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Abstract
In this paper we establish general formulas for the subdifferential of the pointwise
supremum of convex functions, which cover and unify both the compact continuous
and the non-compact non-continuous settings. From the non-continuous to the con-
tinuous setting, we proceed by a compactification-based approach which leads us to
problems having compact index sets and upper semi-continuously indexed mappings,
giving rise to new characterizations of the subdifferential of the supremum by means
of upper semicontinuous regularized functions and an enlarged compact index set. In
the opposite sense, we rewrite the subdifferential of these new regularized functions
by using the original data, also leading us to new results on the subdifferential of
the supremum. We give two applications in the last section, the first one concerning
the nonconvex Fenchel duality, and the second one establishing Fritz-John and KKT
conditions in convex semi-infinite programming.

Keywords Supremum of convex functions · Subdifferentials · Stone–Čech
compactification · Convex semi-infinite programming · Fritz-John and KKT
optimality conditions

Mathematics Subject Classification 46N10 · 52A41 · 90C25

1 Introduction

In this paper we deal with the characterization of the subdifferential of the pointwise
supremum f := supt∈T ft of a family of convex functions ft : X → R ∪ {±∞},
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218 R. Correa et al.

t ∈ T , with T being an arbitrary nonempty set, defined on a separated locally convex
space X . We obtain new characterizations which allow us to unify both the compact
continuous and the non-compact non-continuous setting ([8,9,27,30], etc.). The first
setting relies on the following standard conditions in the literature of convex analysis
and non-differentiable semi-infinite programming:

T is compact and the mappings f(·)(z), z ∈ X , are upper semi-continuous.

In the other framework, called the non-compact non-continuous setting, we do not
assume the above conditions. In other words (see, e.g., [14,15,18,21,29–31], etc.):

T is an arbitrary set, possibly infinite and without any prescribed topology,

and no requirement is imposed on the mappings f(·)(z).

Going from the non-continuous to the continuous setting, we follow an approach
based on the Stone–Čech compactification of the index set T . At the same time, we
build an appropriate enlargement of the original family ft , t ∈ T , which ensures
the fulfillment of the upper semi-continuity property required in the compact setting.
Since the new setting is naturally compact, by applying the results in [8,9], we obtain
new characterizations given in terms of the exact subdifferential at the reference point
of the new functions and the extended active set. In this way, we succeed in unifying
both settings. In [10], we gave the first steps in this direction, using compactification
arguments, but in the current paper we go further into the subject with some enhanced
formulas.

To move in the other direction, we rewrite the subdifferential of these new regu-
larizing functions in terms of the original data, and this also leads us to new results
on the subdifferential of the supremum. In this last case, the characterizations are
given upon limit processes on the ε-subdifferentials at the reference point of the
almost-active original functions. These limit processes also involve approximations
by finite-dimensional sections of the domain of the supremum function.

Themain results of this paper are applied to derive formulas for the subdifferential of
the conjugate function [3–5,23]. Our approach permits simple proofs of these results,
with the aim of relating the solution set of a nonconvex optimization problem and its
convexified relaxation. Additionally, our results give rise to new Fritz-John and KKT
conditions in convex semi-infinite programming.

The paper is organized as follows. After a short section introducing the notation,
in Sect. 3 we present some preliminary results in the continuous setting. In Sect. 4 we
apply our compactification approach to obtain, in Theorem 4, a first characterization of
the subdifferential of the supremum. Such a theorem constitutes an improved version
of the main result in [10], as the requirement of equipping T with a completely regular
topology is eliminated. Theorem 4 is enhanced in Sect. 5, allowing for a more natural
interpretation of the regularized functions. The main result in Sect. 6 is Theorem 12,
involving only the ε-subdifferentials of the original data functions. This theorem,
whose proof is based on Lemmas 10 and 11, is crucial in the proposed approach to
move from the continuous to the non-continuous setting. Finally, in Sect. 7, we give
two applications. The first one addresses the extension of the classical Fenchel duality
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Subdifferential of the supremum function: moving back and… 219

to nonconvex functions, and the second one establishes Fritz-John andKKToptimality
conditions for convex semi-infinite optimization.

2 Notation

Let X be a (real) separated locally convex space, with its topological dual X∗ endowed
with the w∗-topology. By NX (NX∗ ) we denote the family of closed, convex, and
balanced neighborhoods of the origin in X (X∗), also called θ -neighborhoods. The
spaces X and X∗ are paired in duality by the bilinear form (x∗, x) ∈ X∗ × X �→
〈x∗, x〉 := 〈x, x∗〉 := x∗(x). The zero vectors in X and X∗ are both denoted by θ.

We use the notation R := R ∪ {−∞,+∞} and R∞ := R ∪ {+∞}, and adopt the
convention (+∞) + (−∞) = (−∞) + (+∞) = +∞.

Given two nonempty sets A and B in X (or in X∗), we define the algebraic (or
Minkowski) sum by

A + B := {a + b : a ∈ A, b ∈ B}, A + ∅ = ∅ + A = ∅. (1)

By co(A), cone(A), and aff(A), we denote the convex, the conical convex, and
the affine hulls of A, respectively. Moreover, int(A) is the interior of A, and cl A
and A are indistinctly used for denoting the closure of A (unless otherwise specified,
the topology considered on X∗ is the weak* topology). We use ri(A) to denote the
(topological) relative interior of A (i.e., the interior of A in the topology relative to
aff(A) if aff(A) is closed, and the empty set otherwise).

Associated with A �= ∅ we consider the polar set and the orthogonal subspace
given respectively by

A◦ := {
x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 for all x ∈ A

}
,

and

A⊥ := {
x∗ ∈ X∗ : 〈x∗, x〉 = 0 for all x ∈ A

}
.

If A ⊂ X∗, then the following relation holds

⋂

L∈F (A + L⊥) ⊂ cl A, (2)

where F is the family of finite-dimensional linear subspaces in X .

If A ⊂ X is convex and x ∈ X , we define the normal cone to A at x as

NA(x) := {
x∗ ∈ X∗ : 〈x∗, z − x〉 ≤ 0 for all z ∈ A

}
,

if x ∈ A, and the empty set otherwise.
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220 R. Correa et al.

The basic concepts in this paper are traced from [25,28]. Given a function f :
X −→ R, its (effective) domain and epigraph are, respectively,

dom f := {x ∈ X : f (x) < +∞} and epi f := {(x, λ) ∈ X × R : f (x) ≤ λ}.

We say that f is proper when dom f �= ∅ and f (x) > −∞ for all x ∈ X . By cl f and
co f we respectively denote the closed and the closed convex hulls of f , which are the
functions such that epi(cl f ) = cl(epi f ) and epi(co f ) = co(epi f ). We say that f is
lower semicontinuous (lsc, for short) at x if (cl f )(x) = f (x), and lsc if cl f = f .

Given x ∈ X and ε ≥ 0, the ε -subdifferential of f at x is

∂ε f (x) = {x∗ ∈ X∗ : f (y) ≥ f (x) + 〈x∗, y − x〉 − ε for all y ∈ X},

when x ∈ dom f , and ∂ε f (x) := ∅ when f (x) /∈ R. The elements of ∂ε f (x) are
called ε-subgradients of f at x . The subdifferential of f at x is ∂ f (x) := ∂0 f (x),
and its elements are called subgradients of f at x . If f and g are convex functions
such that one of them is finite and continuous at a point of the domain of the other
one, then Moreau-Rockafellar’s theorem says that

∂( f + g) = ∂ f + ∂g. (3)

Given a function f : X → R, the (Fenchel) conjugate of f is the function f ∗ : X∗ →
R defined as

f ∗(x∗) := sup
x∈X

{〈x∗, x〉 − f (x)}.

The indicator and the support functions of A ⊂ X are respectively defined as

IA(x) :=
{
0, if x ∈ A,

+∞, if x ∈ X \ A,

and

σA := I∗A.

