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ABSTRACT

Randomized Kaczmarz (RK), Motzkin Method (MM) and Sampling Kaczmarz Motzkin (SKM) al-
gorithms are commonly used iterative techniques for solving a system of linear inequalities (i.e.,
Ax ≤ b). As linear systems of equations represent a modeling paradigm for solving many optimiza-
tion problems, these randomized and iterative techniques are gaining popularity among researchers in
different domains. In this work, we propose a Generalized Sampling Kaczmarz Motzkin (GSKM)
method that unifies the iterative methods into a single framework. In addition to the general frame-
work, we propose a Nesterov type acceleration scheme in the SKM method called as Probably
Accelerated Sampling Kaczmarz Motzkin (PASKM). We prove the convergence theorems for both
GSKM and PASKM algorithms in the L2 norm perspective with respect to the proposed sampling
distribution. Furthermore, we prove sub-linear convergence for the Cesaro average of iterates for the
proposed GSKM and PASKM algorithms.From the convergence theorem of the GSKM algorithm, we
find the convergence results of several well-known algorithms like the Kaczmarz method, Motzkin
method and SKM algorithm. We perform thorough numerical experiments using both randomly
generated and real-world (classification with support vector machine and Netlib LP) test instances
to demonstrate the efficiency of the proposed methods. We compare the proposed algorithms with
SKM, Interior Point Method (IPM) and Active Set Method (ASM) in terms of computation time and
solution quality. In the majority of the problem instances, the proposed generalized and accelerated
algorithms significantly outperform the state-of-the-art methods.

Keywords Kaczmarz Method · Randomized Projection · Sampling Kaczmarz Motzkin · Linear Feasibility · Nesterov’s
Acceleration · Iterative Methods

1 Introduction

We consider the following Linear Feasibility (LF) problem:

Ax ≤ b, b ∈ Rm, A ∈ Rm×n. (1)

We confine the scope of our work in the regime of thin/tall coefficient matrix A (m� n), as iterative methods are more
competitive for such problems. Note that, while almost all of the classical methods are deterministic in nature, recent
advances [1–12] suggest that randomized iterative methods can outperform existing deterministic methods for solving
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many computational problems including linear feasibility, linear systems and convex optimization problems. From an
algorithmic point of view, our work generalizes the SKM method and furthermore explores the possibility of faster
variants of these methods. Before we delve into the contributions of this work, we give brief descriptions of some of the
classical and modern techniques related to solving LF problems with iterative methods.

Randomized Kaczmarz (RK) Kaczmarz method is one of the popular methods for solving linear systems due
to its algorithmic simplicity [13]. Originally proposed in 1937 by Kaczmarz [13], the Kaczmarz method remained
hidden to the research community until the early 1980s, when Gordon et. al proposed Algebraic Reconstruction
Techniques (ART) in the area of image reconstruction [14]. Later, it has found applications in several areas like
computer tomography [15,16], digital signal processing [17], distributed computing [18,19] and many other engineering
and physics problems. It has been rediscovered several times as a family of methods including component solution,
successive projection, row-action and cyclic projection methods (see [20]). Given a current point xk, the Kaczmarz
method generates new update xk+1 based on the orthogonal projection of xk onto the hyper-plane aTi∗xk ≤ bi∗ ,

xk+1 = xk − δ
(
aTi∗xk − bi∗

)+
‖ai∗‖22

ai∗ . (2)

The differences between the old and modern Kaczmarz schemes are the choice of projection hyper-planes in the update
formula of equation (2) at each iteration and the choice of projection parameter δ. The original Kaczmarz method
chooses hyper-planes by i∗ ≡ k mod m, k = 1, 2, 3, ...,m with parameter δ = 1. Strohmer et. al [1] showed that
instead of using cyclic rules, convergence can be improved by choosing i∗ from {1, 2, ...,m} at random with probability
proportional to ‖a∗i ‖22. This randomization scheme is very efficient for the linear system as well [2]. The projection
parameter δ can be chosen any value in the range of (0, 2] [11].

Motzkin Method (MM) Another classical method for solving LF problems is the Motzkin method (MM) discovered
by Motzkin et. al in the early 1950s [21, 22]. The work of Motzkin was rediscovered several times by other researchers
in the field of Machine Learning (ML). For instance, the so-called perceptron algorithm in ML [23–25] can be classified
as a member of Motzkin type methods. Furthermore, MM can be sought as the Kaczmarz method with “maximal-
residual control" or with “most violated constraint control" [20, 26, 27]. The MM starts with an initial point xk and
finds the next update xk+1 as the projection of xk onto the most violated hyper-plane defined in the equation (1).
Given the current point xk, find the next projection hyper-plane ai∗ as the maximum violated constraint (i.e., select
i∗ = arg maxi∈{1,2,...,m}{aTi xk − bi}) and then update xk+1 as follows

xk+1 = (1− δ)xk + δ PHi∗ (xk), (3)

with the choice 0 ≤ δ < 2, where PHi∗ (xk) denotes the orthogonal projection of xk onto the hyper-plane Hi∗ =
aTi∗xk ≤ bi∗ . The analysis of the MM depends on the so-called Hoffman constant (see Lemma 3.1 and Table 1). The
main drawback of the standard MM is that it fails to terminate when the LF problem of (1) is infeasible. In the late
1980s, MM resurfaced for its connection to the ellipsoid method [28]. For rational data, it’s proven that the system can
detect infeasibility and for totally unimodular data, the scheme gives strong polynomial-time algorithms [29]. Recently,
Chubanov [30, 31] developed a modified method compared to the traditional relaxation type methods [22], where
instead of projecting on the original hyper-plane, one projects the new point to an induced hyper-plane.

In recent time, Kaczmarz type methods gained immense popularity in the research community. The work of Strohmer
et. al [1] encouraged numerous extensions and variants of the RK method (see [2, 3, 5–8, 32]). For instance, in [5, 33],
authors analyzed variants of the Kaczmarz method for a least square setup. A significant breakthrough came from the
work of Gower et. al when they developed a generalized framework namely the Gower-Richtarik (GR) sketch. The
authors showed that several well-known algorithms like Randomized Kaczmarz (RK), Randomized Newton (RN) and
Randomized Coordinate Descent methods can be sought as special cases of the GR algorithm. For different choices
of sampling distribution and a positive definite matrix, one can recover all of the above algorithms as special cases
(see [8, 10, 34, 35] for a detailed discussion).

Another area of research spurred when Gower et. al provided the extension of the GR sketching method to
combine several Quasi-Newton methods into one framework [36]. They showed that almost all of the available
Quasi-Newton algorithms like Bad Broyden (BB), Powell-Symmetric-Broyden (PSB), Good Broyden (GB), Broy-
den–Fletcher–Goldfarb–Shanno (BFGS) and Davidon–Fletcher–Powell (DFP) can be derived as special cases of the
GR sketch. In another work, they extended the GR method for finding the pseudo-inverse of a matrix [37]. Several
variants of acceleration have been explored recently for the GR sketch [38, 39]. Special block variants of RK methods
have been analyzed by Needell et. al [40–42]. From a linear programming perspective, Chubanov developed a
polynomial-time algorithm for solving the 0 − 1 linear system [30, 43, 44] and 0 − 1 LF problem [31]. In recent
time, other variants of both RK and SKM algorithms have been developed that deal with various types of sampling
strategies [10, 45–48].
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Moreover, a large number of scientific computing and machine learning tasks aim to solve the unconstrained mini-
mization problem x∗ = arg min Φ(x) with a differentiable function Φ : Rn → R [49]. Gradient Descent (GD) and
its variants have been the de facto choice in the artificial intelligence and machine learning community to solve such
problems [50]. However, GD suffers from slow convergence as soon as the current solution approaches x∗. To achieve
faster convergence, one of the major algorithmic development is the idea of momentum. The momentum method was
first studied by Polyak [51] in the sense of rolling a heavy ball along with a well-defined cost function. However,
despite its intuitiveness, Polyak’s heavy ball momentum was difficult to analyze mathematically. Nesterov’s acceleration
method, proposed by Nesterov in his seminal work [52] for the GD provides the mathematical rigor that Polyak’s
method lacks and exhibits the worst-case convergence rate of O( 1

k2 ) for minimizing smooth convex functions compared
to the original convergence rate of O( 1

k ). Since the introduction of Nesterov’s work, numerous work has been done on
algorithmic development of the first-order accelerated methods (for a detailed discussion see [53–56]). From then on,
Nesterov and Polyak’s work has been integrated into several well-known projection-based algorithms like Coordinate
Descent [56], Randomized Kaczmarz [32], Momentum Induced GR Sketching [57], Affine Scaling [58], Accelerated
Quasi-Newton [39], Randomized Gossip [59], Sampling Kaczmarz Motzkin [60] and the references therein. Particularly,
Morshed et. al [60] investigated the acceleration scheme of Nesterov in the SKM algorithm for δ = 1.

In this work, we develop a generalized framework namely the GSKM method that extends the SKM algorithm and
proves the existence of a family of SKM type methods for solving LF problems. This general framework will provide
an ideal platform for the researchers to experiment with a wide range of iterative projection methods and to design
efficient algorithms for solving optimization problems in areas like artificial intelligence, machine learning, data mining,
and engineering. In addition to the general framework, we propose a Nesterov type acceleration scheme in the SKM
method (0 < δ < 2) that outperforms state-of-the-art methods in terms of computation time and solution quality. With
the convergence analysis of the GSKM algorithm, we synthesize the convergence analysis of SKM type methods into
one convergence theorem from which one can derive convergence results of RK, MM and SKM methods. We also
prove convergence of the average iterate (i.e., Cesaro average) generated by both GSKM and PASKM method. We
prove sub-linear convergence rate for the Cesaro average under somewhat weaker conditions. We carry out thorough
numerical experiments to show the effectiveness of the proposed methods in comparison with state-of-the-art methods
for solving a wide range of linear feasibility test instances. Although the proposed methods deal with the case of linear
feasibility problem with systems of inequalities, it can be noted that with some modification, like the one stated in the
work of Lewis et. al [2], one can apply this method to linear systems with both equality and inequality constraints.

The remainder of the paper is organized as follows. The proposed algorithms are discussed in section 2, and the
convergence analysis of the proposed algorithms is given in section 3. In section 4, we perform extensive numerical
experiments on artificial and real test instances for a better understanding of the behavior of the proposed generalized and
accelerated schemes. Besides, we compared the effectiveness of the proposed acceleration schemes with state-of-the-art
techniques (i.e., SKM, IPM and ASM). And finally, the paper is concluded in section 5 with concluding remarks and
future research directions.

2 Preliminaries & Contributions

In this section, we discuss the SKM algorithm and some preliminary technical tools to analyze the SKM type methods.
We first discuss the notations and assumptions that will be used throughout the paper. We then briefly discuss the SKM
method along with the expectation induced by the sampling distribution of the SKM method. To make the analysis
easier and more formal, we introduce the function f(x). Finally, we conclude the section with the proposed GSKM
method and the PASKM method and their geometric interpretations.

2.1 Notation

We follow the standard linear algebra notation in this work. Rn denotes the n dimensional real space, Rm×n denotes
the set of m × n real-valued matrices. For any matrix A ∈ Rm×n, AT denotes the transpose matrix A and aTi for
i = 1, 2, ..,m denotes the rows of matrix A. Furthermore, P = {x ∈ Rn| Ax ≤ b} denotes the feasible region of
the feasibility problem and P(x) denotes the projection of x ∈ Rn onto the feasible region P . The notation d(x, P )
denotes the distance between x ∈ Rn and the feasible region P , i.e., d(x, P ) = infz∈P ‖x− z‖ = ‖x− P(x)‖. For
any matrix A, the spectral norm and Frobenius norm are denoted by ‖A‖ and ‖A‖F , respectively. For any function
f : X 7→ Y , we use ∇f to represent the gradient of f . Finally, 〈x, y〉 = xT y denotes the standard inner product
and ‖x‖ =

√
〈x, x〉 as the euclidean (L2) norm. The notation x+ denotes the positive part of any real number (ie.,

x+ = max{x, 0}). For any two arbitrary matrices M, N , the notation M � N implies the positive definiteness of the
matrix M −N . The notation ES[·] is used to denote the expectation with respect to the sampling distribution S.
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2.2 Assumptions

Throughout the paper, we assume that the system Ax ≤ b is consistent and the matrix A has no zero rows. We also
assumed that the rows of matrix A are normalized (i.e., ‖ai‖2 = 1 for all i). Note that, normalization simplifies the
convergence analysis considerably. The normalization doesn’t impact the computational time significantly (we could
simply normalize each row for the first time it occurs during the computation). Moreover, normalization simplifies the
convergence analysis considerably. In the description of algorithms, we do not enforce the assumption. Furthermore, it
can be noted that the proposed algorithms generate the same iterates irrespective of normalization.

2.3 Sampling Kaczmarz Motzkin

The SKM method (Algorithm 1) for solving LF problems, proposed by De Loera et. al [11], combines the ideas of both
Kaczmarz and Motzkin method. The authors provided a generalized convergence Theorem and a certificate of feasibility
which synthesizes the convergence analysis of the Kaczmarz method and Motzkin method for solving LF problems. The
proposed method requires only O(n) memory storage and is much more efficient than the state-of-the-art techniques
such as Kaczmarz type methods, IPMs and ASMs. The main advantage of SKM can be ascribed to its innovative way
of projection plane selection. The hyper-plane selection goes as follows: at iteration k the SKM algorithm selects a
collection of β rows namely τk uniformly at random out of m rows of the constraint matrix A, then out of these β
rows the row with maximum positive residual is selected (i.e., choose row i∗ as i∗ = arg maxi∈τk{a

T
i xk − bi, 0}) and

finally the next point xk+1 is updated as follows

xk+1 = xk − δ
(
aTi∗xk − bi∗

)+
‖ai∗‖22

ai∗ . (4)

For ease of analysis, we denote the above sampling distribution as Sk at iteration k, i.e., at each iteration k choose
τk ∼ Sk and denote i∗ as i∗ = arg maxi∈τk∼Sk

(
aTi xk − bi

)+
.

Algorithm 1 SKM Algorithm: xk+1 = SKM(A, b, x0,K, δ, β)

Initialize k ← 0;
while k ≤ K do

Choose a sample of β constraints, τk, uniformly at random from the rows of matrix A.
From these β constraints, choose i∗ = arg maxi∈τk{a

T
i xk − bi, 0};

Update xk+1 = xk − δ
(aTi∗xk−bi∗)

+

‖ai∗‖2
ai∗ ;

k ← k + 1;
end while
return x

The SKM method generalizes RK and MM, and it also combines their strength in choosing a constraint at each iteration.
It has a cheaper per iteration cost compared to Motzkin’s method and converges faster compared to the Kaczmarz
method. Several extensions of the SKM method in terms of acceleration [60], improved rate [61] have been proposed
recently.

