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Abstract
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1 Introduction

Today’s decision makers not only collect observations of the uncertainties directly
affecting their decision-making processes, but also gather data about measurable
exogenous variables that may have some predictive power on those uncertainties [5].
In Statistics, Operations Research and Machine Learning, these variables are often
referred to as covariates, explanatory variables, side information or features [39].

In the framework of Optimization Under Uncertainty, the side information acts by
changing the probability measure of the uncertainties. In fact, if the joint distribution
of the features and the uncertainties were known, this measure change would corre-
spond to conditioning that distribution on the side information given. Unfortunately, in
practice, the decision maker only has an incomplete picture of such a joint distribution
in the form of a finite data sample. The development of optimization methods capable
of exploiting the side information to make improved decisions, in a context of limited
knowledge of its explanatory power on the uncertainties, defines the ultimate pur-
pose of the so-called Prescriptive Stochastic Programming or Conditional Stochastic
Optimization paradigm. This paradigm has recently become very popular in the tech-
nical literature, see, for instance, [5,7,39] and references therein. More specifically,
a data-driven approach to address the newsvendor problem, whereby the decision is
explicitly modeled as a parametric function of the features, is proposed in [5]. This
approach thus seeks to optimize said function. In contrast, the authors in [7] formu-
late and formalize the problem of minimizing the conditional expectation cost given
the side information, and develop various schemes based on machine learning meth-
ods (typically used for regression and prediction) to get data-driven solutions. Their
approach is non-parametric in the sense that the optimal decision is not constrained
to be a member of a certain family of the features’ functions. The inspiring work in
[7] has been subject to further study and improvement in two principal directions,
namely, the design of efficient algorithms to trim down the computational burden of
the optimization [16] and the development of strategies to reduce the variance and
bias of the decision obtained and its associated cost (the pairing of both interpreted
as a statistical estimator). In the latter case, we can cite the work in [12], where they
leverage ideas from bootstrapping and machine learning to confer robustness on the
decision and acquire asymptotic performance guarantees. Similarly, the authors in [8]
and [39] propose regularization procedures to reduce the variance of the data-driven
solution to the conditional expectation cost minimization problemwhich is formalized
and studied in [7]. A scheme to robustify the data-driven methods introduced in this
work is also proposed in [9] for dynamic decision-making.

A different, but related thrust of research focuses on developing methods to con-
struct predictions specifically tailored to the optimization problem that is to be solved
and where those predictions are then used as input information. Essentially, the pre-
dictions are intended to yield decisions with a low disappointment or regret. This
framework is known in the literature as (smart) Predict-then-Optimize, see, e.g.,
[4,17,18,36], and references therein.

Our research, in contrast, builds uponDistributionally Robust Optimization (DRO),
which is a powerful modeling paradigm to protect the task of decision-making against
the ambiguity of the underlying probability distribution of the uncertainty [40].
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Nevertheless, the technical literature on the use of DRO to address Prescriptive or
Conditional Stochastic Programming problems is still relatively scarce. We highlight
papers [9,15,28,31,33,37,38]1, with [38] being a generalization of [37]. In [15], they
resort to a scenario-dependent ambiguity set to exploit feature information in a DRO
framework. However, their objective is to minimize a joint expectation and conse-
quently, their approach cannot directly handle theConditional StochasticOptimization
setting we consider here. In [28], the authors deal with a stochastic control problem
with time-dependent data. They extend the idea of [29] to a fully dynamic setting and
robustify the control policy against the worst-case weight vector that is within a certain
χ2-distance from the one originally given by the Nadaraya-Watson estimator. In the
case of [9], the authors propose using the conditional empirical distribution given by
a local predictive method as the center of the Wasserstein ball that characterizes the
DRO approach in [35]. This proposal, nonetheless, fails to explicitly account for the
inference error associated with the local estimation. In [31,33], the authors develop
a two-step procedure whereby a regression model between the uncertainty and the
features is first estimated and then a distributionally robust decision-making problem
is formulated, considering a Wasserstein ball around the empirical distribution of the
residuals. Finally, the authors in [38] also consider aWasserstein-ball ambiguity set as
in [9,31,33], but centered at the empirical distribution of the joint data sample of the
uncertainty and the features. In addition, they further constrain the ambiguity set by
imposing that the worst-case distribution assigns some probability mass to the support
of the uncertainty conditional on the values taken on by the features.

Against this background, our main contributions are:

1. Modeling power:We develop a general framework to handle prescriptive stochas-
tic programs within the DRO paradigm. Our DRO framework is based on a new
class of ambiguity sets that exploit the close and convenient connection between
trimmings and the partial mass problem to immunize the decision against the error
incurred in the process of inferring conditional information from joint (limited)
data. We also show that our approach serves as a natural framework for the appli-
cation of DRO in data-driven decision-making under contaminated samples.

2. Computational tractability: Our framework is as complex as the Wasserstein-
metric-basedDRO approach proposed in [35]without side information. Therefore,
we extend themass-transportation approach to the realm of Conditional Stochastic
Optimization while preserving its appealing tractability properties.

3. Theoretical results and performance guarantees: Leveraging theory from prob-
ability trimmings and optimal transport, we show that our DRO model enjoys a
finite sample guarantee and is asymptotically consistent.

4. Numerical results:We evaluate our DRO approach on the single-item newsvendor
problemand the portfolio allocation problem, and compare itwith theKNNmethod
described in [7], the robustified KNN proposed in [9], and a KNN followed by the
standard Wassertein-distance-based DRO model introduced in [35], as suggested
in [9] too. Unlike all these approaches, ours explicitly accounts for the cost impact
of the potential error made when inferring conditional information from a joint
sample of the uncertainty and the covariates. To this end, we minimize the worst-

1 The preprints [31,33,37,38] became available online while this paper was under review in this journal.
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case cost over a Wasserstein ball of probability measures with an ambiguous
center.

The rest of the paper is organized as follows. In Sect. 2, we formulate our DRO
framework to address decision-making problems under uncertainty in the presence of
side information and show that it is as tractable as the standard Wasserstein-metric-
based DRO approach developed in [35]. In Sect. 3.1, we deal with the case in which
the side information corresponds to an event of known and positive probability and
discuss its application to data-driven decision-making under contaminated samples.
The situation in which the probability of such an event is positive, but unknown, is
treated in Sect. 3.2. Section 3.3 elaborates on the case in which the side information
reduces to a specific realization of the feature vector, more precisely, the instance
where the side information represents an event of zero probability. Section 4 provides
results from numerical experiments and, finally, Sect. 5 concludes the paper.

Notation.We useR to represent the extended real line, and adopt the conventions of its
associated arithmetic. Moreover, R+ stands for the set of non-negative real numbers.
We employ lower-case bold face letters to represent vectors. The inner product of two
vectors u, v is denoted as 〈u, v〉 = uT v and by ‖u‖ we denote the norm of the vector
u. For a set A, the indicator function IA(a) is defined through IA(a) = 1 if a ∈ A;
= 0 otherwise. The Lebesgue measure in R

d is denoted as λd . We use the symbol
δξ to represent the Dirac distribution supported on ξ . Additionally, we reserve the
symbol “̂ ” for objects which are dependent on the sample data. The K -fold product
of a distribution Q will be denoted as Q

K . Finally, the symbols E and P denote,
respectively, “expectation” and “probability” (the context will give us the measure
under which that expectation or probability is taken).

2 Data-driven distributionally robust optimization with side
information

In this paper, we propose a general framework for data-driven distributionally robust
optimization with side information that relies on two related tools, namely, the optimal
mass transport theory and the concept of trimming of a probability measure. Next, we
introduce some preliminaries that help motivate our proposal. All the proofs that are
missing in the main text are compiled in the “Appendix”.

2.1 Preliminaries andmotivation

Let x ∈ X ⊆ R
dx be the decision variable vector and y, with support set Ξy ⊆ R

dy ,
the random vector that models the uncertainty affecting the value of the decision. Let
z, with support set Ξz ⊆ R

dz , be the (random) feature vector and denote the objective
function to be minimized as f (x, ξ), where ξ := (z, y).

Given a new piece of information in the form of the event ξ ∈ ˜Ξ , the decision
maker seeks to compute the optimal decision that minimizes the (true) conditional
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expected cost:

J ∗ := inf
x∈X EQ

[

f (x, ξ) | ξ ∈ ˜Ξ
] = inf

x∈X EQ
˜Ξ

[

f (x, ξ)
]

(1)

where Q is the true joint distribution of ξ := (z, y) with support set Ξ ⊆ R
dz+dy

and Q
˜Ξ is the associated true distribution of ξ conditional on ξ ∈ ˜Ξ . Hence, we

implicitly assume thatQ
˜Ξ is a regular conditional distribution and that the conditional

expectation (1) is well defined.
An example of ˜Ξ would be ˜Ξ := {ξ = (z, y) ∈ Ξ : z ∈ Z }, with Z ⊆ Ξz

being an uncertainty set built from the information on the features. We note that
this definition includes the case in which Z reduces to a singleton z∗ representing a
particular realization of the features.

Unfortunately, when it comes to solving problem (1), neither the true distributionQ
nor—even less so—the conditional oneQ

˜Ξ are generally known to the decisionmaker.
Actually, the decision maker typically counts only on a data sample consisting of N
observationŝξ i := (̂zi , ŷi ) for i = 1, . . . , N , which we assume are i.i.d. Therefore,
the solution to problem (1) per se is, in practice, out of reach and the best the decision
maker can do is to approximate the solution to (1) with some (probabilistic) perfor-
mance guarantees. Within this context, Distributionally Robust Optimization (DRO)
emerges as a powerful modeling framework to achieve that goal. In brief, the DRO
approach aims to find a decision x ∈ X that is robust against all conditional proba-
bility distributions that are somehow plausible given the information at the decision
maker’s disposal. This is mathematically stated as follows:

inf
x∈X sup

Q
˜Ξ ∈ ̂UN

EQ
˜Ξ

[

f (x, ξ)
]

(2)

where ̂UN is a so-called ambiguity set that contains all those plausible conditional
distributions. This ambiguity set must be built from the available information on ξ ,
which, in our case, comprises the N observations {̂ξ i }Ni=1. The subscript N in ̂UN is
intended to underline this issue. Furthermore, the condition Q

˜Ξ(˜Ξ) = 1 for all Q
˜Ξ ∈

̂UN is implicit in the construction of that set. In our setup, however, problem (2) poses
a major challenge, which has to do with the fact that the observations {̂ξ i }Ni=1 pertain
to the true joint distribution Q, and not to the conditional one Q

˜Ξ . Consequently, we
need to build an ambiguity set ̂UN for the plausible conditional distributions from the
limited joint information on Q provided by the data {̂ξ i }Ni=1.

At this point, we should note that there are several approaches in the technical liter-
ature to handle the conditional stochastic optimization problem (1) for the particular
case in which ˜Ξ is defined as ˜Ξ := {ξ = (z, y) ∈ Ξ : z = z∗}. For example, the
authors of [7] approximate (1) by the following conditional estimate

inf
x∈X

N
∑

i=1

wi
N (z∗) f (x, (z∗, ŷi )) (3)
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where wi
N (z∗) is a weight function that can be given by various non-parametric

machine learning methods such as K -nearest neighbors, kernel regression, CART,
and random forests. Formulation (3) can be naturally interpreted as a (conditional)
Sample-Average-Approximation (SAA) of problem (1).

