = sup
j∈I

fj(x)},

which is the the so-called set of active indexes at x.

Proposition 4 For each x ∈ dom f , we have⋃
J∈H(x)

∑
i∈J

∂fi(x) ⊂ ∂f(x).

Proof. Let J ∈ H(x), x∗i ∈ ∂fi(x) for all i ∈ J , and x∗ :=
∑
i∈J x

∗
i . For any u ∈ X

we have

f(u) ≥
∑
i∈J

fi(u) ≥
∑
i∈J

(fi(x) + 〈x∗i , u− x〉)

= f(x) + 〈x∗, u− x〉,

which means that x∗ ∈ ∂f(x). �

Proposition 5 For each x ∈ A we have⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x) ⊂ N(A, x).

Proof. Let λ ∈ S+, 〈λ,G(x)〉 = 0, and x∗ ∈ ∂(λG)(x). For any u ∈ A we have

0 ≥ (λG)(u) ≥ (λG)(x) + 〈x∗, u− x〉 = 〈x∗, u− x〉,

that means x∗ ∈ N(A, x). �

Proposition 6 For each x ∈ A ∩ dom f = domh we have⋃
J∈H(x)

∑
i∈J

∂fi(x) +
⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x) ⊂ ∂h(x). (24)

Proof. By Propositions 4 and 5, the left hand side in (24) is contained in ∂f(x) +
∂δA(a), which is contained in ∂(f + δA)(x) = ∂h(x). �
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Theorem 4 (The subdifferential of the robust sum function) Let x ∈ A ∩
dom f = domh. Next statements are equivalent:

(i) ∂h(x) =
⋃

J∈H(x)

∑
i∈J ∂fi(x) +

⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x).

(ii) (epih∗) ∩ (∂h(x)×R) = Q∩ (∂h(x)×R).

If, additionally, (fi)i∈I ⊂ Γ (X) and epiS G is closed and convex, then the next state-

ment is also equivalent to (i) and (ii):

(iii) Q is w∗-closed and convex regarding ∂h(x)×R.

Proof. [(i)⇒ (ii)] By (22) we have only to check the inclusion [⊂] in (ii). Let
x∗ ∈ ∂h(x) and any s ≥ h∗(x∗). By (i), there exist (J, λ) ∈ H (x) × S+, (x∗i )i∈J ∈∏
i∈J ∂fi(x) and u∗ ∈ ∂(λG)(x) such that 〈λ,G(x)〉 = 0, x∗ =

∑
i∈J x

∗
i + u∗, and∑

i∈J fi(x) = f(x) (as J ∈ H(x)). One has

s ≥ 〈x∗, x〉 − h(x) =

〈∑
i∈J

x∗i + u∗, x

〉
−
∑
i∈J

fi(x)

=
∑
i∈J

(
〈x∗i , x〉 − fi(x)

)
+ 〈u∗, x〉 − (λG)(x)

=
∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗)

(the last equality follows from (5), applied to the functions λG and fi for all i ∈ J).
Then there exist ((si)i∈J , t) ∈ RJ ×R such that

s =
∑
i∈J

si + t, f∗i (x∗i ) ≤ si ∀i ∈ J, (λG)∗(u∗) ≤ t,

and finally,

(x∗, s) =
∑
i∈J

(x∗i , si) + (u∗, t) ∈
∑
i∈J

epi f∗i + epi(λG)∗ ⊂ Q.

