
ar
X

iv
:1

81
0.

02
67

0v
1

 [
cs

.G
T

]
 3

 O
ct

 2
01

8

Computing the Nucleolus of Weighted Voting

Games in Pseudo-polynomial Time

Kanstantsin Pashkovich

Department of Combinatorics and Optimization,
University of Waterloo,

200 University Avenue West, Waterloo, ON, Canada N2L 3G1
kpashkov@uwaterloo.ca

October 8, 2018

Abstract

We provide an algorithm for computing the nucleolus for an in-
stance of a weighted voting game in pseudo-polynomial time. This
resolves an open question posed by Elkind. et.al. 2007.

1 Introduction

The cooperative game theory studies the situation when individuals start
to collaborate in order to achieve their goals. An instance of a cooperative
game is given by a set N of individuals, so called players, and a utility

function, which assigns a value to every possible coalition of players.
A main question of the cooperative game theory asks for a distribution of

the utility value of the grand coalition N among all players so that the players
are encouraged to cooperate, i.e. so that the incentives of players to leave the
grand coalition are minimized. A natural way to address this question is to
distribute the utility value of the grand coalition in a “fair” way among the
players. Nucleolus is the concept introduced by Schmeidler in [15] and it can
be seen as such a “fair” and desirable distribution. It is not surprising that
distributions corresponding to the nucleolus appeared long before the formal
definition by Schmeidler and date back to Babylonian Talmud [1]. The
nucleolus was extensively studied for different types of cooperative games:
flow games [3], shortest path games [2], assignment games [12], matching

1

http://arxiv.org/abs/1810.02670v1

games [9], [10], [14], neighbor games [8], min-cost spanning tree games [6]
etc. For some of these games the nucleolus can be computed efficiently, for
some the nucleolus problem is NP-hard.

In this paper, we study the problem of computing the nucleolus for
weighted voting games. In a weighted voting game with n players, we have a
non-negative integral threshold W and for each player we have an associated
non-negative integral weight wi, i = 1, . . . , n. The weight wi of the player i
indicates the contribution of this player to a coalition. The utility value ν(S)
of a player coalition S ⊆ N equals 1 if and only if w(S) ≥ W , otherwise the
utility value ν(S) equals 0. Here, we use the notation w(S) :=

∑

i∈S wi.
Weighted voting games model decision making processes in political bod-

ies, where the players correspond to different parties and their weight corre-
sponds to the number of delegates from these parties. Once the number of
delegates voting in favour of some decision is larger than a given threshold,
the decision is going to be implemented.

1.1 Our Result

Weighted voting games are notoriously hard for the classical concepts of
“fair” distributions, namely it is NP-hard to compute a least core alloca-
tion and the nucleolus [4]. On the positive note, the paper [4] provides
an algorithm to compute a least core allocation in pseudo-polynomial time.
The question about a similar result for the nucleolus was stated as an open
question in [4]. The current paper answers this question positively. More-
over, our pseudo-polynomial running time algorithm can be generalized in
a straightforward manner to games corresponding to the intersection of a
constant number of weighted voting games.

1.2 History of the Question

The question about an algorithm for computing the nucleolus of a weighted
voting game in pseudo-polynomial time was posed in [4]. Later in [5](SODA
2009) a novel algorithm appeared. It was claimed that the algorithm in [5]
computes the nucleolus of an instance of a weighted voting game and that
this algorithm runs in pseudo-polynomial time. The algorithm in [5] is based
on beautiful geometric and discrete ideas. Unfortunately, the algorithm in [5]
is not guaranteed to compute the nucleolus. Indeed, it is based on a sequence
of linear programs, so that the nucleolus is an optimal solution of each of the
linear programs. However, it is not known whether the final linear program
in [5] has a unique optimal solution, and so it is not known whether the

2

algorithm in [5] outputs the nucleolus. The fact that the algorithm in [5]
may lead to a wrong output was reported by Solymosi in Mathematical
Reviews [16].

“. . .Despite all of these noteworthy technical contributions to the

computation of the nucleolus in general, and for weighted voting

games in particular, the main claim that the presented proce-

dure is a pseudopolynomial time algorithm is not justified. . . . it

seems that the pseudopolynomial computability of the nucleolus

for weighted voting games remains an open problem.”

