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Abstract
We propose a new class of convex approximations for two-stage mixed-integer
recourse models, the so-called generalized alpha-approximations. The advantage of
these convex approximations over existing ones is that they are more suitable for effi-
cient computations. Indeed, we construct a loose Benders decomposition algorithm
that solves large problem instances in reasonable time. To guarantee the performance
of the resulting solution, we derive corresponding error bounds that depend on the total
variations of the probability density functions of the random variables in the model.
The error bounds converge to zero if these total variations converge to zero. We empir-
ically assess our solution method on several test instances, including the SIZES and
SSLP instances from SIPLIB. We show that our method finds near-optimal solutions
if the variability of the random parameters in the model is large. Moreover, our method
outperforms existing methods in terms of computation time, especially for large prob-
lem instances.

Keywords Stochastic programming · Mixed-integer recourse · Convex
approximations · Error bounds

Mathematics Subject Classification 90C15 · 90C11

1 Introduction

Consider the two-stage mixed-integer recourse model with random right-hand side

η∗ := min
x

{
cx + Q(x) : Ax = b, x ∈ X ⊆ R

n1+
}
, (1)
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where the recourse function Q is defined as

Q(x) := Eω

[
min
y

{
qy : Wy = ω − T x, y ∈ Y ⊆ R

n2+
}]

, x ∈ X . (2)

This model represents a two-stage decision problem under uncertainty. In the first
stage, a decision x has to be made here-and-now, subject to deterministic constraints
Ax = b and random goal constraints T x = ω. Here, ω is a continuous or discrete
random vector whose probability distribution is known. In the second stage, the real-
ization of ω becomes known and any infeasibilities with respect to T x = ω have to
be repaired. This is modelled by the second-stage problem

v(ω, x) := min
y

{
qy : Wy = ω − T x, y ∈ Y ⊆ R

n2+
}
. (3)

The objective in this two-stage recourse model is to minimize the sum of immediate
costs cx and expected second-stage costs Q(x) = Eω[v(ω, x)], x ∈ X .

Frequently, integrality restrictions are imposed on the first- and second-stage deci-
sions. That is, X and Y are of the form X = Z

p1+ × R
n1−p1+ and Y = Z

p2+ × R
n2−p2+ .

Such restrictions arise naturally when modelling real-life problems, for example to
model on/off decisions or batch size restrictions. The resultingmodel is called amixed-
integer recourse (MIR) model. Such models have many practical applications in for
example energy, telecommunication, production planning, and environmental control,
see e.g. [10,37].

While MIR models are highly relevant in practice, they are notoriously difficult
to solve. The reason is that Q is in general non-convex if integrality restrictions are
imposed on the second-stage decision variables y, see [20]. Therefore, standard tech-
niques for convex optimization cannot be used to solve these models. In contrast, if
Y = R

n2+ , then Q is convex and efficient solution methods are available, most notably
the L-shaped method in [32] and variants thereof.

Because of the non-convexity of Q, traditional solution methods for MIR models
typically combine ideas fromdeterministicmixed-integer programming and stochastic
continuous programming, see e.g. [4,8,9,15,17,19,29,31,38], and the survey papers
[24,28,30]. We, however, use a fundamentally different approach to deal with the non-
convex recourse function Q. Instead of solving the original MIR model in (1), we
solve an approximating problem in which Q is replaced by a convex approximation Q̂
of Q. This convex approximation Q̂ does not have to be a lower bound of Q. The
resulting approximating optimization problem is given by

η̂ := min
x

{
cx + Q̂(x) : Ax = b, x ∈ X

}
. (4)

Because Q̂ is convex, we can use efficient techniques from convex optimization to
solve the optimization problem in (4). Indeed, this optimization problem is convex if
all first-stage variables x ∈ X are continuous, and it is a MIP with a convex objec-
tive if some of these first-stage variables are integer. Thus, compared to traditional
solution methods, we are able to solve similar-sized problems much faster, and solve
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larger problem instances. In fact, we demonstrate this in our numerical experiments
on problem instances available from [29] and SIPLIB [2], and on randomly generated
problem instances.

Obviously, the optimal solution x̂ of the approximating problem in (4) is not neces-
sarily optimal for the original MIR model in (1). That is why we guarantee the quality
of the approximating solution x̂ , by deriving an error bound on

||Q − Q̂||∞ := sup
x

|Q(x) − Q̂(x)|.

This error bound directly gives us an upper bound on the optimality gap of x̂ :

cx̂ + Q(x̂) − η∗ ≤ 2||Q − Q̂||∞,

see [25].
Convex approximations and corresponding error bounds have been derived for

many different classes of models. The idea to use convex approximations Q̂ for the
non-convex mixed-integer recourse function Q dates back to [33], in which van der
Vlerk proposes to use α-approximations for the special case of simple integer recourse
(SIR) models. These α-approximations are obtained by perturbing the probability
distribution of the random vector ω. Klein Haneveld et al. [14] derive an error bound
for the α-approximations that depends on the total variations of the marginal density
functions of the random variables in the SIR model.

More convex approximations have been described for more general classes of prob-
lems. For example, in [34,35] van der Vlerk extends the α-approximations to a class
of MIR models with a single recourse constraint, and to integer recourse models with
a totally unimodular (TU) recourse matrix, respectively. Furthermore, Romeijnders et
al. [26] derive an error bound for the latter approximation, and they derive a tighter
error bound for the shifted LP-relaxation approximation for the same class of prob-
lems. The quality of the convex approximations for TU integer recourse models is
assessed empirically in [22], and it turns out that they perform well if the variability
of the random parameters in the model is large enough.

Romeijnders et al. [23] generalize the shifted LP-relaxation to general two-stage
MIR models, and they derive a corresponding asymptotic error bound. This error
bound converges to zero if the variability of the random parameters in the model
increases. Romeijnders and van der Laan [21] derive similar error bounds for convex
approximations that fit into a specific framework. In this framework, convex approx-
imations are defined using pseudo-valid cutting planes for the second-stage feasible
regions. Their idea is to only use cutting planes which are affine in the first-stage deci-
sion variables, so that the corresponding expected value function is convex. In general,
the approximations are not exact, since pseudo-valid cutting planes cut away feasi-
ble solutions and are allowed to be overly conservative. Nevertheless, a similar error
bound as for the shifted LP-relaxation has been derived if the pseudo-valid cutting
planes are tight. That is, if they are exact on an entire grid of first-stage solutions.

Both the shifted LP-relaxation of [23] and the cutting plane framework of [21],
however, cannot be applied directly to efficiently solveMIRmodels in general. This is
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because the shifted LP-relaxation is very difficult to compute in general, as discussed
in [23], and furthermore, the asymptotic error bound in the cutting plane framework
of [21] only applies for tight pseudo-valid cutting planes, which are only available
in special cases, e.g. for SIR models. That is why we propose an alternative class of
convex approximations for general two-stage MIR models, the so-called generalized
α-approximations. They are derived by exploiting properties of Gomory relaxations
[11] of the second-stage mixed-integer programming problems.

Contrary to the shifted LP-relaxation, the generalized α-approximations, denoted
by Q̂α , can be solved efficiently. In fact, we develop a so-called loose Benders decom-
position algorithm to solve the approximatingmodel in (4)with Q̂ = Q̂α . Our Benders
decomposition is called loose, because we derive optimality cuts for Q̂α which are
in general not tight at the current solution. While these loose optimality cuts are in
general not sufficient to find the optimal solution x̂ of the approximating model in (4),
we prove that they are tight enough in the sense that a similar performance guarantee
applies to the solution obtained by the loose Benders decomposition as to x̂ .

Summarizing, our main contributions are as follows.

– We propose a new class of convex approximations for general two-stage MIR
models, which are based on Gomory relaxations of the second-stage problems.
These generalized α-approximations can be solved efficiently, and a similar error
bound as for the shiftedLP-relaxation applies to the generalizedα-approximations.

– We derive a loose Benders decomposition algorithm to (approximately) solve
the approximating model with the generalized α-approximations. This is the first
efficient algorithm for solving non-trivial convex approximations of general two-
stage MIR models.

– We prove that the solution obtained by the loose Benders decomposition algorithm
has a similar performance guarantee as the exact solution to the generalized α-
approximations.

– We carry out extensive numerical experiments on 41 test instances from the lit-
erature and on 240 randomly generated instances, and show that using our loose
Benders decomposition algorithm we obtain good solutions within reasonable
time, also for large problem instances, in particular when the variability of the
random parameters in the model is large.

The remainder of this paper is organized as follows. In Sect. 2, we discuss the shifted
LP-relaxation of [23] and its corresponding error bound. In Sect. 3, we present the
generalizedα-approximations and an efficient algorithm for solving the corresponding
approximating problem. Section 4 contains the proof of the performance guarantee
for the loose Benders decomposition algorithm. In Sect. 5, we report on numerical
experiments to evaluate the performance of our algorithm. Finally, we conclude in
Sect. 6.

