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Abstract

For two matroids M1 and M2 with the same ground set V and two cost functions w1

and w2 on 2V , we consider the problem of finding bases X1 of M1 and X2 of M2 minimizing
w1(X1) + w2(X2) subject to a certain cardinality constraint on their intersection X1 ∩ X2.
For this problem, Lendl, Peis, and Timmermans (2019) discussed modular cost functions:
they reduced the problem to weighted matroid intersection for the case where the cardinality
constraint is |X1 ∩X2| ≤ k or |X1 ∩X2| ≥ k; and designed a new primal-dual algorithm for
the case where the constraint is |X1 ∩X2| = k.

The aim of this paper is to generalize the problems to have nonlinear convex cost func-
tions, and to comprehend them from the viewpoint of discrete convex analysis. We prove
that each generalized problem can be solved via valuated independent assignment, valuated
matroid intersection, or M-convex submodular flow, to offer a comprehensive understanding
of weighted matroid intersection with intersection constraints. We also show the NP-hardness
of some variants of these problems, which clarifies the coverage of discrete convex analysis
for those problems. Finally, we present applications of our generalized problems in the recov-
erable robust matroid basis problem, combinatorial optimization problems with interaction
costs, and matroid congestion games.

Keywords: Valuated independent assignment, valuated matroid intersection, M-
convex submodular flow, recoverable robust matroid basis problem, combinatorial
optimization problem with interaction costs, congestion game

1 Introduction

Weighted matroid intersection is one of the most fundamental combinatorial optimization prob-
lems solvable in polynomial time. This problem generalizes a number of tractable problems
including the maximum-weight bipartite matching and minimum-weight arborescence problems.
The comprehension of mathematical structures of weighted matroid intersection, e.g., Edmonds’
intersection theorem [7] and combinatorial primal-dual algorithm [9, 16, 20], contributes to the
development of algorithmics in combinatorial optimization as well as matroid theory.

In this article, we represent a matroid by a pair of its ground finite set V and base family

B ⊆ 2V , which satisfy the following exchange axiom: for X,Y ∈ B and v ∈ X \ Y , there exists
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u ∈ Y \X such that X \{v}∪{u} ∈ B. For a base family B, the set family I := {I ⊆ B | B ∈ B}
is called the independent set family. It is well known (see e.g., [36]) that the base family uniquely
determines the corresponding independent set family, and vice versa. Hence in this paper we
also represent a matroid by the pair (V,I) of the ground set V and the independent set family
I.

Let M1 = (V,B1) and M2 = (V,B2) be matroids on V with base families B1 and B2, re-
spectively. Also let w1 and w2 be weight functions on V and k a nonnegative integer. A
weight function w : V → R is also regarded as a modular function w : 2V → R defined by
w(X) =

∑

v∈X w(v) for each X ⊆ V . Recently, Lendl, Peis, and Timmermans [24] have intro-
duced the following variants of weighted matroid intersection, in which a cardinality constraint
is imposed on the intersection:

(W=k)
Minimize w1(X1) + w2(X2)
subject to Xi ∈ Bi (i = 1, 2),

|X1 ∩X2| = k.

(W≥k)
Minimize w1(X1) + w2(X2)
subject to Xi ∈ Bi (i = 1, 2),

|X1 ∩X2| ≥ k.

(W≤k)
Minimize w1(X1) + w2(X2)
subject to Xi ∈ Bi (i = 1, 2),

|X1 ∩X2| ≤ k.

We remark here that the tractability of (W=k) implies that of (W≥k) and (W≤k). Indeed,
for example, we obtain an optimal solution for (W≥k) for k = ℓ by solving (W=k) for k =
ℓ, ℓ+ 1, . . . , |V | and returning a minimum solution over them.

The motivation of these problems comes from the recoverable robust matroid basis problem [3].
Lendl et al. [24] showed that (W=k), (W≥k), and (W≤k) are strongly polynomial-time solvable:
they developed a new primal-dual algorithm for (W=k); and reduced (W≥k) and (W≤k) to
weighted matroid intersection. By this result, they affirmatively settled an open question on
the strongly polynomial-time solvability of the recoverable robust matroid basis problem under
interval uncertainty representation [14, 15].

Lendl et al. [24] further discussed two kinds of generalizations of the above problems. One
is to consider more than two matroids. Let n be a positive integer, and [n] := {1, 2, . . . , n}. For
each i ∈ [n], let Mi = (V,Bi) be a matroid with ground set V and base family of Bi. For instance,
(W≤k) can be generalized as follows.

(Wn
≤k)

Minimize
n
∑

i=1

wi(Xi)

subject to Xi ∈ Bi (i ∈ [n]),
∣

∣

∣

∣

∣

n
⋂

i=1

Xi

∣

∣

∣

∣

∣

≤ k.

Generalizations of (W=k) and (W≥k), which we name (Wn
=k) and (Wn

≥k), respectively, can be
obtained in the same way. Lendl et al. [24] proved that (Wn

=k) and (Wn
≥k) are NP-hard, whereas

(Wn
≤k) can be solved in strongly polynomial time. Indeed, they reduced (Wn

≤k) to weighted
matroid intersection.

The other is a polymatroidal generalization. Let B1, B2 ⊆ ZV be the base polytopes of some
polymatroids on the ground set V . The following problem generalizes (W≥k), where w1 and w2
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are linear functions on ZV .

(P≥k)

Minimize w1(x1) + w2(x2)
subject to xi ∈ Bi (i = 1, 2),

∑

v∈V

min{x1(v), x2(v)} ≥ k.

Again, generalizations of (W=k) and (W≤k) can be obtained in the same manner, and they
are NP-hard. Lendl et al. [24] proved that (P≥k) can be reduced to the polymatroidal flow

problem [13, 21, 22], which is equivalent to the submodular flow problem [8] (see [11]), and thus
can be solved in strongly polynomial time.

The aim of this paper is to offer a comprehensive understanding of the above problems in
view of discrete convex analysis (DCA) [29, 32], particularly focusing on M-convexity [26]. DCA
provides a theory of convex functions on the integer lattice ZV . M-convex functions play central
roles in DCA and naturally appear in various research fields such as combinatorial optimization,
economics, and game theory [33, 34].

M-convex functions are a quantitative generalization of matroids. The formal definition of
M-convex functions is given as follows. A function f : ZV → R ∪ {+∞} is said to be M-convex

if it satisfies the following generalization of the matroid exchange axiom: for all x = (x(v))v∈V
and y = (y(v))v∈V with x, y ∈ dom f , and all v ∈ V with x(v) > y(v), there exists u ∈ V with
x(u) < y(u) such that

f(x) + f(y) ≥ f(x− χv + χu) + f(y + χv − χu),

where dom f denotes the effective domain {x ∈ ZV | f(x) < +∞} of f and χv the v-th unit
vector for v ∈ V . In particular, if dom f is included in the hypercube {0, 1}V , then f is called a
valuated matroid 1 [5, 6].

In this paper, we address the following M-convex (and hence nonlinear) generalizations of
(W=k), (W≥k), (W

n
≤k), and (P≥k), and present their applications. Let ω1, ω2, . . . , ωn be valuated

matroids on 2V , where we identify 2V with {0, 1}V by the natural correspondence between X ⊆ V

and x ∈ {0, 1}V ; x(v) = 1 if and only if v ∈ X.

• For (W=k) and (W≥k), by generalizing the weight functions w1 and w2 to valuated matroids
ω1 and ω2, we obtain:

(V=k)
Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩X2| = k;

(V≥k)
Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩X2| ≥ k.

Again observe that the tractability of (V=k) implies that of (V≥k).

• For (Wn
≤k) (and hence (W≤k) as well), in addition to generalizing w1, w2, . . . , wn to valuated

matroids ω1, ω2, . . . , ωn, we generalize the cardinality constraint |
⋂n

i=1 Xi| ≤ k to a matroid
constraint. Namely, let M = (V,I) be a new matroid, where I denotes its independent set
family, and generalize (Wn

≤k) as follows.

(Vn
I)

Minimize
n
∑

i=1

ωi(Xi)

subject to

n
⋂

i=1

Xi ∈ I.

1The original definition of a valuated matroid is an M-concave function, i.e., the negation of an M-convex
function, whose effective domain is included in the hypercube.
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Matroid Polymatroid

Linear

M-convex

(W=k)

(W≥k) (W≤k) (P≥k)

(Wn
≤k)

(V=k)

(V≥k)

(Vn
I)

(Vn(w))

(M≥k(w))

Figure 1: This figure shows the relations among the problems discussed in this paper. The
problems filled with gray are new problems introduced in this paper. Each directed solid edge
means that the problem at its head is a generalization of that at its tail. The terms “Matroid”
and “Polymatroid” in the figure represent that the effective domain of the objective functions
of the problem is essentially included in {0, 1}V and in ZV , respectively. The terms “Linear”
and “M-convex” represent that the functions used in the problem are linear (or modular) and
M-convex (or valuated matroids), respectively. In (Wn

≤k), (V
n
I), and (Vn(w)), which are included

in the solid rectangle, more than two modular functions or valuated matroids can appear in the
objective function. In (Vn(w)) and (M≥k(w)), which are included in the dotted polygon, an
additional modular/linear function w appears in the objective function.

