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Abstract
The paper investigates analytical properties of dynamic probabilistic constraints
(chance constraints). The underlying random distribution is supposed to be contin-
uous. In the first part, a general multistage model with decision rules depending on
past observations of the random process is analyzed. Basic properties like (weak
sequential) (semi-) continuity of the probability function or existence of solutions are
studied. It turns out that the results differ significantly according to whether decision
rules are embedded into Lebesgue or Sobolev spaces. In the second part, the sim-
plest meaningful two-stage model with decision rules from L2 is investigated. More
specific properties like Lipschitz continuity and differentiability of the probability
function are considered. Explicitly verifiable conditions for these properties are pro-
vided along with explicit gradient formulae in the Gaussian case. The application of
such formulae in the context of necessary optimality conditions is discussed and a
concrete identification of solutions presented.

Keywords Dynamic probabilistic constraints · Chance constraints · Continuous
distributions · Decision rules · Stochastic programming

Mathematics Subject Classification 90C15 · 49K45

1 Introduction

1.1 Overview

The application of probabilistic constraints (or: chance constraints) to engineering
problems and their numerical solution is nowadays standard. Introduced by Charnes
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1066 T. González Grandón et al.

et al. [5] in a simple form (individual constrains) in 1958, their systematic theoretical
and algorithmic investigation has been pioneered by Prékopa and his students starting
in the Seventies (see [15] and references therein). The typical form of a probabilistic
constraint is the inequality

P(gi (x, ξ) ≤ 0 (i = 1, . . . , p)) ≥ p, (1)

where x is a decision vector, ξ is a random vector, P a probability measure and g a
random constraint mapping with finitely many components. The meaning of (1) is to
define a decision x as feasible if the random inequality system g(x, ·) ≤ 0 is satisfied
at least with probability p ∈ (0, 1]. A modern theoretical treatment of probabilistic
constraints can be found in the monograph [16, chapter 4]. The algorithmic solution
of optimization problems subject to constraints (1) has been tremendously advanced
within the last twenty years. Rather than providing a detailed list of references here,
we want to emphasize the contribution to this development by Shabbir Ahmed (e.g.,
[12,13]). At the same time the traditional model (1) has been extended to broader
settings such as PDE constrained optimization ([6,7,9]) or infinite random inequality
systems (probust constraints, [17]).

A challenge of different nature consists in considering dynamic aspects in prob-
abilistic constraints. Observe that (1) is a static model by nature: The decision x
(‘here-and now-decision’) has to be taken before the randomness ξ is observed. Such
model would apply, for instance, in the design of a mechanical construction (encoded
by x) which is done once and for ever and has to resist unknown future random forces ξ

with high probability. Many decisions, however, are time dependent. The components
of x and ξ could refer to discrete time decision and random processes, respectively. In
the control of a hydro reservoir, for instance, one is faced with an alternating sequence
of decisions xt (referring to water release) and realizations of randomness ξt (water
inflow) according to the chronology

x1 � ξ1 � x2 � ξ2 � · · · � xT (� ξT ). (2)

Whether or not this sequence ends with a decision (final recourse action) or with the
observation of randomness without the possibility of finally reacting to it, depends
on the choice of a model of multistage stochastic optimization or of multistage prob-
abilistic programming. This distinction requires some care because sometimes the
term ‘two-stage probabilistic constraint’ is used for the addition of a probabilistic
constraint (relaxing the almost sure existence of a recourse action) in a setting of two-
stage stochastic programming. Such model has been first considered in [14] and is still
ofmuch interest (e.g., [11]). Here, the chronology is the one of (2)with T = 2 (without
the final term in parantheses): x1 � ξ1 � x2, i.e., it is a special two-stage stochastic
optimization problem. In our understanding, it is not a two-stage probabilistic con-
straint which would end with the term in parentheses in (2): x1 � ξ1 � x2 � ξ2. In
this way one would obtain a logical generalization of conventional one-stage (static)
probabilistic constraints of type x1 � ξ1 and keep the idea, that in a probabilistic con-
straint one is always faced with a final unknown realization of some random vector.
This idea follows a remark in [8]: ‘... a well-formed probabilistic constraint contains at
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Dynamic probabilistic constraints under continuous… 1067

least one coefficient that depends on a random variable realized after the last decision
is taken’.

It is clear that in (2) the dynamic character of the decisionmaking process expresses
itself by assuming all decisions being functions of past observations in order to take
advantage of the gain of information obtained from the realizations of the random vec-
tor. Hence, instead of static (constant) decisions xt one admits decision rules or policies
x2(ξ1), x3(ξ1, ξ2) etc.When considering continuously distributed random vectors, this
approach takes the problem to infinite dimensions even though time is discrete, because
policies are elements of appropriate function spaces. One may circumvent this dif-
ficulty by restricting policies to a parameterized class, linear decision rules in the
simplest case. Then, one gets back to a static problem where decisions are the param-
eters of the policies. Several aspects of modeling linear decision rules in the context of
(linear) multistage probabilistic constraints are discussed in [10]. It is not guaranteed,
however, that the chosen class contains the optimal policy. Another idea to reduce the
problem again to a finite-dimensional one would consist in a discrete approximation
of the random distribution. A conceptual framework for dealing with dynamic proba-
bilistic constraints without restricting the class of policies and keeping the continuous
character of the given (multivariate Gaussian) distribution was presented in [4] along
with applications to two- and three-stage probabilistic control of a water reservoir.
Using stochastic dynamic programming rather than direct nonlinear programming, a
similar problem was later analyzed and numerically solved in [2] for a significantly
larger number of stages, however with a discrete random distribution.

The focus in this paper is not on the numerical solution of problems subject to
dynamic probabilistic constraints but rather on analytical properties of the arising
probability function. Here we assume the underlying random distribution to be con-
tinuous and keep the decision rules general as elements of some Lebesgue or Sobolev
space. In Sect. 2, a general multistage model is analyzed. Basic properties like (weak
sequential) (semi-) continuity of the probability function or existence of solutions are
studied. In Sect. 3, the simplest meaningful two-stage model with decision rules from
L2 is investigated.More specific properties like Lipschitz continuity and differentiabil-
ity of the probability function are considered. Explicitly verifiable conditions for these
properties are provided along with explicit gradient formulae in the Gaussian case.
The application of such formulae in the context of necessary optimality conditions is
discussed and a concrete identification of solutions presented.

1.2 The general setting

In this paper we study optimization problems of the type

min
x∈X{J (x) | x ∈ C, ϕ(x) ≥ p} (3)

Here, the space of decisions X is one of the following Lebesgue or Sobolev spaces
with q ∈ [1,∞)

X := R × Lq(R) × Lq(R2) × · · · × Lq(RT−1)
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1068 T. González Grandón et al.

X 1 := R × W 1,q(R) × W 1,q(R2) × · · · × W 1,q(RT−1).

The subset C ⊆ X (or C ⊆ X 1) is meant to represent some abstract constraint on the
decision, e.g., nonnegativity or bounds for the components. The focus of our attention
will be on the inequality constraint ϕ(x) ≥ p which we will assume to represent a
so called joint dynamic chance constraint. More precisely, p ∈ (0, 1] is some given
safety level and ϕ : X → [0, 1] denotes a probability function defined for x ∈ X as
follows

ϕ(x) := P (hi (x1, x2 (ξ1) , . . . , xT (ξ1, . . . , ξT−1) , ξ1, . . . , ξT )

≤ 0 i = 1, . . . , k) , (4)

where hi : R
T × R

T → R and ξ := (ξ1, . . . , ξT ) is a T -dimensional discrete time
process on some probability space (Ω,A, P). Observe that with each component xt
of the decision x depending on past outcomes (ξ1, . . . , ξt−1) only, x represents an
adapted decision process. We endow X and X 1 with the maximum norm with respect
to the usual norms in the coordinate spaces. Doing so, X and X 1 are Banach spaces.

1.3 Amotivating example

To illustrate applications for problem 3, we present a decision management optimiza-
tion problem on a single water reservoir for hydroelectricity generation. Given a set
of future time intervals 1, 2, . . . , T , the problem of the operator is to decide on an
optimal release policy (x1, . . . , xT ) of water, considering technical, economical and
environmental aspects. By ξ = (ξ1, . . . , ξT ), we denote the random vector indicating
the stochastic water inflow (e.g. precipitation, snow melt) to the reservoirs at corre-
sponding time intervals . The main role of the reservoir is to generate electricity. At the
same time, lower and upper limits l∗, l∗ for the water level have to be satisfied in the
reservoir, say for flood protection or for ecological reasons. By the random nature of
the inflows, the time dependent water level lt (x, ξ) induced from the controlled water
release x is a random variable too. Hence, the mentioned limits cannot be satisfied in
a deterministic way. Rather, it is reasonable to impose them in a probabilistic way:

P
(
l∗ ≤ lt (x, ξ) ≤ l∗ (t = 1, . . . , T )

) ≥ p. (5)

Here, p ∈ [0, 1] denotes a probability level at which the random constraints are
supposed to hold true. The current water level after time interval t is clearly given as
the initial level plus the cumulated inflow minus the cumulated release so far:

lt (x, ξ) = l0 + ξ1 + · · · + ξt − x1 − · · · − xt (t = 1, . . . , T ) .