2.4 Expectation

For the convergence analysis of Algorithm 1 and its variations (any algorithm that uses that specific type of sampling
distribution), we need to discuss a specific expectation calculation. First of all, let us sort the residual vector (Ax− b)+

from smallest to largest for any iterate x and denote (Ax− b)+
ij

as the (β + j)th entry on the sorted list 1, i.e.,

(Ax− b)+
i0︸ ︷︷ ︸

βth

≤ ... ≤ (Ax− b)+
ij︸ ︷︷ ︸

(β+j)th

≤ ... ≤ (Ax− b)+
im−β︸ ︷︷ ︸

mth

. (5)

Now, consider the list with all of the entries of the residual vector (Ax− b)+, then we need to calculate the probability
that particular entry of the residual vector is selected at any given iteration. Note that, the probability that any sample is
selected is 1

(mβ )
and each sample has an equal probability of selection. Another intersecting fact can be noted that the

1We use the notation (Ax− b)+ij throughout the paper to express the underlying expectation, where the indices ij represent the
sampling process of 5.
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size of the residual list controls the order and frequency that each entry of the residual vector will be expected to be
selected. From now on, we will denote this specific choice of sampling distribution as S for any point x ∈ Rn 2. To
calculate the resulting expectation with respect to the above-mentioned sampling distribution, let us first denote, τ ∼ S
as the set of sampled β constraints and i∗ as 3

i∗ = arg max
i∈τ∼S

{aTi x− bi, 0} = arg max
i

(Aτx− bτ )+
i , (6)

where, Aτ denotes the collection of rows of A restricted to the index set τ and (Aτx− bτ )i denotes the ith entry of
Aτx− bτ . Using the above discussion with the list provided in equation (5), we have the following:

ES

[∣∣(aTi∗x− bi∗)+
∣∣2] =

1(
m
β

) m−β∑
j=0

(
β − 1 + j

β − 1

)∣∣(Ax− b)+
ij

∣∣2, (7)

where, ES denotes the required expectation corresponding to the sampling distribution S. The above expectation
calculation was first used by De Loera et.al in their work [11] where they first introduced the SKM method.

2.5 Function f(x)

In this section, we formalize the definition of function f : Rn → R. Throughout section 3, we will use the properties of
function f(x) 4. First, for any index i, let us define the following function

fi(x) =
1

2
|(aTi x− bi)+|2, ∇fi(x) = (aTi x− bi)+ai. (8)

Then to simplify the expectation expression of (7) further, we define the function f and the gradient of f as follows:

f(x) = ES [fi∗(x)] , ∇f(x) = ES [∇fi∗(x)] , (9)

where, the index i∗ is selected by the rule provided in (6).

2.6 Contributions

Generalized Sampling Kaczmarz Method (GSKM). For obtaining a generalized version of the SKM method, we
suggest using history information in updating the current update. In particular, we take two random iterates xk−1 and xk
generated by successive SKM iteration and then update the next iterate xk+1 as an affine combination of the previous
two updates. Starting with x0 = x1 ∈ Rn, for k ≥ 1, we update

xk+1 = (1− ξ)zk + ξzk−1,

where zk = xk − δ
(aTi∗xk−bi∗)

+

‖ai∗‖2
ai∗ is the kth update of the SKM algorithm. Note that, by taking ξ = 0, one can

recover the original SKM algorithm. For simpler representation, we denote this method as a generalized SKM method
or GSKM method. GSKM method is formally provided in Algorithm 2 and the convergence analysis is provided in
subsection 3.2. Our convergence analysis suggests that for any 0 < δ < 2, one could choose any ξ such that ξ ∈ Q 5.

Table 1: Algorithms & convergence results obtained from GSKM.
Parameters, β, δ, ξ Row selection Rule, (i∗) Convergence Rate Algorithm

β = 1, δ = 1, ξ = 0 P(i∗) = ‖ai‖2
‖A‖2F

E
[
r2
k

]
≤
(

1− λmin

‖A‖2F

)k
r2
0 RK [1]

β = m, δ = 1, ξ = 0 i∗ = arg maxj ej(xk−1) r2
k ≤

(
1− λmin

m

)k
r2
0 MM [22]

0 < δ < 2, ξ = 0
τk ∼ Sk

i∗ = arg maxj∈τk ej(xk−1) E
[
r2
k

]
≤
(
1− η

mL2

)k
r2
0 SKM [11]

2For ease of notation, throughout the paper, we will use Sk to denote the sampling distribution corresponding to any random
iterate xk ∈ Rn

3Similarly, we will use τk ∼ Sk to denote the sampled set and i∗ = arg maxi∈τk∼Sk{a
T
i xk − bi, 0} =

arg maxi∈τk∼Sk (Aτkxk − bτk )+i for any iterate xk ∈ Rn.
4Similar type of functions with uniform sampling have been studied in [10] [12] in the context of stochastic gradient descent and

alternating projection algorithms respectively.
5see (26).
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Algorithm 2 GSKM Algorithm: xk+1 = GSKM(A, b, x0,K, δ, β, ξ)

Choose 0 < δ < 2, ξ ∈ Q
Initialize x1 = x0, z1 = z0, k = 0;
while 1 ≤ k ≤ K do

Choose a sample of β constraints, τk, uniformly at random from the rows of matrix A. From these β constraints,
choose i∗ = arg maxi∈τk{a

T
i xk − bi, 0} and update,

zk = xk − δ
(
aTi∗xk − bi∗

)+
‖ai∗‖2

ai∗ ; (10)

xk+1 = (1− ξ)zk + ξzk−1; (11)

k ← k + 1;
end while
return x

In Table 1, we list the algorithms and their respective convergence Theorems recovered from the GSKM algorithm
with different parameter choices. To simplify the notation, we denote, rk = d(xk, P ), η = 2δ − δ2, λmin =
λ+

min(ATA), ej(x) = aTj x− bj .
Probably Accelerated Sampling Kaczmarz Method (PASKM). We propose an accelerated randomized projection
method based on the SKM method and Nesterov accelerated gradient (NAG). Note that, NAG generates sequences
{yk} and {vk} using the following update formulas:

yk = αkvk + (1− αk)xk, xk+1 = yk − θk∇f(yk),

vk+1 = ωkvk + (1− ωk)yk − γk∇f(yk). (12)

In equation (12),∇f is the gradient of the given function and αk, ωk, θk are the step sequences. Nesterov used updated
values for the sequences αk, ωk, θk and obtained a better convergence rate for the acceleration of standard gradient
descent. There are two available works directly involve applying Nesterov’s acceleration in Kaczmarz type methods 6,
first one is by Wright et. al [32] where the accelerated RK method is proposed for linear systems, the second one deals
with applying acceleration in SKM for δ = 1 [60].

Algorithm 3 PASKM Algorithm: xk+1 = PASKM(A, b, x0,K, δ, β)

Initialize v0 ← x0, k ← 0;
while k ≤ K do

Choose γ, ω, α considering either (28) or (32) and update

yk = αvk + (1− α)xk; (13)

Choose a sample of β constraints, τk, uniformly at random from the rows of matrix A. From these β constraints,
choose i∗ = arg maxi∈τk{a

T
i yk − bi, 0}; Update

xk+1 = yk − δ
(
aTi∗yk − bi∗

)+
‖ai∗‖2

ai∗ ; (14)

vk+1 = ωvk + (1− ω)yk − γ
(
aTi∗yk − bi∗

)+
‖ai∗‖2

ai∗ ; (15)

k ← k + 1;
end while
return x

In this work, we consider the general case 0 < δ < 2 and develop a probably accelerated scheme for the SKM algorithm.
The main difference between the proposed PASKM algorithm and the above-mentioned method is the choice of step

6Recently, heavy ball momentum method has been proposed in the context of SKM method [62]
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sequences. We propose to use precomputed values for the parameters ω, γ, α for every iterate compared to the iterative
parameter selection process in [32, 56, 60]. Now, using the definition of function fi (see (8)) in (12), we derive the
following scheme:

yk = αvk + (1− α)xk, xk+1 = yk − δ∇fi∗(x),

vk+1 = ωvk + (1− ω)yk − γ∇fi∗(x), (16)

with i∗ chosen as i∗ = arg maxj∈τk ej(xk−1), where τk ∼ Sk. The PASKM method is formalized as Algorithm 3 and
the detailed convergence analysis of the method is provided in Section 3. This method generally outperforms both the
SKM and GSKM algorithms for almost all of the test instances considered in this work (see Section 4).

2.7 Geometric Interpretation

The goal of this section is to provide a geometric interpretation of the proposed GSKM and PASKM methods. We shed
more lights on how the proposed algorithms work in practice and the difference among SKM, GSKM and PASKM
methods.

(a) SKM: δ = 1 (b) GSKM: δ = 1, ξ = 0.4

Figure 1: Graphical interpretation of the SKM method and the GSKM method with only two hyper-planes Hj = {x|aTj x ≤ bj}

(a) GSKM: δ = 1, ξ = −0.2 (b) PASKM: δ = 1, ω = 0.3, α = 0.5, γ = 1.5

Figure 2: Graphical interpretation of the GSKM method and the PASKM method with only two hyper-planes Hj = {x|aTj x ≤ bj}

In Figures 1 and 2, we illustrate the differences among SKM, GSKM and PASKM methods in an R2 plane. Our goal
is to show how each of the proposed algorithms progress at each iteration. For illustration purposes, We performed
the experiment with only two hyper-planes and the selection of hyper-planes is done in an alternative fashion. The

7
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notation PH1(x) denotes the orthogonal projection of point x onto the hyper-plane H1. For comparison purposes, we
started with the same starting point x0 and drew the figures with the same scaling. For any given starting point x0, each
algorithm projects the point onto the most violated constraint from the sampled constraint set.

The projection step corresponds to the computation of the term xk − δ (aTi∗xk−bi∗ )+

‖ai∗‖2
ai∗ , which means that the current

update xk is projected onto the violated hyper-plane. The projection parameter δ ∈ (0, 2] defines the type of projection.
When δ = 1, the projection is exact, that is the point PH(xk) belongs to the hyper-plane H . GSKM (0 ≤ ξ ≤ 1)
can be seen as a kind of convex projection update which is slower compared to SKM. From Figure 2, it can be seen
that the GSKM method with −1 < ξ < 0 proceeds faster compared to SKM and it requires an affine combination
of the previous two successive projections (i.e., zk−1 and zk). Compared to SKM and GSKM, the PASKM method
updates three different sequences xk, vk, yk. From Figure 2, it can be noted that GSKM with negative ξ and PASKM
moves faster to the feasible region P compared to the SKM method (later in the numerical section this comparison will
become much more apparent for larger test instances).

2.8 Connection between GSKM and PASKM

Assume, −1 < ξ ≤ 0. Then, we can simplify the update formula of the GSKM method as
xk+1 = (1− ξ)xk + ξxk−1 − δ(1− ξ)∇fi∗(xk)− δξ∇fj∗(xk−1), (17)

where the indices i∗ and j∗ are selected following the rule of (8) for the iterate xk and xk−1, respectively. Furthermore,
take ω(1− α) = −ξ and γ such that the condition αγ = δ(1− ξ) holds, then from the update formula of the PASKM
method we get,

vk+1
(15)
= ωvk + (1− ω)yk − γ∇fi∗(yk)

(13)
=

(
1− ξ

α

)
yk +

ξ

α
xk − γ∇fi∗(yk).

Similarly, from the definition of yk+1, we have
yk+1 = αvk+1 + (1− α)xk+1 = (1− ξ)yk + ξxk − [αγ + δ(1− α)]∇fi∗(yk)

= (1− ξ)yk + ξ [yk−1 − δ∇fj∗(yk−1)]− [δ(1− ξ) + δ(1− α)]∇fi∗(yk)

= (1− ξ)yk + ξyk−1 − δ(1− ξ)∇fi∗(yk)− δξ∇fj∗(yk−1), (18)
where the indices i∗ and j∗ are selected following the rule of (8) for the iterate yk and yk−1, respectively. Considering
update formulas (17) and (18), we can conclude that if the conditions 0 ≤ ω(1 − α) = −ξ < 1 and αγ = δ(1 − ξ)
hold, then the sequence xk generated by the GSKM algorithm and the sequence yk generated by the PASKM algorithm
is the same sequence.

3 Main Results

In this section, we present the convergence analysis of the proposed algorithms. In the first subsection, we provided
the necessary technical Lemmas & Theorems that will be used later for our convergence analysis. In the second
subsection, we provided the convergence Theorems of the GASKM algorithm. Finally, the last subsection deals with
the convergence analysis of the PASKM method.

3.1 Technical Tools

In this subsection, we will discuss two types of results. Most of the results derived are related to the properties of the
function f(x). Lemma 3.1 is the famous result of Hoffman regarding the linear system of inequalities. Lemmas 3.6-3.9
discuss the strong convexity and existence of Lipschitz constant along some restricted segment. Finally, Theorems 3.12
and 3.13 deal with developing decay bounds for some non-negative sequences. We will use Lemmas 3.6-3.9 frequently
in our convergence analysis. Theorems 3.12 and 3.13 will be used to derive the proposed convergence bounds of the
quantities E[d(xk, P )] and E[d(xk, P )2].

Lemma 3.1. (Hoffman [63], Theorem 4.4 in [2]) Let x ∈ Rn and P be the feasible region, then there exists a
constant L > 0 such that the following identity holds:

d(x, P )2 ≤ L2 ‖(Ax− b)+‖2.

The constant L is the so-called Hoffman constant. Note that, for a consistent system of equations (i.e., there exists a
unique x∗ such that Ax = b), L can be expressed in terms of the smallest singular value of matrix A, i.e.,

L2 =
1

‖A−1‖2
=

1

λ+
min(ATA)

.

8
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Lemma 3.2. (Lemma 2.1 in [11]) Let {xk}, {yk} be real non-negative sequences such that xk+1 > xk > 0 and
yk+1 ≥ yk ≥ 0, then

n∑
k=1

xkyk ≥
n∑
k=1

xyk, where x =
1

n

n∑
k=1

xk.

Lemma 3.3. For any x ∈ Rn and x̄ ∈ P , the following identity holds,

d(x, P )2 = ‖x− P(x)‖2 ≤ ‖x− x̄‖2.

Lemma 3.4. Let λj be the jth eigenvalue of the matrix W = ES
[
ai∗a

T
i∗
]
, then for all j, the bound 0 ≤ λj ≤ 1

holds.

Proof. Since W is positive semi-definite, we can write λj ≥ 0 for all j. Also as the mapping λmax(X) is convex, using
Jensen’s inequality we have,

λmax(W ) = λmax

[
ES
[
ai∗a

T
i∗
]]
≤ ES

[
λmax

(
ai∗a

T
i∗
)]
≤ 1.

Lemma 3.5. For any 1 ≤ β ≤ m, we have the following:

ES
[
ai∗a

T
i∗
]
� β

m
ATA.

Proof. See Appendix 1.

Lemma 3.6. For any x ∈ Rn with λmax = λmax(ATA), we have the following:
µ1

2
d(x, P )2 ≤ f(x) ≤ µ2

2
d(x, P )2,

with 0 < µ1 = 1
mL2 ≤ µ2 = min

{
1, βmλmax

}
≤ 1.

Proof. See Appendix 1.

Lemma 3.6 states that the function f is strongly convex with constant µ1 and has Lipschitz continuous gradient with
constant µ2 when restricted along the segment [x,P(x)]. Let, f∗ = minx f(x), then it can be easily checked that
f∗ = f(x∗) = 0. Here, x∗ is the optimal solution and it satisfies Ax∗ ≤ b. Moreover, the point P(x) satisfies the
condition∇f(P(x)) = 0. Then we rewrite the inequalities of Lemma 3.6 as follows

µ1

2
‖x− P(x)‖2 + 〈∇f(P(x)), x− P(x)〉 ≤ f(x)− f∗, (19)

f(x)− f∗ ≤ 〈∇f(P(x)), x− P(x)〉+
µ2

2
‖x− P(x)‖2. (20)

Here, equation (19) and (20) represent the Lipschitz continuity condition and the strong convexity condition respectively
along the line segment [x,P(x)]. For our convergence analysis of Algorithm 2 and 3, we will need inequalities like
(19) and (20) along the segment [x, y] for any x, y ∈ Rn. Following two Lemmas deal with the problem of finding such
bounds.

Lemma 3.7. For any x, y ∈ Rn, we have the following:

〈x− y,ES
[
(aTi∗y − bi∗)+ai∗

]
〉 = 〈x− y,∇f(y)〉

≤ f(x)− f(y) ≤ µ2

2
d(x, P )2 − µ1

2
d(y, P )2.

Proof. See Appendix 1.