The authors in [8] extend the work in [7] to accommodate the setting in which
the outcome of the uncertainty y may be contingent on the taken decision x. For
this purpose, they work with an enriched data set comprising observations of the
uncertainty y, the decision x and the covariates z, and allow the weights in (3) to
depend on x too. Besides, they add terms to the objective function of (3) to penalize
estimates of its variance and bias. The case in which the weight function (3) is given
by the Nadaraya-Watson (NW) kernel regression estimator is considered in [29,39]. In
[39], in addition, they leverage techniques from moderate deviations theory to design
a regularization scheme that reduces the optimistic bias of the NW approximation and
to provide insight into its out-of-sample performance. The work in [12] focuses on
conditional estimators (3) where the weights are provided by the NWor KNNmethod.
They use DRO, based on the relative entropy distance for discrete distributions to get
decisions from (3) that perform well on a large portion of resamples bootstraped from
the empirical distribution of the available data set.

Finally, the authors in [9] provide a robustified version of the conditional estima-
tor (3), which takes the following form

inf
x∈X

N
∑

i=1

wi
N (z∗) sup

y∈U i
N

[

f (x, (z∗, y))
]

(4)

whereU i
N := {y ∈ Ξy : ‖y − ŷi‖p ≤ εN }. This problem can be seen as a robust SAA

method capable of exploiting side information and has also been used in [10,11].
In our case, however, we follow a different path to address the conditional stochastic

optimization problem (1) by way of (2). More precisely, we leverage the notion of
trimmings of a distribution and the related theory of partial mass transportation.

2.2 The partial mass transportation problem and trimmings

This section introduces some concepts about trimmings and the partial mass trans-
portation problem that help us construct the ambiguity set ̂UN in (2) from the sample
data {̂ξ i }Ni=1. For simplicity, we restrict ourselves to probability measures defined in
R
d .
If Q(˜Ξ) = α > 0 (our analysis, though, will also cover the case α = 0 later in

Sect. 3.3), problem (1) can be recast as

J ∗ := inf
x∈X

1

α
EQ

[

f (x, ξ)I
˜Ξ(ξ)

]

(5)

which only requires that EQ

[| f (x, ξ)I
˜Ξ(ξ)|] < ∞ for all x ∈ X (see [27, Eq. 6.2]).

Now we introduce the notion of a trimming of a distribution, which is at the core
of our proposed DRO framework.
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Definition 1 ((1 − α)-trimmings, Definition 1.1 from [6]) Given 0 ≤ α ≤ 1 and
probability measures P, Q ∈ R

d , we say that Q is an (1 − α)-trimming of P if Q is
absolutely continuous with respect to P , and the Radon-Nikodym derivative satisfies
dQ
dP ≤ 1

α
. The set of all (1 − α)-trimmings (or trimming set of level 1 − α) of P will

be denoted by R1−α(P).

As extreme cases, we have that for α = 1, R0(P) is just P , while, for α = 0,
R1(P) is the set of all probability measures absolutely continuous with respect to P .
Given a probability P on R

d , if α1 ≤ α2, then R1−α2(P) ⊂ R1−α1(P). Especially
useful is the fact that a trimming set is a convex set, which is, besides, compact under
the topology of weak convergence. We refer the reader to [3, Proposition 2.7] for other
interesting properties about the set R1−α(P).

Consider now the following minimization problem:

inf
Q∈R1−α(P)

D(Q, R) (6)

where D is a probability metric.
Problem (6) is known as the (D, 1 − α)−partial (or incomplete) mass problem

[6]. While there is a variety of probability metrics we could choose from to play the
role of D in (6), here we work with the space Pp(R

d) of probability distributions
supported on Rd with finite p-th moment and restrict ourselves to the p−Wasserstein
metric, Wp, for its tractability and theoretical advantages. In such a case (i.e., when
D = Wp), problem (6) is referred to as a partial mass transportation problem and
interpolates between the classical optimal mass transportation problem (when α = 1)
and the random quantization problem (when α = 0).

Intuitively, the partial optimal transport problem goes as follows.We have an excess
of offer of a certain quantity of mass at origin (supply) and a mass that needs to be
satisfied at destination (demand), so that it is not necessary to serve all the mass
(demand= α×supply). In other words, some (1 − α)-fraction of the mass at origin
can be left non-served. The goal is to perform this task at the cheapest transportation
cost. If we represent the demand at destination by a target probability distribution R,
we can model the supply at origin as P

α
, where P is another probability distribution

and the mass required at destination is α times the mass at origin. This way, a partial
optimal transportation plan is a probability measureΠ onRd ×R

d with first marginal
in R1−α(P) and with second marginal equal to R, which solves the following cost
minimization problem:

Wp(R1−α(P), R) := min
Q∈R1−α(P)

Wp(Q, R)

The following lemma allows us to characterize the connection between the joint
distribution Q and the conditional distribution Q

˜Ξ in problem (1) above in terms of
the partial mass problem.

Lemma 1 Let Q be a probability on R
d such that Q(˜Ξ) = α > 0 and let Q

˜Ξ

be the Q-conditional probability distribution given the event ξ ∈ ˜Ξ . Also, assume
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that for a given probability metric D, R1−α(Q) is closed for D over an appropiate
set of probability distributions. Then, Q

˜Ξ is the unique distribution that satisfies
Q

˜Ξ(˜Ξ) = 1 and D
(

R1−α(Q), Q
˜Ξ

) = 0.

By way of Lemma (1), we can reformulate Problem (1) as follows:

inf
x∈X supQ

˜Ξ

EQ
˜Ξ

[

f (x, ξ )
]

(7a)

s.t. W p
p (R1−α(Q), Q

˜Ξ) = 0 (7b)

Q
˜Ξ(˜Ξ) = 1 (7c)

which now presents a form which is much more suited to our purpose, that is, to
get to the DRO-type of problem (2) we propose. The change, nonetheless, has been
essentially cosmetic, because problem (7) still relies on the true joint distributionQ and
therefore, is of no use in practice as it stands right now. To make it practical, we need
to rewrite it not in terms of the unknown Q, but in terms of the information available
to the decision maker, i.e., the sample data {̂ξ i }Ni=1. For that purpose, it seems sensible
and natural to replace Q in (7b) with its best approximation taken directly from the
data, namely, the empirical measure of the sample, ̂QN . Logically, to accommodate
the approximation, we will need to introduce a budget ρ̃ in equation (7b), that is,

(P) inf
x∈X supQ

˜Ξ

EQ
˜Ξ

[

f (x, ξ)
]

(8a)

s.t. W p
p (R1−α(̂QN ), Q

˜Ξ) ≤ ρ̃ (8b)

Q
˜Ξ(˜Ξ) = 1 (8c)

Hereinafter we will use ̂UN (α, ρ̃) to denote the ambiguity set defined by constraints
(8b)–(8c). Under certain conditions, this uncertainty set enjoys nice topological prop-
erties, as we state in [19, Proposition EC.2].

Now we define what we call the minimum transportation budget, which plays an
important role in the selection of budget ρ̃ in problem (P).

Definition 2 (Minimum transportation budget) Given α > 0 in problem (P), the min-
imum transportation budget, which we denote as εNα , is the p-Wasserstein distance
between the set Pp(˜Ξ) and the (1 − α)-trimming of the empirical distribution ̂QN

that is the closest to that set, i.e., inf{Wp(P, Q) : P ∈ R1−α(̂QN ), Q ∈ Pp(˜Ξ)},
which is given by

εNα =
⎛

⎝

1

Nα

�Nα�
∑

k=1

dist(ξ k:N , ˜Ξ)p +
(

1 − �Nα�
Nα

)

dist(ξ 
Nα�:N , ˜Ξ)p

⎞

⎠

1
p

(9)

where ξ k:N is the k-th nearest data point from the sample to set ˜Ξ and dist(ξ j , ˜Ξ) :=
infξ∈˜Ξ dist(ξ j , ξ) = infξ∈˜Ξ ||ξ j − ξ ||. If α = 0, then εN0 = dist(ξ1:N , ˜Ξ).
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Importantly, the minimum transportation budget to the power of p, i.e., ε
p
Nα , is the

minimumvalue of ρ̃ in (P) for this problem to be feasible. Furthermore, εNα is random,
because it depends on the available data sample, but realizes before the decision x is
to be made. It constitutes, therefore, input data to problem (P).

We note that, if the random vector y takes values in a set that is independent of
the feature vector z, i.e., for all z∗ ∈ Ξz, {y ∈ Ξy : ξ = (z∗, y) ∈ Ξ} = Ξy, then
dist(ξ j , ˜Ξ) = infξ∈˜Ξ ||ξ j − ξ || = infξ=(z,y)∈˜Ξ ||z j − z||.

Furthermore, in what follows, we assume that dist(ξ j , ˜Ξ) (interpreted as a random
variable) conditional on ξ j /∈ ˜Ξ has a continuous distribution function. This ensures
that, in the case Q(˜Ξ) = 0, which we study in Sect. 3.3, there will be exactly K
nearest data points to ˜Ξ with probability one.

Next we present an interesting result, which deals with the inner supremum of
problem (P) and adds more meaning to this problem by linking it to an alternative
formulation more in the style of the Wasserstein data-driven DRO approach proposed
in [35], where, however, no side information is taken into account. In fact, the distri-
butionally robust approach to conditional stochastic optimization that is proposed in
[38] is based on this alternative formulation (see Proposition A.4 in that work)2.

Proposition 1 Given N ≥ 1, Q(˜Ξ) = α > 0, and any positive value of ρ̃, problem
(SP2) is a relaxation of (SP1), where (SP1) and (SP2) are given by

(SP1)

⎧

⎨

⎩

supQ EQ
[

f (x, ξ) | ξ ∈ ˜Ξ
]

s.t. W
p
p (Q,̂QN ) ≤ ρ̃ · α

Q(˜Ξ) = α

, (SP2)

⎧

⎨

⎩

supQ
˜Ξ
EQ

˜Ξ

[

f (x, ξ)
]

s.t. W
p
p (R1−α(̂QN ), Q

˜Ξ ) ≤ ρ̃

Q
˜Ξ(˜Ξ) = 1

and where by “relaxation” it is meant that any solution Q feasible in (SP1) can be
mapped into a solution Q

˜Ξ feasible in (SP2) with the same objective function value.
Moreover, if ̂QN (˜Ξ) = 0 or α = 1, then (SP1) and (SP2) are equivalent.

Among other things, Proposition 1 reveals that parameter ρ̃ in problem (SP2), and
hence in problem (P), can be understood as a cost budget per unit of transported mass.
Likewise, parameter α can be interpreted as the minimum amount of mass (in per
unit) of the empirical distribution ̂QN that must be transported to the support ˜Ξ . This
interpretation of parameters ρ̃ and α will be useful to follow the rationale behind the
DRO solution approaches that we develop later on.

On the other hand, despite the connection between problems (SP1) and (SP2) that
Proposition 1 unveils, the latter is qualitativelymore amenable to further generalization
and analysis. Examples of this are given by the relevant casesα = 0, forwhich problem
(SP1) is ill-posed, while problem (SP2) is not, and α unknown, for which the use of
trimming sets in (SP2) allows for a more straightforward treatment. We will deal with
both cases in Sects. 3.3 and 3.2 , respectively.Before that,we provide an implementable
reformulation of the proposed DRO problem (P).

2 Proposition 1 in this paper predates the release of preprint [38].
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2.3 Towards a tractable reformulation of the partial mass transportation problem

In this section, we put the proposed DRO problem (P) in a form more suited to tackle
its computational implementation and solution. For this purpose, we first need to
introduce a technical result whereby we characterize the trimming sets of an empirical
probability measure.

