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Breaking symmetries to rescue Sum of Squares
in the case of makespan scheduling*

Victor Verdugo' José Verschae® Andreas Wiese!

Abstract

The Sum of Squares (SoS) hierarchy gives an automatized technique to create a family of in-
creasingly tight convex relaxations for binary programs. There are several problems for which
a constant number of rounds of this hierarchy give integrality gaps matching the best known
approximation algorithms. For many other problems, however, ad-hoc techniques give bet-
ter approximation ratios than SoS in the worst case, as shown by corresponding lower bound
instances. Notably, in many cases these instances are invariant under the action of a large per-
mutation group. This yields the question how symmetries in a formulation degrade the perfor-
mance of the relaxation obtained by the SoS hierarchy. In this paper, we study this for the case
of the minimum makespan problem on identical machines. Our first result is to show that Q(n)
rounds of SoS applied over the configuration linear program yields an integrality gap of at least
1.0009, where n is the number of jobs. This improves on the recent work by Kurpisz et al. [31,
Math. Prog. 2018] that shows an analogous result for the weaker LS, and SA hierarchies. Our
result is based on tools from representation theory of symmetric groups. Then, we consider the
weaker assignment linear program and add a well chosen set of symmetry breaking inequalities
that removes a subset of the machine permutation symmetries. We show that applying 20(1/")
rounds of the SA hierarchy to this stronger linear program reduces the integrality gap to 1 +¢,
which yields a linear programming based polynomial time approximation scheme. Our results
suggest that for this classical problem, symmetries were the main barrier preventing the SoS/SA
hierarchies to give relaxations of polynomial complexity with an integrality gap of 1 + . We
leave as an open question whether this phenomenon occurs for other symmetric problems.
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1 Introduction

The lift-and-project methods are powerful techniques for deriving convex relaxations of integer
programs. The lift-and-project hierarchies, such as Sherali-Adams (SA), Lovéasz-Schrijver (LS), and
Sum of Squares (So0S), are systematic methods for obtaining a family of increasingly tight relax-
ations, parameterized by the number of rounds of the hierarchy. For all of them, applying r rounds
on a formulation with n variables yields a convex relaxation with n°(") variables in the lifted space.
Taking r = n rounds gives an exact description of the integer hull [32], at the cost of having an expo-
nential number of variables. On the other hand, taking » = O(1) rounds yields a description with
only a polynomial number of variables. Arguably, it is not well understood for which problems
these hierarchies, with a constant number of rounds, yield relaxations that match the respective
best possible approximation algorithm. Indeed, there are some positive results, but there are also
many other strong negative results for algorithmically easy problems. These lower bounds show
a natural limitation on the power of hierarchies as one-fits-all techniques. Quite remarkably, the
instances used for obtaining lower bounds often have a very symmetric structure [34, 17,42, 31, 44],
which suggests a connection between the tightness of the relaxation given by these hierarchies and
symmetries. The primary purpose of this article is to study this connection for a specific relevant
problem, namely, the minimum makespan scheduling on identical machines.

Minimum makespan scheduling. This is one of the first problems considered under the lens
of approximation algorithms [16], and it has been studied extensively. The input of the problem
consists of a set J of n jobs, each having an integral processing time p; > 0, and a set [m| =
{1,...,m} of m identical machines. Given an assignment ¢ : J — [m], the load of a machine
i is the total processing time of jobs assigned to i, that is, }-;c,-1(; p;. The objective is to find



an assignment of jobs to machines that minimizes the makespan, that is, the maximum load. The
problem is strongly NP-hard and admits several polynomial-time approximation schemes (PTAS) based
on different techniques, such as dynamic programming, integer programming on fixed dimension,
and integer programming under a constant number of constraints [20, 1, 2, 19, 22, 23, 11].

Integrality gaps. The minimum makespan problem has two natural linear relaxations, which
have been extensively studied in the literature. The assignment linear program uses binary variables
x;; which indicates whether a job j is assigned to a machine i, for each i € [m/|, j € J. The stronger
configuration linear program uses a variable y;c for each machine i and multiset of processing times
C, which indicates whether C is the multiset of processing times of jobs assigned to i. Kurpisz et
al. [31] showed that the configuration linear program has an integrality gap of at least 1024/1023 ~
1.0009 even after 2(n) of rounds of the LS. or SA hierarchies. On the other hand, Kurpisz et
al. [31] leave open whether the SoS hierarchy applied to the configuration linear program has an
integrality gap of 1+ ¢ after applying a number of rounds that depends only on the constante > 0,
i.e., O¢(1) rounds. Our first main contribution is a negative answer to this question.

Theorem 1. Consider the minimum makespan problem on identical machines. For each n € N, there exists
an instance with n jobs such that, after applying §)(n) rounds of the SoS hierarchy over the configuration
linear program, the obtained semidefinite relaxation has an integrality gap of at least 1.0009.

Naturally, since the configuration linear program is stronger than the assignment linear pro-
gram, our result holds if we apply 2(n) rounds of SoS over the assignment linear program. The
proof of the lower bound relies on tools from representation theory of symmetric groups over poly-
nomials rings,and it is inspired on the recent work by Raymond et al. [45] for symmetric sums of
squares in hypercubes. It is based on constructing high-degree pseudoexpectations on the one hand,
and by obtaining symmetry-reduced decompositions of the polynomial ideal defined by the con-
tiguration linear program, on the other hand. The machinery from representation theory allows to
restrict attention to invariant polynomials, and we combine this with a strong pseudoindependence
result for a well chosen polynomial spanning set. Our analysis is also connected to the work of
Razborov on flag algebras and graph densities, and we believe it can be of independent interest for
analyzing lower bounds in the context of SoS in presence of symmetries [46, 47, 44].

Symmetries and Hierarchies. Given the relation between hierarchies and symmetries above, it is
natural to explore whether symmetry handling techniques might help to overcome the limitation
given by Theorem 1. A natural source of symmetry of the problem comes from the fact that the
machines are identical: Given a schedule, we obtain another schedule with the same makespan by
permuting the machines. The same symmetries are encountered in the assignment and configu-
ration linear programs, namely, if o : [m| — [m] is a permutation and (z;;) is a feasible solution
to the assignment linear program then (z,;);) is also feasible. The same holds for solutions (y;c)
and (y,(;)c) for the configuration-LP. In other words, these linear programs are invariant under the
action of the symmetric group on the set of machines. The question we study is the following:
Is it possible to obtain a polynomial size linear or semidefinite program with an integrality gap of at most
1 + ¢ that is not invariant under the machine symmetries? We aim to understand if these symmetries
deteriorate the quality of the relaxations obtained from the SoS or SA hierarchies. This time, we
provide a positive answer.



Theorem 2. Consider the problem of scheduling identical machines to minimize the makespan. After adding

linearly many inequalities to the assignment linear program (for breaking symmetries), 2001/2%) rounds of
the SA hierarchy yield a linear program with an integrality gap of at most 1 + ¢, for any € > 0.

Notice that the same result is obtained by applying the SoS hierarchy instead of SA. The proof
of Theorem 2 is based on introducing a formulation that breaks the symmetries in the assignment
program by adding new constraints. The symmetry breaking constraints enforce that any feasible
integral solution of the formulation respects a lexicographic order over the machine configurations.
We show how to exploit this to obtain a polynomial time approximation scheme (PTAS) based on
the SA hierarchy. Additionally, we show that by adding a polynomial number of new constraints,
we can obtain a faster approximation scheme, such that poly(1/¢) rounds of SA suffice. The extra
constraints correspond to symmetry breaking inequalities for a modified instance with rounded
job sizes. In particular, the added constraints are not necessarily valid for the original formula-
tion (which considers the original job sizes). However, we can show that increasing the optimal
makespan by a factor 1+ ¢ maintains the feasibility of at least one integral solution. Thus, by break-
ing more symmetries, we make it easier for the hierarchies to produce good relaxations. We remark
that the framework we use for the minimum makespan problem can be, in principle, studied in
other settings where symmetries are present in standard integer programming relaxations. This
strategy opens the possibility of analyzing the effect of applying symmetry breaking techniques
and hierarchies in order to generate strong linear or semidefinite relaxations.

1.1 Related work

Upper bounds. The first application of semidefinite programming in the context of approxima-
tion algorithms is due to Goemans and Williamson for the Max-Cut problem [15]. Of particular
interest to our work is the SoS based approximation scheme by Karlin et al. to the Max-Knapsack
problem [24]. They use a structural decomposition theorem satisfied by the SoS hierarchy. For a
constant number of machines, Levey and Rothvoss design an approximation scheme with a sub-
exponential number of rounds in the weaker SA hierarchy [37], which is improved to a quasi-
PTAS by Garg [12]. The SoS method has received a lot of attention for high-dimensional problems.
Among them we find matrix and tensor completion [7, 43], tensor decomposition [38] and cluster-
ing [27, 44].

Lower bounds. The first lower bound obtained in the context of positivstellensatz certificates is by
Grigoriev [17], showing the necessity of a linear number of SoS rounds to refute an easy Knapsack
instance. Similar results are obtained by Laurent [34] for Max-Cut and by Kurpisz et al. [28] for un-
constrained polynomial optimization. The same authors show that for a certain polynomial-time
single machine scheduling problem, the SoS hierarchy exhibits an unbounded integrality gap even
in a high-degree regime [28, 30]. Remarkable are the work of Grigoriev [18] and Schoenebeck [50]
exhibiting the difficulty for SoS to certify the insatisfiability of random 3-SAT instances in subexpo-
nential time, and recently there have been efforts on unifying frameworks to show lower bounds on
random CSPs [5, 26, 25]. For estimation and detection problems, lower bounds have been shown
for the planted clique problem, k-densest subgraph and tensor PCA, among others [21, 6].

Invariant Sum of Squares. Gatermann and Parrilo study how to obtain reduced sums of squares
certificates of non-negativity when the polynomial is invariant under the action of a group, using
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tools from representation theory [13]. Raymond et al. [45] develop on the Gatermann and Parrilo
method to construct symmetry-reduced sum of squares certificates for polynomials over k-subset
hypercubes. Furthermore, the authors make an interesting connection with the Razborov method
and flag algebras [46, 47]. Blekherman etal. [8] and Laurent [35] provide degree bounds on rational
representations for certificates over the hypercube, recovering as a corollary known lower bounds
for combinatorial optimization problems like Max-Cut. Kurpisz et al. [29] provide a method for
proving SoS lower bounds when the formulations exhibits a high degree of symmetry:.

2 Preliminaries: Sum of Squares (SoS) and Pseudoexpectations

In what follows we denote by R[z] the ring of polynomials with real coefficients. Binary integer
programming belongs to a larger class of problems in polynomial optimization, where the constraints
are defined by polynomials in the variables indeterminates. More specifically, consider the set
of feasible solutions to the polinomial optimization program defined by

gi(x) >0 forallie M, (1)
hj(x) =0 forall j€ J, (2)
3:3—3:620 foralle € E. 3)

where g;, h; € Rlz] for all i € M and for all j € J. In particular, for binary integer programming
the equality and inequality constraints are affine functions.