[(ii)⇒ (i)] By Proposition 6 we have only to prove that the inclusion [⊂] holds
in (i). Let x∗ ∈ ∂h(x) and s := 〈x∗, x〉−h(x). We have (x∗, s) ∈ epih∗ (see (5)) and
by (ii) there exist (J, λ) ∈ H × S+, (x∗i , si)i∈J ∈

∏
i∈J epi f∗i , (u∗, t) ∈ epi(λG)∗,

such that (x∗, s) =
∑
i∈J (x∗i , si) + (u∗, t). Now

s = 〈x∗, x〉 − h(x) ≤
∑
i∈J

[
〈x∗i , x〉 − fi(x)

]
+ 〈u∗, x〉 − (λG)(x)

≤
∑
i∈J

f∗i (x∗i ) + (λG)∗(u∗) ≤
∑
i∈J

si + t = s.
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We then have (note that h(x) = f(x) as x ∈ A ∩ domh)

0 = 〈x∗, x〉 − h(x)−
∑
i∈J

f∗i (x∗i )− (λG)∗(u∗)

=
∑
i∈J
〈x∗i , x〉+ 〈u

∗, x〉 − f(x)−
∑
i∈J

f∗i (x∗i )− (λG)∗(u∗)

=
∑
i∈J

[
〈x∗i , x〉 − f

∗
i (x∗i )− fi(x)

]
+

[∑
i∈J

fi(x)− f(x)

]
+
[
〈u∗, x〉 − (λG)∗(u∗)− (λG)(x)

]
+ [(λG)(x)].

Since all the terms in the brackets are less or equal than 0, all these terms are
equal to 0, that means

x∗i ∈ ∂fi(x) ∀i ∈ J, J ∈ H(x), u∗ ∈ ∂(λG)(x), 〈λ,G(x)〉 = 0,

and (i) holds.
[(ii)⇐⇒ (iii)] It is consequence of Proposition 3. �

5 A special case: inf-sup constrained problem

In this section we consider the so-called inf-sup constrained problem of the follow-
ing model:

(MPx∗) inf
x∈A

{
sup
i∈I

fi(x)− 〈x∗, x〉
}
. (25)

Thus, (MP0X∗ ) consists in the minimization of the sup function supi∈I fi on the
set A.

5.1 A first perturbation approach to inf-sup constrained problem

It is clear that (MPx∗) is a special case of (RPx∗) when H = H1. Consequently, the

dual problem (MDx∗) and the qualifying set Q in (17) now reduce, respectively,
to

(MD1
x∗) sup

(i,λ)∈I×S+

u∗∈X∗

−
{
f∗i (u∗) + (λG)∗(x∗ − u∗)

}
,

and
Q1 =

⋃
i∈I

epi f∗i +
⋃
λ∈S+

epi(λG)∗.

From the results obtained in previous sections, we have

Corollary 1 (Characterization of stable strong duality) Assume that A ∩
dom(supi∈I fi) 6= ∅ and let ∅ 6= V ⊂ X∗. Then the next statements are equivalent:

(i) inf(MPx∗) = max(MD1
x∗), ∀x∗ ∈ V.

(ii) epi

(
sup
i∈I

fi + δA

)∗
∩ (V ×R) = Q1 ∩ (V ×R).
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If, additionally, (fi)i∈I ⊂ Γ (X), epiS G is closed and convex, then the next statement

is also equivalent to (i) and (ii):

(iii) Q1 is w∗-closed and convex regarding V ×R.

Example 1 Consider the problem

(RIPx∗) inf

{
sup
i∈I

fi − 〈x∗, x〉
}

s.t. gt(x) ≤ 0, ∀t ∈ T,

with T infinite and (fi)i∈I , (gt)t∈T ⊂ Γ (X) . Let Z be the lcHtvs RT endowed

with the product topology, the dual of which is the space R(T ) of the so-so-called
generalized finite sequences λ = (λt)t∈T with only finitely many λt different from

zero. Denote by s (λ) = {t ∈ T : λt 6= 0} the support of λ = (λt)t∈T ∈ R(T ). The

positive cone in RT is S = (R+)T = RT+ and we have

S+ = R(T )
+ =

{
(λt)t∈T ∈ R(T ) : λt ≥ 0, ∀t ∈ T

}
.