Lemma 2 Consider the sample data {̂ξ i }Ni=1 and their associated empirical measure
̂QN = 1

N

∑N
i=1 δ̂ξ i

. If α > 0, the set of all (1 − α)-trimmings of ̂QN is given by

all probability distributions in the form
∑N

i=1 bi δ̂ξ i
such that 0 ≤ bi ≤ 1

Nα
, ∀i =

1, . . . , N, and
∑N

i=1 bi = 1. Furthermore, if α = 0, the set R1−α(̂QN ) of (1 − α)-
trimmings of ̂QN becomesR1(̂QN ) = {∑N

i=1 bi δ̂ξ i
such that bi ≥ 0, ∀i = 1, . . . , N,

and
∑N

i=1 bi = 1}.
Proof If α > 0, the form of any (1 − α)-trimming of ̂QN as

∑N
i=1 bi δ̂ξ i

, along with

the condition bi ≤ 1
Nα

, follows directly from Definition 1 of a (1 − α)-trimming.

Naturally, bi ≥ 0 and
∑N

i=1 bi = 1 are then required because any (1 − α)-trimming
is a probability distribution.

On the other hand, if α = 0, the resulting trimming set R1(̂QN ) is simply the
family of all probability distributions supported on the data points {̂ξ i }Ni=1. ��
In short, Lemma 2 tells us that trimming a data sample of size N with level 1 − α

involves reweighting the empirical distribution of such data by giving a new weight
less than or equal to 1

Nα
to each data point. Therefore, we can recast constraint

W
p
p (R1−α(̂QN ), Q

˜Ξ) ≤ ρ̃ in problem (P) as

min
bi ,∀i≤N

Wp

(

N
∑

i=1

bi δ̂ξ i
, Q

˜Ξ

)

≤ ρ̃1/p

s.t. 0 ≤ bi ≤ 1

Nα
, ∀i ≤ N

N
∑

i=1

bi = 1

We are now ready to introduce the main result of this section.

Theorem 1 (Reformulation based on strong duality) For α > 0 and any value of
ρ̃ ≥ ε

p
Nα , subproblem (SP2) is equivalent to the following one:

(SP2′) inf
λ≥0;μi ,∀i≤N ;θ∈R

λρ̃ + θ + 1

Nα

N
∑

i=1

μi

s.t. μi + θ ≥ sup
(z,y)∈˜Ξ

(

f (x, (z, y)) − λ ‖(z, y) − (̂zi , ŷi )‖p),∀i ≤ N

μi ≥ 0, ∀i ≤ N
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Surely the most important takeaway message of Theorem 1 is that problem (P) is as
tractable as the standardWasserstein-metric-based DRO formulation proposed in [35]
and [34]. In these two papers, conditions under which the inner supremum in (SP2′)
can be recast in a more tractable form are provided. As an example, in Theorem EC.2
in the extended version of this paper [19], we provide a more refined reformulation of
(SP2′), whereby the problems we solve in Sect. 4 can be directly handled.

In the following section, we show that problem (P) works, under certain conditions,
as a statisticallymeaningful surrogate decision-makingmodel for the target conditional
stochastic program (1).

3 Finite sample guarantee and asymptotic consistency

Next we argue that the worst-case optimal expected cost provided by problem (P) for
a fixed sample size N and a suitable choice of parameters (α, ρ̃) (dependent on N )
leads to an upper confidence bound on the out-of-sample performance attained by the
optimizers of (P) (finite sample guarantee) and that those optimizers almost surely
converge to an optimizer of the true optimal expected cost as N grows to infinity
(asymptotic consistency).

To bemore precise, the out-of-sample performance of a given data-driven candidate
solution x̂N to problem (1) is defined as EQ[ f (̂xN , ξ) | ξ ∈ ˜Ξ ] = EQ

˜Ξ
[ f (̂xN , ξ)].

We say that a data-driven method built to address problem (1) enjoys a finite sample
guarantee, if it produces pairs (̂xN , ̂JN ) satisfying a relation in the form

Q
N
[

EQ[ f (̂xN , ξ) | ξ ∈ ˜Ξ ] ≤ ̂JN
]

≥ 1 − β (10)

and ̂JN is a certificate for the out-of-sample performance of x̂N (i.e., an upper bound
that is generally contingent on the data sample). The probability on the right-hand side
of (10), i.e., 1− β, is known as the reliability of (̂xN , ̂JN ) and can be understood as a
confidence level.

Our analysis relies on the lemma below, which immediately follows from setting
P1 := ̂QN , Q := Q

˜Ξ, P2 := Q in Lemma 3.13 on probability trimmings in [1].

Lemma 3 Assume that Q
˜Ξ,Q ∈ Pp(R

d), and take p ≥ 1, then

Wp(R1−α(̂QN ),Q
˜Ξ) ≤ Wp(R1−α(Q),Q

˜Ξ) + 1

α1/pWp(̂QN ,Q) (11)

We notice that the term Wp(R1−α(Q),Q
˜Ξ) in (11) is not random and depends

exclusively on the true distributions Q
˜Ξ , Q, and the trimming level α. It is, therefore,

independent of the data sample (unlike the other two terms involved).
Inequality (11) reveals an interesting trade-off. On the one hand, the distance

Wp(R1−α(Q),Q
˜Ξ) diminishes as α decreases to zero, because the trimming set

R1−α(Q) grows in size. On the other, the term 1
α1/pWp(̂QN ,Q) becomes larger as

α approaches zero. As we will see later on, controlling this trade-off is key to endow-
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ing problem (P) with performance guarantees. To this end, we will make use of the
Proposition 2 below.

Assumption 1 Suppose that the true joint probability distributionQ is light-tailed, i.e.,
there exists a constant a > p ≥ 1 such that EQ

[

exp(‖ξ‖a)] < ∞.

Proposition 2 (Concentration tail inequality) Suppose that Assumption 1 holds. Then,
there are constants c,C > 0 such that, for all ε > 0, α > 0, and N ≥ 1, it holds

Q
N [

Wp
(

R1−α(̂QN ),Q
˜Ξ

) ≥ Wp(R1−α(Q),Q
˜Ξ) + ε

] ≤ βp,ε,α(N ) (12)

where

βp,ε,α(N )

= I{ε≤1/α1/p}C
⎧

⎨

⎩

exp(−cN α2 ε2p) if p > d/2,
exp(−cN (αε p/ log(2 + 1/αε p))2) if p = d/2,
exp(−cN αd/p εd) if p ∈ [1, d/2), d > 2

+ C exp(−cN αa/p εa)I{ε>1/α1/p} (13)

with d = dz + dy.

Proof Because of Lemma 3 we have

Q
N (

Wp(R1−α(̂QN ),Q
˜Ξ) − Wp(R1−α(Q),Q

˜Ξ) ≥ ε
)

≤ Q
N (

W
p
p
(

̂QN ,Q
) ≥ αε p)

where the right-hand side of this inequality is upper bounded by (13) according to [23,
Theorem 2]. ��

Assuming p �= d/2 , if we equate β to βp,ε,α(N ) and solving for ε we get:

εN ,p,α(β):=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(

log(Cβ−1)
cN

)1/2p
1

α1/p if N ≥ log(Cβ−1)
c , p > d/2,

(

log(Cβ−1)
cN

)1/d
1

α1/p if N ≥ log(Cβ−1)
c , p ∈ [1, d/2), d > 2

(

log(Cβ−1)
cN

)1/a
1

α1/p if N <
log(Cβ−1)

c

(14)

In what follows, we distinguish three general setups that may appear in the real-life
use of Conditional Stochastic Optimization, namely, the case Q(˜Ξ) = α > 0 with
α known, the case Q(˜Ξ) = α > 0 with α unknown, and the case Q � λd with
Q(˜Ξ) = α = 0.
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3.1 CaseQ(˜4) = ˛ > 0. Applications in data-driven decisionmaking under
contaminated samples

When Q(˜Ξ) = α > 0 and known, we can solve the following DRO problem:

(P(α,ρ̃N )) inf
x∈X supQ

˜Ξ

EQ
˜Ξ

[

f (x, ξ)
]

(15a)

s.t. W p
p (R1−α(̂QN ), Q

˜Ξ) ≤ ρ̃N (15b)

Q
˜Ξ(˜Ξ) = 1 (15c)

As we show below, problem
(

P(α,ρ̃N )

)

enjoys a finite sample guarantee and produces
solutions that are asymptotically consistent, i.e., that converge to the true solution
(under complete information) given by problem (1). This is somewhat hinted at by the
connection between problems (SP1) and (SP2) highlighted in Proposition 1.

Theorem 2 (Case α > 0: Finite sample guarantee) Suppose that the assumptions of
Proposition 2 hold and take p �= d/2. Given N ≥ 1 and α > 0, choose β ∈ (0, 1), and
determine εN ,p,α(β) through (14). Then, for all ρ̃N ≥ max(ε p

N ,p,α(β), ε
p
Nα), where

ε
p
Nα is the minimum transportation budget as in Definition 2, the pair (̂xN , ̂JN ) that

is solution to problem
(

P(α,ρ̃N )

)

enjoys the finite sample guarantee (10).

Proof For problem
(

P(α,ρ̃N )

)

to be feasible, we must have ρ̃N ≥ ε
p
Nα . Furthermore,

Wp(R1−α(Q),Q
˜Ξ) = 0 in (12) because of Lemma 1. Hence, Proposition 2 ensures

that QN
(

Q
˜Ξ ∈ ̂UN (α, ρ̃N )

) ≥ 1 − β for any ρ̃N ≥ ε
p
N ,p,α(β). It follows then

EQ[ f (̂xN , ξ) | ξ ∈ ˜Ξ ] = EQ
˜Ξ
[ f (̂xN , ξ)]

≤ ̂JN := sup
Q

˜Ξ

{

EQ
˜Ξ
[ f (̂xN , ξ)] : Q

˜Ξ ∈ ̂UN (α, ρ̃N )
}

with probability at least 1 − β. ��
We point out that, in the case α > 0, data points may fall into the set ˜Ξ . Logically,

the contribution of these points to the minimum transportation budget ε p
Nα is null and

their order (the way their tie is broken) is irrelevant to our purpose.
Nowwe show that the solutions of the distributionally robust optimization problem

(

P(α,ρ̃N )

)

converge to the solution of the target conditional stochastic program (1) as
N increases, for a careful choice of the budget ρ̃N . This result is underpinned by the
fact that, under that selection of ρ̃N , any distribution in ̂UN (α, ρ̃N ) converges to the
true conditional distribution Q

˜Ξ . This is formally stated in the following lemma.

Lemma 4 (Case α > 0: Convergence of conditional distributions) Suppose that the
assumptions of Proposition 2 hold. Choose a sequence βN ∈ (0, 1), N ∈ N, such that
∑∞

N=1 βN < ∞ and limN→∞ εN ,p,α(βN ) → 0. Then,

Wp(Q
N
˜Ξ
,Q

˜Ξ) → 0 a.s.
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1082 A. Esteban-Pérez, J. M. Morales

for any sequence QN
˜Ξ
, N ∈ N, such that QN

˜Ξ
∈ ̂UN (α, ρ̃N ) with ρ̃N =

max(ε p
N ,p,α(βN ), ε

p
Nα).

Proof Take N large enough and let ̂QN/˜Ξ be the conditional probability distribution

of ̂QN given ξ ∈ Ξ . We have

Wp(Q
N
˜Ξ
,Q

˜Ξ) ≤ Wp(Q
N
˜Ξ
, ̂QN/˜Ξ) + Wp(̂QN/˜Ξ,Q

˜Ξ)

We show that the two terms on the right-hand side of the above inequality vanish with
probability one as N grows to infinity. We start with Wp(̂QN/˜Ξ,Q

˜Ξ).