Tamás Solymosi

1.3 Our Approach

To find the nucleolus we solve a sequence of linear programs. Our sequence
of linear programs does not directly correspond to the well-known Maschler’s
scheme [11], bur rather relaxes it. Even though in our scheme we might need
to solve more linear programs than in the Maschler’s scheme, the total num-
ber of linear programs in our scheme is bounded by the number of players.
The final linear program in our scheme has a unique optimal solution, and
this optimal solution is the nucleolus.

To solve the linear programs arising in our scheme, we use a dynamic pro-
gramming approach inspired by [5]. However, to implement our scheme and
to resolve the problem with the algorithm from [5], we need to incorporate
“linear independence” constraints in dynamic programs. A naive approach
would not lead to dynamic programs of pseudo-polynomial size. We re-
solve this issue by substituting a “linear independence” constraint over R

with several “linear independence” constraints over fields Fp, where p ranges
over a selected set of prime numbers such that the unitary encoding of each
considered prime number p is of polynomial size in the number of players.

2 Preliminaries

A cooperative game (N, ν) is defined by a set of players N and a utility

function ν : 2N → R+. A weighted voting game (N, ν) can be defined by a
set of players N , a non-negative integral vector w ∈ Z

N
+ and a non-negative

integral threshold W ∈ Z+, where for each coalition of players S ⊆ N we
have

ν(S) :=

{

1 if w(S) ≥ W

0 otherwise
.

3

A central question in cooperative game theory is asking for a fair distri-
bution of ν(N), i.e. a distribution of the value of the grand coalition among
all players in a most “fair” way. Below, we give one possible mathematical
interpretation of this question.

For a cooperative game (N, ν), a vector x ∈ R
N is called an allocation if

x ≥ 0 and x(N) = ν(N). Given an allocation x ∈ R
N , we define the excess

of a coalition S with respect to the allocation x to be the value x(S)−ν(S).
Intuitively, the smaller is the excess of a coalition S the more the coalition S
is inclined to leave the grand coalition. The next linear program reflects the
goal of finding an allocation x, which maximizes the smallest excess with
respect to x.

max ε (P)

s.t. x(S) ≥ ν(S) + ε for all S ⊆ N

x(N) = ν(N)

x ≥ 0.

Let ε⋆ be the optimal value of the linear program (P). Let P (ε⋆) be the set of
allocations x ∈ R

N such that (x, ε⋆) is feasible for the linear program (P).
We call P (ε⋆) the leastcore of the game (N, ν). More generally, given a
linear program Q in variables RN ×R let us denote by Q(ε) the set of value
assignments x such that (x, ε) is feasible for Q.

The excess vector of an allocation x ∈ R
N is the vector

Θ(x) :=
(

x(S1)− ν(S1), x(S2)− ν(S2), . . . , x(S2|N|)− ν(S2|N|)
)

,

where {S1, . . . , S2|N|} is the list of all possible player coalitions so that

x(S1)− ν(S1) ≤ x(S2)− ν(S2) ≤ . . . ≤ x(S
2|N|)− ν(S

2|N|) .

Thus, the excess vector lists excess values of all player coalitions, starting
from the smallest excess and ending with the largest excess with respect to
the given allocation x.

The nucleolus is the allocation achieving the lexicographically maximum
excess vector, i.e. the nucleolus can be defined as follows

arg lexmax{Θ(x) : x ∈ R
N , x(N) = ν(N), x ≥ 0} .

The concept of nucleolus was introduced in [15]. In [15] it was shown that
the nucleolus is well defined and is unique.

Clearly, allocations in the leastcore P (ε⋆) maximize the smallest excess.
However, generally leastcore allocations do not attempt to maximize other

4

excesses except the smallest one. In contrast to the leastcore allocations,
the nucleolus takes into account excess values of all player coalitions: first
maximizing the smallest excess of a player coalition, then maximizing the
second smallest excess and so on.

Theorem 1 (Main Theorem). The nucleolus of a weighted voting game

with n players, weights wi ∈ Z+, i = 1, . . . , n and threshold W ∈ Z+ can be

computed in time polynomial in n, wi, i = 1, . . . , n and W .

The proof of Theorem 1 is based on a sequence of linear program, which
we describe in Section 3 and which constitutes a relaxation of the well-
known Maschler’s scheme. In Section 5, we explain how for an instance of
a weighted voting game our scheme can be executed in time polynomial in
n, wi, i = 1, . . . , n and W .

