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Abstract

The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained
quadratic programs (QCQPs) through the technique of lifting. Our first main result shows that, for sets
described by one bipartite bilinear constraint together with bounds, it is always possible to sequentially lift
a seed inequality that is valid for a restriction obtained by fixing variables to their bounds, when the lifting
is accomplished using affine functions of the fixed variables. In this setting, sequential lifting involves solving
a non-convex nonlinear optimization problem each time a variable is lifted, just as in Mixed Integer Linear
Programming. To reduce the computational burden associated with this procedure, we develop a framework
based on subadditive approximations of lifting functions that permits sequence-independent lifting of seed
inequalities for separable bipartite bilinear sets. In particular, this framework permits the derivation of
closed-form valid inequalities. We then study a separable bipartite bilinear set where the coefficients form
a minimal cover with respect to the right-hand-side. For this set, we introduce a bilinear cover inequality,
which is second-order cone representable. We argue that this bilinear cover inequality is strong by showing
that it yields a constant-factor approximation of the convex hull of the original set. We study its lifting
function and construct a two-slope subadditive upper bound. Using this subadditive approximation, we lift
fixed variable pairs in closed-form, thus deriving a lifted bilinear cover inequality that is valid for general
separable bipartite bilinear sets with box constraints.

1 Introduction

1.1 Generating strong cutting planes through lifting
Lifting is a technique that is used to derive or strengthen classes of cutting planes. It was first introduced to
optimization in the context of mixed integer linear programming (MILP); see [46] for a review. The lifting
process has two steps:

• Fixing and generation of a seed inequality : In the first step, the set S of interest is restricted by fixing a
subset of variables, say xF , to specific values (typically to one of their bounds), say x̃F . A valid inequality
h(x) ≥ h0, which we call seed inequality, is then generated for the restriction S|xF =x̃F .

• Lifting the seed inequality: The seed inequality h(x) ≥ h0, when viewed with “zero coefficients" for the
fixed variables h(x) + 0 · xF ≥ h0 is typically not valid for the original set S. The task in the lifting step
is to generate an inequality h(x) + g(xF ) ≥ h0 + g0, which (i) is valid for S and (ii) satisfies g(x̃F ) = g0.
Under condition (ii), inequality h(x) + g(xF ) ≥ h0 + g0 reduces to inequality h(x) ≥ h0 when xF is set to
x̃F . The process of lifting is often accomplished by rotating or titling the seed inequality [27].

Though condition (ii) is not strictly necessary to impose, we require it in the remainder of the paper as otherwise
h(x) + g(xF ) ≥ h0 + g0 is weak on the face xF = x̃F .

Lifting, as a technique for generating cutting-planes in MILP, has been extensively researched. Originally
devised for node packing and knapsack sets [43, 44, 7, 35, 10], lifting was extended to general settings [54, 55,
31, 32, 47, 48, 4] and used to derive families of valid inequalities for many sets including [19, 38, 3, 1, 36, 22,
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56, 57, 58, 28]. Many of the classes of cutting planes that have yielded significant computational gains can be
obtained through lifting. This includes lifted cover inequalities [31], lifted tableaux cuts [22, 41], and even the
Gomory mixed integer cut [26]; see [9, 50, 25, 21, 12, 11, 13, 6, 14, 24, 13] for papers related to lifting in the
infinite group problem model. Similarly, mixing inequalities [33] can be viewed as an outcome of lifting [24].

Significantly fewer articles have focused on studying how lifting can be applied to nonlinear programs and
mixed integer nonlinear programs. Exceptions include [51], which develops a general theory for lifting linear
inequalities in nonlinear programming, [42] which applies lifting to derive the convex hull of a nonlinear set, [34]
which studies lifting for the pooling problem, [5] which uses lifting for conic integer programs, and [20] which
develops strong inequalities for mixed integer bilinear programs.

1.2 Goal of this paper
The goal of this paper is to derive new classes of valid convex inequalities for quadratically constrained quadratic
programs (QCQPs) through the technique of lifting.

Generating valid inequalities for single row relaxations (together with bounds and integrality restrictions),
i.e., for knapsack constraints, was the first, and arguably the most important step in the development of
computationally useful cutting-planes in MILP. Motivated by this observation, various cutting-planes and con-
vexification techniques for sets defined by a single non-convex quadratic constraint together with bounds have
recently been investigated; see [20, 53, 2] for classes of valid inequalities for single constraint QCQPs and [23, 52]
for convex hull results for such sets. The paper [45] studies a set similar to the one we study, albeit with integer
variables. Further, [23] demonstrates that cuts obtained from one-row relaxations of QCQPs can be useful
computationally. The paradigm of intersection cuts has also been explored to generate cuts for single-constraint
QCQPs [40, 16]. Due to lack of space, we refrain from describing here the vast literature on convexification
techniques for QCQPs and instead refer interested readers to [18, 52] and the references therein.

In this paper, we investigate the lifting of a convex seed inequality for a feasible region defined by a single
(non-convex) quadratic constraint together with bound constraints. Apart from [5], we are not aware of any
paper that attempts to study or employ lifting of convex nonlinear inequalities. To the best of our knowledge, this
is the first study that derives lifted valid inequalities for general non-convex quadratic constraints with arbitrary
number of variables. An extended abstract of this paper was accepted for publication in IPCO 2021 [30].

1.3 Main contributions
• Can we always lift? We present an example in two variables that illustrates that, even when a set is
defined by a convex quadratic constraint, it might not always be possible to lift a linear seed inequality,
valid for the restriction obtained by fixing a variable at lower bound, when we assume g(·)−g0 is an affine
function of the fixed variable. Our main result, by contrast, establishes that there exists a large class of
sets, described by a single bipartite bilinear constraint [23] together with bounds, for which it is always
possible to lift when variables are fixed at their bounds. Note that any quadratic constraint can be relaxed
to a bipartite bilinear constraint.