Sometimes, one decides on the future water release in complete ignorance of future
water inflow. This is the case, for instance, in day ahead markets, when energy pro-
duction (water release) for each hour of the next day is fixed one day ahead. Then,
decisions are just scalars for each time intervals and the probabilistic constraint (5)
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Dynamic probabilistic constraints under continuous… 1069

becomes

P

(

l∗ ≤ l0 +
t∑

τ=1

ξτ −
t∑

τ=1

xτ ≤ l∗ (t = 1, . . . , T )

)

≥ p
(
x ∈ R

T
)

. (6)

Such a static model does not take into account the temporal gain of information while
the random inflow process unfolds. In longer term planning problems one therefore
admits from the beginning that future decisions on water release are functions of past
observations of the random inflow. Hence, rather than deciding on scalars x1, . . . , xT ,
one is looking for functions x1, x2(·), x3(·, ·), so-called policies. In this dynamic
setting better solutions of the underlying optimization problem can be expected (the
static model being included as a special case with constant policies, e.g., x2(·) ≡ x2
etc.). Hence, we adjust our static chance constraint above to a dynamic one, where(
x ∈ X ,X 1

)
:

P

(

l∗ ≤ l0 +
t∑

τ=1

ξτ −
t∑

τ=1

xτ (ξ1, . . . , ξτ−1) ≤ l∗ (t = 1, . . . , T )

)

≥ p.

A possible objective in a corresponding optimization problem might consist in the
maximization of the expected overall water release (representing the amount of energy
produced):

J (x) := −E

T∑

t=1

xt (ξ1, . . . , ξτ−1) .

Then, the optimization problem is of the form (3) with the probability function ϕ

defined in (4) via the constraint mapping h : R
T × R

T → R
2T . The latter has

k := 2T components

ht (u, v) := l0 − l∗ +
t∑

τ=1

vτ −
t∑

τ=1

uτ (t = 1, . . . , T )

hT+t (u, v) := l∗ − l0 +
t∑

τ=1

uτ −
t∑

τ=1

vτ (t = 1, . . . , T ) .

2 Basic structural properties of the general model

In this section we are going to collect some basic structural properties of the chance
constraint ϕ(x) ≥ p in (3) and the involved probability function ϕ in (4). For con-
venience, we introduce the notation u[i] := (u1, . . . , ui ) for vectors u ∈ R

n and
1 ≤ i ≤ n. With the policy x ∈ X we associate the joint policy (whose components
have a common domain) as a mapping [x] : R

T → R
T defined by
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1070 T. González Grandón et al.

[x] (z) := (
xt (z[t−1])

)
t=1,...,T

(
z ∈ R

T
)

, (7)

with the convention x1(z[0]) = x1. Finally, we introduce themaximum function related
to the mapping h:

hmax := max
i=1,...,k

hi . (8)

Then, the probability function in (4) can be compactly written as

ϕ(x) = P
(
hmax ([x] (ξ), ξ) ≤ 0

)
. (9)

We first check, that this expression is well-defined. In order to ensure this, we make
the following basic assumptions in (4) throughout this paper:

ξ possesses a density
h is Borel measurable

}
. (BA)

Observe first that for given x ∈ X each component xt : R
t−1 → R is Borel measur-

able, whence the mapping [x] is Borel measurable. Then, hmax ([x] (z), z) is a Borel
measurable function of z because each hi is so thanks to (BA). This implies that

{
ω ∈ Ω|hmax ([x] (ξ (ω)), ξ (ω)) ≤ 0

} ∈ A,

so that it is justified to speak of the probability of this event appearing in the definition
of (9). It remains to show that this probability is independent of the representative of
x ∈ X . To see this, let x (1), x (2) ∈ X such that x (1)

1 = x (2)
1 and be such that

x (1)
t+1(u) = x (2)

t+1(u) ∀u ∈ Bt ∀t = 1, . . . , T − 1,

where Bt ⊆ R
t are Lebesgue measurable subsets with λt

(
R
t\Bt

) = 0 (λt is the
Lebesgue measure in R

t ). Define

C :=
T−1⋃

t=1

Ct , where Ct := (
R
t\Bt

) × R
T−t−1 ⊆ R

T−1 ∀t = 1, . . . , T − 1.

Then, λT−1 (C) = 0 and

[
x (1)

]
(z) =

[
x (2)

]
(z) ∀z ∈

(
R
T−1\C

)
× R.

Since ξ possesses a density fξ , it follows from (9 ) that

ϕ(x (1)) =
∫

{z|hmax([x (1)](z),z)≤0}
fξ (z) dz
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=
∫

{z|hmax([x (1)](z),z)≤0}∩{(RT−1\C)×R}
fξ (z) dz

=
∫

{z|hmax([x (2)](z),z)≤0}∩{(RT−1\C)×R}
fξ (z) dz

=
∫

{z|hmax([x (2)](z),z)≤0}
fξ (z) dz = ϕ(x (2)).

This shows, that the value of ϕ does not depend on the representative of x ∈ X .
We will commence our analysis with some (lower-) semicontinuity properties and

then derive consequences later on. The following Proposition turns out to be a crucial
technical tool in this context:

Proposition 1 In addition to the basic assumptions (BA), suppose that h in (4) has
components hi which are lower semicontinuous in their first argument vector (related
with x). Consider a sequence x (n) inX which converges componentwise almost every-
where to some x ∈ X . Then,

lim sup
n→∞

ϕ
(
x (n)

)
≤ ϕ (x) . (10)

Moreover, if h has components hi which are upper semicontinuous in their first argu-
ment vector and in addition

λT

({
z ∈ R

T |hi ([x] (z), z) = 0
})

= 0 i = 1, . . . , k, (11)

then
lim inf
n→∞ ϕ

(
x (n)

)
≥ ϕ (x) . (12)

Proof We start with the first assertion (10). The function hmax in (8) is lower semicon-
tinuous in its first argument vector because the hi are assumed to be so. By assumption,
we have that x (n)

1 →n x1 and

x (n)
t+1(u) →n xt+1(u) ∀u ∈ Bt ∀t = 1, . . . , T − 1,

for some Lebesgue measurable subsets Bt ⊆ R
t with λt

(
R
t\Bt

) = 0. Without loss of
generality (by passing to a superset whose difference with Bt has Lebesgue measure
zero), we may assume that the Bt are Borel measurable. Repeating the construction
from the beginning of this section, we find a subset C ⊆ R

T−1 which now is Borel
measurable and is such that λT−1 (C) = 0 and

[
x (n)

]
(z) →n [x] (z) ∀z ∈

(
R
T−1\C

)
× R.
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1072 T. González Grandón et al.

Denote Γ := ξ−1
((

R
T−1\C) × R

) ∈ A and observe that

P (Γ ) =
∫

(RT−1\C)×R

fξ (z) dz = 1,
[
x (n)

]
(ξ (ω)) →n [x] (ξ (ω)) ∀ω ∈ Γ .

Consider the event sets

An :=
{
ω ∈ Ω|hmax

([
x (n)

]
(ξ (ω)), ξ (ω)

)
≤ 0

}
(n ∈ N)

A := {
ω ∈ Ω|hmax ([x] (ξ (ω)), ξ (ω)) ≤ 0

}
.

Fix an arbitrary ω ∈ (Ω\A) ∩ Γ . Then, the lower semicontinuity of hmax in its first
argument vector yields that

lim inf
n→∞ hmax

([
x (n)

]
(ξ (ω)), ξ (ω)

)
≥ hmax ([x] (ξ (ω)), ξ (ω)) > 0.

Consequently, for any ω ∈ (Ω\A) ∩ Γ , there exists some n0 (ω) ∈ N such that

hmax
([

x (n)
]
(ξ (ω)), ξ (ω)

)
> 0 ∀n ≥ n0 (ω) (13)

Denote byχQ the characteristic function of a set Q. Now, (13) entails thatχAn (ω) →n

0 for all ω ∈ (Ω\A) ∩ Γ . In other words, since P (Γ ) = 1, χAn converges pointwise
P -almost surely to χA on the set Ω\A. Since χAn ≤ 1, the dominated convergence
theorem provides that ∫

Ω\A
χAndP →n 0.

Now, let x (nl ) be a subsequence realizing the limsup in (10 ) as a limit. Then, in view
of the relation above, we arrive at (10 ):

lim sup
n→∞

ϕ
(
x (n)

)
= lim

l→∞ϕ
(
x (nl )

)
= lim

l→∞P

(
hmax

([
x (nl )

]
(ξ), ξ

)
≤ 0

)

= lim
l→∞P

(
Anl

) = lim
l→∞

∫

Ω

χAnl
dP

≤ lim sup
l→∞

∫

Ω\A
χAnl

dP + lim sup
l→∞

∫

A

χAnl
dP

= lim sup
l→∞

∫

A

χAnl
dP ≤ lim sup

l→∞

∫

A

dP = P (A)

= P
(
hmax ([x] (ξ), ξ) ≤ 0

) = ϕ (x) .

As for (12), observe first that with the components hi being upper semicontinuous in
their first argument vector, the components (−hi ) of −h are lower semicontinuous
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in their first argument vector. Denote by ϕ̃ the probability function in (4) or (9),
respectively, associated with −h rather than with h. Then, by the just proven relation
(10), we have that

lim sup
n→∞

P

(
−hmax

([
x (n)

]
(ξ), ξ

)
≤ 0

)
= lim sup

n→∞
ϕ̃
(
x (n)

)

≤ ϕ̃ (x) = P
(−hmax ([x] (ξ), ξ) ≤ 0

)
.