Ideals, quotients and square-free polynomials. In what follows we give a minimal introduction to the
algebraic elements for polynomial optimization, for a comprehensive treatment see [10]. We de-
note by I the ideal of polynomials in R[z] generated by {22 — z. : e € E}, and let R[z]/1x be the
quotient ring of polynomials with respect to the vanishing ideal Is. That is, f, g € R[z] are in the
same equivalence class of the quotient ring if f — g € I, that we denote f = ¢ mod Ig. Alterna-
tively, f = ¢ mod I if and only if the polynomials evaluate to the same values on the vertices of
the hypercube, that is, f(z) = g(x) for all z € {0,1}¥. Observe that the equivalence classes in the
quotient ring are in bijection with the square-free polynomials in R[z], that is, polynomials where
no variable appears squared. In what follows we identify elements of R[z]/If in this way, that is,
for p € R[z] we denote by p the unique square-free representation of p, which can be obtained as
the result of applying the polynomial division algorithm by the Grobner basis {22 — z. : e € E}.
Given S C FE, we denote by zg the square-free monomial that is obtained from the product of
the variables indexed by the elements in S, that is, z5 = [].cg .. The degree of a polynomial
f € Rlz]/If is denoted by deg(f). We say that f is a sum of squares polynomial, for short SoS, if
there exist polynomials {sq }ac.4 for a finite family A in the quotient ring such that f = Y . 452
mod Ig.

Certificates and SoS method. The question of certifying the emptiness of K is hard in general but
sometimes it is possible to find simple certificates. We say that there exists a degree-¢ SoS certificate
of infeasibility for K if there exist SoS polynomials sy and {s; };cas, and polynomials {r;};c; such
that
—1=s9+ Z Sig; + erhj mod Ig, 4)
ieM jEJ



and the degree of every polynomial in the right hand side is at most ¢. Observe that if K is non-
empty, then the right hand side is guaranteed to be non negative for at least one assignment of
z in {0,1}F, which contradicts the equality above. In the case of binary integer programming, if
K is empty there exists a degree-£ SoS certificate, for some ¢ < |E| [36, 41]. The SoS algorithm
iteratively checks the existence of a SoS certificate, parameterized in the degree, and each step of
the algorithm is called a round. Since |E| is an upper bound on the certificate degree, the method
is guaranteed to terminate [41, 36]. Furthermore, the existence of a degree-¢ SoS certificate can be
decided by solving a semidefinite program. This approach can be seen as the dual of the hierar-
chy proposed by Lasserre, which has been studied extensively in the optimization and algorithms
community [32, 33, 48, 9].

Pseudoexpectations. To determine the existence of a SoS certificate one solves a semidefinite pro-
gram, and the solutions of this program determine the coefficients of elements in the dual space of
linear operators. We say that a linear functional E:R[z]/Iz — Risa degree-¢ SoS pseudoexpectation
for the polynomial system (1)-(3), if it satisfies the following properties:

(SoS.1) E(1) =

(S0S.2) E(f2) > 0 forall f € R[z]/Ig with deg(f2) <,

E(
E(f2

(S0S.3) E(f2g;) > Oforalli € M, forall f € R[z]/Ir with deg(f2g;) < ¢,
E(

(S0S.4) E(fhj) =0forall j € J, forall f € R[z]/Ig with deg(fh;) < ¢

In what follows, every time we evaluate a polynomial in the pseudoexpectation we are doing it
over the square-free representation. We omit the bar notation for simplicity. The next lemma
shows that there is a duality relation between degree-¢ SoS pseudoexpectation and SoS certificates
of infeasibility of the same degree.

Lemma 1. Suppose that KC is empty. If there exists a degree-£ SoS pseudoexpectation then there is no degree-¢
50§ certificate of infeasibility.

The proof of this lemma is a simple check, see also [40]. The minimum value of ¢ for which
there exists a SoS certificate of infeasibility tells how hard is determining the emptiness of K for
the SoS method. Lemma 1 provides a way of finding lower bounds on the minimum degree of a
certificate, which we use in Section 3 for the minimum makespan problem. There are many ex-
amples of problems that are extremely easy to certificate for humans, but not for the SoS method.
For example, given a positive k € Q \ Z, consider the program Y, . = k and 22 — . = 0 for
all e € E. This problem is clearly infeasible, but there is no degree-¢ SoS certificate of infeasibility
for £ < min{2|k| + 3,2|n — k] + 3,n}, as shown originally by Grigoriev and others recently using
different approaches [17, 42].

The Sherali-Adams Hierarchy. There is a weaker hierarchy obtained using linear programming due
to Sherali & Adams (SA) [51]. Given disjoint subsets S, R C E, consider the polynomial psr =
[Lies @i [l;er(l — x;), and for every £ € {1,...,|El}, let & = {(S,R) : S,R C Ewith[SUR| =
¢and SN R = 0}. We say that a linear functional E : R[z]/Iz — R is a degree-¢ SA pseudoexpec-
tation for (1)-(3), if it satisfies the following properties:



(SA.1) E(1) =

E(
(SA.2) E(psr) > 0forall (S, R) € &,
E(

(SA.3) E(@srg:i) > 0foralli € M and (S, R) € & with deg(@srai) < ¢,

(SA.4) E(ps.rh;) =0forall j € J and (S, R) € & with deg(ps.rh;j) < {.

Observe that by construction it holds that every degree-(¢ + 1) SA pseudoexpectation is a degree-¢
SA pseudoexpectation as well. Furthermore, it follows directly from the linearity of E that deciding
whether a degree-/ SA pseudoexpectatlon exists, and computing one if it exists, can be done by
solving a linear program of size |E|°() over the variables yg = = E(xg), for every S C E with
|S| < ¢. This linear program is usually known as the ¢-round or ¢-level of the SA hierarchy. For a
detailed exposition of this hierarchy we refer to [33]. In the following we refer to low-degree when
the degree (SoS or SA) of a certificate or pseudoexpectation is O(1).

3 Lower Bound: Symmetries are Hard for SoS

In this section we show that the SoS method fails to provide a low-degree certificate of infeasi-
bility for a certain family of scheduling instances. The program we analize in this section is the
configuration linear program, that has proven to be powerful for different scheduling and packing
problems [52, 14]. Given a value T' > 0, a configuration corresponds to a multiset of processing
times such that its total sum does not exceed 7. The multiplicity m(p, C) indicates the number of
times that the processing time p appears in the multiset C. The load of a configuration C'is just
the total processing time, > . {p;:jesy M(p, C) - pand let C denote the set of all configurations with
load at most 7". For each combination of a machine i € [m] and a configuration C' € C, the program
has a variable y;c that models whether machine ¢ is scheduled with jobs with processing times
according to configuration C'. Letting n,, denote the number of jobs in J with processing time p,
we can write the following binary linear program, clp(7'),

> e =1 forall i € [m), (5)
cec
Z Z Cyic = nyp forallp e {p;:jeJ}, (6)
1€[m] CeC
yic € {0,1} foralli € [m], forall C € C. (7)

Hard instances. We briefly describe the construction of a family of hard instances {j } en for the
configuration linear program introduced in [31]. Let 7" = 1023, and for each odd k € N we have 15k
jobs and 3k machines. There are 15 different job-sizes with value O(1), each one with multiplicity
k. There exist a set of special configurations {C1, ..., Cs}, called matching configurations, such that
the program above is feasible if and only if the program restricted to the matching configurations is
teasible. The infeasibility of the latter program comes from the fact that there is no 1-factorization
of a regular multigraph version of the Petersen graph [31, Lemma 2].

Theorem 3 ([31]). For each odd k € N, there exists a degree-|k /2| SA pseudoexpectation for the configu-
ration linear program. In particular, there is no low-degree SA certificate of infeasibility.



3.1 A symmetry-reduced decomposition of the scheduling ideal

Given T' > 0, the variables ground set for configuration linear program is £ = [m] x C, and the
symmetric group S, acts over the monomials in R[y] according to oyic = y,(;)c, for every o € S,.
The action extends linearly to R[y]/Ig, and the configuration linear program is invariant under
this action, that is, for every y € clp(T') and every o € S,, we have oy € clp(T'). We say that a
polynomial f € R[y|/Ig is Sp-invariant if of = f for every o € S,,. When it is clear from the
context we drop the S, in the notation. If f is invariant we have that f = (1/|Sn[) >_,cs, of =
sym( f), which is the symmetrization of f. We say that a linear functional £ over the quotient ring
is S,,-symmetric if for every polynomial f € R[y]/Ir we have L(f) = L(sym(f)). The next lemma
shows that when E is symmetric it is enough to check symmetric polynomials in condition (S0S.2).
Therefore, in this case we restrict our attention to those polynomials that are invariant and SoS.

Lemma?2. LetE bea symmetric linear operator over R[y| /Iy such that for every invariant SoS polynomial
g of degree at most ¢ we have E(g) > 0. Then, E(f?) > 0 for every f € R[y]/1z with deg(f?) < .

Proof. Since the operator E is symmetric, for every f in the quotient ring with deg(f2) < ¢ we
have E(f2) = E(sym(f2)). The polynomial sym(f2) is symmetric, and it is SoS since sym(f2)
(1/1Sm]) Yo pes,, o2 which is a sum of squares. Since deg(sym(f?)) < ¢, we have E(sym(fz)) >
and we conclude that E(f2) > 0.

O o |l

In the following we focus on understanding polynomials that are invariant and SoS. To analize
the action of the symmetric group over R[y] we introduce some tools from representation theory
to characterize the invariant S,,,-modules of the polynomial ring [49]. We maintain the exposition
minimally enough for our purposes and we follow in part the notation used by Raymond et al. [45].
We say that V' is an S,,,-module if there exists a homomorphism p : S,,, = GL(V'), where GL(V) is
the linear group of V. A subspace W of V is invariant if it is closed under the action of S,,, that is,
when w € W and o € S,,, we have that cw € W. We say that an S,,,-module W is irreducible if the
only invariant subspaces are {0} and . We refer to [49] for a deeper treatment of representation
theory of symmetric groups.

Isotypic decompositions. A partition of m is a vector (A1,...,A¢) such that \; > A\g > --- )\, > 0 and
A1+ -+ A = m. We denote by A - m when X is a partition of m. Any S,,-module has an isotypic
decomposition V- = @,,,, Va, which decomposes V" as a direct sum of S,,-modules, where each
of the subspaces in the direct sum is called an isotypic component. In the following we introduce
a combinatorial abstraction of the partitions and related subgroups that play a relevant role. A
tableau of shape A is a bijective filling between [m] and the cells of a grid with ¢ rows, and every
row r € [t] has length \,. In this case, the shape or Young diagram of the tableau is . For a tableau
7 of shape A, we denote by row, (7)) the subset of [m] that fills row r in the tableau.

Example 1. Let m = 7 and consider the partition X = (4,2,1). The following tableaux have shape X,

1[2]714] 117]2]5]
56 316
3 4

In the tableau Ty at the left, row: (7)) = {1,2,7,4}. In the tableau T} at the right, rows(73) = {4}.