• Sequence-independent lifting. The lifting of a fixed variable requires the solution of a non-convex nonlinear
optimization problem. When multiple variables must be lifted one at a time, this process (referred to as
sequential lifting) can be computationally prohibitive. Further, the form of the lifted inequality obtained
will differ depending on the order in which variables are lifted. For MILPs, it was shown in [55] that when
the so-called lifting function is subadditive, lifting is far more computationally tractable in part because
the form of the lifted inequality is independent of the order in which variables are lifted. We develop a
similar general result for sequence-independent lifting of seed inequalities for separable bipartite bilinear
constraints.

• Bilinear covering set and bilinear cover inequality. We next study a separable bipartite bilinear set whose
coefficients form a minimal cover with respect to the right-hand-side. For this set, we derive a bilinear cover
inequality. This second-order cone representable valid inequality yields a constant-factor approximation of
the convex hull of the original set.

• Sequence-independent lifting of bilinear cover inequality. We construct a two-slope subadditive upper
bound of the lifting function corresponding to the bilinear cover inequality. This function is reminiscent
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of the two-slope subadditive functions studied in the context of cutting-planes for the infinite group
relaxation [29, 49, 37], although there is no apparent connection. Using this subadditive function, we lift
fixed variable pairs in closed-form, thus describing a family of lifted bilinear cover inequalities, which are
valid for general separable bipartite bilinear constraints.

Notation and organization of the paper Given a positive integer n, we denote the set {1, . . . , n} by [n].
Given a set S ⊆ Rn and θ > 0, we use θ · S to denote the set {θx |x ∈ S}. We also use conv(S) to denote the
convex hull of set S. The rest of the paper is organized as follows. In Section 2 we present our main results.
In Section 3 we discuss some key directions for future research. Sections 4-10 give the proofs of the results
described in Section 2.

2 Main results
Before we discuss our results, we first present two examples that illustrate how lifting can be performed for a
set defined by a quadratic constraint and what challenges can arise during such procedure.

Example 1. Consider the set S := { (x1, x2, x3) ∈ [0, 1]3 | x1x2 +2x1x3 ≥ 1 }. First, we fix x3 = 0 to obtain the
restriction S|x3=0 := {(x1, x2) ∈ [0, 1]2 |x1x2 ≥ 1}. The seed inequality

√
x1x2 ≥ 1, is a valid convex inequality

for S|x3=0. We next show how it can be lifted into a valid inequality for S. Observe that, although valid for
S|x3=0, the seed inequality is not valid for S, since (x1, x2, x3) = (1, 0, 1/2) violates it while belonging to S. We
therefore must introduce variable x3 into the seed inequality so as to make it valid. In particular we seek α ∈ R
for which

√
x1x2 + αx3 ≥ 1, (1)

is valid for S. This question can be answered by solving the problem

α∗ := sup
1−√x1x2

x3

s.t. x1x2 + 2x1x3 ≥ 1, x3 ∈ (0, 1], (x1, x2) ∈ [0, 1]2,

(2)

where a key challenge is to first ascertain that the supremum is finite. When α∗ is finite, it is clear that choosing
any α ≥ α∗ in (1) yields a valid inequality for S. Problem (2) can be analyzed using the following facts: (1)
for any fixed value of x3, we can always assume that an extreme point is the optimal solution, as the objective
is to maximize a convex function, and (2) the extreme points of the set where x3 is fixed to a value within its
bounds are well-understood [52]. This suggests that one can inspect all different values of x3 to establish that
the supremum is finite. We illustrate these calculations next.

Observe that α∗ can be obtained by computing the supremum α∗1 of (2) for x3 ∈ [1/2, 1] and then computing
the supremum α∗2 of (2) for x3 ∈ (0, 1/2]. When x3 ∈ [1/2, 1], one optimal solution is x1 = 1

2x3
and x2 = 0, thus

α∗1 = supx3∈[1/2,1]
1
x3

= 2. When x3 ∈ (0, 1/2], one optimal solution is x1 = 1 and x2 = 1− 2x3, thus

α∗2 = sup
x3∈(0,1/2]

1−
√

1− 2x3

x3
= sup
x3∈(0,1/2]

2

1 +
√

1− 2x3
= 2.

Choosing any α ≥ α∗ = max{α∗1, α∗2} = 2 yields a valid inequality for S. The strongest such valid inequality is√
x1x2 + 2x3 ≥ 1.

Example 1 might suggest that lifting can always be performed when seeking to derive a linear valid inequality.
Example 2 shows that it is not so.

Example 2. Consider the set S =
{

(x1, x2) ∈ [0, 1]2
∣∣ −x2

1 − (x2 − 0.5)2 ≥ −0.52
}
.

The inequality −x1 ≥ 0 is valid for the set S|x2=0 obtained from S by fixing x2 = 0. By setting up an
optimization problem similar to (2), it is easy to verify that there is no α ∈ R for which −x1 + αx2 ≥ 0 is valid
for S.

In Example 2, (i) set S is convex, (ii) we are trying to lift a linear inequality, and (iii) x2 is fixed to a bound.
Even then, it is not possible to lift the seed inequality when we insist that lifting should be accomplished using
an affine function of the fixed variable; see Example 4 in Section 3 for further discussion.
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2.1 Sufficient conditions under which seed inequalities can be lifted
In Theorem 1, we identify a large class of single row QCQPs where lifting can be accomplished using affine
functions of the fixed variables.