Provided that f ∗ is proper, by Moreau’s theorem we have

f ∗∗ = co f , (4)

where f ∗∗ := ( f ∗)∗. For example, if { fi , i ∈ I } is a nonempty family of proper lsc
convex functions, then

(supi∈I fi )
∗ = co(inf i∈I f ∗

i ), (5)

provided that the supremum function supi∈I fi is proper. Thus, given a nonempty
family of closed convex sets Ai ⊂ X , i ∈ I , such that ∩i∈I Ai �= ∅, we
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Subdifferential of the supremum function: moving back and… 221

have I∩i∈I Ai (x) = supi∈I IAi (x) and, so, by taking the conjugate in the equalities
I∩i∈I Ai (x) = supi∈I IAi (x) = supi∈I σ ∗

Ai
(x), we obtain

σ∩i∈I Ai = (I∩i∈I Ai )
∗ = (supi∈I IAi )

∗ = co(inf i∈I σAi ).

3 Preliminary results in the continuous framework

In Sect. 4 we develop a compactification process addressed to give new characteriza-
tions of the subdifferential of the pointwise supremum, with the aim of unifying both
the compact and non-compact settings. In this section we gather some preliminary
results in the continuous setting.

We give a family of convex functions ft : X → R, t ∈ T , and the associated supre-
mum function f := supt∈T ft . When ri(dom f ) �= ∅ and f|aff(dom f ) is continuous on
ri(dom f ), by [9, Corollary 3.9] we know that

∂ f (x) = co
{⋃

t∈T (x)
∂( ft + Idom f )(x)

}
.

Consequently, if f is continuous somewhere in its domain, thenweobtain ([9, Theorem
3.12])

∂ f (x) = co
{⋃

t∈T (x)
∂ ft (x)

}
+ Ndom f (x),

and the closure is removed in finite dimensions (see, also, [9, Theorem 3.12])). In
particular, when f is continuous at the reference point x, the normal cone above
collapses to θ and we recover Valadier’s formula [30].

More generally, in the absence of continuity assumptions on the supremum function
f we proved in [10, Proposition 1] the following result in which we denote, for any
given x ∈ dom f ,

F(x) := {L ⊂ X : L is a finite-dimensional linear subspace containing x} , (6)

Tε(x) := {t ∈ T : ft (x) ≥ f (x) − ε} , ε ≥ 0,

with T0(x) := T (x).

Proposition 1 ([10, Proposition 1]) Fix x ∈ X and suppose that, for some ε > 0, the
set Tε(x) is compact Hausdorff and, for each net (ti )i ⊂ Tε(x) converging to t,

lim supi fti (z) ≤ ft (z) for all z ∈ dom f ; (7)

that is, the functions f(·)(z) are upper semi-continuos (usc, in brief) relatively to Tε(x).
Then we have

∂ f (x) =
⋂

L∈F(x)
co

{⋃

t∈T (x)
∂( ft + IL∩dom f )(x)

}
. (8)
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For the sake of completeness, we provide next a sketch of the proof.
Sketch of the proof First, we recall that (see relation (8) in [8, p. 1109])

∂ f (x) =
⋂

L∈F(x)
∂( f + IL)(x). (9)

Next, we fix L ∈ F(x) and denote by ht , t ∈ T , the restriction of the function ft + IL
to the subspace L . If h := supt∈T ht , then dom h = (dom f ) ∩ L ,

{t ∈ T : ht (x) ≥ h(x) − ε} = Tε(x), for all ε ≥ 0,

and assumption (7) reads, for every net (ti )i ⊂ Tε(x) converging to t,

lim supi hti (z) ≤ ht (z) for all z ∈ dom h.

Consequently, [8, Theorem 3] applies and yields the following equation in the dual of
L ,

∂h(x) = co
{⋃

t∈T (x)
∂(ht + Idom h)(x)

}
.

Therefore, by an extension argument from the subspace L to the whole space X , the
last equation gives rise to

∂( f + IL)(x) = co
{⋃

t∈T (x)
∂( ft + IL∩dom f )(x)

}
,

and the desired relation follows then by inserting this last relation in (9).
In the general setting, when either T is not compact and/or some of the mappings

t → ft (z), z ∈ dom f , fail to be usc, the active index set T (x) as well as the
subdifferential sets ∂ ft (x) may be empty. To overcome this situation, the following
result given in [15, Theorem 4] (see, also, [14] for finite dimensions) appeals to the
ε-subdifferentials of the data functions and the ε-active set Tε(x).

Proposition 2 If

cl f = sup
t∈T

(cl ft ), (10)

then for every x ∈ X

∂ f (x) =
⋂

ε>0,L∈F(x)
co

{⋃

t∈Tε(x)
∂ε ft (x) + NL∩dom f (x)

}
. (11)

Also here, the intersection over the L’s is dropped out if ri(dom f ) �= ∅ ([15, Corol-
lary 8]). Moreover, if f is continuous somewhere, so that (10) holds automatically
([15, Corollary 9]), then the last formula reduces to

∂ f (x) = Ndom f (x) +
⋂

ε>0
co

{⋃

t∈Tε(x)
∂ε ft (x)

}
.
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Subdifferential of the supremum function: moving back and… 223

Hence, provided that f is continuous at x, we obtain the formula in [31] (where the
underlying space X is additionally assumed to be normed).

Formula (11) is proved in [23, Corollary 4.11] under the weaker assumption

f ∗∗ = sup
t∈T

f ∗∗
t .

Under this assumption on the biconjugate, in [23, Theorem 4.1] an alternative formula
for the subdifferential of f is provided by replacing the subspaces L ∈ F(x) by the
family of segments {[z, x], z ∈ dom f } (see also [18] for the use of other families of
convex sets instead of F(x)).

Condition (10) guarantees the possibility of characterizing ∂ f (x) by means of the
ft ’s, and not via the augmented functions ft + IL∩dom f as in Proposition 1. Thus, to
complete the analysis, we give next a consequence of (11), which avoids to appeal to
condition (10).

Proposition 3 For every x ∈ X ,

∂ f (x) =
⋂

ε>0,L∈F(x)
co

{⋃

t∈Tε(x)
∂ε( ft + IL∩dom f )(x)

}
. (12)

Proof Fix x ∈ dom f and L ∈ F(x), and denote

gt := ft + IL∩dom f , t ∈ T ; g := supt∈T gt .

We have dom gt = L ∩ dom f and

dom g ∩ (∩t∈T ri(dom gt )) = (L ∩ dom f ) ∩ ri(dom f ∩ L) = ri(dom f ∩ L) �= ∅,

so that, by [15, Corollary 9(iv)], the family {gt , t ∈ T } satisfies condition (10). At the
same time we have, for all ε ≥ 0,

{t ∈ T : gt (x) ≥ g(x) − ε} = Tε(x).

Then, since that ∂ f (x) ⊂ ∂( f + IL∩dom f )(x) = ∂g(x), by Proposition 2 we obtain
that

∂ f (x) ⊂
⋂

ε>0
co

{⋃

t∈Tε(x)
∂εgt (x) + NL∩dom g(x)

}

⊂
⋂

ε>0
co

{⋃

t∈Tε(x)
∂ε( ft + IL∩dom f )(x)

}
,

and the inclusion “⊂” in (12) follows as L was arbitrarily chosen. The opposite inclu-
sion is straightforward, and we are done. ��
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4 Compactification approach to the subdifferential

Our main objective in this section is to give a new characterization for ∂ f (x), which
covers both formula (8) in the compact-continuous setting, using the active set and the
exact subdifferential, and formula (12) in the non-compact non-continuous framework,
given in terms of ε-active indices and ε-subdifferentials. To this aim, we develop
a compactification approach which works by extending the original index set T to
a compact set T̂ , and building new appropriate functions fγ , γ ∈ T̂ , that satisfy
property (7) of Proposition 1. To make the paper self-contained, we resume here the
main features of the compactification process, which can be also found in [10].