Throughout, we make the following assumptions. Assumptions (A2)–(A4) guar-
antee that Q(x) is finite for all x ∈ X such that Ax = b.

(A1) The first-stage feasible region X := {x ∈ X : Ax = b} is bounded.
(A2) The recourse is relatively complete: for all ω ∈ R

m and x ∈ X , there exists
a y ∈ Y such that Wy = ω − T x , so that v(ω, x) < ∞.
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(A3) The recourse is sufficiently expensive: v(ω, x) > −∞ for all ω ∈ R
m and

x ∈ X .
(A4) E[|ωi |] is finite for all i = 1, . . . ,m.
(A5) The recourse matrix W is integer.

2 Existing convex approximations of mixed-integer recourse
functions

In this section, we review the shifted LP-relaxation approximation of [23] and its
corresponding error bound. First, however, we review results on asymptotic periodicity
in mixed-integer linear programming in Sect. 2.1. We do so since these results are
not only used to derive the shifted LP-relaxation in Sect. 2.2, but also to derive the
generalized α-approximations in Sect. 3.1.

2.1 Asymptotic periodicity in mixed-integer programming

In order to derive convex approximations of the MIR function Q we analyze the value
function v of the second-stage problem, defined as

v(ω, x) = min
y

{
qy : Wy = ω − T x, y ∈ Z

p2+ × R
n2−p2+

}
. (5)

In particular, LP-duality implies that the LP-relaxation vLP(ω, x) of v(ω, x) is poly-
hedral in the right-hand side vector ω − T x :

vLP(ω, x) = max
k=1,...,K

λk(ω − T x),

where λk , k = 1 . . . , K , are the extreme points of the dual feasible region {λ : λW ≤
q}. Romeijnders et al. [23] derive a similar characterization of v(ω, x) in terms of
linear and periodic functions by exploiting so-called Gomory relaxations. We briefly
discuss these Gomory relaxations, before stating the characterization of v(ω, x) in
Lemma 1.

The Gomory relaxation of v(ω, x) is defined for any dual feasible basis matrix of
vLP(ω, x). Let B denote such a matrix and let N be such that W ≡ (

B N
)
, meaning

equality up to a permutation of the columns. Let yB and yN denote the second-stage
variables corresponding to the columns in B and N , respectively, and qB and qN their
corresponding cost parameters. The Gomory relaxation vB is obtained by relaxing the
non-negativity constraints of the basic variables yB . Romeijnders et al. [23] derive the
following expression for vB :

vB(ω, x) = qB B
−1(ω − T x) + ψB(ω − T x),
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766 N. van der Laan, W. Romeijnders

where

ψB(s) := min

{
q̄N yN : B−1(s − NyN ) ∈ Z

pB × R
nB ,

yN ∈ Z
pN+ × R

nN+
}
, s ∈ R

m, (6)

and q̄N = qN − qB(B−1)N . Moreover, they show that

v(ω, x) = vB(ω, x) = qB B
−1(ω − T x) + ψB(ω − T x)

if ω − T x ∈ Λ := {t : B−1t ≥ 0}, and if the distance of ω − T x to the boundary of Λ

is sufficiently large, see Definition 1. We say that v(ω, x) is asymptotically periodic,
since ψB is a B-periodic function, i.e. ψB(s + Bl) = ψB(s) for every s ∈ R

m and
l ∈ Z

m , see [23].

Definition 1 Let Λ ⊂ R
m be a closed convex set and let d ∈ R with d > 0 be given.

Then, we define Λ(d) as

Λ(d) := {s ∈ Λ : B(s, d) ⊂ Λ},

where B(s, d) := {t ∈ R
m : ||t − s||2 ≤ d} is the closed ball centered at s with radius

d. We can interpret Λ(d) as the set of points in Λ with at least Euclidean distance d
to the boundary of Λ.

Lemma 1 [23, Theorem 2.9] Consider the mixed-integer programming problem

v(ω, x) := min
y

{
qy : Wy = ω − T x, y ∈ Z

p2+ × R
n2−p2+

}
,

where W is an integer matrix, and v(ω, x) is finite for all ω ∈ R
m and x ∈ R

n.
Then, there exist dual feasible basis matrices Bk of vLP, k = 1, . . . , K, closed convex
polyhedral conesΛk := {t ∈ R

m : (Bk)−1t ≥ 0}, distances dk, Bk-periodic functions
ψk , and constants wk such that we have the following:

(i)
K⋃

k=1

Λk = R
m.

(ii) (int Λk) ∩ (int Λl) = ∅ for every k, l ∈ {1, . . . , K } with k �= l.

(iii) If ω − T x ∈ Λk(dk), then

v(ω, x) = vLP(ω, x) + ψk(ω − T x) = qBk (Bk)−1(ω − T x) + ψk(ω − T x),

where ψ l ≡ ψk if qBk (Bk)−1 = qBl (Bl)−1.
(iv) 0 ≤ ψk(ω − T x) ≤ wk for all ω ∈ R

m and x ∈ R
n1 , k = 1, . . . , K.
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Lemma 1 (iii) shows that if ω − T x ∈ Λk(dk) for some k = 1, . . . , K , then
v(ω, x) is equal to the sum of the LP-relaxation vLP(ω, x) and ψk(ω − T x). Hence,
ψk(ω − T x) can be interpreted as the additional costs resulting from the integrality
restrictions on the decision variables y. For a discussion on how to obtain dk or how
to represent Λk(dk) using a system of linear inequalities we refer to [23].

2.2 The shifted LP-relaxation approximation

Lemma 1 shows why the second-stage value function is not convex in x . On regions
of its domain it is the sum of a linear function qBk (Bk)−1(ω − T x) and a periodic
function ψk(ω − T x). Clearly the periodic part is causing v to be non-convex. That is
why the shifted LP-relaxation is obtained by replacing this periodic part ψk(ω − T x)
by a constant Γk for every k = 1, . . . , K , with Γk defined as

Γk := p−m
k

∫ pk

0
. . .

∫ pk

0
ψk(x)dx1 . . . dxm, (7)

where pk = | det Bk |. The K constants Γk can be interpreted as the averages of the
periodic functions ψk . The shifted LP-relaxation approximation is obtained by taking
the pointwise maximum over all dual feasible basis matrices Bk , k = 1, . . . , K .

Definition 2 Define the shifted LP-relaxation approximation Q̃ of the MIR function
Q as Q̃(x) = Eω[ṽ(ω, x)], where

ṽ(ω, x) := max
k=1,...,K

{qBk (Bk)−1(ω − T x) + Γk},

where Bk , k = 1, . . . , K , are the dual feasible basis matrices of Lemma 1, and Γk is
defined in (7).

Romeijnders et al. [23] derive a total variation error bound on the approximation
error ||Q − Q̃||∞ of the shifted LP-relaxation Q̃. This error bound is expressed in
terms of the total variations of the one-dimensional conditional probability density
functions (pdf) of the random vector ω.

Definition 3 Let f : R → R be a real-valued function, and let I ⊂ R be an interval.
LetΠ(I ) denote the set of all finite ordered sets P = {x1, . . . , xN+1}with x1 < · · · <

xN+1 in I . Then, the total variation of f on I , denoted by |Δ| f (I ), is defined as

|Δ| f (I ) = sup
P∈Π(I )

V f (P),

where

V f (P) =
N∑

i=1

| f (xi+1) − f (xi )|.

We write |Δ| f := |Δ| f (R).
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Definition 4 For every i = 1, . . . ,m and x−i ∈ R
m−1, define the i-th conditional

density function fi (·|x−i ) of the m-dimensional joint pdf f as

fi (xi |x−i ) = f (x)

f−i (x−i )
,

where f−i is the joint pdf of the (m − 1)-dimensional random vector ω−i , which is
equal to ω without its i-th component. DefineHm as the set of allm-dimensional joint
pdf f such that fi (·|x−i ) is of bounded variation for all i = 1, . . . ,m and x−i ∈ R

m−1.

Theorem 1 [23, Theorem 5.1] There exists a constant C > 0 such that for every
continuous random vector ω with joint pdf f ∈ Hm,

sup
x

|Q(x) − Q̃(x)| ≤ C
m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
. (8)

In general, the error bound in Theorem 1 may be large, in particular since the con-
stant C > 0 may be large. Nevertheless, the theorem shows that if the total variations
of the one-dimensional conditional pdf are small, then Q̃ is a good approximation of
Q. For example, if the components ωi of ω follow independent normal distributions,
with meanμi and variance σ 2

i , for i = 1, . . . ,m, then the error bound in (8) simplifies
to C ′ ∑m

i=1 σ−1
i for some C ′ > 0; see [21, Example 2] for details. Observe that the

error bound goes to zero if σi → ∞ for all i = 1, . . . ,m. Thus, the error of using
the shifted LP-relaxation approximation decreases if the variability of the random
parameters in the model increases.