• It is also reasonable to take the intersection constraint into the objective function. Let
w : V → R be a weight function. The next problem is a variant of (Vn

I).

(Vn(w)) Minimize

n
∑

i=1

ωi(Xi) + w

(

n
⋂

i=1

Xi

)

.

• Let f1 and f2 be M-convex functions on ZV such that dom f1 and dom f2 form the base
polytopes of some polymatroids. Also let w : ZV → R be a linear function. Then, the
following problem is a common generalization of (P≥k) and (V≥k).

(M≥k(w))
Minimize f1(x1) + f2(x2) +w(min{x1, x2})

subject to
∑

v∈V

min{x1(v), x2(v)} ≥ k,

where min{x1, x2} ∈ ZV is a vector defined by min{x1, x2} = (min{x1(v), x2(v)})v∈V .

The relations among the above problems are given in Figure 1.
Our main contribution is to show the tractability of these generalized problems.

Theorem 1. There exist strongly polynomial-time algorithms to solve (V=k), (V≥k), (V
n
I), and

(Vn(w)) for w ≥ 0, and a weakly polynomial-time algorithm to solve (M≥k(w)) for w ≤ 0.
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The algorithms for (V=k) and (V≥k) are based on valuated independent assignment [27, 28],
that for (Vn

I) and (Vn(w)) on valuated matroid intersection [27, 28], and that for (M≥k(w))
on M♮-convex submodular flow [30]. We remark that valuated independent assignment general-
izes valuated matroid intersection, and M♮-convex submodular flow is a further generalization.
Besides this, the following facts are of theoretical interest.

• If we apply our algorithm for (V=k) to the special case (W=k), we obtain a primal-dual
algorithm which is essentially the same as that in [24], but builds upon a slightly different
optimality condition. Details are described in Section 3.2.

• For (Vn(w)) with w ≥ 0, our reduction results in a problem which is beyond weighted
matroid intersection even if ωi is a weight function on V with a size constraint, i.e., ωi is
described as

ωi(X) =







∑

v∈X

ωi(v) if |X| = ri,

+∞ if |X| 6= ri,

(1)

with some nonnegative integer ri for each i ∈ [n]. That is, this special case of (Vn(w)) is
of interest in the sense that it does not require matroids to define, but requires valuated
matroids to solve.

• It might also be interesting that (Vn
I) can be solved in polynomial time when n ≥ 3, in

spite of the fact that matroid intersection for more than two matroids is NP-hard.

We also demonstrate that the tractability of (Vn(w)) and (M≥k(w)) relies on the assumptions
on w (w ≥ 0 and w ≤ 0, respectively), by showing their NP-hardness for the general case.

Theorem 2. Problems (Vn(w)) and (M≥k(w)) are NP-hard in general.

We then present applications of our generalized problems to the recoverable robust matroid
basis problem, combinatorial optimization problems with interaction costs (COPIC ) [23], and
matroid congestion games [1]. First we provide a generalization of a certain class of the recov-
erable robust matroid basis problem in which the cost functions are M-convex functions. This
is a special case of (M≥k(w)), and thus can be solved in polynomial time. We next reduce a
certain generalized case of the COPIC with diagonal costs to (Vn(w)) and (M≥k(w)), to pro-
vide a generalized class of COPIC which can be solved in polynomial time. Finally, we show
that computing the socially optimal state in a certain generalized model of matroid congestion
games can be reduced to (a generalized version of) (Vn(w)) for w ≥ 0, and thus can be done in
polynomial time.

The rest of the paper is organized as follows. Section 2 provides several fundamental facts
on valuated matroids and M-convex functions. In Section 3, we present algorithms for solving
(V=k) and (V≥k) based on a valuated independent assignment algorithm. Sections 4 and 5 are
devoted to the reductions of (Vn

I) and (Vn(w)) for w ≥ 0 to valuated matroid intersection, and
(M≥k(w)) for w ≤ 0 to M♮-convex submodular flow, respectively. We then prove that (Vn(w))
and (M≥k(w)) are in general NP-hard in Section 6. In Section 7, we present applications of our
generalized problems in recoverable robust matroid basis problems, combinatorial optimization
problems with interaction costs, and matroid congestion games. Finally, in Section 8, we pose
open problems which look similar to those discussed in this paper.
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2 Preliminaries

We prepare several facts and terminologies on valuated matroids and M-convex functions. We
have already used Z andR to denote the sets of integers and real numbers, respectively. The set of
nonnegative integers are denoted by Z+, and those of nonnegative real numbers and nonpositive
real numbers by R+, and R−, respectively. Recall the definition of M-convex functions described
in Section 1. For an M-convex function f , all members in dom f have the same “cardinality,”
that is, there exists some integer r such that

∑

v∈V x(v) = r for all x ∈ dom f . We refer to r as
the rank of f . In (M≥k(w)), we require that dom f1 and dom f2 form the base polytopes of some
polymatroids. This condition is equivalent to dom f1 ⊆ ZV

+ and dom f2 ⊆ ZV
+.

Recall that a valuated matroid is an M-convex function defined on 2V . Valuated matroid

intersection [27, 28] is a generalization of weighted matroid intersection defined as follows: Given
two valuated matroids ω1 and ω2 on 2V , find X ⊆ V minimizing the sum ω1(X) + ω2(X).

We next define the valuated independent assignment problem [27, 28]. Let G = (V1, V2;E)
be a bipartite graph, ω1 : 2

V1 → R∪{+∞} and ω2 : 2
V2 → R∪{+∞} be valuated matroids, and

w : E → R be a weight function. The valuated independent assignment problem parameterized
by an integer k, referred to as VIAP(k), is described as follows.

VIAP(k)
Minimize ω1(X1) + ω2(X2) + w(F )
subject to F ⊆ E is a matching of G with ∂F ⊆ X1 ∪X2,

|F | = k,

where ∂F denote the set of the endpoints of F ⊆ E. As mentioned in Section 1, VIAP(k) is
a generalization of valuated matroid intersection, and both of them can be solved in strongly
polynomial time [27, 28].

A function f : ZV → R∪{+∞} is said to be M♮-convex [35] if it satisfies the following weaker
exchange axiom: for all x = (x(v))v∈V and y = (y(v))v∈V with x, y ∈ dom f , and all v ∈ V with
x(v) > y(v), it holds that

f(x) + f(y) ≥ f(x− χv) + f(y + χv),

or there exists u ∈ V with x(v) < y(v) such that

f(x) + f(y) ≥ f(x− χv + χu) + f(y + χv − χu).

It is clear from the definition that M♮-convexity slightly generalizes M-convexity, while they are
known to be essentially equivalent (see, e.g., [32], for details). The following lemma shows one
relation between M-convex and M♮-convex functions.

Lemma 3 ([35]). For an M♮-convex function f and an integer r, the restriction of f to a

hyperplane {x ∈ ZV |
∑

v∈V x(v) = r} is an M-convex function with rank r, if its effective

domain is nonempty.

We close this section with the definition of M♮-convex submodular flow [30]. Let f be an
M♮-convex function on ZV and G = (V,A) a directed graph endowed with an upper capacity
function c : A→ R∪{+∞}, a lower capacity function c : A→ R∪{−∞}, and a weight function
w : A→ R. For a vector ξ ∈ RA, define its boundary ∂ξ ∈ RV by

∂ξ(v) :=
∑

{ξ(a) | a ∈ A, a enters v in G} −
∑

{ξ(a) | a ∈ A, a leaves v in G}

for v ∈ V . The M♮-convex submodular flow problem for (f,G) is the following problem with
variable ξ ∈ RA:

Minimize f(∂ξ) +
∑

a∈A

w(a)ξ(a)

subject to c(a) ≤ ξ(a) ≤ c(a).

6



The M♮-convex submodular flow problem is a further generalization of VIAP(k), and can be
solved in weakly polynomial time [17, 18].

3 Solving (V=k) and (V≥k) via valuated independent assignment

This section provides strongly polynomial-time algorithms for solving (V=k) and (V≥k). For
their special cases (W=k) and (W≥k), Lendl et al. [24] showed the polynomial-time solvability:
they developed a new algorithm specific to (W=k), and reduced (W≥k) to weighted matroid
intersection. In this paper, building upon the DCA perspective, we show that both of the
generalized problems (V=k) and (V≥k) fall in the framework of valuated independent assignment.