It now follows that

lim inf
n→∞ ϕ

(
x (n)

)
= lim inf

n→∞ P

(
hmax

([
x (n)

]
(ξ), ξ

)
≤ 0

)

≥ lim inf
n→∞ P

(
−hmax

([
x (n)

]
(ξ), ξ

)
> 0

)

= − lim sup
n→∞

−P

(
−hmax

([
x (n)

]
(ξ), ξ

)
> 0

)

= − lim sup
n→∞

(
P

(
−hmax

([
x (n)

]
(ξ), ξ

)
≤ 0

)
− 1

)

= 1 − lim sup
n→∞

P

(
−hmax

([
x (n)

]
(ξ), ξ

)
≤ 0

)

≥ 1 − P
(−hmax ([x] (ξ), ξ) ≤ 0

) = P
(
hmax ([x] (ξ), ξ) < 0

)
.

From (11) and the basic assumption (BA) that ξ possesses a density, we infer that

P
(
hmax ([x] (ξ), ξ) = 0

) = λT

({
z ∈ R

T |hmax ([x] (z), z) = 0
})

≤
k∑

i=1

λT

({
z ∈ R

T |hi ([x] (z), z) = 0
})

= 0.

Hence, wemay continue the previous chain of (in-)equalities, in order to arrive at (12):

lim inf
n→∞ ϕ

(
x (n)

)
≥ P

(
hmax ([x] (ξ), ξ) ≤ 0

) = ϕ (x) .

�

The following Lemmawill allow us to derive from Proposition 1 the announced (semi-
) continuity properties for ϕ. We do not claim that this Lemma is new but are not able
to provide a reference.

Lemma 1 Consider a sequence
{
x (n)

} ⊆ X 1 which converges weakly to x ∈ X 1.
Then, there exists a subsequence

{
x (nk )

}
which converges almost everywhere to x.

Proof Consider {x (n)} ⊆ X 1 which converges weakly to x ∈ X 1. Since our space X 1

is a product spaces, it is enough to prove that each coordinates has a subsequence with
the desired property.
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Let us fix i ∈ {2, . . . , T } (the case i = 1 is trivial). For simplicity of notation let
us denote fn := x (n)

i , f := x (n). Since fn converges weakly to f we have that fn is
bounded in W 1,q(Ri−1).

Consider r ∈ N\{0}, define the domain Ur := Br ⊆ R
i−1, the Euclidean ball

centered at zero with radius r . We have that the restriction of fn and f belongs to
W 1,1(Ur ), and sinceUr is bounded we have that fn and f belong to W 1,q(Ur ). Now,
by Rellich–Kondrachov’s Theorem (see, e.g., [1, Theorem 6.3, Part I] and [1, p. 84])
we can extract a subsequence fnk which converges in norm and almost everywhere
to z ∈ L1(Ur ). Moreover, since fnk also converges weakly to f we have that z = f
almost everywhere on Ur . Finally, using induction and a diagonal argument we are
done. �

Theorem 1 In addition to the basic assumptions (BA), suppose that h in (4) has com-
ponents hi which are lower semicontinuous in their first argument vector (related with
x). Then, ϕ : X → [0, 1] defined in (4) is upper semicontinuous in the norm topology
of X . Its restriction ϕ|X 1 : X 1 → [0, 1] is sequentially upper semicontinuous with
respect to the weak topology of X 1. If, h in (4) has components hi which are upper
semicontinuous in their first argument vector and condition (11) is satisfied, then
ϕ : X → [0, 1] is lower semicontinuous in the norm topology of X and its restriction
ϕ|X 1 : X 1 → [0, 1] is sequentially lower semicontinuous with respect to the weak
topology of X 1.

Proof Let
{
x (n)

} ⊆ X be a sequence strongly converging to some x ∈ X . Consider a
subsequence

{
x (nk )

}
such that

lim sup
n→∞

ϕ
(
x (n)

)
= lim

k→∞ ϕ
(
x (nk )

)
.

It is well known that there exists a further subsequence
{
x (nkl )

}
converging almost

everywhere to x (see, e.g., [3, Theorem 13.6]). Then, by (10),

lim sup
n→∞

ϕ
(
x (n)

)
= lim

l→∞ ϕ
(
x (nkl )

)
≤ ϕ (x) (14)

which shows the upper semicontinuity of ϕ in the norm topology of X .
Next, let

{
x (n)

} ⊆ X 1 be a sequence weakly converging to some x ∈ X 1. Then,
repeating the previous argument—this time justifying almost everywhere convergence
of a subsequence on the basis of Lemma 1—we derive in the same way inequality
(14), thus proving the sequential upper semicontinuity of ϕ|X 1 with respect to the
weak topology of X 1.

Under the additional assumption (11), the same argumentation as above can be
repeated along with (12), in order to derive the remaining assertions. �

Corollary 1 Denote by

M(p) := {x ∈ X |ϕ(x) ≥ p} ; M1(p) :=
{
x ∈ X 1|ϕ(x) ≥ p

}
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Dynamic probabilistic constraints under continuous… 1075

the sets of feasible decisions in problem (3) defined by the dynamic probabilistic
constraint. In addition to the basic assumptions (BA), suppose that h in (4) has com-
ponents hi which are lower semicontinuous in their first argument vector (related with
x). Then, M(p) is strongly closed in X and M1(p) is weakly sequentially closed in
X 1.

Corollary 2 In addition to the basic assumptions (BA) and to condition (11) suppose
that h in (4) has components hi which are continuous in their first argument vector
(related with x). Then, ϕ : X → [0, 1] defined in (4) is continuous in the norm
topology of X . Its restriction ϕ|X 1 : X 1 → [0, 1] is sequentially continuous with
respect to the weak topology of X 1.

We are now in a position to prove with standard arguments the existence of solutions
to problem (3) related with the space X 1 of decisions:

Theorem 2 Consider the optimization problem (3) with X 1 as the space of decisions.
In addition to the basic assumptions (BA), we suppose that

1. The index q in the definition of the space X 1 satisfies 1 < q < ∞.
2. The abstract constraint set C ⊆ X 1 is norm closed, bounded and convex.
3. The objective function J is weakly sequentially lower semicontinuos.
4. The mapping h in (4) has components hi which are lower semicontinuous in their

first argument vector (related with x).
5. The set of feasible decisions of problem (3) is nonempty.

Then, (3) admits a solution.

Proof As a consequence of 1., X 1 is a reflexive Banach space. Therefore, 2. implies
that C is weakly sequentially compact. By 4. and Corollary 1, the set M1(p) ={
x ∈ X 1|ϕ(x) ≥ p

}
is weakly sequentially closed. Hence, with 5., the feasible set

C ∩ M1(p) of (3) is nonempty and weakly sequentially compact. Now, with 3., the
Weierstrass Theorem guarantees the existence of a solution to (3). �

The following example illustrates that, under the assumptions of Corollary 1, M(p)
cannot be expected to be weakly sequentially closed in X (in contrast with M1(p)
and X 1) and therefore existence of solutions as in Theorem 2 cannot be expected in
the space X :

Example 1 Let T = 2, k = 2, q = 2, p = 0.5 + (2π)−1 and let ξ have a
uniform distribution on the rectangle [0, 4π ] × [0, 1]. Define the mapping h by
hi (x1, x2, z1, z2) = zi − xi for i = 1, 2. Then, the hi are continuous such that
our basic assumptions (BA) are satisfied and Corollary 1 guarantees that M(p) is
strongly closed in X . Now, define the sequence

x (n) :=
(
x (n)
1 , x (n)

2

)
∈ X = R × L2(R) by

x (n)
1 := 4π; x (n)

2 (t) :=
⎧
⎨

⎩

0 t ∈ (−∞, 0] ∪ (4π,∞)

sin (nt) t ∈ (0, 2π ]
1 t ∈ (2π, 4π ]

.
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Then, x (n) weakly converges to x := (
4π, χ[2π,4π ]

)
. Moreover, by definition of h and

ξ and by (4), it holds that

ϕ
(
x (n)

)
= P

(
ξ1 ≤ x (n)

1 , ξ2 ≤ x (n)
2 (ξ1)

)

= P (0 ≤ ξ1 < 2π, 0 ≤ ξ2 ≤ sin (nξ1)) + P (2π ≤ ξ1 ≤ 4π, 0 ≤ ξ2 ≤ 1)

= (2π)−1 + 0.5 = p.

Therefore, x (n) ∈ M(p). On the other hand,

ϕ (x) = P
(
ξ1 ≤ 4π, ξ2 ≤ χ[2π,4π ] (ξ1)

) = P (2π ≤ ξ1 ≤ 4π, 0 ≤ ξ2 ≤ 1)

= 0.5 < p.

It follows that x /∈ M(p), whence M(p) fails to be weakly sequentially closed.