Definition 1. A set Q is a bipartite bilinear set1 if it is of the form

S =
{

(x, y) ∈ [0, 1]m × [0, 1]n
∣∣∣ xᵀQy + aᵀx+ bᵀy ≥ c

}
,

where Q ∈ Rm×n, a ∈ Rm, b ∈ Rn, and c ∈ R.

Theorem 1. Let S be a bipartite bilinear set. Given C × D ⊂ [m] × [n] and x̃i, ỹj ∈ {0, 1} for i ∈ [m]\C,
j ∈ [n]\D, assume that inequality h(xC , yD) ≥ r is valid for {(x, y) ∈ S | x[m]\C = x̃[m]\C , y[n]\D = ỹ[n]\D} 6= ∅,
where h is a concave function defined on [0, 1]|C|+|D|. Then, for any k ∈ [m]\C, there exists a finite fk ∈
(−∞,∞) for which h(xC , yD) + fkxk ≥ r + fkx̃k is valid for {(x, y) ∈ S | x([m]\C)\{k} = x̃([m]\C)\{k}, y[n]\D =
ỹ[n]\D}.

Remark 1. The result of Theorem 1 can be applied iteratively to all the fixed variables one at a time to obtain
a valid inequality for S. Theorem 1 holds even when the bounds on variables are not [0, 1], since we can always
rescale and translate variables.

The proof of Theorem 1 is presented in Section 4 and uses calculations similar to those presented in Exam-
ple 1. In particular, using a characterization of extreme points of the bipartite bilinear set S [23], the proof
reduces to establishing the result for three-variable problems where one of the variables is fixed. For a three-
variable problem, a number of cases have to be analyzed to verify that the optimal value of an optimization
problem similar to (2) is finite. The proof can be turned into an algorithm to compute the lifting coefficients,
although not necessarily an efficient or practical one.

Theorem 1 assumes that, when variables x and y are fixed, they are fixed at their bounds (either 0 or 1.)
When this assumption is not imposed, we show next through an example that lifting may not be possible.

Example 3. Consider the bipartite bilinear set S = {(x, y, x̂) ∈ [0, 1]3| (x− 1/4) (y − 1/2) ≥ x̂/4 + 1/8}. First,
we argue that the seed inequality x ≥ 3/4 is valid for the restriction of S where x̂ = 1/2. This is clear as
|y − 1/2| ≤ 1/2 when y ∈ [0, 1] and |x− 1/4| < 1/2 when x < 3/4. Next, we claim that there is no α ∈ R such that
x + α(x̂ − 1/2) ≥ 3/4 is valid for S. Assume by contradiction that x + α(x̂ − 1/2) ≥ 3/4 is valid for S for some
α ∈ R. Since (x, y, x̂) = (0, 0, 0) ∈ S, we must have −α/2 ≥ 3/4. Since (x, y, x̂) = (1, 1, 1) ∈ S, we must have
1 + α/2 ≥ 3/4. This is the desired contradiction as the former expression requires that α ≤ −3/2 while the later
requires that α ≥ −1/2.

2.2 A framework for sequence-independent lifting
Given a set of variables fixed at their bounds and a seed inequality for the corresponding restriction, a valid
inequality for the original problem can be obtained by lifting each fixed variable one at the time. This compu-
tationally demanding process requires the solution of a non-convex nonlinear optimization problem, similar to
(2), to lift each variable. It results in a lifted inequality whose form depends on the order in which variables are
lifted. Next, we study situations where the lifting inequality obtained does not depend on the order in which
variables are lifted. In particular, we develop a subadditive theory for lifting in QCQPs that is inspired by that
originally developed in MILP in [55]. We consider the special case of separable bipartite bilinear constraints.

Definition 2. A set Q is a separable bipartite bilinear set if it is of the form

Q :=

{
(x, y) ∈ [0, 1]n × [0, 1]n

∣∣∣ n∑
i=1

aixiyi ≥ d

}
,

for some d and ai ∈ R for i ∈ [n], i.e., variables xi and yi, for i ∈ [n], appear in only one term.
1We use the term bipartite, perhaps redundantly, to highlight that variables can be divided into two groups, such that any

degree two term comes from product of variables one each from these two groups [23].
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In the separable case, it is natural to lift each pair of variables xi and yi together. Next, we derive conditions
that guarantee that the form of the lifted inequality obtained is independent of the order in which these pairs
are lifted. This result is obtained, as is common in MILP, by deriving a subadditive upper bound on the lifting
function of the seed inequality, from which all lifting coefficients can be derived.

Definition 3. Let Q be a separable bipartite bilinear set. Assume that Λ = {I, J0, J1} is a partition of [n]
(i.e., I ∪ J0 ∪ J1 = [n] with I ∩ J0 = I ∩ J1 = J0 ∩ J1 = ∅) and that h(xI , yI) ≥ r, is a valid inequality for
{(x, y) ∈ Q | xJ0 = yJ0 = 0, xJ1 = yJ1 = 1}. For δ ∈ R, we define the lifting function of the seed inequality as

φ(δ) := max
{
r − h(xI , yI)

∣∣∣ ∑i∈I aixiyi ≥
(
d−

∑
i∈J1 ai

)
− δ, (xI , yI) ∈ [0, 1]2|I|

}
.

Structured approximations of lifting functions allow for simple lifting of inequalities as described next in
Proposition 1, whose proof can be found in Section 5.

