
OPTIMIZATION ON FLAG MANIFOLDS

KE YE, KEN SZE-WAI WONG, AND LEK-HENG LIM

Abstract. A flag is a sequence of nested subspaces. Flags are ubiquitous in numerical analysis,
arising in finite elements, multigrid, spectral, and pseudospectral methods for numerical pde; they
arise in the form of Krylov subspaces in matrix computations, and as multiresolution analysis in
wavelets constructions. They are common in statistics too — principal component, canonical cor-
relation, and correspondence analyses may all be viewed as methods for extracting flags from a
data set. The main goal of this article is to develop the tools needed for optimizing over a set of
flags, which is a smooth manifold called the flag manifold, and it contains the Grassmannian as
the simplest special case. We will derive closed-form analytic expressions for various differential
geometric objects required for Riemannian optimization algorithms on the flag manifold; introduc-
ing various systems of extrinsic coordinates that allow us to parameterize points, metrics, tangent
spaces, geodesics, distance, parallel transport, gradients, Hessians in terms of matrices and ma-
trix operations; and thereby permitting us to formulate steepest descent, conjugate gradient, and
Newton algorithms on the flag manifold using only standard numerical linear algebra.

1. Introduction

Launched around 20 years ago in a classic article of Edelman, Arias, and Smith [16], Riemannian
manifold optimization is now entrenched as a mainstay of optimization theory [1, 2, 15, 40]. While
studies of optimization algorithms on Riemannian manifolds predate [16], the distinguishing feature
of Edelman et al.’s approach is that their algorithms are built entirely and directly from standard
algorithms in numerical linear algebra; in particular, they do not require numerical solutions of
differential equations. For instance, the parallel transport of a vector in [16] is not merely discussed
in the abstract but may be explicitly computed in efficient and numerically stable ways via closed-
form analytic expressions involving QR and singular value decompositions of various matrices.

The requirement that differential geometric quantities appearing in a manifold optimization
algorithms have analytic expressions in terms of standard matrix decompositions limits the type
of Riemannian manifolds that one may consider. Aside from Euclidean spaces, we know of exactly
three Riemannian manifolds [2] on which one may define optimization algorithms in this manner:

(i) Stiefel manifold V(k, n),
(ii) Grassmann manifold Gr(k, n),

(iii) manifold of positive definite matrices Sn
++

.

The main contribution of this article is to furnish a fourth: flag manifolds.
A flag in a finite-dimensional vector space V over R is a nested sequence of linear subspaces

{Vi}di=1 of V, i.e.,
{0} ( V1 ( · · · ( Vd ( V.

For any increasing integer sequence of length d, 0 < n1 < · · · < nd < n, the set of all flags
{Vi}di=1 with dim(Vi) = ni, i = 1, . . . , d, is a smooth manifold called a flag manifold, and denoted
by Flag(n1, . . . , nd;V). This is a generalization of the Grassmannian Gr(k,V) that parameterizes
k-dimensional linear subspaces in V as flags of length one are just subspaces, i.e., Flag(k;V) =
Gr(k,V). Flag manifolds, sometimes also called flag varieties, were first studied by Ehresmann [17]
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and saw rapid development in 1950’s [12, 9, 10, 14]. They are now ubiquitous in many areas of
pure mathematics, and, as we will discuss next, they are also ubiquitous in applied mathematics,
just hidden in plain sight.

The optimization algorithms on Grassmann and Stiefel manifolds originally proposed in [16]
have found widespread applications: e.g., computer vision [38, 39], shape analysis [33, 34], matrix
computations [37, 25], subspace tracking [6], and numerous other areas — unsurprising as subspaces
and their orthonormal bases are ubiquitous in all areas of science and engineering. For the same
reason, we expect optimization algorithms on flag manifolds to be similarly useful as flags are also
ubiquitous — any multilevel, multiresolution, or multiscale phenomena likely involve flags, whether
implicitly or explicitly. We will discuss some examples from numerical analysis and statistics.

1.1. Flags in numerical analysis. In numerical analysis, flags naturally arise in finite elements,
multigrid, spectral and pseudospectral methods, wavelets, iterative matrix computations, etc, in
several ways.

Example 1.1 (Refining mesh). In multigrid, algebraic multigrid, finite element methods, we often
consider a sequence of increasingly finer grids or meshes G1 ⊆ G2 ⊆ G3 ⊆ · · · on the domain of
interest Ω. The vector space of real-valued functions

Vk := {f : Gk → R}

gives us a flag V1 ⊆ V2 ⊆ V3 ⊆ · · · of finite-dimensional vector spaces where dimVk = #Gk.
The aforementioned numerical methods are essentially different ways of extracting approximate
solutions of increasing accuracy from the flag.

Example 1.2 (Increasing order). In spectral and pseudospectral methods, we consider a class of
functions of increasing complexity determined by an order d, e.g., polynomial or trigonometric
polynomial functions of degree d, on the domain of interest Ω. The vector space

Vd := {f : Ω→ R : deg(f) ≤ d}

gives us a flag V1 ⊆ V2 ⊆ V3 ⊆ · · · as d is increased. Again, these methods operate by extracting
approximate solutions of increasing accuracy from the flag.

Example 1.3 (Cyclic subspaces). Given A ∈ Rn×n and b ∈ Rn, the subspace

Kk(A, b) := span{b, Ab, . . . , Ak−1b}

is called the kth Krylov subspace. The gist behind Krylov subspace methods in numerical linear
algebra, whether for computing solutions to linear systems, least squares problems, eigenvalue prob-
lems, matrix functions, etc, are all based on finding a sequence of increasingly better approximations
from the flag K0(A, b) ⊆ K1(A, b) ⊆ · · · ⊆ Kk(A, b).

Example 1.4 (Multiresolution). A standard way to construct wavelets is to define a multiresolution
analysis, i.e., a sequence of subspaces Vk+1 ⊆ Vk defined by

f(t) ∈ Vk ⇔ f(t/2) ∈ Vk+1.

The convention in wavelet literature has the indexing in reverse order but this is a minor matter
— a nested of sequence of subspaces is a flag regardless of how the subspaces in the sequence are
labeled. So a multiresolution analysis is also a flag.

This is not an exhaustive list, flags also arise in numerical analysis in other ways, e.g., analysis
of eigenvalue methods [4, 21].
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1.2. Flags in statistics. Although not usually viewed in this manner, classical multivariate data
analysis techniques [26] may be cast as nested subspace-searching problems, i.e., constrained or
unconstrained optimization problems on the flag manifold.

We let 1 denote a vector of all ones (of appropriate dimension). We assume that our data set is
given in the form of a sample-by-variables design matrix X ∈ Rn×p, n ≥ p, which we call a data
matrix for short. Let x = 1

nX
T
1 ∈ Rp be its sample mean and SX = (X − 1xT)T(X − 1xT) ∈ Rp×p

be its sample covariance. For another data matrix Y ∈ Rn×q, SXY = (X − 1xT)T(Y − 1yT) =
ST
Y X ∈ Rp×q denotes sample cross-covariance.

Example 1.5 (Principal Component Analysis (PCA)). The kth principal subspace of X is im(Zk),
where Zk is the p× k orthonormal matrix given by

Zk = argmax{tr(ZTSXZ) : Z ∈ V(k, p)}, k = 1, . . . , p. (1)

So im(Zk) is a k-dimensional linear subspace of Rp spanned by the orthonormal columns of Zk.
In an appropriate sense, the kth principal subspace captures the greatest variability in the data
among all k-dimensional subspaces of Rp. In principal component analysis (PCA), the data points,
i.e., columns of X, are often projected onto im(Zk) with k = 2, 3 for visualization or with other
small values of k for dimension reduction. Clearly im(Zk) is contained in im(Zk+1) and the flag

im(Z1) ⊆ im(Z2) ⊆ · · · ⊆ im(Zp)

explains an increasing amount of variance in the data.

In [32, Theorem 9], it is shown how one may directly define PCA as an optimization problem
on a flag manifold, a powerful perspective that in turn allows one to generalize and extend PCA
in various manners. Nevertheless what is lacking in [32] is an algorithm for optimization on flag
manifolds, a gap that our article will fill.

Example 1.6 (Canonical Correlation Analysis (CCA)). The kth pair of canonical correlation
loadings (ak, bk) ∈ Rp × Rq is defined recursively by

(ak, bk) = argmax{aTSXY b : aTSXa = bTSY b = 1,

aTSXaj = aTSXY bj = bTSY Xaj = bTSY bj = 0, j = 1, . . . , k − 1}. (2)

Let Ak = [a1, . . . , ak] ∈ Rp×k and Bk = [b1, . . . , bk] ∈ Rq×k. Then the canonical correlation
subspaces of X and Y are given by

im(A1) ⊆ · · · ⊆ im(Ap) and im(B1) ⊆ · · · ⊆ im(Bq),

which are flags in Rp and Rq respectively. Collectively they capture how the shared variance
between the two data sets increases with k.

Example 1.7 (Correspondence Analysis (CA)). Let t = 1
TX1 ∈ R, r = 1

tX1 ∈ Rn, c = 1
tX

T
1 ∈

Rp denote the total, row, and column weights of X respectively and set Dr = 1
t diag(r) ∈ Rn×n,

Dc = 1
t diag(c) ∈ Rp×p. For k = 1, . . . , p, we seek matrices Uk ∈ Rk×n and Vk ∈ Rk×p such that

(Uk, Vk) = argmax{tr
(
UT(1tX − rc

T)V
)

: UTDrU = I = V TDcV }. (3)

The solution

im(U1) ⊆ · · · ⊆ im(Up) and im(V1) ⊆ · · · ⊆ im(Vp)

are flags in Rn and Rp respectively and collectively they explain the increasing deviation from the
independence of occurrence of two outcomes.

For reasons such as sensitivity of the higher-dimensional subspaces to noise in the data, in
practice one relies on the first few subspaces in these flags to make various inference about the
data. Nevertheless, we stress that the respective flags that solve (1), (2), (3) over all k will paint
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a complete picture showing the full profile of how variance, shared variance, or deviation from
independence vary across dimensions.

Apart from PCA, CCA, and CA, flags arise in other multivariate data analytic techniques [26],
e.g., factor analysis (FA), linear discriminant analysis (LDA), multidimensional scaling (MDS), etc,
in much the same manner. One notable example is the independent subspace analysis proposed in
[29, 30], a generalization of independent component analysis.

1.3. Prior work and our contributions. Some elements of optimization theory on flag mani-
folds have been considered in [29], although optimization is not its main focus and only analytic
expressions for tangent spaces and gradients have been obtained. In particular, no actual algorithm
appears in [29] — note that a Riemannian steepest descent algorithm in the spirit of [16] would at
least require analytic expressions for geodesics and, to the best of our knowledge, they have never
been derived; in fact prior to this article it is not even known if such expressions exist.