3 Our Scheme for Cooperative Games

Our algorithm is based on an efficient way to solve a sequence of linear
programs. As the Maschler’s scheme, our scheme requires us to solve a
polynomial number of linear programs, where each linear program is of (po-
tentially) exponential size. In this section, we provide a detailed overview
of how the scheme works. We would like to note that the scheme, stated in
this section, leads to the nucleolus of any cooperative game (N, ν).

Given a cooperative game (N, ν), let us define (P1) to be the linear
program (P) and ε1 to be the optimal value of (P1), i.e. let us define ε1 to
be ε⋆. For j = 2, . . . , n let us introduce the following linear program with
the optimal value εj

max ε (Pj)

s.t. x(S) ≥ ν(S) + ε for all S ⊆ N, χ(S) 6∈ L⋆
j−1

x ∈ Pj−1(εj−1) ,

where we define
L⋆
1 := span{χ(N)}

and for j = 2, . . . , n, we define L⋆
j to be a linear subspace of

span{χ(S) : S ∈ Fix(Pj(εj))}

such that L⋆
j ⊇ L⋆

j−1 and dim(L⋆
j) = j. Here, Fix(Pj(εj)), j = 1, . . . , n is

defined as follows

Fix(Pj(εj)) := {S ⊆ N : x(S) = x′(S) for all x, x′ ∈ Pj(εj)} .

5

Note, that

dim(L⋆
1) = 1 and L⋆

1 ⊆ span{χ(S) : S ∈ Fix(P1(ε1))} .

Lemma 2. For j = 1, . . . , n, the linear program (Pj) is well defined.

Proof. Clearly, for j = 1 the linear program (Pj) is well defined. To prove
that the linear program (Pj) is well defined for j = 2, . . . , n, it is enough to
show that there exists a choice of L⋆

j for j = 2, . . . , n, satisfying

L⋆
j ⊆ span{χ(S) : S ∈ Fix(Pj(εj))},

L⋆
j ⊇ L⋆

j−1 and dim(L⋆
j) = j .

(1)

Let us prove this by induction. For j = 1, the above statements trivially
hold by the choice of L⋆

1 and (P1). Let us assume that we have L⋆
j satisfying

the statements (1) for j = 1, . . . , k, k < n. The linear program Pk+1 is
not unbounded, because dim(L⋆

k) = k < n and the linear program Pk+1

implicitly includes constraints x(N) = ν(N), x ≥ 0. Hence, there exists
Sk+1 ⊆ N , χ(Sk+1) 6∈ L⋆

k such that for all allocations x in Pk+1(εk+1) we
have x(Sk+1) = ν(Sk+1) + εk+1. Thus, we have

χ(Sk+1) 6∈ L⋆
k and Sk+1 ∈ Fix(Pk+1(εk+1)) .

Now, it is clear that L⋆
k+1

:= span{χ(Sk+1) ∪ L⋆
k} satisfies the necessary

conditions (1), finishing the proof.

Lemma 3. The nucleolus of a cooperative game (N, ν) equals Pn(εn).

Proof. Clearly, dim(L⋆
n) = n and L⋆

n ⊆ span{χ(S) : S ∈ Fix(Pn(εn))}. By
the definition of Fix(Pn(εn)), we have that Pn(εn) consists of a single point.
It remains to show that the nucleolus of (N, ν) coincides with the unique
point in Pn(εn). This is due to the fact that the nucleolus of (N, ν) lies in
Pj(εj) for all j = 1, . . . , n.

4 Our Scheme for Weighted Voting Games

In our algorithm, we solve the separation problem for the linear programs (Pj),
j = 1, . . . , n implicitly. Namely, in the case of weighted voting games we
reformulate the linear programs (Pj), j = 1, . . . , n and then solve the sepa-
ration problem for our reformulation in an efficient way. To reformulate the
linear programs (Pj), we need the following lemma.

6

Lemma 4. Given a set of different prime numbers P⋆, |P⋆| ≥ log2(n!), n ≥
3 and a set of 0/1-vectors z1, . . . , zk ∈ {0, 1}n, we have that z1, . . . , zk are

linearly independent over R if and only if z1, . . . , zk are linearly independent

over Fp for some p ∈ P⋆.

Proof. Clearly, if z1, . . . , zk are linearly independent over Fp for some p ∈ P⋆

then z1, . . . , zk are linearly independent over R. Let us show the other
implication.