9
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Remark 3.8. We note that the condition of Lemma 3.7 is weaker than the traditional strong convexity, and it is also
weaker than the essentially strong convexity condition defined in [64]. For instance, the essentially strong convexity
requires the following identity:

f(x)− f(y) ≤ 〈∇f(x), x− y〉 − ε

2
‖x− y‖2, ∀x, y, s.t. P(x) = P(y),

for some ε > 0. The above condition clearly implies (33). Moreover, the restricted secant inequality condition defined
in [64] can be written as

〈∇f(x), x− P(x)〉 ≥ ε‖x− P(x)‖2. (21)

Note that, with the choice x = P(y) in Lemma 3.7, we have the following:

〈∇f(y), y − P(y)〉 ≥ µ2

2
‖y − P(y)‖2.

Here, we used the fact d(P(y), P )2 = ‖P(y)−P(y)‖2 = 0. This implies that the function f(x) satisfies the restricted
secant inequality condition of (21) with constant ε = µ1

2 . Indeed it can be shown that the constant ε = µ1

2 can be
improved further (see the following Lemma).

Lemma 3.9. For any y ∈ Rn and ȳ such that Aȳ ≤ b, we have the following:

〈ȳ − y,ES
[
ai∗(aTi∗y − bi∗)+

]
〉 = 〈ȳ − y,∇f(y)〉 ≤ −2f(y) ≤ −µ1d(y, P )2.

Proof. See Appendix 1.

Remark 3.10. Substituting ȳ = P(y), in Lemma 3.9 we have,

〈P(y)− y,ES
[
ai∗(aTi∗y − bi∗)+

]
〉 ≤ −2f(y) ≤ −µ1 d(y, P )2.

Note that, similar types of results can be found in the literature. For instance, in [12], authors obtained similar result
with respect to a different expectation, they used E[x] = 1

n

∑
i xi for any x ∈ Rn, which is commonly used to analyze

randomized Kaczmarz type methods (see [1, 2]). Furthermore, we believe a better upper bound than the one obtained
in Lemma 3.7 can be obtained considering some restrictions on the data matrix A. To that end, one needs to obtain a
better version of equation (33), i.e., one needs to show that the function f(x)− ε

2‖x‖
2 is convex along the line segment

[x, y].

Lemma 3.11. For any x ∈ Rn and 0 < δ < 2, we have the following:

ES
[
d(z, P )2

]
= ES

[∥∥∥x− P(x)− δ
(
aTi∗x− bi∗

)+
ai∗
∥∥∥2
]
≤ h(δ) d(x, P )2,

where, z = x− δ
(
aTi∗x− bi∗

)+
ai∗ , η = 2δ − δ2 and h(δ) = 1− ηµ1 < 1.

Proof. See Appendix 1.

Before we delved into the main Theorems, for any φ1, φ2 ≥ 0, let us define the following parameters:

φ =
−φ1 +

√
φ2

1 + 4φ2

2
, ρ = φ+ φ1,

R1 =
1 + φ

φ+ ρ
, R2 =

1− ρ
φ+ ρ

, R3 =
ρ+ φ2

φ+ ρ
, R4 =

φ− φ2

φ+ ρ
. (22)

The following two Theorems deal with the growth of non-negative real sequences. We will use these results in our main
analysis of GSKM and PASKM method.

Theorem 3.12. Let {Gk} be a non-negative real sequence satisfying the following relation:

Gk+1 ≤ φ1Gk + φ2Gk−1, ∀k ≥ 1 G0 = G1 ≥ 0,

if φ1, φ2 ≥ 0 and φ1 + φ2 < 1 then the following bounds hold:

1. (Lemma 9 in [57]) Let, φ be the largest root of φ2 + φ1φ− φ2 = 0, then

Gk+1 ≤ (1 + φ)(φ+ φ1)k G0, ∀k ≥ 1.

10
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2. Define ρ = φ+ φ1, then we have the following:

[
Gk+1

Gk

]
≤



[
R1ρ

k+1 +R2φ
k+1

R1ρ
k −R2φ

k

]
G0 k even;[

R3ρ
k −R4φ

k

R3ρ
k−1 +R4φ

k−1

]
G0 k odd,

where, 0 ≤ φ < 1 and 0 < ρ = φ+ φ1 < 1.

Proof. See Appendix 1.

Theorem 3.13. Let the real sequences Hk ≥ 0 and Fk ≥ 0 satisfy the following recurrence relation:[
Hk+1

Fk+1

]
≤
[
Π1 Π2

Π3 Π4

] [
Hk

Fk

]
, (23)

where, Π1,Π2,Π3,Π4 ≥ 0 such that the following relations

Π1Π4 −Π2Π3 ≥ 0, Π1 + Π4 < 1 + min{1,Π1Π4 −Π2Π3}, (24)

hold. Then the sequence {Hk} and {Fk} converges and the following result holds:[
Hk+1

Fk+1

]
≤
[
Π1 Π2

Π3 Π4

]k [
H1

F1

]
=

[
Γ2Γ3(Γ1 − 1) ρk1 + Γ1Γ3(Γ2 + 1) ρk2

Γ3(Γ1 − 1) ρk1 + Γ3(Γ2 + 1) ρk2

] [
H1

F1

]
.

where,

Γ1 =
Π1 −Π4 +

√
(Π1 −Π4)2 + 4Π2Π3

2Π3
,

Γ2 =
Π1 −Π4 −

√
(Π1 −Π4)2 + 4Π2Π3

2Π3
, Γ3 =

Π3√
(Π1 −Π4)2 + 4Π2Π3

,

ρ1 =
1

2

[
Π1 + Π4 −

√
(Π1 −Π4)2 + 4Π2Π3

]
,

ρ2 =
1

2

[
Π1 + Π4 +

√
(Π1 −Π4)2 + 4Π2Π3

]
, (25)

and Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1.

Proof. See Appendix 1.

3.2 Convergence Analysis of the GSKM Method

In this subsection, we study convergence properties of the proposed GSKM method, i.e., we study the convergence
behavior of the quantities of E[‖xk − P(xk)‖] and E[f(xk)]. For any ξ ∈ R, let us define the sets Q,Q1, Q2 as

Q1 = {ξ | 0 ≤ ξ ≤ 1}, Q = Q1 ∪Q2,

Q2 = {−1 < ξ ≤ 0 | (1 + ξ)
√
h(δ)− ξ (1 + δ

√
µ2) < 1}. (26)

We proved that whenever ξ ∈ Q and 0 < δ < 2, the proposed GSKM method enjoys a global linear rate. We also
provided convergence analysis of the function values (i.e., f(xk)) with respect to the Cesaro average. Our results are
global in nature and to the best of our knowledge, this is the first of its kind result for the SKM method.

Theorem 3.14. Let {xk} be the sequence of random iterates generated by algorithm 2. With the choice of
parameters, 0 < δ < 2 and 0 ≤ ξ ≤ 1 (ξ ∈ Q1), the sequence of iterates {xk} converges and the following
results hold:

11
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1. Take φ1 = (1− ξ)h(δ), φ2 = ξh(δ) and ρ, φ as in equation (22), then

E[d(xk+1, P )2] ≤ ρk(1 + φ)d(x0, P )2 and E[f(xk)] ≤ µ2(1 + φ)

2
ρkd(x0, P )2.

2. Take φ1 = (1− ξ)h(δ) and φ2 = ξh(δ), then

E

[
d(xk+1, P )2

d(xk, P )2

]
≤



[
R1ρ

k+1 +R2φ
k+1

R1ρ
k −R2φ

k

]
d(x0, P )2 k even;[

R3ρ
k −R4φ

k

R3ρ
k−1 +R4φ

k−1

]
d(x0, P )2 k odd,

where, the constants R1, R2, R3, R4 are defined in equation (22) and 0 ≤ φ, φ1, φ2 < 1 and 0 < ρ =
φ+ φ1 < 1.

3. Also the average iterate x̃k =
k∑
l=1

xl for all k ≥ 0 satisfies the following

E[d(x̃k, P )2] ≤ (1 + φ) d(x0, P )2

k(1− ρ)
and E[f(x̃k)] ≤ (1 + ξ)d(x0, P )2

2δk(2− δ)
.

Proof. See Appendix 2.

In the above Theorem, we obtain a global linear rate for the GSKM method with 0 ≤ ξ ≤ 1. Note that, when 0 ≤ ξ ≤ 1,
we have,

ρ = φ+ φ1 =
(1− ξ)h(δ) +

√
(1− ξ)2h2(δ) + 4ξh(δ)

2

≥
(1− ξ)h(δ) +

√
(1− ξ)2h2(δ)

2
= (1− ξ)h(δ).

Since the maximum value of (1− ξ)h(δ) can be derived as h(δ), the above inequality attains equality when ξ = 0 (see
the next Corollary). This gives us 1 > ρ = φ+ φ1 ≥ h(δ). Since the rate of the SKM algorithm is given by h(δ), we
can say that the theoretical convergence rate of Algorithm 2 is always worse or equal compared to SKM whenever
0 ≤ ξ ≤ 1.

Corollary 3.14.1. (Theorem 1.3 in [11]) Let {xk} be the sequence of random iterates generated by the SKM
method (algorithm 1) starting with x0 ∈ Rn. With 0 < δ < 2, the sequence of iterates {xk} converges and the
following result holds:

E
[
d(xk+1, P )2

]
≤ [h(δ)]

k
d(x0, P )2.

Proof. Note that, if we let ξ = 0 in the GSKM method, then we have xk+1 = zk, which is precisely the SKM method.
Now, take ξ = 0 in Theorem 3.14, then considering the first part of the Theorem, we have ρ = h(δ). Furthermore, from
the second part, we have R3ρ

k − R4φ
k = R1ρ

k+1 + R2φ
k+1 = ρk = (h(δ))

k. This proves the result of Corollary
3.14.1 which is precisely the convergence rate obtained in [11] for the SKM method.

Our next Theorem, states that, for a range of negative values of the parameter ξ, the GSKM method enjoys a global
linear rate.

Theorem 3.15. Let {xk} be the sequence of random iterates generated by algorithm 2 and let 0 < δ < 2 and
ξ ∈ Q2. Define

Π1 =
√
h(δ), Π2 = |ξ|, Π3 = δ

√
µ2h(δ), Π4 = |ξ| (1 + δ

√
µ2) , (27)

12
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and Γ1,Γ2,Γ3, ρ1, ρ2 as in (24) with the parameter choice of (27). Then the sequence of iterates {xk} converges
and the following result holds:

E

[
d(xk+1, P )

‖zk+1 − zk‖

]
≤

[
−Γ2Γ3 ρ

k
1 + Γ1Γ3 ρ

k
2

−Γ3 ρ
k
1 + Γ3 ρ

k
2

]
d(x0, P ),

where Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1.

Proof. See Appendix 2.

Parameter Choice for GSKM Now we discuss allowable parameter selection for the GSKM algorithm based on
Theorem 3.14 and 3.15.

Figure 3: Allowable parameter range

From Theorem 3.14, it can be noted that the GASKM method will converge for any 0 ≤ ξ ≤ 1. Whenever ξ is negative
(i.e., ξ ∈ Q2), the allowable range for ξ can be shown in the following figure. In Figure 3, we plot the feasible region
for allowable ξ values for µ1 = 0.3, µ2 = 1. Denote, µ̃1 = µ1

µ1+
√
µ2

and µ̃2 = 1−
√

1−µ1

1−
√

1−µ1+
√
µ2

. Then the feasible region
of Figure 3 can be approximated piece-wise as ξ > (µ̃1 − µ̃2)δ − µ̃1 for 0 < δ ≤ 1 and ξ > µ̃2δ − 2µ̃2 for 1 ≤ δ < 2.
Moreover, any (ξ, δ) pair that resides inside the region {0 < δ < 2, −1 < ξ < 0, ξ ≥ 0.5µ̃1(δ − 2)} also resides
inside the feasible region of Theorem 3.15.

Cesaro Average: In the next Theorem, we propose the convergence analysis of the function values f(x), with respect
to the Cesaro average. Instead of bounding E[f(xk)] in terms of initial function value f(x0), we bound the decay in
terms of a larger quantity that results in a better convergence rate. To the best of our knowledge, this is the first result
that shows O( 1

k ) convergence of the Kaczmarz type methods for solving linear feasibility problems 7. An interesting
corollary of our method is the Cesaro average result for the SKM method. Furthermore, the result holds under weaker
assumptions than the previous Theorems.

7Several works exits for the Kaczmarz type methods for solving linear systems [38, 57].
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Theorem 3.16. Let {xk} be the random sequence generated by Algorithm 2. Take, −1 < ξ ≤ 0 and 0 < δ <

2(1+ξ)
1−2ξ . Define x̃k = 1

k

k∑
l=1

xl and f(x) as in (9), then

E [f(x̄k)] ≤ (1 + ξ)(1 + ξ − 2δξµ2) d(x0, P )2 + 2ξδ(δξ − δ − 1)f(x0)

2δk (2 + 2ξ + 2δξ − δ)
.

Proof. See Appendix.

Corollary 3.16.1. Let {xk} be the random sequence generated by SKM method (algorithm 1). Define x̃k =

1
k

k∑
l=1

xl and f(x) as in (9), then

E [f(x̄k)] ≤ d(x0, P )2

2δk (2− δ)
,

holds for any 0 < δ < 2.

Proof. Take ξ = 0 in Theorem 3.16, then the result follows.

The next Theorem is an extension of the result obtained in [11] and to a certain extent, it can be taken as an extension of
Telgen’s result [28]. The Theorem gives one a certificate of feasibility after a finite number of GSKM iterations. Before
delving into the Theorem, we will provide some known Lemmas for the SKM algorithm which holds for the GSKM
algorithm too. We refer interested readers to the work of De-Loera et. al [11] for detailed proof of these Lemmas
(Lemma 3.17 to Lemma 3.19).

Lemma 3.17. (Lemma 1 in [11]) Define, θ(x) =
[
maxi{aTi x− bi}

]+
as the maximum violation of point x ∈ Rn

and the length of the binary encoding of a linear feasibility problem with rational data-points as

σ =
∑
i

∑
j

ln (|aij |+ 1) +
∑
i

ln (|bi|+ 1) + ln (mn) + 2.

Then if the rational system Ax ≤ b is infeasible, for any x ∈ Rn, the maximum violation θ(x) satisfies the
following lower bound:

θ(x) ≥ 2

2σ
.

Lemma 3.18. (Lemma 4 in [11]) If P is n-dimensional (full-dimensional) then the sequence of iterates {xk}
generated by the GSKM method converges to a point x ∈ P .

Proof. Since, by assumption, P is full dimensional, then the rest of the proof follows the same argument as Lemma 4
in [11].

Lemma 3.19. ( [65]) If the rational system Ax ≤ b is feasible, then there is a feasible solution x∗ whose
coordinates satisfy |x∗j | ≤ 2σ

2n for j = 1, ..., n.

Certificate of feasibility: To detect feasibility of the rational system Ax ≤ b, one needs to find a point xk such that
θ(xk) < 21−σ . Such a point if exists will be called a certificate of feasibility. When the system is feasible, one expects
to find a certificate of feasibility after finitely many iterations, and that if one fails to find a certificate after finitely many
iterations, one can obtain a lower bound on the probability that the system is infeasible. Moreover, as discussed in the
next Theorem, if the system is feasible, one can bound the probability of finding a certificate of feasibility.

Theorem 3.20. Suppose A, b are rational matrices with binary encoding length, σ, and that we run the GSKM
method (0 < δ < 2, ξ ∈ Q) on the system Ax ≤ b (‖ai‖ = 1, i = 1, 2, ...,m) with x0 = 0. Suppose the number

14



ACCELERATED SKM - DECEMBER 8, 2020

of iterations k satisfies the following lower bound:

4σ − 4− log n+ log(1 + φ)

log
(

1
ρ̄

) < k.