The main contribution of our article is in providing all necessary ingredients for optimization
algorithms on flag manifolds in full details, and from two different perspectives — representing a flag
manifold as (i) a homogeneous space, where a flag is represented as an equivalence class of matrices;
and as (ii) a compact submanifold of Rn×n, where every flag is uniquely represented by a matrix.
We will provide four systems of extrinsic coordinates for representing a flag manifold that arise
from (i) and (ii) — while modern differential geometry invariably adopts an intrinsic coordinate-
free approach, we emphasize that such suitable extrinsic coordinate systems are indispensable for
performing computations on manifolds.

In particular, the analytic expressions for various differential geometric objects and operations
required for our optimization algorithms will rely on these coordinate systems. We will supply
ready-to-use formulas and algorithms, rigorously proven but also made accessible to applied math-
ematicians and practitioners. For the readers’ convenience, the following is a road map to the
formulas and algorithms:

object on flag manifold results

point Propositions 4.1, 4.10, 5.1, 5.5

tangent vector Propositions 4.3, 4.11, 5.2, 5.6, Corollary 4.12

metric Propositions 4.4, 4.13, 5.7

geodesic Propositions 4.5, 4.7, 4.14, 5.3

arclength Corollary 4.6, Proposition 4.14

geodesic distance Proposition 4.8

parallel transport Propositions 4.9, 4.15, 5.4

gradient Proposition 6.1

Hessian Proposition 6.2

steepest descent Algorithm 1

conjugate gradient Algorithm 2

1.4. Outline. We begin by reviewing basic materials about Lie groups, Lie algebras, homogeneous
spaces, and Riemannian manifolds (Section 2). We then proceed to describe the basic differential
geometry of flag manifolds (Section 3), develop four concrete matrix representations of flag mani-
folds, and derive closed-form analytic expressions for various differential geometric objects in terms
of standard matrix operations (Sections 4, 5, 6). With these, standard nonlinear optimization al-
gorithms can be ported to the flag manifold almost as an afterthought (Section 7). We illustrate
using two numerical experiments with steepest descent on the flag manifold (Section 8).

2. Basic differential geometry of homogeneous spaces

We will need some rudimentary properties of homogeneous spaces not typically found in the
manifold optimization literature, e.g., [2, 16]. This section provides a self-contained review, kept
to a bear minimum of just what we need later. We refer readers to standard references [20, 22, 8]
for more information.
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2.1. Lie groups and Lie algebras. Let M be a smooth manifold and T ∗M be its cotangent
bundle. A Riemannian metric on M is a smooth section g : M → T ∗M ⊗ T ∗M such that gx :=
g(x) ∈ T ∗xM ⊗ T ∗xM is a positive definite symmetric bilinear form on the tangent space TxM for
every x ∈ M . Intuitively, a Riemannian metric gives an inner product on TxM for every x ∈ M
and it varies smoothly with respect to x ∈ M . Let G be a group and let m : G × G → G be
the multiplication map m(a1, a2) = a1a2 and i : G → G be the inversion map i(a) = a−1. Then
G is a Lie group if it is a smooth manifold and the group operations m and i are smooth maps.
The tangent space g of G at the identity e ∈ G is a Lie algebra, i.e., a vector space equipped with
a Lie bracket, a bilinear map [·, ·] : g × g → g satisfying [X,Y ] = −[Y,X] (skew-symmetry) and
[X, [Y,Z]]+ [Z, [X,Y ]]+ [Y, [Z,X]] = 0 (Jacobi identity). For example, if G is the orthogonal group
O(n) of all n×n real orthogonal matrices, then its Lie algebra so(n) is the vector space of all n×n
real skew-symmetric matrices.

For a Lie group G, we may define the left and right translation maps La, Ra : G → G by
La(x) = m(a, x) = ax and Ra(x) = m(x, a) = xa. We say that a Riemannian metric g on G is left
invariant if for all a ∈ G,

gLa(x)

(
(dLa)x(X), (dLa)x(Y )

)
= gx(X,Y );

right invariant if for all b ∈ G,

gRb(x)

(
(dRb)x(X), (dRb)x(Y )

)
= gx(X,Y );

and bi-invariant if for all a, b ∈ G,

gRb◦La(x)

(
(d(Rb ◦ La))x(X), (d(Rb ◦ La))x(Y )

)
= gx(X,Y )

over all X,Y ∈ TxM .

2.2. Homogeneous spaces. We now recall some basic definitions and facts about homogeneous
spaces. Throughout this article, we will use double brackets JxK to denote the equivalence class of
x.

Definition 2.1. Let G be a Lie group acting on a smooth manifold M via ϕ : G×M →M . If the
action ϕ is smooth and transitive, i.e., for any x, y ∈M , there is some a ∈ G such that ϕ(a, x) = y,
then M is called a homogeneous space of the Lie group G.

For a point x ∈ M , the subgroup Gx = {a ∈ G : ϕ(a, x) = x} is called the isotropy group of
x. We write G/Gx for the quotient group of G by Gx and denote by JaK ∈ G/Gx the coset (or
equivalence class) of a ∈ G. Since G acts on M transitively, we see that there is a one-to-one
correspondence F between G/Gx and M given by

F : G/Gx →M, F (JaK) = ϕ(a, x),

for any x ∈ M . In fact, F defines a diffeomorphism between the two smooth manifolds, which is
the content of the following theorem [8, Theorems 9.2 and 9.3].

Theorem 2.2. Let G be a Lie group acting on a smooth manifold M . For any x ∈M , there exists
a unique smooth structure on G/Gx such that the action

ψ : G×G/Gx → G, ψ(a, Ja′K) = Jaa′K

is smooth. Moreover, the map F : G/Gx →M sending JaK to ϕ(a, x) is a G-equivariant diffeomor-
phism, i.e., F is a diffeomorphism such that F

(
ψ(a, Ja′K)

)
= ϕ

(
a, F (Ja′K)

)
.

The Grassmannian Gr(k, n) of k-dimensional subspaces in Rn is probably the best known example
of a homogeneous space in manifold optimization. Indeed, O(n) acts transitively on Gr(k, n) and
as any k-dimensional subspace W ⊆ Rn has isotropy group isomorphic to O(k) × O(n − k), we
obtain the well-known characterization of Grassmannian

Gr(k, n) ∼= O(n)/
(
O(k)×O(n− k)

)
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that is crucial for manifold optimization. Throughout this article ‘∼=’ will mean diffeomorphism.
Let G be a Lie group and M a homogeneous space of G with action ϕ : G×M → M . Fix any

x ∈ M and let H denote its isotropy group. By Theorem 2.2 we may identify M with G/H. The
left translation map in Section 2.1 may be extended to this setting as La : M →M , La(y) = ϕ(a, y)
for any a ∈ G. In particular, if a ∈ H, then La(x) = x, and we have a linear isomorphism

(dLa)x : TxM → TxM.

Let g : M → T ∗M ⊗T ∗M be a Riemannian metric on M . We say that g is G-invariant if for every
y ∈M and a ∈ G, we have

gLa(y)

(
(dLa)y(X), (dLa)y(Y )

)
= gy(X,Y ) for all X,Y ∈ TyM.

As M = G/H, we have TJeKM = g/h where g and h are the Lie algebras of G and H respectively.
Here e ∈ G is the identity element. This allows us to define the adjoint representation AdH : H →
GL(g/h), a 7→ d(La ◦Ra−1)JeK. In other words, for any a ∈ H and X ∈ g/h,

AdH(a)(X) = d(La ◦Ra−1)JeK(X).

An inner product η on the vector space g/h is said to be AdH-invariant if for every a ∈ H,

η(AdH(a)(X),AdH(a)(Y )) = η(X,Y ) for all X,Y ∈ g/h.

We state an important result about their existence and construction [13, Proposition 3.16].

Proposition 2.3. Let G be a connected Lie group and H a closed Lie subgroup with Lie algebras g
and h respectively. If there is a subspace m of g such that g = m⊕h and AdH(m) ⊆ m, then there is
a one-to-one correspondence between G-invariant metrics on M = G/H and AdH-invariant inner
products on m.

Proposition 2.3 says that if h ⊆ g admits a complement m, then we may obtain a G-invariant
metric g on M by an AdH -invariant inner product on m. Moreover, we may identify TxM with m,
implying that the metric g on M is essentially determined by gx at a single arbitrary point x ∈M .

If in addition G is simple and compact, then G admits the unique bi-invariant metric called the
canonical metric on M and (M, g) is called a normal homogeneous space.

Proposition 2.4. If G is a compact Lie group, then G admits a bi-invariant metric and this metric
induces a G-invariant metric g on M = G/H for any closed subgroup H ⊆ G.

2.3. Geodesic orbit spaces. LetM = G/H be a homogeneous space ofG. IfM has a Riemannian
metric g such that every geodesic in M is an orbit of a one-parameter subgroup of G, then we say
that (M, g) is a geodesic orbit space. The following result [23] will allow us to construct several
interesting examples.

Theorem 2.5. Let G be a compact Lie group with a bi-invariant metric g and H be a subgroup
such that M = G/H is a smooth manifold (e.g., H is closed subgroup). Then M = G/H together
with the metric g̃ induced by g is a geodesic orbit space.

In general it is difficult if not impossible to determine closed form analytic expressions for
geodesics on a Riemannian manifold. But in the case of a geodesic orbit space, since its geodesics
are simply orbits of one-parameter subgroups of G, the task reduces to determining the latter. The
next result [18, Theorem 1.3.5] will be helpful towards this end.

Theorem 2.6. If G is a matrix Lie group equipped with a bi-invariant metric, then every one-
parameter subgroup γ(t) of G is of the form

γ(t) = exp(ta) :=

∞∑
k=0

tkak

k!

for some a ∈ g.
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So for example, every one-parameter subgroup of SO(n) must take the form γ(t) = exp(ta) for
some skew-symmetric matrix a ∈ so(n).

2.4. Riemannian notions. Although not specific to homogeneous or geodesic orbit spaces, we
state the famous Hopf–Rinow theorem [13, Theorem 1.8] and recall the definitions of Riemannian
gradient and Hessian [20, 22, 8] below for easy reference.

Theorem 2.7 (Hopf–Rinow). Let (M, g) be a connected Riemannian manifold. Then the following
statements are equivalent:

(i) closed and bounded subsets of M are compact;
(ii) M is a complete metric space;

(iii) M is geodesically complete, i.e., the exponential map expx : TxM →M is defined on the whole
TxM for all x ∈M .

Furthermore, any one of these conditions guarantees that any two points x, y on M can be connected
by a distance minimizing geodesic on M .

In the following we will write X(M) for the set of all smooth vector fields on M .

Definition 2.8 (Riemannian gradient and Hessian). Let (M, g) be a Riemannian manifold. Let
f : M → R be a smooth function. The Riemannian gradient of f , denoted ∇f , is defined by

g(∇f, V ) = V (f),

for any V ∈ X(M). The Riemannian Hessian of f , denoted ∇2f , is defined by

(∇2f)(U, V ) = g
(
∇U (∇f), V

)
,

where U, V ∈ X(M) and∇UV is the covariant derivative of V along U , which is uniquely determined
by the Riemannian metric g.