3 Loose Benders decomposition algorithm for two-stage
mixed-integer recoursemodels

3.1 Generalized˛-approximations

To derive the generalized α-approximations Q̂α , we first derive a convex approxima-
tion v̂α of the second-stage value function v defined in (5), and we define Q̂α(x) :=
Eω[v̂α(ω, x)]. Similar as for the shifted LP-relaxation ṽ, we use Lemma 1, i.e. for
ω − T x ∈ Λk(dk),

v(ω, x) = vBk (ω, x) = qBk (Bk)−1(ω − T x) + ψk(ω − T x).

However, instead of replacingψk(ω−T x) by its average Γk , as is done for the shifted
LP-relaxation, we replace ψk(ω − T x) by ψk(ω − α) for some α ∈ R

m to obtain the
generalized α-approximation v̂kα of vBk defined as

v̂kα(ω, x) = qBk (Bk)−1(ω − T x) + ψk(ω − α),
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and we define the generalized α-approximation v̂α of v as

v̂α(ω, x) = max
k

v̂kα(ω, x).

The difference compared to the shifted LP-relaxation seems small: the constants Γk

are replaced by ψk(ω − α). From a computational point of view, however, this dif-
ference is significant. This is because the constants Γk are the averages over ψk ,
and in general need to be obtained by computing a multi-dimensional integral of a
mixed-integer value function. For a fixed ω and α, however, the value of ψk(ω −α) is
obtained by solving a singlemixed-integer programming problem of the same size as
the second-stage problem. In fact, we need to solve the Gomory relaxation discussed
in Sect. 2.1, which can be done in polynomial time if all second-stage variables are
integer [11].

Definition 5 For α ∈ R
m , we define the generalized α-approximation Q̂α of Q as

Q̂α(x) := Eω

[
max

k=1,...,K
{λk(ω − T x) + ψk(ω − α)}

]
, x ∈ R

n1 ,

with λk := qBk (Bk)−1 andψk := ψBk , where Bk , k = 1, . . . , K , are the dual feasible
basis matrices of Lemma 1.

Remark 1 The generalized α-approximations are a generalization of the
α-approximations defined for TU integer recourse models [26], which arise if y ∈ Z

p
+

and if the second-stage constraints are of the form Wy ≥ ω − T x , where W is a TU
matrix. Indeed, for these models, we have ψk(s) = λk(�s� − s), see [23], and thus

Q̂α(x) = Eω

[
max

k=1,...,K
λk(�ω − α� + α − T x)

]
,

which is the expression for the α-approximations for TU integer recourse models in
[26].

It turns out that we can derive a similar error bound for the generalized α-
approximations as for the shifted LP-relaxation.

Theorem 2 There exists a constant C > 0, such that for every α ∈ R
m and for every

continuous random vector ω with joint pdf f ∈ Hm,

sup
x

|Q(x) − Q̂α(x)| ≤ C
m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
.

Proof See “Appendix”. ��
Theorem 2 states that the approximation error of Q̂α goes to zero as the total

variations Eω−i

[|Δ| fi (·|ω−i )
]
, i = 1, . . . ,m, all go to zero. This error bound is
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770 N. van der Laan, W. Romeijnders

independent of α, i.e. Q̂α is a good approximation of the true MIR function Q for any
α ∈ R

m .
An interesting difference between the generalized α-approximations and the shifted

LP-relaxation of Sect. 2.2 is that the approximating value function v̂α is not convex inω

for fixed x ∈ R
n1 . Indeed, v̂α is only convex in x for every fixedω, but this is sufficient

to guarantee that the generalized α-approximation Q̂α is convex. In contrast, the value
function ṽ of the shifted LP-relaxation is convex in both ω and x . We illustrate these
properties in Example 1. In this example, we also illustrate the difference between the
generalized α-approximations and the pseudo-valid cutting plane approximation of
[21].

Example 1 Consider the second-stage mixed-integer value function v defined as

v(ω, x) := min{y1 + 2y2 + 2y3 : y1 + y2 − y3 = ω − x, y1 ∈ Z+, y2, y3 ∈ R+}.

We use this example, since it also appears in [23] and [21], allowing us to compare the
generalized α-approximations to the shifted LP-relaxation and a pseudo-valid cutting
plane approximation.

The LP-relaxation of v has two dual feasible basis matrices B1 = [−1] and B2 =
[1]. Thus, K = 2, and straightforward computations yield λ1 = −2, λ2 = 1, ψ1 ≡ 0,
and for every s ∈ R,

ψ2(s) =
{
s − �s�, if s − �s� ≤ 3/4,
3 − 3(s − �s�), if s − �s� ≥ 3/4.

It follows that vLP(ω, x) = max{−2(ω − x), ω − x}. Moreover, for every α ∈ R, the
approximating value function is defined as

v̂α(ω, x) = max{−2(ω − x), ω − x + ψ2(ω − α)}.

In contrast, the value function ṽ of the shifted LP-relaxation equals

ṽ(ω, x) = max{−2(ω − x), ω − x + 3/8},

since Γ 2 := ∫ 1
0 ψ2(s)ds = 3/8. Finally, the tight pseudo-valid cutting plane approx-

imation v̂c is given by

v̂c(ω, x) = min
y∈R3+

{y1 + 2y2 + 2y3 :y1 + y2 − y3 = ω − x,

y1 − 1

1 + �ω� − ω
y3 ≤ �ω� − x}.

Figure 1a, b show v(ω, x), v̂α(ω, x), ṽ(ω, x), and v̂c(ω, x) as a function of x andω,
respectively. They illustrate that v̂α is convex in x for fixed ω, but not convex in ω for
fixed x , respectively. Moreover, Fig. 1b illustrates a key difference between ṽ(ω, x)
and v̂α(ω, x). Whereas ṽ(ω, x) is obtained by replacing the periodic part ψ2(ω − x)
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(a) (b)

Fig. 1 The value function v and the approximating value functions ṽ, v̂c , and v̂α , whereα = 0. The left figure
shows v(ω, x), v̂α(ω, x), and v̂c(ω, x), as a function of x , whereas the right figure shows v(ω, x), v̂α(ω, x),
and ṽ(ω, x) as a function of ω

of v(ω, x) by its average Γ 2, we obtain v̂α(ω, x) by shifting ψ2(ω − x) towards
ψ2(ω − α).

Finally, Fig. 1a shows that v̂α(ω, x) = v̂c(ω, x) for a range of x values. However,
the difference v̂c(ω, x) − v̂α(ω, x) is relatively large if x ∈ (−0.3, 0.7). This is true
in general for tight pseudo-valid cutting plane approximations: there always exist d̂k
such that v̂α(ω, x) = v̂c(ω, x) if ω−T x ∈ Λk(d̂k). However, the two approximations
may differ if ω − T x /∈

⋃

k

Λk(d̂k). ♦

3.2 Benders decomposition for the generalized˛-approximations

We solve the approximating problem

η̂α := min
x

{cx + Q̂α(x) : Ax = b, x ∈ X}, (9)

using an SAA of Q̂α . Given a sample {ω1, . . . , ωS} of size S from the distribution
of ω, the SAA Q̂S

α of Q̂α is defined as

Q̂S
α(x) := 1

S

S∑

s=1

v̂α(ωs, x), x ∈ X , (10)

and the corresponding SAA problem as

η̂S
α :=min

x
{cx + Q̂S

α(x) : Ax = b, x ∈ X}. (11)

Since Q̂S
α is convex, we can solve the SAA problem using Benders decomposition [6],

i.e. using an L-shaped algorithm [32]. In iteration τ of this algorithm, we solve (11)
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with Q̂S
α replaced by a convex polyhedral outer approximation Q̂τ

out ≤ Q̂S
α . This

problem is called the master problem

η̂τ := min
x

{cx + Q̂τ
out(x) : Ax = b, x ∈ X}, (12)

and its optimal solution xτ is referred to as the current solution at iteration τ . If
Q̂τ

out(x
τ ) = Q̂S

α(xτ ), then the current solution xτ is optimal for the original SAA
problem in (11). If not, then we strengthen the outer approximation using an optimality
cut for Q̂S

α of the form

Q̂S
α(x) ≥ βτ+1x + δτ+1, ∀x ∈ X ,

which is tight at xτ , i.e. Q̂S
α(xτ ) = βτ+1xτ + δτ+1. The outer approximation Q̂τ

out
in iteration τ is the pointwise maximum over all optimality cuts derived in previous
iterations:

Q̂τ
out(x) = max

t=1,...,τ
{βt x + δt }, x ∈ X .