We start by assuming that T is endowed with some topology τ, for instance the
discrete topology. If

C(T , [0, 1]) := {ϕ : T → [0, 1] : ϕ is τ -continuous} , (13)

we consider the product space [0, 1]C(T ,[0,1]) ,which is compact for the product topol-
ogy (by Tychonoff theorem). We regard the index set T as a subset of [0, 1]C(T ,[0,1]).
For this purpose we consider the continuous embedding w : T → [0, 1]C(T ,[0,1])

which assigns to each t ∈ T the evaluation function w(t) = γt , defined as

γt (ϕ) := ϕ(t), ϕ ∈ C(T , [0, 1]). (14)

The closure of w(T ) in [0, 1]C(T ,[0,1]) for the product topology is the compact set

T̂ := cl(w(T )), (15)

which is the so-called Stone–Čech compactification of T , also denoted by βT . The
convergence in T̂ is the pointwise convergence; i.e., for γ ∈ T̂ and a net (γi )i ⊂ T̂
we have γi → γ if and only if

γi (ϕ) → γ (ϕ) for all ϕ ∈ C(T , [0, 1]). (16)

Hence, provided that T is completely regular (when endowed with the discrete topol-
ogy, for instance), the mappingw is an homeomorphism between T andw(T ), and if
γi = γti and γ = γt for some t, ti ∈ T , then γi → γ if and only if ti → t in T .

Next, we enlarge the original family { ft , t ∈ T } by introducing the functions fγ :
X → R, γ ∈ T̂ , defined by

fγ (z) := lim supγt→γ, t∈T ft (z). (17)

It can be easily verified that the functions fγ , γ ∈ T̂ , are all convex and satisfy
supγ∈T̂ fγ ≤ f . Moreover, if (tn)n ⊂ T verifies f (z) = limn ftn (z), with z ∈ X ,

then there exist a subnet (ti )i of (tn)n and γ ∈ T̂ such that γti → γ. Hence,

fγ (z) ≥ lim supi fti (z) = limi fti (z) = limn ftn (z) = f (z),
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Subdifferential of the supremum function: moving back and… 225

and so supγ∈T̂ fγ ≥ f . In other words, the functions fγ provide the same supremum
f as the original ft ’s; i.e.,

supγ∈T̂ fγ = supt∈T ft = f .

If f (x) ∈ R and ε ≥ 0, then the extended ε-active index set of f at x is

T̂ε(x) := {
γ ∈ T̂ : fγ (x) ≥ f (x) − ε

}
, (18)

with T̂ (x) := T̂0(x); when f (x) /∈ R we set T̂ε(x) := ∅ for all ε ≥ 0. By the
compactness of T̂ and the simple fact that, for each t ∈ T ,

fγt (x) = lim sup
γs→γt

fs(x) = sup

{
lim
i

fti (x), γti → γt

}

≥ sup

{
lim
i

fti (x), ti → t

}
≥ ft (x),

we verify that T̂ε(x) �= ∅. Also, the closedness of T̂ε(x) is established by using a
diagonal process.

The way that the functions fγ , γ ∈ T̂ , are constructed ensures the fulfillment of the
upper semi-continuity property required in Proposition 1. More precisely, assuming
that f (x) ∈ R and ε ≥ 0, for every net (γi )i ⊂ T̂ε(x) with an accumulation point
γ ∈ T̂ε(x), and every z ∈ dom f , we verify that

lim supi fγi (z) ≤ fγ (z). (19)

Indeed, we may assume without loss of generality that γi → γ and lim supi fγi (z) =
limi fγi (z) = α ∈ R. Next, for each i there exists a net (ti j ) j ⊂ T such that

γti j → j γi , fγi (z) = lim j fti j (z);

that is, (γti j , fti j (z)) → j (γi , fγi (z)) and (γi , fγi (z)) →i (γ, α). Then we can find a
diagonal net (ti ji )i ⊂ T such that (γti ji , fti ji (z)) →i (γ, α), and we obtain

fγ (z) ≥ lim supi fti ji (z) = α = lim supi fγi (z).

The compactification process above covers in a natural way the compact frame-
work. Namely, if T is compact Hausdorff (hence, complete regular), then the family{
fγ , γ ∈ T̂

}
above turns out to be the family of the usc regularization of the functions

f(·)(z), given by

f̄t (z) := lim sup
s→t

fs(z).
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In this case, the indexed set T does not change; i.e., T̂ = T .Consequently, if addition-
ally the functions f(·)(z), z ∈ dom f , are already usc, then we recover the classical
compact and continuous setting, originally proposed in [30].

The following theorem characterizes ∂ f (x) in terms of the functions fγ introduced
in (17) and the compact set T̂ (x), when τ is any topology on T . This result is crucial
in the subsequent sections.

Theorem 4 Let ft : X → R, t ∈ T , be convex functions and f = supt∈T ft . Then,
for every x ∈ X ,

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂( fγ + IL∩dom f )(x)

}
. (20)

Proof First, we consider that the topology τ in T is the discrete topology τd , so that
C(T , [0, 1]) := [0, 1]T and T̂ is compact. Moreover, since (T , τd) is completely
regular, T̂ is Hausdorff (see, i.e., [26, §38]). Since f = supγ∈T̂ fγ and (19) holds,
Proposition 1 applies and yields

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ d (x)
∂( f dγ + IL∩dom f )(x)

}
, (21)

where f dγ and T̂ d(x) are defined as in (17) and (18), respectively, but with respect to
the topology τd .

Now, let τ be any topology, so that τ ⊂ τd and, for any (γti )i ⊂ T̂ ,

γti →τd γ ⇐⇒ ϕ(ti ) → γ (ϕ) for all ϕ ∈ [0, 1]T

�⇒ ϕ(ti ) → γ (ϕ) for all ϕ ∈ C(T , [0, 1])

⇐⇒ γti →τ γ ;
hence, for every z ∈ X ,

f dγ (z) = lim sup
γt→τd γ, t∈T

ft (z) ≤ lim sup
γt→τ γ, t∈T

ft (z) = fγ (z).

Moreover, since for all γ ∈ T̂ d(x) we have

f (x) = f dγ (x) ≤ fγ (x) ≤ f (x),

we deduce that

T̂ d(x) ⊂ T̂ (x) and ∂( f dγ + IL∩dom f )(x) ⊂ ∂( fγ + IL∩dom f )(x). (22)

Thus, by (21),

∂ f (x) ⊂
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂( fγ + IL∩dom f )(x)

}
,

and (20) follows as the opposite inclusion is straightforward. ��
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It is worth observing, from the inclusions in (22), that the discrete topology provides
the simplest characterization of ∂ f (x), since it possibly involves less and smaller sets.
Also observe that the intersection over finite-dimensional L in (20) is superfluous in
finite dimensions.

Theorem 4 covers the classical Valadier’s setting as we show in the following
corollary, where the main result is a simpler version of Proposition 1. The formula in
assertions (ii) is a global version of [10, Corollary 3]. Nevertheless, we give here an
alternative proof based on Theorem 4.

Corollary 5 Let ft : X → R, t ∈ T , be convex functions and assume that T is compact
Hausdorff and the mappings f(·)(z), z ∈ dom f , are usc. If f = supt∈T ft , then

∂ f (x) =
⋂

L∈F(x)
co

{⋃

t∈T (x)
∂( ft + IL∩dom f )(x)

}
. (23)

In addition, the following assertions hold:

(i) If X = R
n and f is continuous at x, then

∂ f (x) = co
{⋃

t∈T (x)
∂ ft (x)

}
.

(ii) If f is continuous at x, then

∂ f (x) = co
{⋃

t∈T (x)
∂ ft (x)

}
.

Proof Relation (23) is immediate from (20), as T̂ = T and T̂ (x) = T (x) in the current
setting.

Assume now that X = R
n , so that (23) reads

∂ f (x) = co
{⋃

t∈T (x)
∂( ft + Idom f )(x)

}
,

and the classical Moreau-Rockafellar subdifferential sum rule entails

∂ f (x) = co
{⋃

t∈T (x)
∂ ft (x)

}
+ Ndom f (x).

