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This special issue of Mathematical Programming series B collects papers authored
(or co-authored) by researchers who attended the second Oberwolfach workshop on
MINLP, titled “Mixed-integer Nonlinear Optimization: a hatchery for modern math-
ematics”, and co-organized by the guest editors of this special issue. The workshop
took place in early june 2019. A summary of the proceedings of the workshop can be
found in [40]. The workshop was organized around three main sub-topics of MINLP:
hierarchies of approximations, mixed-integer optimal control (MIOC), and uncertain-
ties. Other contributions outside of these topics were collected into a generic “other
areas” category.

At the risk of boring theMINLPspecialist, but for the benefit of the occasional reader
who might stumble upon this preface, we say that MINLP is the acronym of “Mixed-
Integer Nonlinear Programming”, which describes a large subclass of Mathematical
Programming1 (MP) problems: notably, those containing both continuous and integer
decision variables, and nonlinear objective function and/or constraints.

1 MP is a formal language for describing optimization problems: its sentences are called formulations.
Formulations are structured in an objective function to be minimized or maximized, and a set of constraints
which limits the extent of the feasible set: both objective function and constraints are expressed in terms of
parameters (the problem input) and decision variables (the output). MP formulations are solved by solvers,
which are algorithms that determine the values of the variables yielding the optimal value of the objective
function, whenever the problem is not infeasible or unbounded.
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An incredibly short summary of MINLP history

In all human sciences, when a new result becomes important in a community, it is
likely that the scientific environment was “ripe”: and therefore it is difficult to mark
a single publication as “the first”. Accordingly, it is hard to tell when MINLP was
officially born. If we count bounded Integer Polynomial Programming (bIPP) as a
signficant representative class for MINLP, the first reference we found is the paper
[28] by P.L. Ivanescu (who later took the name of Peter Hammer), which cites [8]
as the main inspiration (a few years later, P. Hansen introduced a tree-like search for
bIPP in [26]). If we want more generality than polynomials, but accept separability
between linear and nonlinear parts of the problem, we can consider [9], by J. Benders:
the proposed solution algorithm exploits the obvious decomposition in linear and
nonlinear parts.

As a side note, R. Jeroslow [29] showed the undecidability of MINLP by exploiting
an Integer Quadratically Constrained Program (IQCP) and leveraging the Davis-
Putnam-Robinson-Matiyasevich theorem [36].

E. Balas, in a sequence of several papers during the late 1960s and early 1970s,
introduced a duality theory for Mixed-Integer Programming (MIP), based on previous
work by J. Stoer. The last paper in this sequence [6] bears the title “A duality theorem
and an algorithm for (Mixed-Integer) Nonlinear Programming”, which we thinkmight
be the first reference to the term MINLP. Balas’ duality theory for MIP is based
on a minimax principle. The suggested algorithmic approach is based on Benders’
decomposition. We refer to the bibliographies in Balas’ papers cited above for more
references.

Currently, for generic MINLP for which no structure is known in advance, the best
exact2 algorithm for solvingMINLP is the spatial Branch-and-Bound (sBB) algorithm.
The sBB algorithm is a variant of the Branch-and-Bound (BB) algorithm, which was
introduced in [32] and extended to (separable) Nonlinear Programming (NLP) in [17].

The chemical engineering boost

The motivation to construct exact algorithms for MINLP came from Chemical Engi-
neering, and in particular from Process Synthesis, where local solutions may lead to
unsafe chemical plants. I. Grossmann was probably the main actor in the field of exact
algorithms for MINLP coming from Chemical Engineering: he admits that during his
Ph.D. studies in the late 1970s, at the Centre for Process Systems Engineering, Impe-
rial College, he was influenced by an academic environment that was clearly ready to
consider and model problems using nonlinear functions of both continuous and binary
variables.

Grossmann’s Ph.D. supervisor, R. Sargent, apparently mentioned MINLP as the
type of accurate model for which no solution technique yet existed at the time. Some
techniques in the literature for nonconvex NLPs had in fact been conceived to address
problems with a limited number of binary variables. Specifically, in [24], the authors
sketch what looks like a BB for convex MINLP (cMINLP), as well as an extension of

2 Given the difficulty for representing reals on aTuringMachine, by “exact”wemean here “ε-approximate”.
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the Generalized Benders Decomposition (GBD) [23] to MINLP. The first occurrence
of the Outer Approximation (OA) algorithm for cMINLP can be ascribed to a presen-
tation by Grossmann at the 1983 TIMS/ORSAmeeting in Chicago. By the late 1980s,
Grossmann was publishing on MINLP with his own Ph.D. students [16,31].