Set D :=
⋂
t∈T

dom gt and let G : X −→ RT be such that

G (x) =

{
(gt (x))t∈T , if x ∈ D,
+∞Z , else,

whose S−epigraph epiRT+
G is convex and closed in X × RT . Moreover, defining∑

t∈s(λ)
λtgt + δD = δD for λ = 0R(T ) , we have,

(λG) (x) =
∑
t∈s(λ)

λtgt (x) + δD (x) , ∀ (x, λ) ∈ X ×R(T ).

From Corollary 1, if there exists x ∈ dom (supi∈I fi) such that supt∈T gt (x) ≤ 0,

inf(RIPx∗) = max
(i,λ)∈I×R(T )

+

u∗∈X∗

−

f∗i (u∗)+
∑
t∈s(λ)

(λtgt + δD)∗
(
x∗ − u∗

) , ∀x∗ ∈ X∗,

if and only if
⋃
i∈I

epi f∗i +
⋃

λ∈R(T )
+

epi

( ∑
t∈s(λ)

(λtgt + δD)∗
)

is w∗-closed and convex.

Concerning the subdifferential of the robust objective function of the reformu-
lation of (MP0X∗ ) as an unconstrained optimization problem, h = supi∈I fi + δA
we have, by Theorem 4:

Corollary 2 (Subdifferential of the constrained sup-function) Assume that

(fi)i∈I ⊂ Γ (X), epiS G is closed and convex and that Q1 is w∗-closed and convex.

Then, for each x ∈ A ∩ dom(supi∈I fi), one has

∂

(
sup
i∈I

fi + δA

)
(x) =

⋃
i∈I(x)

∂fi(x) +
⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x),

where I(x) = {j ∈ I : fj(x) = supi∈I fi(x)}.
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In the case when G(x) = 0Z for all x ∈ X, we obtain the simplest possible
formula for the subdifferential of the sup-function under a closedness assumption.

Corollary 3 (Subdifferential of the unconstrained sup-function) Assume that

(fi)i∈I ⊂ Γ (X) and
⋃
i∈I

epi f∗i is w∗-closed and convex. Then, for each x ∈ dom

(
sup
i∈I

fi

)
we have

∂

(
sup
i∈I

fi

)
(x) =

⋃
i∈I(x)

∂fi(x).

Remark 6 The set
⋃
i∈I

epi f∗i is convex in each of the following classical cases:

1) For all (i, j) ∈ I × I there exists k ∈ I such that fi ≤ fk and fj ≤ fk;
2) I is a convex subset of some vector space and the function i 7→ fi(x) is concave
for each x ∈ X.
The set

⋃
i∈I

epi f∗i is w∗-closed if I is a compact subset (of some topological space)

and the function i 7→ fi(x) is usc for each x ∈ X.

5.2 A second perturbation approach to inf-sup constrained problems

We first define another dual for the inf-sup constrained problem (MPx∗) introduced
in (25), whose objective function is

h = f + δA = sup
i∈I

fi + δA = sup
i∈I

fi + δG−1(−S),

under the following assumptions:

(H)


(fi)i∈I ⊂ Γ (X),

epiS G is convex and closed,

domh = A ∩ dom f 6= ∅.

The uncertainty set will be the unit simplex ∆I of R(I):

∆I :=

µ = (µi)i∈I ∈ R(I) : µi ≥ 0 ∀i ∈ I,
∑
i∈s(µ)

µi = 1

 .

We associate with each µ = (µi)i∈I ∈ ∆I , the lcHtvs Yµ := Xs(µ) × Z and the
function Fµ : X ×Xs(µ) × Z → R∞ defined by

Fµ(x, (xi)i∈I , z) :=
∑
i∈s(µ)

µifi(x+ xi) + δ−S(z +G(x)).