3.1 Strongly polynomial-time algorithms

We first present an algorithm for (V≥k). Given an instance of (V≥k), construct an instance of
VIAP(k) as follows. Set a bipartite graph G by (V1, V2; {{v

1, v2} | v ∈ V }), where Vi is a copy
of V and vi ∈ Vi is a copy of v ∈ V for i = 1, 2. By abuse of notation, for i = 1, 2, a subset Xi

of V is regarded as a subset of Vi as well, and ωi is regarded as a valuated matroid on 2Vi . Set
w(e) := 0 for every edge e. We now obtain an instance of VIAP(k) defined by G, ω1, ω2, and w.

One can see that, if (X1,X2) is feasible for (V≥k), i.e., |X1∩X2| ≥ k, then there is a matching
F of G with ∂F ⊆ X1 ∪ X2 and |F | = k, i.e., there exists a feasible solution (X1,X2, F ) for
VIAP(k). On the other hand, if (X1,X2, F ) is a feasible solution for VIAP(k), then (X1,X2) is
feasible for (V≥k). Moreover the objective value of a feasible solution (X1,X2) for (V≥k) is equal
to that of any corresponding feasible solution (X1,X2, F ) for VIAP(k) since w(e) is identically
zero.

Thus, (V≥k) reduces to VIAP(k), and hence can be solved in strongly polynomial time in
the following way based on the augmenting path algorithm for VIAP(k) [27, 28]; see also [31,
Theorem 5.2.62]. Here let X1 and X2 be the minimizers of ω1 and ω2, respectively, which can
be found in a greedy manner.

Step 1: If |X1∩X2| ≥ k, then output (X1,X2) and stop. Otherwise, letXj
1 := X1 andX

j
2 := X2,

where j := |X1 ∩X2| < k.

Step 2: Execute the augmenting path algorithm for VIAP(k). Then we obtain a sequence
(

(Xj
1 ,X

j
2), (X

j+1
1 ,X

j+1
2 ), . . . , (Xℓ

1,X
ℓ
2)
)

of solutions, where
∣

∣

∣
X

j′

1 ∩X
j′

2

∣

∣

∣
= j′ for j′ = j, j +

1, . . . , ℓ. If ℓ < k, then output “(V≥k) is infeasible.” If ℓ ≥ k, then output (Xk
1 ,X

k
2 ).

We describe the full behavior of the above algorithm in Appendix A.
Our algorithm for (V=k) directly follows from this algorithm for (V≥k). Again let X1 and

X2 be the minimizers of ω1 and ω2, respectively.

Case 1 (|X1 ∩X2| ≤ k): Execute the augmenting path algorithm for (V≥k). If the algorithm
detects the infeasibility of (V≥k), then output “(V=k) is infeasible.” Otherwise we obtain
an optimal solution (X∗

1 ,X
∗
2 ) with |X

∗
1 ∩X∗

2 | = k for (V≥k), and output it.

Case 2 (|X1 ∩X2| > k): Let r1 be the rank of ω1 and ω2(X) := ω2(V \X) for X ⊆ V , which
is the dual valuated matroid of ω2. Note that X1 and V \X2 are minimizers of ω1 and ω2,
respectively, and X1 ∩ (V \X2) < r1 − k. Then apply Case 1 to (V=r1−k) for ω1 and ω2.

It is clear that the above methods solve (V≥k) and (V=k) in strongly polynomial time. We
can provide the explicit time complexities as follows. The proof is deferred to Appendix A.
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Theorem 4. Problems (V≥k) and (V=k) can be solved in O(|V |rkγ + |V |k log |V |) time and

O(|V |r2γ + |V |r log |V |) time, respectively, where r is the maximum of the ranks of ω1 and ω2

and γ is the time required for computing the function value.

Remark 5. If we are given at least three valuated matroids, then (V=k) and (V≥k) (even
(W=k) and (W≥k)) will be NP-hard, since they can formulate the matroid intersection problem
for three matroids. Indeed, let M1 = (V,B1),M2 = (V,B2),M3 = (V,B3) be matroids with the
same rank r. Then it is clear that there exist X1,X2,X3 ⊆ V with X1 ∈ B1,X2 ∈ B2,X3 ∈ B3
and |X1 ∩ X2 ∩ X3| ≥ r (or |X1 ∩ X2 ∩ X3| = r) if and only if there exists X ⊆ V with
X ∈ B1 ∩ B2 ∩ B3. �

We close this subsection by exhibiting two more solutions to (V≥k) and (V=k). The first one
is a different reduction of (V≥k) to valuated matroid intersection, which requires the argument
described in Section 4 below. Indeed, (V≥k) for ω1 and ω2 is equivalent to (V≤r1−k) for ω1 and
ω2, where r1 is the rank of ω1 and ω2 is the dual valuated matroid of ω2. One can see that
(V≤r1−k) is a special case of (Vn

I) in which n = 2 and I is the independent set family of the
uniform matroid with rank r1− k. Thus, by the argument in Section 4, (V≤r1−k) can be viewed
as a special instance of valuated matroid intersection.

The second one is a solution to (V=k). Recently, László Végh [40] has presented a simple
O(|V |r2γ + |V |r log |V |)-time algorithm for (W=k). By extending this algorithm, we can obtain
another solution to (V=k), which is described in Appendix B.

3.2 Relation to the algorithm by Lendl et al.

In this subsection, we illustrate the similarity and difference between the algorithm of Lendl
et al. [24] for (W=k) and our algorithm applied to (W=k). For a detailed description of the
algorithm of Lendl et al. [24], the readers are referred to Appendix C.

As is shown in Appendices A and C, both algorithms maintain potential functions on V1

and V2. Main differences appear in the optimality criteria, and in the updating procedures of a
solution and potentials.

The algorithm of Lendl et al. [24] is based on the following sufficient condition of the opti-
mality: A feasible solution (X1,X2) of (W=k) is optimal if there exist a nonnegative potential
function q1 : V1 → R+, a nonpositive potential function q2 : V2 → R−, and a nonnegative value
λ ∈ R+ satisfying that

• q1(v
1) = q2(v

2) + λ for each v ∈ V ,

• X1 and X2 are minimizers of w1 − q1 and w2 + q2, respectively, and

• q1(v
1) = 0 for v1 ∈ X1 \X2 and q2(v

2) = 0 for v2 ∈ X2 \X1.

We refer to such (q1, q2) as an LPT optimality witness of (X1,X2).
Our algorithm is based on the following is the optimality criteria for VIAP(k) in [27, The-

orem 5.1] specialized to (V≥k). For a set function ω on 2V and a weight function w on V , we
define the functions ω + p and ω − p on 2V by

(ω + p)(X) := ω(X) + p(X),

(ω − p)(X) := ω(X)− p(X)

for each X ⊆ V .

Lemma 6. A feasible solution (X1,X2) for (V≥k) is optimal if and only if there are potential

functions p1 : V1 → R and p2 : V2 → R satisfying the following three conditions:

8



• p1(v
1) = p2(v

2) for each v ∈ V ;

• X1 and X2 are minimizers of ω1 − p1 and ω2 + p2, respectively; and

• there is F ⊆ X1 ∩X2 such that |F | = k, X1 \ F ⊆ argmin p1, and X2 \ F ⊆ argmax p2.

For an optimal solution (X1,X2) for (V≥k), we refer to a triple (p1, p2, F ) satisfying the three
conditions in Lemma 6 as an optimality witness of (X1,X2).

We first see that the potential functions in the algorithm of Lendl et al. and those in our
algorithm are essentially equivalent. During our algorithm for (V≥k), one can see that the
potential functions p1 and p2 particularly satisfy the following:

• p1(v
1) = p2(v

2) for each v ∈ V .

• X1 and X2 are minimizers of ω1 − p1 and ω2 + p2, respectively.

• min p1 = 0, X1 \X2 ⊆ argmin p1, and X2 \X1 ⊆ argmax p2.

Hence, if (q1, q2) is an LPT optimality witness, then (p1, p2) with p1 = p2 = q1 forms an optimality
witness in our sense. Conversely, if (p1, p2) is an optimality witness appearing in our algorithm,
then (q1, q2) with q1 = p1 and q2 = p2 − λ forms an LPT optimality witness for λ := max p2.

We next sketch the difference in the updating procedures, whose details are discussed in
Appendix C. The update phases of a solution and of potential functions in the algorithm of
Lendl et al. are completely separated, while our algorithm simultaneously updates a solution
and potential functions. This difference in the updating procedures leads to the difference in the
running-times of the algorithms; the algorithm of Lendl et al. runs in O(|V |2r2) time, and our
algorithm in O(|V |r2+ |V |r log |V |) time by Theorem 4 with γ = O(1), which is better than that
of Lendl et al.

4 Reducing (Vn
I) and (Vn(w)) to valuated matroid intersection

In this section, we present reductions of (Vn
I) and (Vn(w)) for w ≥ 0 to valuated matroid

intersection, which implies strongly polynomial-time algorithms for those problems. We begin
with the following result for valuated matroid intersection.