The challenge for the generalized α-approximations, however, is to compute tight
optimality cuts of Q̂S

α . Since

Q̂S
α(xτ ) = 1

S

S∑

s=1

max
k=1,...,K

{λk(ωs − T xτ ) + ψk(ωs − α), } x ∈ X ,

such tight optimality cuts can be obtained by identifying for each scenario s the
maximizing index kτ

s at xτ , defined as

kτ
s ∈ arg max

k=1,...,K
{λk(ωs − T xτ ) + ψk(ωs − α)}, s = 1, . . . , S. (13)

However, this is computationally too expensive, since we need to computeψk(ωs −α)

for all k = 1, . . . , K , and K grows exponentially in the size of the second-stage
problem. Indeed, K is at least as large as the number of dual vertices of the feasible
region of the LP-relaxation vLP of v, of which there are exponentially many.

3.3 Loose Benders decomposition for the generalized˛-approximations

To overcome this computational challenge we propose to use approximate indices k̂τ
s

defined as

k̂τ
s ∈ arg max

k=1,...,K
λk(ωs − T xτ ), s = 1, . . . , S. (14)

These indices are computationally tractable since they correspond to the optimal
basis matrix index of the LP-relaxation vLP(ω

s, xτ ), defined in (5). Hence, they can
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be obtained by solving a single LP. Moreover, if the values of ψk(ωs − α) are equal
for all k = 1, . . . , K , then the indices k̂τ

s are optimal in (13), i.e. k̂τ
s = kτ

s . In general
however, the indices ks are suboptimal in (13), leading to the following definition.

Definition 6 Let xτ be given and let k̂τ
s , s = 1, . . . , S, be as in (14). We define the

loose optimality cut for Q̂S
α at xτ as

Q̂S
α(x) ≥ 1

S

S∑

s=1

λk̂
τ
s (ωs − T x) + ψ k̂τ

s (ωs − α), x ∈ X .

We use these loose optimality cuts in our loose Benders decomposition algorithm,
LBDA(α). In this algorithm the outer approximation Q̂τ

out of Q̂S
α is defined using

our loose optimality cuts. The algorithm terminates with tolerance level ε ≥ 0 if
Q̂τ

out(x
τ ) ≥ Q̂τ+1

out (xτ ) − ε; then, LBDA(α) reports x̂α = xτ as solution.
A full description of LBDA(α) is given below. Note that the algorithm requires a

lower bound L on Q̂S
α such that Q̂S

α(x) ≥ L for all x ∈ X . Such a lower bound L
exists because of Assumptions (A1)–(A4).

Loose Benders decomposition algorithm (LBDA(α))

1: Inputs Parameters: A, b, c, T , q, W . Distribution of ω. Lower bound L on Q̂S
α . Shift parameter α.

Tolerance ε. Sample size S.
2: Output Near-optimal solution x̂α .
3: Initialization
4: Initialize τ = 0 and Q̂τ

out ≡ L .
5: Obtain a sample {ω1, . . . , ωS} of size S from the distribution of ω.

6: Iteration step
7: Solve minx {cx + Q̂τ

out(x) : Ax = b, x ∈ X}.
8: Denote the optimal solution by xτ .
9: for s = 1, . . . , S do
10: Solve vLP(ωs , xτ ).
11: Denote the optimal basis matrix index by k̂τ

s .
12: Solve v

Bk̂
τ
s
(ωs − α, 0).

13: Compute ψ k̂τ
s (ωs − α) = v

Bk̂
τ
s
(ωs − α, 0) − λk̂

τ
s (ωs − α).

14: end for
15: βτ+1 ← − 1

S
∑S

s=1 λk̂
τ
s T .

16: δτ+1 ← 1
S

∑S
s=1

{
λk̂

τ
s ωs + ψ k̂τ

s (ωs − α)
}
.

17: Q̂τ+1
out (x) := max{Q̂τ

out(x), βτ+1x + δτ+1}.
18: Stopping criterion
19: if Q̂τ

out(x
τ ) ≥ Q̂τ+1

out (xτ ) − ε then
20: return x̂α := xτ .
21: stop.
22: else
23: τ ← τ + 1. Go to line 7.
24: end if

The solution x̂α of LBDA(α) is not necessarily ε-optimal for the SAA problem
in (11), since LBDA(α) uses the loose optimality cuts of Definition 6. If the opti-
mality cuts were tight, then Q̂τ+1

out (xτ ) = Q̂S
α(xτ ) for every iteration τ , and thus the

algorithm would terminate if Q̂τ
out(x

τ ) ≥ Q̂S
α(xτ ) − ε. We, however, show that our
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loose optimality cuts are asymptotically tight at xτ : the difference Q̂τ+1
out (xτ )− Q̂S

α(xτ )

converges to zero if the total variations of the one-dimensional conditional pdf of the
random vector ω go to zero and as S → ∞, see Proposition 1. In this case, we are
able to prove that the LBDA(α) solution x̂α is near-optimal; see Theorem 3 below
for a bound on the optimality gap cx̂α + Q(x̂α) − η∗. This performance guarantee is
independent of α, and thus it applies if we take e.g. α = 0.We further explore selection
of α in Sect. 5. The proof of the performance guarantee is postponed to Sect. 4.2.

Theorem 3 Consider the two-stage mixed-integer recourse model

η∗ = min
x

{cx + Q(x) : Ax = b, x ∈ X}.

Let x̂α denote the solution by LBDA(α) with tolerance ε and sample size S. Then, there
exists a constant C > 0 such that for every continuous random vector ω with joint pdf
f ∈ Hm

cx̂α + Q(x̂α) − η∗ ≤ ε + C
m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
,

w.p. 1 as S → ∞.

Theorem 3 implies that the optimality gap of x̂α converges to the prespecified
tolerance ε as the total variations of the underlying one-dimensional conditional pdf
go to zero.

3.4 Implementation details of LBDA(˛)

LBDA(α) can be implemented efficiently if the input size of the second-stage
problem v(ω, x) is moderate. During each iteration τ , we have to solve the LP-
relaxation vLP(ω

s, xτ ) and the Gomory relaxation v
Bk̂τs

(ωs − α, 0) for each scenario
s = 1, . . . , S, in order to generate a loose optimality cut. If the input size of v(ω, x) is
not too large, then vLP(ω

s, xτ ) and v
Bk̂τs

(ωs − α, 0) can be solved in reasonable time
using standard LP and MIP solvers, respectively. Moreover, the master problem can
be solved efficiently using a standard LP solver, or MIP solver if some of the first-
stage decision variables are integer. Improved implementations of LBDA(α) using a
multicut approach [7] and regularization techniques [27] are possible. Furthermore,
the subproblems v

Bk̂τs
(ωs − α, 0), s = 1, . . . , S can be solved in parallel, and it may

be beneficial to solve these subproblems inexactly in the first phase of the algorithm.
In Sect. 5, we exploit that LBDA(α) can be run multiple times, using different

values of α. The performance guarantee of LBDA(α) is independent of α and thus
applies to every candidate solution that we obtain in this way. Moreover, we use in-
and out-of-sample evaluation to select the best candidate solution. In our numerical
experiments, we investigate several schemes for selecting the values of α. Running
LBDA(α) multiple times can be done very efficiently by using parallelization and a
common warm start. That is, we first apply the L-shaped algorithm of [32] to the
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LP-relaxation of the original problem (1), in which the integer restrictions on the
second-stage variables y are relaxed. Next, we run LBDA(α) for each value of α, and
we keep the optimality cuts generated for the LP-relaxation QLP of Q, which are also
valid for Q̂α , for any value of α.

4 Performance guarantee of LBDA(˛)

4.1 Convergence of sampling and loose optimality cuts

The performance guarantee of LBDA(α) does not follow directly from our error bound
for the generalized α-approximations. The reason is that LBDA(α) uses sampling and
the loose optimality cuts of Definition 6 to solve the corresponding approximating
problem.We consider these aspects in Sects. 4.1.1 and 4.1.2, respectively. In particular,
we prove consistency of the SAA and asymptotic tightness of our loose optimality
cuts.

4.1.1 Consistency of the sample average approximation

Intuitively, the SAA becomes better as the sample size S increases. Indeed, we show in
Lemma 2 that the SAA Q̂S

α of Q̂α converges uniformly to Q̂α onX w.p. 1 as S → ∞.

Lemma 2 Consider the generalized α-approximation Q̂α and its sample average
approximation Q̂S

α . Then,

sup
x∈X

∣∣∣Q̂α(x) − Q̂S
α(x)

∣∣∣ → 0

w.p. 1 as S → ∞, where X = {x ∈ R
n1+ : Ax ≤ b}.

Proof See “Appendix”. ��

Corollary 1 sup
x∈X

|Q(x) − Q̂S
α(x)| ≤ C

m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
w.p. 1 as S → ∞.

Proof Since

sup
x∈X

|Q(x) − Q̂S
α(x)| ≤ sup

x∈X
|Q(x) − Q̂α(x)| + sup

x∈X
|Q̂α(x) − Q̂S

α(x)|,

the result follows directly by combining Theorem 2 and Lemma 2. ��

Corollary 1 implies a similar error bound on the difference between the optimal val-
ues η∗ and η̂S

α of the originalMIR problem (1) and the SAAproblem (11), respectively,
see Corollary 2.
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Corollary 2 Consider the optimal values η∗ and η̂S
α of the MIR problem (1) and the

SAA problem (11). Then,

η̂S
α − η∗ ≤ C

m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]

w.p. 1 as S → ∞.