Thus (i) holds true since that Ndom f (x) = {θ} by the continuity of f at x .
Finally, to establish (ii) we observe that the continuity of f at x also ensures the

continuity of all the ft ’s at x , and so (23) gives rise, again thanks to the classical
Moreau-Rockafellar subdifferential sum rule, to

∂ f (x) =
⋂

L∈F(x)
co

{⋃

t∈T (x)
(∂ ft (x) + L⊥ + Ndom f (x))

}

=
⋂

L∈F(x)
co

{
L⊥ +

⋃

t∈T (x)
∂ ft (x)

}

⊂ co
{⋃

t∈T (x)
∂ ft (x)

}
,

��
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where the last inclusion uses (2). Thus we are done since the converse of the last
inclusion can be easily checked.

Let us also observe that when T admits a one-point compactification T� := T ∪{�}
(� /∈ T ), which occurs if and only if T is locally compact Hausdorff (hence, complete
regular), instead of

{
fγ , γ ∈ T̂

}
we can use the family

{
fγt , t ∈ T ; f�

}
, where

f�(z) := lim sup
t→�

ft (z), z ∈ X . (24)

Indeed, in this case the Stone–Čech compactification of T is

T̂ := {γt , t ∈ T } ∪
{
lim
i

γti : (ti )i ⊂ T , ti → �

}
,

where the limits limi γti and ti → � are in [0, 1]C(T ,[0,1]) and T�, respectively. In this
way we obtain, for all t ∈ T ,

fγt = lim sup
γs→γt , s∈T

fs = lim sup
s→t, s∈T

fs, for t ∈ T , (25)

due to the topological identification of T with w(T ), and

fγ = lim sup
γt→γ, t∈T

ft = lim sup
γt→γ, t→�, t∈T

ft , for γ ∈ T̂ \ T .

Now, we observe that

sup
γ∈T̂ \T

fγ = sup
γ∈T̂ \T

lim sup
γt→γ, t→�, t∈T

ft = lim sup
t→�

ft = f�.

It is clear that the family
{
fγt , t ∈ T ; f�

}
and the (one-point compactification)

index set T ∪ {�} satisfy the assumptions of Proposition 1, together with f =
sup

{
fγt , t ∈ T ; f�

}
. Thus, it suffices to consider Theorem 4 with this new fam-

ily
{
fγt , t ∈ T ; f�

}
instead of the one of the original fγ ’s.

In the particular case when T = N, endowed with the discrete topology, for each
n ∈ N we obtain

fγn = lim sup
γk→γn , k∈N

fk = lim sup
k→n, k∈N

fk = fn,

so that the family to consider in Theorem 4 is

{ fn, n ∈ N; f∞} ,

where

f∞ = lim sup
n→∞

fn .
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Corollary 6 Assume that T is locally compact Hausdorff. Then, for every x ∈ X,
formula (20) holds with

T̂ (x) =
{{

γt , t ∈ T , fγt (x) = f (x)
}
, if f�(x) < f (x),{

γt , t ∈ T , fγt (x) = f (x), �
}
, if f�(x) = f (x),

and, when T = N,

T̂ (x) =
{ {n ∈ N, fn(x) = f (x)} , if f∞(x) < f (x),

{n ∈ N, fn(x) = f (x), ∞} , if f∞(x) = f (x).

5 From non-continuous to continuous. Enhanced formulas

Wegive in this section some new characterizations of ∂ f (x),which provide additional
insight to Theorem 4 and that are applied later on in Sect. 6.

According to Theorem 4, ∂ f (x) only involves the active functions fγ , i.e., when
γ ∈ T̂ (x). The idea behind the following result is to replace these fγ ’s by the new
functions f̃γ : X → R∞, γ ∈ T̂ , defined as

f̃γ (z) := lim sup
γt→γ, ft (x)→ f (x), t∈T

ft (z), (26)

considering only those nets (ti )i ⊂ T associated with functions fti approaching the
supremum function f at the nominal point x . Observe that if γ ∈ T̂ \ T̂ (x), then
f̃γ ≡ −∞ by the convention sup ∅ = −∞, and this function is ignored when taking
the supremum.

Remember that T is endowed with any topology.

Theorem 7 For every x ∈ X we have

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂( f̃γ + IL∩dom f )(x)

}
, (27)

where f̃γ and T̂ (x) are defined in (26) and (18), respectively.

Proof We only need to check the inclusion “⊂ ” when τ is the discrete topology τd ,
and ∂ f (x) �= ∅; hence, f is lsc at x and proper, and we may suppose, without loss
of generality, that x = θ and f (θ) = 0. Let us fix a closed convex neighborhood U
of θ such that f (z) ≥ −1, for all z ∈ U , and denote by gt : X → R∞, t ∈ T , the
functions given by

gt (z) := max { ft (z),−1} . (28)

Thus, for all z ∈ U ,

f (z) = max { f (z),−1} = supt∈T max { ft (z),−1} = supt∈T gt (z),
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and so, applying (20), with the discrete topology τd on T , to the family {gt , t ∈ T } ,

∂ f (θ) = ∂(supt∈T gt )(θ) =
⋂

L∈F(θ)
co

{⋃

γ∈T̃ (θ)
∂(gγ + IL∩dom f )(θ)

}
, (29)

where gγ := lim sup
γt→γ, t∈T

gt and T̃ (θ) := {
γ ∈ T̂ : gγ (θ) = 0

}
.

Let us first verify that

T̃ (θ) = T̂ (θ). (30)

Indeed, if γ ∈ T̃ (θ) so that

0 = gγ (θ) = lim sup
γt→γ, t∈T

gt (θ) ≤ max
{
fγ (θ),−1

} ≤ max { f (θ),−1} = 0,

then fγ (θ) = 0 and, so, γ ∈ T̂ (θ). Conversely, if γ ∈ T̂ (θ), then

0 = fγ (θ) ≤ gγ (θ) ≤ sup
γ∈T̂

gγ (θ) = sup
t∈T

gt (θ) = f (θ) = 0,

and so γ ∈ T̃ (θ).

Next, we fix γ ∈ T̃ (θ) and, by the definition of this set, let (t̄i )i ⊂ T be a net such
that γt̄i → γ and limi gt̄i (θ) = 0; hence,

lim
i

ft̄i (θ) = lim
i

gt̄i (θ) = 0. (31)

We also introduce the functions ϕz, z ∈ dom f , defined on T as follows

ϕz(t) := (max { f (z) + 1, 1})−1(gt (z) + 1),

which are τd -continuous functions such that ϕz(t) ∈ [0, 1] for all t ∈ T , because

−1 ≤ gt (z) ≤ max { f (z),−1} < +∞ for all t ∈ T and z ∈ dom f .

Hence, for every γti → γ we have ϕz(ti ) →i γ (ϕz), and this entails

gti (z) →i −1 + (max { f (z) + 1, 1})γ (ϕz) ∈ R. (32)

Consequently, by taking into account that γt̄i → γ and limi ft̄i (θ) = 0 (see (31)) we
obtain

gγ = lim sup
γt→γ, t∈T

gt = lim
γt→γ

gt = lim
γt→γ, ft (θ)→0

gt , (33)
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which leads us to

gγ + IL∩dom f = lim
γt→γ, ft (θ)→0

(gt + IL∩dom f ) (34)

≤ max

{

lim sup
γt→γ, ft (θ)→0

( ft + IL∩dom f ),−1

}

. (35)

But the two functions on the left and the right have the same value 0 at θ, and so

∂(gγ + IL∩dom f )(θ) ⊂ ∂

(

max

{

lim sup
γt→γ, ft (θ)→0

( ft + IL∩dom f ),−1

})

(θ)

= ∂

(

lim sup
γt→γ, ft (θ)→0

ft + IL∩dom f

)

(θ) = ∂
(
f̃γ + IL∩dom f

)
(θ),

where the first equality comes from Proposition 1, applied to the finite family{
f̃γ ,−1

}
. Finally, the desired inclusion follows thanks to (29) and (30). ��

Let us introduce a function which asigns to each given γ ∈ T̂ (x) a net (tγi )i ⊂ T
such that

γtγi
→ γ , ftγi

(x) → f (x). (36)

Then, according to (35),

lim
γt→γ

(gt + Idom f ) = lim
i

(gtγi
+ IL∩dom f ) ≤ max

{
lim sup

i
( ftγi

+ IL∩dom f ),−1

}
,

and we obtain, reasoning as above,

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂(lim sup

i
ftγi

+ IL∩dom f )(x)

}
. (37)

The use of the functions gt allows us to formulate ∂ f (x) involving only limits
instead of upper limits. In fact, from (29), (30) and (33) we get

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂

(
lim

γt→γ, ft (x)→ f (x)
(gt + IL∩dom f )

)
(x)

}
. (38)

Corollary 8 Suppose that the function f is finite and continuous somewhere. Then, for
every x ∈ X ,

∂ f (x) = co
{⋃

γ∈T̂ (x)
∂(lim supi ftγi

)(x)
}

+ Ndom f (x) (39)

= co
{⋃

γ∈T̂ (x)
∂(lim supi ftγi

)(x)
}

+ Ndom f (x) (if X = R
n), (40)
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where (tγi ) is defined in (36).