Let I denote the subset of observationŝξ i := (̂zi , ŷi ) for i = 1, . . . , N , such that
̂ξ i ∈ ˜Ξ . It follows from the Strong Law of Large Numbers that ̂QN (˜Ξ) = |I |

N =
αN → α almost surely. Besides, since the sequence βN , N ∈ N is summable and
limN→∞ εN (βN ) → 0, the Borel-Cantelli Lemma and Proposition 2 implies

Wp
(

R1−α(̂QN ),Q
˜Ξ

) → 0 a.s.

Then, from Lemma 1, we deduce that Wp(̂QN/˜Ξ,Q
˜Ξ) → 0 with probability one.

We can deal with the term Wp(QN
˜Ξ
, ̂QN/˜Ξ) in a similar fashion, except for the

subtle difference that, in this case, we require ρ̃N = max(ε p
N ,p,α(βN ), ε

p
Nα), so that,

for all N ∈ N, problem P(α,ρ̃N ) delivers a feasible QN
˜Ξ

in the sequence. Hence,

in order to prove that Wp(QN
˜Ξ
, ̂QN/˜Ξ) → 0 almost surely, we need to show that

limN→∞ εNα = 0with probability one. This is something that can be directly deduced
from the definition of εNα , namely,

ε
p
Nα := W

p
p (R1−α(̂QN ),Pp(˜Ξ)) = min

Q′∈Pp(˜Ξ)
W

p
p (R1−α(̂QN ), Q′) (16)

≤ W
p
p
(

R1−α(̂QN ),Q
˜Ξ

) → 0 a.s. (17)

��
Note that, by Eq. (9) in Definition 2, we have that εNα > 0 if and only if


Nα� > |I | ⇔ 
Nα�
N

>
|I |
N

= αN = ̂QN (˜Ξ) ⇔ α > αN

Once the convergence of QN
˜Ξ

to the true conditional distribution Q
˜Ξ in the

p-Wasserstein metric has been established by the previous lemma, the following
asymptotic consistency result, which is analogous to that of [35, Theorem 3.6], can
also be derived.

Theorem 3 (Asymptotic consistency)Consider that the conditions of Theorem 2 hold.
Take a sequence ρ̃N as in Lemma 4. Then, we have

(i) If for any fixed value x ∈ X, f (x, ξ) is continuous in ξ and there is L ≥ 0 such that
| f (x, ξ)| ≤ L(1 + ‖ξ‖p) for all x ∈ X and ξ ∈ ˜Ξ , then we have that ̂JN → J ∗
almost surely when N grows to infinity.
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(ii) If the assumptions in (i) are satisfied, f (x, ξ) is lower semicontinuous on X for any
fixed ξ ∈ ˜Ξ , and the feasible set X is closed, then we have that any accumulation
point of the sequence {̂xN }N is almost surely an optimal solution of problem (1).

Proof We omit the proof, because it is essentially the same as the one in [35, Theorem
3.6], except that, sincewe areworkingwith p ≥ 1, we additionally require that f (x, ξ)

be continuous in ξ so that we can make use of Theorem 7.12 from [45]. ��
In the following remark, we show how problem P(α,ρ̃N ) can be used to make distri-

butionally robust decisions in a context where the data available to the decision maker
is contaminated.

Remark 1 (Data-driven decision-making under contaminated samples) Suppose that
the dataset̂ξ i := (̂zi , ŷi ) for i = 1, . . . , N is composed of correct and contaminated
samples. The decision maker only knows that a sample is correct with probability α

and contaminated with probability 1− α, but does not know which type each sample
belongs to. Thus, the data have been generated from a mixture distribution given by
P = αQ∗ + (1 − α)R, where Q∗ is the correct distribution and R a contamination.

In our context, this is equivalent to stating that Q∗ ∈ R1−α(P), which, in turn, can
be formulated asWp(R1−α(P), Q∗) = 0. Since we only have limited information on
P in the form of the empirical distribution ̂PN , we propose to solve problem P(α,ρ̃N ),
that is,

inf
x∈X supQ

EQ
[

f (x, ξ)
]

(18a)

s.t. W p
p (R1−α(̂PN ), Q) ≤ ρ̃N (18b)

where we have assumed that the correct distribution Q∗, the contamination R and the
data-generating distribution P are all supported on Ξ .

The decision maker can profit from the finite sample guarantee that the solution to
problem (18a)–(18b) satisfies as per Theorem 2, with ρ̃N ≥ ε

p
N ,p,α(β), β ∈ (0, 1),

since ε
p
Nα = 0 in this case. Furthermore, if we choose a summable sequence of

βN ∈ (0, 1), N ∈ N, such that limN→∞ εN (βN ) = 0, then we have that

P∞
(

lim
N→∞Wp

(

R1−α(̂PN ), Q∗) = 0

)

= 1 (19)

In plain words, for N large enough, the decision vector x is being optimized by way
of problem (18a)–(18b) over the “smallest” ambiguity set that almost surely contains
the correct distribution Q∗ of the data (in the absence of any other information on Q∗).
In fact, this means our DRO approach deals with contaminated samples in a way that
is distinctly more convenient than that of [14,22]. Essentially, they suggest optimizing
over a 1-Wasserstein ball centered at ̂PN of radius ρ̃, that is,

inf
x∈X supQ

EQ
[

f (x, ξ)
]

(20a)

s.t. W1(̂PN , Q) ≤ ρ̃ (20b)
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under the argument that for ρ sufficiently large, the Wasserstein ball contains the true
distribution of the data Q∗ with a certain confidence level. For instance, the author
of [22] uses the triangle inequality and the convexity property of the Wasserstein
distance to establish that W1(̂PN , Q∗) ≤ W1(̂PN , P) + (1 − α)W1(R, Q∗), so that
the extra budget (1 − α)W1(R, Q∗) would ensure that Q∗ is within the Wasserstein
ball with a given confidence level (a similar argument is made in [14]). In practice,
though, this extra budget as such cannot be computed, because neither the correct
distribution Q∗ nor the contamination R are known to the decision maker. However,
our approach naturally encodes it in the ambiguity set (18b). Indeed, for N large
enough, result (19) tells us that the correct distribution Q∗ belongs, almost surely, to
the (1−α)-trimming set of the empirical distribution ̂PN . It follows precisely from this
and Proposition 4 in “Appendix A” thatWp(̂PN , Q∗) → Wp(αQ∗ +(1−α)R, Q∗) ≤
αWp(Q∗, Q∗) + (1 − α)Wp(R, Q∗), i.e., Wp(̂PN , Q∗) ≤ (1 − α)Wp(R, Q∗).

In short, our approach offers probabilistic guarantees in the finite-sample regime
and, in the asymptotic one, naturally exploits all the information we have on Q∗,
namely, Q∗ ∈ R1−α(P), to robustify the decision x under contamination.

3.2 The case of unknownQ(˜4) = ˛ > 0

In this section, we discuss how we can use the proposed DRO approach to deal with
the case in which Q(˜Ξ) = α > 0 is unknown. For this purpose, we first introduce
a proposition that will allows us to design a distributionally robust strategy to tackle
problem (1) by means of problem (P).

Proposition 3 Suppose that Q(˜Ξ) = α > 0. Take 0 < α′ < α and any positive value
of ρ̃. Given N ≥ 1, the following problem

(SP3) sup
Q

˜Ξ

EQ
˜Ξ

[

f (x, ξ)
]

s.t. W p
p (R1−α′(̂QN ), Q

˜Ξ) ≤ ρ̃

Q
˜Ξ(˜Ξ) = 1

is either fully equivalent to (SP2), if 1
N ≥ α or a relaxation otherwise.

Proof The proof of the proposition is trivial and directly follows from the fact that
R1−α(̂QN ) ⊂ R1−α′(̂QN ), if α′ ≤ α, and thatR1−α(̂QN ) = R1−α′(̂QN ) if, besides,
1
Nα

≥ 1. ��
Based on Proposition 3, we could use the following two-step safe strategy to handle

the case of unknown Q(˜Ξ) = α > 0:

1. First, solve the following uncertainty quantification problem (see [25,35] for fur-
ther details),

αN := inf
Q∈BεN (̂QN )

Q(ξ ∈ ˜Ξ) = 1 − sup
Q∈BεN (̂QN )

Q(ξ /∈ ˜Ξ) (22)
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where the radius εN of the Wasserstein ball has been chosen so that αN represents
the minimum probability that the joint true distribution Q of the data assigns to
the event ξ ∈ ˜Ξ with confidence 1 − βN , βN ∈ (0, 1).

2. Next, solve problem (P(αN ,ρ̃N )), that is,

inf
x∈X supQ

˜Ξ

EQ
˜Ξ

[

f (x, ξ)
]

(23a)

s.t. W p
p (R1−αN (̂QN ), Q

˜Ξ) ≤ ρ̃N (23b)

Q
˜Ξ(˜Ξ) = 1 (23c)

with ρ̃N ≥ ε
p
N (βN )/αN .

Now suppose thatQ ∈ BεN (βN )(̂QN ) and therefore, αN ≤ α (this is a random event
that occurs with probability at least 1 − βN ). According to Lemma 3, we have

α1/pWp
(

R1−α(̂QN ),Q
˜Ξ

) ≤ Wp
(

̂QN ,Q
) ≤ εN (βN )

W
p
p
(

R1−αN (̂QN ),Q
˜Ξ

) ≤ W
p
p
(

R1−α(̂QN ),Q
˜Ξ

) ≤ ε
p
N (βN )

α
≤ ε

p
N (βN )

αN
= ρ̃N

Hence, Q
˜Ξ ∈ ̂UN (αN , ρ̃N ) with probability at least 1 − βN . In other words, the

two-step procedure here described does not degrade the reliability of theDROsolution.
Furthermore, theminimum transportation budget εNαN

thatmakes problem (P(αN ,ρ̃N ))

feasible is always zero here, if the event ξ ∈ ˜Ξ has been observed at least once. This
is so because the uncertainty quantification problem of step 1 ensures that αN is lower
than or equal to the fraction of training data points falling in ˜Ξ . Moreover, when N
grows to infinity, this uncertainty quantification problem reduces to computing such a
fraction of points, which, by the Strong Law of Large Numbers converges to the real
α, i.e., αN → α with probability one. Therefore, in the asymptotic regime, this case
resembles that of known α > 0.

We notice, however, that, in practice, setting ρ̃N ≥ ε
p
N (βN )/αN may result in

too large budgets ρ̃N , and thus, in overly conservative solutions, because, as εN is
increased, αN decreases to zero. For this reason, in the supplementary material, we
provide an alternative data-driven procedure to address the case α > 0, in which we
simply set αN = ̂QN (˜Ξ) in problem (P(αN ,ρ̃N )) and use the data to tune parameter
ρ̃N .

3.3 The caseQ � �d andQ(˜4) = ˛ = 0

Suppose that the true joint distribution Q governing the random vector ξ := (z, y)
admits a density function with respect to the Lebesgue measure λd , with d = dz + dy.
Without loss of generality, consider the event ξ ∈ ˜Ξ , where ˜Ξ is defined as ˜Ξ = {ξ =
(z, y) ∈ Ξ : z = z∗}. This means that Q(˜Ξ) = α = 0.
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Therefore, our focus in this case is on the particular variant of problem (1) given
by

J ∗ := inf
x∈X EQ

[

f (x, (z, y)) | z = z∗] (24)

Problem (24) has become a central object of study in what has recently come to be
known as Prescriptive Stochastic Programming or Conditional Stochastic Optimiza-
tion, (see, e.g., [5,7–9,12,16,39,43], and references therein).