Proposition 1. Let Q be a separable bipartite bilinear set and let Λ = {I, J0, J1} be a partition of [n]. Let φ be
the lifting function of seed inequality h(xI , yI) ≥ r for {(x, y) ∈ Q | xJ0 = yJ0 = 0, xJ1 = yJ1 = 1} where h is a
concave function. Assume there exists ψ : R 7→ R and concave functions γi : R2 7→ R for i ∈ J0 ∪ J1 such that

(i) ψ(δ) ≥ φ(δ), ∀δ ∈ R;

(ii) ψ subadditive, (i.e., ψ(δ1) + ψ(δ2) ≥ ψ(δ1 + δ2), ∀δ1, δ2 ∈ R) with ψ(0) = 0;

(iii) for i ∈ J0, γi(x, y) ≥ ψ(aixy),∀(x, y) ∈ [0, 1]2,

(iv) for i ∈ J1, γi(x, y) ≥ ψ(aixy − ai),∀(x, y) ∈ [0, 1]2.

Then, the lifted inequality h(xI , yI) +
∑
i∈J0∪J1 γi(xi, yi) ≥ r is a valid convex inequality for Q.

The statement of Proposition 1 does not specify the type of functional forms γi(xi, yi) to use in ensuring
that conditions (iii) and (iv) are satisfied. It is however clear from the definition that choosing γi(xi, yi) to be
the concave envelope of ψ(aixiyi) over [0, 1]2 when i ∈ J0, and the concave envelope of ψ(aixiyi−ai) over [0, 1]2

when i ∈ J1 is the preferred choice for γi.

Remark 2. While we state the result of Proposition 1 for a set Q defined by a single separable bipartite bilinear
constraint, a similar result would also hold for sets defined by multiple separable bipartite bilinear constraints.

2.3 A seed inequality from a minimal covering set
To generate lifted inequalities for separable bipartite bilinear sets, we focus next on a family of restrictions
we refer to as minimal covering sets. For such minimal covering sets, we introduce a provably strong convex,
second-order cone representable valid inequality. We use this inequality as the seed in our lifting procedures.

Definition 4. Let k ∈ Z+ be a positive integer. We say that ai ∈ R for i ∈ [k] form a minimal cover of d ∈ R,
if (i) ai > 0 for all i ∈ [k], d > 0, (ii)

∑k
i=1 ai > d, (iii)

∑
i∈K ai ≤ d, ∀K ( [k]. For a separable bipartite

bilinear set Q, we say that a partition Λ = {I, J0, J1} of [n], where I 6= ∅, is a minimal cover yielding partition
if: ai for i ∈ I form a minimal cover of dΛ := d −

∑
i∈J1 ai. For a minimal cover yielding partition, we let

J+
0 := {i ∈ J0 | ai > 0}, J−0 := {i ∈ J0 | ai < 0}; we define J+

1 and J−1 similarly.

Remark 3. When k ≥ 2, conditions (ii) and (iii) in the definition of minimal cover imply condition (i) For
example, if ai ≤ 0 for some i ∈ [k], then (ii) implies

∑
j∈[k]\{i} aj > d, contradicting (iii). Now (iii) together

with ai > 0 for i ∈ [k] implies d > 0.

Notation 1. Assuming that ai for i ∈ [n] form a minimal cover of d, we use (i) ∆ :=
∑n
i=1 ai − d, (ii)

di := d −
∑
j∈[n]\{i} aj, (iii) I

> := {i ∈ [n] | ai > ∆}, (iv) when I> 6= ∅, i0 to be any index in I> such that
ai0 = min{ai | i ∈ I>}.
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For a minimal cover, conditions (ii) and (iii) in Definition 4 imply that ∆ > 0 and ai ≥ ∆ for all i ∈ [n],
respectively. Simple computations show that di = ai −∆.

Our overall plan is the following. We will fix xi = yi = 0 for i ∈ J0 and xiyi = 1 for i ∈ J1. Then, we
will find a valid seed inequality for the set where the coefficients form a minimal cover. Finally, we will lift this
seed inequality. One key reason to generate cuts from a seed inequality corresponding to a minimal cover is the
following result.

Theorem 2. For a nonempty separable bilinear set Q, either there exists at least one minimal cover yielding
partition or conv(Q) is polyhedral.

Loosely speaking, the proof of Theorem 2, which is given in Section 6, is based on showing that if there
is no minimal cover yielding partition, then Q is “almost" a packing-type set, i.e., a set of the form {(x, y) ∈
[0, 1]2n |

∑n
i=1 aixiyi ≤ d} where ais are non-negative. For packing sets Q, [51] shows that conv(Q) = projx,y(G)

where

G =

{
(x, y, w) ∈ [0, 1]3n

∣∣∣ n∑
i=1

aiwi ≤ d, xi + yi − 1 ≤ wi, ∀i ∈ [n]

}
.

We say “almost", since there are non-packing sets such as S := {(x, y) ∈ [0, 1]4 | x1y1 − 100x2y2 ≥ −98}, where
there is no partition that yields a minimal cover. Such sets are “overwhelmingly" like a packing set; in the case
of the example, it is a perturbation of the packing set {(x2, y2) ∈ [0, 1]2 | 100x2y2 ≤ 98}. For such sets it is not
difficult to show that conv(S) is polyhedral.

Since the main focus of this paper is the study of lifted convex (nonlinear) inequalities and since in the
packing case the convex hull is trivially obtained using McCormick inequalities [39], the remainder of the paper
will concentrate on the case where there exists a minimal cover yielding partition.

Associated with a minimal cover is a convex valid inequality that we present next.