The row group R, is the subgroup of S, that stabilizes the rows of the tableau 7, that is,
R, = {0 € Sy, 1 0 - row, (7)) = row, (7)) for every r € [t]} 8)

Invariant SoS polynomials. We go back now to the case of the configuration linear program.

Definition 1 (Scheduling Ideal). We define sched to be the ideal of polynomials in R]y| generated by

{Zyic—lzie[m]}u{yfc—yiczie[m],CEC}. )
cec

Recall that the set of polynomials above enforce the machines in the scheduling solutions to
be assigned with exactly one configuration. Let Q° be the quotient ring R[y]/sched restricted to
polynomials of degree at most ¢ and let ), ,, QY be its isotypic decomposition. Given a tableau
7 of shape ), let W% be the subspace of Qf, fixed by the action of the row group R, , that is,

wﬁA:{quf\:aq:qforallaeRn}. (10)

In what follows we sometimes refer to these subspaces as row subspaces. The following result fol-
lows from the work of Gaterman & Parrilo [13] in the context of symmetry reduction for invariant
semidefinite programs. In what follows, (A, B) is the inner product in the space of square matrices
defined by the trace of AB. Given ¢ € [m], we denote by A, the subset of partitions of m that are
lexicographically larger than (m — ¢,1,...,1).

Theorem 4. Suppose that g € Rly|/sched is a degree-¢ SoS and Sy,-invariant polynomial. For each par-
tition A € Ay, let Ty be a tableau of shape X\ and let P* = {p{*, ..., piA } be a set of polynomials such that
span(P*) D WﬁA. Then, for each partition X € A, there exists a positive semidefinite matrix My such that
9= ren, (Mx, Z™), where Z[} = sym(p;*pi*).

The theorem above is based on the recent work of Raymond et al. [45, p. 324, Theorem 3]. In
our case the symmetric group is acting differently from Raymond et al., but the proof follows the
same lines, and it can be found in Appendix A. Together with Lemma 2, it is enough to study
pseudoexpectations for each of the partitions in A, separately. We remark that for each partition
in A € A, we can take any tableau 7, with that shape, and then consider a spanning set for its
corresponding subspace Wé. In the following, for a matrix A with entries in R[y], we denote by

E(A) the matrix obtained by evaluating E on each entry of A.

Lemma 3. Let E be a symmetric linear operator over Rly] /1. For each A € Ay, let T be a tableau of shape
Aand let P* = {p}*, ... , Pi\ + be a set of polynomials such that span(P*) D I/Vﬁx Foreach X\ € Ay, let Z™

such that Z] = sym(p;*p;*) and suppose that E(Z™) is positive semidefinite. Then, B(f2) > 0 for every
f € Ry)/1z with deg(f?) < ¢.
Proof. Let g be an invariant SoS polynomial of degree at most ¢. By Theorem 4, for each A € A,

there exist a positive semidefinite matrix M) such that g = 3"\, (M), Z ). Therefore, we have
that

E(g) = Y E(M\, 2% =Y (M\E(Z") >0,

AEA, AEA,

since both M, and E(Z*) are positive semidefinite for each partition A € A;. By Lemma 2 we
conclude that E(f2) > 0 for every f € R[y]/Ig with deg(f?) < . O

9



3.2 Construction of the spanning sets

In this section we show how to construct the spanning sets of the row subspaces in order to apply
Lemma 3, which together with a particular linear operator provides the existence of a high-degree
SoS pseudoexpectation. The structure of the configuration linear program allows us to further
restrict the canonical spanning set obtained from monomials, by one that is combinatorially inter-
pretable and adapted to our purposes.

Definition 2 (Partial Schedule). Let G g be the directed bipartite graph with vertex partition given by [m]
and C and edges S C [m] x C. We say that S C [m] x C is a partial schedule if for every i € [m] we have
ds(i) < 1, where d5(i) is the degree of vertex i in Gg.

We say that S is a partial schedule over H if {i € [m] : (i,C) € S} C H. We denote by M(S) the set
of machines in {i € [m] : (i) = 1}, and we call M(S) the set of machines incident to S. Sometimes
it is convenient to see a partial schedule S as a function from M (S) to C, so we also say that S is
partial schedule with domain M(S).

Example 2. Let m = 4 and the set of configurations C = {C1,C5,Cs}. Then, the set given by T =
{(1,C1),(2,Ch),(4,C2)} is a partial schedule. The machine i = 3 is not incident to T. In this case,
d7(Cy) = 2 since there are two machines, {1,2}, incident to Cy. The domain of T is M(T) = {1,2,4}.
The set S = {(1,C1), (1,C2)} is not a partial schedule since dg(1) = 2.

Proposition 1. If S C [m] x C is not a partial schedule, we have ys = 0 mod sched.

Proof. Since S it is not a partial schedule, there exists a machine i € [m] such that dg(z) > 2.
Therefore, to prove the proposition it is enough to check that y;cy;r = 0 mod sched for every pair
of different configurations R, C' € C. Given a configuration C' € C, we have that

Y wieyin= Y, viovir +Yic —vic = yio(D_ vis —1) =0 mod sched,
ReC\{C} sec\{c} ReC

On the other hand, y%.y2; = yicyir for every R € C\ {C}. This yields the result. O

Proposition 2. Let S C [m] x C be a partial schedule of cardinality at most £. Then, ys € span({yr, :
|L| = ¢ and S is a partial schedule}).

Proof. Assume that |S| < ¢ since otherwise we are done. Let H C [m] such that |[H| = ¢ — |S| and
ds(h) = 0 for every h € H, thatis, H is subset of machines that is not incident to the edges S in the
bipartite graph Gs. Observe that since S is a partial schedule, it is incident to exactly |.S| machines.
Let Cf be the set of partial schedules with domain H. Since " .- ync = 1 mod sched for every

h € H, we have
Ys =Yys H E Yne = E ysur mod sched.
heH CeC RecH

In particular, for every R € Cf we have that S U R is a partial schedule, and deg(ysur) = |S| + ¢ —
|S| = ¢. O

In the following we construct spanning sets for the row subspaces. Given a tableau 7, with
shape ), the hook(7) is the tableau with shape (A1, 1,...,1) € Zm M+ ts first row it is equal to
the first row of 7, and the remaining elements of 7, fill the rest of the cells in increasing order over
the rows. That part is called the tail of the hook, and we denote by tail(7)) the elements of [m] in
the tail of hook()), and row(7)) = [m] \ tail(7y), that is the elements in the first row of the tableau.

10



Example 3. Let m = 7 and consider the partition A = (4,2, 1). The tableau Ty at the left has shape X and
the tableau at the right is hook(ry), with shape (4,1,1,1); row(ty) = {1,2,7,4} and tail(1)) = {3, 5,6}.

21714 2]7]4]

1
5|6
3

[ [en[oo[=

The following lemma gives a spanning set for the row subspaces obtained from the hook tableau.
We denote by symy, ., | the symmetrization respect to the row subgroup of hook(7y),

VMoo () = = S of. a1

R
| hook(TA)| o'ERhook(U\)

The following lemma provides a spanning set for the row subspace based on the above family
polynomials. The proof follows the lines of [45, Lemma 2].

Lemma 4. Given a tableau 7, the row subspace WﬁA of Q° is spanned by
{symhook(TA (ys) : |S| = £and S is a partial schedule} (12)

Proof. Let A={q€ Q' :0qg=qforallc € R, }and A = {g € Q' :0qg=qforallo € Rhook(ry) }-
By definition, we have that WﬁA C A, and since Ryook(ry) is @ subgroup of R, it follows that
A C A’. By Propositions 1 and 2, and the linearity of the symmetrization operator, we have that A’
is spanned by the set in (12). O

In the row subgroup Ripeok(r, ), the elements of [m] that are in the tail remain fixed. The rest of
the elements on the first row are permuted arbitrarily. In particular, Ryook(r,) = Sx,- Therefore,
any permutation o in Rygok(r,) acts over a monomial yg by separating the bipartite graph G's into
those vertices in tail(7)) that are fixed by o and the rest in row(7y) that can be permuted.

Configuration profiles. Observe that bipartite graphs corresponding to different partial schedules
are isomorphic if and only if the degree of every configuration is the same in both graphs. We say
that a partial schedule is in y-profile, with v : C — Z., if for every C' € C we have d5(C) = ~(C).
Observe that a partial schedule in y-profile has size ) ., 7(C), quantity that we denote by ||v||.
We denote by supp() the support of the vector v, namely, {C € C : v(C) > 0}.

Definition 3. Given a partial schedule T, we say that a partial schedule A over [m]\ M(T) is a (T,~)-
extension if A is in ~y-profile. We denote by F (T, ~y) the set of (T, y)-extensions. In particular, every (T, ~y)-
extension has size ||y||.

Example 4. Consider m = 4, C = {C1,Ca} and the partial schedule T = {(2,C4),(3,C2)}. If vis

given by v(C1) = v(C2) = 1, we have F(T,~) = {{(1,C1), (4,C2)},{(4,C1), (1,C2)}}. If pu is given by
u(Cr) = Land pu(Cy) =0, we have F (T, ) = {{(1,C1)},{(4,C1)}}.

Given a partial schedule 7" and a y-profile, let Bz - be the polynomial defined by

Bry= Y. wya (13)

AeF(Tyy)

11



if v # 0, and 1 otherwise. In words, the polynomial above corresponds to sum over all those partial
schedules in y-profile that are not incident to M(T'). The following theorem is the main result of
this section.

Theorem 5. Let A\ € Ay and a tableau Ty of shape X. Then, the row subspace I/VfA of Q' is spanned by

¢
PN — U {yTBTﬁ : T is partial schedule with M(T) = tail(Ty) and ||| = w}. (14)

w=0

Proof. By Lemma 4 it is enough to check that the set of polynomials in (12) is spanned by those in
(14). Let S be a partial schedule of size ¢. Let tail(.S, 7 ) be the subset of S that is incident to the tail
of the tableau, thatis, {(i,C) € S : i € tail(7y)}, and let row(S, 7)) = S \ tail(S, 7) be the edges of
the partial schedule S incident to the first row of the tableau.

Claim 1. symhoakm) (yS) = ytdil(s,T)\) : Symhook(ﬂ) (yrow(s,n\)) .