Lemma 7 ([28]; see also Theorem 4). Let ω and ω′ be valuated matroids on 2V with rank r and

γ the time required for computing the function value. Valuated matroid intersection for ω and

ω′ can be solved in O(|V |r2γ + |V |r log |V |) time.

For the reductions, we need to prepare a pair of valuated matroids for each problem. One
valuated matroid is common in the reductions of (Vn

I) and (Vn(w)), which is defined as follows.
Let V1, V2, . . . , Vn be n disjoint copies of V , and let Ṽ =

⋃

i∈[n] Vi. By abuse of notation, for

n subsets X1,X2, . . . ,Xn ⊆ V , we denote by (X1,X2, . . . ,Xn) a subset of Ṽ composed of the
copies of Xi included in Vi (i ∈ [n]). Let us define a valuated matroid ω̃ by the disjoint sum of

ω1, ω2, . . . , ωn. That is, ω̃ is a function on 2Ṽ defined by

ω̃(X1,X2, . . . ,Xn) := ω1(X1) + ω2(X2) + · · ·+ ωn(Xn)

for each (X1,X2, . . . ,Xn) ⊆ Ṽ . It follows that ω̃ is a valuated matroid with rank r :=
∑n

i=1 ri,
where ri is the rank of ωi.
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We then provide the other valuated matroid used in the reduction of (Vn
I). Define a set

system M̃ = (Ṽ , B̃) by

B̃ =

{

(X1,X2, . . . ,Xn)

∣

∣

∣

∣

∣

Xi ⊆ V (i ∈ [n]),

n
⋂

i=1

Xi ∈ I,
n
∑

i=1

|Xi| = r

}

.

It is clear that (Vn
I) amounts to minimizing the sum of ω̃ and δB̃, where δB̃ denotes the indicator

function of B̃, namely,

δB̃(X1,X2, . . . ,Xn) =

{

0 if (X1,X2, . . . ,Xn) ∈ B̃,

+∞ otherwise.

Thus, what remains to be proved is that δB̃ is a valuated matroid, and is derived from the
following lemma.

Lemma 8. The set system M̃ = (Ṽ , B̃) is a matroid with base family B̃.

Proof. Let Ĩ ⊆ Ṽ be a subset family obtained from B̃ by removing the cardinality condition,
that is,

Ĩ =

{

(X1,X2, . . . ,Xn)

∣

∣

∣

∣

∣

Xi ⊆ V (i ∈ [n]),

n
⋂

i=1

Xi ∈ I

}

.

It suffices to show that Ĩ is an independent set family of a matroid, i.e., Ĩ satisfies the following
axioms:

• (∅, ∅, . . . , ∅) ∈ Ĩ.

• (X1,X2, . . . ,Xn) ⊆ (Y1, Y2, . . . , Yn) ∈ Ĩ implies (X1,X2, . . . ,Xn) ∈ Ĩ.

• For every (X1,X2, . . . ,Xn), (Y1, Y2, . . . , Yn) ∈ Ĩ with
∑n

i=1 |Xi| <
∑n

i=1 |Yi|, there exist
i∗ ∈ [n] and v∗ ∈ Yi∗ \Xi∗ such that (X1, . . . ,Xi∗ ∪ {v

∗}, . . . ,Xn) ∈ Ĩ.

The first and second are clear. We prove the third. If there exist i∗ ∈ [n] and v∗ ∈ Yi∗ \Xi∗ such
that





⋂

i∈[n]\{i∗}

Xi



 ∩ (Xi∗ ∪ {v
∗}) =

n
⋂

i=1

Xi,

then (X1, . . . ,Xi∗ ∪ {v
∗}, . . . ,Xn) ∈ Ĩ follows from

⋂n
i=1Xi ∈ I.

Suppose that such i∗ and v∗ do not exist. For each v ∈ V , denote by X(v) (resp. Y (v)) the
set of indices i ∈ [n] with v ∈ Xi (resp. v ∈ Yi). Then, for each v ∈ V , we have X(v) ⊇ Y (v)

or X(v) = [n] \ {i} for some i ∈ [n]. This implies that |Y (v)| > |X(v)| if and only if Y (v) = [n]
and X(v) = [n] \ {i} for some i. It then follows from

∑n
i=1 |Xi| =

∑

v∈V |X
(v)|,

∑n
i=1 |Yi| =

∑

v∈V |Y
(v)|, and

∑n
i=1 |Xi| <

∑n
i=1 |Yi| that

∣

∣

∣

∣

∣

(

n
⋂

i=1

Yi

)

\

(

n
⋂

i=1

Xi

)∣

∣

∣

∣

∣

=
∣

∣

∣{v ∈ V | Y (v) = [n],X(v) ( [n]}
∣

∣

∣

=
∑

v∈V, |Y (v)|>|X(v)|

(

|Y (v)| − |X(v)|
)
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=
∑

v∈V

(

|Y (v)| − |X(v)|
)

+
∑

v∈V, |X(v)|>|Y (v)|

(

|X(v)| − |Y (v)|
)

≥
n
∑

i=1

(|Yi| − |Xi|) +

∣

∣

∣

∣

∣

(

n
⋂

i=1

Xi

)

\

(

n
⋂

i=1

Yi

)∣

∣

∣

∣

∣

>

∣

∣

∣

∣

∣

(

n
⋂

i=1

Xi

)

\

(

n
⋂

i=1

Yi

)∣

∣

∣

∣

∣

≥ 0.

Since
⋂n

i=1Xi and
⋂n

i=1 Yi belong to I, there exists v∗ ∈ (
⋂n

i=1 Yi) \ (
⋂n

i=1 Xi) such that
(
⋂n

i=1 Xi) ∪ {v
∗} ∈ I. Let i∗ ∈ [n] be an index such that v∗ ∈ Yi∗ \ Xi∗ . We then obtain

(X1, . . . ,Xi∗ ∪{v
∗}, . . . ,Xn) ∈ I, since (

⋂

i∈[n]\{i∗} Xi)∩ (Xi∗ ∪ {v
∗}) = (

⋂n
i=1Xi)∪{v

∗} ∈ I. �
�

It follows from Lemma 8 that the function δB̃ is a valuated matroid, and we conclude that
(Vn

I) can be reduced to valuated matroid intersection. Thus we obtain the following theorem
from Lemma 7:

Theorem 9. Problem (Vn
I) can be solved in O(|V |nr2γ + |V |nr log(|V |n)) time, where γ is the

time required for computing the function value.

Remark 10. If we replace the constraint
⋂n

i=1 Xi ∈ I in (Vn
I) by

⋂n
i=1Xi ∈ B, where B is

the base family of some matroid, then the problem will be NP-hard even if n = 2, since it can
formulate the matroid intersection problem for three matroids. In other words, if we replace the
intersection constraint |X1 ∩ X2| = k in (W=k) with X1 ∩X2 ∈ B, then the problem becomes
NP-hard. Also, recall Remark 5, which implies that the problem is NP-hard if n ≥ 3 and the
constraint is |

⋂n
i=1 Xi| = k. �

We next provide another valuated matroid used in the reduction of (Vn(w)). A set family
L ⊆ 2V is said to be laminar if X ⊆ Y , X ⊇ Y , or X ∩Y = ∅ holds for all X,Y ∈ L. A function
f : ZV → R ∪ {+∞} is said to be laminar convex [32, Section 6.3] if f is representable as

f(x) =
∑

X∈L

gX

(

∑

v∈X

x(v)

)

(

x ∈ ZV
)

,

where L ⊆ 2V is a laminar family on V , and for each X ∈ L, gX : Z→ R∪{+∞} is a univariate
discrete convex function, i.e., gX(k+1)+ gX (k−1) ≥ 2gX(k) for every k ∈ Z. A laminar convex
function is a typical example of an M♮-convex function and plays a key role here.

Define a function w̃ on 2Ṽ by

w̃(X1,X2, . . . ,Xn) := w

(

n
⋂

i=1

Xi

)

for each (X1,X2, . . . ,Xn) ⊆ Ṽ . It is clear that (Vn(w)) is equivalent to minimizing the sum of ω̃
and the restriction of w̃ to {(X1,X2, . . . ,Xn) |

∑n
i=1 |Xi| = r}. For the function w̃, the following

holds.

Lemma 11. The function w̃ on 2Ṽ is laminar convex if w ≥ 0.
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Proof. For each v ∈ V , define a unary function gv : Z→ R by

gv(x) :=











w(v) if x = n,

0 if 0 ≤ x < n,

+∞ otherwise.