Let us assume that z1, . . . , zk are linearly independent over R but are
linearly dependent over Fp for all p ∈ P⋆. Thus, k ≤ n and there exists a
k × k minor α, α 6= 0 in the matrix with the columns defined by z1, . . . , zk.
On one side, α is an integer and |α| ≤ k! ≤ n!, since the vectors z1, . . . , zk
are 0/1-vectors. On the other side, α ≡ 0 (mod p) for all p ∈ P⋆, since
z1, . . . , zk are linearly dependent over Fp for all p ∈ P⋆. Hence, we have

n! <
∏

p∈P⋆

p ≤ |α| ≤ n! ,

where the first inequality is due to the fact |P⋆| ≥ log2(n!), leading to a
contradiction and finishing the proof.

Now, let us assume that we are given a set of different prime numbers
P⋆, |P⋆| ≥ log2(n!) and n ≥ 3. Using Lemma 4, we can reformulate (Pj),
j = 2, . . . , n as follows

max ε (P̃j)

s.t. x(S) ≥ ν(S) + ε for all S ⊆ N

such that zj−1

1
, . . . , zj−1

j−1
, χ(S) are

linearly independent over Fp for some p ∈ P⋆

x ∈ Pj−1(εj−1) ,

where for j = 1, . . . , n, zj
1
, . . . , zjj ∈ {0, 1}n are such that

L⋆
j = span{zj

1
, . . . , zjj} .

Please see Section 5.2 for further details on the vectors zj
1
, . . . , zjj ∈ {0, 1}n

for j = 1, . . . , n.
However, the reformulations (P̃j), j = 2, . . . , n are not enough for our

purposes. For p ∈ P⋆ and j = 1, . . . , n−1, let us denote by vjp,1, . . . , v
j
p,n−j ∈

F
n
p a basis of the linear space over Fp, which is orthogonal to the linear space

7

spanned by zj
1
, . . . , zjj over Fp. Note, that in the case when zj

1
, . . . , zjj ∈

{0, 1}n are linearly dependent over Fp for p ∈ P⋆ and j = 1, . . . , n − 1, we

let vjp,1 := 0, . . . , vjp,n−j := 0.

Then we can reformulate (P̃j), j = 2, . . . , n as follows

max ε (P̄j)

s.t. x(S) ≥ ν(S) + ε for all S ⊆ N

such that 〈vj−1

p,t , χ(S)〉 6≡ 0 (mod p)

for some p ∈ P⋆ and t = 1, . . . , n− (j − 1)

x ∈ Pj−1(εj−1) ,

where 〈v, u〉 stands for the scalar product of two vectors v and u. For the
sake of exposition, we let (P̄1) to be the linear program (P1).

In Section 5, we explain how to find a desired set P⋆ and compute the
vectors vjp,1, . . . , v

j
p,n−j ∈ F

n
p for j = 1, . . . , n and p ∈ P⋆.

5 Algorithm

To prove Theorem 1, we show how to solve the linear programs (P̄j), j =
1, . . . , n in time polynomial in n, wi, i = 1, . . . , n and W .

5.1 Finding Set of Prime Numbers P⋆

Let us compute the set P⋆, |P⋆| ≥ log2(n!) of different prime numbers
in polynomial time, such that the size of the unitary encoding for each
number in P⋆ is polynomial in n. A naive way of finding such set P⋆

works: inspect numbers one by one starting from 2 until the required set
of ⌈log2(n!)⌉ smallest prime numbers is found. Indeed, the Prime Number
Theorem guarantees that such a naive search for a set P⋆ finishes in time
polynomial in n. Thus we get the following remark.

Remark 5. A set P⋆ of at least log2(n!) different prime numbers, such that

the size of the unitary encoding for each number in P⋆ is polynomial in n,
exists and can be found in time polynomial in n.

8

5.2 Encoding Linear Spaces L⋆
j , j = 1, . . . , n

In our algorithm, a linear space L⋆
j , j = 1, . . . , n is a linear space spanned

by 0/1-vectors. We encode L⋆
j , j = 1, . . . , n as the set

zj
1
, . . . , zjj ∈ {0, 1}n

such that L⋆
j = span{zj

1
, . . . , zjj}. For simplicity of exposition, we define

L⋆
0 := {0} and for it we use the trivial encoding. For L⋆

1 = span{1} we use
the encoding z11 := 1. Note, the encoding size of each L⋆

j , j = 0, 1, . . . , n is
polynomial in n.