By their definitions, ∇f is a smooth vector field and ∇2f is a smooth field of symmetric bilinear
forms. In particular, ∇2f is uniquely determined by its values at points of the form (V, V ) over all
V ∈ X(M) because of bilinearity and symmetry, i.e.,

∇2f(U, V ) =
1

2

(
∇2f(U + V,U + V )−∇2f(U,U)−∇2f(V, V )

)
, (4)

for any U, V ∈ X(M). Definition 2.8 is standard but not as useful for us as a pointwise definition
— the Riemannian gradient ∇f(x) and Riemannian Hessian ∇2f(x) at a point x ∈M is given by

gx(∇f(x), X) =
df
(
exp(tX)

)
dt

∣∣∣
t=0

, ∇2f(x)(X,X) =
d2f
(
exp(tX)

)
dt2

∣∣∣
t=0

, (5)

where exp(tX) is the geodesic curve emanating from x in the direction X ∈ TxM . We may obtain
(5) by Taylor expanding f

(
exp(tX)

)
.

Given a specific function f , one may express (5) in terms of local coordinates on M but in general
there are no global formulas for ∇f(x) and ∇2f(x), and without which it would be difficult if not
impossible to do optimization on M . We will see in Section 6 that when M is a flag manifold, then
(5) may be expressed globally in terms of extrinsic coordinates.

3. Basic differential geometry of flag manifolds

We will now define flags and flag manifolds formally and discuss some basic properties. Let n be
a positive integer and V be an n-dimensional vector space over R. We write V(k,V) for the Stiefel
manifold [35] of k-frames in V and Gr(k,V) for the Grassmannian [19] of k-dimensional subspaces
in V. If the choice of V is unimportant or if V = Rn, then we will just write V(k, n) and Gr(k, n).
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Definition 3.1. Let 0 < n1 < · · · < nd < n be an increasing sequence of d positive integers and V
be an n-dimensional vector space over R. A flag of type (n1, . . . , nd) in V is a sequence of subspaces

V1 ( V2 ( · · · ( Vd, dimVi = ni, i = 1, . . . , d.

We denote the set of such flags by Flag(n1, . . . , nd;V) and call it the flag manifold of type (n1, . . . , nd).
If V is unimportant or if V = Rn, then we will just write Flag(n1, . . . , nd;n).

For notational convenience we will adopt the following convention throughout:

n0 := 0, nd+1 := n, V0 := {0}, Vd+1 := V.
We will see in Proposition 3.2 that flag manifolds are indeed manifolds. When d = 1, Flag(k;V)

is the set of all k-dimensional subspaces of V, which is the Grassmannian Gr(k,V). The other
extreme case is when d = n− 1 and ni = i, i = 1, . . . , n− 1, and in which case Flag(1, . . . , n− 1;V)
comprises all complete flags of V, i.e.,

V1 ( V2 ( · · · ( Vn−1, dimVi = i, i = 1, . . . , n− 1.

Like the Grassmannian, the flag manifold is not merely a set but has rich geometric structures.
We will start with the most basic ones and defer other useful characterizations to Sections 4 and 5.

Proposition 3.2. Let 0 < n1 < · · · < nd < n be integers and V be an n-dimensional real vector
space. The flag manifold Flag(n1, . . . , nd;V) is

(i) a connected compact smooth manifold;
(ii) an irreducible affine variety;

(iii) a closed submanifold of Gr(n1,V)×Gr(n2,V)× · · · ×Gr(nd,V);
(iv) a closed submanifold of Gr(n1,V)×Gr(n2 − n1,V)× · · · ×Gr(nd − nd−1,V);
(v) a fiber bundle on Gr(nd,V) whose fiber over W ∈ Gr(nd,V) is Flag(n1, . . . , nd−1;W);
(vi) a smooth projective variety.

Proof. Property (i) is well-known [27, 11] but also follows from the characterization in Propo-
sition 4.1 as a quotient of a compact connected Lie group by a closed subgroup. Property (ii)
is a consequence of Propositions 5.1 and 5.5, where we give two different ways of representing
Flag(n1, . . . , nd;V) as an affine variety in Rm, m = (nd)2. Property (vi) is a consequence of (iii) or
(iv), given that the Grassmannian is a projective variety.

In the following, let {Vi}di=1 ∈ Flag(n1, . . . , nd;V), i.e., dimVi = ni, i = 1, . . . , d. For (iii), the
map

ε : Flag(n1, . . . , nd;V)→ Gr(n1,V)× · · · ×Gr(nd,V), {Vi}di=1 7→ (V1,V2, . . . ,Vd) (6)

is clearly an embedding. Its image is closed since if (V1, . . . ,Vd) 6∈ ε
(
Flag(n1, . . . , nd;V)

)
, then there

exists some i ∈ {1, . . . , d− 1} such that Vi 6⊆ Vi+1; so if V′i ∈ Gr(ni,V) and V′i+1 ∈ Gr(ni+1,V) are
in some small neighborhood of Vi and Vi+1 respectively, then V′i 6⊆ V′i+1.

For (iv), choose and fix an inner product on V. Let V⊥i denote the orthogonal complement of Vi
in Vi+1, i = 1, . . . , d− 1. The map

ε′ : Flag(n1, . . . , nd;V)→ Gr(n1,V)×Gr(n2 − n1,V)× · · · ×Gr(nd − nd−1,V),

{Vi}di=1 7→ (V1,V⊥1 , . . . ,V⊥d−1)
(7)

is clearly an embedding. That the image of ε′ is closed follows from the same argument used for ε.
For (v), consider the map

ρ : Flag(n1, . . . , nd;V)→ Gr(nd,V), {Vi}di=1 7→ Vd,
that is clearly surjective and smooth. For any W ∈ Gr(nd,V), ρ−1(W) consists of flags of the form

V′1 ⊆ V′2 ⊆ · · · ⊆ V′d−1 ⊆W, dimV′i = ni, i = 1, . . . , d− 1.

In other words, the fiber ρ−1(W) ∼= Flag(n1, . . . , nd−1;W). �
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The fiber bundle structure in Proposition 3.2(v) may be recursively applied to get

Flag(n1, . . . , nd−1;nd)→ Flag(n1, . . . , nd;n)→ Gr(nd, n),

Flag(n1, . . . , nd−2;nd−1)→ Flag(n1, . . . , nd−1;nd)→ Gr(nd−1, n),

and so on, ending in the well-known characterization of the Stiefel manifold as a principal bundle
over the Grassmannian

O(n)→ V(k, n)→ Gr(k, n).

In the next two sections, we will see how the flag manifold may be equipped with extrinsic matrix
coordinates and be represented as either homogeneous spaces of matrices (Section 4) or manifolds
of matrices (Section 5) that in turn give closed-form analytic expressions for various differential
geometric objects and operations needed for optimization algorithms.

4. Flag manifolds as matrix homogeneous spaces

We will discuss three representations of the flag manifold as matrix homogeneous spaces, i.e.,
where a flag is represented as an equivalence class of matrices:

Flag(n1, . . . , nd;n) ∼= O(n)/
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)×O(n− nd)

)
, (8)

Flag(n1, . . . , nd;n) ∼= SO(n)/S
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)×O(n− nd)

)
, (9)

Flag(n1, . . . , nd;n) ∼= V(nd, n)/
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)

)
. (10)

The characterization (8) is standard [27, 11] and generalizes the well-known characterization of the
Grassmannian as Gr(k, n) ∼= O(n)/

(
O(k)×O(n−k)

)
whereas the characterization (10) generalizes

another well-known characterization of the Grassmannian as Gr(k, n) ∼= V(k, n)/O(k).
Nevertheless, we will soon see that it is desirable to describe Flag(n1, . . . , nd;n) as a homogeneous

space G/H where G is a connected Lie group — note that O(n) is not connected whereas V(nd, n)
is not a group, so (8) and (10) do not meet this criterion. With this in mind, we state and prove
(9) formally.

Proposition 4.1. Let 0 < n1 < · · · < nd < n be d positive integers. The flag manifold
Flag(n1, . . . , nd;n) is diffeomorphic to the homogeneous space

SO(n)/ S
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)×O(n− nd)

)
where S

(
O(n1)×O(n2−n1)× · · · ×O(nd−nd−1)×O(n−nd)

)
is the subgroup of unit-determinant

block diagonal matrices with orthogonal blocks, i.e.,Q1 0 ... 0
0 Q2 ... 0

...
...

...
...

0 0 ... Qd+1

 ∈ O(n), Qi ∈ O(ni − ni−1), i = 1, . . . , d+ 1,
d+1∏
i=1

det(Qi) = 1.

Proof. We start with the characterization (8), i.e., in this proof we assume ‘=’ in place of ‘∼=’ in
(8). We claim that the required diffeomorphism τ is given as in the commutative diagram below:

SO(n) O(n)

SO(n)/ S
(
O(n1)×O(n2 − n1)× · · · ×O(n− nd)

)
Flag(n1, . . . , nd;n)

j

π′ π

τ

Here j is the inclusion of SO(n) in O(n), π and π′ the respective quotient maps, and τ the induced
map. Since

SO(n) ∩
(
O(n1)×O(n2 − n1)× · · · ×O(n− nd)

)
= S

(
O(n1)×O(n2 − n1)× · · · ×O(n− nd)

)
,
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τ is injective. To show that it is surjective, let {Vi}di=1 ∈ Flag(n1, . . . , nd;n) be a flag represented
by some A ∈ O(n), i.e., π(A) = {Vi}di=1. If det(A) = 1, then we already have τ(π1(A)) = {Vi}di=1
by commutativity of the diagram. If det(A) = −1, take any A1 ∈ O(n1) with det(A1) = −1, set

B = A

A1 0 ··· 0
0 In2−n1 ··· 0

...
...

. . .
...

0 0 ··· In−nd

 ∈ SO(n),

and observe that τ(π1(B)) = π(B) = π(A). �

4.1. Orthogonal coordinates for the flag manifold. An immediate consequence of Propo-
sition 4.1 is that the flag manifold is connected. The characterization (9) says that a point on
Flag(n1, . . . , nd;n) may be represented by the equivalence class of matrices

JQK =

Q
Q1 0 ... 0

0 Q2 ... 0

...
...

. . .
...

0 0 ... Qd+1

 : Qi ∈ O(ni − ni−1), i = 1, . . . , d+ 1,
d+1∏
i=1

detQi = 1

 (11)

for some Q ∈ SO(n). We will call such a representation orthogonal coordinates for the flag manifold.
The Lie algebra of S

(
O(n1) × O(n2 − n1) × · · · × O(n − nd)

)
is simply so(n1) × so(n2 − n1) ×

· · · × so(n− nd), which we will regard as a Lie subalgebra of block diagonal matrices,

h =


A1 0 ... 0

0 A2 ... 0
...

...
. . .

...
0 0 ... Ad+1

 ∈ so(n) :
A1 ∈ so(n1), A2 ∈ so(n2 − n1), . . .

. . . , Ad+1 ∈ so(n− nd)

 . (12)

Let m be the natural complement of h in so(n),

m =




0 B1,2 ... B1,d+1

−BT
1,2 0 ... B2,d+1

...
...

. . .
...