Proof Suppose, without loss of generality, that x = θ and f (θ) = 0. According to
(37), and using (3),

∂ f (θ) =
⋂

L∈F(θ)
co

{⋃

γ∈T̂ (θ)
∂(lim supi ftγi

+ IL∩dom f )(θ)
}

=
⋂

L∈F(θ)

(
co

{⋃

γ∈T̂ (θ)
∂(lim supi ftγi

)(θ)
}

+ Ndom f (θ) + L⊥)
,

and (40) follows. To prove (39) we first obtain, due to the last relation and (2),

∂ f (θ) ⊂ cl (A + B) = ∂σA+B(θ) = ∂(σA + σB)(θ), (41)

where A := co
{⋃

γ∈T̂ (θ) ∂(lim supi ftγi
)(θ)

}
and B := Ndom f (θ).

Since lim supi ftγi
≤ f andboth functions coincide at θ,wehave A ⊂ ∂ f (θ).There

also exist m ≥ 0, x0 ∈ dom f and θ -neighborhoodU ⊂ X such that f (x0 + y) ≤ m,
for all y ∈ U . Then

σA(x0 + y) ≤ σ∂ f (θ)(x0 + y) ≤ f (x0 + y) ≤ m for all y ∈ U ; (42)

that is, σA is continuous at x0. Consequently, since σB(x0) ≤ 0, (41) and (3) entail

∂ f (θ) ⊂ ∂σA(θ) + ∂σB(θ) = cl(A) + B,

and the inclusion “⊂” in (39) follows. The opposite inclusion is straightforward. ��
The following corollary provides a characterization of ∂ f (x) in terms only of the

active original functions ft ’s.

Corollary 9 Fix x ∈ X . If for each net (ti )i ⊂ T satisfying fti (x) → f (x), there exist
a subnet (ti j ) j ⊂ T of (ti )i and an index t ∈ T such that

lim sup j fti j (z) ≤ ft (z) for all z ∈ dom f , (43)

then we have

∂ f (x) =
⋂

L∈F(x)
co

{⋃

t∈T (x)
∂( ft + IL∩dom f )(x)

}
.

Proof Given any γ ∈ T̂ (x) such that γti → γ and fti (x) → f (x), for some net
(ti )i ⊂ T , we choose a subnet (tγi j ) j in (36) satisfying (43) for a certain t

γ ∈ T . Then
tγ ∈ T (x), taking into account (43) with z = x, and by (37)

∂ f (x) =
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂(lim sup j ftγi j

+ IL∩dom f )(x)

}

⊂
⋂

L∈F(x)
co

{⋃

γ∈T̂ (x)
∂( ftγ + IL∩dom f )(x)

}
,
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where the last inclusion holds as lim sup j ftγi j
+ IL∩dom f ≤ ftγ + IL∩dom f , by (43),

and these two functions take the same value at x . The inclusion “⊂” follows as we
have shown that tγ ∈ T (x). The opposite inclusion is immediate. ��

6 From continuous to non-continuous

In this section, we consider again a family ft : X → R, t ∈ T , of convex functions
defined on X , and the supremum function f := supt∈T ft . Based on the results of the
previous section we provide characterizations of ∂ f (x) involving only the ft ’s and not
the regularized ones, i.e, the fγ ’s. We shall need the following technical lemmas. In
what follows, cls stands for the strong topology on X∗ (usually denoted by β(X∗, X)).

Lemma 10 Assume that the convex functions ft , t ∈ T , are proper, lsc, and such that
f|aff(dom f ) is continuous on ri(dom f ), assumed nonempty. Let x ∈ dom f and the
net (z∗i )i∈I ⊂ X∗ such that

lim
i

(
〈
z∗i , x

〉 − inf t∈T f ∗
t (z∗i )) = f (x), (44)

and for all z ∈ dom f

lim sup
i

(〈
z∗i , z

〉 − inf t∈T f ∗
t (z∗i )

)
> −∞. (45)

Then there exist a subnet (z∗i j ) j of (z
∗
i )i and z∗ ∈ X∗ such that

z∗ ∈ cl
(⋃

t∈Tε(x)
∂ε ft (x) + (aff(dom f ))⊥

)
, for all ε > 0, (46)

and

〈
z∗i j − z∗, z

〉
→ j 0, for all z ∈ aff(dom f ). (47)

In particular, if dom f is finite-dimensional, then (46) also holds with cls instead
of cl .

Proof We may assume that x = θ and f (θ) = 0, and denote E := aff(dom f ) which
is a closed subspace with dual E∗. We also denote h := inf t∈T f ∗

t , so that (see (4))

h∗ = (inf
t∈T f ∗

t )∗ = sup
t∈T

f ∗∗
t = sup

t∈T
ft = f , (48)

and

h∗(θ) + h(z∗i ) = f (θ) + h(z∗i ) = h(z∗i ) → 0. (49)
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Hence, for every fixed ε > 0, there is some i0 ∈ I such that for all i � i0

h∗(θ) + h(z∗i ) = sup
t∈T

ft (θ) + inf
t∈T f ∗

t (z∗i ) = h(z∗i ) < ε, (50)

and so

(z∗i )i�i0 ⊂ ∂εh
∗(θ) = ∂ε f (θ). (51)

Now, using the continuity assumption, we choose x0 ∈ dom f , a θ -neighborhood
U ⊂ X and r ≥ 0 such that

f (x0 + y) ≤ r for all y ∈ U ∩ E, (52)

and, by (45) with z = x0 and (49),

lim sup
i

〈
z∗i , x0

〉
> −∞.

Therefore we may assume, up to some subnet, that inf i
〈
z∗i , x0

〉
> −∞ and, so, by

(51) and (52), there is some m > 0 such that

〈
z∗i , y

〉 ≤ f (x0 + y) + ε − inf
i

〈
z∗i , x0

〉 ≤ m, for all y ∈ U ∩ E and for all i; (53)

that is (z∗i )i ⊂ (U ∩ E)◦. Since the last set is weak*-compact in E∗, by the Alaoglu-
Banach-Bourbaki theorem, there exist a subnet (z∗i j |E ) j and z̃∗ ∈ E∗ such that

〈
z∗i j |E − z̃∗, u

〉
→ j 0 for all u ∈ E, (54)

where the subscript “|E” denotes the restriction to E .
Moreover, by the Hahn-Banach theorem, z̃∗ ∈ E∗ is extended to some z∗ ∈ X∗,

which satisfies
〈
z∗i j − z∗, u

〉
=

〈
z∗i j |E − z̃∗, u

〉
→ j 0 for all u ∈ E, (55)