We finish this Section by briefly addressing the issue of convexity of the feasible
set defined by the probabilistic constraint ϕ(x) ≥ p in (3). Assume first that we would
deal with a joint static probabilistic constraint, which means that the decision policies
x are supposed to be constants: x[z] ≡ x ∈ R

T in (7 ). Assume further, that ξ has
a logconcave density (e.g., multivariate Gaussian) and that the mapping h is affine
linear: h (x, z) = Ax + Bz+ b. This is the cae, for instance, for the reservoir problem
with static probabilistic constraint (6). Then, thanks to a result by Prékopa [15, Th.
10.2.1.], the inequality ϕ(x) ≥ p defines a convex set of feasible decisions x for any
right-hand side probability level p. Unfortunately, a similar convexity result gets lost in
the dynamic setting. Indeed, we may revisit Example 1, where the density of the given
uniform distribution is constant on the rectangle and zero outside, hence logconcave
(in the extended-valued meaning). Moreover, the mapping h (x, z) = z − x is linear.
As for the feasible set M(p) := {x ∈ X |ϕ(x) ≥ p} , we have seen in Example 1 that
it is strongly closed but fails to be weakly sequentially closed. If it was convex, then
closedness would imply weak closedness, hence weak sequential closedness, which
is a contradiction.

3 Properties of the probability function in a simple two-stagemodel

In this section, we are going to investigate analytical properties (continuity, Lipschitz
continuity, differentiability including explicit derivatives) of the probability function ϕ

in (4) in the framework of the simplestmeaningful dynamic setting.More precisely, we
consider a two-stage model (T = 2) of the following joint and separated probabilistic
constraint:

ϕ (x) := P (ξ1 ≤ x1, ξ2 ≤ x2(ξ1)) ≥ p. (15)

This corresponds to the choice of the mapping h : R
2 × R

2 → R
2 defined by

h(x, z) = z − x in (4). We will choose X with index q = 2 to be the base space of
decisions, which means that x2 ∈ L2(R). In all results hereafter, we shall explicitly
work with a given density of ξ . By continuity of h, our basic assumptions (BA) will
be automatically satisfied then.
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3.1 Continuity and lipschitz continuity

Proposition 2 If ξ has a density, then the probability function ϕ : R × L2(R) → R is
continuous.

Proof Since h is continuous, it suffices by Corollary 2 to check condition (11) at an
arbitrary x ∈ X . For the first component h1 of h it reads as

λ2

({
z ∈ R

2|z1 = x1
})

= 0

which is evidently true. For the second component we observe that

λ2

({
z ∈ R

2|z2 = x2(z1)
})

= 0

⇐⇒ λ1 ({z2 ∈ R|z2 = x2(z1)}) = 0 a.e. z1 ∈ R

and that the right-hand side is evidently true. �

Before extending the previous result on continuity to the stronger Lipschitz continuity,
we introduce the following two assumptions on the density gξ of a two-dimensional
random vector ξ :

∃C ≥ 0 : gξ1(r)

(
=

∫

R

gξ (r , s) ds

)
≤ C a.e. r ∈ R (16)

sup
s∈R

gξ (·, s) ∈ L2 (R) (17)

Note that (16) means that the first marginal density of ξ (which is the density gξ1 of
the first component of ξ ) is bounded.

Proposition 3 Let the density gξ of ξ satisfy (16) and (17). Then, ϕ is Lipschitz con-
tinuous.

Proof Consider an arbitrary couple x, y ∈ X . We start with the obvious estimate

|ϕ(x) − ϕ(y)| ≤ |ϕ(x1, x2) − ϕ(y1, x2)| + |ϕ(y1, x2) − ϕ(y1, y2)| . (18)

Without loss of generality, assume that x1 ≤ y1. Now, by (15), and taking into account
assumption (16), we have that

|ϕ(x1, x2) − ϕ(y1, x2)| = |P (ξ1 ≤ x1, ξ2 ≤ x2(ξ1)) − P (ξ1 ≤ y1, ξ2 ≤ x2(ξ1))|
= P (x1 < ξ1 ≤ y1, ξ2 ≤ x2(ξ1))

=
∫ y1

x1

∫ x2(r)

−∞
gξ (r , s) dsdr ≤

∫ y1

x1

∫ ∞

−∞
gξ (r , s) dsdr

≤ C |y1 − x1| .
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Likewise, exploiting (17), the fact that x2, y2 ∈ L2 (R) and the Cauchy-Schwartz
inequality, we obtain

|ϕ(y1, x2) − ϕ(y1, y2)| = |P (ξ1 ≤ y1, ξ2 ≤ x2(ξ1)) − P (ξ1 ≤ y1, ξ2 ≤ y2(ξ1))|

=
∣∣
∣∣∣

∫ y1

−∞

(∫ x2(r)

−∞
gξ (r , s) ds −

∫ y2(r)

−∞
gξ (r , s) ds

)

dr

∣∣
∣∣∣

≤
∫ y1

−∞

∣∣∣∣
∣

∫ x2(r)

−∞
gξ (r , s) ds −

∫ y2(r)

−∞
gξ (r , s) ds

∣∣∣∣
∣
dr

=
∫ y1

−∞

∫ max{x2(r),y2(r)}

min{x2(r),y2(r)}
gξ (r , s) dsdr

≤
∫ ∞

−∞
sup
s∈R

gξ (r , s) |x2(r) − y2(r)| dr

≤
∥∥∥∥sup
s∈R

gξ (r , s)

∥∥∥∥
L2(R)

‖x2 − y2‖L2(R) = C̃ ‖x2 − y2‖L2(R) .

Along with (18), we conclude that

|ϕ(x) − ϕ(y)| ≤ (C + C̃) ‖x − y‖X .

�

The following example shows, that the assumptions of Proposition 3 are not strong
enough to guarantee the differentiability of ϕ:

Example 2 Let ξ ∼ N (0, I2) have a bivariate standardGaussian distribution (uncorre-
lated componentswithmean zero andunit variance). ByProposition 6, the assumptions
(16) and (17) of Proposition 3 are satisfied and, hence, ϕ is Lipschitz continuous. On
the other hand, ϕ fails to be differentiable. To see this, we fix x̂2 := χ[0,1] ∈ L2 (R)

and observe that the partial real function ϕ̃(x1) := ϕ
(
x1, x̂2

)
fails to be differentiable.

Indeed, the following explicit representation can be immediately verified, where Φ

refers to the cumulative distribution function of the one dimensional standardGaussian
distribution:

ϕ̃(x1) =
⎧
⎨

⎩

Φ (0) Φ (x1) x1 ≤ 0
Φ2 (0) + Φ (1) (Φ (x1) − Φ (0)) x1 ∈ [0, 1]
Φ2 (0) + Φ (1) (Φ (1) − Φ (0)) + (Φ (0) (Φ (x1) − Φ (1))) x1 ≥ 0

The graph of this function is shown in Fig. 1. Clearly, ϕ̃ is Lipschitz continuous because
ϕ is so. On the other hand, it fails to be differentiable at x1 = 0 and x1 = 1. This
can be seen for x1 = 0, for instance, by deriving the first two expressions above at 0.
With f denoting the density of the standard Gaussian distribution, the derivative of the
first expression-yielding the left directional derivative of ϕ̃ at 0-gives Φ (0) f (0). On
the other hand, the derivative of the second expression-yielding the right directional
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Fig. 1 Plot of function ϕ̃ from Example 2

derivative of ϕ̃ at 0-givesΦ (1) f (0). SinceΦ (1) > Φ (0) and f (0) > 0, both values
are different, hence ϕ̃ fails to be differentiable at 0.

We shall see in the next section that the reason for the failure of differentiability
of ϕ in Example 2 is the discontinuity of the second stage policy x2 := χ[0,1] at
which the derivative is considered. More precisely, this circumstance concerns just the
partial differentiability of ϕ with respect to its first argument x1, whereas the partial
differentiability of ϕ with respect to x2 remains unaffected by a possible discontinuity
of x2.

3.2 Differentiability

Before verifying the partial differentiability of ϕ with respect to its first argument, we
shall prove the following

Lemma 2 Let a bivariate probability density g satisfy the following technical (uniform
calmness) condition:

∀r̄ ∈ R ∃l ∈ L1 (R) , ε > 0 :
|g (r , s) − g (r̄ , s)| ≤ l(s) |r − r̄ | ∀r ∈ (r̄ − ε, r̄ + ε) a.e. s ∈ R.

(19)

Assume further, that f : R → R is continuous. Then, the function

α (r) :=
∫ f (r)

−∞
g (r , s) ds (r ∈ R) (20)

is finite-valued and continuous.
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Proof Fix an arbitrary r̄ ∈ R and consider an arbitrary sequence rn → r̄ . We are going
to show that α (rn) → α (r̄). We observe first that

g (rn, s) χ(−∞, f (rn)](s) → g (r̄ , s) χ(−∞, f (r̄)](s) a.e. s ∈ R. (21)

Indeed, if s < f (r̄), then, s < f (rn) and if s > f (r̄), then, s > f (rn) for n large
enough by continuity of f . Hence, for each s �= f (r̄), one has that χ(−∞, f (rn)](s) =
χ(−∞, f (r̄)](s) for n large enough. By (19), there exists a subset A ⊆ R such that
λ1 (A) = 0 and g (rn, s) → g (r̄ , s) for all s ∈ R\A. Consequently, (21) holds true
for all s ∈ R\ (A ∪ { f (r̄)}), where λ1 (A ∪ { f (r̄)}) = 0.