−BT
1,d+1 −B

T
2,d+1 ... 0

 ∈ so(n) :
Bij ∈ R(ni−ni−1)×(nj−nj−1),

1 ≤ i < j ≤ d+ 1

 . (13)

In particular, we have the direct sum decomposition so(n) = h⊕m as vector spaces.
The groups O(n) and O(n1)×O(n2−n1)×· · ·×O(n−nd) have the same Lie algebras as SO(n)

and S
(
O(n1)×O(n2−n1)×· · ·×O(n−nd)

)
, namely, so(n) and so(n1)×so(n2−n1)×· · ·×so(n−nd)

respectively. The tangent space of a homogeneous space G/H at any point is a translation of the
tangent space at the identity element JHK ∈ G/H, which depends only on the Lie algebras g and
h of G and H respectively:

TJHKG/H ' g/h,

a fact that we will use in the proof of Proposition 4.3. As such we do not need to distinguish the
two homogeneous space structures (8) and (9) when we discuss geometric quantities associated with
tangent spaces, e.g., geodesic, gradient, Hessian, parallel transport. In the sequel we will make free
use of this flexibility in switching between (8) and (9).

Proposition 4.2. Let h and m be as in (12) and (13) and H = O(n1)×O(n2−n1)×· · ·×O(n−nd).
Then the subspace m is AdH-invariant, i.e., Ad(a)(X) ∈ m for every a ∈ H and X ∈ m.

Proof. We need to show that Ad(a)(X) ∈ m whenever a ∈ H and X ∈ m. For notational simplicity,
we assume d = 2. Let

a =

[
A1 0 0

0 A2 0

0 0 A3

]
and X =

[
0 B1,2 B1,3

−BT
1,2 0 B2,3

−BT
1,3 −BT

2,3 0

]
,
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where Ai ∈ O(ni − ni−1), i = 1, 2, 3, and Bij ∈ R(ni−ni−1)×(nj−nj−1), 1 ≤ i < j ≤ 3. Then
Ad(a)(X) = aXa−1 = aXaT since a is an orthogonal matrix; and we have

aXaT =

[
A1 0 0

0 A2 0

0 0 A3

][
0 B1,2 B1,3

−BT
1,2 0 B2,3

−BT
1,3 −BT

2,3 0

][
AT

1 0 0

0 AT
2 0

0 0 AT
3

]
=

[
0 A1B1,2AT

2 A1B1,3AT
3

−A2BT
1,2A

T
1 0 A2B2,3AT

3

−A3BT
1,3A

T
1 −A3BT

2,3A
T
2 0

]
∈ m

as required. �

We now have all the ingredients necessary for deriving closed-form analytic expressions for the
tangent space, metric, geodesic, geodesic distance, and parallel transport on a flag manifold in
orthogonal coordinates. We begin with the representation of a tangent space as a vector space of
matrices.

Proposition 4.3 (Tangent space I). Let JQK ∈ Flag(n1, . . . , nd;n) = O(n)/
(
O(n1)×O(n2−n1)×

· · · ×O(nd − nd−1)×O(n− nd)
)

be represented by Q ∈ O(n). Its tangent space at JQK is given by

TJQK Flag(n1, . . . , nd;n) = {QB ∈ Rn×n : B ∈ m}

=

Q


0 B1,2 ... B1,d+1

−BT
1,2 0 ... B2,d+1

...
...

...
...

−BT
1,d+1 −B

T
2,d+1 ... 0

 ∈ Rn×n :
Bi,j ∈ R(ni−ni−1)×(nj−nj−1),

1 ≤ i < j ≤ d+ 1

 .

In particular, the dimension of a flag manifold is given by

dim Flag(n1, . . . , nd;n) =
∑

1≤i<j≤d+1

(ni − ni−1)(nj − nj−1).

Proof. Let M = Flag(n1, . . . , nd;n). For Q = I, the identity matrix, this follow from TJIKM '
g/h ' m. For Q arbitrary, the left translation LQ : M →M is a diffeomorphism, which means that
(dLQ)JIK : TJIKM → TJQKM is an isomorphism. The result then follows from (dLQ)JIK(X) = QX
for all X ∈ TJIKM . �

There are several ways to equip Flag(n1, . . . , nd;n) with a Riemannian metric but there is a
distinguished choice that is given by a negative multiple of the Killing form of so(n), although we
will not need to introduce this concept.

Proposition 4.4 (Riemannian metric I). The metric g on Flag(n1, . . . , nd;n) defined by

gJQK(X,Y ) =
1

2
tr(XTY ) (14)

for all X,Y ∈ TJQK Flag(n1, . . . , nd;n) is an SO(n)-invariant metric. If we write

X = Q


0 B1,2 ... B1,d+1

−BT
1,2 0 ... B2,d+1

...
...

...
...

−BT
1,d+1 −B

T
2,d+1 ... 0

, Y = Q


0 C1,2 ... C1,d+1

−CT
1,2 0 ... C2,d+1

...
...

...
...

−CT
1,d+1 −C

T
2,d+1 ... 0

 ∈ Rn×n,

where Bij , Cij ∈ R(ni−ni−1)×(nj−nj−1), 1 ≤ i < j ≤ d, then g may be expressed as

gJQK(X,Y ) =
∑

1≤i<j≤d+1

tr(BT
ijCij). (15)

Proof. We will first need to establish an AdSO(n)-invariant inner product on so(n). It is a standard
fact [31] that bi-invariant metrics on a Lie group G are in one-to-one correspondence with AdG-
invariant inner products on its Lie algebra g. In our case, G = SO(n), g = so(n), and AdSO(n) :
SO(n)→ GL(so(n)). Since SO(n) is compact, by Proposition 2.4 it has a bi-invariant metric, which
corresponds to an AdSO(n)-invariant inner product on so(n).
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When n 6= 2, 4, so(n) is a simple Lie algebra and so the AdSO(n)-invariant inner product is unique
up to a scalar multiple. When n = 2, SO(2) is one-dimensional and thus abelian, so the bi-invariant
metric on SO(2) is unique up to a scalar. When n = 4, SO(4) ' SO(3) × SO(3) as Lie groups,
so it has a two-dimensional family of bi-invariant metrics. For all values of n, we may take our
AdSO(n)-invariant inner product (the choice is unique for all n 6= 4) as

〈X,Y 〉 :=
1

2
tr(XTY ) (16)

for all X,Y ∈ so(n).
Let G = SO(n) and H = S

(
O(n1)×O(n2−n1)×· · ·×O(n−nd)

)
. We will use the characterization

of a flag manifold in (9), i.e., Flag(n1, . . . , nd;n) = G/H. Since m is a subspace of so(n), the
restriction of 〈·, ·〉 in (16) to m, denoted by 〈·, ·〉m, is an inner product on m. It is easy to verify that
〈·, ·〉m is AdH -invariant. Taken together with Propositions 2.3, 2.4, and 4.2, we have that 〈·, ·〉m
uniquely determines a G-invariant metric g on G/H, as required. �

Unsurprisingly the metric g in Proposition 4.4 coincides with the canonical metric on Grass-
mannian (d = 1) introduced in [16]. It also follows from Theorem 2.5 that, with this metric g,
Flag(n1, . . . , nd;n) is not merely a Riemannian manifold but also a geodesic orbit space. In fact,
g is the only choice of a metric that makes Flag(n1, . . . , nd;n) into a geodesic orbit space [3].
We will next derive explicit analytic expressions for geodesic (Propositions 4.5 and 4.7), arclength
(Corollary 4.6), geodesic distance (Proposition 4.8), and parallel transport (Proposition 4.9).

Proposition 4.5 (Geodesic I). Let JQK ∈ Flag(n1, . . . , nd;n) = O(n)/
(
O(n1) × · · · × O(n − nd)

)
and g be the metric in (15). Every geodesic on Flag(n1, . . . , nd;n) passing through JQK takes the
form

JQ(t)K =

Q exp(tB)

Q1 0 ... 0
0 Q2 ... 0

...
...

...
...

0 0 ... Qd+1

 ∈ O(n) : Qi ∈ O(ni − ni−1), i = 1, . . . , d+ 1

 ,

for some direction

B =


0 B1,2 ... B1,d+1

−BT
1,2 0 ... B2,d+1

...
...

...
...

−BT
1,d+1 −B

T
2,d+1 ... 0

 ∈ Rn×n, Bij ∈ R(ni−ni−1)×(nj−nj−1),
1 ≤ i < j ≤ d+ 1

. (17)

Proof. Since Flag(n1, . . . , nd;n) with the metric g in Proposition 4.4 is a geodesic orbit space, the
result follows immediately from Theorem 2.6. �

Corollary 4.6 (Arclength I). The arclength of a geodesic γ(t) = JQ(t)K passing through Q in the
direction B is given by

‖γ(t)‖ = t
[∑

1≤i<j≤d+1
tr(BT

ijBij)
]1/2

= t

√
tr(BTB)

2
,

where B is as in (17).

Proof. This follows from the definition of arclength

‖γ(t)‖ :=

∫ t

0

√
gJQK(γ′(x), γ′(x)) dx

and the expressions for g in (14) and (15). �
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Proposition 4.7 (Geodesic II). Let γ be a geodesic in Flag(n1, . . . , nd;n) = O(n)/
(
O(n1)× · · · ×

O(n − nd)
)

with γ(0) = JQK for some Q ∈ O(n) and γ′(0) = H ∈ TJQK Flag(n1, . . . , nd;n). Let
QTH = V DV T with V ∈ O(n) and

D = diag

([
0 −λ1
λ1 0

]
, . . . ,

[
0 −λr
λr 0

]
, 0n−2r

)
∈ so(n), (18)

where 2r = rank(QTH) and λ1, . . . , λr are positive real numbers. Then γ(t) = JUΣ(t)V TK where
U = QV ∈ O(n) and

Σ(t) = diag

([
cos tλ1 − sin tλ1
sin tλ1 cos tλ1

]
, . . . ,

[
cos tλr − sin tλr
sin tλr cos tλr

]
, In−2r

)
∈ O(n). (19)

Proof. By Proposition 4.5, the geodesic γ takes the form γ(t) = JQ exp(tB)K for some B ∈ so(n)
and Q ∈ O(n) representing γ(0). Hence we have H = γ′(0) = QB and QTH = B. Since B is a
skew-symmetric and thus a normal matrix, by the spectral theorem [5, Theorem 7.25], B = V DV T

for some V ∈ O(n) and D of the form in (18), with 2r = rank(B) = rank(QTH) and λ1, . . . , λr are
positive reals as they are singular values of B. Therefore,

Q exp(tB) = UΣ(t)V T,

where U = QV and Σ(t) is as in (19). �

Proposition 4.8 (Geodesic distance). The geodesic distance with respect to the metric g between
JP K, JQK ∈ Flag(n1, . . . , nd;n) = O(n)/

(
O(n1)× · · · ×O(n− nd)

)
is

d(JP K, JQK) =

√∑r

i=1
λ2i , (20)

where λ1, . . . , λr are positive real numbers such that P TQ = V ΣV T with V ∈ O(n) and

Σ = diag

([
cosλ1 − sinλ1
sinλ1 cosλ1

]
, . . . ,

[
cosλr − sinλr
sinλr cosλr

]
, 0n−2r

)
.