Theorem 3. Consider the separable bipartite bilinear minimal covering set as presented in Definition 2 where
ai, i ∈ [n] form a minimal cover of d. Then, the bilinear cover inequality is valid for Q:

n∑
i=1

√
ai√

ai −
√
di

(
√
xiyi − 1) ≥ −1. (3)

Our proof of Theorem 3, which is presented in Section 7, uses techniques from disjunctive programming [8]
and an “approximate version" of Fourier-Motzkin projection. In particular, using the minimal covering property
of the coefficients and a characterization of the extreme points of bipartite bilinear sets [23], we obtain n second-
order cone representable sets whose union contains all the extreme points separable bipartite bilinear set. Next
we write an extended formulation [8, 15] of the convex hull of the union of these sets. Finally, we use the
Fourier-Motzkin procedure to project out the auxiliary variables of the extended formulation one at a time.
This procedure works to project out most of the variables. The last step however requires a relaxation to be
constructed so that projection can be carried in closed-form. Finally we obtain an inequality that is in fact
stronger than (3).

Inequality (3) can be viewed as a strengthening of an inequality presented in [53] for the set Qrelax obtained
from Q by relaxing upper bounds on variables, i.e., Qrelax := {(x, y) ∈ R2n

+ |
∑n
i=1 aixiyi ≥ d}, where ai > 0

for i ∈ [n] and d > 0. The convex hull of Qrelax is shown in [53] to be described by nonnegativity constraints
together with

n∑
i=1

√
ai√
d

√
xiyi ≥ 1. (4)

The ensuing proposition, whose proof we skip due to lack of space shows that (3) improves on (4). It
essentially proceeds by comparing the coefficients of variable pairs √xiyi inside of the inequalities. Moreover, if
n ≥ 2 and there exists i ∈ [n] such that di > 0, then (3) strictly dominates (4).

Proposition 2. Inequality (4) is dominated by (3) over the 0− 1 box, i.e.,

{ (x, y) ∈ [0, 1]2n | (4) } ⊇ { (x, y) ∈ [0, 1]2n | (3) }.

6



Even though Proposition 2 hints at the strength of the bilinear cover inequality, it can be easily verified
that (3) does not produce the convex hull of Q. However there are a number of reasons to use this inequality
as a seed for lifting. The first reason is that, not only is inequality (3) second-order cone representable, we
only need to introduce one extra variable representing √xiyi for each i ∈ [n], to write it as a second-order cone
representable set. Apart from the convenience of using this inequality within modern conic solvers, the main
reason for considering it as a seed inequality is its strength. In particular, we prove next that (3) provides a
constant factor approximation of the convex hull of the original set.

Theorem 4. Let Q be a bipartite bilinear minimal covering set Let R := {(x, y) ∈ R2n
+ | (3)}. Then (4 · R) ∩

[0, 1]2n ⊆ conv(Q) ⊆ R ∩ [0, 1]2n.

Since R is a set of the covering type (that is, its recession cone is the non-negative orthant), we have that
4 · R ⊆ R. The proof of Theorem 4, which is given in Section 8, is based on optimizing linear functions with
non-negative coefficients on R and Q and proving a bound of 4 on the ratio of their optimal objective function
values.

2.4 Lifting the bilinear cover inequality
We now follow the framework of Proposition 1 to perform sequence-independent lifting of the bilinear cover
inequality. The first step is to study the lifting function.

Theorem 5. Let φ be the lifting function for valid inequality (3). Define

ψ(δ) :=

 l+(δ + ∆)− 1 δ ≤ −∆
l−δ −∆ ≤ δ ≤ 0
l+δ 0 ≤ δ,

(5)

where l− = 1
∆ and where l+ =

√
ai0+
√
di0

∆
√
di0

if ai0 exists and l+ = 1
∆ otherwise. Then

(i) l+ ≥ l− > 0,

(ii) ψ(δ) is subadditive over R with ψ(0) = 0, and

(iii) φ(δ) ≤ ψ(δ) for δ ∈ R.

Although computing the lifting function for an arbitrary valid inequality, in general, appears to be a difficult
task, the bilinear cover inequality (3) has sufficient structure that we can derive a strong subadditive upper
bound in Theorem 5. The key to proving Theorem 5, as we show in Section 9, is to first obtain the lifting
function exactly in a region around the origin, and to argue that the linear upper bound of the lifting function
for this region upper bounds the lifting function globally. Figure 1 presents examples of the lifting function φ,
and the upper bound ψ we derived in Theorem 5 for the cases when ai0 exists and for the case when it does
not.

We observe in Figure 1 that the lifting function is not subadditive since it is convex in a neighborhood of
the origin. Therefore, building a subadditive approximation is required to achieve sequence-independent lifting.

Building on the subadditive upper bound obtained in Theorem 5, we are now able to lift the bilinear cover
inequality in a sequence-independent manner.

Theorem 6. Consider the separable bipartite bilinear set presented in Definition 2. Let Λ = {I, J0, J1} be a
minimal cover yielding partition and let ∆, ai0 , di, l+, l− be defined as in Theorems 3 and 5 (We clarify that they
are calculated using dΛ instead of d). Let J+

0 , J−0 , J+
1 , and, J−1 be as in Definition 4. Then inequality∑

i∈I

√
ai√

ai −
√
di

(
√
xiyi − 1) +

∑
i/∈I

γi(xi, yi) ≥ −1, (6)

is valid for Q where γi : R2 → R for i ∈ [n] \ I are the concave functions:

(i) γi(x, y) = l+ai min{x, y} for i ∈ J+
0 ;
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Figure 1: Lifting function φ(δ) in red and subadditive upper bound ψ(δ) in blue

(ii) γi(x, y) = −l+ai min{2− x− y, 1} for i ∈ J−1 ;

(iii) γi(x, y) = min{l−ai(x+ y − 1), l+ai(x+ y − 1) + l+∆− 1, 0} for i ∈ J−0 ;

(iv) γi(x, y) = min{g̃i(x, y), h̃i(x, y), gi(x, y), hi(x, y)}, for i ∈ J+
1 with ai ≥ ai0 when I> 6= ∅, and γi(x, y) =

min{g̃i(x, y), h̃i(x, y)} in all other cases where i ∈ J+
1 , with

g̃i(x, y) = l+ai(min{x, y} − 1) + l+∆− 1

h̃i(x, y) = l−ai(min{x, y} − 1)

gi(x, y) =
√
ai −∆

√
ail+
√
xy − l+(ai −∆)− 1

hi(x, y) =

√
ai√

ai −
√
di

(
√
xy − 1).