If the system Ax ≤ b is feasible, then,

p ≤ H(σ, φ, k, ρ̄) =

√
1 + φ

n
22σ−2 ρ̄

k
2 ,

where p is the probability that the current iterate is not a certificate of feasibility. And ρ̄ = max{ρ, ρ2
2} < 1, where

ρ and ρ2 are defined in Theorem 3.14 and Theorem 3.15 for the choice ξ ∈ Q1 and ξ ∈ Q2, respectively. Also
note that the function H(σ, φ, k, ρ̄) is a decreasing function with respect to k.

Proof. See Appendix.

Remark 3.21. Note that instead of a normalized system if we consider a non-normalized system Ax ≤ b, ‖ai‖ 6= 1
for some i, then suppose the number of iterations k satisfies the following lower bound:

4σ − 4− log n+ log(1 + φ) + 2 logψ

log
(

1
ρ̄

) < k,

where σ is the binary encoding length for A, b. If the system Ax ≤ b is feasible, then,

p ≤
√

1 + φ

n
22σ−2 ψ ρ̄

k
2 ,

where p = probability that the current update xk is not a certificate of feasibility and ψ = maxj ‖aj‖.

Corollary 3.21.1. (Theorem 1.5 in [11]) Suppose A, b are rational matrices with binary encoding length, σ, and
that we run the SKM method on the system Ax ≤ b (‖ai‖ 6= 1 for some i) and x0 = 0. Suppose the number of
iterations k satisfies the following lower bound:

4σ − 4− log n+ 2 logψ

log
(

1
h(δ)

) < k,

where σ is the binary encoding length for A, b. If the system Ax ≤ b is feasible, then,

p ≤
√

1

n
22σ−2 ψ [h(δ)]

k
2 ,

where p =the probability that the current update xk is not a certificate of feasibility and ψ = maxj ‖aj‖.

Proof. Take ξ = 0 in Theorem 3. Then, we have, φ = 0, ρ = φ+ φ1 = h(δ) = ρ2
2. It can be easily checked that the

GSKM method with ξ = 0 is just the SKM method. Now, considering Theorem 3.20 with the above parameter choice,
we can get the bound of Corollary 3.21.1.

3.3 Convergence Analysis of the PASKM Method

In this subsection, we study convergence properties of the proposed PASKM algorithm, i.e., we study the convergence
behavior of the quantities of E[‖vk −P(vk)‖2], E[‖xk −P(xk)‖2], E[‖yk −P(yk)‖2] and E[f(xk)] generated by the
PASKM method. We proved that for a range of step parameters α, γ, ω, the proposed PASKM method enjoys a global
linear rate. We also provided convergence analysis of the function values f(xk), with respect to the Cesaro average.
The next Theorem deals with the convergence of the sequences {vk} and {yk} as well as the function values f(xk)
generated by the PASKM algorithm.
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Theorem 3.22. Let {xk} be the sequence of random iterates generated by algorithm 3 and let 0 < δ < 2 and
0 ≤ α, ω ≤ 1 such that γ + 3ω − 2 ≤ 0, ωh(δ)(1− α)(1 + γ) < 1 and the following condition

ω(1 + γ) + h(δ)(1− α) + α(1− ω) + αγµ1(γ + 3ω − 2)

− ωh(δ)(1− α)(1 + γ) < 1, (28)

holds. Define, Π1 = ω(1 + γ), Π2 = (1 − ω) + γµ1(γ + 3ω − 2), Π3 = αω(1 + γ), Π4 = (1 − α)h(δ) +
α(1 − ω) + αγµ1(γ + 3ω − 2) and Γ1,Γ2,Γ3, ρ1, ρ2 as in (24). Then the sequence of iterates {vk} and {yk}
converges and the following results hold:

E

[
d(vk+1, P )2

d(yk+1, P )2

]
≤

[
Γ2Γ3(Γ1 − 1) ρk+1

1 + Γ1Γ3(Γ2 + 1) ρk+1
2

Γ3(Γ1 − 1) ρk+1
1 + Γ3(Γ2 + 1) ρk+1

2

]
d(y0, P )2,

and

E (f(yk+1)) ≤ µ2

2

[
Γ3(Γ1 − 1) ρk+1

1 + Γ3(Γ2 + 1) ρk+1
2

]
d(y0, P )2.

where Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1.

Proof. See Appendix 3.

The next Theorem deals with the convergence of the sequences {vk} and {xk} generated by the PASKM algorithm.

Theorem 3.23. Let, vk+1 and xk+1 are generated by Algorithm 3. If we select the parameters ω, γ, α as

ω = 1− ζµ2
1 + 2γµ1 − ζµ1

1 + ζµ2
1

, γ =
√
ζηµ1, α =

η

η + γ
,

where, ζ is chosen as 0 < ζ < 4ηµ1

(1−µ1)2 if µ1 < 1, otherwise choose any ζ > 0. Then, for any 0 < δ < 2, the
sequence of iterates {vk}, {xk} converges and the following result holds:

E
[
d(vk+1, P )2 + ζµ1 d(xk+1, P )2

]
≤ ωk+1 E

[
d(v0, P )2 + ζµ1 d(x0, P )2

]
= (1 + ζµ1) ωk+1 d(x0, P )2.

This theorem implies that the PASKM algorithm converges linearly with a rate of ω, which accumulates to a total
of O(

1+ζµ2
1

ζµ2
1+2γµ1−ζµ1

log 1/ε) iterations to bring the given error below ε > 0.

Proof. See Appendix 3.

In the next Theorem, we present the convergence analysis of the function f(x) with respect to the Cesaro average for
the PASKM algorithm. We showed that the Cesaro average of the PASKM iterates converges to the optimum at a rate
of O(1/k) where k is the number of iterations.

Theorem 3.24. Let {yk} be the random sequence generated by Algorithm 3. Take, 0 ≤ 1 − α, ω < 1,

0 < δ < 2(1−ω+αω)
1+2ω−2αω and αγ = αδ + ωδ(1− α). Define ỹk = 1

k

k∑
l=1

yl and f(y) as in (9), then

E [f(ȳk)] ≤ (1− ω + αω)2 d(y0, P )2 + 2δ(δ − 2 + 3ω − 3αω + δω − δαω)f(y0)

2δk (2− 2ω + 2αω − 2δω + 2δαω − δ)
.

Proof. See Appendix 3.

Parameter selection for PASKM algorithm In this section, we discuss allowable parameter selection for the
PASKM algorithm based on Theorem 3.22. If the parameters 0 ≤ α, ω ≤ 1 and γ ≥ 0 satisfies γ + 3ω − 2 and the
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condition of (28) hold then the PASKM method will converge for any 0 < δ < 2 8. To simplify the conditions for ease
of implementation, let’s take 0 ≤ γ < 2 and ω = 2−γ

3+p for some 0 ≤ p ≤ 1
µ1

9.

Figure 4: Allowable parameter range

In Figure 4, we plot the feasible region considering the above parameter choice and the conditions of Theorem 3.22.
Considering the choice of γ and ω, the condition ωh(δ)(1− α)(1 + γ) < 1 simplifies to

α > 1− 3 + p

(2− γ)(1 + γ)h(δ)
=

2h(δ) + γh(δ)− γ2h(δ)− 3− p
(2− γ)(1 + γ)h(δ)

=
(γ − γ2 − 1− p) + ηµ1(γ2 − 2− γ)

(2− γ)(1 + γ)h(δ)
≤ 0,

where, we used the fact that the conditions γ−γ2−1 ≤ 0 and γ2−2−γ ≤ 0 hold for any 0 ≤ γ ≤ 2. That implies for
any α ≥ 0, the condition ωh(δ)(1− α)(1 + γ) < 1 holds. Similarly, we can simplify the condition of (28) as follows:

α <
(1 + p− γ + γ2)(1− h(δ))

1− h(δ) + p+ γ + (γ − p)h(δ)− γ2h(δ) + µ1pγ(γ − 2)︸ ︷︷ ︸
> 0 for 0<δ<2

= α(γ, δ, p) ≤ 1. (29)

Therefore, if we choose γ, ω and α as

γ = 1.5
√

2δ − δ2, p = 0, ω =
2− γ
3 + p

, α = 0.99 ∗ α(γ, δ, p) (30)

γ = 2
√

2δ − δ2, p = 0, ω =
2− γ
3 + p

, α = 0.99 ∗ α(γ, δ, p), (31)

8When, δ = 2, we have h(δ) = 1 − ηµ1 = 1. In that case, we can simplify the condition of (28) as ω < 2−γ
3+ 1

µ1

. In other

words, for δ = 2 the PASKM algorithm will converge if we select the parameters as 0 ≤ γ < 2, 0 ≤ α ≤ 1, ω < 2−γ
3+ 1

µ1

and

µ1 =
λ+
min(A

TA)

m
.

9Note that for the choice p > 1
µ1

the condition (29) trivially holds as the right hand side of (29) is always greater than 1.
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then the convergence result of Theorem 3.22 holds for the PASKM algorithm. We will use these two sets of parameter
choices in our numerical experiments. Note that, our choice is empirical in nature. One can probably find a better
combination of parameters than (30) and (31). Similarly, if we choose γ, ω and α as

ζ =
3.99ηµ1

(1− µ1)2
, ω = 1− ζµ2

1 + 2γµ1 − ζµ1

1 + ζµ2
1

, γ =
√
ζηµ1, α =

η

η + γ
, (32)

then the convergence result of Theorem 3.23 holds for the PASKM algorithm. The choice of (32) is not of practical

benefit as the value of λ
+
min(ATA)

m is very small for most test cases. From (32), we have γ ∝ 1
m , which is very small for

large test instances. Smaller γ slows down the convergence of the PASKM algorithm as γ can be seen as a projection
parameter like δ.

4 Numerical Experiments

In this section, we discuss the numerical experiments performed to show the computational efficiency of the proposed
algorithms (Algorithm 2 and 3). As mentioned before, we limit our focus on the over-determined systems regime
(i.e., m � n) where iterative methods are competitive in general. However, from our experiments, we see similar
computational behavior for the under-determined systems as well.

4.1 Experiment Specifications

We implemented the proposed GSKM and PASKM algorithms in MATLAB R2018b and performed the experiments in a
Dell Precision 7510 workstation with 32GB RAM, Intel Core i7-6820HQ CPU, processor running at 2.70 GHz. To
analyze computational performance, we perform the numerical experiments for a wide range of instances including
both randomly generated and real-world test problems.

• Randomly generated problems: Gaussian and highly correlated systems

• Real-world test instances: Standard ML data sets and Sparse Netlib LP instances

We compare SKM with two versions of the proposed GSKM and PASKM algorithms for a better understanding of the
algorithmic behavior. In Table 2, we provide the parameter choices for GSKM and PASKM algorithms. Throughout the
numerical experiments section, we compared SKM with GSKM-1, GSKM-2 and PASKM-1, PASKM-2.

Table 2: Parameter choice of GSKM and PASKM algorithms for the numerical experiments.

Parameters GSKM (Algorithm 2, ξ ∈ Q) PASKM (Algorithm 3, α, ω, γ)
SKM GSKM-1 GSKM-2 PASKM-1 PASKM-2

1 ≤ β ≤ m
0 < δ < 2

ξ = 0
ξ = −0.1
ξ = −0.2

ξ = 0.5 α, ω, γ as in (30) α, ω, γ as in (31)

Finally, we investigate the performance behavior of the proposed GSKM and PASKM methods with state-of-the-art
methods such as Interior point methods (IPMs) and Active set methods (ASMs) for several Netlib LP instances. The
total CPU time is calculated in seconds (s). For a fair comparison, we run the algorithms 10 times and report the
averaged performance throughout the experiments. Moreover, all the algorithms start from the same initial point that is
far away from the feasible region.

4.2 Experiments on Randomly Generated Instances

We considered the linear feasibility Ax ≤ b, where the entries of matrices A ∈ Rm×n and b ∈ Rm are chosen
randomly from a certain distribution. To maintain the system consistency (i.e., b ∈ R(A)), we first generated vectors
x1, x2 ∈ Rn at random from the corresponding distributions, then set b as the convex combination of vectors Ax1 and
Ax2 (i.e., b = σAx1 + (1− σ)Ax2, 0 ≤ σ ≤ 1). Two types of random data sets are considered: highly correlated, and
Gaussian. For the correlated systems, data matrices A and x1, x2 are chosen uniformly at random between [0.9, 1.0]
(i.e., aij , xj ∈ [0.9, 1.0], i = 1, 2, ...,m, j = 1, 2, ..., n). For the Gaussian system data matrices, A and x1, x2 are
chosen uniformly at random from standard normal distribution (i.e., aij , xj ∈ N (0, 1),∀i, j). Moreover, the vector
b ∈ Rm is generated by following the above-mentioned procedure.
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CPU time vs Sample size β We first compared the total CPU time of the proposed algorithms (GSKM-1, GSKM-2,
PASKM-2, PASKM-2) with the original SKM algorithm. The comparison is carried out by varying the sample size β
from 1 to the total row size m. The positive residual error tolerance is chosen as 10−05 (i.e., ‖ (Ax− b)+ ‖2 ≤ 10−05).
The comparison is carried out for δ = 0.2, 0.5, 0.8 and 1.5. In Figure 5, we compared the above-mentioned algorithms
for two randomly generated highly correlated linear feasibility problems of size 20000× 1000 and 50000× 4000. From
Figure 5, we see that the proposed GSKM-1, PASKM-1, PASKM-2 algorithms outperform the SKM algorithm in terms
of average CPU time when δ = 0.2, 0.5, 0.8. For δ = 1.5, the performance of SKM, PASKM-1 and PASKM-2 are
fairly similar whereas, the performance of GSKM-1 and GSKM-2 are worse compared to all other algorithms.

Figure 5: Sample size β VS average CPU time comparison among SKM, GSKM, PASKM variants for δ = 0.2, 0.5, 0.8, 1.5 on
correlated systems. Problem size: 20000× 1000 (Top panel), 50000× 4000 (Bottom panel).

Figure 6: Sample size β VS average CPU time comparison among SKM, GSKM, PASKM variants for δ = 0.2, 0.5, 0.8, 1.5 on
Gaussian systems. Problem size: 2000× 500 (Top panel), 5000× 1000 (Bottom panel).

We present the time versus sample size plot for two randomly generated Gaussian system of size 2000 × 500 and
5000 × 1000 in Figure 6. All the algorithms show similar performance patterns as shown in the correlated systems
(Figure 5) for the choice of 0 < δ < 1. However, for the case of δ = 1.5, SKM and PASKM-2 perform marginally
better than the other algorithms. Since all of the considered methods perform significantly well whenever β is small
(i.e., 1 < β ≤ 100). For a better understanding, we compare the proposed algorithms for 1 < β ≤ 100. In Figure 7, we
plot the time vs β graph for a 2000× 500 Gaussian problem for smaller β.
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Figure 7: Sample size β VS average CPU time comparison among SKM, GSKM, PASKM variants for δ =
0.2, 0.5, 0.8, 1, 1.2, 1.5, 1.7, 1.9 and samller sample size (i.e., 1 ≤ β ≤ 100) on a 2000× 500 Gaussian system.

In a nutshell, we can conclude that for the choice of 0 < δ < 1, PASKM-1, PASKM-2 and GSKM-1 outperform the
original SKM method. And in that region, PASKM-2 is the best performing algorithm. Moreover, for 1.5 ≤ δ ≤ 1.7,
all of the proposed algorithms perform similarly as the SKM method. However, for the case of δ = 1.9, the proposed
algorithms significantly outperform the SKM method. Furthermore, we believe with correct parameter choice one can
find better-performing variants of GSKM and PASKM compared to the SKM algorithm for the case of 1.5 ≤ δ ≤ 1.7.
Finally from Figure 7, we can deduce that the best sample size choice for all of the considered methods occurs at
1 < β � m. This amplifies the importance of the special sampling distribution selection.