Observe that tail(S, 7)) is a partial schedule over tail(7y). Similarly as we did in Lemma 2, the
partial schedule incident to the tail can be completed to be in the span of partial schedules with
domain equal to tail(7y), that is,

Ytail(S,m) = Ytail(S,m) H Z Yho = Z Ytail(s,m)ur,  mod sched
hetail(my)\tail(S,m) CEC Lechil(r\ail(s,7y)

where CRIMN\RI(S7) ig the set of partial schedules with domain tail(7y) \ tail(S, 7). Thus, every
partial schedule in the summation above have domain tail(7y) U tail(S, 7») \ tail(S, ) = tail(7y).
Therefore, itis enough to check that exists a constant x such that sym_ ow(r) (Yrow(s,7)) = E-Bail(ry) v
for some profile v with ||| = ¢ — |tail(S, 7))|. Recall that |tail(S, 7))| < ¢ since A € Ay. Let v be
the profile of the partial schedule row (S, 7). The equality follows since o € Rpook(r,) = Srow(r,)/
together with the fact that {(c(i),C) : (i,C) € row(S, 7))} is a (tail(7y),y)-extension for every
permutation in o € Rygok(r,)- The constant « is equal to [Rpook(r, ) |- O

Claim 1. Observe that for every permutation o € Rygok(r, ), We have

0yYs = H Yo(i)C H Yo (i)C = Ytail(S,75) 0 Yrow(S,2)»
(4,C)etail(S,7y) (2,C)€row(S,7y)

since the permutation fixes the edges in tail(S, 7). Therefore, symmetrizing yields that symy ., . | (ys)
is equal to

1 1
ﬁ Z 0YS = Ytail(S,ry) * "R, ’ Z OYrow(S,7y)
hOOk(TA) UERhook(TA) hOOk(TX) O—eRhOOk("-)\)
= Ytail(S,my) * Symhook(m) <yrow(5,7')\)) . O

12



3.3 High-degree SoS pseudoexpectation: Proof of Theorem 1

We now have the ingredients to study the scheduling ideal and we describe the pseudoexpectations
from Theorem 3, that are the base for our lower bound. Recall that for every odd £ € N, the
hard instance I}, has m = 3k machines and the linear operators we consider are supported over
partial schedules incident to a set of six so called matching configurations, {C1,...,Cs}. Consider
the E : R[y]/Iz — R such that for every partial schedule S of cardinality at most k/2,

1
(3k)s]

E(ys) = (k/2)s5(cy)» (15)

.
Il o
—

where (a)y is the lower factorial function, that is, (a), = a(a —1)---(a — b+ 1), and (a)o = 1. The
linear operator E is zero elsewhere. We state formally the main result that implies Theorem 1.

Theorem 6. For every odd k € N, the linear operator I is a degree-|k/6| SoS pseudoexpectation for the
configuration linear program in instance Ij, and T = 1023.

Theorem 1. For every odd k the instance I}, described in Section 3 is infeasible for 7" = 1023. By The-
orem 6, the operator E is a degree-| k/6 | SoS pseudoexpectation, which in turns imply by Lemma 1
that there is no degree-| k/6| SoS certificate of infeasibility. For an instance with n jobs, let k be the
greatest odd integer such that n = 15k + ¢, with ¢ < 30. The theorem follows by considering the
instance I}, above with £ dummy jobs of processing time equal to zero. O

Theorem 3 guarantees that for every & odd, Eisa degree-| k/2| pseudoexpectation, and there-
fore a degree-| k/6| pseudoexpectation as well. In particular, properties (SoS.1) and (S0S.4) are sat-
isfied. Since the configuration linear program is constructed from equality constraints, it is enough
to check property (SoS.2) for high enough degree, in this case £ = |k/6]. To check property (SoS.2)
we require a notion of conditional pseudoexpectations. Given a partial schedule T', consider the oper-
ator E : R[y]/Ig — R such that

6
HET(yS) ’T‘ H k/2 (53(0) (16)

for every partial schedule S over the machines [m] \ M(T') and zero otherwise. Observe that if
T = {) it corresponds to the linear operator E in (15). The following lemmas about the conditional
pseudoexpectation in (16) are key for proving that E is a high-degree SoS pseudoexpectation. We
state the lemmas and show how to conclude Theorem 6 using them. In particular, in Lemma 7 we
prove a strong pseudoindependence property satisfied by the conditional pseudoexpectations and
the polynomials (13) in the spanning set.

Lemma 5. The linear operator E is S,,-symmetric.

Lemma 6. Let T be a partial schedule. Then, the following holds:
(a) If S is a partial schedule and T N S = 0, then E(yrys) = Er(ys)E(yr).
(b) If S, R are two partial schedules such that RNS =0 and T N (RUS) =, then

Er(yrys) = Er(yr) - Erur(ys)-

13



(¢) Let y be a profile with supp(y) C {C4,...,Cs} and |T'| + ||v|| < k/2. Then,

[=]

r(Brs) =

A(CH)NTRE

Lemma 7. Let T be a partial schedule and ~, p a pair of configuration profiles with |T'| + ||| + ||p|| < k/2
and supp(7y), supp(n) € {C4,...,Cs}. Then,

Er(Br~Br,) = Er(Br.,) - Er(Br,.). (17)

Theorem 6. Let ¢ = |k/6]. Given a partition A € ), consider the tableau 7, such that tail(7y) =
[3k — A\q] and row(7y) = [3k] \ [3k — A1]. The partial schedules with domain [3k — A;] can be
identified with CP?*~1], the set of functions from [3k — \;] to C. In particular the spanning set in

(14) is described by P* = |} _, {yTﬁT7 T € CBFMland ||y = w} To apply Lemma 3 we need

to study the matrix E(Z*). Recall that for T, S € CB**l and profiles ~, v with ||y, ||p]| < ¢, the
corresponding entry of the matrix E(Z?) is given by

E (sym (yTySBT,'yBS,u)> —E (Sym (yTUS/BT,—yBS,u)) .
By Lemma 5 the operator E is symmetric, and therefore,

E (sym <yTUSﬁT7A{ﬁS7H)) = INE(yTusﬁT,wﬁs,u)-

Since both T, S are partial schedules such that M(T) = M(S), we have that " U S is a partial
schedule if and only if 7 = S. Thus, the matrix E(Z?) is block diagonal, with a block for each
partial schedule T € C?*~1l. For every © indexed by the elements of the spanning set above, we

have then
<IE(ZA),®@T>: Z Z IE(yTﬁT,wﬁT,p)@T,'y@T,u-

TeCBrk=2] v:|y||<e
el pl|<e

Since |T'|+||v|[+ |||l < 3¢ < k/2 for every partial schedule 7" and profiles v, 1« as above, by applying
Lemma 6 (a) and Lemma 7 we obtain that

Z Z E (yT/BT,-yBT,u) O1~Oru

TeCBrk=21] ~v:||y||<L

pllpl<e
= Y Ewr) Y. Er(Bry)Er(Bru)Or,Oru
TecBr—2l Yillvl| <L
pllpl<e

and by rearranging terms we conclude that

2
<E(Z>‘)7@@T> = Z INE(yT) ( Z INET(ﬂTW)@TW) > 0.

TeCBk=A1] yillvlI<e
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Lemma 5. Given o € S,, and a partial schedule S, E(oys) = I~E(y0(5)), where o(S) = {(o(i),C) :
(i,C) € S}. In particular, since S| = |o(5)| and profile of S is the same profile of o(5), it holds

E(ys) = E(oys). Therefore, E(ys) = 2 > o E(oys) = E(sym(ys)). O

Lemma 6. Property b) implies a) by taking 7' = ). One can check from the definition of the lower
factorial that (x),4p = (2)a(x — a)p. Since the partial schedules R, S and T are disjoint, it holds for
every C € C that dgus(C) = 0r(C) + d5(C) and do7yr(C) = 67(C) + dr(C). Therefore,

(3k — |T1)rus| - Er(yrys)
6 6
H ]{7/2 — 5T 5R(C H k/2 - 5T 5R(Cj))65(0j)
j:

= 3k — |T|)r, - Er(yr) - (3k — |T| — |R])s| -Erur(ys),

and the lemma follows since (3k — |T'|)rus| = (3k — |T|)|r| - (3k — |T| — |R])5|- We now prove
property (c), that is more involved. First of all, observe that for every H € F(T,~) the value of
Er(ym) depends only on T and the configuration profile v. More specifically,

1 6
Bk =TT 1_[(743/2 —0r(Cj))(c))s

Il j=1

Er(yn) =

since |[H| = ||y||and 6z (C;) = v(C;) forevery j € {1,...,6}. Then, IET(BT,,Y) equals | F(T,~)| times
the quantity above. The number of machines that can support a partial schedule H that extend T
is 3k — |T'|, and since |H| = ||7|| the number of possible machine domains is (3k”fy‘”T|) Given a set
of machines with cardinality |||/, the number of partial schedules with domain equal to this set

of machines and that are in configuration profile ~y are ||||! H?’:l ﬁ Then, overall, the value of
Al

IET(BTW) is equal to

3k — |T| 1 6 1 |
( Il )” M=y, IL5E*/2 = ke

(R
_ Bk 1 S 1 - |
~ Gk =TI DT Bk = ITT) 1y ].1;[17(63)!(]‘?/2 or(C))(cy)
6
or(C5))(cy)

in the last step we used that for every real = and non-negative integer b, itholds (z—b)!(z), = z!. O

To prove Lemma 7 we obtain first a weaker version, that together with a polynomial decompo-
sition in the scheduling ideal yields to the pseudoindependence result.

Lemma 8. Let T' C [m] x C be a partial schedule.
(a) If v and & are configuration profiles such that supp(v) N supp(§) = 0 and |T|+ ||v|| + |I€]] < k/2,
then ET(BT,VBT,S) = ET(BT,V) : ET(BT@).
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(b) If v and & are configuration profiles such that there exists C' € {Ch, ..., Cg} with supp(v), supp(§) ©
{C}, and |T'| + ||v|| + ||€]| < k/2, then we have that Eq(Br,,Br¢) = Er(Bry) - Er(Br).

Proof. In both case if one of the profiles is zero then the conclusion follows. Then, in what fol-
lows assume that v and ¢ are different from zero, and their support is contained in {C1, ..., Cs}.
Consider v and ¢ satisfying the conditions in (a) and fix A € F(T,v). Then,

Er(yaBre) = > E(yays) + > E(yays).
BeF(TUAL) BeF (T, )\F(TUAL)

where the equality holds since F(T'U A, &) C F(T,§). Forevery term B € F(T,&) \ F(T'UA, &) we
have that it is incident to at least one of the machines in G 4. Since every machine in G 4 is connected
to a machine in supp(v) C C \ supp(€), it follows that A U B is not a partial schedule since at least
one machine is connected to different configurations, and in consequence its pseudoexpectation is
zero. Therefore, the second summation in the equality above is zero. Together with property (b)
in Lemma 6 it implies that

Er(yaBre) = > E(yays) =Er(ya) - Eroa(Bruae).
BEF(TUAE)

Since supp(v) Nsupp(§) = 0, we have that for every C; € supp(§), drua(Cj) = 67(C;). On the
other hand, if C; ¢ supp(¢) then (z)¢(c;) = (z)o = 1 for every real z. Overall, and together with
Lemma 6, it holds that

[=]

Erua(Broag) = o1ua(Ci))e(c;)
J:1
1 ~
= (k/2 = 07(Cj))e(c;) = Er(Brg).