Proof. By Proposition 3.2(iii), we may regard Flag(n1, . . . , nd;n) as a closed, and therefore compact,
submanifold of Gr(n1, n)×· · ·×Gr(nd, n). By Theorem 2.7, there is a distance minimizing geodesic
JP exp(tB)K connecting JP K and JQK. By Corollary 4.6, we get (20) with λ1, λ1, . . . , λr, λr the
nonzero singular values of B. Lastly, by Proposition 4.7, we get the decomposition P TQ = V ΣV T

for some V ∈ O(n). �

Let m be as in (13). For B ∈ m, we define a map

ϕB : m→ m, X 7→ 1

2
[B,X]m :=

1

2
projm([B,X]), (21)

where projm : so(n)→ m is the projection from so(n) = h⊕m to m. For example, if d = 2 and

B =

 0 B12 B13

−BT
12 0 B23

−BT
13 −BT

23 0

 ∈ m, X =

 0 X12 X13

−XT
12 0 X23

−XT
13 −XT

23 0

 ∈ m,

where Bij , Xij ∈ R(ni−ni−1)×(nj−nj−1), 1 ≤ i < j ≤ 3, then

ϕB(X) =

 0 −B12X
T
23 +X12B

T
23 B11X23 −X11B23

X23B
T
12 −B23X

T
12 0 −B11X

T
12 +X11B

T
12

−XT
23B

T
11 +BT

23X
T
11 X12B

T
11 −B12X

T
11 0

 ∈ m.

Proposition 4.9 (Parallel transport I). Let B,X ∈ TJIK Flag(n1, . . . , nd;n) ∼= m and JQK ∈
Flag(n1, . . . , nd;n). The parallel transport of QX ∈ TJQK Flag(n1, . . . , nd;n) along the geodesic
JQ exp(tB)K is

X(t) = Q exp(tB)e−ϕtB (X), (22)
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where e−ϕB : m→ m, for ϕB as in (21), is defined by

e−ϕB =

∞∑
k=0

(−1)k

k!
ϕkB. (23)

Proof. This follows from applying [36, Lemma 3.1] to Flag(n1, . . . , nd;n). �

For the d = 1 case, i.e., Flag(k;n) = Gr(k, n), it is straightforward to verify that [B,X]m = 0
for all B,X ∈ m. So the expression for parallel transport in (22) reduces to X(t) = Q exp(tB)X,
which is the well-known expression for parallel transport on the Grassmannian [16].

4.2. Stiefel coordinates for the flag manifold. We next discuss the characterization of a flag
manifold as a quotient of the Stiefel manifold (10) and discuss its consequences. This characteri-
zation will give our coordinates of choice for use in our optimization algorithms (see Section 6).

Proposition 4.10. Let 0 < n1 < · · · < nd < n be d positive integers. The flag manifold
Flag(n1, . . . , nd;n) is diffeomorphic to the homogeneous space

V(nd, n)/
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)

)
(24)

where V(nd, n) is the Stiefel manifold of orthonormal nd-frames in n.

Proof. This follows from the standard characterization of V(nd, n) is a homogeneous space of O(n),
V(nd, n) ∼= O(n)/O(n− nd), together with (8). �

For the rest of this article, we will regard the Stiefel manifold V(k, n) as the set of all n × k
matrices whose column vectors are orthonormal. With this identification, Proposition 4.10 allows
us to represent a flag {Vi}di=1 ∈ Flag(n1, . . . , nd;n) by a matrix Y = [y1, . . . , ynd

] ∈ Rn×nd with
orthonormal y1, . . . , ynd

∈ Rn and where the first ni of them span the subspace Vi, i = 1, . . . , d.
This representation is not unique but if Y ′ ∈ Rn×nd is another such matrix, then

Y ′ = Y

Q1 0 ... 0
0 Q2 ... 0

...
...

. . .
...

0 0 ... Qd

, Qi ∈ O(ni − ni−1), i = 1, . . . , d. (25)

Hence {Vi}di=1 ∈ Flag(n1, . . . , nd;n) may be represented by the equivalence class of matrices

JY K =

Y
Q1 0 ... 0

0 Q2 ... 0

...
...

. . .
...

0 0 ... Qd

 ∈ Rn×nd :
Y ∈ V(nd, n), span{y1, . . . , yni} = Vi,

Qi ∈ O(ni − ni−1), i = 1, . . . , d

 . (26)

We will call such a representation Stiefel coordinates for the flag manifold.
In the following, for any k < n, we write

In,k :=

[
Ik
0

]
∈ Rn×k,

i.e., the n× k matrix comprising the first k columns of the n× n identity matrix In. Thus for any
A = [a1, . . . , an] ∈ Rn×n, AIn,k = [a1, . . . , ak] ∈ Rn×k gives us the first k columns of A.

For a flag {Vi}di=1, it is easy to convert between its orthogonal coordinates, i.e., JQK in (11) with
Q ∈ O(n), and its Stiefel coordinates, i.e., JY K in (26) with Y ∈ V(nd, n). Given Q ∈ O(n), one just
takes its first nd columns to get Y = QIn,nd

; note that QIn,ni is automatically an orthonormal basis

for the subspace Vi, i = 1, . . . , d. Given Y ∈ V(nd, n), take any orthonormal basis Y ⊥ ∈ V(n−nd, n)
of the orthogonal complement of im(Y ) to get Q = [Y, Y ⊥] ∈ O(n).

We now derive expressions for tangent space, metric, arclength, geodesic, and parallel transport
in Stiefel coordinates.
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Proposition 4.11 (Tangent space II). Let JY K ∈ Flag(n1, . . . , nd;n) = V(nd, n)/
(
O(n1)×O(n2 −

n1)× · · · ×O(nd − nd−1)
)

be represented by Y ∈ V(nd, n). Its tangent space at JY K is given by

TJY K Flag(n1, . . . , nd;n) = {[Y, Y ⊥]BIn,nd
∈ Rn×nd : B ∈ m},

where Y ⊥ ∈ V(n− nd, n) is such that [Y, Y ⊥] ∈ O(n) and m is as in (13).

Proof. The calculation is straightforward and details can be found in [29]. Essentially it follows
from differentiating a curve τ(t) in Flag(n1, . . . , nd;n) with τ(0) = JY K and noting that the tangent
vector τ ′(0) is perpendicular to h in (12), whose orthogonal complement is precisely m. �

The description of TJY K Flag(n1, . . . , nd;n) in Proposition 4.11 is a parametric one (like the de-
scription of the unit circle as {(cos θ, sin θ) : θ ∈ [0, 2π)}). We may also derive an implicit description
of TJY K Flag(n1, . . . , nd;n) (like the description of the unit circle as {(x, y) : x2 + y2 = 1}).

Corollary 4.12 (Tangent space III). Let JY K ∈ Flag(n1, . . . , nd;n) = V(nd, n)/
(
O(n1) × O(n2 −

n1)× · · · ×O(nd − nd−1)
)

be represented by Y ∈ V(nd, n). Let Y be partition as

Y = [Y1, . . . , Yd], Yi ∈ V(ni − ni−1, n), i = 1, . . . , d.

Then its tangent space at JY K is given by

TJY K Flag(n1, . . . , nd;n) = {[X1, . . . , Xd] ∈ Rn×nd : Xi ∈ Rn×(ni−ni−1),

Y T
i Xj +XT

i Yj = 0, Y T
i Xi = 0, 1 ≤ i, j ≤ d}. (27)

Equivalently, the matrix [X1, . . . , Xd] can be expressed as

[X1, . . . , Xd] = [Y1, . . . , Yd, Y
⊥]


0 B1,2 ... B1,d

−BT
1,2 0 ... B2,d

... ...
...

...
−BT

1,d −BT
2,d ... 0

−BT
1,d+1 −B

T
2,d+1 ... −BT

d,d+1

,
where Y ⊥ ∈ V(n− nd, n) is such that [Y, Y ⊥] ∈ O(n) and Bij ∈ R(ni−ni−1)×(nj−nj−1), 1 ≤ i < j ≤
d+ 1.

Proof. Since [Y1, . . . , Yd] ∈ V(nd, n) and Yi ∈ V(ni − ni−1, n), the Yi’s are characterized by

Y T
i Yi = Ini−ni−1 , Y T

i Yj = 0, i 6= j = 1, . . . , d. (28)

Differentiating (28) gives us the first relation in (27). On the other hand, by Proposition 4.11 we
notice that a tangent vector in TJY K Flag(n1, . . . , nd;n) is written as [Y, Y ⊥]BIn,nd

for some B ∈ m,
from which we may easily verify the second relation in (27). �

Comparing Propositions 4.3 and 4.11, for a tangent vector QB ∈ TJQK Flag(n1, . . . , nd;n) in
orthogonal coordinates Q ∈ O(n), its corresponding tangent vector in Stiefel coordinates Y =
QIn,nd

∈ V(nd, n) is simply given byQBIn,nd
∈ TJY K Flag(n1, . . . , nd;n). Conversely, [Y, Y ⊥]BIn,nd

∈
TJY K Flag(n1, . . . , nd;n) in Stiefel coordinates corresponds to QB ∈ TJQK Flag(n1, . . . , nd;n) in or-

thogonal coordinates where Q = [Y, Y ⊥]. Note that from the matrix BIn,nd
, i.e., just the first nd

columns of B ∈ m, the full matrix B can be easily and uniquely recovered by its skew symmetry.
The straightforward translation between orthogonal and Stiefel coordinate representations of

points and tangent vectors on a flag manifold allows us to immediately deduce analogues of Propo-
sitions 4.4, 4.5, 4.9, and Corollary 4.6.

Proposition 4.13 (Riemannian metric II). The metric g at a point JY K ∈ Flag(n1, . . . , nd;n) =
V(nd, n)/

(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)

)
is given by

gJY K(W,Z) =
∑

1≤i<j≤d+1

tr(BT
ijCij), (29)
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where W,Z ∈ TJY K Flag(n1, . . . , nd;n) are

W = [Y, Y ⊥]


0 B1,2 ... B1,d

−BT
1,2 0 ... B2,d

...
...

...
...

−BT
1,d −BT

2,d ··· 0

−BT
1,d+1 −B

T
2,d+1 ... −BT

d,d+1

, Z = [Y, Y ⊥]


0 C1,2 ... C1,d

−CT
1,2 0 ... C2,d

...
...

...
...

−CT
1,d −CT

2,d ··· 0

−CT
1,d+1 −C

T
2,d+1 ... −CT

d,d+1

 ∈ Rn×nd .

Proposition 4.14 (Arclength II, Geodesics III). Let JY K ∈ Flag(n1, . . . , nd;n) = V(nd, n)/
(
O(n1)×

O(n2−n1)×· · ·×O(nd−nd−1)
)

and g be the metric in (29). Every geodesic γ on Flag(n1, . . . , nd;n)
passing through JY K takes the form

γ(t) = JY (t)K =

[Y, Y ⊥] exp(tB)


Q1 0 ... 0
0 Q2 ... 0

...
...

...
...