The 1990s saw the development of MINLP theory and solution methods starting
from the mathematics of local optima of NLPs. Remarkable advances in this sense
weremade by: (1) R. Fletcher and his Ph.D. student S. Leyffer, who defined algorithms
and implemented solvers based on both OA and BB for convex MINLP [18,19]; (2)
C. Floudas and his Ph.D. students,who introduced the genericαBB technique for lower
bounding nonconvex functions [1,2,4,35]; (3) C. Pantelides and his Ph.D. students [7,
30,50–52] at ImperialCollege,who introduced some symbolic computation techniques
in order to algorithmically construct a convex relaxation of any factorableMINLP [37];
(4) N. Sahinidis and his Ph.D. students [45,46,49], who produced BARON, the first
commercial MINLP solver that is still being developed [47]; (5) T. Westerlund and
his collaborators [54], who developed a cutting-plane algorithm for convex MINLP.
Grossmann and his collaborators continued to work on MINLP theory and methods
[3,44,55]. This list is by no means exhaustive. More information can be found in
authored and edited books from that period [10,14,20,21,25,27].

Mixed-integer optimal control

An interesting case arises in the context of dynamic systems, where the optimization
model contains differential equations. On the one hand such mixed-integer optimal
control (MIOC) problems are a generalization of MINLPs, because the problem for-
mulations allow for trivial special caseswith nx = 0 differential states that are formally
equivalent to a MINLP. On the other hand, a discretization of controls and states is
one possible solution approach and results in a specifically structured and usually
high-dimensional MINLP. This ambiguity in specifying the relation between MINLP
and MIOC is reflected in the challenges (fine discretizations contribute to the curse of
dimensionality) and opportunities (using smoothing properties in function spaces) that
are used in several contributions in this special issue. It is important if the discretization
is done before or after derivation of necessary conditions of optimality.

One related interesting property in optimal control is the possibility of an infinite
number of switches in optimal solutions. This behavior is referred to as chattering in
the optimal control community, [56]. The first example of an optimal control prob-
lem exhibiting chattering behavior was given by [22]. In the engineering community
chattering behavior is also called Zeno’s phenomenon. This refers to the probably
first appearance of hybrid systems in the literature and the great ancient philosopher
Zeno of Elea. Zeno of Elea was a pre–Socratic Greek philosopher of southern Italy
and a pupil of Parmenides. He is mostly known for his 40 paradoxes, among which
the most famous are The Dichotomy (Motion is impossible since “that which is in
locomotion must arrive at the half-way stage before it arrives at the goal.”), The Arrow
(“If everything when it occupies an equal space is at rest, and if that which is in loco-
motion is always occupying such a space at any moment, the flying arrow is therefore
motionless.”), and The Achilles (“In a race, the quickest runner can never overtake
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the slowest, since the pursuer must first reach the point whence the pursued started,
so that the slower must always hold a lead.”). These paradoxes can be found, e.g., in
Physics of [5], VI:9, 239. Zeno of Elea was the first to draw attention to the apparent
interpretational problems occurring whenever an infinite number of events has to take
place in a finite time interval.

Control problems for switched systems have been treated in different communities
and branded differently. In this special issue the name mixed-integer optimal con-
trol (MIOC) prevails. In addition to MIOC and optimal control of switched systems,
alternate names for the same or similar problem classes have been established, such
as mixed-logic dynamic optimization, mixed-integer programming for control, bang-
bang control, optimal control of hybrid systems, or mixed-integer PDE constrained
optimization.Moreover, there are many different aspects which are usually considered
for a more detailed classification of MIOC problems, e.g., the underlying dynamics
(ordinary differential equations, differential-algebraic equations, partial differential
equations), the type of switches (explicit or implicit), the problem structure (e.g.,
linear, linear-quadratic, or nonlinear), further restrictions (state, mixed control-state,
combinatorial, vanishing, or no constraints), open-loop (feedforward) versus closed-
loop (feedback) control, uncertainties and data-driven learning, and last but not least
the algorithmic approach.

There are three generic approaches to solve model-based optimal control prob-
lems.We quickly survey them and comment on extensions for theMIOC case, i.e., the
additional integrality requirement on some of the control functions. First, Dynamic
Programming going back to the fundamental work of Bellman [8] seems to be partic-
ularly suited for a treatment of integer variables, because of the enumerative approach
(it even inspired generalMINLP research, as mentioned above). Optimal control prob-
lems on short time horizons (e.g., with constant control function value) can be solved
by simple enumeration of the discrete choices, giving even an advantage compared
to an optimization over continuous feasible sets. However, the approach suffers in
general from the so-called curse of dimensionality, an exponential increase in runtime
when the state dimension increases.