Now, using (50), we see that for each i there exists ti ∈ T such that

fti (θ) + f ∗
ti (z

∗
i ) ≤ f ∗

ti (z
∗
i ) < ε,

entailing that z∗i ∈ ∂ε fti (θ) and

− fti (θ) = 〈
z∗i , θ

〉 − fti (θ) ≤ f ∗
ti (z

∗
i ) < ε;

that is, ti ∈ Tε(θ) and so,

z∗i ∈
⋃

t∈Tε(θ)
∂ε ft (θ).
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We fix a weak* (strong, when dom f is finite-dimensional) θ -neighborhood V ⊂ X∗.
Since E∗ is isomorphic to the quotient space X∗

�E⊥ , then [12]

V|E :=
{
u∗|E : u∗ ∈ V

}
∈ NE∗ ,

where u∗|E denotes the restriction of u∗ to E∗. Consequently, writing

z∗i j |E ∈ A :=
{
u∗|E ∈ E∗ : u∗ ∈

⋃

t∈Tε(θ)
∂ε ft (θ)

}
,

and passing to the limit on j, (55) leads us to

z∗|E ∈ A + V|E . (56)

In other words, there are u∗ ∈ ⋃
t∈Tε(θ) ∂ε ft (θ) and v∗ ∈ V such that z∗|E = u∗|E +v∗|E ;

that is,

〈
z∗, u

〉 = 〈
u∗ + v∗, u

〉
for all u ∈ E,

implying that

z∗ ∈ u∗ + v∗ + E⊥ ⊂
⋃

t∈Tε(θ)
∂ε ft (θ) + E⊥ + V .

The conclusion follows then by intersecting over V and, after, over ε > 0. ��
In the current framework, X̂∗ is the Stone–Čech compactification of X∗, with

respect to the discrete topology, and the mappings γz∗ : [0, 1]X∗ → [0, 1] , z∗ ∈ X∗,
are defined as in (14), so that the convergence γz∗i → γ for a net (z∗i )i ⊂ X∗ and

γ ∈ X̂∗ means

ϕ(z∗i ) → γ (ϕ) for all ϕ ∈ [0, 1]X
∗
.

Lemma 11 Assume in Lemma 10 that the net (γz∗i )i converges in X̂∗. Then for the
function

ψ(z) := lim sup
i

(〈
z∗i , z

〉 − inf
t∈T f ∗

t (z∗i ) + Idom f (z)

)
, z ∈ X ,

we have

∂ψ(x) ⊂ Ndom f (x) +
⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x) + (aff(dom f ))⊥

)

⊂
⋂

ε>0
cl

(⋃

t∈Tε(θ)
∂ε ft (θ) + Ndom f (θ)

)
,

with cls instead of cl when dom f is finite-dimensional.
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Proof We may suppose that x = θ and f (θ) = 0. By Lemma 10 there exist a subnet
(z∗i j ) j of (z∗i )i and

z∗ ∈
⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x) + (aff(dom f ))⊥

)

such that (z∗i j ) j weak*-converges to z∗ in E∗ (where E = aff(dom f )).

We introduce the functions gu∗ : X → R∞, u∗ ∈ X∗, defined as

gu∗ := max
{
u∗ − h(u∗),−1

}
,

where h = inf t∈T f ∗
t (already used in the proof of Lemma 10). Observe that (recall

(48))

−1 ≤ gu∗ ≤ max
{
h∗,−1

} = max { f ,−1} ,

and

ϕz(u
∗) := gu∗(z) + 1

max { f (z) + 1, 1} ∈ [0, 1] , for all z ∈ dom f .

Hence, since ϕz is obviously continuous on X∗, endowed with the discrete topology,
the convergence assumption of (γz∗i )i ensures that, for each z ∈ dom f , the net

γz∗i (ϕz) = gz∗i (z) + 1

max { f (z) + 1, 1}

also converges, as well as the net (gz∗i (z))i . Then, taking into account (44) and (47),
we obtain

lim
i

gz∗i (z) = lim
i
max

{〈
z∗i , z

〉 − h(z∗i ),−1
}

= lim
j
max

{〈
z∗i j , z

〉
,−1

}
= max

{〈
z∗, z

〉
,−1

}
,

which gives

lim sup
i

〈
z∗i , z

〉 ≤ lim sup
i

(max{〈z∗i , z
〉
,−1}) = max{〈z∗, z〉 ,−1}.

But both functions lim supi z
∗
i + Idom f and max{z∗,−1} + Idom f coincide at θ, and

so

∂

(
lim sup

i
(z∗i + Idom f )

)
(θ) ⊂ ∂(max{z∗ + Idom f ,−1})(θ),
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and (20) applied to the (finite) family {z∗ + Idom f ,−1} yields (recall (44))

∂ψ(θ) = ∂

(
lim sup

i
(z∗i + Idom f )

)
(θ)

⊂ z∗ + Ndom f (θ).

⊂ Ndom f (θ) +
⋂

ε>0
cl

(⋃

t∈Tε(θ)
∂ε ft (θ) + (aff(dom f ))⊥

)

⊂
⋂

ε>0
cl

(⋃

t∈Tε(θ)
∂ε ft (θ) + Ndom f (θ)

)
.

��

Theorem 12 Let ft : X → R, t ∈ T , be convex functions and f = supt∈T ft . Then,
for every x ∈ X ,

∂ f (x) =
⋂

L∈F(x)
co

{⋂

ε>0
cls

(⋃

t∈Tε(x)
∂ε( ft + IL∩dom f )(x)

)}
. (57)

If, in addition,

cl f = sup
t∈T

(cl ft ), (58)

then

∂ f (x) =
⋂

L∈F(x)
co

{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x) + NL∩dom f (x)

)}
. (59)

Remark 1 (before the proof) Formula (57) leads straightforwardly to the following
characterization of ∂ f (x), using the strong closure

∂ f (x) =
⋂

L∈F(x),ε>0
cos

{⋃

t∈Tε(x)
∂ε( ft + IL∩dom f )(x)

}
,

improving the one of Proposition 3, which is given in terms of the weak*-closure.
However, on despite that both formulas involve similar elements, the order in taking
the intersection over ε leads to different interpretations of ∂ f (x). For instance, if T
is finite, T = T (x) and f is continuous, then (57) reads

∂ f (x) = co
{⋃

t∈T (x)
∂ ft (x)

}
,

giving Valadier’s formula (see, e.g., [30]), while Proposition 3 yields

∂ f (x) =
⋂

ε>0
co

{⋃

t∈T (x)
∂ε ft (x)

}
,

which turns out to be the Brøndsted formula ([1]; see, also, [15, Corollary 12]).
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Proof The inclusions “⊃” in both formulas are straightforward. We may suppose,
without loss of generality, that x = θ, f (θ) = 0 and ∂ f (θ) �= ∅; hence,

∂(cl f )(θ) = ∂ f (θ) and f (θ) = (cl f )(θ) = 0. (60)

We proceed in three steps:
Step 1. We assume that all the ft ’s are proper and lsc; hence, (58) obviously holds.
We fix L ∈ F(θ), and define the functions

f̃t := ft + IL , t ∈ T , and h := inf t∈T f̃ ∗
t . (61)

The f̃t ’s are proper and lsc, and we have (see (4))

( f + IL)(z) = supt∈T f̃t (z) = supt∈T f̃ ∗∗
t (z) = (inf t∈T f̃ ∗

t )∗(z) = h∗(z); (62)

that is,

( f + IL)(z) = sup
{〈
z, z∗

〉 − h(z∗), z∗ ∈ X∗} ,

and (37) applied with T = X∗ (endowed with the discrete topology) yields

∂( f + IL)(θ) ⊂ co

{⋃

γ∈X̂∗(θ)
∂

(
lim sup

i
(z∗γ

i − h(z∗γ

i ) + IL∩dom f )

)
(θ)

}
,(63)

where X̂∗(θ) represents the set T̂ (θ) given in (18); that is,

X̂∗(θ) =
{

γ ∈ X̂∗ : lim sup
γz∗→γ

(−h(z∗)) = 0

}

,

and (z∗γ

i )i ⊂ X∗ is a fixed net such that γz∗γ

i
→ γ and h(z∗γ

i ) → 0 (by (36)).