Proof Since the optimal solution x∗ of (1) is feasible but not necessarily optimal
in (11), we have

η̂S
α − η∗ ≤ cx∗ + Q̂S

α(x∗) − η∗ = Q̂S
α(x∗) − Q(x∗) ≤ sup

x∈X
|Q(x) − Q̂S

α(x)|.

The result follows directly from Corollary 1. ��

4.1.2 Asymptotic tightness of loose optimality cuts

If we derive a loose optimality cut Q̂S
α(x) ≥ βτ+1x + δτ+1 for Q̂S

α at xτ in LBDA(α),
then the gap Q̂S

α(xτ )−(βτ+1xτ + δτ+1)maybepositive, since the cut is not necessarily
tight at xτ . However, we derive a bound on this gap by considering the index function

k̂(ω, x) ∈ arg max
k=1,...,K

λk(ω − T x), ω ∈ Ω, x ∈ X .

Note that k̂(ωs, xτ ) = k̂τ
s , i.e. the index function k̂(ω, x) is used to derive our loose

optimality cuts. Based on this index function, we define the lower bounding function
LS

α of Q̂S
α , given by

LS
α(x) := 1

S

S∑

s=1

[
λk̂(ω

s ,x)(ωs − T x) + ψ k̂(ωs ,x)(ωs − α)
]
, x ∈ X , (15)

and we note that LS
α(xτ ) is the value of the loose optimality cut at xτ , i.e. LS

α(xτ ) =
βτ+1xτ +δτ+1. The function LS

α is a lower bound of Q̂S
α since its corresponding value

function, defined as

να(ω, x) := λk̂(ω,x)(ω − T x) + ψ k̂(ω,x)(ω − α), x ∈ X , (16)

is a lower bound of v̂α(ω, x) for all ω ∈ Ω and x ∈ X .
Proposition 1 contains a uniform total variation bound on the difference between

LS
α and Q̂S

α . In order to derive this result, we first analyze the difference between να

and v̂α . It turns out that να equals v̂α on large parts of the domain, see Lemma 3.
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Lemma 3 Consider the value functions να and v̂α , with να defined in (16) and v̂α

defined as

v̂α(ω, x) = max
k=1,...,K

{
λk(ω − T x) + ψk(ω − α)

}
. (17)

Let Λk , k = 1, . . . , K, denote the closed convex cones from Lemma 1. Then, there
exist vectors σk ∈ Λk and a constant R > 0 such that

(i) 0 ≤ v̂α(ω, x) − να(ω, x) ≤ R for all ω ∈ R
m and x ∈ R

n1 , and
(ii) ω − T x ∈ σk + Λk �⇒ να(ω, x) = v̂α(ω, x) = λk(ω − T x) + ψk(ω − α).

Proof See “Appendix”. ��
Proposition 1 Consider the SAA of the generalized α-approximation Q̂S

α and its lower
bound LS

α , defined in (15). There exists a constant C > 0 such that for every continuous
random vector ω with joint pdf f ∈ Hm,

sup
x∈X

∣∣∣Q̂S
α(x) − LS

α(x)
∣∣∣ ≤ C

m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]

w.p. 1 as S → ∞.

Proof Define Δ(ω, x) := v̂α(ω, x) − να(ω, x), so that

Q̂S
α(x) − LS

α(x) = 1

S

S∑

s=1

Δ(ωs, x).

We derive an upper bound on Δ(ω, x), independent of x . We then apply the strong
law of large numbers (SLLN) to obtain the desired result.

If we defineM = ∪K
k=1(σk +Λk), where σk andΛk , k = 1, . . . , K , are the vectors

and closed convex cones from Lemma 3, then

Δ(ω, x) ≤ ξ(ω, x) :=
{
R, if ω − T x /∈ M,

0, if ω − T x ∈ M,

where R is the upper bound on v̂α(ω, x) − να(ω, x) from Lemma 3. Moreover, we
can derive a bound on P[ω − T x ∈ M]. Unfortunately, the random variable ξ(ω, x)
depends on x . Therefore, we cannot apply the SLLN to

sup
x∈X

1

S

S∑

s=1

ξ(ωs, x)

if X is infinite. To resolve this, we use that X is bounded. Let D denote the diameter
of TX , i.e., ||T x − T x ′|| ≤ D for all x, x ′ ∈ X . Define M′ ⊂ M as M′ :=

123



778 N. van der Laan, W. Romeijnders

⋃K
k=1(σk + Λk)(D). Fix an arbitrary x̄ ∈ X . Note that for all x ∈ X ,

ω − T x̄ ∈ M′ �⇒ ∃k : ω − T x̄ ∈ (σk + Λk)(D)

�⇒ ∃k : ω − T x ∈ (σk + Λk) �⇒ ω − T x ∈ M.

We obtain

Δ(ω, x) ≤ ξ(ω) :=
{
R if ω − T x̄ /∈ M′
0 if ω − T x̄ ∈ M′

Note that ξ̄ (ω) only depends on a fixed x∗ ∈ X and is independent of x . By the SLLN,

1

S

S∑

s=1

ξ̄ (ωs) → RP[ω − T x̄ /∈ M′],

w.p. 1 as S → ∞.
By [23, Lemma 3.9],Rm \M′ can be covered by finitely many hyperslices, that is,

R
m \ M′ ⊂

J⋃

j=1

Hj ,

where the hyperslices Hj are defined as

Hj := {x ∈ R
m : 0 ≤ aTj x ≤ δ j },

for some aTj and δ j . By [23, Theorem 4.6], there exists a constant β > 0 such that

P[ω − T x∗ /∈ M′] ≤ β

m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
.

The result now follows from

sup
x∈X

∣∣∣Q̂S
α(x) − LS

α(x)
∣∣∣ = sup

x∈X
1

S

S∑

s=1

Δ(ωs, x)

≤ 1

S

S∑

s=1

ξ̄ (ωs) → RP[ω − T x∗ /∈ M′]

≤ C
m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
]
,

w.p. 1 as S → ∞, where C = Rβ. ��
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Proposition 1 shows that our loose optimality cuts are asymptotically tight, since for
every iteration τ in LBDA(α) the loose optimality cut for Q̂S

α at xτ is tight for LS
α at xτ .

Hence, if the underlying total variations are small enough and if S is large enough,
then the loose optimality cut is nearly tight for Q̂S

α at xτ .

4.2 Error bound on the optimality gap of LBDA(˛)

We are now ready to prove the performance guarantee of LBDA(α) in Theorem 3.
Intuitively, we are able to derive this bound since (i) our loose optimality cuts are
asymptotically tight, and thus x̂α is near-optimal for the SAA problem with Q̂S

α , (ii)
the SAA Q̂S

α converges uniformly to Q̂α , and (iii) Theorem 2 contains a uniform error
on the difference between Q̂α and Q.

Proof of Theorem 3 Let x̂α denote the solution returned by LBDA(α). Since x̂α := xτ

is the current solution in the final iteration τ of the algorithm, it follows that x̂α is a
minimizer of

min
x

{cx + Q̂τ
out(x) : Ax = b, x ∈ X}.

Moreover, since Q̂τ
out ≤ Q̂S

α , it follows that cx̂α + Q̂τ
out(x̂α) ≤ η̂S

α , and thus, by rear-
ranging terms and adding Q̂S

α on both sides,

cx̂α + Q̂S
α(x̂α) − η̂S

α ≤ Q̂S
α(x̂α) − Q̂τ

out(x̂α). (18)

The right-hand side of (18) represents an upper bound on the optimality gap of x̂α

in the SAA problem (11). The termination criterion of LBDA(α) guarantees that this
upper bound is not too large. Indeed, at termination it holds that

Q̂τ
out(x̂α) ≥ Q̂τ+1

out (x̂α) − ε ≥ LS
α(x̂α) − ε,

and thus the upper bound in (18) reduces to

cx̂α + Q̂S
α(x̂α) − η̂S

α ≤ Q̂S
α(x̂α) − LS

α(x̂α) + ε

≤ sup
x∈X

|Q̂S
α(x) − LS

α(x)| + ε. (19)

In the end, however, we are not interested in the optimality gap of x̂α in the SAA
problem (11) but in the optimality gap

cx̂α + Q(x̂α) − η∗

of x̂α in the original MIR problem (1). Adding and subtracting both Q̂S
α(x̂α) and η̂S

α ,
and using (19), yields
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cx̂α + Q(x̂α) − η∗ = (cx̂α + Q(x̂α) − η̂S
α) + (Q(x̂α) − Q̂S

α(x̂α)) + (η̂S
α − η∗)

≤ sup
x∈X

|Q̂S
α(x) − LS

α(x)| + ε + sup
x∈X

|Q(x) − Q̂S
α(x)| + η̂S

α − η∗.