It follows from w(v) ≥ 0 that gv is discrete convex. Moreover, one can see that

w̃(X1,X2, . . . ,Xn) =
∑

v∈V

gv (|{i ∈ [n] | v ∈ Xi}|) (Xi ⊆ V , i ∈ [n]) (2)

holds. Here we can regard the right-hand side of (2) as the sum taken for ({v}, {v}, . . . , {v}) ⊆ Ṽ

for every v ∈ V . Since the family {({v}, {v}, . . . , {v}) | v ∈ V } is laminar on Ṽ , we conclude
that the right-hand side of (2) is a laminar convex function, as required. � �

By Lemmas 3 and 11, the restriction of w̃ to {(X1,X2, . . . ,Xn) |
∑n

i=1 |Xi| = r} is a valuated

matroid on 2Ṽ if w ≥ 0. Thus (Vn(w)) can be formulated as valuated matroid intersection
problem for ω̃ and w̃, establishing the tractability of (Vn(w)) in case of w ≥ 0. That is, we
obtain the following theorem from Lemma 7.

Theorem 12. Problem (Vn(w)) with w ≥ 0 can be solved in O(|V |nr2γ+ |V |nr log(|V |n)) time,

where γ is the time required for computing the function value.

Remark 13. As mentioned in Section 1, even if ωi is described as (1) for each i ∈ [n], our
reduction goes beyond the weighted matroid intersection framework. This is because the valuated
matroid w̃ is not modular regardless whether ωi is of the form (1). That is, the concept of M-
convexity is essential for us to establish the tractability of (Vn(w)), even when ωi is of the
form (1). �

5 Reducing (M≥k(w)) to M♮-convex submodular flow

In this section, we prove that (M≥k(w)) with w ≤ 0 can be solved in polynomial time by reducing
it to M♮-convex submodular flow.

Given an instance of (M≥k(w)) with w ≤ 0, construct an instance of the M♮-convex submod-
ular flow problem as follows. Let V1 := {v

1 | v ∈ V } and V2 := {v
2 | v ∈ V } be disjoint two copys

of V . We regard f1 and f2 as functions on ZV1 and on ZV2 , respectively. Recall that dom f1 and
dom f2 form the base polytopes of some polymatroids, i.e., dom f1 ⊆ ZV

+ and dom f2 ⊆ ZV
+. Let

ri be the rank of fi for i = 1, 2. We define univariate functions g1 and g2 on Z by

g1(p) :=

{

0 if 0 ≤ p ≤ r2 − k,

+∞ otherwise,
g2(q) :=

{

0 if 0 ≤ q ≤ r1 − k,

+∞ otherwise.

Let s and t be distinct elements not belonging to V1∪V2, and define a function h on ZV1∪{s}∪V2∪{t}

by the disjoint sum of f2, g2 with the simultaneous coordinate inversion and f1, g1, i.e.,

h(x1, p, x2, q) := (f1(−x1) + g1(−p)) + (f2(x2) + g2(q))

for each x1 ∈ ZV1 , x2 ∈ ZV2 , and (p, q) ∈ Z{s,t}. It then follows that h is an M♮-convex function.
Indeed, g1 and g2 are clearly M♮-convex, the simultaneous coordinate inversion keeps the M♮-
convexity (see, e.g., [32, Theorem 6.13 (2)]), and the disjoint sum of two M♮-convex functions is
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also M♮-convex. We then construct a directed bipartite graph G = (V1∪{s}, V2∪{t};A) endowed
with a weight function ŵ : A→ R defined by

A := {(v1, v2) | v ∈ V } ∪ {(v1, t) | v ∈ V } ∪ {(s, v2) | v ∈ V },

ŵ(a) :=

{

w(v) if a = (v1, v2),

0 otherwise
(a ∈ A).

We now obtain the following instance of the M♮-convex submodular flow problem:

Minimize h(∂ξ) +
∑

a∈A

ŵ(a)ξ(a)

subject to ξ(a) ≥ 0 (a ∈ A).
(3)

The following lemma shows that (M≥k(w)) with w ≤ 0 is reduced to the problem (3), and
thus establishes its tractability.

Lemma 14. Problem (M≥k(w)) with w ≤ 0 is equivalent to the problem (3).

Proof. Given a feasible solution (x1, x2) of (M≥k(w)), construct a feasible solution ξ of (3) by

ξ(a) :=











min{x1(v), x2(v)} if a = (v1, v2),

max{0, x1(v)− x2(v)} if a = (v1, t),

max{0, x2(v)− x1(v)} if a = (s, v2).

(4)

Then it is not difficult to see that (x1, x2) in (M≥k(w)) and ξ in (3) have the same objective
values.

Conversely, take any feasible solution ξ for (3). If ξ(v1, t) = 0 or ξ(s, v2) = 0 holds for every
v ∈ V , then we can straightforwardly construct a feasible solution (x1, x2) satisfying (4). In this
case, the objective value of (x1, x2) in (M≥k(w)) and that of ξ in (3) are the same. Suppose that
there is v ∈ V with ξ(v1, t) > 0 and ξ(s, v2) > 0. Then define a new feasible solution ξ′ of (3) by

ξ′(a) :=

{

ξ(a) + min{ξ(v1, t), ξ(s, v2)} if a = (v1, v2),

ξ(a)−min{ξ(v1, t), ξ(s, v2)} if a = (v1, t) or a = (s, v2).

Clearly ∂ξ = ∂ξ′ holds. It follows from w ≤ 0 that the objective value for ξ′ is at most that for
ξ. It also follows that ξ′(v1, t) = 0 or ξ′(s, v2) = 0 holds for each v ∈ V . We can thus construct
a feasible solution (x1, x2) satisfying (4), attaining the desired objective value. Therefore we
conclude that (M≥k(w)) with w ≤ 0 and the problem (3) are equivalent. � �

6 The NP-hardness of (Vn(w)) and (M≥k(w))

In Sections 4 and 5, we have shown the tractability of (Vn(w)) with w ≥ 0, and that of (M≥k(w))
with w ≤ 0. This section is devoted to showing that they are NP-hard in general.

The NP-hardness of (Vn(w)). We prove that (Vn(w)) can formulate the problem of finding a
maximum common independent set for three matroids, which is NP-hard. Given three matroids
M1,M2,M3 on the same ground set V with the base families B1,B2,B3, respectively, construct
an instance of (Vn(w)) as follows. Let δBi

be the indicator function of Bi for i = 1, 2, 3, and
define a weight function w : V → R by w(v) := −1 for each v ∈ V . Clearly, δBi

is a valuated
matroid for each i = 1, 2, 3. Thus, δBi

(i = 1, 2, 3) and w define an instance of (Vn(w)) with
n = 3. It is straightforward to see that this instance of (Vn(w)) is equivalent to the problem of
finding a maximum comment independent set of M1,M2,M3, as required.
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The NP-hardness of (M≥k(w)). Lendl et al. [24] proved that the following problem (P=0) is
NP-hard:

(P=0)

Minimize w1(x1) + w2(x2)
subject to xi ∈ Bi (i = 1, 2),

∑

v∈V

min{x1(v), x2(v)} = 0,

where B1, B2 ⊆ ZV are the base polytopes of some polymatroids on the ground set V , and w1

and w2 are linear functions on ZV . Here we prove that (P=0) can be reduced to (M≥k(w)).
Given an instance of (P=0), construct an instance of (M≥k(w)) in the following way. For

i = 1, 2, define a function fi : Z
V → R ∪ {+∞} by

fi(xi) :=

{

wi(xi) if xi ∈ Bi,

+∞ otherwise.

It is not difficult to see that f1 and f2 are M-convex functions. Set k = 0 and w sufficiently
large, e.g., w(v) > maxx1∈B1 f1(x1) + maxx2∈B2 f2(x2) for each v ∈ V . Denote an instance of
(M≥k(w)) defined by these f1, f2, k, w by (I).

Then, an optimal solution for the given instance of (P=0) can be obtained from that of
(I). If (I) is infeasible, then clearly the instance of (P=0) is infeasible. Suppose that (I) has
an optimal solution (x∗1, x

∗
2) with bounded objective value. If

∑

v∈V min{x∗1(v), x
∗
2(v)} > 0, it

follows from the construction of w that there is no (x1, x2) satisfying that x1 ∈ B1, x2 ∈ B2,
and

∑

v∈V min{x∗1(v), x
∗
2(v)} = 0, which implies that the given instance of (P=0) is infeasible.

If
∑

v∈V min{x∗1(v), x
∗
2(v)} = 0, then it is straightforward to see that (x∗1, x

∗
2) is also an optimal

solution for the instance of (M≥k(w)).

7 Applications

In this section, we present applications of our generalized problems in the recoverable robust
matroid basis problem, combinatorial optimization problems with interaction costs, and matroid
congestion games.