Consequently, for every γ ∈ X̂∗(θ), Lemma 11 applies and yields

∂

(
lim sup

i
(z∗γ

i − h(z∗γ

i ) + IL∩dom f )

)
(θ)

⊂
⋂

ε>0
cls

(⋃

t∈T 1
ε (θ)

∂ε f̃t (θ) + NL∩dom f (θ)

)
, (64)

where

T 1
ε (θ) :=

{
t ∈ T : f̃t (θ) ≥ −ε

}
= Tε(θ). (65)

Indeed, condition (45) is satisfiedwhen the left-hand side in (64) is nonempty, and thus
the function lim supi (z

∗γ

i − h(z∗γ

i ) + IL∩dom f ) is proper. Consequently, combining
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(63), (64) and (65),

∂( f + IL)(θ) ⊂ co
{⋂

ε>0
cls

(⋃

t∈Tε(θ)
∂ε f̃t (θ) + NL∩dom f (θ)

)}
, (66)

and the inclusion “⊂” in (57) follows since ∂ f (θ) ⊂ ∂( f + IL)(θ) and

∂ε f̃t (θ) + NL∩dom f (θ) ⊂ ∂ε( ft + IL∩dom f )(θ).

Moreover, due to the fact that ∂ε f̃t (θ) ⊂ cl(∂ε ft (θ)+L⊥) (see, e.g., [17]), (66) implies
that

∂ f (θ) ⊂ co
{⋂

ε>0
cls

(⋃

t∈Tε(θ)
cl(∂ε ft (θ) + L⊥) + NL∩dom f (θ)

)}

⊂ co
{⋂

ε>0
cls

(
cl

(⋃

t∈Tε(θ)
∂ε ft (θ) + NL∩dom f (θ)

))}

= co
{⋂

ε>0
cl

(⋃

t∈Tε(θ)
∂ε ft (θ) + NL∩dom f (θ)

)}
, (67)

which yields the inclusion “⊂” in (59).
Step 2. We suppose that (58) holds and we fix L ∈ F(θ). By (60) we choose a

θ -neighborhood U ⊂ X such that

f (z) ≥ (cl f )(z) ≥ −1, for all z ∈ U , (68)

and denote S := {t ∈ T : cl ft is proper} . We define the functions

gt := cl ft , if t ∈ S, and gt := max {cl ft ,−1} , otherwise.

Then (see the proof of [15, Theorem 4], page 871) gt is proper, lsc and convex,

g(z) := sup
t∈T

gt (z) = (cl f )(z), for all z ∈ U ;

hence, g(θ) = 0,

{t ∈ T : gt (θ) ≥ −ε} ⊂ Tε(θ) ∩ S, ∀ε ∈ ]0, 1[ ,

∂εgt (θ) ⊂ ∂2ε ft (θ), ∂ε(gt + IL∩dom f )(θ) ⊂ ∂2ε( ft + IL∩dom f )(θ), ∀ε ∈ ]0, 1[ ,

and

∂ f (θ) = ∂(cl f )(θ) = ∂g(θ). (69)
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Consequently, by Step 1,

∂ f (θ) = ∂g(θ)

=
⋂

L∈F(θ)
co

{⋂

ε>0
cls

(⋃

t∈T , gt (θ)≥−ε
∂ε(gt + IL∩dom g)(θ)

)}

⊂
⋂

L∈F(θ)
co

{⋂

ε>0
cls

(⋃

t∈Tε(θ)
∂2ε( ft + IL∩dom f )(θ)

)}
,

entailing the desired inclusion “⊂ ” in (57). Similarly, (67) yields

∂ f (θ) =
⋂

L∈F(θ)
co

{⋂

0<ε<1
cl

(⋃

t∈T , gt (θ)≥−ε
∂εgt (θ) + NL∩dom g(θ)

)}

⊂
⋂

L∈F(θ)
co

{⋂

0<ε<1
cl

(⋃

t∈Tε(θ)
∂2ε ft (θ) + NL∩dom f (θ)

)}
, (70)

which easily leads to the inclusion “⊂ ” in (59).
Step 3. We prove (57) in the general case, without assuming (58). We fix L ∈ F(θ)

and define

f̂t := ft + IL∩dom f ,

so that

fL := sup
t∈T

f̂t = f + IL∩dom f = f + IL ,

f̂t (θ) = ft (θ), fL(θ) = 0, and dom fL = L ∩ dom f .

Moreover, by arguing as in the proof of Proposition 3, the family
{
f̂t , t ∈ T

}
satisfies

condition (58) and we have (see (9))

∂ f (θ) =
⋂

L∈F(θ)
∂( f + IL)(θ) =

⋂

L∈F(θ)
∂ fL(θ).

Applying Step 2 to the family
{
f̂t , t ∈ T

}
we get

∂ f (θ) =
⋂

L∈F(θ)
∂ fL(θ)

⊂
⋂

L∈F(θ)
co

{⋂

ε>0
cls

(⋃

t∈T , f̂t (θ)≥−ε
∂ε( f̂t + IL∩dom fL )(θ)

)}

=
⋂

L∈F(θ)
co

{⋂

ε>0
cls

(⋃

Tε(θ)
∂ε( ft + IL∩dom f )(θ)

)}
,

and the inclusion “⊂” in (57) follows. ��
The following corollary closing this section considers a frequent hypothesis in the

literature.
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Corollary 13 Let ft : X → R, t ∈ T , be convex functions. If f = supt∈T ft is finite
and continuous at some point, then for every x ∈ X

∂ f (x) = Ndom f (x) + co
{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x)

)}

= Ndom f (x) + co
{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x)

)}
(if X = R

n).

Proof The proof is similar to the one of Theorem 12, but with the use of the formulas
in Corollary 8 instead of formula (37). ��

We close this section with an extension of Theorem 12 to nonconvex functions. We
also refer to [24], and references therein, for other studies on the subdifferential of the
supremum of nonconvex functions.

Corollary 14 Let ft : X → R, t ∈ T , be a family of non-necessarily convex functions
and f := supt∈T ft . Assume that

f ∗∗ = sup
t∈T

f ∗∗
t .

Then (59) holds.

Proof It suffices to prove the inclusion “⊂ ” in (57) for x such that ∂ f (x) �= ∅; hence,
f ∗ is proper, f (x) = f ∗∗(x) and ∂ f (x) = ∂(co f )(x) = ∂ f ∗∗(x). Thus, applying
the second statement in Theorem 11 to the family

{
f ∗∗
t , t ∈ T

}
,

∂ f (x) = ∂ f ∗∗(x)

=
⋂

L∈F(x)
co

{⋂

ε>0
cl

(⋃

t∈T 1
ε (x)

∂ε f
∗∗
t (x) + NL∩dom f ∗∗(x)

)}
,

where T 1
ε (x) := {

t ∈ T : f ∗∗
t (x) ≥ f (x) − ε

}
. Observe that every t ∈ T 1

ε (x) satis-
fies

ft (x) ≥ f ∗∗
t (x) ≥ f (x) − ε ≥ ft (x) − ε;

hence, t ∈ Tε(x) and ∂ε f ∗∗
t (x) ⊂ ∂2ε ft (x). Additionally, the inequality f ∗∗ ≤ f

implies that NL∩dom f ∗∗(x) ⊂ NL∩dom f (x), and the desired inclusion follows. ��

7 Two applications in optimization

First, in this section, we apply the previous results to extend the classical Fenchel
duality to the nonconvex framework. This will lead us to recover some of the results in
[3–5] (see, also, [23]), relating the solution set of a nonconvex optimization problem
and its convexified relaxation. Second, we establish Fritz-John and KKT optimality
conditions for convex semi-infinite optimization problems, improving similar results
in [8].
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Given a function g : X → R∞, we let f : X∗ → R be the Fenchel conjugate of
g. When g is proper, lsc and convex, the classical Fenchel duality, together with (4),
yields

∂ f = (∂g)−1. (71)

We extend this relation to non-necessarily convex functions. We denote below the
closure with respect to the weak topology in X by clw.