5.3 Computing Basis of Orthogonal Space over Fp, p ∈ P⋆

For j = 0, 1, . . . , n and p ∈ P⋆, if we are given the vectors zj
1
, . . . , zjj ∈ {0, 1}n

then it is straightforward to compute a basis of the linear space orthogonal
to span{zj

1
, . . . , zjj}, where all the vectors are considered over the field Fp.

Remark 6. For j = 0, 1, . . . , n and p ∈ P⋆, the vectors vjp,1, . . . , v
j
p,n−j ∈ F

n
p

can be computed in time polynomial in n.

5.4 Solving Separation Problem for (P̄j), j = 1, . . . , n

To show that the linear program (P̄j), j = 1, . . . , n can be solved in time
polynomial in n, wi, i = 1, . . . , n and W it is enough to show that the
separation problem for (P̄j), j = 1, . . . , n and a point (x, ε) can be solved
in time polynomial in n, wi, i = 1, . . . , n, W and the size of the binary
encoding of (x, ε) [7].

Following the approach in [4], we solve the separation problem for (P̄j),
j = 1, . . . , n using dynamic programming.

Lemma 7. For the linear program (P̄j), j = 1, . . . , n and a point (x, ε), the
separation problem can be solved in time polynomial in n, wi, i = 1, . . . , n,
W and the size of the binary encoding of (x, ε).

Proof. Let us prove the statement of the lemma by induction on j. For
j = 1, we can compute the values γk,U , k = 1, . . . , n, U = 0, 1, . . . , w(N)

γk,U := min{x(S) : S ⊆ {1, . . . , k}, w(S) = U}

using dynamic programming in time polynomial in n, wi, i = 1, . . . , n and
the size of the binary encoding of x. Now, to verify that (x, ε) is a feasible

9

solution for the linear program (P̄j) with j = 1, we need to check that
γn,U ≥ 1 + ε for every U ≥ W .

Now, let us assume that we can solve the separation problem for (P̄j),
j = 1, . . . , q and a point (x, ε) in time polynomial in n, wi, i = 1, . . . , n, W
and the size of the binary encoding of (x, ε). Let us prove that the separation
problem can be solved efficiently also for j = q + 1 if q < n. For this, we
solve the separation over each of the constraint families

x(S) ≥ ν(S) + ε for all S ⊆ N

such that 〈vj−1

p,t , χ(S)〉 6≡ 0 (mod p) .

indexed by p ∈ P⋆ and t = 1, . . . , n − (j − 1) independently. To solve the
separation problem for the above families, we can compute the values γk,g,U ,
k = 1, . . . , n, g ∈ Fp, U = 0, 1, . . . , w(N)

γk,g,U := min{w(S) : S ⊆ {1, . . . , k}, vj−1

p,t (S) ≡ g (mod p), w(S) = U}

using dynamic programming in time polynomial in n, wi, i = 1, . . . , n and
the size of the binary encoding of x. Now, to verify that (x, ε) is a feasible
solution for the linear program (P̄j), we need only to check that γn,g,U ≥ 1+ε
for every g ∈ Fp, g 6≡ 0 (mod p) and U ≥ W . Note, that due to the
induction hypothesis we can solve the separation problem over the constraint
x ∈ Pj−1(εj−1) in time polynomial in n, wi, i = 1, . . . , n, W and the size
of the binary encoding of x, since for this it is enough to find a constraint
valid for the feasible region of P̄j−1 but violated by (x, εj−1).

5.5 Obtaining Encoding of Linear Space L⋆
j , j = 1, . . . , n

Note that we use Lemma 7 to solve the linear programs (P̄j), j = 2, . . . , n
using ellipsoid method [7]. Since the linear program (P̄j) is bounded for
every j = 1, . . . , n, one of the inequalities used in the ellipsoid method is of
the form

x(Sj) ≥ ν(Sj) + ε ,

where Sj ⊆ N , Sj ∈ Fix(Pj(εj)) and χ(Sj) 6∈ L⋆
j−1

. Such Sj ⊆ N can
be found by a trivial inspection of every linear inequality generated during
the execution of the ellipsoid algorithm while solving (P̄j). Note, that the
condition Sj ∈ Fix(Pj(εj)) can be tested in time polynomial in n, wi, i =
1, . . . , n and W due to Lemma 7. Alternatively, such Sj can be found using
the support of an optimal solution for the dual linear program of (P̄j),

j = 2, . . . , n and complementary slackness. Then, to obtain zj
1
, . . . , zjj from

10

zj−1

1
, . . . , zj−1

j−1
we can define zj

1
:= zj−1

1
, zj

2
:= zj−1

2
, . . . , zjj−1

:= zj−1

j−1
and

zjj := χ(Sj).