7.1 Recoverable robust matroid basis problem

In the recoverable robust matroid basis problem [3], we are given a matroid (V,B) with ground
set V and base family B ⊆ 2V , a weight function w1 on V , a family W of weight functions on
V , and a nonnegative integer k. The recoverable robust matroid basis problem is described as
the following minimization problem with variable X1 ∈ B:

Minimize w1(X1) + max
w2∈W

{

min
X2∈B,|X1∩X2|≥k

w2(X2)

}

subject to X1 ∈ B.
(5)

This problem simulates the following situation. The family W represents the uncertainty of
cost functions. The actual cost function w2 ∈ W is revealed after choosing a basis X1 ∈ B, which
costs w1(X1). In the recovery phase, we rechoose a basis X2 ∈ B that is not much different from
the first basis X1, i.e., |X1 ∩X2| ≥ k, which requires the additional cost w2(X2). The objective
is to minimize the worst-case total cost w1(X1) + w2(X2).

It is known [19] that the recoverable robust matroid basis problem is NP-hard even when
|W| is constant and B is a base family of a graphic matroid. Lendl et al. [24] observed that the
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recoverable robust matroid basis problem can be reduced to (W≥k) if the uncertainty set W has
the interval uncertainty representation:

W = {w : V → R | w(v) ≤ w(v) ≤ w(v) for each v ∈ V }.

Indeed, in this case, (5) can be described in the form of (W≥k):

Minimize w1(X1) + w(X2)
subject to X1,X2 ∈ B,

|X1 ∩X2| ≥ k.

Our result naturally gives its nonlinear and polymatroidal generalization. Let f1 and f be
M-convex functions on ZV with dom f1,dom f ⊆ ZV

+. Define a family W of M-convex functions
by

W = {f + w | w : linear function on ZV with w ≤ w ≤ w}, (6)

where w and w are linear functions on ZV . Now, consider the following problem:

Minimize f1(x1) + max
f2∈W

{

min

{

f2(x2)

∣

∣

∣

∣

∣

∑

v∈V

min{x1(v), x2(v)} ≥ k

}}

. (7)

It then follows that (7) amounts to

Minimize f1(x1) + (f2 + w)(x2)

subject to
∑

v∈V

min{x1(v), x2(v)} ≥ k.

Since f2+w is M-convex, this is a special case of (M≥k(w)) with w ≤ 0, and thus can be solved in
weakly polynomial time. In particular, if the objective function is defined on 2V , or equivalently,
f1 and f2 are valuated matroids, then (7) is equivalent to (V≥k), and can be solved in strongly
polynomial time.

Theorem 15. The problem (7) can be solved in weakly polynomial time when the uncertainty

set W is in the form of (6). In addition, if the objective function is defined on 2V , then it can

be solved in strongly polynomial time.

Let us also mention the following variant of the recoverable robust matroid basis problem
discussed in Lendl et al. [24]. Here, w1 and w2 are weight functions on V , B1 and B2 are the
base families of matroids on V , and c : Z+ → R ∪ {+∞} is a univariate function which is not
necessarily linear.

(Wc)
Minimize w1(X1) + w2(X2) + c(|X1 ∩X2|)
subject to Xi ∈ Bi (i = 1, 2).

They showed that (Wc) can be solved in strongly polynomial time by reducing it to (W=k).
Indeed, for each k = 0, 1, . . . , |V |, let (Xk

1 ,X
k
2 ) be an optimal solution of (W=k). Then we have

that mink=0,1,...,|V |{w1(X
k
1 ) + w2(X

k
2 ) + c(k)} is an optimal solution of (Wc). We remark that

the original form in [24] includes a penalty C(|X1△X2|) in place of c(|X1 ∩X2|), where C is also
a univariate function. It follows that c and C have a one-to-one correspondence defined by a
certain transformation.

Here we generalize the weight functions w1 and w2 in (Wc) to valuated matroids ω1 and ω2

on 2V :

(Vc) Minimize ω1(X1) + ω2(X2) + c(|X1 ∩X2|).
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By the same argument for (Wc), we can solve (Vc) in strongly polynomial time via (V=k).
Besides (V=k), the problem (Vc) has some similarity to other problems discussed so far. It

first looks similar to (Vn(w)) with n = 2, but in fact they are different in the sense that the
additional costs c(|X1 ∩X2|) and w(X1 ∩X2) cannot represent each other: they just coincide in
the cases where c is a linear function and w(v) is identical for every v ∈ V .

This observation, however, leads to the following generalization of (Vc). That is, we can
generalize (Vc) to have n valuated matroids instead of the two weight functions w1 and w2, and
can solve it in strongly polynomial time by our solution to (Vn(w)) if c is linear and nonnegative.
Similarly, we can generalize (Vc) to have two M-convex functions on ZV

+, and can solve it in
weakly polynomial time via (M≥k(w)) if c is linear and nonpositive.

7.2 Combinatorial optimization problem with interaction costs

Lendl, Ćustić, and Punnen [23] introduced a framework of combinatorial optimization with in-

teraction costs (COPIC ), which is described as follows. For two sets V1 and V2, we are given
cost functions w1 : V1 → R and w2 : V2 → R, as well as interaction costs q : V1 × V2 → R. The
objective is to find a pair of feasible sets X1 ⊆ V1 and X2 ⊆ V2 minimizing

∑

u∈X1

w1(u) +
∑

v∈X2

w2(v) +
∑

u∈X1

∑

v∈X2

q(u, v).

We focus on the diagonal COPIC, where V1 and V2 are identical and q(u, v) = 0 if u 6= v. We
further assume that the feasible sets are the base families of matroids. That is, the problem is
formulated by two matroids (V,B1) and (V,B2) and modular cost functions w1, w2, q : 2

V → R
in the following way:

Minimize w1(X1) + w2(X2) + q(X1 ∩X2)
subject to Xi ∈ Bi (i = 1, 2).

(8)

The problem (8) appears in the context of the 2-min-max-min robustness [2] defined as
follows:

min
X1,X2∈B

max
w∈W

min{w(X1), w(X2)}, (9)

where B ⊆ 2V is the base family of a matroid andW is a family of cost functions on V . Chassein
and Goerigk [4] showed that, if W is of the form

W =

{

w : V → R+

∣

∣

∣

∣

∣

w(v) ≤ w(v) ≤ w(v) (v ∈ V ),
∑

v∈V

w(v) − w(v)

w(v)− w(v)
≤ C

}

(10)

for some C ∈ R+, then the 2-min-max-min robustness can be reduced to O(|V |3) many prob-
lems in the form (8), where B1 = B2, w1 and w2 are nonpositive weight functions, and q is a
nonnegative weight function on V .

Chassein and Goerigk [4] proved that the above special case of the problem (8) can be solved
in polynomial time via the ellipsoid method. Other previous work on the problem (8) includes
the following. If w1 and w2 are identically zero and q ≥ 0, then the problem (8) amounts to
finding a socially optimal state in a two-player matroid congestion game, and thus can be solved
in polynomial time [1]. Lendl et al. [23] extended the solvability to the case where the interaction
cost q may be arbitrary.

Now we can discuss another direction of generalization: the costs w1 and w2 are valuated
matroids. This is a special case of (Vn(w)) and (M≥k(w)), and thus can be solved in polynomial
time when q ≥ 0 or q ≤ 0.
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Theorem 16. The problem (8) can be solved in strongly polynomial time if w1, w2 : 2
V → R are

valuated matroids, and q ≥ 0 or q ≤ 0.

As mentioned above, Chassein–Goerigk’s algorithm for the problem (8) corresponding to
the 2-min-max-min robustness is based on the ellipsoid method and hence not combinatorial.
In contrast, our algorithm provides a combinatorial algorithm for this case of the problem (8).
More generally, our result leads to the first combinatorial algorithm for the 2-min-max-min
robustness (9) with W in the form (10).

7.3 Socially optimal states in valuated matroid congestion games

We finally present an application of (Vn(w)) in congestion games [37], a class of noncooperative
games in game theory. A congestion game is represented by a tuple (N,V, (Bi)i∈N , (cv)v∈V ),
where N = {1, 2, . . . , n} is a set of players, V is a set of resources, Bi ⊆ 2V is the set of strategies
of a player i ∈ N , and cv : Z+ → R+ is a nondecreasing cost function associated with a resource
v ∈ V . A state X = (X1,X2, . . . ,Xn) is a collection of strategies of all players, i.e., Xi ∈ Bi for
each i ∈ N . For a state X = (X1,X2, . . . ,Xn), let x(v)(X ) denote the number of players using
v, i.e., x(v)(X ) = |{i ∈ N | v ∈ Xi}|. If X is clear from the context, x(v)(X ) is abbreviated as
x(v). In a state X , every player using a resource v ∈ V should pay cv(x

(v)) to use v, and thus
the total cost paid by a player i ∈ N is

∑

v∈Xi
cv(x

(v)). In a player specific-cost model, the cost
paid by a player i ∈ N for using v ∈ V is represented by a function ci,v : Z+ → R+, which may
vary with each player.