Devising a DRO approach to problem (24) using the standard Wasserstein ball
Wp(̂QN , Q) ≤ ε is of no use here, because any point from the support of ̂QN with an
arbitrarily small mass can be transported to the set ˜Ξ at an arbitrarily small cost in
terms ofWp(̂QN , Q). This way, one could always place this arbitrarily small particle
at a point (z∗, y′) ∈ argmax

(z,y)∈˜Ξ

f (x, (z, y)). In contrast, problem (P), which is based on

partialmass transportation, offers a richer framework to seek for a distributional robust
solution to (24). To see this, consider again the inequality (11). If we could set α = 0,
the term Wp(R1−α(Q),Q

˜Ξ) would vanish, because we could take random variables
ξ ∼ Q

˜Ξ , ξm ∼ Qm ∈ R1(Q),m ∈ N, such that Wp(Qm,Q
˜Ξ) → 0. Unfortunately,

fixing α to zero is not a real option due to the term 1
α1/pWp(̂QN ,Q) in the inequality.

Therefore, what we propose instead is to solve a sequence of optimization problems
in the form

(

P(αN ,ρ̃N )

)

inf
x∈X supQ

˜Ξ

EQ
˜Ξ

[

f (x, ξ)
]

(25a)

s.t. W p
p (R1−αN (̂QN ), Q

˜Ξ) ≤ ρ̃N (25b)

Q
˜Ξ(˜Ξ) = 1 (25c)

with both αN and ρ̃N tending to zero appropriately as N increases. Next we show that,
under certain conditions, problem

(

P(αN ,ρ̃N )

)

enjoys a finite sample guarantee and is
asymptotically consistent.

Assumption 2 (Condition (3.6) from [21]) Let B(z∗, r) := {z ∈ Ξz : ||z − z∗|| ≤ r}
denote the closed ball inRdz with center z∗ and radius r . The randomvector ξ := (z, y)
has a joint density φ that verifies the following for some r0 > 0.

1. It admits uniformly for r ∈ [0, r0] and y ∈ R
dy the following expansion:

φ(z∗ + r u, y) = φ(z∗, y)
[

1 + r〈u, �1(y)〉 + O(r2�2(y))
]

(26)

where u ∈ R
dz with ||u|| = 1, and where �1 : Rdy → R

dz and �2 : Rdy → R

satisfy
∫

(||�1(y)||2 + |�2(y)|2)φ(z∗, y)dy < ∞.
2. The marginal density of z is bounded away from zero in B(z∗, r0).

Assumption 3 (Regularity and boundedness) We assume that

1. There exists ˜C > 0 and r0 > 0 such that P(‖z∗ − z‖ ≤ r) ≥ ˜Crdz , for all
0 < r ≤ r0.
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2. The uncertainty y is bounded, that is, ‖y‖ ≤ M a.s. for some constant M > 0.

We note that Assumption 3.1 is automatically implied by Assumption 2, but we
explicitly state it here for ease of readability. Furthermore, under the boundedness con-
dition established inAssumption 3.2,Assumption 2 is satisfied, for example, by a twice
differentiable joint density φ(z, y) with continuous and bounded partial derivatives in
B(z∗, r) × Ξy and bounded away from zero in that set. These are standard regularity
conditions in the technical literature on kernel density estimation and regression [39].

Theorem 4 (Case α = 0: Finite sample guarantee) Suppose that Assumptions 2, 3 and
those of Proposition 2 hold. Set α0 := ˜Crdz0 . Given N ≥ 1, choose αN ∈ (0, α0],
β ∈ (0, 1), and determine εN ,p,αN (β) through (14).

Then, for all

ρ̃N ≥ max
[(

εN ,p,αN (β) + O
(

α
min{1, 2/p}/dz
N

))p
, ε

p
NαN

]

(27)

we have that the pair (̂xN , ̂JN ) delivered by problem
(

P(αN ,ρ̃N )

)

with parameters ρ̃N

and αN enjoys the finite sample guarantee (10).

Proof For problem
(

P(αN ,ρ̃N )

)

to be feasible, we need ρ̃N ≥ ε
p
NαN

.
The proof essentially relies on upper bounding the term Wp(R1−α(Q),Q

˜Ξ) that
appears in Equation (12) of Proposition 2. To that end, define α(r) = ˜Crdz , for all
0 < r ≤ r0. Set α0 := α(r0). Let QB(z∗,r)×Ξy be the probability measure of (z, y)
conditional on (z, y) ∈ B(z∗, r)×Ξy and letQB(z∗,r) be its y-marginal. Note that, by
Assumption 3.1, QB(z∗,r)×Ξy ∈ R1−α(r)(Q) provided that 0 < r ≤ r0.

Furthermore, according to Theorem 3.5.2 in [21], there exists a positive constant
A such that

Hell(QB(z∗,r),Q˜Ξ) ≤ Ar2

uniformly for 0 < r < r0, where Hell stands for Hellinger distance.
From Equation (5.1) in [42] and Assumption 3.2 we know that

Wp(QB(z∗,r),Q˜Ξ) ≤ M
p−1
p W1(QB(z∗,r),Q˜Ξ)1/p

In turn, from [26] we have that W1(QB(z∗,r),Q˜Ξ) ≤ M · Hell(QB(z∗,r),Q˜Ξ). Hence,

W
p
p (QB(z∗,r),Q˜Ξ) ≤ MpHell(QB(z∗,r),Q˜Ξ)

Wp(QB(z∗,r),Q˜Ξ) ≤ MA1/pr2/p, 0 < r ≤ r0

Thus,

Wp(QB(z∗,r)×Ξy ,Q˜Ξ) ≤ r + MA1/pr2/p, 0 < r ≤ r0
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Since QB(z∗,r)×Ξy ∈ R1−α(r)(Q) for all 0 < r ≤ r0, it holds

Wp(R1−α(r)(Q),Q
˜Ξ) ≤ Wp(QB(z∗,r)×Ξy ,Q˜Ξ) ≤ r + MA1/pr2/p

which we can express in terms of α as

Wp(R1−α(Q),Q
˜Ξ) ≤ α1/dz

˜C1/dz
+ A1/pM

α2/(pdz)

˜C2/(pdz)

Wp(R1−α(Q),Q
˜Ξ) = O

(

αmin{1, 2/p}/dz
)

provided that 0 < α ≤ α0. ��
Remark 2 There are conditions on the smoothness of the true joint distribution Q

around z = z∗, other than those stated in Assumptions 2 and 3, for which we can
also upper bound the distance Wp(R1−α(Q),Q

˜Ξ). We provide below two examples
of these conditions, which have been invoked in [9,32,33], respectively, and neither
of which requires the boundedness of the uncertainty y.

Example 1 Suppose that the true data-generating model is given by y = f ∗(z) + e,
where f ∗(z) := E[y | z = z∗] is the regression function and e is a zero-mean random
error. Furthermore, suppose that Assumption 3.1 holds and there exists a positive
constant L such that ‖ f ∗(z′) − f ∗(z)‖ ≤ L‖z′ − z‖, for all 0 ≤ ‖z′ − z‖ ≤ r0.

Take α(r) = ˜Crdz , for all 0 < r ≤ r0 and set α0 := α(r0). With abuse of notation,
we can write for any event within B(z∗, r) × Ξy

QB(z∗,r)×Ξy(dz, dy) = 1

P(B(z∗, r))
Q(dz, dy) = 1

Qz(B(z∗, r))
Qz=z′(dy)Qz(dz′)

where Qz is the probability law of the feature vector z and Qz=z′ is the conditional
measure of Q given that z = z′.

Since QB(z∗,r)×Ξy ∈ R1−α(r)(Q) for all 0 < r ≤ r0, by the convexity of the
Wasserstein distance, we have

Wp(R1−α(Q),Q
˜Ξ) ≤ Wp(QB(z∗,r)×Ξy ,Q˜Ξ)

≤
∫

B(z∗,r)

[‖z′ − z∗‖ + Wp(Qz=z′ ,Q˜Ξ)
] Qz(dz′)
Qz(B(z∗, r))

=
∫

B(z∗,r)

[‖z′ − z∗‖ + Wp( f
∗(z′) + e, f ∗(z∗) + e)

] Qz(dz′)
Qz(B(z∗, r))

≤
∫

B(z∗,r)

[‖z′ − z∗‖ + ‖ f ∗(z′) − f ∗(z∗)‖] Qz(dz′)
Qz(B(z∗, r))

≤ (1 + L)

∫

B(z∗,r)
‖z′ − z∗‖ Qz(dz′)

Qz(B(z∗, r))
= (1 + L)O(r) = O(α1/dz)

for all 0 < α ≤ α0.
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Example 2 Take p = 1. Suppose that there exists a positive constant L such that
W1(Qz=z′,Qz=z∗) ≤ L‖z′ − z∗‖, for all 0 ≤ ‖z′ − z‖ ≤ r0 and that Assumption 3.1
holds.

Following a line of reasoning that is parallel to that of the previous example, we
also get

W1(R1−α(Q),Q
˜Ξ) = O(α1/dz)

for all 0 < α ≤ α0, with α0 := α(r0).

Equation (27) and Examples 1 and 2 reveal that our finite sample guarantee is
affected by the curse of dimensionality. Recently, powerful ideas to break this curse
have been introduced in [24] under the standard Wasserstein-metric-based DRO
scheme. In our setup, however, we also need distributional robustness against the
(uncertain) error incurred when inferring conditional information from a sample of the
true joint distribution. This implies increasing the robustness budget in our approach
by an amount linked to the term Wp(R1−α(Q),Q

˜Ξ). Consequently, we might need
stronger assumptions on the data-generating model to break the dependence of this
term with the dimension of the feature vector and thus extend the ideas in [24] to the
realm of conditional stochastic optimization.

Now we state the conditions under which the sequence of problems
(

P(αN ,ρ̃N )

)

,
N → ∞, is asymptotically consistent.

Lemma 5 (Convergence of conditional distributions) Suppose that the support Ξ of
the true joint distribution Q is compact and that Assumptions 2 and 3 .1 hold. Take

(αN , ρ̃N ) such that αN → 0,
Nα2

N
log(N )

→ ∞, and ρ̃N ↓ ε
p
NαN

, where εNαN
is the

minimum transportation budget as in Definition 2. Then, we have that

Wp(Q
N
˜Ξ
,Q

˜Ξ) → 0 a.s.

where QN
˜Ξ
is any distribution from the ambiguity set ̂UN (αN , ρ̃N ).

Proof First, we need to provide conditions under which Wp
(

R1−α(̂QN ),Q
˜Ξ

) → 0
a.s. Since Ξ is compact and Wp−1

(

R1−α(̂QN ),Q
˜Ξ

) ≤ Wp
(

R1−α(̂QN ),Q
˜Ξ

)

, we

can take p > d/2 andαN such that
Nα2

N
log(N )

→ ∞, so that the probabilities (12) becomes
summable over N for any arbitrarily small ε. In this way, we can choose a sequence
βN ∈ (0, 1), N ∈ N, such that

∑∞
N=1 βN < ∞ and limN→∞ εN ,p,αN (βN ) → 0.

With this choice, we have

Q
∞
[

lim
N→∞Wp

(

R1−αN (̂QN ),Q
˜Ξ

) − Wp
(

R1−αN (Q),Q
˜Ξ

) = 0

]

= Q
∞
[

lim
N→∞Wp

(

R1−αN (̂QN ),Q
˜Ξ

) = 0

]

= 1

because Wp
(

R1−αN (Q),Q
˜Ξ

) = O
(

α
2/pdz
N

)

→ 0 for αN → 0.
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Since,Q
˜Ξ ∈ R1−αN (̂QN ) a.s. in the limit and, by definition,Q

˜Ξ(˜Ξ) = 1, we have
that Q

˜Ξ ∈ ̂UN (αN , ρ̃N ) for N sufficiently large, with both αN , ρ̃N → 0.