)
jesupp(§) 5( ])

Together with the linearity of Er we conclude (a). Consider now v, ¢ satisfying the conditions
n (b), and let C € {C,...,Cs} the configuration that supports both profiles. Without loss of
generality suppose that v(C) > £(C). For A € F(T,v) and B € F(T,§), we have that AU B is
always a perfect matching since the profiles are supported in the same configuration. If B C A,
then the union has profile v. Then, by Lemma 6 (¢) we have

Er(yaBre) = Y Er(yays)

BEF(T,€)
_ > Er(ya)+ > Er(yayp )
BeF(T.€):BCA BEF(T,€): B\A£D

=Er(ya) (<Zég))> + > IETLJA(?JB\A)) :

BEF(T,€):B\A#£D

If B\ A # (), the union profile can be parameterized in |B \ A| = w, and let o, be the profile such
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that a,,(C) = w and zero otherwise. Thus,

Z ETUA(?JB\A)

BEF(T,£):B\A#)

£(0)
v(C) 1\ (3k = [T = v(C)) (k/2 = 67(C) — v(C))w,
2 <£(C)—W>< w > Bk = IT] = v(C))w

mg
~ =

(

1 v(C)
a <§(C) B o.)) (k/2 — (5T(C) — I/(C))wa

w=1

and since (k/2 — 07 (C) —v(C))op = 1, and running the summation over A € F (T, v) we obtain over
all that

£(0)
INET(BT,VBT,f) = ET(BTJ/) : Z $<5(2()C—) w) (k/2 = 67(C) —v(C)),- (18)
w=0 "

Claim 2. Let a and b be two non-negative integers such that a < b. Then, for every real x,

a

> 2,0 )@= 2@

w=0
The claim applied in (18) for z = k/2 — 07 (C), a = £(C) and b = v(C) yields the result, since

Er(Br,Bre) = Er(Br,) - (k/2 = 67(C))e(cy = Er(Br,)Er(Bry).

1
£(C)!
The claim follows by the Chu-Vandermonde identity [3, p. 59-60],

(x)azi:(f})(x—b aw—a'Zx—b 'Zx—b( w) O

w=0

Lemma 7. Given a profile configuration v and C; € {C4,...,Cs}, we denote by ~; the profile that
is zero for every C' # C; and v;(C;) = 7(C}). In the following, we prove that the following factor-
ization holds:

=1

6
Er(BrBr,) = Er (H BT,ijT,pj) , (19)

recalling that By = 1if { = 0. Before checking that the decomposition above is correct, we see
how to conclude the lemma from that. Observe that by construction supp(v;) N supp(ye) = 0 if
Jj # ¢, and therefore by Lemma 8 (a), we have

6 6
IET (H BTv“fj BTHU'J) = H ET (BTij BTuu'j) : (20)

J=1 J=1

Furthermore, since for every j € {1,...,6} we have supp(v;),supp(r;) € {C;}, by Lemma 8 (b)
we have

[=]

Er (BT77jBT g H (Bry;) ET Br,,)

r(Br.,) r(Br,)

=
||::]a
”E@
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By using Lemma 8 (a) the right hand side is equal to

6 6
Er (H Br,, | -Er (H Bry, | = Er(Br,Br,),

j=1 7j=1

where in the last equality we used the decomposition in (19) separately for v and ;.. We check now
that the factorization in (19) is always valid. Let S be a partial schedule disjoint from 7" and with
profile ;o and let C; € supp(y). It is enough to check that

Er(Brys) = ET(BT;yj Bry—v,;9s), (21)

since the factorization follows by the linearity of Er and by applying iteratively for every C; €
{C4,...,Cs} the above factorization. We have that

Er(Broys) =Er | Y vays
AeF(Ty)

A D SRR S

BeF(T,v;) DeF(TUB,y—v;)

Fix B € F(T,~;) and consider a set D € F(T,v — ;) \ F(T'U B,y — v;). In particular, D is in
profile v — ~; but is incident to at least one machine, say ¢, that is also incident to B. Since B is
in profile v; and it has disjoint support from v — ;, the above implies that machine ¢ is incident
to different configurations, and therefore its pseudoexpectation value is equal to zero. That is the
contribution to the pseudoexpectation value of the terms in F(T,y — ;) \ F(T'U B,y — ;) is is
zero. Furthermore, since F(T,v — ;) 2 F(T U B,~ — v;), we have that for every B € F(T',~;),

Er | yB Z Ypys
DeF(TUB,y—v;)

=Er (?JB ( Z YD + Z yD) ys)
DGJ:(TUBfY_’Yj) DGJ:(Tv'\/_’Yj)\‘F(TUBv'\/_’Yj)

—Er [ ys Z ypys | = IET(?JBBT,V—W?JS)-
DG-F(Tv'\/_’Yj)

We conclude by summing over B € F(T',~;), S € F(T, 1) and using the linearity of Er. O

Remark. It is worth noticing that the lower bound of Theorem 1 translates to the weaker assign-
ment linear program (see (22)-(24) in Section 4, which define the linear program assign(7’)). More
precisely, there exists an instance such that, after applying €2(n) rounds of the SoS hierarchy to the
assignment linear program, the semidefinite relaxation has an integrality gap of at least 1.0009.
This follows by Theorem 1 and a general result by Au and Tungel [4]. More details can be found in
Appendix B.
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4 Upper Bound: Breaking Symmetries to Approximate the Makespan

In the previous section we showed that the configuration linear program has an inherent difficulty
for the SoS method with low (constant) degree to yield a (1 + ¢) integrality gap (and hence also
the weaker assignment linear program below). It is natural to ask whether there is a way to avoid
this lower bound. As suggested by our proof in Section 3 and several other lower bounds in the
literature [34, 17, 42, 31, 44], symmetries seem to play an role in the quality of the relaxations ob-
tained by the SoS and SA hierarchies. A natural question is whether breaking the symmetries of a
problem or instance might help avoiding the lower bounds. In what follows we show that this is
the case for the makespan scheduling problem. We leave as an interesting open problem whether
this is the case for other relevant problems.

Symmetry Breaking. Breaking symmetries is a common technique to avoid algorithmic problems
of symmetric instances of non-convex programs, in particular integer programs [39]. Recall that
given an optimization problem (P): min{ f(z) : € X} for some set X C R™ and a group G acting
on R" by an action (g, x) — gz, we say that (P) is G-invariant if f(z) = f(gx) and gz € X for all
x € X and g € G. Notice that if 2* is an optimal solution to (P), then gz* is also optimal for every
g € G in this case. Hence, if we add to the formulation any inequality a "z < b that keeps at least
one representative of any given orbit {gx : ¢ € G} for any « € R", thatis, for all z € R" there exists
g € G such that a' (gz) < b, then we guarantee that (P’): min{f(z) : * € X,a’z < b} contains at
least one optimal solution. If such inequality is not valid for (P), we say that it is a symmetry breaking
inequality.!

Application to Scheduling. We show that we can obtain almost optimal relaxations in terms of the
integrality gap if we add a well chosen set of symmetry breaking inequalities to a ground formu-
lation and then apply the SA hierarchy (which is even weaker than SoS). Furthermore, the ground
formulation we use is the assignment linear program. In this LP there are variables z;; indicating
whether job j is assigned to machine i. For an estimate or guess T for the optimal makespan we
denote by assign(7") the formulation given by

Z ;=1 forall jeJ (22)
1€[m]
> wyp; <T foralli € [m], (23)
jed
xzi; >0 foralli e [m], forall j € J. (24)

If we require that 7" > max;c;p; then the assignment linear program has an integrality gap of
2 [53].

Roadmap. In Subsection 4.1 we define the symmetry breaking inequalities that we will add to the
assignment linear program. In Subsection 4.2 we will show how to round a feasible solution of the
SA hierarchy with 201/ %) rounds over this program to obtain an integral solution with makespan
(1+¢)T. In Subsection 4.3 we will show that breaking some new approximate symmetries, with just

'Tt is worth noticing that such an inequality might not break all symmetries, that is, we do not require that there is a
unique representative of each orbit.
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O(1/€”) rounds of the SA hierarchy suffices to obtain a (1 + ¢)-approximate solution, yielding an
exponential decrease in the number of necessary rounds. By approximate symmetries we mean
that first we round similar processing times to the same value, and then add symmetry breaking
inequalities for the new induced symmetries.

4.1 Symmetry breaking inequalities

In order to define our symmetry breaking inequalities we consider a partitioning obtained by
grouping long jobs with a similar processing time. Let e € (0,1) such that 1/¢ € Z. We say
thatajob j € Jislong if p; > ¢ - T, and it is short otherwise. The subset of long jobs is denoted by
Jiong and the short jobs are Jgport = J \ Jiong- For every g € {1,...,(1 —¢)/ 2} we define

1 1
Jq:{jeJlong: <E+Q>52T>pj2 <g+(]—1>62T}.

Let s := (1 — ¢)/e? denote the number of groups of long jobs. The reader may imagine that for
each group J, with ¢ € [s] we round the size of each job j € J, to (1 + ¢) £>T. This increases the
overall makespan at most by a factor 1 + . Also note that if we can find a schedule for the long
jobs with makespan at most (1 + )7, then there is also a schedule for all jobs with makespan at
most (1 + )7 since we can add the short jobs in a greedy manner (see e.g.,[53]; we assume that
assign(7) is feasible and then ), ; p; < m - T holds).

Configurations. Based on the partition of the long jobs {J,},c[s) We define configurations of the
long jobs. We say that a configuration C is a multiset of elements in {1,...,s}. Let C denote the
set of all configurations. Similarly as in Section 3, for a configuration C' we define m(q, C') to be
the number of times that ¢ appears (repeated) in C. Intuitively, this means that configuration C
contains m(q, C') slots for jobs in J,. In what follows, we introduce a set of constraints that guar-
antees that every integer solution to assign(7") obeys a specific order on the configurations over the
machines, i.e., there is a total order of the configurations C' such that for two machines i,i" € [m)]
with ¢ < i’ the configuration on ¢ is smaller according to this total ordering than the configuration
on ¢'. This is a way of breaking the symmetries due to permuting machines. Formally, we say that
a configuration C'is lexicographically larger than a configuration C’ if there exists ¢ € [s] such that
m(¢,C) =m(¢,C") forall £ < gand m(q,C) > m(q,C"). We denote this by C' >, C’. In particular,
the relation >, defines a total order over C.

Integer linear program. Let B := 1 4 2s max ¢y |.J4| = O(|J|?). We define an integer linear program
assign(B,T) below in which we enforce that the machines are ordered according to the relation
>lex-

Z z;; =1 foralljeJ (25)
1€[m)|
Z ZijPj <T foralli € [’I’)’L], (26)
jed
> BT (i — 2(pn);) =0 foralli € [m—1], (27)
q=1 J€Jq
zi; >0 forallie [m], forallj € J. (28)
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To avoid confusion we sometimes use the notation assign(J, B, T') to emphasize that we are con-
sidering the program for the job set J. Given a subset of jobs K C J such that ), ;- p; < T, we
denote by conf(K) the configuration such that for every ¢ € {1, ..., s}, m(g,conf(K)) = |K N J,|.
We then say that conf(K’) is the configuration induced by K. In the following we show that every in-
teger solution to the program assign(B, T") obeys the lexicographic order >, on the configurations
over the machines. More specifically, given a feasible integer solution x € assign(7") and a machine
i € [m], let conf;(z) € C be the configuration defined by the job assignment of « to machine i, that

is, forevery g € {1,..., s}, m(q, confy(z)) = 3, @3-

Theorem 7. In every integer solution x € assign(B,T), for every machine i € [m — 1] we have that
conf;(z) >}y conf;yq(x).