The importance of congestion games is appreciated through the fact that the class of conges-
tion games coincides with that of potential games. Rosenthal [37] proved that every congestion
game is a potential game, and conversely, Monderer and Shapley [25] proved that every potential
game is represented by a congestion game with the same potential function.

Here we show that, in a certain generalized model of matroid congestion games with player-
specific costs, computing a socially optimal state reduces to (a variant of) (Vn(w)). A state
X ∗ = (X∗

1 ,X
∗
2 , . . . ,X

∗
n) is called socially optimal if the sum of the costs paid by all the players

is minimum, i.e.,

∑

i∈N

∑

v∈X∗

i

cv(x
(v)(X ∗)) ≤

∑

i∈N

∑

v∈Xi

cv(x
(v)(X ))

for any state X = (X1,X2, . . . ,Xn). In a matroid congestion game, the set Bi ⊆ 2V of the
strategies of each player i ∈ N is the base family of a matroid on V . A socially optimal state in
matroid congestion games can be computed in polynomial time if the cost functions are weakly

convex [1, 41], while it is NP-hard for general nondecreasing cost functions [1]. A function
c : Z+ → R is called weakly convex if (x+1) · c(x+1)−x · c(x) is nondecreasing for each x ∈ Z+.

We consider the following generalized model of congestion games with player-specific costs.
In a state X = (X1,X2, . . . ,Xn), the cost paid by a player i ∈ N is

ωi(Xi) +
∑

v∈Xi

dv(x
(v)), (11)

where ωi : 2
V → R+ is a monotone set function and dv : Z+ → R+ is a nondecreasing function

for each v ∈ V . This model represents a situation where a player i ∈ N should pay ωi(Xi)
regardless of the strategies of the other players, as well as dv(x

(v)) for every resource v ∈ Xi,
which is an additional cost resulting from the congestion on v. It is clear that the standard
model of congestion games is a special case where ωi(Xi) =

∑

v∈Xi
cv(1) for every i ∈ N and
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every Xi ∈ Bi, and

dv(x) =

{

0 (x = 0),

cv(x)− cv(1) (x ≥ 1).

In this model, the sum of the costs paid by all the players is equal to

∑

i∈N

ωi(Xi) +
∑

v∈V

x(v) · dv(x
(v)). (12)

The following lemma is straightforward to see.

Lemma 17. The following are equivalent.

• cv is weakly convex.

• dv is weakly convex.

• x · dv is discrete convex.

It follows from Lemma 17 that, if cv (or dv) is weakly convex, then the function
∑

v∈V xv ·

dv(x
(v)) is laminar convex.
The solution for (Vn(w)), or the DCA perspective for (Vn(w)), provides a new insight on

this model of cost functions in matroid congestion games. In addition to the weak convexity of
dv (v ∈ V ), this model allows us to introduce some convexity of the cost function ωi. Namely,
we can assume that ωi is a valuated matroid for every i ∈ N . Then, computing the optimal
state, i.e., minimizing (12), is naturally viewed as valuated matroid intersection problem for the
valuated matroid

∑

i∈N ωi(Xi) and the laminar convex function
∑

v∈V xv · dv(xv) as in (Vn(w)).
Thus it can be done in polynomial time.

Theorem 18. In a matroid congestion game in which each player’s cost is represented by (11),
the socially optimal state can be computed in strongly polynomial time if ωi is a valuated matroid

for each player i ∈ N and dv is weakly convex for each resource v ∈ V .

8 Discussions

In this paper, we have presented several types of minimization of the sum of valuated matroids
(or M-convex functions) under intersection constraints. We here consider the following another
natural generalization of (V=k), where ω1 and ω2 are valuated matroids on 2V , w is a weight
function on V , and k is a nonnegative integer:

(V=k(w))
Minimize ω1(X1) + ω2(X2) + w(X1 ∩X2)
subject to |X1 ∩X2| = k.

The problem (V=k(w)) is similar to VIAP(k), but is essentially different. A problem that is
similar to (V=k(w)) and can be formulated by VIAP(k) is the following:

Minimize ω1(X1) + ω2(X2) + w(F )
subject to F ⊆ X1 ∩X2,

|F | = k.

(13)

The difference between the problems (V=k(w)) and (13) is that |X1∩X2| should be exactly equal
to k and all elements in X1 ∩ X2 affect the objective value in (V=k(w)), whereas |X1 ∩ X2| is
just required to be at least k and only k elements in X1 ∩X2 affect the objective value in (13).
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While VIAP(k) (and hence (13)) can be solved in polynomial time, the complexity of (V=k(w))
is open even when the cardinality constraint |X1 ∩X2| = k is removed and ω1 and ω2 are modu-
lar functions on the base families of some matroids. For (V=k(w)), only the following cases are
known to be tractable:

• If w is identically zero, then (V=k(w)) is equivalent to (V=k).

• If w ≥ 0 and the cardinality constraint |X1 ∩ X2| = k is removed, then (V=k(w)) is a
subclass of (Vn(w)) with w ≥ 0.

• If w ≤ 0 and |X1 ∩X2| = k is replaced by |X1 ∩X2| ≥ k, then (V=k(w)) is a subclass of
(M≥k(w)) with w ≤ 0

• If |X1 ∩X2| = k is removed and ω1 and ω2 are the indicator functions of the base families
of some matroids, then (V=k(w)) has been dealt with Lendl et al. [23]; see Section 7.2.

Another possible direction of research would be to generalize our framework so that it in-
cludes computing the socially optimal state of polymatroid congestion games [12, 39], as we have
done for matroid congestion games in Section 7.3. Polymatroid congestion games offer a model
generalizing matroid congestion games where the usage of a resource by a player may not be
binary, and its multiplicity can be represented by a nonnegative integer. In this model, the sum
of the costs paid by all players for a resource v may no longer be represented as x(v) · dv(x

(v)) as
in (12), because the number of players using v may not be equal to the multiplicity of the usage
of v.
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A Algorithm description and complexity analyses

In this section, we describe the full behavior of the algorithm for (V≥k). We then analyse the
time complexities of our algorithms for (V≥k) and (V=k) to prove Theorem 4.

Suppose that, for some nonnegative integer i < k, we have at hand an optimal solution
(X1,X2) for (V≥i) and its optimality witness (p1, p2, F ); recall that the optimality condition has
been described in Lemma 6. We then find an optimal solution for (V≥i+1) and its optimality
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witness by utilizing an auxiliary digraph ~G = (V1 ∪ V2 ∪ {s, t}, A) endowed with a nonnegative
arc-length function ℓ on A defined from (X1,X2) and (p1, p2, F ) as follows. Here s and t are
new vertices, which play roles as a source vertex and sink vertex, respectively. The arc set A is
defined by

A := ~E ∪ ~F ∪A1 ∪A2 ∪ S ∪ T,

where

~E := {(v1, v2) | v ∈ V },

~F := {(v2, v1) | v ∈ F},

A1 := {(u
1, v1) | u1 ∈ X1, v1 ∈ V1 \X1, X1 \ {u

1} ∪ {v1} ∈ domω1},

A2 := {(v
2, u2) | u2 ∈ X2, v2 ∈ V2 \X2, X2 \ {u

2} ∪ {v2} ∈ domω2},

S := {(s, v1) | v1 ∈ X1 \X2},

T := {(v2, t) | v2 ∈ X2 \X1}.

Define the arc-length function ℓ : A→ R by

ℓ(a) :=











(ω1 − p1)(X1 \ {u
1} ∪ {v1})− (ω1 − p1)(X1) if a = (u1, v1) ∈ A1,

(ω2 + p2)(X2 \ {u
2} ∪ {v2})− (ω2 + p2)(X2) if a = (v2, u2) ∈ A2,

0 if a ∈ A \ (A1 ∪A2).

We remark that ℓ is nonnegative since X1 and X2 are minimizers of ω1 − p1 and ω2 + p2,
respectively.

The augmenting path algorithm for (V≥k) runs in the auxiliary digraph as follows:

Step 1: Let X1 and X2 be the minimizers of ω1 and ω2, respectively.

• If |X1 ∩X2| ≥ k, then output (X1,X2) and stop.

• Otherwise, let k′ := |X1 ∩ X2| < k and let p1, p2 be potential functions defined by
p1(v

1) = p2(v
2) = 0 for all v ∈ V . Then (X1,X2) is an optimal solution for (V≥k′)

with optimality witness (p1, p2,X1 ∩X2).

Step 2: While i = |X1 ∩X2| < k, do the following.

Suppose here that (X1,X2) is an optimal solution for (V≥i) with optimality witness
(p1, p2,X1 ∩X2). Let ~G be the auxiliary digraph for (X1,X2) with (p1, p2,X1 ∩X2).

• If there is no s-t path in ~G, then output “(V≥k) is infeasible” and stop.