6 Generalizations of the Result

In a straightforward way our algorithm can be extended to compute the
nucleolus of a game, corresponding to the intersection of a constant number
of voting games, in pseudo-polynomial time. Moreover, the nucleolus of
a game can be computed in polynomial time, whenever this game is the
intersection of O(log(n)) voting games where the threshold of each voting
game is bounded by a constant.

7 Acknowledgments

We would like to thank Dmitrii Pasechnik for pointing us to the problem
of computing the nucleolus of weighted voting games in pseudo-polynomial
time. We are also grateful to Jochen Koenemann and Justin Toth for helpful
discussions.

References

[1] Robert Aumann and Michael Maschler. Game theoretic analysis of a
bankruptcy problem from the talmud. Journal of Economic Theory,
36(2):195–213, 1985.

[2] Mourad Bäı ou and Francisco Barahona. On the nucleolus of shortest
path games. In Algorithmic game theory, volume 10504 of Lecture Notes
in Comput. Sci., pages 55–66. Springer, Cham, 2017.

[3] Xiaotie Deng, Qizhi Fang, and Xiaoxun Sun. Finding nucleolus of flow
game. J. Comb. Optim., 18(1):64–86, 2009.

[4] Edith Elkind, Leslie Ann Goldberg, Paul W. Goldberg, and Michael
Wooldridge. On the computational complexity of weighted voting
games. Ann. Math. Artif. Intell., 56(2):109–131, 2009.

[5] Edith Elkind and Dmitrii Pasechnik. Computing the nucleolus of
weighted voting games. In Proceedings of the Twentieth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 327–335. SIAM,
Philadelphia, PA, 2009.

11

[6] Ulrich Faigle, Walter Kern, and Jeroen Kuipers. Computing the nucle-
olus of min-cost spanning tree games is NP-hard. Internat. J. Game

Theory, 27(3):443–450, 1998.

[7] Martin Grötschel, László Lovász, and Alexander Schrijver. Geomet-

ric algorithms and combinatorial optimization, volume 2 of Algorithms

and Combinatorics: Study and Research Texts. Springer-Verlag, Berlin,
1988.

[8] Herbert Hamers, Flip Klijn, Tamás Solymosi, Stef Tijs, and Dries Ver-
meulen. On the nucleolus of neighbor games. European J. Oper. Res.,
146(1):1–18, 2003.

[9] Walter Kern and Daniël Paulusma. Matching games: the least core and
the nucleolus. Math. Oper. Res., 28(2):294–308, 2003.

[10] Jochen Koenemann, Kanstantsin Pashkovich, and Justin Toth. Com-
puting the Nucleolus of Weighted Cooperative Matching Games in Poly-
nomial Time. ArXiv e-prints, March 2018.

[11] M. Maschler, B. Peleg, and L. S. Shapley. Geometric properties of
the kernel, nucleolus, and related solution concepts. Math. Oper. Res.,
4(4):303–338, 1979.

[12] Marina Núñez. A note on the nucleolus and the kernel of the assignment
game. Internat. J. Game Theory, 33(1):55–65, 2004.

[13] Dmitrii Pasechnik. Personal communication.

[14] Daniel Paulusma. Complexity aspects of cooperative games. ProQuest
LLC, Ann Arbor, MI, 2001. Thesis (Dr.)–Universiteit Twente (The
Netherlands).

[15] David Schmeidler. The nucleolus of a characteristic function game.
SIAM J. Appl. Math., 17:1163–1170, 1969.

[16] Tamás Solymosi. Review for the paper “Computing the nucleolus of
weighted voting games” by Edith Elkind and Dmitrii Pasechnik, (Math-
ematical Reviews).

12

	1 Introduction
	1.1 Our Result
	1.2 History of the Question
	1.3 Our Approach

	2 Preliminaries
	3 Our Scheme for Cooperative Games
	4 Our Scheme for Weighted Voting Games
	5 Algorithm
	5.1 Finding Set of Prime Numbers ¶
	5.2 Encoding Linear Spaces Lj, j=1,…,n
	5.3 Computing Basis of Orthogonal Space over Fp, p¶
	5.4 Solving Separation Problem for (j), j=1,…,n
	5.5 Obtaining Encoding of Linear Space Lj, j=1,…,n

	6 Generalizations of the Result
	7 Acknowledgments