To prove Theorem 7, we define L5 : C — R to be the function such that for every configuration
CeC, Lp(C)=>_, B° 9m(q,C). The important point is that L is strictly increasing.
Lemma 9. For two configurations C,C" € C with C' <, C" we have that Lp(C) < Lp(C").

Proof. Consider two configurations C, C’ € C such that C' <)o, C’. Let ¢ be the smallest integer in
{1,..., s} such that the multiplicities of the configurations are different, thatis, m(¢,C') = m(¢,C")
forevery ¢ < q. Hence itholds that m(g, C) < m(gq, C'). In particular, every term up to max{0, §—1}
in the summation defining L5(C) — L5(C") is equal to zero. By upper bounding the summation
from min{s,q + 1} we getthat 3°7_ (. .1, B*77(m(q,C) —m(q, C")) is at most

Y BT(Im(q,O) +Im(g.C) < Y. BT1-2l]|< BB < B,
g=min{s,G+1} g=min{s,G+1}

and since m(q, C') — m(q, C) > 1 it follows that
S0 B (m(e, C) — (g, ")) < BT (m(3,C) — m(3, C") + B
q=q

< B* 7 (m(q,C) —m(q,C")+1) <0
and hence L5(C) < Lp(C"). O

Theorem 7. Fix a machine i € [m — 1]. Since x is an integral solution in assign(B,T’), we have that
conf;(x), conf;y;(z) € C. The symmetry breaking constraints implies that

0< ZBs_q (m(q, conf;(z)) —m(q, conf;11(x))) = Lp(conf;(z)) — Lp(conf;1(x)).
q=1

Applying Lemma 9 it holds that L is strictly increasing and therefore conf;(x) >ex conf;ii(z). O

In general, assign(B,T') is not S,,-invariant, that is, given a solution to assign(B, T'), if we per-
mute the machines then we do not necessarily obtain another solution for it. However, it is a valid
formulation, in the sense that if there exists a schedule with makespan at most 7', then assign(B, T')
has a feasible integral solution (more precisely, we retain a representative solution for each orbit).
To show this, we can take an arbitrary schedule of makespan 7" and reorder the machines lexico-
graphically according to their configurations.
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Lemma 10. If there exists an integral feasible solution to assign(T") then there exists also an integral feasible
solution to assign(B,T).

Proof. Since there exists a schedule of makespan at most 7', there exists an integral solution x &
assign(7'). Since the lexicographic relation defines a total order over C, there exists a permutation
o € Sy, such that for every i € [m — 1], conf, ;) (z) >1ex conf, ;1) (7). Consider the integral solution
Z obtained by permuting the solution according to o, that is, = ox. Then, for every i € [m — 1] it
follows that 0 B*793" ¢ ;. (Zij — T(i41);) is equal to

s

Z B 1 (m(q7 conf ;) (x)) — m(q, confg(iﬂ)(x))) = EB(confo(i) (x)) — L'B(confg(iﬂ)(x)) > 0.
q=1

The last step holds by Lemma 9. We conclude that Z € assign(B,T). O

4.2 LP based approximation scheme

In this section we prove Theorem 2, i.e., we show that if we apply 20(1/2*) rounds of the Sherali-
Adams hierarchy to assign(B,T) then the integrality gap of the resulting LP is at most 1 + ¢, i.e.,
if it has a feasible solution then there exists an integral solution with makespan at most (1 + ¢)7.
Recall the definition of a SA pseudoexpectation at the end of Section 2; in particular, recall that if a
degree-r SA pseudoexpectation exists for a linear program, then it has a solution after applying r
rounds of SA to it. The main result of this section is the following theorem.

Theorem 8. Consider a value T > 0 and suppose there exists a degree-(1/¢)%/<* SA pseudoexpectation
for assign(B,T'). Then, there exists an integral solution in assign(B, (1 + ¢)T') and it can be computed in
polynomial time.

In what follows we might omit SA when referring to pseudoexpectations since the context is
clear. Given a degree-r pseudoexpectation E and a subset A C [m] x .J with E(z 4) # 0, we define
the A-conditioning to be the linear operator over R[z]/Iz defined by E 4(z;) = E(x;x4)/E(z4), for
every I C [m] x J. We also say that we condition on A. The following lemma summarises some of
the relevant properties of the conditionings. We refer to [33] for a proof of it as well as a detailed

exposition of the SA hierarchy.

Lemma 11. Let | be a degree-r pseudoexpectation and let E 4 be the conditioning for some A C [m] x J of
cardinality at most r. Then

(a) Eg(za) = 1and IEA(SL’Z'J') = 1 for every (i, j) € A.
(b) Eaisa degree-(r — |A|) pseudoexpectation.
(¢) Forevery B C [m] x J such that E(zp) € {0,1} we have E(zp) = E4(zp).

Stability. In the following consider a degree-r pseudoexpectation E for assign(Jiong, B*,T'), and
let {J1,...,Js} be the partitioning of Jjong defined above. Recall that s = (1 —¢)/ 2. Our strategy

is to find a set A C [m] x J with |A] < 20(1/2%) guch that in E 4 for each machine i and for each set
Jq € {J1,...,Js} an integral number of jobs from .J, are assigned to i. Since in each set J, the jobs
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have essentially the same length, based on E 4 we can compute an assignment of the long jobs to the
machines of makespan at most (1 +¢€)7". In order to find the set A, we will apply Lemma 11 several
times. In the process we will achieve that for some machines ¢ the number of jobs from some set
J, is integral and does not change if we condition on further elements from [m] x .J. Formally, we
define that for some ¢ € {1, ..., s} and a € N a machine i is (¢, a)-stable in E if we have

Z INE(JJZJ) =a and Z INEA(mij) = a for any A-conditioning
J€Jq J€Jq

with A C [m] x J. We say that a machine i € [m)] is g-stable in E if it is (¢, a)-stable for some a € Z,..
We will apply the following lemma over E several times, until each machine i is g-stable for each
qge{l,.., s}

Lemma 12. Consider ¢ € {1,..., s}, integers ay, ..., aq, a degree-r pseudoexpectation E and a set of consec-
utive machines {ir, ...,ir }, withr > 1/2. Suppose that every machine i € {ir,,...,ir} is (4, ag)-stable in
E foreach G € {1, ..., q}. Then, there is a degree-(r — 2/&?) pseudoexpectation Estab such that each machine
i €{ip,...,ir} is §-stable in I~E5tabfor each g € {1,...,q+ 1}.

Phase 1: Obtaining a good pseudoexpectation. We first use Lemma 12 in order to prove The-
orem 8. We prove Lemma 12 later in Section 4.2.1. In what follows let E be a degree-(1/¢)% e
pseudoexpectation for assign(B,T"). Our algorithm works in s stages. After stage ¢ we obtain a
pseudoexpectation in which each machine is g-stable for each ¢ € {1, ..., ¢}. In the first stage we
apply Lemma 12 on the solution E with iz, = 1, iz = m and ¢ = 0, and let E© be the pseudoex-
pectation obtained. Assume by induction that after stage ¢ we have obtained a pseudoexpectation
E@ in which each machine is §-stable for § € {1,...,q}. Consider a partition of [m] given by
{M, ..., My} of the machines such that in E, for each set M, with ¢ € {1,...,k}, there are inte-
gers ag i, ..., aq such that each machine in M, is (¢, as 5)-stable for each ¢ € {1, ..., ¢}. Since E@
is a pseudoexpectation for assign(B,T), which includes the symmetry breaking constraints, the
machines in each set M, are consecutive. Since the possible number of combinations a1, ..., a¢,
is at most (1/e + 1)? we can find such a partition with £ < (1/e + 1)?%. Foreach ¢ € {1,...,k}
we apply Lemma 12. Hence, the total number of rounds in this stage is at most (1/e + 1)7 - 2/
Denote by E(@+1) the obtained solution. We continue for s stages. Let Ef be the pseudoexpectation
returned by the algorithm. The degree of Ef is at least (1/£)%/<" — doaoi (/e +1)7-2/e* > 0. So
in particular, during the process we can indeed apply Lemma 12 as needed. We showed that the
following holds.

Proposition 3. For every G € {1,...,s}, every machine is G-stable in EF.

Phase 2: Integral assignment for Jjong. Based on E/ we define an integral assignment of the
long jobs. Note that for each machine i and each value ¢ € [s], machine i is ¢g-stable; we define
big =3 _je, E/ (x;j) which is the number of jobs of J, that are assigned to i by E/. Since E/ yields
a valid solution to assign(B, T'), for each ¢ € [s] we have that 3 .}, biq = |Jq|. For each ¢ € [s] we
assign now the jobs in J, to the machines such that each machine 7 receives exactly b;, jobs from
Jg. Intuitively, all jobs in J, have essentially the same length (up to a factor 1 + ¢), and therefore
it is not relevant which exact jobs from J, we assign to i, as long as we assign b;, jobs in total.
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Afterwards, we the short jobs in a standard greedy list scheduling procedure: We consider the
jobs in an arbitrary order and assign each job on a machine that currently has the minimum load
among all machines. Now we are ready to prove Theorem 8 by showing that the load of every
machine is at most (1 + ¢)7.

Theorem 8. Let{Z;;}, c[m],jes denote the computed integral assignment of the jobs to the machines,
i.e., z; ; = 1 if we assigned job j on machine i and 7; ; = 0 otherwise. We first check that for each
machine i € [m], wehavethat >/, >~ J, Tiyjpj < (1+¢€)T. Since the solution given by E/ feasible
for assign(B,T), for each machine i we have that }_°_, by (£ + ¢ — 1) €T < T. This implies for
each machine 7 that

szi’jpj < (1+€)ZZJ_}Z‘J <§—|—q—1>52T

q=1jeJq q=1j€Jq
S
1
< (1+9)) <—+q—1> T > 3
q=1 c JEJq
/1
< (1+e)), (E—Fq—l) T by < (1 +&)T.
q=1

It remains to argue about the short jobs. If the global makespan does not increase while assigning
them greedily, the overall makespan remains at most (1 + ¢)7". Otherwise, the makespan of any
two machines differ by at most £7'. Since >, p; < mT we conclude that the makespan is at most
(1+e)T. O

4.2.1 Stable conditionings: Proof of Lemma 12

Recall that E is a degree-r pseudoexpectation with r > 1/¢2. We use the following strategy to
prove Lemma 12. First, we identify the rightmost machine i such that according to E with non-
zero probability there are 1/¢jobs from .J, ;1 assigned toi. Let i be this machine and let A C [m]x J
denote the corresponding pairs (i, j) with i = ig and j € J,+1. We apply Lemma 11 on A. We argue
that in the resulting pseudo-expectation E 4 with non-zero probability there are 1/¢ jobs from J,
assigned to iy, let A’ C [m] x J denote the corresponding pairs. We apply Lemma 11 on A’ as
well. In the resulting pseudoexpectation E 44/, the symmetry breaking constraints in assign(B, T")
ensure that each machine i’ between i, and iy has exactly 1/e¢ jobs from J,; assigned to i and
therefore i’ is (¢ + 1)-stable. Also, no machine between i( and i will ever get 1/¢ jobs from Jg41
assigned to it with non-zero probability, no matter on which sets A” we might condition later. We
continue inductively: on the machines between iy and ir we look for the rightmost machine i such
that according to E 4, 4 with some non-zero probability there are 1/ —1jobs from .J, ;1 assigned to
i, etc. There are at most 1/¢ iterations in total and in each step the degree of the pseudo-expectation
decreases by at most 2/e. Therefore, at the end, we obtain a degree-(r — 2/£%) pseudo-expectation
in which all machines are (¢ + 1)-stable.