• Otherwise, find a shortest s-t path P in ~G with respect to the arc length ℓ such that
the number of edges is smallest among the shortest s-t paths. For x ∈ V1∪V2∪{t}, let
d(x) be the length of the shortest s-x path with respect to ℓ in ~G, where d(x) := +∞
if there is no s-x path. Update X1, X2, p1, and p2 by

X1 ← X1 \ (P ∩X1) ∪ (P ∩ (V1 \X1)),

X2 ← X2 \ (P ∩X2) ∪ (P ∩ (V2 \X2)),

p1(v
1) ← p1(v

1) + min{d(v1), d(t)} for v1 ∈ V1,

p2(v
2) ← p2(v

2)−min{d(v2), d(t)} for v2 ∈ V2.

Then, the resulting X1, X2, p1, and p2 satisfy that |X1 ∩X2| = i+ 1 and (X1,X2) is
an optimal solution for (V≥i+1) with optimality witness (p1, p2,X1 ∩X2).
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Step 3: Output (X1,X2) and stop.

We are ready to prove Theorem 4. We first see the time complexity of the algorithm for
(V≥k). We can obtain minimizers of ω1 and ω2 in O(|V |rγ) time [5], and hence Step 1 can be
done in O(|V |rγ) time. Consider each iteration in Step 2. We can construct the auxiliary graph
~G in O(|V |rγ) time. Indeed, the number of edges in ~G is O(|V |r): | ~E| is O(|V |), |~F |, |S|, and
|T | are O(|r|), |A1| is O(r1(|V | − r1)) = O(|V |r), and |A2| is O(r2(|V | − r2)) = O(|V |r), where
r1 and r2 are the ranks of ω1 and ω2, respectively. Furthermore the arc-length function ℓ can
be computed in O((|A1| + |A2|)γ) = O(|V |rγ) time. Then we can compute the length d(x) of
the shortest s-x path for each x ∈ V1 ∪ V2 ∪ {s} in O(|V |r+ |V | log |V |) time by using Dijkstra’s
algorithm with Fibonacci heaps [10] (see also [38, Section 7.4]). The update of (X1,X2) and
(p1, p2) requires O(|V |) time. Therefore each iteration in Step 2 takes O(|V |rγ + |V | log |V |)
time. Since the number of iterations is at most k, Step 2 can be done in O(|V |rkγ+ |V |k log |V |)
time. Thus the running-time of the algorithm for (V≥k) is O(|V |rkγ + |V |k log |V |).

We then consider the time complexity of the algorithm for (V=k). Let X1 and X2 be min-
imizers of ω1 and ω2, respectively, which can be obtained in O(|V |rγ) time. If |X1 ∩ X2| ≤ k,
then the algorithm for (V=k) is the same as that for (V≥k), and hence the running-time is
O(|V |rkγ + |V |k log |V |). If |X1 ∩ X2| > k, we solve(V≥r1−k) for ω1 and ω2. By the same
argument as for the algorithm for (V≥k), one can see that the running-time of (V≥r1−k) is
O(|V |r(r1−k)γ+ |V |(r1−k) log |V |). Altogether, (V=k) can be solved in O(|V |r2γ+ |V |r log |V |)
time.

B Anothor solution to (V=k)

This section provides another solution to (V=k), which is mentioned at the end of Section 3.1.
We first solve (V≤k) and (V≥k). The former is a special case of (Vn

I) in which n = 2 and I is
the independent set family of the uniform matroid with rank k, and can be solved in O(|V |r2γ+
|V |r log |V |) time by Theorem 9. The latter can also be solved in O(|V |r2γ + |V |r log |V |) time
by Theorem 4 (or the reduction to valuated matroid intersection). If the output optimal solution
(X1,X2) of (V≤k) satisfies |X1 ∩X2| = k or that of (X ′

1,X
′
2) of (V≥k) satisfies |X ′

1 ∩X ′
2| = k,

then we are done.
Otherwise, we have that X1 and X ′

1 are minimizers of ω1, and X2 and X ′
2 are those of ω2.

Indeed, suppose, to the contrary, that X1 is not a minimizer of ω1. Then there are u ∈ X1

and v ∈ V \ X1 such that ω1(X1 \ {u} ∪ {v}) < ω1(X1). By |X1 ∩ X2| < k, it follows that
|(X1 \ {u} ∪ {v}) ∩ X2| ≤ k. Therefore, (X1 \ {u} ∪ {v},X2) is feasible and ω1(X1 \ {u} ∪
{v}) + ω2(X2) < ω1(X1) + ω2(X2), which contradicts the optimality of (X1,X2). By the same
argument, we can conclude that X ′

1 is also a minimizer of ω1 and X2,X
′
2 are minimizers of ω2.

Let p = |X ′
1\X1| and q = |X ′

2 \X2|. Since the set of minimizers of a valuated matroid forms a
base family of some matroid, there is a sequence (X0

1 ,X
1
1 , . . . ,X

p
1 ) of minimizers of ω1 such that

X0
1 = X1 and |X ′

1 \X
i
1| = p− i for each i = 0, 1, . . . , p. Note that |Xi−1

1 ∩X2| − 1 ≤ |Xi
1 ∩X2| ≤

|Xi−1
1 ∩ X2| + 1. If |Xi

1 ∩ X2| = k holds for some i ∈ [p], then output (Xi
1,X2). Otherwise,

we have that |X ′
1 ∩ X2| < k. Then we can similarly consider a sequence (X0

2 ,X
1
2 , . . . ,X

q
2 ) of

minimizers of ω2, where X0
2 = X2 and |X ′

2 \X
j
2 | = q − j for each j = 0, 1, . . . , q. It then follows

from |X ′
1 ∩ X2| < k and |X ′

1 ∩X ′
2| > k that there is X

j
2 with |X ′

1 ∩ X
j
2 | = k. We thus output

(X ′
1,X

j
2) as an optimal solution.
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C The algorithm for (W=k) by Lendl et al.

The primal-dual algorithm of Lendl et al. [24] is described as follows. LetX1 ∈ argminX∈B1
w1(X)

and X2 ∈ argminX∈B2
w2(X), respectively.

Case 1 (|X1 ∩X2| ≤ k): Let k′ := |X1 ∩ X2| and let q1, q2 be potential functions defined by
q1(v

1) = q2(v
2) = 0 for all v ∈ V .

While |X1 ∩X2| < k, do the following. Let ~G be the auxiliary graph for (X1,X2) with its
LPT optimality witness (q1, q2).

• Suppose that there is a zero length s-t path in ~G with respective to ℓ. Then let P be
a zero length s-t path with the smallest number of edges, and update X1 and X2 by

X1 ← X1 \ (P ∩X1) ∪ (P ∩ (V1 \X1)),

X2 ← X2 \ (P ∩X2) ∪ (P ∩ (V2 \X2)).

• Suppose that there is no zero length s-t path in ~G. Let R be the set of vertices
reachable from s with a zero length path, and δ := min{ℓ(a) | a ∈ A1∪A2, ℓ(a) > 0}.

If δ = +∞, then output “(W=k) is infeasible.” Otherwise update q1 and q2 by

q1(v
1)←

{

q1(v
1) + δ if v1 ∈ V1 ∩R,

q1(v
1) if v1 ∈ V1 \R,

q2(v
2)←

{

q2(v
2) if v2 ∈ V2 ∩R,

q2(v
2)− δ if v2 ∈ V2 \R.

Case 2 (|X1 ∩X2| > k): Let r1 be the rank of M1 = (V,B1), and let w2 := −w2 and M2 :=
(V, {V \B | B ∈ B2}). Then apply Case 1 to (W=r1−k) with (w1, w2;M1,M2).

We discuss the difference of this algorithm and our algorithm in the updating procedures.
The algorithm of Lendl et al. only considers the zero length edges in the auxiliary digraph ~G in
updating a solution or potential functions, while our algorithm considers all edges in ~G to find the
shortest paths with respect to ℓ. Furthermore, as mentioned in Section 3.2, in the algorithm of
Lendl et al., the update phases of a solution and of potential functions are completely separated,
while our algorithm simultaneously updates a solution and potential functions. That is, for one
update of a solution, the algorithm of Lendl et al. requires at most |V | updates of potential
functions, while our algorithm requires only one update of potential functions.

The difference in the running-times of the algorithms follows from the above arguments. Here
we remark that, in (W≥k), we can compute the edge length ℓ(a) of a in constant time for each a.
In the algorithm of Lendl et al., one update of a solution takes O(|V |2r) time, since each update
of potential functions requires O(|V |r) time. Hence the time complexity of their algorithm is
O(|V |2r2). On the other hand, our algorithm requires O(|V |r+|V | log |V |) time for one update of
a solution. Thus, the running-time of our algorithm is O(|V |r2+ |V |r log |V |) time by Theorem 4
with γ = O(1).
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