From (19) we conclude that, for n large enough and almost every s ∈ R,

|g (rn, s) − g (r̄ , s)| ≤ l(s) |rn − r̄ | ≤ l(s).

Therefore, for n large enough and almost every s ∈ R,

g (rn, s) χ(−∞, f (rn)](s) ≤ g (rn, s) ≤ l(s) + g (r̄ , s) . (22)

We show that g (r̄ , ·) ∈ L1 (R): Indeed, as g ∈ L1
(
R
2
)
(as a probability density),

Fubini’s Theorem yields that g (r , ·) ∈ L1 (R) for almost every r ∈ R. Hence, there
exists some r̃ ∈ (r̄ − ε, r̄ + ε) with ε from (19) such that g (r̃ , ·) ∈ L1 (R) and

g (r̄ , s) ≤ l(s) |r̃ − r̄ | + g (r̃ , s) a.e. s ∈ R.

Since l ∈ L1 (R) and |r̃ − r̄ | ≤ ε, it follows that g (r̄ , ·) ∈ L1 (R). Hence,
by (22), l + g (r̄ , ·) is an integrable majorant for the sequence of functions
g (rn, ·) χ(−∞, f (rn)], which by (21) converges pointwise almost everywhere to the
function g (r̄ , ·) χ(−∞, f (r̄)]. Therefore, by Lebesgue’s dominated convergence theo-
rem, the value

α (r̄) =
∫

g (r̄ , s) χ(−∞, f (r̄)](s)ds < ∞
in (20) is finite and it holds that

α (rn) =
∫

g (rn, s) χ(−∞, f (rn)](s)ds →n α (r̄) .

Since r̄ was chosen arbitrarily, we have shown that α is finite-valued and continuous.
�


The preceding Lemma allows us to formulate the desired result on partial differentia-
bility of ϕ with respect to its first argument:

Proposition 4 Let the density gξ of ξ satisfies (19) and fix x̄2 ∈ L2(R) such that x̄2 is
continuous. Then, the partial derivative of ϕ w.r.t. x1 exists at any (x̄1, x̄2), it equals

∂ϕ

∂x1
(x̄1, x̄2) =

∫ x̄2(x̄1)

−∞
gξ (x̄1, s) ds.
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Moreover, it depends continuously on x1.

Proof Let x̄1 be arbitrary. By (15), we have that

ϕ (x̄1, x̄2) =
∫ x̄1

−∞

∫ x̄2(r)

−∞
gξ (r , s) dsdr=

∫ x̄1

−∞
α (r) dr

with α defined in Lemma 2 upon setting f (r) := x̄2(r) and g := gξ . Since x̄2 is
supposed to be continuous, the assumptions of Lemma 2 are satisfied. Thus, by taking
into account that α is continuous according to 2, we arrive at

∂ϕ

∂x1
(x̄1, x̄2) = lim

h→0

ϕ (x̄1 + h, x̄2) − ϕ (x̄1, x̄2)

h
= α(x̄1) =

∫ x̄2(x̄1)

−∞
g (x̄1, s) ds.

Continuity of ∂ϕ
∂x1

(·, x̄2) = α follows once more from the continuity of α. �

Observe, that a full continuity result (with respect to x1 and x2 simultaneously) cannot
be expected for the partial derivative ∂ϕ

∂x1
because, by virtue of Example 2, it may not

even be defined for discontinuous x2 approaching the continuous policy x̄2. In contrast
to the partial derivative w.r.t. x1, the partial derivative of ϕ with respect to x2 does not
require any assumptions on the fixed second-stage policy x̄2 but rather some additional
assumptions on the density gξ :

Proposition 5 Let the density gξ of ξ satisfies assumption (17) as well as the assump-
tion of being Lipschitz continuous in the second argument uniformly in the first
argument:

∃C > 0 : ∣∣gξ (r , s) − gξ (r , t)
∣∣ ≤ C |s − t | ∀r , s, t ∈ R. (23)

Fix an arbitrary (x̄1, x̄2) ∈ X = R × L2 (R). Then, the partial derivative ∇x2ϕ exists
at (x̄1, x̄2), it is given by the expression

∇x2ϕ (x̄1, x̄2) = gξ (·, x̄2(·)) χ(−∞,x̄1]. (24)

and it is continuous in (x1, x2).

Proof We put γ (x2) := ϕ (x̄1, x2) for all x2 ∈ L2 (R) and show that this function is
Fréchet differentiable at x̄2. Define the linear function

A(h) :=
∫ x̄1

−∞
gξ (r , x̄2(r)) h(r)dr

(
h ∈ L2 (R)

)
. (25)

From (17) we infer that gξ (·, x̄2(·)) ∈ L2 (R), whence by the Cauchy-Schwarz
inequality,

|A(h)| ≤
∫ ∞

−∞
gξ (r , x̄2(r)) |h(r)| dr ≤ ∥∥gξ (·, x̄2(·))

∥∥
L2 ‖h‖L2 .
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Consequently, A is a continuous linear functional. Hence, the Fréchet differentiability
of γ at x̄2 will be proven, once we can show that

lim‖h‖L2→0
‖h‖−1

L2 (γ (x̄2 + h) − γ (x̄2) − A(h)) = 0. (26)

Indeed, the definition of γ and (15) entail that

γ (x̄2 + h) − γ (x̄2) − A(h)

=
∫ x̄1

−∞

∫ x̄2(r)+h(r)

−∞
gξ (r , s) dsdr −

∫ x̄1

−∞

∫ x̄2(r)

−∞
gξ (r , s) dsdr

−
∫ x̄1

−∞
gξ (r , x̄2(r)) h(r)dr

=
∫ x̄1

−∞

(

(sgn h (r))
∫ max{x̄2(r),x̄2(r)+h(r)}

min{x̄2(r),x̄2(r)+h(r)}
gξ (r , s) ds − gξ (r , x̄2(r)) h(r)

)

dr

=
∫ x̄1

−∞
(sgn h (r))

∫ max{x̄2(r),x̄2(r)+h(r)}

min{x̄2(r),x̄2(r)+h(r)}
(
gξ (r , s) − gξ (r , x̄2(r))

)
dsdr .

By (23), we have that

∣∣gξ (r , s) − gξ (r , x̄2(r))
∣∣ ≤ C |h (r)|

∀r ∈ R ∀s ∈ [min{x̄2 (r) , x̄2(r) + h (r)},max{x̄2 (r) , x̄2(r) + h (r)}] .

Consequently, we derive the following relation implying (26).

|γ (x̄2 + h) − γ (x̄2) − A(h)| ≤ C
∫ x̄1

−∞
|h (r)|2 dr = C ‖h‖2L2 .

It follows that ∇x2ϕ (x̄1, x̄2) = ∇γ (x̄2) = A. Since A in (25) has been shown to
be a continuous linear functional on L2 (R), it can be identified with the function
gξ (·, x̄2(·)) χ(−∞,x̄1] ∈ L2 (R). This entails the asserted formula (24). It remains to
show that the expression given there depends continuously on (x1, x2). To this aim,
consider a sequence (x (n)

1 , x (n)
2 ) in X strongly converging to (x̄1, x̄2) ∈ X . We have

to show that
∇x2ϕ(x (n)

1 , x (n)
2 ) →n ∇x2ϕ (x̄1, x̄2)

in L2 (R). We will do this by showing the equivalent fact that every subsequence

(x (nk )
1 , x (nk )

2 ) of (x (n)
1 , x (n)

2 ) has again a subsequence (x
(nkl )
1 , x

(nkl )
2 ) such that

∇x2ϕ(x
(nkl )
1 , x

(nkl )
2 ) →l ∇x2ϕ (x̄1, x̄2) (27)

in L2 (R). So, let (x (nk )
1 , x (nk )

2 ) be such an arbitrary subsequence. Observe first that

the strong convergence (x (nk )
1 , x (nk )

2 ) →l (x̄1, x̄2) in R × L2 (R) implies the almost
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everywhere pointwise convergence for a subsequence:

(x
(nkl )
1 (r), x

(nkl )
2 (r)) →l (x̄1(r), x̄2(r)) a.e. r ∈ R. (28)

As gξ is continuous in its second argument by (23), it follows from (28) that

gξ (r , x
(nkl )
2 (r)) →l gξ (r , x̄2(r)) a.e. r ∈ R.

Moreover,
χ

(−∞,x
(nkl

)

1 ](r) →l χ(−∞,x̄1](r) ∀r ∈ R� {x̄1} .

We conclude from (24) that

∇x2ϕ(x
(nkl )
1 , x

(nkl )
2 )(r) = gξ (r , x

(nkl )
2 (r))χ

(−∞,x
(nkl

)

1 ](r)

→l gξ (r , x̄2(r))χ(−∞,x̄1](r) = ∇x2ϕ (x̄1, x̄2) .

for almost every r ∈ R. On the other hand, by (17)

∇x2ϕ(x
(nkl )
1 , x

(nkl )
2 )(·) = gξ (·, x (nkl )

2 (·))χ
(−∞,x

(nkl
)

1 ](·) ≤ sup
s∈R

gξ (·, s) ∈ L2 (R) .