For its part, becauseQN
˜Ξ

∈ ̂UN (αN , ρ̃N ), thismeans thatWp

(

R1−αN (̂QN ), QN
˜Ξ

)

≤
ρ̃N . Take N large enough, set ρ̃N arbitrarily close to ε

p
NαN

and notice that
̂UN (αN , ε

p
NαN

) boils down to one single probability measure, the one made up of

the NαN data points of ̂QN that are the closest to ˜Ξ . In addition, we have ε
p
NαN

→ 0
with probability one. To see this, take K := 
NαN � and note that

ε
p
NαN

≤ dist(̂ξ K :N , ˜Ξ) → ‖̂zK :N − z∗‖ → 0

almost surely provided that αN → 0 (see [13, Lemmas 2.2 and 2.3]), where ẑK :N is
the z-component of the K -th nearest neighbor to z∗ after reordering the data sample
{̂ξ i := (̂zi , ŷi )}Ni=1 in terms of ‖̂zi − z∗‖ only.

Therefore, it must hold that Wp(QN
˜Ξ
,Q

˜Ξ) → 0 a.s. ��
Remark 3 The compactness of the support set Ξ is assumed here just to simplify the
proof. In fact, in the “Appendix EC.2” of the extended version of this paper [19],
we use results from nearest neighbors to show that the convergence of conditional
distributions can be attained under the less restrictive condition NαN

log(N )
→ ∞ even in

some cases for which the uncertainty y and the feature vector z are unbounded. In
addition, we also make use of those results to demonstrate that distributionally robust
versions of some local nonparametric predictive methods, such as Nadaraya-Watson
kernel regression and K -nearest neighbors, naturally emerge from our approach.

Remark 4 The convergence of conditional distributions allows us to establish an
asymptotic consistency result analogous to that of Theorem 3, by simply replacing
“Theorem 2”, “ρ̃N ” and “Lemma 4” with “Theorem 4”, “(αN , ρ̃N )” and “Lemma 5”,
respectively.

Remark 5 Suppose that the event ˜Ξ on which we condition problem (1) is given
by ˜Ξ := {ξ = (z1, z2, y) ∈ Ξ : z1 = z∗

1, z2 ∈ Z2}, with Q(˜Ξ) = 0 and
P(z2 ∈ Z2) > 0. Let QZ2 be the probability measure of (z1, y) conditional on
z2 ∈ Z2. If we have that there is ˜C > 0 and r0 > 0 such that P(‖z∗

1 − z1‖ ≤
r) ≥ ˜Crdz1 , for all 0 < r ≤ r0, and that QZ2 satisfies the smoothness condition
invoked in either Theorem 4, Example 1 or Example 2, then the analysis in this section
extends to that type of event by setting α(r) = ˜Crdz1 · P(z2 ∈ Z2) and noticing that
QB(z∗1,r)×Z2×Ξy ∈ R1−α(r)(Q), 0 < r ≤ r0, whereQB(z∗1,r)×Z2×Ξy is the probability
measure of (z1, z2, y) conditional on (z1, z2, y) ∈ B(z∗

1, r) × Z2 × Ξy.

4 Numerical experiments

The following simulation experiments are designed to provide numerical evidence on
the performance of the DRO framework with side information that we propose, with
respect to other methods available in the technical literature. Here we only consider
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the case α = 0, while additional numerical experiments for the case α > 0 can be
found in the supplementary material.

To numerically illustrate the setting Q(˜Ξ) = α = 0, we consider two well-known
problems, namely, the (single-item) newsvendor problem and the portfolio allocation
problem, both posed in the form infx∈X EQ

[

f (x, ξ) | ξ ∈ ˜Ξ
]

to allow for side infor-
mation. We compare four data-driven approaches to address the solution to these two
problems: Our approach, i.e., problem P(αN ,ρ̃N ) with αN = KN/N , which we denote
“DROTRIMM”; a Sample Average Approximationmethod based on a local predictive
technique, in particular, the KN nearest neighbors, which we refer to as “KNN” (see
[7] for further details); this very same local predictive method followed by a standard
Wasserstein-metric-based DRO approach to robustify it, as suggested in [9, Section
5], which we call “KNNDRO”; and the robustified KNN method (4), also proposed
in [9], which we term “KNNROBUST.” We clarify that KNNDRO uses the K nearest
neighbors projected onto the set ˜Ξ as the nominal “empirical” distribution that is used
as the center of the Wasserstein ball in [35].

We also note that the newsvendor problem and the portfolio optimization problem
are structurally different if seen from the lens of the standardWasserstein-metric-based
DRO approach. Indeed, the newsvendor problem features an objective function with a
Lipschitz constant with respect to the uncertainty that is independent of the decision x.
Consequently, as per [35, Remark 6.7], KNNDRO renders the sameminimizer for this
problem as that of KNN whenever the support set ˜Ξ is equal to the whole space. This
is, in contrast, not true for the portfolio allocation problem, which has an objective
function with a Lipschitz constant with regard to the uncertainty that depends on the
decision x.

In all the numerical experiments, we take the p-norm with p = 1 and, accordingly,
we use the Wasserstein distance of order 1. Thus, all the optimization problems that
we solve are linear programs. We consider a series of different values for the size N
of the sample data. Unless stated otherwise in the text, for each N , we choose as the
number of neighbors, KN , the value �N/ log(N + 1)�, where �·� stands for the floor
function. Nevertheless, for the portfolio allocation problem, we also test the values
�N 0.9� and �√N� to assess the impact of the number of neighbors on the out-of-sample
performance of the four methods we compare.

We estimate x∗ ∈ argminx∈X EQ
˜Ξ

[

f (x, ξ)
]

and J ∗ = EQ
˜Ξ

[

f (x∗, ξ)
]

using a
discrete proxy of the true conditional distribution Q

˜Ξ . In the newsvendor problem,
this proxy is made up of 1085 data points, resulting from applying the KNN method
(with the logarithmic rule) to 10,000 samples from the true data-generating joint
distribution. In the portfolio optimization problem, we have an explicit form of Q

˜Ξ ,
which we utilize to directly construct a 10,000-data-point approximation. To compare
the four data-driven approaches under consideration, we use two performancemetrics,
specifically, the out-of-sample performance of the data-driven solution and its out-of-
sample disappointment. The former is givenby J = EQ

˜Ξ

[

f (̂xmN , ξ)
]

,while the latter is
calculated as J − ̂JmN , where m = {KNN, KNNROBUST, DROTRIMM, KNNDRO}
and ̂JmN is the objective function value yielded by the data-driven optimization problem
solved by methodm. We note that a negative out-of-sample disappointment represents
a favorable outcome.

123



1092 A. Esteban-Pérez, J. M. Morales

SinceEQ
˜Ξ

[

f (̂xmN , ξ)
]

and ̂JmN are functions of the sample data,we conduct a certain
number of runs (400 for the newsvendor problemand 200 for the portfolio optimization
problem) for every N , each run with an independent sample of size N . This way we
can get (visual) estimates of the out-of-sample performance and disappointment for
several values of the sample size N for different independent runs. These estimates
are illustrated in the form of box plots in a series of figures, where the dotted black
horizontal line corresponds to either the optimal solution x∗ (only in the newsvendor
problem) or to its associated optimal cost J ∗ with complete information.

As is customary in practice, we use a data-driven procedure to tune the robustness
parameter of eachmethod. In particular, for a desired value of reliability 1−β ∈ (0, 1)
(in our numerical experiments, we set β to 0.15), and for each method j , where j =
{KNNROBUST, KNNDRO, DROTRIMM}, we aim for the value of the robustness
parameter for which the estimate of the objective value ̂J j

N given bymethod j provides
an upper (1−β)-confidence bound on the out-of-sample performance of its respective
optimal solution (see Eq. (10)), while delivering the best out-of-sample performance.
As the optimal robustness parameter is unknown and depends on the available data
sample, we need to derive an estimator paramβ, j

N that is also a function of the training

data. We construct paramβ, j
N and the corresponding reliability-driven solution as

follows:

1. We generate kboot resamples (with replacement) of size N , each playing the role
of a different training set. In our experiments we set kboot = 50. Moreover, we
build a validation dataset determining the KNval -neighbors of the Nval data points
of the original sample of size N that have not been used to form the training set.

2. For each resample k = 1, . . . , kboot and each candidate value for param, we
compute a solution by method j with parameter param on the k-th resample.
The resulting optimal decision is denoted as x̂ j,k

N (param) and its correspond-

ing objective value as ̂J j,k
N (param). Thereafter, we calculate the out-of-sample

performance J (̂x j,k
N (param)) of the data-driven solution x̂ j,k

N (param) over the
validation set.

3. From among the candidate values for param such that ̂J j,k
N (param) exceeds the

value J (̂x j,k
N (param)) in at least (1− β) × kboot different resamples, we take as

paramβ, j
N the one yielding the best out-of-sample performance averaged over the

kboot validation datasets.
4. Finally, we compute the solution given by method j with parameter paramβ, j

N ,

x̂ j
N := x̂ j

N (paramβ, j
N ) and the respective certificate ̂J j

N := ̂J j
N (paramβ, j

N ).

Recall that, in our approach, the robustness parameter ρ̃N must be greater than
or equal to the minimum transportation budget to the power of p, that is, ε

p
NαN

.

Hence, if we decompose ρ̃N as ρ̃N = ε
p
NαN

+ Δρ̃N , what one really needs to tune in
DROTRIMM is the budget excess Δρ̃N . Furthermore, for the same amount of budget
Δρ̃N , our approach will lead to more robust decisions x than KNNDRO, because the
worst-case distribution in KNNDRO is also feasible in DROTRIMM. Consequently,
in practice, the tuning of one of these methods could guide the tuning of the other.
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Lastly, all the simulations have been run on a Linux-based server using up to 116
CPUs running in paralell, each clocking at 2.6 GHz with 4 GB of RAM. We have
employed Gurobi 9.0 under Pyomo 5.2 to solve the associated linear programs.

4.1 The single-item newsvendor problem

In this subsection, we deal with the popular single-item newsvendor problem, which
has received a lot of attention lately (see, for example, [5,30] and references therein). It
is known that the solution to the single-item newsvendor problem is equivalent to that
of a quantile regression problem, where the goal is to estimate the quantile b/(b+h) of
the distribution of the uncertainty y, with h and b being the unit holding and backorder
costs, respectively.

For the particular instance of this problem that we analyze next, we have considered
h = 1 and b = 10. Furthemore, the true joint distribution of the datâξ i := (̂zi , ŷi ), i =
1, . . . , N is assumed to follow a mixture (with equal weights) of two normal bivariate
distributions with means μ1 = [0.6, 0.75]T , μ2 = [0.5,−0.75]T and covariance

matrices Σ1 =
[

0.5 0
0 0.01

]

, Σ2 =
[

0.0001 0
0 0.1

]

respectively. Therefore, the support

set of this distribution is the whole space R
dz+dy , with dz = dy = 1. In addition,

we consider as Z the singleton {z∗ = 0.44}, with ˜Ξ being the real line R as a
result. Figure 1a shows a heat map of the true joint distribution, together with a kernel
estimate of the probability density function of the random variable y conditional
on z∗. Moreover, the white dotted curve in the figure corresponds to the optimal
order quantity as a function of the feature z. Note that this curve is highly nonlinear
around the context z∗. Also, the demand may be negative, which, in the context of
the newsvendor problem, can be interpreted as items being returned to the stores
due to, for example, some quality defect. The set of candidate values from which
the robustness parameters in methods KNNROBUST, KNNDRO and DROTRIMM
have been selected is the discrete set composed of the thirty linearly spaced numbers
between 0 and 2. We also consider the machine learning algorithm proposed in [5],
which was especially designed for the newsvendor problem with features. In this
algorithm, a polynomial mapping between the optimal order quantity (i.e., the optimal
quantile) and the covariates is presumed. The degree of the polynomial, up to the fourth
degree, is tuned using the bootstrapping procedure described above. We denote this
approach as ML from “Machine Learning”.