Then, for all (x∗, (x∗i )i∈s(µ), µ) ∈ X∗ × (X∗)s
(µ) ×R(I), one has

F ∗µ(x∗, (x∗i )i∈s(µ), µ) =


∑

i∈s(µ)
(µifi)

∗(x∗i ) + (λG)∗

(
x∗ −

∑
i∈s(µ)

x∗i

)
, if µ ∈ S+,

+∞, else.
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So, the corresponding dual problem is (see (13))

(MD2
x∗) sup

(µ,λ)∈∆I×S+

((x∗i )i∈s(µ),u
∗)∈(X∗)s(µ)×X∗∑

i∈s(µ) x
∗
i+u

∗=x∗

−

 ∑
i∈s(µ)

(µifi)
∗ (x∗i ) + (λG)∗(u∗)

 ,

and the qualifying set (14) comes as

Q2 =
⋃
µ∈∆I

∑
i∈s(µ) µi epi f∗i +

⋃
λ∈S+ epi(λG)∗

= co
(⋃

i∈I epi f∗i
)

+
⋃
λ∈S+ epi(λG)∗

= co
(⋃

i∈I epi f∗i +
⋃
λ∈S+ epi(λG)∗

)
= coQ1.

(26)

So, Q2 turns out to be convex. Moreover, under (H) one has, by Proposition 3,

epi

(
sup
i∈I

fi + δA

)∗
= coQ1 = Q2, (27)

domh 6= ∅, and Fµ ∈ Γ
(
X ×Xs(µ) × Z

)
for all µ ∈ ∆I . Applying Theorem 1 we

then obtain (compare with Corollary 1):

Theorem 5 (Stable duality) Assume (H) holds and let ∅ 6= V ⊂ X∗. The following

statements are equivalent:

(i) inf(MPx∗) = sup(MD2
x∗), ∀x∗ ∈ V.

(ii) co

(⋃
i∈I

epi f∗i

)
+

⋃
λ∈S+

epi(λG)∗ is w∗-closed regarding V ×R.

In the case when G(x) = 0Z for all x ∈ X, we get the following corollary improving

[2, Remark 12.2, p. 78].

Corollary 4 Let (fi)i∈I ⊂ Γ (X) be a family of functions such that dom (supi∈I fi) 6=
∅ and let ∅ 6= V ⊂ X∗. Next statements are equivalent:

(i) (supi∈I fi)
∗ (x∗) = min

µ∈∆I
(x∗i )i∈(X

∗)s(µ)∑
i∈s(µ)

x∗i=x
∗

∑
i∈s(µ)

(µifi)
∗ (x∗i ), ∀x∗ ∈ V.

(ii) (supi∈I fi)
∗ (x∗) = min

µ∈∆I
(x∗i )i∈(X

∗)s(µ)∑
i∈s(µ)

µix
∗
i=x

∗

∑
i∈s(µ)

µif
∗
i (
x∗i
µi

), ∀x∗ ∈ V.

(iii) co

(⋃
i∈I

epi f∗i

)
is w∗-closed regarding V ×R.

Let us now go back to the subdifferential of the objective function

h = sup
i∈I

fi + δA

with A = G−1(−S).
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Theorem 6 (Subdifferential of the sup-function) Assume (H) holds and let x ∈
A ∩ dom f = domh. Denote I(x) = {i ∈ I : fi(x) = f(x)}. Then the next statements

are equivalent:

(i) ∂h(x) = co

( ⋃
i∈I(x)

∂fi(x)

)
+

⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x).

(ii) co

(⋃
i∈I

epi f∗i

)
+

⋃
λ∈S+

epi(λG)∗ is w∗-closed regarding ∂h(x)×R.

Proof. [(i)⇒ (ii)] Let (x∗, s) ∈ Q2∩(∂h(x)×R). We have to prove that (x∗, s) ∈ Q2.