Therefore, Lebesgue’s Dominated Convergence Theorem (for L2 (R)) yields the
asserted convergence (27) in L2 (R). �


3.3 Distributions satisfying the assumptions

In this Sectionwe are going to specify the results of the preceding sections to the special
case of a bivariateGaussian distribution and a uniformdistribution on a rectangle. First,
we verify that all relevant assumptions are satisfied in the Gaussian case:

Proposition 6 Let ξ be a bivariate random vector distributed according to ξ ∼
N (μ,Σ) with regular Σ . Then its density gξ satisfies the assumptions (16), (17),
(19) and (23).

Proof The first marginal density of gξ is the density gξ1 of its first component ξ1 ∼
N (μ1,Σ11) which is bounded of course. Hence, (16) holds true. To show (17), recall
that

gξ (r , s) = C exp

(
−1

2
(r − μ1, s − μ2)Σ−1

(
r − μ1

s − μ2

))
, (29)

where C is some normalizing factor. With C2 > 0 denoting the smallest eigenvalue
of Σ−1, we infer that, for all s ∈ R,

gξ (r , s) ≤ C exp

(
−C2

2
(r − μ1)

2 − C2

2
(s − μ2)

2
)
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≤ C exp

(
−C2

2
(r − μ1)

2
)

∈ L2 (R) (30)

which implies (17). In order to verify (19) and (23), we first calculate the gradient of
gξ :

∇gξ (r , s) = −gξ (r , s) Σ−1
(
r − μ1

s − μ2

)
∀r , s ∈ R.

Denoting hi (r) := exp
(
−C2

2 (r − μi )
2
)
for i = 1, 2, it follows from (30) that

∥
∥∇gξ (r , s)

∥
∥ ≤ C̃h1(r)h2(s) ‖(r − μ1, s − μ2)‖ ∀r , s ∈ R,

where C̃ := C
∥∥Σ−1

∥∥. Since the function h1(r)h2(s) ‖(r − μ1, s − μ2)‖2 is bounded
from above, we have that, for some C3 > 0,

√
h1(r)h2(s) ‖(r − μ1, s − μ2)‖ ≤ C3 ∀r , s ∈ R.

Hence, thanks to h1, h2 ≤ 1, we get that

∥
∥∇gξ (r , s)

∥
∥ ≤ C̃C3

√
h1(r)h2(s) ≤ C̃C3

√
h2(s) ≤ C̃C3 ∀r , s ∈ R.

Then, (23) follows from the Mean Value Theorem:

∣
∣gξ (r , s) − gξ (r , t)

∣
∣ ≤ C̃C3 |s − t | ∀r , s, t ∈ R.

Similarly, for arbitrarily fixed r̄ ∈ R,

∣
∣gξ (r , s) − gξ (r̄ , s)

∣
∣ ≤ C̃C3

√
h2(s) |r − r̄ | ∀r , s ∈ R,

where
√
h2 ∈ L1 (R). This proves (19). �


Theorem 3 Let ξ be a bivariate random vector distributed according to N (μ,Σ)

with regular Σ . Then, the probability function ϕ in (15) is Lipschitz continuous and
has a second partial derivative at an arbitrary (x̄1, x̄2) ∈ X = R × L2 (R) which is
given by the explicit formula

∇x2ϕ (x̄1, x̄2) (r) =

⎧
⎪⎨

⎪⎩

1
2π

√
detΣ

exp
(
− 1

2

( r−μ1
x̄2(r)−μ2

)�
Σ−1

( r−μ1
x̄2(r)−μ2

))
if r ≤ x̄1

0 if r > x̄1

.

(31)

Here,∇x2ϕ depends continuously (in the norm ofX ) on x = (x1, x2). Moreover, ϕ has
a first partial derivative at an arbitrary (x̄1, x̄2) ∈ X = R × L2 (R) with continuous
x̄2 which is given by the explicit formula
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∂ϕ

∂x1
(x̄1, x̄2)

= 1√
2πΣ11

exp

(
− 1

2Σ11
(r − μ1)

2
)

Φ

⎛

⎝ x̄2(x̄1) − μ2 − Σ−1
11 Σ12 (x̄1 − μ1)√

Σ22 − Σ−1
11 Σ2

12

⎞

⎠ , (32)

where Φ(t) := (2π)−1/2 ∫ t
−∞ e−s2/2ds refers to the cumulative distribution function

of the one-dimensional standard Gaussian distribution N (0, 1) . Here ∂ϕ
∂x1

(·, x̄2) is
continuous.

Proof The Lipschitz continuity, the existence of partial derivatives and the corre-
sponding continuity statements follow from Propositions 3, 4 and 5 via Proposition 6.
Relation (31) is obtained by specifying (24) for the density ofN (μ,Σ) (see (29) with

C :=
(
2π

√
detΣ

)−1
). Concerning (32 ), we recall the formula derived in Proposi-

tion 4:

∂ϕ

∂x1
(x̄1, x̄2) =

∫ x̄2(x̄1)

−∞
gξ (x̄1, s) ds = gξ1 (x̄1)

∫ x̄2(x̄1)

−∞
gξ (x̄1, s)

gξ1 (x̄1)
ds

= gξ1 (x̄1)
∫ x̄2(x̄1)

−∞
gξ2|ξ1=x̄1 (s) ds

= gξ1 (x̄1)Gξ2|ξ1 x̄1 (x̄2(x̄1)) , (33)

where gξ2|ξ1=x̄1 and Gξ2|ξ1=x̄1 refer to the conditional density and cumulative distribu-
tion function, respectively, of ξ2 given ξ1 = x̄1. As it is well known for the Gaussian
case assumed here, one has that the conditioned random variable ξ2|ξ1 = x̄1 has a
one-dimensional Gaussian distribution with

(ξ2|ξ1 = x̄1) ∼ N
(
μ2 + Σ−1

11 Σ12 (x̄1 − μ1) ,Σ22 − Σ−1
11 Σ2

12

)
.

After normalization, we get that

η := (ξ2|ξ1 = x̄1) − μ2 − Σ−1
11 Σ12 (x̄1 − μ1)√

Σ22 − Σ−1
11 Σ2

12

∼ N (0, 1) .

Now, the definition of Gξ2|ξ1=x̄1 yields that

Gξ2|ξ1=x̄1 (x̄2(x̄1)) = P ((ξ2|ξ1 = x̄1) ≤ x̄2(x̄1))

= P

⎛

⎝η ≤ x̄2(x̄1) − μ2 − Σ−1
11 Σ12 (x̄1 − μ1)√

Σ22 − Σ−1
11 Σ2

12

⎞

⎠
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= Φ

⎛

⎝ x̄2(x̄1) − μ2 − Σ−1
11 Σ12 (x̄1 − μ1)√

Σ22 − Σ−1
11 Σ2

12

⎞

⎠ ,

whereΦ is the cumulative distribution function ofN (0, 1). Now the asserted formula
(32) follows form (33) upon plugging in the formula for the first marginal density gξ1

of gξ having distribution N (μ1,Σ11). �

Corresponding results can be expected for many other bivariate distributions having
continuous density. As a contrast, we briefly refer to uniform distributions over rect-
angles for which no differentiability results for ϕ but at least Lipschitz continuity can
be expected:

Proposition 7 Let ξ be a bivariate random vector having a uniform distribution over
the rectangle [a, b] × [c, d]. Then, the probability function ϕ in (15) is Lipschitz
continuous.

Proof The density gξ satisfies the assumptions (16) and (17) thanks to the following
easy to verify relations

gξ1 = 1

b − a
χ[a,b]; sup

s∈R
gξ (·, s) = 1

(b − a) (d − c)
χ[a,b].

Now, the assertion follows from Proposition 3. �

Note, that a uniform distribution as in the previous Proposition cannot satisfy relations
(19) and (23) because of the discontinuity of its density. Therefore, no differentiability
results as in Propositions 4 and 5 can be expected and counter examples are easily
constructed.

3.4 Application to an optimization problem

In the following, we consider the simple dynamic probabilistic constraint as a part of
the following two-stage optimization problem (15):

min
x∈X

{
c1x1 + c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ(x) ≥ p

}
, (34)

where ξ (occuring in the definition of ϕ) is a bivariate random vector distributed
according to N (μ,Σ). The objective is linear in the decisions, it could represent,
for instance, linear costs. Since the second stage decision is random, its costs are
represented as an expected value. Note, however, that considering the full expected
value Ex2 (ξ1) would not make much sense: Indeed, since function values of x2 (ξ1)

for arguments ξ1 > x1 do not affect the probability ϕ(x) (see (15)), one could drive
the expected value Ex2 (ξ1) to −∞ while keeping the decision x feasible. Therefore,
we measure the costs of x2 by ignoring in the objective its values beyond x1 and rather
considering the expected value of x2χ(−∞,x1].
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In a first step, one might be interested in deriving some information from necessary
optimality conditions for this problem. Here, one has to take into account that ϕ is not
continuously differentiable [see Example (2)]. However, ϕ is continuously partially
differentiable with respect to x2 thanks to Proposition 5. This suggests to consider the
decomposed version of problem (34):

min
x1∈R

{
c1x1 + min

x2∈L2(R)

{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ(x1, x2) ≥ p

}}
. (35)

Here, the one-dimensional outer minimization over x1 can be realized by elementary
numerical approaches. Therefore, our interest will focus on the inner minimization
problem over x2 ∈ L2 (R) for some fixed x̄1 ∈ R:

min
x2∈L2(R)

{
c2Ex2 (ξ1) χ(−∞,x̄1] (ξ1) |ϕ(x̄1, x2) ≥ p

}
. (36)

For this inner optimization problem, the data (objective and constraint) are continu-
ously differentiable and one can formulate necessary optimality conditions at some
fixed x̄2 ∈ L2 (R) provided that ∇x2ϕ(x̄1, x̄2) �= 0. This, however, is an immediate
consequence of (31). Hence, one may formulate the following necessary optimality
condition:

Proposition 8 Let x̄2 ∈ L2 (R) be a solution of the optimization problem (36) (with
some fixed x̄1 ∈ R). Then, x̄2 is affine linear on the set (−∞, x1] with the explicit
value of Σ12/Σ11 for its slope.