Figure 1b–d illustrate the box plots corresponding to the quantile estimators (i.e.,
the optimal solution of the problem), the out-of-sample disappointment and the out-of-
sample performance delivered by each of the considered data-driven approaches for
various sample sizes and runs, in that order. The shaded color areas have been obtained
by joining the 15th and 85th percentiles of the box plots, while the associated bold
colored lines link their means. The true optimal quantile (with complete information)
and its out-of-sample performance are also depicted in Fig. 1c, b, respectively, using
black dotted lines.

Interestingly,whereas the quantile estimators provided byDROTRIMM,KNNDRO
and KNNROBUST all lead to negative out-of-sample disappoinment in general,
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(a) (b)

(d)(c)

Fig. 1 Newsvendor problem with features: true distributions, quantile estimate and performance metrics

KNNDRO andKNNROBUST exhibit substantially worse out-of-sample performance
both in expectation and volatility. Recall that KNNDRO delivers the same solutions
provided by KNN for this problem. Its behavior is, therefore, influenced by the bias
introduced by the K -nearest neighbors estimation, which is particularly notorious for
small-size samples in this case, given the shape of the true conditional density, see
Fig. 1a. Actually, for some runs, the K -nearest neighbors, and hence KNNDRO, lead
to negative quantile estimates, while the true one is positive and greater than 0.5. By
construction, both KNNDRO and KNNROBUST are mainly affected by the estima-
tion error of the conditional probability distribution incurred by the local predictive
method. On the contrary, our approachDROTRIMMoffers a natural protection against
this error and a richer spectrum of data-driven solutions. Indeed, DROTRIMM is able
to identify solutions that lead to a better out-of-sample performance with a negative
out-of-sample disappointment.

Finally, both ML and DROTRIMM exhibit a notorious stable behavior against the
randomness of the sample. The order quantity provided by the former, however, does
not converge to the true optimal one, because the relationship between the true optimal
order and the feature z is far from being polynomial. Note that ML is a global method
that seeks to learn the optimal order quantity for all possible contexts by using a
polynomial up to the fourth degree. However, the (true) optimal order curve (that is,
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the white line in Fig. 1a) is highly nonlinear within a neighborhood of the context
z∗ = 0.44, but practically constant outside of it.

4.2 Portfolio optimization

We consider next an instance of the portfolio optimization problem that is based on
that used in [8,12]. The instance corresponds to a single-stage portfolio optimization
problem in which we wish to find an allocation of a fixed budget to six different assets.
Thus, x ∈ R

6+ denotes the decision variable vector, that is, the asset allocations, and
their uncertain return is represented by y ∈ R

6. In practice, these uncertain returns
may be influenced by a set of features. First, the decision maker observes auxiliary
covariates and later, selects the portfolio. We consider three different covariates that
can potentially impact the returns and that we denote as z = (z1, z2, z3). The decision
maker wishes to leverage this side information to improve his/her decision-making
process in which the goal is to maximize the expected value of the return while
minimizing the conditional value at risk (CVar) of the portfolio, that is, the risk that the
loss (−〈x, y〉)+ := max(−〈x, y〉, 0) is large. Using the reformulation of the CVar (see
[12,41]) and introducing the auxiliary variable β ′, the decision maker aims to solve the
following optimization problem given the value of the covariate z∗(= (1000, 0.01, 5)
in the numerical experiments):

min
(x,β ′)∈X

E

[

β ′ + 1

δ

(−〈x, y〉 − β ′)+ − λ〈x, y〉 | z = z∗
]

(28)

where the feasible set of decision variables of the problem, that is, X is equal to
{(x, β ′) ∈ R

6+ × R : ∑6
j=1 x j = 1}. We set δ = 0.5 and λ = 0.1 to simulate

an investor with a moderate level of risk aversion. The parameter λ ∈ R+ serves
to tradeoff between risk and return, and δ refers to the (1 − δ)-quantile of the loss
distribution. We take the same marginal distributions for the covariates as in Section
5.2 of [12], i.e., z1 � N (1000, 50), z2 � N (0.02, 0.01) and log(z3) � N (0, 1).
Furthermore, we follow their approach to construct the joint true distribution of the
covariates and the asset returns. In particular, we take

y/(z = (z1, z2, z3)) � N6(μ + 0.1 · (z1 − 1000) · v1 + 1000 · z2 · v2
+10 · log(z3 + 1) · v3,Σ)

with v1 = (1, 1, 1, 1, 1, 1)T , v2 = (4, 1, 1, 1, 1, 1)T , v3 = (1, 1, 1, 1, 1, 1)T , and
with μ,Σ1/2 given in [12,20].

Note that, unlike in [12], not all the features affect equally all the asset returns.
Moreover, feature z3 is log-normal and therefore, Assumption 1 does not hold. How-
ever, as we show below, DROTRIMM performs satisfactorily, which reveals that the
conditionswe derive in this paper to guarantee that our approach performswell are suf-
ficient, but not necessary. Indeed, the conditionQ

˜Ξ ∈ ̂UN (αN , ρ̃N ) is not required to
ensure performance guarantees [24,34]. For all the methods, we have standardized the
covariates z and the asset returns y using their means and variances. In all the simula-
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tions, the robustness parameter eachmethod uses (i.e., εN in KNNROBUST, the radius
of theWassertein ball, ρN , in KNNDRO, and the budget excessΔρ̃N in DROTRIMM)
has been chosen from the discrete set {b · 10c : b ∈ {0, . . . , 9}, c ∈ {−2,−1, 0}},
following the above data-driven procedure.

Similarly to the case of the single-item newsvendor problem, Fig. 2 shows, for
various sample sizes and 200 runs, the box plots pertaining to the out-of-sample
disappointment and performance associated with each of the considered data-driven
approaches. Each of the three pairs of subplots at the top of the figure has been obtained
with a different rule to determine the number KN of nearest neighbors. Increasing this
number seems to have a positive effect on the convergence speed of all the methods
for this instance, although KNNROBUST (and KNNDRO to a lesser extent) has some
trouble ensuring the desired reliability level, with the 85% line above 0 for the largest
values of N we represent. In contrast, DROTRIMM manages to keep the disappoint-
ment negative. This is, in addition, accompanied by an important improvement of the
the out-of-sample performance (in line with the criterion for selecting the best portfo-
lio that we have established). In fact, DROTRIMM produces boxplots that appear to
be shifted downward, i.e., in the direction of better objective function values. On the
other hand, the KNN method substantially improves its performance by employing a
larger number of neighbors. However, it is way too optimistic in any case.

The results shown in the pair of subplots at the bottom of Fig. 2 correspond to a
number KN of neighbors that has been tuned jointly with the robustness parameter
and for each method independently. For this purpose, we have selected the best value
of KN for each approach from the discrete set {N 0.1, N 0.2, . . . , N 0.9} following the
bootstrapping-based procedure previously described. The data-driven tuning of the
number KN of neighbors appears not to have a major effect on the performance of
the different methods, especially in comparative terms. We do observe that the out-of-
sample performance ofKNNROBUSTandKNNDRO is slightly improved on average.
This improvement in cost performance is, however, accompanied by an increase in
the number of sample sizes for which these methods do not satisfy the reliability
requirement, particularly in the case of KNNROBUST and small sample sizes.

To facilitate the analysis of the results shown in Fig. 2, we also provide Fig. 3, which
illustrates the (random) performance of themethodsKNNROBUST,DROTRIMMand
KNNDRO as a function of their respective robustness parameter, estimated over 200
independent runs. Again, the shaded areas cover the 15th and 85th percentiles, while
the bold colored lines correspond to the average performance. The various plots are
obtained for N = 30 and N = 400, with the number of neighbours given by the
logarithmic rule. These plots are especially informative, because they are indepen-
dent of the specific validation procedure used to tune the robustness parameters of the
methods and thus, provide insight into the potential of each method to identify good
solutions. Note that the out-of-sample performance of all the three methods stabilizes
around the same value as their respective robustness parameters grow large enough.
This phenomenon is analogous to that discussed in [35, Section 7.1]. However, the
valuewe observe here does not correspond to the “equallyweighted portfolio,” because
we have standardized the data on the asset returns. As a result, the “robust portfolio”
that delivers this out-of-sample performance depends on and is solely driven by the
standard deviations of the different assets. Very interestingly, DROTRIMM is able to
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(a) (b)

(h)(g)

(e) (f)

(c) (d)

Fig. 2 Portfolio problem with features: performance metrics
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Fig. 3 Impact of the robustness parameter with 200 training samples, KN = �N/(log(N + 1))� and
δ = 0.5, λ = 0.1

uncover portfolios whose out-of-sample performance features a better mean-variance
trade-off, in general. Furthermore, it requires a smaller value of the robustness param-
eter to guarantee reliability. All this is more evident (and useful) for the case N = 400,
as we explain next. When N = 30, all the considered methods need large values of
their robustness parameter to ensure reliability, so they all tend to operate close to
the “robust portfolio” we mentioned above. DROTRIMM can certainly afford lower
values of Δρ̃ in an attempt to improve performance, but this proves not to be that
profitable for such a small sample size, for which the robust portfolio performs very
well. As N increases, the robust portfolio loses its appeal, since its performance grad-
ually becomes comparatively worse. DROTRIMM is then able to identify portfolios
that perform significantly better in expectation, while providing an estimate of their
return such that the desired reliability is guaranteed. For their part, KNNDRO and
KNNROBUST are also able to discover solutions with an actual average cost lower
than that of the robust portfolio (albeit with a worse expectation and a higher variance
than those given by DROTRIMM). However, they are more prone to overestimate
their returns.

Finally,we study thebehavior of the differentmethods under other contexts. For this,
we consider several values of N , one random data sample for each N , and 200 different
contexts z∗ sampled from the marginal distributions of the features. The performance
metrics (i.e., the out-of-sample disappointment and performance) are plotted in Fig. 4a,
4b, respectively, under an optimal selection of the robustness parameters (that is, for
each method we use the value of the robustness parameter that, while ensuring a
negative disappointment, delivers the best out-of-sample performance). We observe
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Fig. 4 Portfolio problem with features: varying context under an optimal selection of the robustness param-
eters, KN = �N/(log(N + 1))� and δ = 0.5, λ = 0.1

that DROTRIMM systematically performs better, with an actual cost averaged over
the 200 contexts that is lower irrespective of the sample size.

5 Conclusions

In this paper, we have exploited the connection between probability trimmings and
partial mass transportation to provide an easy, but powerful and novel way to extend
the standard Wasserstein-metric-based DRO to the case of conditional stochastic pro-
grams. Our approach produces decisions that are distributionally robust against the
uncertainty in the whole process of inferring the conditional probability measure of
the random parameters from a finite sample coming from the true joint data-generating
distribution. Through a series of numerical experiments built on the single-item
newsvendor problem and a portfolio allocation problem, we have demonstrated that
our method attains notably better out-of-sample performance than some existing alter-
natives.We have supported these empirical findings with theoretical analysis, showing
that our approach enjoys attractive performance guarantees.
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A Proofs of theoretical results

This appendix compiles the proofs of some of the theoretical derivations that appear
in the paper. The following technical results are needed to develop these proofs.