0 0 ... Qd
0 0 ... 0

 ∈ V(nd, n) :
Qi ∈ O(ni − ni−1),

i = 1, . . . , d

 ,

where [Y, Y ⊥] ∈ O(n) and B ∈ m. In particular, the arclength of γ(t) is

‖γ(t)‖ = t
[∑

1≤i<j≤d+1
tr(BT

ijBij)
]1/2

.

Proposition 4.15 (Parallel transport II). Let JY K ∈ Flag(n1, . . . , nd;n) and

[Y, Y ⊥]BIn,nd
, [Y, Y ⊥]XIn,nd

∈ TJY K Flag(n1, . . . , nd;n).

The parallel transport of [Y, Y ⊥]XIn,nd
along the geodesic J[Y, Y ⊥] exp(tB)In,nd

K is given by

X(t) = [Y, Y ⊥] exp(tB)e−ϕtB (X)In,nd
, (30)

with e−ϕtB defined as in (21) and (23).

While is also straightforward to obtain analogues of Proposition 4.7 and 4.8 in Stiefel coordinates,
we omit them as the expressions are more involved and we will not need them in the sequel.

5. Flag manifolds as matrix manifolds

By Proposition 3.2(iii) and (iv), we see that a flag manifold may be regarded as a submanifold
of a product of Grassmannians. Since a Grassmannian can be represented as a subset of matrices
in Rn×n [28, Example 1.2.20],

Gr(k, n) ∼= {P ∈ Rn×n : P 2 = P = P T, tr(P ) = k}, (31)

so can a flag manifold; and we will discuss two different ways do this, corresponding to (iii) and
(iv) in Proposition 3.2:

Flag(n1, . . . , nd;n) ⊆ Gr(n1, n)×Gr(n2, n)× · · · ×Gr(nd, n),

Flag(n1, . . . , nd;n) ⊆ Gr(n1, n)×Gr(n2 − n1, n)× · · · ×Gr(nd − nd−1, n).

The correspondence in (31) is given by a map that takes a k-dimensional subspace W ∈ Gr(k, n)
to its orthogonal projector,

ε : Gr(k, n)→ Rn×n, W 7→WW T, (32)

where W ∈ Rn×k is any orthonormal basis of W. Note that if W ′ is another such n × k matrix,
then W ′ = WQ for some Q ∈ O(k) and so W ′W ′T = WW T and the map ε is well-defined. It is
also injective and its image is precisely the set on the right of (31).
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5.1. Projection coordinates for the flag manifold. We will construct our first analogue of
(32) for the flag manifold. Let

ε : Flag(n1, . . . , nd;n)→ Rnd×nd, {Vi}di=1 7→ diag(V1V
T
1 , . . . , VdV

T
d ), (33)

where Vi ∈ Rn×ni is an orthonormal basis of Vi, i = 1, . . . , d, and the image is a block-diagonal
matrix in Rnd×nd with d blocks V1V

T
1 , . . . , VdV

T
d ∈ Rn×n. In fact, the map in (33) is essentially the

map in (6) that we used to establish Proposition 3.2(iii) except that we identify the Grassmannians
with sets of projection matrices as in (31).

Proposition 5.1. The flag manifold Flag(n1, . . . , nd;n) is diffeomorphic to

{P = diag(P1, . . . , Pd) ∈ Rnd×nd : P 2
i = Pi = P T

i , tr(Pi) = ni, PjPi = Pi, i < j}. (34)

Proof. One may check that ε in (33) has its image in contained in the set (34); and the map that
takes P = diag(P1, . . . , Pd) to the flag {im(Pi)}di=1 ∈ Flag(n1, . . . , nd;n) is its inverse. �

We will call the representation in Proposition 5.1 projection coordinates for the flag manifold.
Unlike the orthogonal and Stiefel coordinates introduced earlier, which are not unique, projection
coordinates are unique. Let {Vi}di=1 ∈ Flag(n1, . . . , nd;n) with

(a) orthogonal coordinates JQK for some Q ∈ O(n);
(b) Stiefel coordiantes JY K for some Y ∈ V(nd, n);
(c) projection coordinates P as in (34).

We have seen how we may easily convert between orthogonal and Stiefel coordinates after (26), we
now see how they may be interchanged with projection coordinates just as easily:

(a)→(c): Given Q = [q1, . . . , qn] ∈ O(n), let Qi = [q1, . . . , qni ] ∈ V(ni, n); then Pi = QiQ
T
i , i =

1, . . . , d.
(b)→(c): Given Y = [y1, . . . , ynd

] ∈ V(nd, n), let Yi = [y1, . . . , yni ] ∈ V(ni, n); then Pi = YiY
T
i ,

i = 1, . . . , d.
(c)→(b): Given P = diag(P1, . . . , Pd), let y1, . . . , yni be an orthonormal basis of im(Pi); then Yi =

[y1, . . . , yni ] ∈ V(ni, n), i = 1, . . . , d.
(c)→(a): As above but appending an orthonormal basis ynd+1, . . . , yn of im(Pd)

⊥ gives us Q =
[y1, . . . , ynd

, ynd+1, . . . , yn] ∈ O(n).

As is the case for the Grassmannian, the flag manifold has several extrinsic coordinates systems
with which differential geometric objects and operations have closed-form analytic expressions
and where one coordinate representation can be transformed to another with relative ease. This
flexibility to switch between coordinate systems can be exploited in computations but as we will
see next, it can also be exploited in deriving the requisite analytic expressions.

Proposition 5.2 (Tangent spaces IV). Let P = diag(P1, . . . , Pd) ∈ Flag(n1, . . . , nd;n) as repre-
sented in (34). Then the tangent space is given by

TP Flag(n1, . . . , nd;n) = {Z = diag(Z1, . . . , Zd) ∈ Rnd×nd : ZiPi + PiZi = Zi = ZT
i ,

tr(Zi) = 0, ZjPi + PjZi = Zi, i < j, i, j = 1, . . . , d.} (35)

Proof. Let γ(t) be a curve in Flag(n1, . . . , nd;n) as characterized by (34), i.e., γ : (−1, 1)→ Rnd×nd,
t 7→ diag

(
P1(t), . . . , Pd(t)

)
where

Pi(t)
2 = Pi(t), Pi(t)

T = Pi(t), tr(Pi(t)) = ni, Pj(t)Pi(t) = Pi(t), i < j, i, j = 1, . . . , d, (36)

for all t ∈ (−1, 1). Taking derivatives of these relations at t = 0 gives the required description. �

Again the ease of translation from orthogonal and Stiefel coordinates to projection coordinates
yields counterparts of Proposition 4.4–4.9 readily. We will just provide expressions for geodesic and
parallel transport as examples.
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Proposition 5.3 (Geodesics IV). Let P = diag(P1, . . . , Pd) ∈ Flag(n1, . . . , nd;n) be as represented
in (34) and Z = diag(Z1, . . . , Zd) ∈ TP Flag(n1, . . . , nd;n) be as represented in (35). Then there
exist Y ∈ V(nd, n) and skew-symmetric B ∈ Rn×n such that for Yi = Y In,ni, Bi = BIn,ni ∈ Rn×ni,

Pi = YiY
T
i , Zi = YiB

T
i +BiY

T
i , i = 1, . . . , d; (37)

and a geodesic P (t) passing through P in the direction Z takes the form

{diag
(
P1(t), . . . , Pd(t)

)
∈ Rnd×nd : Pi(t) = Yi(t)Yi(t)

T, Yi(t) = [Y, Y ⊥] exp(tB)In,ni}. (38)

Proof. The matrix Y is just P in Stiefel coordinates and may be obtained from (c)→(b) above. By
Proposition 4.14, in Stiefel coordinates, the geodesic through JY K in direction [Y, Y ⊥]BIn,nd

is

J[Y, Y ⊥] exp(tB)In,nd
K.

By (b)→(c), Y and P are related by Pi = YiY
T
i , i = 1, . . . , d, which upon differentiation gives

Zi = YiB
T
i +BiY

T
i . The required expression (38) then follows. �

The observant reader might have noticed that Bd+1 does not appear in (37) — the reason is that
since B is skew-symmetric, Bd+1 is uniquely determined by B1, . . . , Bd.

Proposition 5.4 (Parallel transport III). Let P , Z, Y , B, and P (t) be as in Proposition 5.3. Let
Y ⊥ ∈ V(n− nd, n) be such that [Y, Y ⊥] ∈ O(n) and set

Yi(t) = [Y, Y ⊥] exp(tB)In,ni , Xi(t) = [Y, Y ⊥] exp(tB)e−ϕtB (X)In,ni , i = 1, . . . , d. (39)

Then the parallel transport of the tangent vector Z along the geodesic P (t) is given by

Z(t) = diag
(
Z1(t), . . . , Zd(t)

)
, Zi(t) = Yi(t)Xi(t)

T +Xi(t)Yi(t)
T, i = 1, . . . , d. (40)

Proof. As in the proof of Proposition 5.3, we obtain the corresponding projection coordinates
P = diag(P1, . . . , Pd), Pi = YiY

T
i , Yi = Y In,ni , i = 1, . . . , d. Differentiating these relations give a

tangent vector Z = diag(Z1, . . . , Zd) ∈ TP Flag(n1, . . . , nd;n) in projection coordinates as

Zi = YiX
T
i +XiY

T
i , i = 1, . . . , d,

whereX ∈ TJY K Flag(n1, . . . , nd;n) is the expression of the same tangent vector in Stiefel coordinates
as in Proposition 4.11 and Xi = XIn,ni , i = 1, . . . , d. The required expressions (39) and (40) then
follow from the expression (30) for parallel transport in terms of Stiefel coordinates Y . �

5.2. Refined projection coordinates for the flag manifold. We discuss a variation of projec-
tion coordinates on flag manifolds based on Proposition 3.2(iv). As in Section 5.1, if we identify
the Grassmannians as sets of projection matrices as in (31), then the map in (7) becomes

ε′ : Flag(n1, . . . , nd;n)→ Rnd×nd, {Vi}di=1 7→ diag(W1W
T
1 , . . . ,WdW

T
d ), (41)

where column vectors of Wi ∈ Rn×(ni−ni−1) form an orthonormal basis of V⊥i−1, the orthogonal
complement of Vi−1 in Vi, i = 1, . . . , d. This gives us another description of Flag(n1, . . . , nd;n) as
a matrix manifold, an analogue of Proposition 5.1.

Proposition 5.5. The flag manifold Flag(n1, . . . , nd;n) is diffeomorphic to

{R = diag(R1, . . . , Rd) ∈ Rnd×nd : R2
i = Ri = RT

i , tr(Ri) = ni − ni−1, RiRj = 0, i < j}. (42)

We call the representation in Proposition 5.5 reduced projection coordinates on the flag manifold
Flag(n1, . . . , nd;n). Again, it is straightforward to translate between the other three coordinates
systems and reduced projection coordinates. This readily yields expressions for metric, tangent
space, geodesic, and parallel transport in reduced projection coordinates as before. We will state
those for tangent space and metric as examples.
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Proposition 5.6 (Tangent spaces V). Let R = diag(R1, . . . , Rd) ∈ Flag(n1, . . . , nd;n) be as repre-
sented in (42). Then the tangent space is given by

TR Flag(n1, . . . , nd;n) = {Z = diag(Z1, . . . , Zd) ∈ Rnd×nd : RiZi + ZiRi = Zi = ZT
i ,

tr(Zi) = 0, ZiRj +RiZj = 0, 1 ≤ i < j ≤ d.} (43)

Propositions 5.5 and 5.6 give an alternative way to obtain the metric g in Proposition 4.4. Let
gi be the standard metric on Gr(ni − ni−1, n), i = 1, . . . , d. Then it is straightforward to verify

that g is the pull-back of
∑d

i=1 gi via the embedding (7) in Proposition 3.2(iv). This also gives us
an expression for the metric in terms of reduced projection coordinates.