Positive residual error ‖ (Ax− b)+ ‖2 VS No. of iterations and Time Now, we compare the respective conver-
gence trend for the considered algorithms with respect to the number of iterations and CPU time. We choose positive
residual error ‖(Ax− b)+‖2 as the convergence measure and considered 5000× 1000 Gaussian system. We carried
out the analysis for several choices of sample sizes, β = 1, 100, 1000,m and the choice of δ values remains the same
as before. In Figures 8 and 9, we provide the respective positive residual decay results for different sample sizes and
different projection parameters. We plot positive residual error VS iteration and positive residual error VS time in
Figures 8 and 9, respectively. From Figures 8 and 9, we see that irrespective of sample size, ‖(Axk − b)+‖2 converges
to zero much faster for the proposed PASKM-1 and PASKM-2, GSKM-1 compared to SKM whenever δ < 1. For
the case of δ = 1.5, SKM and PASKM-2 has a similar kind of performance whereas the GSKM-1 performs poorly
compared to SKM and PASKM method. As expected, the choice β = 1 produces the slowest rate and the choice
β = 100 produces the best convergence graph.

Fraction of satisfied constraints (FSC) VS No. of iterations and Time To investigate the generated solution quality
of the above-mentioned algorithms of Table 2, we measure the number of satisfied constraints at each iteration, for that
we define,

Fraction of Satisfied Constraints (FSC) =
Number of satisfied constraints
Total number of constraints (m)

Note that, at any particular iteration we have, 0 ≤ FSC ≤ 1. In Figures 10 and 11, we plot the value of FSC with
respect to No. of iterations and CPU time of each algorithm respectively. From Figures 10 and 11, we can see that the
choice of β = 1 is the worst choice for all algorithms as the improvement of FSC is much slower compared to other
choices of β. And for the choice β = 100, we get the best solution quality for each algorithm. Our proposed GSKM-1,
PASKM-1 and PASKM-2 algorithms outperform the other methods significantly for 0 < δ < 1 but, for δ = 1.5 only
PASKM-2 performs similar to SKM.
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Figure 8: Positive residual error ‖ (Ax− b)+ ‖2 VS No. of iteration comparison among SKM, GSKM, PASKM variants for
δ = 0.2, 0.5, 0.8, 1.5 and β = 1, 50, 100, 1000, 5000 on 5000× 1000 Gaussian system.

4.3 Experiments on real-world Instances

In this subsection, we consider some nonrandom, real-world test instances. For the sake of unbiased performance
analysis, we consider the following two types of real-world data-sets: standard Machine Learning (ML) data-sets for
Support Vector Machine (SVM) classifier [11, 66, 67], and sparse linear feasibility problems extracted from benchmark
Netlib LP problems [68].
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Figure 9: Positive residual error ‖ (Ax− b)+ ‖2 VS CPU time comparison among SKM, GSKM, PASKM variants for δ =
0.2, 0.5, 0.8, 1.5 and β = 1, 50, 100, 1000, 5000 on 5000× 1000 Gaussian system.

SVM classifier instances We first consider two linear feasibility problems arising from binary classification with
SVM. We compare the proposed algorithms with SKM to the linear classification problem using the SVM model for
the following two data sets: 1) Wisconsin (diagnostic) breast cancer data set and 2) Credit card default data set. The
Wisconsin breast cancer data set consists of data points whose features are calculated from images. There are two
types of data points: 1) malignant and 2) benign cancer cells. As shown by the researchers [11, 69], the SVM classifier
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Figure 10: No. of iteration vs fraction of satisfied constraints (FSC) comparison among SKM, GSKM, PASKM variants for
δ = 0.2, 0.5, 0.8, 1.5 and β = 1, 50, 100, 1000, 5000 on 5000× 1000 Gaussian system.

problem can be re-written as an equivalent homogeneous system of linear inequalities (Ax ≤ 0), which represents the
separating hyper-plane between malignant and benign data points. The constraint matrix A has 569 rows (data points)
and 30 columns (features). Since the data set is not perfectly separable, we allow tolerance for the positive residual
‖(Ax)+‖. For our experiments, we fixed the tolerance as 10−3 (i.e., we ran the algorithm until ‖(Axk)+‖ ≤ 10−3 is
satisfied).
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Figure 11: CPU time vs fraction of satisfied constraints (FSC) comparison among SKM, GSKM, PASKM variants for δ =
0.2, 0.5, 0.8, 1.5 and β = 1, 50, 100, 1000, 5000 on 5000× 1000 Gaussian system.

Similarly, we consider the credit card default data set described in [11,66]. This data set consists of features denoting the
payment profile of a user and binary variables describing payment conditions in a certain billing cycle: 1 for payment
made on time and 0 for late payment. The SVM classification problem for the data set can be transformed into an
equivalent homogeneous system of inequalities (Ax ≤ 0) like before. The solution x∗ denotes the coefficients of the
separating hyper-plane between on-time and default data points. The transformed data matrix A has 30000 rows (30000
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user profiles) and 23 columns (22 profile features). As the data set is not separable, like the previous problem we allow
a tolerance error. In this case, we ran the algorithms until the condition: ‖(Axk)+‖/‖(Ax0)+‖ ≤ 10−3 is satisfied.

CPU time vs Sample size β We plot the CPU time VS sample size β graphs for SVM problems in Figure 12. To be
consistent with our previous experiments, we choose δ = 0.2, 0.5, 0.8, 1.5. From Figure 12, we see that the proposed
GSKM-1, PASKM-1 and PASKM-2 algorithms outperform the other algorithms including SKM for δ = 0.2, 0.5, 0.8.
However, for δ = 1.5, GSKM-2 performs significantly well compared to the other methods. On the other hand, SKM,
PASKM-1 and PASKM-2 follow a similar trend across different sample sizes. PASKM-1 and PASKM-2 marginally
outperform SKM for this regime. Another interesting point can be noted that the comparison graphs for the credit
card data set are not as smooth as the breast cancer data set graphs 10, which can be attributed to the irregularity of the
constraint matrix A.

Figure 12: Average CPU time VS Sample size β comparison among SKM, GSKM, PASKM variants for δ = 0.2, 0.5, 0.8, 1.5 on
Support Vector Machine problems; Top panel: Credit card data set, Bottom panel: Wisconsin breast cancer data set.

Netlib LP instances We also investigate the comparative performance of the proposed algorithms with SKM on
real-world sparse data sets. For this experiment, we consider some Netlib LP [68] test instances. Each of these problems
is formulated as a standard linear programming problem ( min cTx subject to Ax = b, l ≤ x ≤ u). To conduct the
above-mentioned experiments, we transform each of these problems into an equivalent linear feasibility problem.

CPU time vs Sample size β Now, we plot the CPU time VS sample size β graphs for five Netlib LP instances in
Figure 13. Later in subsection 4.4, we consider a total of ten Netlib LP instances including the five considered here. In
Figure 13, we provide comparison graphs for the following Netlib LP test instances: lp-brandy, lp-addlittle, lp-scorpion,
lp-bandm, lp-recipe. Furthermore, we consider different error tolerances for these problems (see Table 3 for details).
From Figure 13, we see that the proposed GSKM-1, PASKM-1, PASKM-2 algorithms outperform the SKM algorithm
for δ = 0.2, 0.5, 0.8. In the case of δ = 1.5, the performance of SKM, GSKM-1 and PASKM-2 are fairly similar for
the problems lp-scorpion, lp-bandm and lp-recipe. For lp-brandy and lp-adlittle, all of the proposed variants of GSKM
and PASKM outperform the original SKM.

4.4 Comparison with IPM and ASM for Netlib LP instances

In this subsection, we compare the performance of GSKM and PASKM variants with SKM and benchmark commercial
solvers for solving Netlib LP test instances. We follow the standard framework used by De Loera et. al [11] and
Morshed et. al [60] in their work for linear feasibility problems. The problem instances are transformed from standard
LP problems (i.e., min cTx subject to Ax = b, l ≤ x ≤ u with optimum value p∗) to an equivalent linear feasibility
formulation (i.e.,Ax ≤ b, where A = [AT − AT I − I c]T and b = [bT − bT uT − lT p∗]T ). For all of the
experiments, we compared the proposed algorithms for 0 < δ < 1, since from our experiments in subsection 4.2 and
4.3, this is the domain where the proposed GSKM and PASKM variants significantly outperform the SKM method.

10The credit card data matrix has 30, 000 rows. From our earlier experiments, we observe that the choice of 1 < β ≤ 100, the
proposed algorithms produce the best performance. For that reason, we plot the credit card graph up-to β = 2000. The irregularity
of the credit card graph occurs when β > 2000.
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Figure 13: Average CPU time VS Sample size β comparison among SKM, GSKM, PASKM variants for δ = 0.2, 0.5, 0.8, 1.5 on
Netlib LP instances.

In Table 3, we list the total CPU time in seconds for each of the above-mentioned algorithms in Table 2. In addition to
that, we provide the CPU time for Interior point method (IPM) and Active set method (ASM) algorithms for solving the
selected Netlib LP problems. For a better and fair comparison, the pseudo-code of the proposed methods and SKM is
written in MATLAB and Optimization Toolbox function fmincon is used to implement IPM and ASM methods. We
first solve the linear feasibility problem (Ax ≤ b) with SKM, GSKM and PASKM variants and record the CPU time in
Table 3. Note that, we can’t use fmincon’s IPM and ASM algorithms directly to solve the linear feasibility problem
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(min 0, s.tAx ≤ b) since both methods fail to solve the linear feasibility problems. The reason for that is, in IPM the
Karush Kuhn Tucker (KKT) system at each iteration becomes singular, and ASM stops in the first step of finding a
feasible solution. For a fair comparison, in Table 3, we list the total CPU consumption time as follows: for the SKM

Table 3: CPU time comparisons among the state-of-the-art methods (using MATLB’s fmincon function) solving LP, and SKM,
GSKM and PASK solving LF. ∗ implies that the solver was unable to solve the problem with predetermined accuracy within 100,000
function evaluations. CPU time of the best performing algorithm for a problem is represented in bold letters.

Instance Dimensions GSKM
×10−2

PASKM
×10−2

SKM
×10−2

Interior
Point

Active
set β

ε
×10−2

adlittle 389× 138 0.027 0.173 0.032 2.16 4.96 150 0.1
agg 2207× 615 0.22 0.196 0.23 66.54∗ 315.91∗ 50 1

bandm 1555× 472 9.82 4.057 9.2 14.57 529.43∗ 50 1
blend 337× 114 1.48 0.581 1.28 2.28 4.62 50 0.1

brandy 1047× 303 0.53 0.491 14.06 16.97 63.11 1 1
degen2 2403× 757 26.26 10.139 20.73 7.13 21038 100 1
finnis 3123× 1064 0.53 0.532 0.527 66.16∗ 237750∗ 10 0.1
recipe 591× 204 0.60 0.164 0.52 0.89 63.24 50 0.1

scorpion 1709× 466 156.9 42.712 125 17.68 8.02 50 1
stocfor1 565× 165 1.05 0.553 0.95 2.13 2.52 50 0.1

method we solve the feasibility problem (Ax ≤ b) for a certain β and δ 11, for GSKM and PASKM variants we solve
the same feasibility problem and report the best performing method from each of the two, and finally for fmincon
algorithms, we use the original LPs (min cTx s.t Ax ≤ b, l ≤ x ≤ u). Note that, this is not an ideal or obvious
comparison, for a better suitable comparison we follow the framework used in [11,60]. We set the stopping criterion for
SKM, GSKM and PASKM variants as max(Axk−b)

max(Ax0−b) ≤ ε and the halting criterion for the fmincon’s algorithms (IPM,

ASM) are set as max(Axk−b,l−xk,xk−u)
max(Ax0−b,l−x0,x0−u) ≤ ε and cT xk

cT x0
≤ ε, where ε is the tolerance gap listed in Table 3. To avoid any

biased conclusion, for each problem we set the initial update as far as possible from the feasible region.

From the comparison in Table 3, we can see that the proposed algorithms work much faster than IPM and ASM but work
marginally better than the existing SKM method. Notice that the improvement of PASKM and GSKM algorithms over
the SKM method for most problems are marginal as the proposed algorithms are designed explicitly for dense matrices.
One can develop special algorithmic variants of the proposed PASKM and GSKM methods for sparse problems by
following some standard aggregation techniques. A possible technique is to combine multiple steps by using the sparsity
of the test instances. For instance, after kth iteration when we have xk, yk and vk, instead of moving forward with the
sequences xk+1, yk+1 and vk+1, for any T � 1 we can skip T iterations and update xk+T , yk+T and vk+T using a
generalized recurrence relation that can enhance the computational efficiency.

5 Conclusion

In this work, we propose a general algorithmic framework (GSKM) for solving linear feasibility problems that unify
various SKM type algorithms with the addition of a relaxation parameter ξ. From our convergence analysis of the GSKM
method, one can recover convergence Theorems of several well-known algorithms such as Randomized Kaczmarz,
Motzkin Method and Sampling Kaczmarz Motzkin method. In addition to the general framework, we propose a
Nesterov type acceleration scheme in the SKM method called as PASKM. Our proposed PASKM method provides
a bridge between Nesterov type acceleration of Machine Learning to sampling Kaczmarz methods for solving linear
feasibility problems. To show the effectiveness of the proposed algorithms, we performed a wide range of numerical
experiments on various types of random and standard benchmark data sets. For a better understanding of the behavior of
the proposed algorithms, we numerically analyze two variants for both GSKM and PASKM algorithms in comparison
with the original SKM method. Furthermore, we compare our proposed methods to commercially available methods
such as IPM and ASM. In the majority of the test instances, the proposed algorithms significantly outperform the
state-of-the-art methods. Furthermore, as shown in our numerical experiments, the correct choice of parameters can
lead to much faster and accelerated methods for different types of test instances.

Future Research In the future, the proposed algorithms and the technical analysis can be adopted effectively to
various types of extensions such as sparse variants, optimally tuned PASKM, and GSKM, PASKM variants with greedy

11we note the best possible time from our previous experiments
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sampling strategies. First, we plan to extend our work to design efficient sparse variations of the proposed methods that
can handle large-scale real-world problems with greater sparsity in the data matrix A. Second, we intend to design
a test instance dependent scheme for identifying optimal parameter selection (i.e., β, δ, ξ, λ, τ ) for both GSKM and
PASKM. For the GSKM algorithm, adaptive parameter selection (i.e., βk, δk, ξk) policy can be a great area of future
research. One can also derive connecting ideas between the proposed GSKM and induced projection plane generation
of Chubanov [30, 31] which can produce faster algorithms. Finally, we aspire to develop adaptive sampling strategies
and integrate the greedy Kaczmarz [48] type method into the GSKM framework to further speed up the convergence.
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Appendix 1

Proof of Lemma 3.5 Using the expectation expression given in the first section we have,
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Here, the notation (ATA)ij denotes the matrix alaTl where the index l belongs to the list (5). Furthermore, the index l
corresponds to the (β + j)th entry on the list (5). This proves the Lemma.

Proof of Lemma 3.6 Using the definition of the expectation from (7), we have,
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Here, s is the number of zero entries in the residual (Ax − b)+, which also corresponds to the number of satisfied
constraints for x. Since AP(x) ≤ b, we have the following:

ES

[∣∣(aTi∗x− bi∗)+
∣∣2] (7)

=
1(
m
β

) m−β∑
j=0

(
β − 1 + j

β − 1

)
|(Ax− b)+

ij
|2

≤ 1(
m
β

) m−β∑
j=0

(
β − 1 + j

β − 1

) ∣∣(Ax−AP(x))ij
∣∣2

=
1(
m
β

) (x− P(x))T
m−β∑
j=0

(
β − 1 + j

β − 1

)
(ATA)ij(x− P(x))
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= (x− P(x))T ES
[
ai∗a

T
i∗
]

(x− P(x))

Lemma 3.4 & 3.5
≤ min

{
1,
β

m
λmax

}∥∥x− P(x)
∥∥2

= min

{
1,
β

m
λmax

}
d(x, P )2.