As x∗ ∈ ∂h(x), by (i) there exist θ = (θi)i ∈ R(I(x))
+ , ((x∗i )i, u

∗) ∈ (X∗)s(θ) × X∗,
and λ ∈ S+ such that

∑
i∈s(θ) θi = 1, x∗i ∈ ∂fi(x) for all i ∈ s(θ), u∗ ∈ ∂(λG)(x),

〈λ,G(x)〉 = 0, and x∗ =
∑
i∈s(θ) θix

∗
i + u∗. On the other hand, as (H) holds,

according to (27), we have Q2 = epih∗, and hence, (x∗, s) ∈ Q2 also means that
s ≥ h∗(x∗) ≥ 〈x∗, x〉 − h(x) = 〈x∗, x〉 − f(x). After all, as (λG)(x) = 0 , we have

s ≥ h∗(x∗) ≥ 〈x∗, x〉 − h(x) = 〈x∗, x〉 − f(x)

=
∑
i∈s(θ)

θi
(
〈x∗i , x〉 − fi(x)

)
+ 〈u∗, x〉 − (λG)(x) (as i ∈ I(x))

=
∑
i∈s(θ)

θif
∗
i (x∗i ) + (λG)∗(u∗) (see (5)).

So, there exists ((si)i, t) ∈ Rs(θ) ×R such that

s =
∑
i∈s(θ)

si + t, si ≥ θif∗i (x∗i ), ∀i ∈ s(θ), and t ≥ (λG)∗(u∗),

and we then have

(x∗, s) =
∑
i∈s(θ)

θi

(
x∗i ,

si
θi

)
+ (u∗, t),

yielding

(x∗, s) ∈ co

 ⋃
i∈I(x)

epi f∗i

+ epi(λG)∗ ⊂ Q2.

[(ii)⇒ (i)] It follows from Proposition 6 (applied to the case H = H1) that⋃
i∈I(x)

∂fi(x) +
⋃
λ∈S+

〈λ,G(x)〉=0

∂(λG)(x) ⊂ ∂h(x).

Since ∂h(x) is convex it follows that the inclusion [⊃] always holds in (i). Let
us prove the reverse inclusion. Let x∗ ∈ ∂h(x) and s := 〈x∗, x〉 − h(x). Then
(x∗, s) ∈ epih∗ (see (5)) and by (27), (x∗, s) ∈ Q2. So, (x∗, s) ∈ Q2∩(∂h(x)×R), and
by (ii) (x∗, s) ∈ Q2. Then there exist µ = (µi)i∈s(µ) ∈ ∆I , ((x∗i , si))i ∈

∏
i∈s(µ)

epi f∗i ,
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λ ∈ S+, and (u∗, t) ∈ epi(λG)∗ such that (x∗, s) =
∑

i∈s(µ)
µi(x

∗
i , si) + (u∗, t). We

have

s =
∑
i∈s(µ)

µisi + t

≥
∑
i∈s(µ)

µif
∗
i (x∗i ) + (λG)∗(u∗)

≥
∑
i∈s(µ)

µi
(
〈x∗i , x〉 − fi(x)

)
+ 〈u∗, x〉 − (λG)(x)

= 〈x∗, x〉 −
∑
i∈s(µ)

µifi(x)− (λG)(x)

≥ 〈x∗, x〉 − f(x) = 〈x∗, x〉 − h(x) = s.

Consequently,

0 = 〈x∗, x〉 − f(x)−
∑
i∈s(µ)

µif
∗
i (x∗i )− (λG)∗(u∗)

=
∑
i∈s(µ)

[
µi(〈x

∗
i , x〉 − fi(x)− f∗i (x∗i ))

]
+
∑
i∈s(µ)

[µi(fi(x)− f(x))]

+
[
〈u∗, x〉 − (λG)(x)− (λG)∗(u∗)

]
+ [(λG)(x)] .

We note that each term in the brackets is less or equal to 0. Since the sum of these
terms is equal to 0 each of these terms is equal to 0, that means respectively:

x∗i ∈ ∂fi(x), ∀i ∈ s(µ), s(µ) ⊂ I(x), u∗ ∈ ∂(λG)(x), and 〈λ,G(x)〉 = 0.