We refer to inequality (6) as lifted bilinear cover inequality. This inequality is second-order cone representable.
The proof of Theorem 6 can be found in Section 10.

3 Future directions
The results presented in this paper open up new avenues for generating cutting-planes for QCQPs. They also
raise new theoretical and computational questions that can be investigated. To illustrate this assertion, we
revisit Example 2 next.

Example 4. Consider S := {(x1, x2) ∈ [0, 1]2 | −x2
1−(x2−0.5)2 ≥ −0.52} with the same fixing as in Example 2,

i.e., x2 = 0. For the associated restriction S|x2=0, consider the seed inequality −x1 ≥ 0.
In contrast to our earlier discussion, consider now the problem of lifting this seed inequality into an inequality

of the form −x1 + α
√
x2 ≥ 0. Finding the values of α that generate a valid inequality is equivalent to solving

the problem

α∗ := sup

{
x1√
x2

∣∣∣ −x2
1 − (x2 − 0.5)2 ≥ −0.52, x1 ∈ [0, 1], x2 ∈ (0, 1]

}
.

Using constraint −x2
1− (x2−0.5)2 ≥ −0.52 we can bound the objective function as: x1√

x2
≤
√

0.52−(x2−0.5)2
√
x2

=
√

(1−x2)(x2)
√
x2

=
√

1− x2. It follows that selecting α ≥ α∗ = 1 yields a valid inequality for S. Note first that
α < 0 leads to an invalid inequality since (x1, x2) = (0, 0.5) is a feasible point. Moreover, any α ∈ [0, 1) yields
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an invalid inequality, since the point (x1, x2) where x1 =
√
x2(1− x2) and x2 = 1 − ((1 + α)/2)2 is feasible.

Therefore, the inequality −x1 +
√
x2 ≥ 0 is the strongest such lifted inequality.

The above example raises the question of obtaining a complete characterization of when one can accomplish
lifting, i.e., of generalizing Theorem 1 to situations where the functional form of the lifted variable is not
necessarily linear. It would also be valuable to develop a theory to accomplish sequence-independent lifting in
the more general case of bipartite bilinear programs, instead of just the separable case. On the computational
side, one key question is to understand the complexity of separating the lifted bilinear cover inequality presented
in Theorem 6 and to design efficient computational schemes to perform separation. Finally, extensive numerical
experiments should be conducted to understand the practical strength of these inequalities and to determine
how useful they can be in the solution of QCQPs. Given the strength of the seed inequality, we are hopeful that
these lifted inequalities could yield nontrivial dual bound improvements.

4 Proof of Theorem 1
Theorem 1. Without loss of generality, we assume that we lift a component of the variable x, say xk with
k ∈ [m]\C. In addition, we assume x̃k = 0; if not we may perform the operation xk ← 1− xk and fk ← −fk.

In order to find a lifting coefficient, We examine the following optimization problem

uk(xk) :=
1

xk
max r − h(xC , yD)

s.t. xᵀQy + aᵀx+ bᵀy ≥ c,
xC , yD ∈ [0, 1], x[m]\C\{k} = x̃[m]\C\{k}, y[n]\D = ỹ[n]\D.

Now note that u∗k = supxk∈(0,1] uk(xk), assuming it exists, is a valid the coefficient for lifting, i.e., h(xC , yD) +
u∗kxk ≥ r is a valid lifted inequality. Any coefficient larger than u∗k is also valid for lifting.

From the concavity of h (i.e., convexity of r−h), for any specific xk the optimal solution must be an extreme
point. According to [23], all extreme points satisfy the following property: except one pair of (xi, yj), all other
xi′ , yj′ pairs will be equal to either 0 or 1. Thus, for any pair of partitions {i} ∪ I0 ∪ I1 = C (denoted by I) and
{j} ∪ J0 ∪ J1 = D (denoted by J), define

uI,J(xk) :=
1

xk
max r − h(xC , yD)

s.t. xᵀQy + aᵀx+ bᵀy ≥ c,
xi, yj ∈ [0, 1], xI0 = 0, xI1 = 1, yJ0 = 0, yJ1 = 1,

x[m]\C\{k} = x̃[m]\C\{k}, y[n]\D = ỹ[n]\D.

We clearly have uk(xk) = maxI,J uI,J(xk). In addition, observe that u∗k = maxI,J u
∗
I,J where u∗I,J = supxk∈(0,1] uI,J(xk).

Therefore in order to prove that u∗k <∞, it is sufficient to show that for any partition I, J , u∗I,J <∞. Therefore,
we now focus on one instance of such partitions.