Combining the above identities and using the expression for f(x) from (9) we get,
µ1

2
d(x, P )2 ≤ f(x) ≤ µ2

2
d(x, P )2,

which proves the Lemma.

Proof of Lemma 3.7 From the definition of f(x), it can be easily checked that f(x) is a convex function. Now, by
the convexity property of f(x), for any x, y ∈ Rn, we have the following:

〈x− y,∇f(y)〉 ≤ f(x)− f(y). (33)

Therefore, we have 〈
x− y,ES

[
(aTi∗y − bi∗)+ai∗

] 〉
= 〈x− y,∇f(y)〉 ≤ f(x)− f(y)

Lemma 3.6
≤ µ2

2
d(x, P )2 − µ1

2
d(y, P )2.

This completes the proof.

Proof of Lemma 3.9 Since, ȳ ∈ P , from the definition we have,

〈ȳ − y,ES
[
ai∗(aTi∗y − bi∗)+

]
〉 = ES

[
(aTi∗y − bi∗)+

(
aTi∗ ȳ − aTi∗y

)]
≤ ES

[
(aTi∗y − bi∗)+

(
bi∗ − aTi∗y

)]
= −ES

[∣∣(aTi∗y − bi∗)+
∣∣2]

= −2f(y)
Lemma 3.6
≤ −µ1 d(y, P )2.

Here, we used the identity xx+ = |x+|2. This proves the Lemma.

Proof of Lemma 3.11 Since, P(x) ∈ P , we have

ES
[
d(z, P )2

] Lemma 3.3
≤ ES

[
‖z − P(x)‖2

]
= ES

[∥∥x− P(x)− δ
(
aTi∗x− bi∗

)+
ai∗
∥∥2
]

(9)
= ‖x− P(x)‖2 + 2δ2f(x) + 2δ

〈
P(x)− x,∇f(x)

〉
Lemma 3.6
≤ ‖x− P(x)‖2 − 2(2δ − δ2)f(x)

≤ ‖x− P(x)‖2 − (2δ − δ2) µ1‖x− P(x)‖2 = h(δ) d(x, P )2.

Here, we used the lower bound of the expected value from Lemma 3.6.

Proof of Theorem 3.12 Since, φ1, φ2 ≥ 0, the largest root φ of equation φ2 + φ1φ− φ2 = 0 can written as

φ =
−φ1 +

√
φ2

1 + 4φ2

2
≥ −φ1 + φ1

2
= 0.

Then using the given recurrence we have,

Gk+1 + φGk ≤ (φ+ φ1)Gk + φ2Gk−1

= (φ+ φ1) (Gk + φGk−1)

...

≤ (φ+ φ1)k (G1 + φG0)

= (φ+ φ1)k(1 + φ)G0.
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This proves the first part. Also note that since φ1 + φ2 < 1, we have,

φ+ φ1 =
φ1 +

√
φ2

1 + 4φ2

2
<
φ1 +

√
φ2

1 + 4(1− φ1)

2
=
φ1 + 2− φ1

2
= 1.

For the second part, notice that from the recurrence inequality, we can deduce the following matrix inequality:[
Gk+1

Gk

]
≤
[
φ2

1 + φ2 φ1φ2

φ1 φ2

] [
Gk−1

Gk−2

]
. (34)

The Jordan decomposition of the matrix in the above expression is given by,[
φ2

1 + φ2 φ1φ2

φ1 φ2

]
=

[
−φ φ+ φ1

1 1

] [
φ2 0
0 ρ2

][ −1
φ1+2φ

1
2 + φ1

2(φ1+2φ)
1

φ1+2φ
1
2 −

φ1

2(φ1+2φ)

]
. (35)

Next, we discuss two possible cases of values of k. Also, we substituted φ2 = φ(φ+ φ1) in the Jordan decomposition
of equation (35).

Case 1: k even [
Gk+1

Gk

]
(34)
≤
[
φ2

1 + φ2 + φφ1 φ2φ1 + φφ2
1

φ1 φ2 + φφ1

] [
Gk−1

Gk−2

]
...

≤
[
φ2

1 + φ2 + φφ1 φ2φ1 + φφ2
1

φ1 φ2 + φφ1

] k
2
[
G1

G0

]
(35)
=

[
−φ φ+ φ1

1 1

] [
φk 0
0 ρk

] [ −1
φ1+2φ

1
2 + φ1

2(φ1+2φ)
1

φ1+2φ
1
2 −

φ1

2(φ1+2φ)

] [
G0

G0

]
=

[
(1 + φ)ρk+1 + (1− φ− φ1)φk+1

(1 + φ)ρk − (1− φ− φ1)φk

] [
G0

φ1+2φ

]
(22)
=

[
R1ρ

k+1 +R2φ
k+1

R1ρ
k −R2φ

k

]
G0. (36)

Here, we used G0 = G1.

Case 2: k odd [
Gk+1

Gk

]
(34)
≤
[
φ2

1 + φ2 + φφ1 φ2φ1 + φφ2
1

φ1 φ2 + φφ1

] [
Gk−1

Gk−2

]
...

≤
[
φ2

1 + φ2 + φφ1 φ2φ1 + φφ2
1

φ1 φ2 + φφ1

] k−1
2
[
G2

G1

]
(35)
=

[
−φ φ+ φ1

1 1

] [
φk−1 0

0 ρk−1

][ −1
φ1+2φ

1
2 + φ1

2(φ1+2φ)
1

φ1+2φ
1
2 −

φ1

2(φ1+2φ)

] [
(φ1 + φ2)G0

G0

]
=

[
(φ+ φ1 + φ2)ρk − (φ− φ2)φk

(φ+ φ1 + φ2)ρk−1 + (φ− φ2)φk−1

] [
G0

φ1+2φ

]
(22)
=

[
R3ρ

k −R4φ
k

R3ρ
k−1 +R4φ

k−1

]
G0. (37)

Here, we used the inequality G2 ≤ φ1G1 + φ2G0. Now combining the relations from equation (36) and (37), we can
prove the second part of Theorem 3.12.
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Proof of Theorem 3.13 From the given recurrence relation, we have[
Hk+1

Fk+1

]
≤
[
Π1 Π2

Π3 Π4

] [
Hk

Fk

]
≤
[
Π1 Π2

Π3 Π4

]k [
H1

F1

]
. (38)

Using the definitions of (25), we can write the Jordan decomposition of the above matrix as follows[
Π1 Π2

Π3 Π4

]
=

[
Γ2 Γ1

1 1

] [
ρ1 0
0 ρ2

] [
−Γ3 Γ1Γ3

Γ3 Γ2Γ3

]
. (39)

Now, substituting the matrix decomposition into equation (38) and simplifying we have[
Hk+1

Fk+1

]
≤
[
Π1 Π2

Π3 Π4

]k [
H1

F1

]
(39)
=

[
Γ2 Γ1

1 1

] [
ρk1 0
0 ρk2

] [
−Γ3 Γ1Γ3

Γ3 Γ2Γ3

] [
H1

F1

]
=

[
Γ2Γ3(Γ1 − 1) ρk1 + Γ1Γ3(Γ2 + 1) ρk2

Γ3(Γ1 − 1) ρk1 + Γ3(Γ2 + 1) ρk2

] [
H1

F1

]
. (40)

Since Π1,Π2,Π3,Π4 ≥ 0, one can easily verify that Γ1,Γ3 ≥ 0. Now, it remains to show that 0 ≤ ρ1 ≤ ρ2 < 1. To
show that, first note that

(Π1 −Π4)2 + 4Π2Π3

(24)
< (Π1 −Π4)2 + 4− 4Π1Π4 − 4(Π1 + Π4)

= (2−Π1 −Π4)
2
. (41)

Now, we have,

ρ1 =
1

2

[
Π1 + Π4 −

√
(Π1 −Π4)2 + 4Π2Π3

]
≥ 1

2

[
Π1 + Π4 −

√
(Π1 −Π4)2 + 4Π1Π4

]
=

1

2
[Π1 + Π4 − (Π1 + Π4)] = 0.

Moreover, since 2−Π1 −Π4 ≥ 0, we have

ρ1 ≤ ρ2 =
1

2

[
Π1 + Π4 +

√
(Π1 −Π4)2 + 4Π2Π3

]
(41)
<

1

2

[
Π1 + Π4 +

√
(2−Π1 −Π4)

2

]
(24)
=

1

2
[Π1 + Π4 + 2−Π1 −Π4] = 1.

As 0 ≤ ρ1 ≤ ρ2 < 1, considering (40) we can deduce that the sequence {Hk} and {Fk} converges.

Appendix 2

Proof of Theorem 3.14 From the update formula of Algorithm 2, we have zk = xk − (Aτkxk − bτk)+
i∗ai∗ where,

i∗ = arg max
i∈τk

{aTi xk − bi, 0} = arg max
i∈τk

(Aτkxk − bτk)+
i . (42)

Similarly, the previous update formula can be written as, zk−1 = xk−1 − (Aτk−1
xk−1 − bτk−1

)+
j∗aj∗ ; where,

j∗ = arg max
j∈τk−1

{aTj xk−1 − bj , 0} = arg max
j∈τk−1

(Aτk−1
xk−1 − bτk−1

)+
j . (43)

Note that, the notation is consistent with the definition of (6). Since for any ξ ∈ Q1, (1− ξ)P(xk) + ξP(xk−1) ∈ P
we have,

d(xk+1, P )2 =
∥∥xk+1 − P(xk+1)

∥∥2

Lemma 3.3
≤

∥∥xk+1 − (1− ξ)P(xk)− ξP(xk−1)
∥∥2

(10)
=
∥∥(1− ξ)zk + ξzk−1 − (1− ξ)P(xk)− ξP(xk−1)

∥∥2
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(11)
=
∥∥(1− ξ)

{
xk − P(xk)− δ

(
aTi∗xk − bi∗

)+
ai∗
}

+ ξ
{
xk−1 − P(xk−1)− δ

(
aTj∗xk−1 − bj∗

)+
aj∗
}∥∥2

≤ (1− ξ)
∥∥xk − P(xk)− δ

(
aTi∗xk − bi∗

)+
ai∗
∥∥2

+ ξ
∥∥xk−1 − P(xk−1)− δ

(
aTj∗xk−1 − bj∗

)+
aj∗
∥∥2
. (44)

We used the fact that the function ‖ · ‖2 is convex and 0 ≤ ξ ≤ 1. Now, taking expectation in both sides of the equation
(44) and using Lemma 3.11, we get the following:

E[d(xk+1, P )2 | Sk,Sk−1] ≤ (1− ξ) ESk

[∥∥xk − P(xk)− δ
(
aTi∗xk − bi∗

)+
ai∗
∥∥2
]

+ ξ ESk−1

[∥∥xk−1 − P(xk−1)− δ
(
aTj∗xk−1 − bj∗

)+
aj∗
∥∥2
]

Lemma 3.11
≤ (1− ξ) h(δ) d(xk, P )2 + ξ h(δ) d(xk−1, P )2, (45)

where, h(δ) is defined in Lemma 3.11. Taking expectation again in equation (45) and letting Gk+1 = E
[
d(xk+1, P )2

]
,

we get the following:

Gk+1 ≤ φ1Gk + φ2Gk−1. (46)

Since, φ1, φ2 ≥ 0, φ1 + φ2 < 1 and z0 = z1, using first part of Theorem 3.12, we have the following:

E
[
d(xk+1, P )2

]
≤ (1 + φ)(φ+ φ1)kG0 = (1 + φ)ρk E

[
d(x0, P )2

]
. (47)

Moreover, considering (47) with Lemma 3.6 we get the bound of E[f(xk)] which proves the first part of Theorem 3.14.
Furthermore, using the second part of Theorem 3.12 and equation (46), we get the second part of Theorem 3.14. Now,

to prove the third part first note that 1
k

k∑
l=1

P(xl) ∈ P , using Lemma 3.3 we have

E[d(x̃k, P )2] = E[‖x̃k − P(x̃k)‖2]
Lemma 3.3
≤ E

[∥∥∥1

k

k∑
l=1

(xl − P(xl))
∥∥∥2
]

≤ E

[
1

k

k∑
l=1

∥∥xl − P(xl)
∥∥2

]
=

1

k

k∑
l=1

E[d(xl, P )2]

≤ (1 + φ)d(x0, P )2

k

k∑
l=1

ρl−1 ≤ (1 + φ)d(x0, P )2

k(1− ρ)
. (48)

Furthermore, using a more simplifies version of (44) we have the following:

Gl+1 −Gl ≤ ξ(Gl −Gl−1) + 2ξδ(2− δ)[f(xl)− f(xl−1)]− 2δ(2− δ)f(xl),

for any l ≥ 1. Summing up the above identity for l = 1, 2, ..., k, we have the following:

2δ(2− δ)
k∑
l=1

f(xl) ≤ ξG0 +G1 − ξGk −Gk+1 + 2ξδ(2− δ)[f(xk)− f(x0)]

≤ (1 + ξ)G0 + ξ[2ηf(xk)−Gk]

≤ (1 + ξ)G0 + ξ[ηµ2 − 1]Gk ≤ (1 + ξ)d(x0, P )2, (49)

where, η = 2δ − δ2. We used the non-negativity of the sequences Gk and f(xk). We also used the upper bound from
Lemma 3.6. Then, we get

E[f(x̃k)] ≤ E

[
1

k

k∑
l=1

f(xl)

]
=

1

k

k∑
l=1

E[f(xl)] ≤
(1 + ξ) d(x0, P )2

2δk(2− δ)
.