Now we describe our argumentation in detail. First assume that there is no machine i €
{iL,...,ir} for which there exists a set A C [m] x J with E(z4) > 0, |A] = 1/¢, and where each tuple
(h,v) € A satisfies that h = i and v € J,4;. In this case we define E©® = E and 10 = i1, — 1. Intu-
itively, in this case in our final assignment there will be no machine in {iz, ...,ir } that has 1/¢ jobs
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from J,41 assigned to it. We will use later in our induction that E© isa degree-(r — 2/¢) pseudo-
expectation. Otherwise let iy be the rightmost machine in {iy, ..., ir }, i.e., the machine with largest
index, satisfying the above for some set A. We condition on A and obtain the degree-(r — 1/¢)
SA conditioning E . Recall that by Lemma 11(a) each job v € Jiong with (ig,v) € A is scheduled
integrally to ig.

Lemma 13. There exists a set A’ C [m] x J with E(xa) > 0, |A'| = 1/e, and for every (h,v) € A’ we
have that h = iy, and v € Jy41.

Proof. Assume that this is not the case. Then let A’ denote the set of maximum size such that
E4(xa) > 0 and such that each (h,v) € A’ satisfies that h = i and v € J,1. Observe that
|A’] < 1/e by Lemma 11(b), and let E 4,4 be the degree- (r —2/e) SA conditioning. Then, for each
job j € J, it holds that EAuA/(sz]) = 0, otherwise 0 < EAuA/(sz]) = EA(wA/w,LJ)/EA(wA/) and
then E4(z 42 i) = Ea(z AU ..;)}) > 0, which contradicts the maximality of A’. But then the
fractional schedule given by E 4/(z;;) for every (i, j) € [m] X Jiong violates the symmetry breaking
constraints of assign(Jiong, B, T'), which is a contradiction. O

Starting from E 4 we condition on A’ (i.e., we apply Lemma 11) given by Lemma 13, obtaining
E() = E . As a result, machine i;, and machine 4y have both exactly 1/ jobs from .J, assigned
to it. Due to the symmetry breaking constraints of the program assign(Jiong, B, T') this implies that

each machine in {ir, ..., iy} has exactly 1/¢ jobs from J, (fractionally) assigned to it in E(©).
Lemma 14. For each machine i € {ir, ..., } we have ZJEJ O)(2;5) = 1/e.

Proof. Machine i has 1/¢ jobs from J, assigned to it integrally. If there was yet another job j € J,
fractionally assigned to iy then we could condition on (ig, j) and obtain a degree-(r — 1/ — 1)
pseudoexpectation, with at least 1/ + 1 long jobs assigned to iy, which is a contradiction. The
same argument holds for machine iz,. The claim for the machines {iz, + 1, ...,ip — 1} follows by the
symmetry breaking constraints in assign(Jiong, B, 7T') that enforce the lexicographic ordering over
the machines. O

Lemma 12. Assume by induction that for some & € {0,...,1/e — 1} we obtained a degree-(r —
Zf 2(1/e + 1 — ¢)) pseudoexpectation E®) such that there are machines i, ...,i; € [m] such
that for each ¢ € {0, ..., k} we have that iy < iy;; and each machine w € {iy_ + 1, ...,i,} satisfies
> je Ty E®* )(2,7) = 1/e — £, with i_; = ij, — 1 for convenience. Moreover, assume by induction that
there is no set I' C [m] X Jjong with E®(zr) > 0and || = 1/e — k such that each (w, j) € T sat-
isfies that w = iy +1and j € J,. The solution E() constructed above satisfies the base case of k = 0.

Inductive step. Given the solution E®) we construct a solution E*+1) as follows. Let g1 denote
the rightmost machine larger than i, such that there is a set Ay C [m] x Jiong With E®) ( A,) >0,
|Ax| = 1/e — k — 1, and each tuple (w,v) € Ay, satisfies that w = ix4 and v € J,. If there is
no such machine then we define i1 = i and set E*+D = E® which is a pseudoexpectation

of degree r — k“ 2(1/e +1 — E) Otherwise we condition on A and obtain Eiﬁ), of degree
r— 2521 2(1/e + 1 — 1)) — (1/e — k — 1). Following the same lines of Lemma 13 we have that there

exists a set By C [m] X Jiong with IE( )(asz) > 0, |Bg| = 1/e — k — 1, and each tuple (h,v) € By
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satisfies that h = i;, +1 and v € J,. We then define R+ — EffZUBk’

of degree r — ?:11 2(1/e+1-12).

which is a pseudoexpectation

Claim 3. For each w € {ix + 1, ..., ik41} we have that 3 ;¢ ;. E(k+1)(wwj) =1/e —k—1

We see how to conclude the lemma and then we show check the claim. Since we chose ma-
chine i to be the rightmost machine with the claimed properties, E**1) satisfies the induction
hypothesis for k+1. Finally, we define Est2b — E(1/9), which yields that Est2 is a pseudoexpectation
of degree r — 2/¢2, since Z;fl 2(1/e + 1 —¥) < 2 /&2. That concludes the lemma.

Claim 3. On machine w = i;+1 we conditioned on the set By, due to the previous claim with |By| =
1/e —k —1. Therefore 3, ;. E(k+1)(ij) >1/e —k—1. On the other hand, if 3, ;. E(k+1)(ij) >
1/e — k — 1 then there must be a pair (w, j) ¢ By with I~E(k+1)(:nwj) > 0and j € J,. But this implies
that E®) (2 ByU{(w,j)}) > 0 which contradicts the induction hypothesis. With the same reasoning
wearguethat . IE(’““)(xikﬂj) = 1/e—k—1. The claim for the machines in {i;, +2, ..., 541 — 1}
then follows from the symmetry breaking constraints in assign(.Jiong, B, T') that enforce the lexico-
graphic over the machines. O

O

4.3 A faster LP based approximation scheme

In Section 4.2 we proved that after applying (1/£)%/¢* rounds of Sherali-Adams to assign(B, T')

we obtain a linear relaxation with an integrality gap of at most 1 + €. In this section, we add to
assign(B, T) a set of constraints that we refer to as the ordering constraints, obtaining a linear pro-
gram that we refer to as order(B, T'). Intutitively, we prove that if we apply only poly(1/¢) rounds
of Sherali-Adams to this new program then its integrality gap drops to 1 + . On the other hand,
it might be that there is no optimal solution (i.e., a solution with makespan OPT) that satisfies
the ordering constraints and in particular it might be that order(3, OPT) does not have a feasible
solution (in contrast to assign(B, OPT) which is always feasible). However, we can guarantee that
order(B, (1 + ¢)OPT) is always feasible.

Ordering Constraints. Roughly speaking, we use a new set of constraints that allow us to break
symmetries due to permutations of jobs in the same class J, (and not only the symmetries cor-
responding to permutations of machines), which is a key difference to the approach used for the

approximation scheme of Section 4.2. For each ¢ € {1,...,s} assume that J, = {1,542, -+ Jq,|7,| }
and we impose that the jobs in J, are scheduled in this order, i.e., if jobs j, ¢ and j, ¢4 are sched-
uled on machines i € [m] and h € [m] for some ¢ € {1,...,|J;| — 1}, then i < h. To enforce this,

foreach g € {1,...,s},each ¢ € {1,...,|J,| — 1}, and for each h € [m] we add to assign(B,T') the

constraint
h h
E :L'Z'qu > E :Eijq,[+1' (29)
i=1 i=1

Denote by order(B,T") the LP obtained by adding the above set of constraints to assign(B,T"). It
might be that there is no feasible solution to order(B, OPT). However, in the following lemma we
show that there exists always a solution to order(B, (1 + ¢)OPT).
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Lemma 15. There exists a feasible integral solution to order(B, (1 + £)OPT).

Proof. Consider the integral vector x to assign(B, OPT) that stems from the optimal solution to
the given instance. For each machine ¢ € [m] denote by conf;(z) its vector (a; 1, ..., a; s) as defined
in Section 4.2. For each ¢ € {1,...,s} we rearrange the jobs in J, on the machines such that the
resulting schedule satisfies the order constraints and on each machine the number of jobs from
each set J, stays the same. Given ¢ € {1,..., s}, for each machine ¢ € [m] let b;; denote the number
of jobs from J, on i € [m] in a schedule with optimal makespan OPT. In our new schedule, for
each machine i € [m] we define ¢;, = 3% _, b, and we set ¢, = 0. Then we assign to each machine
i € [m] thejobs {jg.c; 41, Jg,ci, }- We repeat this operation for every ¢ € {1,..., s}. Within each
set J, the processing times of two jobs can differ by at most €20PT. Each machine has at most 1/
long jobs assigned to it. Therefore, due to our reassignment of jobs the makespan of the schedule
can increase by at most 1 - €2 - OPT = ¢ - OPT on each machine. This integral schedule yields a
solution to order(B, (1 4+ ¢)OPT). O

In the remainder of this section we prove the following theorem.

Theorem 9. Consider a value T > 0 and suppose there exists a degree 4/° SA pseudoexpectation for
order(B,T). Then, there exists an integral solution for order(B, (1 + €)T') and it can be computed in
polynomial time.

As before we first construct a solution for the long jobs only and afterwards argue that we can

add the short jobs with only marginal increase of the makespan. For a degree-r pseudoexpecta-
tion E and a set of machines M*, we say that M* is focused if each job j € Jiopg is either completely

assigned to machines in M*,i.e., Y ;. /« E(x;;) = 1, or to no machine in M*,i.e., >, 1/ E(zi5) =0
and the same holds for any conditioning obtained from E.