We then have:

x∗ =
∑
i∈s(µ) µix

∗
i + u∗ ∈ co

(⋃
i∈s(µ) ∂fi(x)

)
+ ∂(λG)(x)

⊂ co
(⋃

i∈I(x) ∂fi(x)
)

+ ∂(λG)(x)

and we are done. �

Taking G(x) = 0Z for all x ∈ X, we obtain:

Corollary 5 Assume that (fi)i∈I ⊂ Γ (X) and

co

(⋃
i∈I

epi f∗i

)
is w∗-closed in X∗ ×R. (28)

Then, for each x ∈ dom (supi∈I fi) we have

∂

(
sup
i∈I

fi

)
(x) = co

 ⋃
i∈I(x)

∂fi(x)

 . (29)
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Remark 7 Formula (29) is to be compared with the one of Corollary 3 and also
with the classical Valadier formula ([28, Theorem 2], [15, Theorem 3, p.201], [32,
Theorem 2.4.18]) in which, under some continuity assumption, the w∗-closed con-
vex hull appears in the right hand side of (29) (see however, [15, Theorem 4, p.204]
and [31, Theorem 2.4]).

Remark 8 The formulas given in Corollary 3 and Corollary 5 remain valid if one re-
places the assumption (fi)i∈I ⊂ Γ (X) by the weaker one (supi∈I fi)

∗∗ = supi∈I f
∗∗
i .

This last condition has been considered in [21] and [22].

To conclude, let us give two typical examples when Condition (28) is satisfied
and, consequently, (29) holds. To this end, recall that the recession function ϕ∞
of ϕ ∈ Γ (Rn) defined by epi(ϕ∞) = (epiϕ)∞, coincides with the support function
of domϕ∗ (or domϕ∗), see [26, Theorem 13.3]. So, h∞ = (δdomϕ∗)

∗ = (δdomϕ∗)
∗.

In both examples below, we assume that (fi)i∈I ⊂ Γ (Rn), I is compact, and, for
each x ∈ Rn, the function i 7→ fi(x) is usc.

Example 2 Assume that the epigraphs of the conjugate functions f∗i , i ∈ I, have
the same recession cone, that means

D := dom fi = dom fj , ∀(i, j) ∈ I × I, (30)

and assume that epi δ∗D does not contain lines. Then by [25, Theorem 5.3(b)], we
have

epi

(
sup
i∈I

fi

)∗
= co

(⋃
i∈I

epi f∗i

)
+ co

(⋃
i∈I

(epi f∗i )∞
)

= co

(⋃
i∈I

epi f∗i

)
+ epi δ∗D = co

(⋃
i∈I

epi f∗i + epi δ∗D

)
= co

⋃
i∈I

(
epi f∗i + epi δ∗D

)
= co

⋃
i∈I

[
epi f∗i +

(
epi f∗i

)
∞
]

= co

(⋃
i∈I

epi f∗i

)
,

which is closed since epi (supi∈I fi)
∗ is closed.

In the case when the convex functions fi, i ∈ I, are real-valued on Rn we
have (epi f∗i )∞ = {0Rn} × R+, for all i ∈ I, and epi δ∗D does not contain lines.
Consequently, (29) holds (see [14, Theorem 4.4.2] where the additional but non-
necessary condition dom(supi∈I fi) = Rn is required).

Example 3 By [27, Corollary 5.3] we know that (28) holds if (30) holds and for
each (x, r) ∈ Rn ×R the function i 7→

(
δepi f∗i

)∗
(x, r) is usc. We have (see [4, p.3])

(
δepi f∗i

)∗
(x, r) =


+∞ if r > 0,(
δdom f∗i

)∗
(x) if r = 0,

−rfi
(
−xr
)

if r < 0.

Assuming that
dom f∗i = dom f∗j , ∀(i, j) ∈ I × I, (31)

we obtain that i 7→
(
δepi f∗i

)∗
(x, r) is usc. Consequently, if (30) and (31) hold then

(29) holds.
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