Definition 3 (Contamination of a distribution) Given two probabilities P, Q on R
d ,

we say that P is a (1− α)-contaminated version of Q, if P = αQ + (1− α)R, where
R is some probability. A (1 − α)-contamination neighbourhood of Q is the set of all
(1 − α)-contaminated versions of Q and will be denoted as F1−α(Q).

Proposition 4 (Section 2.2. from [2] and p.18 in [1]) Let P, Q be probabilities on Rd

and α ∈ (0, 1], then

Q ∈ R1−α(P) ⇐⇒ P = αQ + (1 − α)R ⇐⇒ P ∈ F1−α(Q) (29)

for some probability R. Moreover, if D is a probability metric such that R1−α(P) is
closed for D over an appropriate set of probability distributions, then (29) is equivalent
to D(Q,R1−α(P)) = 0.

Remark 6 As a particular case, if we consider D = Wp over the set of probability
distributions with finite p-th moment, Pp, we have that, if P , Q ∈ Pp, then Q ∈
R1−α(P) if and only if Wp(Q,R1−α(P)) = 0.

Corollary 1 (Corollary 3.12 from [1]) Given two probabilities P, Q ∈ Pp(R
d) and

α ∈ (0, 1), there exists P1−α ∈ F1−α(Q) such that P1−α = αQ + (1 − α)R1−α for
some R1−α ∈ Rα(P) and Wp(P, P1−α) = minR∈F1−α(Q) Wp(P, R).

Proposition 5 (Proposition 3.14 from [1]) Take P, Q ∈ Pp(R
d). If α ∈ (0, 1), then

W
p
p (P,F1−α(Q)) = αW

p
p (R1−α(P), Q)

Moreover, if ̂P1−α ∈ R1−α(P) is such that Wp(̂P1−α, Q) = Wp (R1−α(P), Q), then
if we construct the probability measure ˜P1−α = 1

1−α

(

P − α̂P1−α

)

, we have that

P1−α := αQ + (1 − α)˜P1−α ∈ F1−α(Q) and Wp (P, P1−α) = Wp (P,F1−α(Q)).

A.1 Proof of Lemma 1

Wewill prove the lemma by contradiction. Suppose there are two different probability
distributions Q

˜Ξ and Q ′̃
Ξ
such that

D
(

R1−α(Q), Q
˜Ξ

) = D(R1−α(Q), Q ′̃
Ξ

) = 0
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and Q
˜Ξ(˜Ξ) = Q ′̃

Ξ
(˜Ξ) = 1.

Because D
(

R1−α(Q), Q
˜Ξ

) = D(R1−α(Q), Q ′̃
Ξ

) = 0, we know by Proposition 4
above that Q

˜Ξ , Q ′̃
Ξ

∈ R1−α(Q). Therefore, again applying Proposition 4, we have

Q = αQ
˜Ξ + (1 − α)R

Q = αQ ′̃
Ξ

+ (1 − α)R′

for some probabilities R and R′ with R(˜Ξ) = R′(˜Ξ) = 0.
Since, by hypothesis, Q

˜Ξ and Q ′̃
Ξ
are different, there must exist an event A ⊂ ˜Ξ

such that Q
˜Ξ(A) �= Q ′̃

Ξ
(A). We take that event and compute Q(A) as follows:

Q(A) = αQ
˜Ξ(A) + (1 − α)R(A) = αQ ′̃

Ξ
(A) + (1 − α)R′(A),

which renders a contradiction given that R(A) = R′(A) = 0. ��

A.2 Proof of Proposition 1

We begin by proving the first claim of Proposition 1.
We show that every feasible solution of (SP1) can bemapped into a feasible solution

of (SP2) with the same objective function value. To this end, take Q as a feasible
solution of (SP1) and let Q

˜Ξ be the Q-conditional probability measure given ξ ∈ ˜Ξ .
Take ̂QN and Q

˜Ξ as the two probabilities in Corollary 1 with α ∈ (0, 1). There exists
Q1−α ∈ F1−α(Q

˜Ξ) such that Q1−α = αQ
˜Ξ + (1−α)˜Q1−α , with ˜Q1−α ∈ Rα(̂QN )

and Wp(̂QN , Q1−α) = Wp(̂QN ,F1−α(Q
˜Ξ)). Furthermore, it automatically follows

from Proposition 5 that W p
p (̂QN ,F1−α(Q

˜Ξ)) = αW
p
p (R1−α(̂QN ), Q

˜Ξ).
Since Q ∈ F1−α(Q

˜Ξ), we deduce that W p
p (̂QN ,F1−α(Q

˜Ξ)) ≤ W
p
p (̂QN , Q) ≤

ρ̃ · α. Hence, it holds thatW p
p (R1−α(̂QN ), Q

˜Ξ) ≤ ρ̃. In other words, Q
˜Ξ is feasible

in (SP2). Besides, since Q
˜Ξ is the Q-conditional probability measure given ξ ∈ ˜Ξ ,

we have that EQ
[

f (x, ξ) | ξ ∈ ˜Ξ
]

= 1
α
EQ

[

f (x, ξ )I
˜Ξ(ξ)

] = EQ
˜Ξ

[

f (x, ξ)
]

a.s.
Next we prove the second claim of the proposition. To this end, first we show that,
if ̂QN (˜Ξ) = 0, then every feasible solution of (SP2) can also be mapped into a
feasible solution of (SP1) with the same objective function value. To this end, take
Q

˜Ξ feasible in (SP2) and consider ̂Q1−α ∈ R1−α(̂QN ) such that Wp(̂Q1−α, Q
˜Ξ)

= Wp(R1−α(̂QN ), Q
˜Ξ). Fix ˜Q1−α = 1

1−α
(̂QN − α̂Q1−α). By Proposition 5, we

have

Q1−α = αQ
˜Ξ + (1 − α)˜Q1−α = αQ

˜Ξ + ̂QN − α̂Q1−α ∈ F1−α(Q
˜Ξ)

Hence, Q1−α(˜Ξ) = α, because ̂QN (˜Ξ) gives zero measure to ˜Ξ and so does any of
its (1 − α)-trimmings. Besides, we have that

W
p
p (̂QN , Q1−α) = W

p
p (̂QN ,F1−α(Q

˜Ξ)) = αW
p
p (R1−α(̂QN ), Q

˜Ξ) ≤ αρ̃.

Therefore, Q1−α is feasible in (SP1) and Q
˜Ξ is the Q1−α-conditional probability

measure given ξ ∈ ˜Ξ .
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Finally, if α = 1, then R1−α(̂QN ) = ̂QN , EQ
[

f (x, ξ) | ξ ∈ ˜Ξ
] = EQ

[

f (x, ξ)
]

and the mapping is direct, namely, Q = Q
˜Ξ . ��

A.3 Proof of Theorem 1

Thanks to Lemma 2, the subproblem (SP2) can be written equivalently as follows:

(SP2) sup
Q

˜Ξ ; b∈Δ(αN )

EQ
˜Ξ

[

f (x, ξ)
]

s.t. Q
˜Ξ(˜Ξ) = 1

Wp

(

N
∑

i=1

bi δ̂ξ i
, Q

˜Ξ

)

≤ ρ̃1/p

where Δ(αN ) stands for the set of constraints {0 ≤ bi ≤ 1
NαN

, ∀i ≤ N ,
∑N

i=1 bi =
1}.

Problem (SP2) can be, in turn, reformulated as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sup
Q

˜Ξ ; Π; b∈Δ(αN )

∫

˜Ξ

f (x, (z, y))Q
˜Ξ(dz, dy)

s.t.
∫

˜Ξ

Q
˜Ξ(dz, dy) = 1

(∫

˜Ξ×Ξ

∥

∥(z, y) − (z, y)′
∥

∥

p
Π(d(z, y), d(z, y)′)

)1/p

≤ ρ̃1/p

{

Π is a joint distribution of (z, y) and (z, y)′
with marginals Q

˜Ξ and
∑N

i=1 bi δ̂ξ i
, respectively

(30)

=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

sup
Qi

˜Ξ
; b∈Δ(αN )

N
∑

i=1

bi

∫

˜Ξ

f (x, (z, y))Qi
˜Ξ
(dz, dy)

s.t.
∫

˜Ξ

Qi
˜Ξ
(dz, dy) = 1, ∀i ≤ N

N
∑

i=1

bi

∫

˜Ξ

‖(z, y) − (̂zi , ŷi )‖p Qi
˜Ξ
(dz, dy) ≤ ρ̃

(31)

where reformulation (31) follows from the fact that the marginal distribution of (z, y)′
is the discrete distribution supported on points (̂zi , ŷi ), with probability masses bi ,
i = 1, . . . , N . Thus, Π is completely determined by the conditional distributions Qi

˜Ξ

of (z, y) given (z, y)′ = (̂zi , ŷi ), i = 1, . . . , N , that is,

Π(d(z, y), d(z, y)′) =
N
∑

i=1

biδ(̂zi ,̂yi )(d(z, y)′)Qi
˜Ξ
(d(z, y))
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Now we split up the supremum into two:

sup
b∈Δ(αN )

sup
Qi

˜Ξ
,∀i≤N

N
∑

i=1

bi

∫

˜Ξ

f (x, (z, y))Qi
˜Ξ
(dz, dy) (32a)

s.t
∫

˜Ξ

Qi
˜Ξ
(dz, dy) = 1, ∀i ≤ N (32b)

N
∑

i=1

bi

∫

˜Ξ

‖(z, y) − (̂zi , ŷi )‖p Qi
˜Ξ
(dz, dy) ≤ ρ̃ (32c)

If we set λ as the dual variable of constraint (32c), then using standard duality argu-
ments, we can equivalently rewrite the inner supremun as

sup
b∈Δ(αN )

inf
λ≥0

sup
Qi

˜Ξ
,∀i≤N

λρ̃ +
N
∑

i=1

bi

∫

˜Ξ

(

f (x, (z, y)) − λ ‖(z, y) − (̂zi , ŷi )‖p) Qi
˜Ξ
(dz, dy)

(33)

s.t
∫

˜Ξ

Qi
˜Ξ
(dz, dy) = 1, ∀i ≤ N (34)

= sup
b∈Δ(αN )

inf
λ≥0

λρ̃ +
N
∑

i=1

bi sup
(z,y)∈˜Ξ

(

f (x, (z, y)) − λ ‖(z, y) − (̂zi , ŷi )‖p) (35)

= inf
λ≥0

sup
b∈Δ(αN )

λρ̃ +
N
∑

i=1

bi sup
(z,y)∈˜Ξ

(

f (x, (z, y)) − λ ‖(z, y) − (̂zi , ŷi )‖p) (36)

= inf
λ≥0;μi ,∀i≤N ;θ∈R λρ̃ + θ + 1

Nα

N
∑

i=1

μi (37)

s.t. μi + θ ≥ sup
(z,y)∈˜Ξ

(

f (x, (z, y)) − λ ‖(z, y) − (̂zi , ŷi )‖p) , ∀i ≤ N (38)

μi ≥ 0, ∀i ≤ N (39)

where we have swapped the supremum and the infimum in (35) by appealing to
Sion’s min-max theorem [44], given that the objective function in (35) is linear in the
bi , i = 1, . . . , N , over a compact convex set, and a positively weighted sum of convex
functions in λ. ��

Remark 7 (Limiting case α = 0) If α = 0, R1(̂QN ) = {∑N
i=1 bi δ̂ξ i

such that bi ≥ 0,

∀i = 1, . . . , N , and
∑N

i=1 bi = 1}. Therefore, dual variables μi ,∀i ≤ N , do not
appear in (37)–(39) in this case. Similarly, if 1

Nα
≥ 1, the constraintsbi ≤ 1

Nα
,∀i ≤ N ,

become redundant and hence we can set μi = 0,∀i ≤ N .
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