Proposition 5.7 (Riemannian metric III). Let R = diag(R1, . . . , Rd) ∈ Flag(n1, . . . , nd;n) be as
in (42). Let W = diag(W1, . . . ,Wd), Z = diag(Z1, . . . , Zd) ∈ TR Flag(n1, . . . , nd;n) be as in (43).

Then there exist Vi, Ai, Bi ∈ Rn×(ni−ni−1) such that

ViV
T
i = Ri, V

T
i Vi = Ini−ni−1 , ViA

T
i +AiV

T
i = Wi, V

T
i Ai = 0, ViB

T
i +BiV

T
i = Zi, V

T
i Bi = 0, (44)

and the metric g is given by

gR(W,Z) =

d∑
i=1

tr(AT
iBi).

Proof. As the Grassmannian is just a flag manifold with d = 1, all our earlier discussions about
Stiefel and projection coordinates also apply to it. So for Wi, Zi ∈ TRi Gr(ni−ni−1, n) in projection

coordinates, there exist Vi, Ai, Bi ∈ Rn×(ni−ni−1) satisfying (44). The standard Riemannian metric
gi on Gr(ni − ni−1, n) at Ri is then given by gi(Wi, Zi) = tr(AT

iBi) and thus we have

gR(W,Z) =
d∑
i=1

gi(Wi, Zi) =
d∑
i=1

tr(AT
iBi). �

6. Riemannian Gradient and Hessian over the flag manifold

We will derive expressions for the Riemannian gradient and Riemannian Hessian of a real-valued
function on a flag manifold, the main ingredients of optimization algorithms. Although in principle
we may use any of the four extrinsic coordinate systems introduced in the last two sections —
orthogonal (as n× n orthogonal matrices), Stiefel (as n× nd orthonormal matrices), projection or
reduced projection (as d-tuples of n×n projection matrices) coordinates — Stiefel coordinates give
the most economical representation and we will use this as our coordinates of choice. So in the
following we will identify

Flag(n1, . . . , nd;n) = V(nd, n)/
(
O(n1)×O(n2 − n1)× · · · ×O(nd − nd−1)

)
. (45)

Our expressions for gradient and Hessian in Stiefel coordinates may of course be converted to other
coordinates — straightforward although the results may be notationally messy.

Proposition 6.1 (Riemannian gradient). Let f : Flag(n1, . . . , nd;n) → R be a smooth function
expressed in Stiefel coordinates Y ∈ V(nd, n). Define the n× nd matrix of partial derivatives,

fY :=

[
∂f

∂yij

]n,nd

i,j=1

. (46)

Write Y = [Y1, . . . , Yd] where Yi ∈ Rn×(ni−ni−1) and fY = [fY1 , . . . , fYd ] where fYi is the n× (ni −
ni−1) submatrix, i = 1, . . . , d. Then its Riemannian gradient at JY K ∈ Flag(n1, . . . , nd;n) is given
by ∇f(JY K) = [∆1, . . . ,∆d] where

∆i = fYi −
(
YiY

T
i fYi +

∑
j 6=i

Yjf
T
YjYi

)
, i = 1, . . . , d. (47)
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Proof. For any X ∈ TJY K Flag(n1, . . . , nd;n), let Xa ∈ Rn×n be the unique skew-symmetric matrix
such that X = QXaIn,nd

, where Q ∈ O(n) is such that Y = QIn,nd
. Since the metric expressed in

Stiefel coordinates (29) and expressed in orthogonal coordinates (14) must be equal,

gJY K
(
∇f(JY K), X

)
= gJQK

(
∇f(JY K)a, Xa

)
=

1

2
tr(∇f(JY K)TaXa). (48)

By definition of Riemannian gradient (5), we also have

gJY K(∇f(JY K), X) = tr(fT
YXa). (49)

Comparing (48) and (49), we see that ∇f(JY K) is the projection of fY onto TJY K Flag(n1, . . . , nd;n),
i.e., fY = ∇f(JY K) + Z for some Z orthogonal to TJY K Flag(n1, . . . , nd;n). We may take Z =
[Z1, . . . , Zd] to be

Zi := YiY
T
i fYi +

∑
j 6=i

Yjf
T
YjYi, i = 1, . . . , d,

and verify that because of (27), we indeed have fY − Z ∈ TJY K Flag(n1, . . . , nd;n) and thus Z is
orthogonal to TJY K Flag(n1, . . . , nd;n). �

The Riemannian gradient ∇f may also be derived by solving an optimization problem as in [29].
Note that if d = 1, (47) becomes ∇f(JY K) = ∆ = fY − Y Y TfY , the well-known expression for
Riemannian gradient of Grassmannian in [16].

Proposition 6.2 (Riemannian Hessian). Let f : Flag(n1, . . . , nd;n) → R be a smooth function
expressed in Stiefel coordinates Y ∈ V(nd, n) and let fY be as in (46). Then its Riemannian
Hessian ∇2f(JY K) at JY K ∈ Flag(n1, . . . , nd;n) is the symmetric bilinear form given by

∇2f(JY K)(X,X ′) = fY,Y (X,X ′)− 1

2

[
tr(fT

YQB
TQTX ′) + tr(fT

YQC
TQTX)

)]
, (50)

for X,X ′ ∈ TJY K Flag(n1, . . . , nd;n), where

fY,Y (X,X ′) :=
n∑

i,k=1

nd∑
j,l=1

∂2f

∂yij∂ykl
xijx

′
kl, (51)

Q ∈ O(n) is such that QIn,nd
= Y , and B,C ∈ Rn×n are the unique skew-symmetric matrices such

that X = QBIn,nd
, X ′ = QCIn,nd

respectively.

Proof. By Proposition 4.14, a geodesic γ with γ′(0) = X and γ(0) = JY K takes the form γ(t) =
JQ exp(tB)In,nd

K where Q ∈ O(n) is such that Y = QIn,nd
and X = QBIn,nd

. Applying chain rule,

d

dt
f(γ(t)) = tr

(
fT
Y γ
′(t)
)
,

d2

dt2
f(γ(t)) = tr

(
γ′(t)TfT

γ(t),γ(t)γ
′(t)
)

+ tr
(
fT
Y γ
′′(t)

)
;

followed by evaluating at t = 0 gives

∇2f(JY K)(X,X) =
d2

dt2
f(γ(t))

∣∣∣
t=0

= fY,Y (X,X)− tr(fT
YQB

TQTX).

The required expression (50) then follows from (5) and (4). �

If d = 1, (50) reduces to the well-known expression for Riemannian Hessian of the Grassmannian
[16, Section 2.5.4] since

∇2f(JY K)(X,X ′) = fY,Y (X,X ′)− tr(fT
YQB

TQTX ′)

= fY,Y (X,X ′)− tr(fT
Y Y (X ′)TX) = fY,Y (X,X ′)− tr(XTX ′Y TfY ).
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There is slight inconsistency in our definitions of fY and fY Y to make these expressions easily
portable into computer codes. To be consistent with (51), we could define fY as a linear form:

fY (X) =

n,nd∑
i,j=1

∂f

∂yij
xij

for X ∈ TJY K Flag(n1, . . . , nd;n). Alternatively, to be consistent with (46), we could define fY Y to
be a hypermatrix of partials (this is not a 4-tensor, just a convenient way to represent a 2-tensor):

fY Y =

[
∂2f

∂yij∂ykl

]n,nd,n,nd

i,j,k,l=1

.

7. Optimization algorithms over flag manifolds

With analytic expressions for points, tangent vectors, metric, geodesic, parallel transport, Rie-
mannian gradient and Hessian in place, Riemannian manifold optimization algorithms are straight-
forward to derive from the usual ones. For example, for steepest descent, instead of adding a
negative multiple of the gradient to the current iterate, we move the current iterate along the ge-
odesic with initial velocity vector given by the negative of the gradient. Again, we may do this in
any of the four coordinates system we have introduced although for the same reason in Section 6,
we prefer the Stiefel coordinates. Thus here we will assume the identification (45) as before.

7.1. Steepest descent over a flag manifold. We describe this in Algorithm 1. A point JY K ∈
Flag(n1, . . . , nd;n) is represented in Stiefel coordinates, i.e., as an orthonormal matrix Y ∈ Rn×nd ,

Y TY = I. As usual, Y ⊥ ∈ Rn×(n−nd) is such that X := [Y, Y ⊥] ∈ O(n). The Riemannian gradient
∇f ∈ Rn×nd is given by Proposition 6.1 and we set G = −∇f to be the search direction. The
exponential map direction B ∈ Rn×n is uniquely obtained from BIn,nd

= [Y, Y ⊥]TG, i.e., B is

the unique skew-symmetric matrix whose first nd columns is [Y, Y ⊥]TG. The next iterate is then
found along the geodesic determined by the current iterate and the direction as in Proposition 4.14,
although the exact line search may be substituted by any reasonable strategy for choosing step size.
Note in particular that Algorithm 1 does not involve parallel transport.

Algorithm 1 Steepest descent in Stiefel coordinates

Require: JY0K ∈ Flag(n1, . . . , nd;n) with Y0 ∈ Rn×nd and Y T
0 Y0 = I;

1: find Y ⊥0 ∈ Rn×(n−nd) such that [Y0, Y
⊥
0 ] ∈ O(n);

2: set X0 = [Y0, Y
⊥
0 ];

3: for i = 0, 1, . . . do
4: set Gi = −∇f(JYiK); . gradient at JYiK as in (47)
5: set Xi = [Yi, Y

⊥
i ];

6: compute B̂ = XT
i Gi;

7: set B ∈ Rn×n as Bij = B̂ij for j ≤ nd;
8: Bij = −B̂ji for j ≥ nd and i ≤ nd;
9: Bij = 0 otherwise;

10: minimize f
(
Xi exp(tB)In,nd

)
over t ∈ R; . tmin from exact line search

11: set Xi+1 = Xi exp(tminB);
12: end for
Ensure: JYoptK = JXoptIn,nd

K
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7.2. Conjugate gradient over a flag manifold. We present the conjugate gradient method
in Algorithm 2. Unlike steepest descent, conjugate gradient requires that we construct our new
descent direction from the (k− 1)th and kth iterates, i.e., one needs to compare tangent vectors at
two different points on the manifold and the only way to do this is to parallel transport the two
tangent vectors to the same point. There is no avoiding parallel transport in conjugate gradient.