This proves the second part of Theorem 3.14.
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Proof of Theorem 3.16 For any natural number l ≥ 1 define, ϑl = ξ
1+ξ [xl−1 − xl − δ(aTj∗xl−1 − bj∗)+aj∗ ],

∆l = xl + ϑl and χl = ‖xl + ϑl − P(∆l)‖2, then using the update formulas (10) and (11), we have

xl+1 + ϑl+1
(10) & (11)

= xl + ϑl −
δ

1 + ξ

(
aTi∗xl − bi∗

)+
ai∗ ,

here, the index i∗ and j∗ are defined based on (6) respectively for the sequences xl and xl−1. Using the above relation,
we can write

χl+1 = ‖xl+1 + ϑl+1 − P(∆l+1)‖2
Lemma 3.3
≤ ‖xl+1 + ϑl+1 − P(∆l)‖2

=
∥∥xl + ϑl −

δ

1 + ξ

(
aTi∗xl − bi∗

)+
ai∗ − P(∆l)

∥∥2

= ‖xl + ϑl − P(∆l)‖2︸ ︷︷ ︸
=χl

+
δ2

(1 + ξ)2
‖(aTi∗xl − bi∗)+ai∗‖2︸ ︷︷ ︸

J1

− 2δ

1 + ξ

〈
xl + ϑl − P(∆l) , ai∗(aTi∗xl − bi∗)+

〉︸ ︷︷ ︸
J2

= χl +
δ2

(1 + ξ)2
J1 −

2δ

1 + ξ
J2. (50)

Taking expectation with respect to Sl we have,

δ2

(1 + ξ)2
ESl [J1]

(9)
=

2δ2

(1 + ξ)2
f(xl). (51)

Similarly, we can simplify the third term of (50) as

− 2δ

1 + ξ
ESl [J2]

(9)
= − 2δ

1 + ξ

〈
xl − P(∆l),∇f(xl)

〉
− 2δξ

(1 + ξ)2

〈
xl−1 − xl − δ∇f(xl−1),∇f(xl)

〉
= − 2δ

1 + ξ

〈
xl − P(∆l),∇f(xl)

〉
− 2δξ

(1 + ξ)2

〈
xl−1 − xl,∇f(xl)

〉
+

δ2ξ

(1 + ξ)2

[
‖∇f(xl) +∇f(xl−1)‖2 − ‖∇f(xl)‖2 − ‖∇f(xl−1)‖2

]
Lemma 3.7 & 3.9

≤ − 4δ

1 + ξ
f(xl)−

2δξ

(1 + ξ)2
[f(xl−1)− f(xl)]−

2δ2ξ

(1 + ξ)2
[f(xl−1) + f(xl)]

= −2δξ(1 + δ)

(1 + ξ)2
f(xl−1) +

2δξ(1 + δ)

(1 + ξ)2
f(xl)−

4δ(1 + ξ + δξ)

(1 + ξ)2
f(xl). (52)

Using the expressions of equation (51) and (52) in (50) and simplifying further, we have

E[χl+1]− 2δξ(1 + δ)

(1 + ξ)2
f(xl) +$f(xl) ≤ E[χl]−

2δξ(1 + δ)

(1 + ξ)2
f(xl−1), (53)

here,

$ =
4δ(1 + ξ + δξ)

(1 + ξ)2
− 2δ2

(1 + ξ)2
=

2δ(2 + 2ξ + 2δξ − δ)
(1 + ξ)2

> 0. (54)

Now, taking expectation again in (53) and using the tower property, we get,

ql+1 +$E[f(xl)] ≤ ql, l = 1, 2, 3..., (55)

where, ql = E[χl]− 2δξ(1+δ)
(1+ξ)2 E[f(xl−1)]. Summing up (55) for l = 1, 2, ..., k we get

k∑
l=1

E[f(xl)] ≤
q1 − qk+1

$
≤ q1

$
. (56)
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Now, using Jensen’s inequality, we have

E [f(x̄k)] = E

[
f

(
k∑
l=1

xl
k

)]
≤ E

[
1

k

k∑
l=1

f(xl)

]
=

1

k

k∑
l=1

E[f(xl)]
(56)
≤ q1

$k
.

Since, x0 = x1, we have ϑ1 = −δξ
1+ξ (aTi∗x0 − bi∗)+ai∗ . Furthermore,

E[χ1] = E
[
‖x1 + ϑ1 − P(∆1)‖2

] Lemma 3.3
≤ E

[
‖x1 + ϑ1 − P(x0)‖2

]
= E

[
‖x0 − P(x0)− δξ

1 + ξ
(aTi∗x0 − bi∗)+ai∗‖2

]
= ‖x0 − P(x0)‖2 +

δ2ξ2

(1 + ξ)2
E[|(aTi∗x0 − bi∗)+|2]

− 2δξ

1 + ξ
〈x0 − P(x0),E[(aTi∗x0 − bi∗)+ai∗ ]〉

Lemma 3.6
≤ ‖x0 − P(x0)‖2 +

2δ2ξ2

(1 + ξ)2
f(x0)− 2δξµ2

1 + ξ
‖x0 − P(x0)‖2. (57)

Now, from our construction we get

q1 = E[χ1]− 2δξ(1 + δ)

(1 + ξ)2
E[f(x0)] ≤ (1− 2δξµ2

1 + ξ
) d(x0, P )2 +

2δξ(δξ − 1− δ)
(1 + ξ)2

f(x0).

Substituting the values of $ and q1 in the expression of E [f(x̄k)], we have the following:

E [f(x̄k)] ≤ (1 + ξ)(1 + ξ − 2δξµ2) d(x0, P )2 + 2ξδ(δξ − δ − 1)f(x0)

2δk (2 + 2ξ + 2δξ − δ)
.

Proof of Theorem 3.15 Since, the term ‖xk+1 −P(xk+1)‖ is constant under From the update formula of the GSKM
algorithm, we get,

E[‖xk+1 − P(xk+1)‖ | Sk+1,Sk] = E[‖xk+1 − P(xk+1)‖ | Sk]

Lemma 3.3
≤ ESk [‖xk+1 − P(xk)‖]

= ESk [‖zk − P(xk)− ξ(zk − zk−1)‖]
≤ ESk [‖zk − P(xk)‖] + |ξ|ESk [‖zk − zk−1‖]

≤
{
ESk [‖zk − P(xk)‖2]

} 1
2 + |ξ|‖zk − zk−1‖

Lemma 3.11
≤

√
h(δ) ‖xk − P(xk)‖+ |ξ|‖zk − zk−1‖. (58)

We performed the two expectations in order, from the innermost to the outermost. Now, taking expectation in (58) and
using the tower property of expectation we have,

E[‖xk+1 − P(xk+1)‖] ≤
√
h(δ) E[‖xk − P(xk)‖] + |ξ| E[‖zk − zk−1‖]. (59)

Similarly, using the update formula for zk+1, we have

E[‖zk+1 − zk‖ | Sk+1,Sk] = E[ESk+1
[‖xk+1 − δ

(
aTi∗xk+1 − bi∗

)+
ai∗ − zk‖] | Sk]

= E[ESk+1
[‖ − ξ(zk − zk−1)− δ

(
aTi∗xk+1 − bi∗

)+
ai∗‖] | Sk]

≤ |ξ| ‖zk − zk−1‖+ δ E[ESk+1
[|(aTi∗xk+1 − bi∗)+|] | Sk]

≤ |ξ| ‖zk − zk−1‖+ δ E[
{
ESk+1

[|(aTi∗xk+1 − bi∗)+|2]
} 1

2 | Sk]

Lemma 3.6
≤ |ξ| ‖zk − zk−1‖+ δ

√
µ2 E[‖xk+1 − P(xk+1)‖ | Sk]. (60)

Taking expectation in (60) and using (59) along with the tower property, we have,

E[‖zk+1 − zk‖] ≤ |ξ| E[‖zk − zk−1‖] + δ
√
µ2 E[‖xk+1 − P(xk+1)‖]
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(59)
≤ |ξ| (1 + δ

√
µ2)E[‖zk − zk−1‖] + δ

√
µ2h(δ)E[‖xk − P(xk)‖]. (61)

Combining both (59) and (61), we can deduce the following matrix inequality:

E

[
‖xk+1 − P(xk+1)‖
‖zk+1 − zk‖

]
≤
[ √

h(δ) |ξ|
δ
√
µ2h(δ) |ξ|

(
1 + δ

√
µ2

)]E [‖xk − P(xk)‖
‖zk − zk−1‖

]
. (62)

Now, from the definition, it can be easily checked that Π1,Π2,Π3,Π4 ≥ 0. Since, ξ ∈ Q2, we have

Π2Π3 −Π1Π4 = |ξ|δ
√
µ2h(δ)− |ξ|

√
h(δ)− |ξ|δ

√
µ2h(δ) = −|ξ|

√
h(δ) ≤ 0. (63)

Also, we have

Π1 + Π4 −Π1Π4+Π2Π3 =
√
h(δ) + |ξ| (1 + δ

√
µ2)− |ξ|

√
h(δ) < 1. (64)

Here, in the last inequality we used the given condition. Considering (64), we can check that Π1+Π4 < 1+|ξ|
√
h(δ) =

1 + min{1, |ξ|
√
h(δ)} = 1 + min{1,Π1Π4−Π2Π3}. Also from (63), we have Π2Π3−Π1Π4 ≤ 0, which is precisely

the condition provided in (24). Let’s define the sequences Fk = E[‖zk − zk−1‖] and Hk = E[‖xk − P(xk)‖]. Now,
using Theorem 3.13, we have[

Hk+1

Fk+1

]
≤

[
Γ2Γ3(Γ1 − 1) ρk1 + Γ1Γ3(Γ2 + 1) ρk2

Γ3(Γ1 − 1) ρk1 + Γ3(Γ2 + 1) ρk2

] [
H1

F1

]
. (65)

where, Γ1,Γ2,Γ3, ρ1, ρ2 can be derived from (25) using the parameter choice of (27). Note that, from the GSKM
algorithm we have, x1 = x0 and z1 = z0.Therefore we can easily check that, F1 = E[‖z1 − z0‖] = 0 and
H1 = E[‖x1 − P(x1)‖] = E[‖x0 − P(x0)‖] = ‖x0 − P(x0)‖ = H0. Now, substituting the values of H1 and F1 in
(65), we have [

Hk+1

Fk+1

]
= E

[
d(xk+1, P )

‖zk+1 − zk‖

]
≤

[
−Γ2Γ3 ρ

k
1 + Γ1Γ3 ρ

k
2

−Γ3 ρ
k
1 + Γ3 ρ

k
2

]
d(x0, P ). (66)

Also from Theorem 3.13 we have, Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1. Which proves the Theorem.

Proof of Theorem 3.20 Note that, since Ax ≤ b is feasible, then from Lemma 3.19, we know that there is a feasible
solution x∗ with |x∗j | ≤ 2σ

2n for j = 1, ..., n. Thus, we have,

d(x0, P ) = ‖x0 − P(x0)‖ ≤ ‖x∗‖ ≤ 2σ−1

√
n
, (67)

as x0 = 0. Then if the system Ax ≤ b is infeasible, by using Lemma 3.17, we have,

θ(x) ≥ 21−σ.

This implies when GSKM runs on the system Ax ≤ b, the system is feasible when θ(x) < 21−σ. Furthermore, since
every point of the feasible region P is inside the half-space defined by H̃i = {x | aTi x ≤ bi} for all i = 1, 2, ...,m, we
have the following:

θ(x) =
[
max
i
{aTi x− bi}

]+
≤ ‖aTi (x− P(x))‖ ≤ d(x, P ). (68)

Then, for ξ ∈ Q1 whenever the system Ax ≤ b is feasible, we have,

E [θ(xk)]
(68)
≤ E [d(xk+1, P )] ≤

√
E [d(xk+1, P )2]

Theorem 3.14
≤

√
1 + φρ

k
2 d(x0, P ). (69)

Similarly for ξ ∈ Q2 whenever the system Ax ≤ b is feasible, we have,

E [θ(xk)]
(68)
≤ E [d(xk+1, P )]

Theorem 3.15
≤

√
1 + φ ρk2 d(x0, P ). (70)

Take, ρ̄ = max{ρ, ρ2
2} 12. Now combining (69) and (70), for any ξ ∈ Q = Q1 ∪Q2, whenever the system Ax ≤ b is

feasible, we have,

E [θ(xk)]
(69) & (70)
≤

√
1 + φ ρ̄

k
2 d(x0, P )

(67)
≤
√

1 + φ ρ̄
k
2

2σ−1

√
n
. (71)

12Note that, since Γ1Γ2 ≤ 0 and Γ1Γ3 ≤ 1 ≤
√

(1 + φ), from Theorem 3.15 we have E[d(xk+1, P )] ≤
√

(1 + φ) ρk2 d(x0, P )
for any ξ ∈ Q2.
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Here, we used Theorems 3.14 & 3.15 and the identities from equations (67) & (68). Now, for detecting feasibility we
need to have, E[θ(xk)] < 21−σ . That gives us,√

1 + φ ρ̄
k
2

2σ−1

√
n

< 21−σ.

Simplifying the above identity further we get the following lower bound for k:

k >
4σ − 4− log n+ log(1 + φ)

log
(

1
ρ̄

) .

Moreover, if the system Ax ≤ b is feasible, then the probability of not having a certificate of feasibility is bounded as
follows,

p = P
(
θ(xk) ≥ 21−σ) ≤ E [θ(xk)]

21−σ <

√
1 + φ

n
22σ−2 ρ̄

k
2 .

Here, we used the Markov’s inequality P(x ≥ t) ≤ E[x]
t . This completes the proof of Theorem 3.20.

Appendix 3

Proof of Theorem 3.22 From the update formula of the PASKM algorithm, we get,

ESk [‖vk+1 − P(vk+1)‖2]

Lemma 3.3
≤ ESk [‖vk+1 − ωP(vk)− (1− ω)P(yk)‖2]

= ESk [‖ω(vk − P(vk)) + (1− ω)(yk − P(yk))− γ
(
aTi∗yk − bi∗

)+
ai∗‖2]

= ESk [‖ω(vk − P(vk)) + (1− ω)(yk − P(yk))‖2] + γ2 ESk [|(aTi∗yk − bi∗)+|2]

− 2γ(1− ω)
〈
yk − P(yk),ESk [(aTi∗yk − bi∗)+ai∗ ]

〉
− 2γω

〈
vk − P(vk),ESk [(aTi∗yk − bi∗)+ai∗ ]

〉
≤ ω‖vk − P(vk)‖2 + (1− ω)‖yk − P(yk)‖2 + γ2 ESk [|(aTi∗yk − bi∗)+|2]

− 2γ(1− ω)ESk [|(aTi∗yk − bi∗)+|2] + ωγ ESk [|(aTi∗yk − bi∗)+|2] + ωγ‖vk − P(vk)‖2

= ω(1 + γ)‖vk − P(vk)‖2 + (1− ω)‖yk − P(yk)‖2 + 2γ(γ + 3ω − 2)f(yk)

≤ ω(1 + γ)‖vk − P(vk)‖2 + {1− ω + γµ1(γ + 3ω − 2)} ‖yk − P(yk)‖2. (72)

Here, we used the condition γ + 3ω − 2 ≤ 0. Similarly, using the update formula for yk+1, we have

ESk [‖yk+1 − P(yk+1)‖2]

Lemma 3.3
≤ ESk [‖α(vk+1 − P(vk+1)) + (1− α)(xk+1 − P(yk))‖2]

≤ αESk [‖vk+1 − P(vk+1)‖2] + (1− α)ESk [‖xk+1 − P(yk)‖2]

Lemma 3.11
≤ αESk [‖vk+1 − P(vk+1)‖2] + (1− α)h(δ)‖yk − P(yk)‖2. (73)

Following Theorem 3.13, let us define the sequences Hk = E[‖vk − P(vk)‖2] and Fk = E[‖yk − P(yk)‖2]. The goal
is to prove that Hk and Fk satisfy the condition (24). Now, taking expectation in (72) and using the tower property of
expectation we have,

Hk+1 ≤ ω(1 + γ)Hk + {1− ω + γµ1(γ + 3ω − 2)}Fk. (74)

Similarly, taking expectation in (73) and using (74) along with the tower property of expectation we have,

Fk+1 ≤ αHk+1 + (1− α)h(δ)Fk
≤ αω(1 + γ)Hk + {(1− α)h(δ) + α(1− ω) + αγµ1(γ + 3ω − 2)}Fk. (75)

Combining both (74) and (75), we can deduce the following matrix inequality:[
Hk+1

Fk+1

]
≤
[
Π1 Π2

Π3 Π4

] [
Hk

Fk

]
≤
[
Π1 Π2

Π3 Π4

]k+1 [
H0

F0

]
. (76)
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Here, we use the fact that Π1,Π2,Π3,Π4 ≥ 0. Now we will use Theorem 3.13 to simplify the expression of (76).
Before we can use Theorem 3.13, we need to make sure the sequences Hk and Fk satisfy the condition of (24). From
the definition, we have

Π2Π3 −Π1Π4 = αω(1− ω)(1 + γ) + αωγµ1(1 + γ)(γ + 3w − 2)

− ωh(δ)(1− α)(1 + γ)− αω(1− ω)(1 + γ)− αωγµ1(1 + γ)(γ + 3w − 2)

= −ωh(δ)(1− α)(1 + γ) ≤ 0. (77)

Also, we have

Π1 + Π4 −Π1Π4+Π2Π3 = ω(1 + γ) + h(δ)(1− α) + α(1− ω)

+ αγµ1(γ + 3w − 2)− ωh(δ)(1− α)(1 + γ) < 1. (78)

Here, in the last inequality, we used the given condition. Considering (78), we can check that Π1 + Π4 < 1 +
ωh(δ)(1− α)(1 + γ) = 1 + min{1, ωh(δ)(1− α)(1 + γ)} = 1 + min{1,Π1Π4 −Π2Π3}. Also from (77), we have
Π2Π3 −Π1Π4 ≤ 0, which is precisely the condition provided in (24). Now, using Theorem 3.13, we have[

Hk+1

Fk+1

]
≤

[
Γ2Γ3(Γ1 − 1) ρk+1

1 + Γ1Γ3(Γ2 + 1) ρk+1
2

Γ3(Γ1 − 1) ρk+1
1 + Γ3(Γ2 + 1) ρk+1

2

] [
H0

F0

]
. (79)

where, Γ1,Γ2,Γ3, ρ1, ρ2 can be derived from (25) using the given parameter. Note that, from the PASKM algorithm
we have, x0 = v0 = y0. Therefore we can easily check that, H0 = ‖v0 − P(v0)‖2 = ‖y0 − P(y0)‖2 = F0. Now,
substituting the values of H0 and F0 in (79), we have

E

[
d(vk+1, P )2

d(yk+1, P )2

]
≤

[
Γ2Γ3(Γ1 − 1) ρk+1

1 + Γ1Γ3(Γ2 + 1) ρk+1
2

Γ3(Γ1 − 1) ρk+1
1 + Γ3(Γ2 + 1) ρk+1

2

]
d(y0, P )2. (80)

Also from Theorem 3.13 we have, Γ1,Γ3 ≥ 0 and 0 ≤ ρ1 ≤ ρ2 < 1. Which proves the the first part of the Theorem.
Now, considering Lemma 3.6, we get

E[f(xk+1)] ≤ µ2

2
E[‖yk+1 − P(yk+1)‖2] =

µ2

2
E[d(yk+1, P )2]. (81)

Now, substituting the result of (80) in (81), we get the second part of the Theorem.