Applying Corollaries 1 and 2, and Proposition 1, we conclude that there exists a
constant C > 0 such that

cx̂α + Q(x̂α) − η∗ ≤ C
m∑

i=1

Eω−i

[|Δ| fi (·|ω−i )
] + ε,

w.p. 1 as S → ∞. ��

The performance guarantee for LBDA(α) in Theorem 3 is a worst-case bound. For
many problem instances, the actual performance may be much better. In Sect. 5, we
assess the performance of LBDA(α) empirically on a wide range of test instances.

5 Numerical experiments

We test the performance of LBDA(α) on problem instances from the literature and
on randomly generated instances, see Sects. 5.2 and 5.3, respectively. In particular,
we consider (variations of) an investment planning problem in [29], and two classes
of problem instances available from SIPLIB [2], namely the SIZES problem [13] and
the stochastic server location problem (SSLP) [18]. First, however, we describe the
set-up of our numerical experiments in Sect. 5.1.

5.1 Set-up of numerical experiments

In our numerical experiments,we compareLBDA(α) to several benchmarkmethods, in
terms of costs, relative optimality gaps, and computations times. Since the performance
of LBDA(α) depends on α, we investigate four different approaches to select α.

First, we take α equal to the zero vector. Second, we take α = α∗ := T x∗, where x∗
is the optimal solution of the original problem. Obviously, for large problem instances
x∗ is unknown, however, we expect that α∗ is a good choice of α since the generalized
α-approximations are obtained by replacing T x by α in the Gomory relaxations, and
thus Q̂α∗ is a good approximation of Q near the true optimal solution x∗. We test this
for the smaller problem instances for which x∗ is known.

Since α∗, however, typically cannot be computed for larger problem instances, we
also propose an iterative scheme, in which we first obtain x̂α0 by running LBDA(α0),
where α0 is the zero vector. Next, we run LBDA(α1), where α1 := T x̂α0 . We extend
this scheme to 100 iterations by recursively defining αk+1 := T x̂αk , k = 1, . . . , 100.
We then select the best value of α in terms of expected costs, denoted by α#. Finally,
we apply LBDA(α) multiple times using 100 different values of α, drawn from an
multivariate uniform distribution on [0, 100]m , and we denote the best value of α in
terms of the expected costs by α+.
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In order to compare these approaches, note that the expected costs cx + Q(x) of
a candidate solution x can be computed exactly if the random vector ω has a finite
number of realizations, as is the case for the SIZES, SSLP, and investment planning
problems thatwe consider. Therefore, if the optimal valueη∗ is known, then the relative
optimality gap ρ(x), defined as

ρ(x) = cx + Q(x) − η∗

|η∗| ∗ 100%,

can be computed exactly, and otherwise bounds on ρ(x) can be computed.
In contrast, for our randomly generated instances, we assume thatω is continuously

distributed. For these instances, we use the multiple replications procedure (MRP)
[16] with Latin hypercube sampling [5] to obtain 95% confidence upper bounds on
ρ(x). Moreover, we compare the performance of LBDA(α) to a range of benchmark
solutions, using out-of-sample estimation of cx + Q(x), with a sample size of 105,
which guarantees that the standard errors of our results are sufficiently small. The
benchmark and LBDA(α) solutions are computed using a sample of size S = 1000.

The first benchmark solution x̄S is obtained by solving the deterministic equivalent
formulation (DEF) of the corresponding SAA of the original problem (1). The DEF
is a large-scale MIP, which, typically, cannot be solved in reasonable time by standard
MIP solvers. Hence we also solve the DEF using a smaller sample size S′ = 100,
resulting in the second benchmark solution x̄S′ .

We obtain three additional benchmark solutions by solving the generalized α-
approximations exactly for α = 0, α = α∗ and α = α+, that is, we find the optimal
solution x∗

α of the approximating problem (4) with Q̂ = Q̂S
α . We do so by solving the

approximation second-stage problems

max
k=1,...,K

{λk(ω − T x) + ψk(ω − α)}

by enumeration over k = 1, . . . , K . For this reason, x∗
α can only be computed in

reasonable time for small problem instances.
Finally, we consider two trivial benchmark solutions, which we expect to outper-

form significantly. First, we relax the integer restrictions on the second-stage variables
in the SAA of the original problem (1), resulting in the benchmark solution xLP. Sec-
ond, we solve the Jensen approximation, which replaces the distribution of ω by a
degenerate distribution at μ = Eω[ω], and denote the optimal solution by xμ.

We run our experiments on a single Intel Xeon E5 2680v3 core @2.5GHz with
Gurobi 7.0.2. To ensure a fair comparison between solutions, we use common random
numbers where possible and we limit the computation time of each algorithm to two
hours.
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Table 1 The SIZES problem

Instance Computation time (s) (optimality gap)

DEF LBDA(α)

x∗ α = 0 α = α∗ α = α# α = α+

SIZES3 0.2 (0.0%) 0.2 (0.35%) 0.3 (0.20%) 24.8 (0.32%) 23.8 (0.20%)

SIZES5 1.5 (0.0%) 0.3 (0.44%) 0.6 (0.26%) 34.0 (0.35%) 34.0 (0.14%)

SIZES10 312.1 (0.0%) 0.7 (0.47%) 0.9 (0.08%) 68.6 (0.10%) 53.8 (0.11%)

5.2 Test instances from the literature

5.2.1 The SIZES problem

We first consider all instances of the SIZES test problem suite [13] from SIPLIB.
These instances have mixed-binary variables in both stages, and differ in the number
of scenarios, namely 3, 5, and 10. The DEF of the largest instance has 341 constraints
and 825 variables, of which 110 are binary. We refer to [2] for further details. In
Table 1, we report the outcomes of LBDA(α) and solving the DEF.

We observe from Table 1 that LBDA(α) performs very well for all choices of α.
Indeed, on every instance, the optimality gaps of all LBDA(α) solutions are below
0.5%, and below 0.2% for α = α+. Moreover, LBDA(α) runs very fast for all
instances: for a single value of α, the computation time of LBDA(α) is always below
one second.

Another observation is that LBDA(α#) and LBDA(α+) consistently outperform
LBDA(0), at the expense of additional computation time. Nevertheless, the computa-
tion times of LBDA(α) for α# and α+ are still moderate, and they scale much better
to larger instances than solving the DEF. In particular, the time taken to solve the
DEF grows exponentially as the sample size S increases, whereas the computation
times of LBDA(α) are approximately linear in S. Finally, LBDA(α) performs very
well if α = α∗. However, since α∗ is not known in practice, it is useful to observe that
LBDA(α+) achieves similar performance.

5.2.2 The stochastic server location problem

The SSLP instances are more challenging in terms of input size than the SIZES
instances. Indeed, the DEF of the largest instance has over 1,000,000 binary deci-
sion variables and 120,000 constraints. Their first- and second-stage problems are
pure binary and mixed-binary, respectively, and ω follows a discrete distribution. A
full problem description can be found in [18], in which the instances are solved using
the D2 algorithm of [31]. See also [1] and [12] for more recent computational exper-
iments on these test instances using other exact approaches. In Table 2 we report the
best known running time for each SSLP instance over all these exact approaches, along
with the outcomes of LBDA(α).
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Strikingly, LBDA(α) was able to solve all instances to optimality for α = α+
and α = α∗. Moreover, LBDA(0) and LBDA(α#) solved all instances except
SSLP_15_45_5, on which both achieved an optimality gap of 0.45%. In terms of
computation time, LBDA(0) is clearly preferred to LBDA(α#) and LBDA(α+), while
achieving similar results. Finally, although directly comparing LBDA(α) to the other
approaches is not completely fair since the algorithms were run on different machines,
it is clear that LBDA(α) is generally faster than exact approaches. Indeed, LBDA(0)
solved all instances in under one minute, and eight out of ten instances were solved in
less than ten seconds, whereas the fastest exact approach required at least one minute
for six out of ten instances, and over one hour for the largest instance.

5.2.3 An investment planning problem

We consider the following problem by Schultz et al. [29],

min
x

{−3/2x1 − 4x2 + Eω[v(ω, x)] : x ∈ [0, 5]2},

where

v(ω, x) = min
y∈Y {−16y1−19y2−23y3−28y4 : 2y1 + 3y2 + 4y3 + 5y4 ≤ ω1 − x1

6y1 + y2 + 3y3 + y4 ≤ ω2 − x2},

and where the second-stage decision variables are binary, i.e. Y = {0, 1}4, and the
random vector ω = (ω1, ω2) follows a discrete distribution which assigns equal prob-
abilities to S = 441 equidistant lattice points of [5, 15]2. Schultz et al. consider a
second variant of this problem by choosing the technology matrix T as

T = H :=
(
2/3 1/3
1/3 2/3

)
,

whereas in the original formulation, T is the identity matrix I2. For both variants,
we consider S ∈ {4, 9, 36, 121, 441, 1681, 10201} and Y = Z

4+, in addition to Y =
{0, 1}4, as is done in [19]. For each of the resulting 28 instances, Table 3 shows the
results of LBDA(α) and solving the DEF. Note that if Gurobi could not solve an
instance within two hours, then we report the gaps to x̂∗, the best solution that Gurobi
was able to find.