Second, indirect methods, also known as the first-optimize then-discretize approach,
use necessary conditions of optimality in function space and solve the resulting bound-
ary value problem numerically in a second step. The maximum principle in its basic
form, also sometimes referred to as minimum principle, goes back to the early fifties
and the works of Hestenes, Boltyanskii, Gamkrelidze, and of course Pontryagin [43].
Precursors of the maximum principle as well as of the Bellman equation can already
be found in Carathéodory’s book of 1935, compare [42] for details. The maximum
principle states the existence of adjoints λ∗ : [t0, tf] �→ R

nx that satisfy adjoint differ-
ential equations and transversality conditions. The optimal control u∗ : [t0, tf] �→ R

nu

is characterized as the pointwise maximizer of the Hamiltonian function. This con-
cept can also be transferred to integer controls using theorems which do not assume
a locally connected feasible set for the controls, usually referred to as global maxi-
mum principles. A global maximum principle was used for disjoint control sets and
solved numerically via the method of Competing Hamiltonians in the work of Bock
and Longman in the early 1980s, [12]. To our knowledge this was the first time that a
global maximum principle was applied to solve a practically relevant MIOC problem.

123



Preface 415

The third generic approach, direct or first-discretize then-optimize methods have
become very popular for most practical control problems. The general idea here is to
discretize the control functions first, e.g., with a piecewise constant approximation on a
given grid. In a second step, the Karush-Kuhn-Tucker theorem and finite-dimensional
optimization algorithms are used for the search of candidate solutions. There are mul-
tiple variants of how to solve the differential equations by means of shooting methods
or collocation. Historically, shooting and collocation methods were first developed for
boundary value problems [15,38] and then adapted by Sargent [48], Bock [13], Biegler
[11], and others to the direct approach. Note that R. Bulirsch was an unofficial advi-
sor of G. Bock’s PhD thesis, J. Stoer edited the book in which Sargent’s publication
appeared, Bulirsch and Stoer wrote one of the most important textbooks in numeri-
cal analysis together [53], and many MINLP protagonists at Carnegie Mellon were
specifically interested in dynamic (Chemical Engineering) applications—indicating
the close interaction of the MINLP and MIOC communities from the very beginning.
The main challenge for direct approaches for MIOC is the high dimensionality of
the resulting MINLP. As we see in several contributions to this issue, there are many
ways to use arguments and concepts in function space that justify error-controled
decompositions and efficient numerical schemes, though.

The years after 2000 saw the confluence of several of the trends we discussed,
namely early mathematical programming and structured applications (mainly from
chemical engineering). Given the broad interest, MINLP was labelled a “hot topic”
by several academic communities, and many advances were made. We are skipping
details because the 2000s are too close to the present time to be branded “history”, and
because a preface must be limited in space. See the edited books [33,34,39,41] and of
course the literature surveys of the following publications for more information.

The contents of this issue

This issue contains ten articles, reviewed by at least two referees. As we wrote at the
outset, the workshop was organized around three main MINLP topics (hierarchies of
approximations, MIOC, uncertainties), and “other areas”. In fact, half of the papers
we accepted are in MIOC, one is about hierarchies of approximations, and the rest
are about other MINLP areas. Accordingly, we organized the contents in two broad
categories: MINLP, and MIOC.

The first five papers are in the MINLP, and the last five papers are in the MIOCP
category.

1. “Quadratic optimization with switching variables: the convex hull for n = 2”, by
S. Burer and K. Anstreicher. This article is representative of a very active area
of MINLP research, which provides an extension to the analysis of facets for
often-used and problematic sets in MILP. Many reasonably simple mixed-integer
nonlinear sets have been analysed inMINLP so far—mostly involvingmultilinear
and/or quadratic forms inmixed-integer variables. The present paper dealswith the
problemoffinding the convexhull of the set {(x, xx�, yy�) | 0 ≤ x ≤ y ∈ {0, 1}n

for n = 2. Such sets are crucial to model occurrences where the binary y variables
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activate or de-activate the continuous variables x (e.g. production at level xi > 0
only occurs whenever the i-th facility is active, i.e. yi = 1, otherwise xi = 0 since
yi = 0).

2. “Near-optimal analysis of Lasserre’s univariate measure-based bounds for multi-
variate polynomial optimization”, by L. Slot andM. Laurent. This article concerns
hierarchies of approximation. These hierarchies are composed by sequences
R1, R2, . . . of ever tighter convex relaxations of Polynomial Programming (PP)
problems in minimization form. Each Rr provides a lower bound to the original
PP formulation P , so that val(Rr ) ≤ val(Rr+1) ≤ . . . ≤ val(P). Such hierar-
chies are useful to compute bounds to the optimal objective function value of P ,
which are in turn useful within sBB algorithms. The issue discussed in this paper
concerned the speed of convergence of the sequence to val(P). Specifically, Rr

is a relaxation derived by sum-of-squares of polynomials of degree r . The main
result in this paper is that the sequence converges at a rate O(log2 r/r2).