Proof of Theorem 3.23 Let us define, V = ωP(vk) + (1 − ω)P(yk). Since V ∈ P , using the update formula of
vk+1 from equation (15), we have,

d(vk+1, P )2 = ‖vk+1 − P(vk+1)‖2
Lemma 3.3
≤ ‖vk+1 − V‖2

(15)
=
∥∥ωvk + (1− ω)yk − V − γ(aTi∗yk − bi∗)+ai∗

∥∥2

= ‖ωvk + (1− ω)yk − V‖2︸ ︷︷ ︸
I1

+γ2 ‖(aTi∗yk − bi∗)+ai∗‖2︸ ︷︷ ︸
I2

− 2γ
〈
ωvk + (1− ω)yk − V , ai∗(aTi∗yk − bi∗)+

〉︸ ︷︷ ︸
I3

= I1 + γ2I2 − 2γI3. (82)

Since ‖ · ‖2 is a convex function and 0 < ω < 1, we can bound the expected first term as follows,

ESk [I1] = ESk
[
‖ωvk + (1− ω)yk − V‖2

]
= ESk

[
‖ωvk + (1− ω)yk − ωP(vk)− (1− ω)P(yk)‖2

]
≤ ω‖vk − P(vk)‖2 + (1− ω)‖yk − P(yk)‖2

= ω d(vk, P )2 + (1− ω) d(yk, P )2. (83)

Taking expectation with respect to the sampling distribution in the second term of equation (82) and using Lemma 3.11
with the choice z = xk+1, x = yk and η = 2δ − δ2, we get,

γ2 ESk
[
‖(aTi∗yk − bi∗)+ai∗‖2

]
= γ2 ESk

[
|(aTi∗yk − bi∗)+|2

]
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Lemma 3.11
≤ γ2

η

[
d(yk, P )2 − E

[
d(xk+1, P )2

]]
. (84)

Now, taking expectation in the third term of (82) we get,

−2γ ESk [I3] = −2γ
〈
ωvk + (1− ω)yk − V,ESk

[
ai∗(aTi∗yk − bi∗)+

] 〉
(13) & (9)

= −2γ
〈ω
α

[yk − (1− α)xk] + (1− ω)yk − V,∇f(yk)
〉

= −2γ
〈ω(1− α)

α
(yk − xk) + yk − V,∇f(yk)

〉
. (85)

Using Lemma 3.7 and Lemma 3.9 we can simplify equation (85) as follows,

− 2γ ESk [I3] = −2γ
〈ω(1− α)

α
(yk − xk) + yk − V,∇f(yk)

〉
= 2γ

ω(1− α)

α

〈
xk − yk,∇f(yk)

〉
+ 2γ

〈
V − yk,∇f(yk)

〉
Lemma 3.7 & 3.9

≤ γω(1− α)

α
d(xk, P )2 − µ1γω(1− α)

α
d(yk, P )2 − 2µ1γ d(yk, P )2. (86)

Now, substituting the values of equation (83), (84) & (86) in equation (82) we get the following:

E[d(vk+1, P )2] = I1 + γ2 ESk [I2]− 2γ ESk [I3]

= ω d(vk, P )2 + (1− ω) d(yk, P )2 +
γ2

η

{
d(yk, P )2 − E

[
d(xk+1, P )2

]}
+
γω(1− α)

α
d(xk, P )2 − γµ1

(
2 +

ω(1− α)

α

)
d(yk, P )2.

With further simplification, the above identity can be written as follows:

E
[
d(vk+1, P )2 +

γ2

η
d(xk+1, P )2

]
= ω

[
d(vk, P )2 +

γ(1− α)

α
d(xk, P )2

]
+ d(yk, P )2

{
1− ω +

γ2

η
− 2γµ1 −

γωµ1(1− α)

α

}
. (87)

Now, let’s choose the parameters as in equation (32) along with 0 < ζ < 4ηµ1

(1−µ1)2 . We can easily see that γ
2

η = γ(1−α)
α

and α ∈ (0, 1). Also note that,

2µ1γ = 2µ1

√
ηζµ1 > 2µ1

√
ζ(1− µ1)2ζ

4
= µ1ζ(1− µ1), (88)

which implies ω < 1. Similarly, whenever µ1 < 1 we have

2γ − ζ − 1

µ1
< 2
√
ηµ1ζ − ζ − 1 ≤ 2

√
ζ − ζ − 1 = −(

√
ζ − 1)2 ≤ 0, (89)

which implies ω > 0. Also, using the parameter choice of (32), we have,

1− ω +
γ2

η
− 2γµ1−

γωµ1(1− α)

α
= 1− ω + ζµ1 − 2γµ1 − ωζµ2

1

= 1− 2γµ1 + ζµ1 − ω(1 + ζµ2
1) = 0. (90)

Now, using all of the above relations (equation (32), (90)) in equation (87), we get the following:

E
[
d(vk+1, P )2 +

γ2

η
d(xk+1, P )2

]
≤ ω

[
d(vk, P )2 +

γ(1− α)

α︸ ︷︷ ︸
= γ2

η

d(xk, P )2
]

+
[

1− ω +
γ2

η
− 2γµ1 −

γωµ1(1− α)

α︸ ︷︷ ︸
= 0

]
d(yk, P )2
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= ω

[
d(vk, P )2 +

γ2

η
d(xk, P )2

]
. (91)

Finally, taking expectation again with tower rule and substituting γ2

η = ζµ1 we have,

E
[
d(vk+1, P )2 + ζµ1 d(xk+1, P )2

]
≤ ωk+1 E

[
d(v0, P )2 + ζµ1 d(x0, P )2

]
= (1 + ζµ1) ωk+1 d(x0, P )2.

This proves the Theorem. Furthermore, for faster convergence, we need to choose parameters such that, ω becomes as
small as possible. In the proof, we assumed µ1 < 1 holds which is the most probable scenario. Whenever µ1 = 1, we
must have µ1 = µ2 = 1 and Lemma 6 holds with both equality, i.e., f(x) = d(x, P )2. Therefore if we choose α, γ, ω
as α = η

η+γ , γ =
√
ζη, ω = 1− 2γ

1+ζ , we can check that condition (89) holds and 0 < ω < 1 holds for any ζ > 0.

Proof of Theorem 3.24 For any natural number l ≥ 1, using the update formula of vl+1, we have

vl+1 = ωvl + (1− ω)yl − γ(aTi∗yl − bi∗)+ai∗

(13)
=
(

1− ω +
ω

α

)
yl −

ω(1− α)

α
xl − γ(aTi∗yl − bi∗)+ai∗ . (92)

Let ϕ = ω(1− α). It can be easily checked that 0 ≤ ϕ < 1. Now, considering equation (13), we have

yl+1 = αvl+1 + (1− α)xl+1

(14) & (92)
= (1 + ω − αω)yl − ω(1− α)yl−1 + ωδ(1− α)(aTj∗yl−1 − bj∗)+aj∗

− [αγ + (1− α)δ] (aTi∗yl − bi∗)+ai∗

= (1 + ω − αω)yl − ω(1− α)yl−1 + ωδ(1− α)(aTj∗yl−1 − bj∗)+aj∗

− δ(1 + ω − αω) (aTi∗yl − bi∗)+ai∗

= (1 + ϕ)yl − ϕyl−1 + δϕ(aTj∗yl−1 − bj∗)+aj∗ − δ(1 + ϕ) (aTi∗yl − bi∗)+ai∗ . (93)

here, the index i∗ and j∗ are defined based on (6) respectively for the sequences yl and yl−1. Furthermore, with the
choice of x0 = v0, the points y0 and y1 generated by the PASKM method (i.e, algorithm 3 with arbitrary parameter
choice) can be calculated as

y1 = αv1 + (1− α)x1 = x0 − (αγ + δ(1− α))(aTi∗y0 − bi∗)+ai∗

= y0 − δ(1 + ϕ)(aTi∗y0 − bi∗)+ai∗ , (94)

since y0 = x0 = v0. Now, let’s define, ϑ̄l = ϕ
1−ϕ [yl − yl−1 + δ(aTj∗yl−1 − bj∗)+aj∗ ], ∆̄l = yl + ϑ̄l and χ̄l =

‖yl + ϑ̄l − P(∆̄l)‖2, then using the update formula (93), we have

yl+1 + ϑ̄l+1 = yl+1 +
ϕ

1− ϕ
[yl+1 − yl + δ(aTi∗yl − bi∗)+ai∗ ]

=
1

1− ϕ
yl+1 −

ϕ

1− ϕ
yl +

δϕ

1− ϕ
(aTi∗yl − bi∗)+ai∗

(93)
= yl + ϑ̄l −

δ

1− ϕ
(
aTi∗yl − bi∗

)+
ai∗ .

Using the above relation, we can write

χ̄l+1 = ‖yl+1 + ϑ̄l+1 − P(∆̄l+1)‖2
Lemma 3.3
≤ ‖yl+1 + ϑ̄l+1 − P(∆̄l)‖2

=
∥∥yl + ϑ̄l −

δ

1− ϕ
(
aTi∗yl − bi∗

)+
ai∗ − P(∆̄l)

∥∥2

= ‖yl + ϑ̄l − P(∆̄l)‖2︸ ︷︷ ︸
=χ̄l

+
δ2

(1− ϕ)2
‖(aTi∗yl − bi∗)+ai∗‖2︸ ︷︷ ︸

I1

− 2δ

1− ϕ
〈
yl + ϑ̄l − P(∆̄l) , ai∗(aTi∗yl − bi∗)+

〉︸ ︷︷ ︸
I2
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= χ̄l +
δ2

(1− ϕ)2
I1 −

2δ

1− ϕ
I2. (95)

Taking expectation with respect to Sl we have,

δ2

(1− ϕ)2
ESl [I1]

(9)
=

2δ2

(1− ϕ)2
f(yl). (96)

Similarly, we can simplify the third term of (95) as

− 2δ

1− ϕ
ESl [I2]

(9)
= − 2δ

1− ϕ
〈
yl − P(∆̄l),∇f(yl)

〉
+

2δϕ

(1− ϕ)2

〈
yl−1 − yl − δ∇f(yl−1),∇f(yl)

〉
= − 2δ

1− ϕ
〈
yl − P(∆̄l),∇f(yl)

〉
+

2δϕ

(1− ϕ)2

〈
yl−1 − yl,∇f(yl)

〉
− δ2ϕ

(1− ϕ)2

[
‖∇f(yl) +∇f(yl−1)‖2 − ‖∇f(yl)‖2 − ‖∇f(yl−1)‖2

]
Lemma 3.7 & 3.9

≤ − 4δ

1− ϕ
f(yl) +

2δϕ

(1− ϕ)2
[f(yl−1)− f(yl)] +

2δ2ϕ

(1− ϕ)2
[f(yl−1) + f(yl)]

=
2δϕ(1 + δ)

(1− ϕ)2
f(yl−1)− 2δϕ(1 + δ)

(1− ϕ)2
f(yl) +

4δ(ϕ+ δϕ− 1)

(1− ϕ)2
f(yl). (97)

Using the expressions of equation (96) and (97) in (95) and simplifying further, we have

E[χ̄l+1] +
2δϕ(1 + δ)

(1− ϕ)2
f(yl) + ςf(yl) ≤ E[χ̄l] +

2δϕ(1 + δ)

(1− ϕ)2
f(yl−1), (98)

here,

ς =
4δ(1− ϕ− δϕ)

(1− ϕ)2
− 2δ2

(1− ϕ)2
=

2δ(2− 2ϕ− 2δϕ− δ)
(1− ϕ)2

> 0. (99)

Now, taking expectation again in (98) and using the tower property, we get,

q̄l+1 + ς E[f(yl)] ≤ q̄l, l = 1, 2, 3..., (100)

where, q̄l = E[χ̄l] + 2δϕ(1+δ)
(1−ϕ)2 E[f(yl−1)]. Summing up (100) for l = 1, 2, ..., k we get

k∑
l=1

E[f(yl)] ≤
q̄1 − q̄k+1

ς
≤ q̄1

ς
. (101)

Now, using Jensen’s inequality, we have

E [f(ȳk)] = E

[
f

(
k∑
l=1

yk
k

)]
≤ E

[
1

k

k∑
l=1

f(yl)

]
=

1

k

k∑
l=1

E[f(yl)]
(101)
≤ q̄1

ςk
.

From (94), y1 = y0 − δ(1 + ϕ)(aTi∗y0 − bi∗)+ai∗ and ϑ̄1 = −ϕ2δ
1−ϕ (aTi∗y0 − bi∗)+ai∗ . Then,

E[χ̄1] = E
[
‖y1 + ϑ̄1 − P(∆̄1)‖2

] Lemma 3.3
≤ E

[
‖y1 + ϑ̄1 − P(y0)‖2

]
= E

[
‖y0 − P(y0)− δ

1− ϕ
(aTi∗y0 − bi∗)+ai∗‖2

]
= ‖y0 − P(y0)‖2 +

δ2

(1− ϕ)2
E[|(aTi∗y0 − bi∗)+|2]

− 2δ

1− ϕ
〈y0 − P(y0),E[(aTi∗y0 − bi∗)+ai∗ ]〉

Lemma 3.9
≤ ‖y0 − P(y0)‖2 +

2δ2

(1− ϕ)2
f(y0)− 4δ

1− ϕ
f(y0). (102)
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Now, from our construction we get

q̄1 = E[χ̄1] +
2δϕ(1 + δ)

(1− ϕ)2
E[f(y0)] ≤ d(y0, P )2 +

2δ(δ − 2 + 3ϕ+ δϕ)

(1− ϕ)2
f(y0).

Substituting the values of ς and q1 in the expression of E [f(ȳk)], we have the following:

E [f(ȳk)] ≤ (1− ω + αω)2 d(y0, P )2 + 2δ(δ − 2 + 3ω − 3αω + δω − δαω)f(y0)

2δk (2− 2ω + 2αω − 2δω + 2δαω − δ)
.
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