Proof Without loss of generality, we may assume that c2 = 1 in (36) because the
solution of the problem is not affected by the value of c2. The gradient of the objective
evaluated at x̄2 has to be a multiple of the gradient ∇ϕ(x̄1, x̄2) to the constraint in (36)
also evaluated at x̄2. Clearly, the objective

Ex2 (ξ1) =
∫

x2 (r) χ(−∞,x1] (r) gξ1(r)dr

(with gξ1 referring to the density of ξ1) has a gradient which is given by the function
χ(−∞,x1]gξ1 . Hence, there exists some multiplier λ such that

gξ1(r) = λ∇x2ϕ(x̄1, x̄2) (r) a.e. r ≤ x̄1.

Since the one-dimensionalGaussian density gξ1 is strictly positive, we infer thatλ > 0.
Given the explicit formula for gξ1 as well as for ∇x2ϕ(x̄1, x̄2) in (31), we derive the
existence of constants K1, K2 > 0 (where the latter already incorporates themultiplier
λ) such that for almost every r ≤ x̄1:
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K1 exp

(

−1

2

(r − μ1)
2

Σ11

)

= K2 exp

(
−1

2
(r − μ1, x̄2(r) − μ2)Σ−1

(
r − μ1

x̄2(r) − μ2

))
(37)

We fix an arbitrary r for which (37) holds true. Using the correlation ρ between the
two components ξ1 and ξ2, the inverse covariance matrix can be written as

Σ−1 = 1

1 − ρ2

(
1

Σ11
− ρ√

Σ11Σ22

− ρ√
Σ11Σ22

1
Σ22

)

;
(

ρ := Σ12√
Σ11Σ22

)
.

Taking the log in (37) and rearranging terms, one arrives at

log
K1

K2
= 1

1 − ρ2

( −ρ2

2Σ11
(r − μ1)

2 + ρ√
Σ11Σ22

(r − μ1) (x̄2(r) − μ2)

− 1

2Σ22
(x̄2(r) − μ2)

2
)

.

Putting

α := x̄2(r) − μ2√
Σ22

; β := 2
(
1 − ρ2

)
log

K1

K2
,

the last identity can be rewritten as

α2 − 2ρ√
Σ11

(r − μ1) α + ρ2

Σ11
(r − μ1)

2 + β = 0.

Resolution for α yields that

α = ρ√
Σ11

(r − μ1) ± √−β.

Resubstituting for α and β gives our assertion on the structure of x̄2:

x̄2(r) =
√

Σ22ρ√
Σ11

r + μ2 −
√

Σ22ρ√
Σ11

μ1 ± √
Σ22

√

2
(
1 − ρ2

)
log

K2

K1

�

Unfortunately, since an affine linear function cannot belong to L2 (R) unless it is

identically zero, we draw the following negative conclusion of Proposition 8:

Corollary 3 If the components ξ1 and ξ2 of ξ are not independent, then problem (36)
has no local, much less global solution.
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Fig. 2 Plot of several iterates for a projected gradient algorithm applied to problem (36) (left) and of
associated values of the objective (right)

Proof The independence assumption implies that Σ12 �= 0. Hence, if (36) had a local
solution x̄2 ∈ L2 (R), then this solution would be a linear function (in the range from
−∞ to x̄1) with nonzero slope by Proposition 8. Therefore it does not belong to L2 (R),
a contradiction.

Before deriving a remedy to the outcome of Corollary 3, we want to illustrate the
use of the gradient information collected in (31) in a numerical context. We consider
problem (36) with the following data:

c2 = 1; x̄1 = 2; p = 0.8; ξ ∼ N
(

(0, 0) ,

(
1 0.25

0.25 1

))
.

Using the explicit representation of the gradients for the objective and the constraint
(see proof of Proposition 8), we apply a simple projected gradient algorithm in order
to improve the second stage decision x2 in (36).

The left diagram of Fig. 2 shows some iterates of this algorithm. All plotted poli-
cies realize exactly the desired probability p = 0.8 in the definition of the chance
constraint in (36). The starting point for x2 was chosen as a simple step function “1”,
which after the first iteration turned into a nonlinear—still discontinuous—policy “2”.
After some further iterations, the policy becomes continuous. Interestingly, after seven
iterations “3”, the policy is affine linear on a certain subdomain. It turns out that on this
subdomain, the policy perfectly coincides with the affine linear policy “4” satisfying
the necessary optimality condition in Proposition 8. The latter is easily identified by
its slope, which according to Proposition 8 calculates as Σ12/Σ1,1 = 0.25 and by
its intercept which has to be chosen in order to match the probability level p = 0.8.
Observe, that all iterates decay to zero on the left end of the negative axis in order to
belong to L2(R). The right diagram of Fig. 2 plots the objective for the first seven iter-
ates and for the the affine linear policy from Proposition 8 (isolated point). Evidently,
the necessary optimality condition from Proposition 8 still carries some information
on the optimality condition though not belonging to the L2 space.
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3.5 Derivation of a global solution

Motivated by the negative result of Corollary 3, we consider now the optimization
problem

min
(x1,x2)∈R×X ∗

{
c1x1 + c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

}
, (38)

where X ∗ is the set of all Borel measurable functions f : R → R, c1, c2 > 0 are
some positive cost coefficients, ξ ∼ N (μ,Σ) is a bivariate Gaussian random vector,
ϕ is the probability function defined in (15), p ∈ (0, 1] is some probability level and
the additional constraint set is given by

M :=
{
x2 ∈ X ∗| x2 (r) ≥ μ2 + Σ12

Σ11
(r − μ1)

}
.

This problem differs from (34) first in that the space of second stage decisions is much
larger than the space L2 (R) considered before, so that it also includes affine linear
functions. At the same time we add the technical constraint x2 ∈ M in order to identify
a global solution by a direct argument rather than by necessary optimality conditions.
However, we shall make use of the result obtained before in Proposition 8 to get the
right guess for a candidate of an optimal second stage solution (affine linear function
with slope Σ12

Σ11
). Note that we do not require the expectation of x2χ(−∞,x1] in (38) to

be finite. It turns out that the solution of (38) can be reduced to a one-dimensional
optimization. Before stating the result, we introduce the real functions

α (t) := Φ−1

⎛

⎝ p

Φ
(
t−μ1√

Σ11

)

⎞

⎠

√

Σ22 − Σ2
12

Σ11
+ μ2 − Σ12

Σ11
μ1 (39)

(
t >

√
Σ11Φ

−1 (p) + μ1

)
, (40)

β (t) := μ1 − √
Σ11

φ
(
t−μ1√

Σ11

)

Φ
(
t−μ1√

Σ11

) (41)

where μi and Σi j refer to the corresponding components of μ and Σ , respectively
and Φ denotes as before the cumulative distribution function of the one-dimensional
standard Gaussian distribution N (0, 1). Recall that Φ is invertible with inverse Φ−1

called the quantile function ofN (0, 1). SinceΦ−1 is defined only on the open interval
(0, 1), (39) is defined correctly only if p < 1 (which we shall impose in the Theorem
below) and if

Φ

(
t − μ1√

Σ11

)
> p,
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which leads to the constrained domain of definition in (39). Finally, the function

φ (t) := 1√
2π

e−t2/2,

appearing in (41), is the density of the one-dimensional standardGaussian distribution.

Theorem 4 Let p ∈ [ 1
2 , 1

)
be given. Then, a global solution of problem (38) is given

by
(
x∗
1 , x

∗
2

) ∈ R×X ∗, where x∗
1 is a minimizer overR of the real function c1t+c2 f (t)

over the open interval
(√

Σ11Φ
−1 (p) + μ1,∞

)
, with

f (t) :=
[
Σ12

Σ11
β (t) + α (t)Φ

(
t − μ1√

Σ11

)]
(t ∈ R)

and

x∗
2 (r) := Σ12

Σ11
r + α

(
x∗
1

)
(r ∈ R) .

Proof We start our proof with an intermediary result. To this aim, fix an arbitrary

x1 >
√

Σ11Φ
−1 (p) + μ1, (42)

in order to make the value α (x1) well defined in (39). We claim that the second stage
policy defined by

y (r) := Σ12

Σ11
r + α (x1) (r ∈ R) (43)

is a global solution to the problem

min
x2∈X ∗

{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

}
. (44)

In a first step we check the feasibility of y in this problem. Introducing the linear
transformation

η1 := ξ1; η2 := ξ2 − Σ12

Σ11
ξ1 (45)

of random variables, we observe that according to well-known rules the random vector

η := (η1, η2) obeys a bivariate Gaussian law N
(
μ̃, Σ̃

)
with parameters

μ̃ =
(

μ1, μ2 − Σ12

Σ11
μ1

)
, Σ̃ =

(
Σ11 0

0 Σ22 − Σ2
12

Σ11

)

.