As the expression for parallel transport in (30) indicates, we will need to compute

e−ϕtB (X) =
∞∑
k=1

(−1)k

k!
ϕktB(X), ϕtB(X) =

t

2
[B,X]m.

The rapid decay of the exponential series allows us to to replace it by a finite sum, reducing the
task to recursively computing the iterated brackets and projection onto m:

ϕktB(X) = ϕtB ◦ · · · ◦ ϕtB(X) =
( t

2

)k
[B, [B, . . . , [B,X]m . . . ]m]m.

As we had pointed out at the end of Section 4.1, this step is unnecessary for the Grassmannian
as [B,X]m = 0 if d = 1, i.e., for Flag(k;n) = Gr(k, n). A careful treatment of the computation of
e−ϕtB (X) requires more details than we could go into here and is deferred to [24].

Algorithm 2 Conjugate gradient in Stiefel coordinates

Require: JY0K ∈ Flag(n1, . . . , nd;n) with Y0 ∈ Rn×nd and Y T
0 Y0 = I;

1: find Y ⊥0 ∈ Rn×(n−nd) such that [Y0, Y
⊥
0 ] ∈ O(n);

2: set X0 = [Y0, Y
⊥
0 ];

3: set G0 = −∇f(JY0K) and H0 = −G0; . gradient at JY0K as in (47)
4: for i = 0, 1, . . . do

5: compute B̂ = XT
i Hi;

6: set B ∈ Rn×n as Bij = B̂ij for j ≤ nd;
7: Bij = −B̂ji for j ≥ nd and i ≤ nd;
8: Bij = 0 otherwise;
9: minimize f

(
Xi exp(tB)In,nd

)
over t ∈ R; . tmin from exact line search

10: set Xi+1 = Xi exp(tminB);
11: set Yi+1 = Xi+1In,nd

;

12: set Y ⊥i+1 = Xi+1In,n−nd
;

13: set Gi+1 = −∇f(JYi+1K); . gradient at JYi+1K as in (47)

14: find G̃i+1 ∈ Rn×(n−nd) such that Ĝi+1 = [Gi+1, G̃i+1] is skew-symmetric;
15: procedure Descent(JYiK, JYi+1K, Gi, Hi) . new descent direction at JYi+1K
16: τHi = Xi exp(tminB)e−ϕtminB (B)In,nd

; . parallel transport of Hi as in (30)

17: τGi = Xi exp(tminB)e−ϕtminB (Ĝi)In,nd
; . parallel transport of Gi as in (30)

18: γi = gJYi+1K(Gi+1 − τGi, Gi+1)/gJYiK(Gi, Gi); . g as in (29)
19: Hi+1 = −Gi+1 + γiτHi;
20: end procedure
21: reset Hi+1 = −Gi+1 if i+ 1 ≡ 0 mod (k + 1)(n− k);
22: end for
Ensure: JYoptK = JXoptIn,nd

K

7.3. Newton and other algorithms over a flag manifold. The closed-form analytic expres-
sions derived in this article permit one to readily extend other optimization algorithms on Euclidean
spaces to flag manifolds. For example, the Newton search direction is given by the tangent vector
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X ∈ TJY K Flag(n1, . . . , nd;n) such that

∇2f(JY K)(X,X ′) = gJY K
(
−∇f(JY K), X ′

)
= − tr(fT

YX
′),

for every X ′ ∈ TJY K Flag(n1, . . . , nd;n), which gives us a system of linear equations upon plugging
in the expression for Riemannian Hessian in (50). Using the Newton search direction for Gi in
Algorithm 1 then gives us Newton method on the flag manifold. In a similar vein, one may derive
other standard algorithms for unconstrained optimization, e.g., quasi-Newton method, accelerated
gradient descent, stochastic gradient descent, trust region methods, etc, for the flag manifold.
Nevertheless, given that the goal of our article is to develop foundational material, we will leave
these to future work [24].

8. Numerical experiments

We will test our algorithm for steepest descent on the flag manifold numerically. As we explained
in Section 7.2, the experiments for conjugate gradient algorithm is more involved and is deferred
to [24]. We run our numerical experiments on two problems: (i) the principal flag problem in
Section 8.1 is one for which the solution may be determined in closed-form analytically, and thus
it serves to demonstrate the correctness of our algorithm, i.e., converges to the true solution; (ii)
a variation of the previous problem with a more complicated objective function to show that the
convergence behavior remains unchanged. In addition, neither problem can be solved by simply
treating them as nonlinear optimization problems with equality constraints and applying standard
nonlinear optimization algorithms.

In the following we will assume the identification in (45) and use Stiefel coordinates throughout.

8.1. Principal flags. Let M ∈ Rn×n be symmetric. We seek the solution to

maximize tr(Y TMY )

subject to JY K ∈ Flag(n1, . . . , nd;n).
(52)

Here Y ∈ Rn×nd , Y TY = 1, and the objective function is well-defined as a function on the flag
manifold: If we have Y and Y ′ with JY K = JY ′K, then they must be related as in (25) and thus
tr(Y TMY ) = tr(Y ′TMY ′).

As we saw in Example 1.5, when M is a sample covariance matrix, the solution to (52) is
equivalent to PCA when we seek a complete flag, i.e., d = n − 1 and ni = i, i = 1, . . . , n − 1. An
advantage proffered by this approach is that if we do not know the intrinsic dimension of the data
set a priori, then finding the flag as opposed to any particular subspace gives us the entire profile,
showing how increasing dimension accounts for an increasingly amount of variance. The problem
in (52) is thus a generalization of PCA, allowing us to seek any flag, not necessarily a complete
one. It may also be interpreted as finding subspaces of dimensions n1, n2 − n1, . . . , nd − nd−1 that
are independent and explain different levels of variance in the data set.

Figure 1 shows the convergence trajectories of steepest descent, i.e., Algorithm 1, on the flag
manifold Flag(3, 7, 12; 60), a 623-dimensional manifold. The symmetric matrix M ∈ R60×60 is gen-
erated randomly with standard normal entries. Since the true solution of (52) may be determined
in closed form — it is the sum of the k largest eigenvalues of M — we may therefore conclude
that Algorithm 1 converges to the true solution in around 80 iterations. Indeed the function values
stabilize after as few as 10 iterations. At least for this problem, we see that the vanishing of the
Riemannian gradient serves as a viable stopping condition. In our implementation, our stopping
conditions are determined by (i) Frobenius norm of Riemannian gradient, (ii) distance between
successive iterates, and (iii) number of iterations.

We perform extensive experiments beyond that in Figure 1 by taking average of 100 instances
of the problem (52) for various values of n1, . . . , nd. We tabulate our results showing accuracy and
speed in Tables 1–4. Tables 1 and 3 show that Algorithm 1 is robust across all dimensions of flags
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Figure 1. Convergence trajectories for (52) on Flag(3, 7, 12; 60).

and ambient spaces that we tested. Tables 2 and 4 show that elapsed time taken for Algorithm 1
increases roughly linearly with the dimension of the flag manifold.

k 30 40 50 60 70 80 90 100

Accuracy (×10−4) 2 8 64 32 4 87 20 15

Table 1. Distance to true solution for (52) on Flag(3, 9, 21; k).

k 30 40 50 60 70 80 90 100

Elapsed Time 0.38 0.40 0.67 0.93 1.71 2.27 3.08 4.07

Table 2. Elapsed time for (52) on Flag(3, 9, 21; k).

k 1 2 3 4 5 6 7 8 9 10

Accuracy (×10−4) 1.4 3.4 3.4 8.6 2.8 18 19 5.1 9.3 11

Table 3. Distance to true solution for (52) on Flag(2, . . . , 2k; 60).
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k 1 2 3 4 5 6 7 8 9 10

Elapsed Time 0.54 0.81 0.79 0.96 1.05 0.91 1.20 1.06 1.18 1.12

Table 4. Elapsed time for (52) on Flag(2, . . . , 2k; 60).

k 1 2 3 4 5 6 7 8 9 10

Accuracy (×10−4) 1.4 3.4 3.4 8.6 2.8 18 19 5.1 9.3 11

Table 5. Distance to true solution for (52) on Flag(2, . . . , 2k; 60).

8.2. Nonlinear eigenflags. This is a variation of the principal flag problem (52):

maximize
∑d

i=1 tr(Y T
i MYi)

2

subject to JY1, . . . , YdK ∈ Flag(n1, . . . , nd;n).
(53)

AgainM ∈ Rn×n is a symmetric matrix and the flag is given in Stiefel coordinates Y = [Y1, . . . , Yd] ∈
Rn×nd , Y TY = I, but partitioned into submatrices Yi ∈ Rn×(ni−ni−1), Y T

i Yi = I, i = 1, . . . , d. More

generally, the objective function in (53) may be replaced by
∑d

i=1 fi
(
tr(Y T

i MYi)
)

with f1, . . . , fd ∈
C2(R). Choosing f1(x) = · · · = fd(x) = x gives us (52) and choosing f1(x) = · · · = fd(x) = x2 gives
us (53). Note that it will take considerable effort to formulate a problem like (53) as a constrained
optimization problem in Euclidean space.
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Figure 2. Convergence trajectories for (53) on Flag(3, 7, 12; 60).
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The convergence trajectories for Algorithm 1 applied to (53) are shown in Figure 2. The nonlin-
earity imposes a cost — it takes around 390 iterations to satisfy one of the our stopping criteria,
although the function values stabilize after around 60 iterations. The jagged spikes seen in Figure 2
are a result of iterates moving along a geodesic and then jumping to another geodesic. So this is
indicative of steepest descent following a path that comprises multiple geodesics. A caveat is that
unlike the principal flag problem (52), we do not have a closed-form solution for (53) and thus we
may only guarantee convergence to a local minimizer, which is reflected in Figure 2.

9. Conclusion

For most of its history, continuous optimization has been concerned with optimizing functions
over the Euclidean space Rn; but this has begun to change with the advent of semidefinite program-
ming [7] and orthogonality-constrained optimization [16], where objective functions are naturally
defined over the positive definite cone Sn

++
, the Stiefel manifold V(k, n), and the Grassmannian

Gr(k, n). These developments have provided us with the capacity to optimize over not just vectors
but also covariances matrices, orthonormal bases, and subspaces. The work here extends such
capabilities to flags, which capture nested structures in multilevel, multiresolution, or multiscale
phenomena. In future works, we will investigate computational issues [24] that have been deferred
from this first study. We will also examine complex flag manifolds, i.e., where the vector spaces
involved are over C. Its properties will be quite different — for example, we saw in Proposition 3.2
that a real flag manifold is both an affine and a projective variety; but the only complex algebraic
varieties that are both projective and affine are finite sets. So complex flag manifolds will lack some
of the properties discussed here, although it will have others, e.g., a symplectic structure.
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Ann. of Math. (2), 57:115–207, 1953.
[11] A. Borel. Linear algebraic groups, volume 126 of Graduate Texts in Mathematics. Springer-Verlag, New York,

second edition, 1991.
[12] A. Borel and J.-P. Serre. Groupes de Lie et puissances réduites de Steenrod. Amer. J. Math., 75:409–448, 1953.
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