We define x̃ ∈ Rm and ỹ ∈ Rn as: (x̃I,J)I0∪{i} = 0, (x̃I,J)I1 = 1, (ỹI,J)J0∪{j} = 0, (ỹI,J)J1 = 1. In
addition, define rI,J := r − pᵀI11I1 − qᵀJ11J1 , cI,J := c − aᵀx̃I,J − bᵀỹI,J − x̃ᵀI,JQỹI,J , aI,J := ai + Qi,∗ỹI,J ,
bI,J := bj + x̃ᵀI,JQ∗,j , and aI,J,k := ak +Qk,∗ỹI,J so that we have equivalently

uI,J(xk) =
1

xk
max rI,J − hI,J(xi, yj)

s.t. qijxiyj + aI,Jxi + bI,Jyj + aI,J,kxk + qkjxkyj ≥ cI,J ,
(xi, yj) ∈ [0, 1]2,

where hI,J is h after the appropriate restriction. Note that hI,J is concave. As we are focusing on the pair of
partitions I, J , for simplicity we rewrite the problem as

u(x̂) :=
1

x̂
maxx,y r − h(x, y)

s.t. qxy + ax+ by + âx̂+ q̂x̂y ≥ c, (x, y) ∈ [0, 1]2,
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and u∗ := supx̂∈(0,1] u(x̂). It remains to prove u∗ <∞.
For any ε ∈ (0, 1] and x̂ ∈ [ε, 1], we have

u(x̂) = maxx,y { 1

x̂
(r − h(x, y))

∣∣ qxy + ax+ by + âx̂+ q̂x̂y ≥ c, (x, y) ∈ [0, 1]2 },

≤ maxx,y { 1

x̂
(r − h(x, y))

∣∣ (x, y) ∈ [0, 1]2 }

≤ maxx,y

{
max{1

ε
(r − h(x, y)), (r − h(x, y))}

∣∣ (x, y) ∈ [0, 1]2
}

:= w <∞.

It is clear that u(x̂) ≤ w < ∞ for any x̂ ∈ [ε, 1]. Therefore, to show that u∗ < ∞, it is sufficient to show that
lim supx̂↓0 u(x̂) <∞. We define

v(x̂) = max r − h(x, y)

s.t. x ≥ 0, (7.1)
x ≤ 1, (7.2)
y ≥ 0, (7.3)
y ≤ 1, (7.4)
qxy + ax+ by + âx̂+ q̂x̂y ≥ c. (7.5)

Denote the feasible region of (7) as S(x̂). Since v(0) ≤ 0 (because the seed inequality is assumed to be valid for
the restriction), one can prove that lim supx̂↓0 u(x̂) <∞ by showing that there exists l <∞ such that

v(x̂)− v(0) ≤ lx̂+ o(x̂) for x̂ ↓ 0.2

We denote the feasible region of the above problem as S(x̂).
For i ∈ {1, . . . , 5}, we define vi(x̂) to be the optimal value of (7) where constraint (7.i) is at to equality. We

use Si(x̂) to denote the corresponding feasible region. For example,

va(x̂) = max { r − h(x, y)
∣∣ (x, y) ∈ S1(x̂) }

= max { r − h(x, y)
∣∣ x = 0, (x, y) ∈ S(x̂) }

= max { r − h(0, y)
∣∣ by + âx̂+ q̂x̂y ≥ c, y ∈ [0, 1] }.

Note that v(x̂) = maxi∈{1,...,5}{vi(x̂)}, since the objective function in computing v(x̂) is maximizing a convex
function, implying that there exists an optimal solution where at least one of the constraints (7.1)-(7.5) is active.

Thus, to prove that lim supx̂↓0 u(x̂) <∞ it suffices to show that there exists l <∞ such that

vi(x̂)− v(0) ≤ lx̂+ o(x̂) for x̂ ↓ 0 for all i ∈ {1, . . . , 5}. (8)

The case of v1, v2, v3, v4: We present a proof of (8) for the case of v1. The proof is similar for the cases of
v2, v3, and v4.

First it is straightforward to verify that there exists a sufficiently small x̂0 > 0 such that for any 0 < x̂ < x̂0,
we have one of the following two cases: (i) S1(x̂)\S1(0) = ∅ (including the case S1(x̂) = ∅) and (ii) S1(x̂)\S1(0) 6=
∅, as, for sufficiently small x̂0, we may assume that it is impossible that S1(x̂) 6= ∅ = S1(0).

(i) We have v1(x̂) ≤ v1(0) ≤ v(0) ≤ 0 (this holds even in the case when S1(x̂) = ∅ or S1(x̂) = S1(0) = ∅),
i.e., v1(x̂)− v(0) ≤ 0 · x̂.

(ii) We consider two sub-cases:

(a) if b = 0, the feasibility of x̂ = 0 yields c ≤ 0. Thus, we have S1(0) = [0, 1] ⊇ S1(x̂) for x̂ ∈ (0, x̂0)
(actually in case (i).).

2This is equivalent to saying lim supx̂↓0
v(x̂)−v(0)

x̂
≤ l
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(b) if b 6= 0, assume first that b < 0. Then S1(x̂) = {y ∈ [0, 1] : y ≤ (c− âx̂)/(b + q̂x̂)}. We also denote
∆(x̂) := (c− âx̂)/(b+ q̂x̂)− c/b and since b < 0, we have that |d∆(x̂)/dx̂| <∞ for x̂ = 0.
Since S1(x̂)\S1(0) 6= ∅, we have 0 ≤ c/b < 1 as well as ∆(x̂) ≥ 0.
Utilizing the fact that ∆(x̂) ∈ [0, 1 − c/b] (the upper bound from the fact that x̂ is assumed to be
sufficiently small) and the concavity of h, we obtain

h
(

0,
c

b
+ ∆(x̂)

)
≥ ∆(x̂)

1− c/b
h(0, 1) +

(
1− ∆(x̂)