Proposition 15 Assume that the function f is proper. Then, for every x∗ ∈ X∗,

∂ f (x∗) =
⋂

L∈F(x∗)
co

{⋂

ε>0
clw

(
(∂εg)

−1(x∗) + NL∩dom f (x
∗)

)}
.

If, in addition, f is finite and (weak*-) continuous somewhere, then

∂ f (x∗) = co
{(

(∂(clw g))−1(x∗)
)}

+ Ndom f (x
∗)

= co
{(

(∂(cl g))−1(x∗)
)}

+ Ndom f (x
∗) (if X = R

n),

where clw g is the weak-lsc hull of g.

Proof We define the convex functions fx : X∗ → R, x ∈ X , as

fx (x
∗) := 〈

x, x∗〉 − g(x), x ∈ dom g,

so that fx is weak*-continuous and f = supx∈dom g fx . Then, according to formula
(59), for every x∗ ∈ X∗ we have

∂ f (x∗) =
⋂

L∈F(x∗)
co

{⋂

ε>0
clw

(⋃

x∈Tε(x∗)
∂ε fx (x

∗) + NL∩dom f (x
∗)

)}
,

where

Tε(x
∗) := {

x ∈ dom g : fx (x
∗) ≥ f (x∗) − ε

} = (∂εg)
−1(x∗).

Consequently, the first formula comes from the fact that ∂ε fx (x∗) = {x} .

Assume now that f is finite and weak*-continuous somewhere. Then, arguing in a
similar way, but using Corollary 13 instead of (59),

∂ f (x∗) = co
{⋂

ε>0
clw

(
(∂εg)

−1(x∗)
)}

+ Ndom f (x
∗)

= co
{⋂

ε>0
cl

(
(∂εg)

−1(x∗)
)}

+ Ndom f (x
∗) (if X = R

n).

The desired formulas follow as

⋂

ε>0
clw

(
(∂εg)

−1(x∗)
)

= (∂(clw g))−1(x∗), (72)
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according to [6, Lemma 2.3]. ��
Observing that Argmin(cog) = ∂ f (θ), the previous proposition gives:

Corollary 16 Assume that the function f is proper. Then we have

Argmin(cog) =
⋂

L∈F(θ)
co

{⋂

ε>0
clw

(
ε-Argmin g + NL∩dom f (θ)

)}
.

If, in addition, f is finite and continuous at some point, then

Argmin(cog) = co(Argmin(clw g)) + Ndom f (θ)

= co(Argmin(cl g)) + Ndom f (θ) (if X = R
n).

When X is a normed space, the set ∂ f (x∗) is also seen as a subset of the bidual
space, whereas Proposition 15 characterizes only the part of ∂ f (x∗) in the subspace
X of X∗∗. A light adaptation of Proposition 15 allows us to have a complete picture of
∂ f (x∗), as a proper set of the bidual space X∗∗. In such a setting, we denote theweak*-
topology σ(X∗∗, X∗) in X∗∗ by w∗∗, and introduce the function gw∗∗ : X∗∗ → R

defined by

gw∗∗
(y) = lim inf

x→w∗∗ y
g(x), y ∈ X∗∗.

We refer, e.g., to [2, Chapter 1] for these concepts.

Proposition 17 Assume that X is a normed space and X∗ is endowed with the dual
norm topology. If the function f is proper, then for every x∗ ∈ X∗

∂ f (x∗) =
⋂

L∈F(x∗)
co

{⋂

ε>0
clw

∗∗ (
(∂εg)

−1(x∗) + NL∩dom f (x
∗)

)}
.

If, in addition, f is finite and (norm-) continuous somewhere, then

∂ f (x∗) = co
{
(∂gw∗∗

)−1(x∗)
}

+ Ndom f (x
∗).

Proof Following similar arguments as those used in [4], we apply Proposition 15 in
the duality pair ((X∗∗, w∗∗), (X∗, ‖‖∗)), replacing the function g there by the function
ĝ defined on X∗∗ as

ĝ(y) = g(y), if y ∈ X∗∗; +∞, otherwise .

Observe that the w∗∗-lsc hull of ĝ is precisely the function gw∗∗
. ��

Now, as in [8,10], we consider the following convex semi-infinite optimization
problem

(P) : Inf f0(x), subject to ft (x) ≤ 0, t ∈ T ,
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where T is a given set, and f0, ft : Rn → R∞, t ∈ T , are proper and convex. We
assume, without loss of generality, that 0 /∈ T , and denote

f := supt∈T ft .

The following result establishes new Fritz-John and KKT optimality conditions
for problem (P), improving similar results in [8,10]. Here we adopt the convention
R+∅ = {0n} .

Proposition 18 Let x̄ be an optimal solution of (P) such that f (x̄) = 0. Then we have

0n ∈ co
{
∂( f0 + Idom f )(x̄) ∪

⋂

ε>0
cl

(⋃

t∈Tε(x̄)
∂ε( ft + Idom f ∩dom f0 )(x̄)

)}
. (73)

Moreover, if the Slater condition holds; that is, f (x0) < 0 for some x0 ∈ dom f0,
then

0n ∈ ∂( f0 + Idom f )(x̄) + cone
⋂

ε>0
cl

(⋃

t∈Tε(x̄)
∂ε( ft + Idom f ∩dom f0 )(x̄)

)
(74)

and, provided in addition that f is continuous at some point in dom f0 ∩ dom f ,

0n ∈ ∂ f0(x̄) + cone
⋂

ε>0
cl

(⋃

t∈Tε(x̄)
∂ε ft (x̄)

)
+ Ndom f (x̄). (75)

Proof We consider the function g : Rn → R ∪ {+∞}, defined as

g(x) := sup{ f0(x) − f0(x̄), ft (x), t ∈ T } = max { f0(x) − f0(x̄), f (x)} ,

so that dom g = dom f0∩dom f .Then x̄ is a globalminimumof g; that is, 0n ∈ ∂g(x̄).
To proceed, we first apply Proposition 1 to the (finite) family { f0 − f0(x̄), f } and
obtain

0n ∈ co
{
∂( f0 + Idom f )(x̄) ∪ ∂( f + Idom f0)(x̄)

}
. (76)

But Theorem 12, applied to the family
{
ft + Idom f0 , t ∈ T

}
, yields

∂( f + Idom f0)(x̄) = co
{⋂

ε>0
cl

(⋃

t∈Tε(x̄)
∂ε( ft + Idom f ∩dom f0)(x̄)

)}
, (77)

and (73) follows from (76).
Finally, it can be easily seen from (76) that the Slater condition precludes that

0n ∈ ∂( f +Idom f0)(x̄). So, (74) follows from(73).Under the supplementary continuity
condition, Corollary 13 ensures that

∂( f + Idom f0)(x̄) = Ndom f0(x̄) + ∂ f (x̄)

= Ndom f0(x̄) + Ndom f (x) + co
{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x)

)}
,
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and (75) follows, taking into account (3) and

0n ∈ ∂( f0 + Idom f )(x̄) + R+∂( f + Idom f0)(x̄)

= ∂ f0(x̄) + Ndom f (x̄) + R+∂( f + Idom f0)(x̄)

= ∂ f0(x̄) + cone
{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x)

)}
+ Ndom f0(x̄) + Ndom f (x)

⊂ ∂ f0(x̄) + cone
{⋂

ε>0
cl

(⋃

t∈Tε(x)
∂ε ft (x)

)}
+ Ndom f (x). ��

8 Conclusions

The main conclusion of this work is that the compactification method proposed in the
paper allows us to move from the non-continuous setting to the continuous one and the
other way around, as well as to develop a unifying theory which inspires new results
and applications. Themain results in relation to the subdifferential of the supremumare
stated in Theorems 4, 7, and 12, which are established in the most general framework,
free of assumptions on the index set and the data functions.Our results covermost of the
existing formulas such as those obtained in [7–11,14–16,18–20,22,23,27,29–31]. The
Fritz-John and KKT conditions for convex semi-infinite optimization are expressed in
the most general scenario and, consequently, extend some previous results which can
be found in [11,13,16,20].
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