In particular, the components η1, η2—having zero covariance—are independent. It
follows from the definition (15) of ϕ and from (43) that

ϕ (x1, y) = P (ξ1 ≤ x1, ξ2 ≤ y (ξ1)) = P (η1 ≤ x1, η2 ≤ α (x1))
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= P (η1 ≤ x1) P (η2 ≤ α (x1)) ,

where the last equality follows from the independence of η1 and η2. Again, by the
well-known transformation laws of Gaussian distributions as well as by (39), it holds
that

P (η1 ≤ x1) = Φ

(
x1 − μ̃1√

Σ̃11

)

= Φ

(
x1 − μ1√

Σ11

)
;

P (η2 ≤ α (x1)) = Φ

(
α (x1) − μ̃2√

Σ̃22

)

= Φ

⎛

⎜⎜
⎝

α (x1) − μ2 + Σ12
Σ11

μ1
√

Σ22 − Σ2
12

Σ11

⎞

⎟⎟
⎠

= p

Φ
(
x1−μ1√

Σ11

) . (46)

Consequently, we arrive at ϕ (x1, y) = p. Hence, x2 := y is feasible with respect to
the constraint ϕ (x1, x2) ≥ p. Next, we verify that y ∈ M . By definition of y, M and
α, it suffices to show that

α (x1) ≥ μ2 − Σ12

Σ11
μ1 = μ̃2. (47)

Indeed, the assumption that α (x1) < μ̃2 would lead—via the fact that the values of
Φ are strictly smaller than one—to the contradiction

p <
p

Φ
(
x1−μ1√

Σ11

) = P (η2 ≤ α (x1)) < P (η2 ≤ μ̃2) ≤ 1

2

with our assumption that p ≥ 1
2 . Summarizing, y ∈ X ∗ defined by (43) is a feasible

second stage policy in problem (44).
In the last step of our initial claim, we show that there is no other feasible second

stage decision in (44) that would yield a strictly smaller objective value than y. Indeed,
assume to the contrary, that some function ỹ ∈ M with ϕ (x1, ỹ) ≥ p would realize
in (44) a strictly smaller objective value than y. Then, since c2 > 0,

Eỹ (ξ1) χ(−∞,x1] (ξ1) < Ey (ξ1) χ(−∞,x1] (ξ1) . (48)

Now, by (45) and with gη denoting the density of η,

0 ≤ ϕ (x1, ỹ) − ϕ (x1, y) = P (ξ1 ≤ x1, ξ2 ≤ ỹ (ξ1)) − P (ξ1 ≤ x1, ξ2 ≤ y (ξ1))

= P

(
η1 ≤ x1, η2 ≤ ỹ (η1) − Σ12

Σ11
η1

)
− P

(
η1 ≤ x1, η2 ≤ y (η1) − Σ12

Σ11
η1

)

=
∫ x1

−∞

∫ ỹ(r)− Σ12
Σ11

r

−∞
gη (s, r) dsdr −

∫ x1

−∞

∫ y(r)− Σ12
Σ11

r

−∞
gη (s, r) dsdr .
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Recalling that, by independenceof the componentsη1 andη2 ,wemaywrite gη (s, r) =
gη1 (r) gη2 (s), where gη1 ,gη2 refer to the one-dimensional densities of η1 and η2, we
may—taking into account (43)—continue as

0 ≤
∫ x1

−∞
gη1 (r)

(∫ ỹ(r)− Σ12
Σ11

r

−∞
gη2 (s) ds

)

dr

−
∫ x1

−∞
gη1 (r)

(∫ α(x1)

−∞
gη2 (s) ds

)

dr

=
∫ x1

−∞
gη1 (r) Fη2

(
ỹ (r) − Σ12

Σ11
r

)
dr −

∫ x1

−∞
gη1 (r) Fη2 (α (x1)) dr

=
∫ x1

−∞
gη1 (r)

[
Fη2

(
ỹ (r) − Σ12

Σ11
r

)
− Fη2 (α (x1))

]
dr , (49)

where Fη2 refers to the cumulative distribution function of η2. Since one-dimensional
Gaussian distribution functions are concave right of their mean (their second derivative
coincides with the first derivative of the density, and so is negative right of the mean),
we have the relation

Fη2 (t) ≤ Fη2 (s) + F ′
η2

(s) (t − s) ∀s, t ≥ μ̃2.

Now, α (x1) ≥ μ̃2 by (47) and also, because of ỹ ∈ M ,

ỹ (r) − Σ12

Σ11
r ≥ μ2 − Σ12

Σ11
μ1 = μ̃2.

Therefore, we may conclude that

Fη2

(
ỹ (r) − Σ12

Σ11
r

)
≤ Fη2 (α (x1)) + Δ

(
ỹ (r) − Σ12

Σ11
r − α (x1)

)
,

where, by positivity of Gaussian densities,

Δ := F ′
η2

(α (x1)) = gη2 (α (x1)) > 0.

This allows us, along with (43) and (48), to proceed lead (49) to the contradiction

0 ≤ Δ

∫ x1

−∞
gη1 (r)

(
ỹ (r) − Σ12

Σ11
r − α (x1)

)
dr = Δ

∫ x1

−∞
gη1 (r)

[
ỹ (r) − y(r)

]
dr

= Δ
[
Eỹ (ξ1) χ(−∞,x1] (ξ1) − Ey (ξ1) χ(−∞,x1] (ξ1)

]
< 0.

This proves our initial claim that y in (43) is a global solution to (44). Accordingly,
for each x1 ∈ R satisfying (42), we have that

min
x2∈X ∗

{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

}
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= c2Ey (ξ1) χ(−∞,x1] (ξ1) = c2E

[
Σ12

Σ11
ξ1 + α (x1)

]
χ(−∞,x1] (ξ1)

= c2

[
Σ12

Σ11
Eξ1|ξ1≤x1 + α (x1) Eχ(−∞,x1] (ξ1)

]
.

It is well-known that for the Gaussian random variable ξ1 with mean μ1 and standard
deviation

√
Σ11 the mean conditioned to ξ1 ≤ x1 calculates as Eξ1|ξ1≤x1 = β (x1),

where β is defined in (41). Since, moreover, by (46),

Eχ(−∞,x1] (ξ1) = P (ξ1 ≤ x1) = P (η1 ≤ x1) = Φ

(
x1 − μ1√

Σ11

)
,

we may conclude that, with the function f as introduced in the statement of this
Theorem,

min
x2∈X ∗

{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

} = c2 f (x1) . (50)

Now, finally, we turn to our given problem (38) and decompose it pretty much the
same way we did in (35):

min
x1∈R

{
c1x1 + min

x2∈X ∗
{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

}}
.

Observe first that for arbitrary x1 with x1 ≤ √
Σ11Φ

−1 (p) + μ1 the feasible set
of the inner problem above is empty. Indeed, if there existed some x2 ∈ X ∗ with
ϕ (x1, x2) ≥ p, then, repeating an earlier argumentation on top of (49), we could
establish the contradiction

p ≤ ϕ (x1, x2) = P (ξ1 ≤ x1, ξ2 ≤ x2 (ξ1)) =
∫ x1

−∞
gη1 (r) Fη2

(
ỹ (r) − Σ12

Σ11
r

)
dr

<

∫ x1

−∞
gη1 (r) dr = P (η1 ≤ x1) = P (ξ1 ≤ x1)

= P

(
ξ1 − μ1√

Σ11
≤ x1 − μ1√

Σ11

)
= Φ

(
x1 − μ1√

Σ11

)
≤ Φ

(
Φ−1 (p)

)
= p.

Here, the strict inequality follows from the fact that gη1 > 0 and Fη2 < 1, while
the last inequality is a consequence of Φ being nondecreasing. Hence, for x1 ≤√

Σ11Φ
−1 (p) + μ1, the minimum value of the objective over the empty feasible set

is equal to infinity. Therefore, such x1 can be ignored in the outer minimization and
we can write our problem, thanks to (50) as

min
x1>

√
Σ11Φ−1(p)+μ1{

c1x1 + minx2∈X ∗
{
c2Ex2 (ξ1) χ(−∞,x1] (ξ1) |ϕ (x1, x2) ≥ p; x2 ∈ M

}}

= minx1>
√

Σ11Φ−1(p)+μ1
{c1x1 + c2 f (x1)} .
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Fig. 3 Illustration of a solution to problem 38: Optimal first stage decision x∗
1 as minimizer of the function

c1t+c2 f (t) (left) and optimal second stage decision x∗
2 (r) as affine linear function with slope and intercept

as indicated in Theorem 4 (right)

This proves our assertion on an optimal solution x∗
1 . As shown in the first part in

this proof, the optimal second-stage decision in (44) associated with the first-stage
decision x∗

1 is defined in (43) and yields the asserted formula for x∗
2 in the statement

of this proof. �

Figure 3 illustrates the solution of problem (38) for the data

c1 = 1; c2 = 2; p = 0.8; μ = (0, 0); Σ =
(

1 0.25
0.25 1

)
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