Overview. We first apply Lemma 12 to make sure that each machine is 1-stable. This partitions
the machines into sets { Mo, ..., M; .} such that the machines in each set M, have exactly ¢ jobs
from J;. The machines in each set M, are consecutive. Then, intuitively, for each set M, we take
the rightmost machine 7 and condition on every single long job on 7 (so not just on the jobs in J;).
As a result, due to the ordering constraints each set M, is focused. This operation is formalized
in Lemma 16. Then, we observe that for each set of machines M, we obtain a degree-(r — 4/¢3)
pseudoexpectation for order(Jiong ¢, B, T, M) for some set Jigng ¢ C Jiong that is completely inde-
pendent of all other sets My with ¢ # (. Therefore, we can recurse on each set of machines M,
independently such that the degree of our pseudoexpectation drops by at most 4/¢? in each level.
Since there are only 1/¢? levels, it suffices to start with a pseudoexpectation of degree at most 4/¢°.

Lemma 16. Consider ¢ € {0,1,...,s}, integers ay, ...,aq and a degree-r pseudoexpectation E such that
each machine i € [m] is (g, ag)-stable for each § € {1,...,q}. Then there is a degree r — 4/ pseudoex-
pectation EPeus obtained from E via conditioning on at most 4 /&3 variables such that each machine in [m]
is g-stable for each ¢ € {1,...,q + 1} and there is a partioning of [m| given by {Mj, ..., My} of consecu-
tive machines such that for each ¢ € {1,...,k} we have that M, is focused and each machine i € M, is

(G + 1, £)-stable.

Proof. First, we apply Lemma 12 with the same value ¢, the integers a1, ..., a;, and with M* = [m].
Let ES%" the degree (r — 2/?) pseudoexpectation obtained. Since ES* is (¢ + 1)-stable, we obtain

27



a partition of [m] given by {My, ..., M}, } with k < 1/e such that each machine i € M is (¢ + 1,¢)-
stable for each ¢ € {0,...,k}. For ¢ € {0,...,k} we proceed as follows: For each ¢ € {1,...,s} let
n(q, ) be the largest index such that there is a job j; ,(.¢) with

EStab(xijq ) > 0 for some machine i € M,.

We condition on (i, j; 4(4,¢) ). More precisely, we iterate over the values ¢ € {1,..., s} and condition
on the respective jobs one by one, obtaining a pseudoexpectation E©¢US, Since 2/¢2 — s(1/e + 1) <
4/e3 this pseudoexpectation is of degree r — 4/¢3. We claim that in Efocus each subset M, with
¢ € {0,...,k} is focused. At the beginning the set [m] is focused. At the first step ¢ = 1, for
each ¢ € {1,..., s} either there is no job j € J; fractionally assigned on a machine in M; or we
conditioned on the job j; ;1) with largest index n(g, 1). Hence, due to the order constraints, no job
Jgy Withn/ > n(g, 1) can be fractionally assigned to a machine in M;. Hence, foreach g € {1,...,s}
there is a set J; C J; such that all jobs in J; are assigned on M; and no job in Jj \ J; is fractionally
assigned. Hence, M, is focused and [m] \ M is also focused. The remainder follows by induction
with the same argument. O

Algorithm. In the remaining fix r = 4/¢5. We take a degree-r-pseudoexpectation for order(B, T).
We first apply Lemma 16 with ¢ = 0 and obtain a solution E©S, For each group M, with ¢ €
{1,...,k} denote by Jigng ¢ the jobs from Ji,ne assigned on M, in according to Efocus, Then, for
each ¢ € {1,...,k} this yields a pseudoexpectation IE?’C“S for the program order(Jiong ¢, B, T, M)
of degree r — 4/¢3, in which each machine is 1-stable. Intuitively, we continue recursively on each
part. The depth of this recursion is s. In each level, we condition on at most 4/? variables. Hence,
if we obtain a pseudoexpectation of degree s - 4/¢® < 4/¢° in order(B, T') then we obtain that there
exists a solution for order(B,T) that is ¢-stable for each ¢ € {1,...,s}. Formally, we prove the
following lemma by induction.

Lemma 17. Consider g € {0,1,...,s}, integers ax, ..., a, and a degree 4(s — q) /e® pseudoexpectation such
that each machine i € [m] is (G, ag)-stable for each ¢ € {1, ...,q}. Then, there is a solution in order(B,T)
such that each machine i € [m| is g-stable for each ¢ € {1, ..., s}.

Proof. We prove the lemma by induction. If ¢ = s then the lemma is trivially true. Now suppose
that the lemma is true for some value ¢ + 1. Given a pseudoexpectation corresponding to solution
to order(B, T) we apply Lemma 16 and obtain a solution E©S and the partition {M, ..., M}.
For each ¢ € {1,...,k} this yields a pseudoexpectation Egocus with degree 4(s — ¢ — 1)/&3 such
that in IE?’C“S each machine i € My is (¢ + 1,¢)-stable and also g-stable for each ¢ € {1,...,q}. On
each pseudoexpectation IEEOCUS with ¢ € {1,...,k} we apply the induction hypothesis and obtain
a solution z¢ € order(Jiong ¢, B, T, M) such that in z* each machine i € [m] is ¢-stable for each
G € {1,...,s}. Wedefine the solution to be the direct sum of the solutions z‘ over ¢ € {1,...,k}. O

The lemma above yields that if there exists degree 4/ pseudoexpectation to order(B, T') then
there exists a solution = € order(B,T) in which each machine is g-stable for each § € {1,...,s}.
The assignment of the long jobs to the machines is identical to the proof of Lemma 12. Finally, we
add the short jobs greedily like in Section 4.2. This completes the proof of Theorem 9.
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A Proof of Theorem 4

We show how to prove Theorem 4 following the lines in the work of Raymond et al. [45]. We need
a few intermediate results, and the symmetry reduction theorem from Gaterman & Parrilo [13],
stated in our setting.

Theorem 10 ([13]). Suppose that g € R[y]/sched is a degree-¢ SoS and Sy,-invariant polynomial. For
each partition X - m, let T be a tableau of shape X and let {b3, ... by, } be a basis W, . Then, for each
partition X\ = m there exists a my x my positive semidefinite matrix Q such that g = >, (Qx, Y,
where Y} = sym(b}b).

Given two partitions A, ;1, we say that A > 1 if A >1, v and the number of parts of p is at least
the number of parts of A\. The following lemma is a variant of [45, Theorem 2] for the action of
the symmetric group in our setting. Together with the theorem of Gatermann & Parrilo this yields
Theorem 4.

Lemma 18. The dimension my of Qf\ in the isotypic decomposition of Q' is zero unless X >}, (m —
01,...,1).

Proof. Let ys be a monomial of degree at most ¢ with S = {(ix,Cx) : k € [¢]}. In particular,
i : k € [£]}| < L. Let 7 be any tableau with shape (m — ¢,1,...,1), where the tail of 7 contains
every elements of {i : k € [{]}. The subgroup R fixes S, therefore ys € W, and we have then

QA P W P a

7:shape(7)=(m—¢,1,...,1) A>(m—£,1,...,1)
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where the second containment holds by [45, Lemma 1]. To conclude, observe that if A > (m —
¢,1,...,1) then \; > m —£. Since A I m, the maximum number of parts for \is m — \; </, that s,
A has at most ¢ + 1 parts. Therefore, \> (m —¢,1,...,1) ifand only if A >, (m —¢,1,...,1). O

Proof of Theorem 4. Let g € Rly|/sched be a degree-¢ SoS and S,,-invariant polynomial. By Theo-
rem 10 and Lemma 18, for each A € A, there exists a positive semidefinite matrix Y* such that
g = Z)\eAZ<Q)\,Y’\>. Since {b7,...,by,, } C span(P?), there exists a real matrix 7 such that
(7, -, pg) = (b7,... ,bﬁu). Consider the congruent transformation M) = 7}\TQ A7x. In par-
ticular, M) is also positive semidefinite. Furthermore,

b'Qx\b = (Tap) ' QA(Top) = p' Map,

where b = (b{‘,...,b;\m) and p = (pi\,...,pg). Thatis, g = Z)\EAZ<Q)\’Y)\> = Z/\EJ\K(MA,Z)‘} O

B SoS Lower Bound for the Assignment Linear Program

We now show that the lower bound of Theorem 1 translates to the assignment linear program.
Recall that the 7-th level of the SoS hierarchy corresponds to a semidefinite program with variables
ys for any subset S C E with |S| < r. The inequalities defining this program can be obtained by
considering properties (S0S.1)-(S0S.4) in the definition of degree-r SoS pseudoexpectations and
identifying E(zs) = ys; see for example [40] for details. For any polytope P C [0,1]¥, we denote
by SoS,.(P) the projection of the r-th level of the SoS hierarchy over y; = yy;; for eachi € E. Au
and Tungel [4, Proposition 1] showed that for any polytope P C [0,1]%, if L : RF — R is an
affine transformation such that L(x) € [0,1]¥ for all elements in the unit hypercube z € [0,1]F,
then SoS, (L(P)) = L(SoS,(P)). In our case, we consider the configuration linear program and the
assignment linear program within the same space. Let T" be a target makespan and consider

P =RMX7T s clp(T) = {(z,y) € R x RIMIXC . g e clp(T)}.
We define the projection L(z,y) = (2/,0) where 2’ is defined as
T = L Z m(C,p;) - vic forall i € [m] and forall j € J.

Mo .
Pi cec

Notice that 2’ belongs to the assignment linear program, and hence L(P) C assign(T’) x [0, 1][™/*¢
is within the unit hypercube and the result by Au and Tungel can be applied. Therefore,

L(S0S,+1(P)) = S0S,+1(L(P)) C SoS,(assign(T) x [0, 1]m/*¢),

where the last inclusion follows since L(P) C assign(T) x [0,1]"/*C¢ and the general property of
the next lemma. We remark that this is enough to get an integrality gap of 1.0009 for 2(n) rounds
of the SoS hierarchy applied to the assignment linear program.

Lemma 19. If P and Q) are two polytopes with P C @, then S0S,1(P) C S0S,(Q).
Proof. Let us assume that P = {z € R" : Az < b}and Q = {z € R” : Cz < d} for some
A€ R bh € R™, C € RP*" and d € RP. Let a] be the i-th row of A and ¢, the i-th row
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of C. We will show that a degree-(r + 1) SoS pseudoexpectation for P is also a degree-r SoS
pseudoexpectation for Q. Indeed, recall that if P C @, then every inequality ¢ = < d;, where ¢; is
the i-th row of C, is a valid inequality for P. Hence, by Farkas lemma, for each row ¢ € [p| there
exists a non-negative vector v € R™ such that ¢; = y" Aand 7 "b < d;. Let Ebea degree-(r+1) SoS
pseudoexpectation for P. We need to show that property (S0S.3) is satisfied for every inequality
(d; — ¢/ x) > 0, withi € [p]. Let f € R[z]/I, with deg <f2(di - cjx)) < r. By basic algebraic
manipulation it holds that

E(f*(d; — ¢ 2)) = (d; — " +Zw 2(bj —a)x)) >0,

where the last inequality follows from the construction of v, the fact that for each j € [m] we have
deg (f2(b iy ac)) < r+1,and hence E(f2(b; — a] x)) > 0 and E(?) > 0.
O
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