3. “Outer approximation for Global Optimization of Mixed-Integer Quadratic
Bilevel Problems”, by T. Kleinert, V. Grimm, and M. Schmidt. Bilevel program-
ming includes MP formulations P where some of the constraints are of the form
“the decision variable vector x of P must be an optimum of the auxiliary MP
formulation Q”. Thus, P is the upper level problem, and Q is the lower level
problem. Bilevel programming is useful in order to model leader/follower inter-
actions, as well as games. Bilevel programs are notoriously difficult, both from the
theoretical and practical points of view. This paper discusses the case where P is a
convex Mixed-Integer Quadratic Program (cMIQP) and Q is a convex Quadratic
Program (cQP) with continuous variables. Several OA-based solution methods
are proposed.

4. “The confined primal integral”, by T. Berthold and Z. Csizmadia. This is a com-
putational paper. It proposes a new performance measure to compare MP solvers
and heuristics in trade-off behaviour (e.g. faster termination vs. better solution
quality).

5. “Mixing convex-optimization bounds for maximum-entropy sampling”, by
Z. Chen,M. Fampa, A. Lambert, J. Lee. Themaximum-entropy sampling problem
is a fundamental and challenging combinatorial optimization problem, with appli-
cation in spatial statistics. It asks to find amaximum-determinant order-s principal
submatrix of an order-n covariance matrix. Many of the known upper bounds for
the optimal value are based on convex optimization. The authors present amethod-
ology for “mixing” these bounds to achieve better bounds.

6. “Compactness and Convergence Rates in the Combinatorial Integral Approxi-
mation Decomposition”, by C. Kirches, P. Manns, and S. Ulbrich. The authors
formulate a general approximation result for optimization problems, which fea-
ture discrete and distributed optimization variables, and which are governed by a
compact control-to-state operator. By applying the result to an application from
signal processing they show that the developed theory can also be applied beyond
optimal control problems.

7. “Penalty alternating direction methods for mixed-integer optimal control with
combinatorial constraints”, by S. Goettlich, F. Hante, A. Potschka, and L. Schewe.
The authors propose a penalty and alternating direction of multipliers method for
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MIOCs motivated by an exactness result. They illustrate its performance for the
optimization of electric transmission lineswith switching of the network topology.

8. “Mixed-Integer Optimal Control Problems with switching costs: A shortest path
approach”, by F.Bestehorn, P.Manns, C.Kirches, andC.Hansknecht. In this paper
switching costs in MIOCs are considered. Using an innovative reformulation into
a shortest path problem on a parameterized family of directed acyclic graphs, the
authors provide computational bounds. The efficacy of the approach is demon-
strated by a comparison with an integer programming approach. comparison with
an integer programming approach on a benchmark problem.

9. “Mixed-integer optimal control under dwell time constraints”, by C. Zeile,
N. Robuschi, and S. Sager. The author consider the case were activated con-
trols need to stay active for a certain while, which is often the case in practical
applications. Heuristic solutions provide upper bounds on the objective function
value of a mixed-integer linear program, which provide a priori error estimates
for the MIOC problem. For the novel rounding algorithms also numerical results
are presented.

10. “A Solution Framework for Linear PDE-Constrained Mixed-Integer Problems”,
by F. Gnegel, A. Fuegenschuh, M. Hagel, S. Leyffer, andM. Stiemer. In this paper
different approaches toMIOCwith underlying linear partial differential equations
are considered.One approach uses a preprocessing stepwhich eliminates the states
from the optimization problem. In the second approach certain constraints are just
imposed on demand via constraint callbacks. Numerical experiments illustrate the
results.

Some editorial information

Fifteen papers were received for this issue, all with at least one coauthor who par-
ticipated in the 2019 Oberwolfach workshop on MINLP. We had to deal with three
conflicts of interest in accepted papers, all concerning editors as authors. S. Sager,
guest editor of this issue, is co-author of an accepted paper: his paper was handled
by S. Leyffer, the Editor-in-Chief of MPB. In turn, S. Leyffer was the co-author of
an accepted paper: S. Sager handled this paper outside of the MPB editorial system.
J. Lee, Editor-in-Chief of MPA, was also the co-author of an accepted paper: S. Sager
handled this paper outside of the MPB editorial system.
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