Overall, LBDA(α) performs well on the instances in Table 3. In particular, for
α = α# and α = α+, LBDA(α) achieves gaps that are below 2% on 22 and 23
out of 28 instances, respectively. In general, LBDA(α) achieves better results if S is
larger. For example, if Y = {0, 1}4 and T = H , then the gaps are strictly decreasing
in S. This is in line with the performance guarantee of LBDA(α) in Theorem 3: if
S is larger, then the distributions of ω1 and ω2 more closely resemble a continuous
uniform distribution on [5, 15], which has small total variation, i.e. the error bound in
Theorem 3 is small.
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Table 3 An investment planning problem

Computation time (s) (gap to x̂∗)

Instance DEF LBDA(α)

Y T S x̂∗ α = 0 α = T x̂∗ α = α# α = α+

Z
4+ H 4 0 0.0 (0.0%) 0.0 (0.0%) 0.4 (0.0%) 0.4 (0.0%)

9 0 0.0 (12.9%) 0.0 (0.0%) 0.7 (2.2%) 0.7 (0.1%)

36 0.5 0.0 (5.0%) 0.0 (5.8%) 3.0 (0.5%) 2.9 (0.0%)

121 8.2 0.1 (4.0%) 0.1 (4.0%) 7.6 (4.0%) 7.7 (4.0%)

441 72001 0.3 (3.1%) 0.2 (3.1%) 27.6 (3.1%) 27.8 (3.1%)

1681 72001 0.9 (0.0%) 0.9 (0.0%) 104.4 (0.0%) 105.6 (0.0%)

10201 73971 5.5 (−0.2%) 5.4 (−0.2%) 631.8 (−0.2%) 639.1 (−0.2%)

Z
4+ I2 4 0 0.0 (0.0%) 0.0 (0.0%) 0.3 (0.0%) 0.3 (0.0%)

9 0 0.0 (0.9%) 0.0 (1.0%) 0.8 (0.9%) 0.8 (0.0%)

36 0 0.0 (4.3%) 0.0 (0.9%) 2.9 (0.9%) 2.9 (0.0%)

121 0.5 0.1 (4.0%) 0.1 (2.8%) 9.8 (0.0%) 9.9 (0.0%)

441 20.5 0.3 (0.9%) 0.3 (1.5%) 36.5 (0.2%) 36.1 (0.0%)

1681 72001 1.3 (0.7%) 1.2 (0.1%) 136.1 (0.0%) 138.2 (0.0%)

10201 72691 8.2 (0.3%) 7.9 (0.0%) 864.5 (−0.1%) 883.0 (−0.1%)

{0, 1}4 H 4 0 0.0 (8.8%) 0.0 (8.8%) 0.2 (8.8%) 0.2 (8.8%)

9 0 0.0 (5.0%) 0.0 (5.0%) 0.4 (5.0%) 0.5 (5.0%)

36 0.7 0.0 (1.6%) 0.0 (1.6%) 1.9 (1.6%) 2.0 (1.6%)

121 32.5 0.1 (1.8%) 0.1 (1.8%) 6.7 (1.8%) 6.7 (1.8%)

441 72001 0.3 (2.1%) 0.3 (2.1%) 24.2 (2.1%) 24.3 (2.1%)

1681 72001 0.9 (0.3%) 0.9 (0.3%) 92.0 (0.3%) 91.9 (0.3%)

10201 72041 5.0 (0.1%) 5.1 (0.1%) 554.5 (0.1%) 553.4 (0.1%)

{0, 1}4 I2 4 0 0.0 (1.9%) 0.0 (14.8%) 0.3 (1.9%) 0.3 (0.1%)

9 0 0.0 (1.4%) 0.0 (0.0%) 0.6 (1.4%) 0.7 (0.1%)

36 0 0.0 (5.0%) 0.0 (2.6%) 3.4 (2.0%) 3.3 (1.0%)

121 0.9 0.1 (2.1%) 0.1 (4.7%) 10.7 (1.5%) 11.1 (0.4%)

441 118.3 0.4 (2.5%) 0.4 (0.3%) 41.6 (1.3%) 42.5 (0.4%)

1681 72041 1.8 (0.9%) 1.8 (1.1%) 162.1 (0.9%) 166.5 (0.3%)

10201 72931 10.5 (1.1%) 10.9 (0.9%) 1032.7 (0.8%) 1055.1 (0.0%)

1 DEF could not be solved in time: x̂∗ denotes best solution found by Gurobi.

On some instances, LBDA(α) does not consistently performwell for all values of α.
For example, if Y = Z

4+, T = H , and S = 9, then LBDA(α+) and LBDA(0) achieve
gaps of 0.1% and 12.9%, respectively. Furthermore, the instances with Y = {0, 1}4,
T = H , and S ∈ {4, 9} turn out to be difficult instances for LBDA(α): for all choices
of α, the resulting gaps are 8.8% and 5%, respectively.

In fact, for every choice of α, LBDA(α) achieves identical gaps if Y = {0, 1}4 and
T = H , but the gaps are much smaller if S ≥ 36, e.g. if S = 10201, then the gaps
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786 N. van der Laan, W. Romeijnders

are 0.1%. In contrast, there are large differences between the different choices of α if
Y = {0, 1}4 and T = I . For these instances, α = α# and α = α+ outperform the other
choices ofα. However, similar as for the SIZES instances in Sect. 5.2.1, there is a trade-
off between performance and computation times, since LBDA(α+) and LBDA(α#)

require 100LBDA(α) runs,which is computationallymore demanding thanLBDA(0).
Nevertheless, on every instance, the computation times of LBDA(α) for α ∈ {α#, α+}
are below 20 minutes, and below 3 minutes if S ≤ 1681.

5.3 Randomly generated test instances

We generate random MIR problems of the form (1), with X = R
n1+ and

Q(x) = Eω

[
min
y

{
qy : Wy ≥ ω − T x, y ∈ Z

p
+
}]

, x ∈ X .

In addition, we assume that the components of the random vector ω ∈ R
m fol-

low independent normal distributions with mean 10 and standard deviation σ ∈
{0.1, 0.5, 1, 2, 4, 10}. The parameters c, q, T , and W are fixed, and their elements are
drawn from discrete uniform distributions with supports contained in [1, 5], [5, 10],
[1, 6], and [1, 6], respectively.

The reason that we consider multiple values of the standard deviation σ is that
Theorem 3 implies that LBDA(α) performs better as σ increases. This is because the
total variations of the one-dimensional conditional pdf are small if σ is large, and thus
the error bound on the optimality gap achieved by LBDA(α) is also small.

To prevent noise in the outcomes of our experiments, we compute the average opti-
mality gaps, costs, and computation times over 20 randomly generated test instances
for each value of σ . We consider test instances of two different sizes, namely n1 = 10,
p = 5, m = 5 (small), and n1 = 100, p = 40, m = 20 (large). Tables 4 and 5 display
the results for the small and large versions, respectively.

From these results, we observe that LBDA(α) clearly outperforms the sampling
solutions in terms of computation time and scalability to larger problem instances. In
particular, we observe that the computation time of LBDA(α) is of the same order of
magnitude as that of xLP, while it performs significantly better in terms of optimality
gaps and out-of-sample estimated expected costs. Undeniably, our results indicate
that LBDA(α) can be implemented very efficiently and that it can handle large MIR
problem instances.

In line with the performance guarantee in Theorem 3, LBDA(α) performs better for
larger values of σ . For example, on the small instances, the optimality gaps achieved
by LBDA(0) are strictly decreasing in σ , and for σ = 10.0, LBDA(α+) outperforms
the sampling solution x̄S . A similar observation is true for the optimal solution of
the generalized α-approximations Q̂α , as we would expect based on the error bound
for Q̂α in Theorem 2. Observe, however, that even for large values of σ , the optimality
gaps reported in Table 4 for LBDA(α) are relatively large, i.e. around 3–4%, and that
the optimality gaps achieved by e.g. LBDA(α+) are not strictly decreasing in σ . The
reason is that the actual optimality gaps are likely much smaller than the upper bounds
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reported in Table 4. This is because they are computed using the MRP, which relies on
solvingmultiple SAAs of the original problem. Since, however, Gurobi has difficulties
solving the DEFs of these SAAs in reasonable time, especially for large values of σ ,
the bounds obtained using the MRP are typically not sharp.

Interestingly, xLP also performs better as σ increases. An explanation is that our
error bound for the generalized α-approximation implies that the MIR function Q
becomes closer to a convex function as σ increases. Thus, since the LP-relaxation
of Q is a convex lower bound of Q, its approximation error is expected to become
smaller as σ increases. Note however, that unlike the generalized α-approximations,
the approximation error of the LP-relaxation does not go to zero. Indeed, based on our
results, LBDA(α) is clearly preferred to xLP, since LBDA(α) consistently outperforms
xLP, at the expense of very little additional computation time.

Furthermore, the results in Tables 4 and 5 indicate that α = T x̄S is a good choice
for LBDA(α). Indeed, if α = T x̄S , then LBDA(α) and x∗

α perform similar to x̄S .
For example, on the small instances, they achieve optimality gaps that are on average
within 0.2% and 1.1% of x̄S , respectively. However, since x̄S is difficult to compute in
practice, the use of LBDA(T x̄S) is limited, whereas LBDA(α+) and LBDA(α#) can
be applied directly. Similar as for the instances in Sects. 5.2.1 and 5.2.3, they achieve
significantly better results than LBDA(0), at the expense of higher computation times.
In particular, on the large instances, LBDA(α#) performs 2 to 5 times as well as
LBDA(0), and on the small instances, LBDA(α+) achieves optimality gaps that are
within 0.6% of x̄S for σ ≥ 0.5. While the computation times of LBDA(α) increase
for α = α+ and α = α# compared to α = 0, they remain manageable: even the large
instances are solved within 26 minutes.

Finally, observe from Table 4 that LBDA(α) generally achieves better or similar
performance as x∗

α . In other words, the fact that LBDA(α) uses loose optimality cuts to
solve the generalized α-approximations has no negative effect on the solution quality.

6 Conclusion

We consider two-stage mixed-integer recourse models with random right-hand side.
Due to non-convexity of the recourse function, such models are extremely difficult to
solve. We develop a tractable approximating model by using convex approximations
of the recourse function. In particular, we propose a new class of convex approxi-
mations, the so-called generalized α-approximations, and we derive a corresponding
error bound on the difference between these approximations and the true recourse
function. In addition, we show that this error bound is small if the variability of the
random parameters in the model is large. More precisely, the error bound for the gen-
eralized α-approximations goes to zero as the total variations of the one-dimensional
conditional probability density functions of the random right-hand side vector in the
model go to zero.

The advantage of the generalized α-approximations over existing convex approx-
imations is that it can be solved efficiently. In fact, we describe a loose Benders
decomposition algorithm, LBDA(α), which efficiently solves the corresponding
approximating model. The quality of the candidate solution x̂α generated by
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LBDA(α) in the original model is guaranteed by Theorem 3, which states an upper
bound on the optimality gap of x̂α . This performance guarantee is similar to the error
bound we prove for the generalized α-approximations. Indeed, we show that the opti-
mality gap of x̂α is small if the variability of the random parameters in the model is
large.

In addition to this theoretical guarantee on the solution quality, we assess
LBDA(α) empirically on a range of test instances. In particular, we consider the
SIZES and SSLP instances from SIPLIB, an investment planning problem by [29],
and randomly generated instances. We find that LBDA(α) performs well in terms of
computation times, scalability to larger problem instances, and solution quality. In par-
ticular, LBDA(α) is able to solve larger instances than traditional sampling techniques
and its computation times scale more favourably in the input size of the instances.
In terms of solution quality, LBDA(α) solves the SIZES and SSLP instances to near
optimality and generally performs very well on the investment planning instances.
Moreover, on the randomly generated instances, LBDA(α) performs similar to tradi-
tional sampling techniques and achieves small optimality gaps if the variability of the
random parameters in the model is medium to large.

One avenue for future research is to derive sharper theoretical error bounds for the
generalized α-approximations.While Theorem 3 provides conditions under which our
solution method performs well, the quantitative error bound cannot be computed, as it
depends on an unknown and potentially large constantC . A sharp tractable error bound
would be an improvement over our current results. Another avenue is the extension of
our solution method to more general mixed-integer recourse models, for example by
allowing for randomness in the second-stage cost coefficients q, technology matrix T ,
or recourse matrix W .
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Appendix

Proof of Theorem 2 Our proof is similar to e.g. [23, Theorem 5.1] and [21, Theorem
2]. Here, we point out the differences. In particular, we show that there exist vectors
σk , k = 1, . . . , K and a constant R > 0, such that

(i) if ω − T x ∈ σk + Λk , then v(ω, x) − v̂α(ω, x) is zero-mean Bk-periodic, and
(ii) |v(ω, x) − v̂α(ω, x)| ≤ R,
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where Λk , k = 1, . . . , K , are the closed convex cones from Lemma 1. Property (i)
follows from Lemmas 1 (iii) and 3 (ii), and the fact that ψk(ω − T x) − ψk(ω − α) is
zero-mean Bk-periodic.

In order to prove (ii), we use a similar argument as in [23, Lemma 3.6] and [21,
Proposition 2]. It suffices to show that there exists a constant R′ such that |v̂α(ω, x)−
vLP(ω, x)| ≤ R′. We can take R′ = maxk wk , where wk are the upper bounds on ψk

from Lemma 1, k = 1, . . . , K . ��
Proof of Lemma 2 Our line of proof is based on [3]. For any ν > 0, consider a finite
set Xν such that for all x ∈ X , there exists an x ′ ∈ Xν such that ||x − x ′|| ≤ ν. Such
a set Xν exist due to Assumption 1. Let x ∈ X be given and let x ′ ∈ Xν be such that
||x − x ′|| ≤ ν. Note that

|Q̂α(x) − Q̂S
α(x)| ≤|Q̂α(x) − Q̂α(x ′)| + |Q̂α(x ′) − Q̂S

α(x ′)|
+ |Q̂S

α(x ′) − Q̂S
α(x)|. (20)

The first and third term on the right-hand side of (20) can be bounded by noting that
both Q̂α and Q̂S

α are Lipschitz continuous. Denote Lipschitz constants of Q̂α and Q̂S
α

by L1 and L2, respectively. We obtain

|Q̂α(x) − Q̂S
α(x)| ≤ (L1 + L2)ν + |Q̂α(x ′) − Q̂S

α(x ′)|,

which gives

sup
x∈X

∣∣∣Q̂α(x) − Q̂S
α(x)

∣∣∣ ≤ (L1 + L2)ν + sup
x ′∈Xν

∣∣∣Q̂α(x ′) − Q̂S
α(x ′)

∣∣∣ .

The first term (L1 + L2)ν can be made arbitrarily small by letting ν → 0. The result

follows, because for fixed ν, the second term supx ′∈Xν

∣∣∣Q̂α(x ′) − Q̂S
α(x ′)

∣∣∣ goes to zero

w.p. 1 as S → ∞. To see this, fix any x ′ ∈ Xν , and consider the random variable

ξ := max
k=1,...,K

{λk(ωs − T x ′) + ψk(ωs − α)}.

Thus, by the SLLN, Q̂S
α(x ′) → Q̂α(x ′) w.p. 1 as S → ∞. We can apply the

SLLN since E[ξ ] exists and is finite by Assumptions (A2)–(A4). The result follows
because Xν is finite. ��
Proof of Lemma 3 It follows from the definitions of v̂α and να that v̂α ≥ να . Moreover,
we can take R = maxk wk , where wk are the upper bounds on ψk , k = 1, . . . , K ,
from Lemma 1.

To prove (ii), note that by the Basis Decomposition Theorem in [36], there exist
basis matrices Bk , k = 1, . . . , K , and closed convex cones Λk = {t : (Bk)−1t ≥ 0}
such that ω − T x ∈ Λk implies k(ω, x) = k, and thus

να(ω, x) = λk(ω − T x) + ψk(ω − α). (21)
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It remains to show that there exists σk ∈ Λk such that v̂α(ω, x) = λk(ω − T x) +
ψk(ω −α) if ω − T x ∈ σk +Λk . Fix arbitrary l ∈ {1, . . . , K }. It suffices to show that
there exist σkl ∈ Λk such that ω − T x ∈ σkl + Λk implies that

λk(ω − T x) + ψk(ω − α) ≥ λl(ω − T x) + ψ l(ω − α). (22)

This is because

K⋂

l=1

(σkl + Λk) = σk + Λk

for some σk ∈ Λk . Hence, if ω − T x ∈ σk + Λk , then

v̂α(ω, x) = max
k=1,...,K

{
λk(ω − T x) + ψk(ω − α)

}
= λk(ω − T x) + ψk(ω − α).

To prove (22), note that if λk = λl , then by Lemma 1 (iii),ψk(ω−α) = ψ l(ω−α),
so that (22) holds with equality. If λk �= λl , then λks > λl s for any s ∈ int(Λk). For
sufficiently large γ > 0, we thus have

γ (λks − λl s) ≥ wl .

If we take σkl = γ s, then (22) holds by observing thatψk(ω−α) ≥ 0 andψ l(ω−α) ≤
wl . ��
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