1− c/b

)
h
(

0,
c

b

)
. (9)

We now have

v1(x̂)− v(0) ≤ v1(x̂)− v1(0)

≤ max {(r − h(0, 0))− (r − h(0, 0)),

(r − h(0,∆(x̂) + c/b)− (r − h(0, c/b))}

≤ max

{
0,
h(0, c/b)− h(0, 1)

1− c/b
∆(x̂)

}
= max

{
0,
h(0, c/b)− h(0, 1)

1− c/b
d∆(x̂)

dx̂

∣∣∣∣
x̂=0

x̂+ o(x̂)

}
, (x̂ ↓ 0)

where the second inequality comes from the fact that v1(x̂) = max{r − h(0, 0), r − h(0,∆ + c/b)}
and v1(0) = max{r − h(0, 0), r − h(0, c/b)}, and the third inequality follows from (9), and the last
equality follows from Taylor’s series expansion of h(0,c/b)−h(0,1)

1−c/b ∆(x̂) around x̂ = 0 .
Thus, there exists l1 < ∞ such that v1(x̂) − v(0) ≤ l1x̂ + o(x̂) for x̂ ↓ 0. A similar argument holds
for the case of b > 0.

The case of v5: If q = 0, then it is easy to see that there always exists an optimal solution to the optimization
problem corresponding to computing v(x̂) such that one of (7.1)-(7.4) is active. Therefore if q = 0, it is sufficient
to verify (8) for v1, v2, v3, and v4 as v5(x̂) ≤ max {v1(x̂), v2(x̂), v3(x̂), v4(x̂)}.

Therefore, we consider the case of v5 for q 6= 0. Without loss of generality assume that q > 0 or perform
the transformation x ← 1 − x. We in addition assume that q = 1 or we can scale all parameters by 1/q. The
problem can now be rewritten as

v5(x̂) := max r − h(x, y)

s.t. (x+ b+ q̂x̂)(y + a) = c+ ab+ (q̂a− â)x̂, (x, y) ∈ [0, 1]2.

We denote its feasible region by S5(x̂).
The feasible region is the boundary of a hyperbola intersected with the [0, 1]2 box. If both the connected

components of the hyperbola intersect the [0, 1]2 box, or c+ ab+ (q̂a− â)x̂ ≤ 0, then it is easy to see that there
exists an optimal solution of the optimization problem corresponding to computation of v(x̂) where at least one
of (7.1)-(7.4) is active, i.e., v5(x̂) ≤ max {v1(x̂), v2(x̂), v3(x̂), v4(x̂)}. So we can disregard this case as well and
assume that only one of the connected components of the hyperbola is feasible, as well as c+ab+ (q̂a− â)x̂ ≥ 0.

Note again that if S(0) = ∅, then there exists x̂0 > 0 such that S(x̂) = ∅ for all 0 ≤ x̂ < x̂0 and thus
v5(x̂) ≤ v(x̂) ≤ 0. Therefore we may assume that S(0) 6= ∅. Let hM := max{max(x,y)∈[0,1]2 h(x, y), 0} and
hm = min{min(x,y)∈[0,1]2 h(x, y), 0}.

(i) We first consider the case when c + ab = 0. Feasibility of S(0) requires −b ∈ [0, 1] or −a ∈ [0, 1]. In
addition, as only one part of the hyperbola is feasible for S(x̂) for x̂ > 0 (and sufficiently small), we obtain
that either −a 6∈ (0, 1) or −b 6∈ (0, 1), and in addition q̂a− â ≥ 0.

(a) If −a ∈ [0, 1] and −b /∈ [0, 1] (see Fig 2a), as clearly (x,−a) ∈ S(0), we have
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v5(x̂)− v(0)

≤ max

 max r − h(x, y)− v(0)
s.t. (x, y) ∈ S(0) ,

max (r − h(x, y))− (r − h(x,−a))
s.t. xy + ax+ by + âx̂+ q̂x̂y = c

(x, y) ∈ [0, 1]2\S(0)


≤ max

0,

max h(x,−a)− h(x, y)

s.t. y = (q̂a−â)x̂
x+b+q̂x̂ − a,

(x, y) ∈ [0, 1]2\S(0)

 .

Thus, depending on the sign of b (i.e. sign of x+b+q̂x̂ for sufficiently small x̂), for (x, y) ∈ [0, 1]2\S(0)
we have, using concavity of h, either

h(x, y) ≥ ∆(x, x̂)

1 + a
h(x, 1) + (1− ∆(x, x̂)

1 + a
)h(x,−a) ≥ ∆(x, x̂)

1 + a
(hm − hM ) + h(x,−a)

or

h(x, y) ≥ −∆(x, x̂)

a
h(x, 0) + (1− −∆(x, x̂)

a
)h(x,−a) ≥ −∆(x, x̂)

a
(hm − hM ) + h(x,−a)

where ∆(x, x̂) := (q̂a−â)x̂
x+b+q̂x̂ is greater than 0 in the first case and is less than 0 in the second. From

the continuity of h we can get ξ independent of x and x̂ such that h(x, y) ≥ h(x,−a) + ξ∆(x, x̂).

Therefore, we conclude that

v5(x̂)− v(0) ≤ max

{
0, max
x∈[0,1]

−ξ∆(x, x̂)

}
= max

{
0, max
x∈{0,1}

−ξ∆(x, x̂)

}
= max

{
0, max
x∈{0,1}

−ξ∂∆(x, x̂)

∂x̂

∣∣∣∣
x̂=0

x̂+ o(x̂)

}
, (x̂ ↓ 0)

where the second equation comes from the monotonicity of ∆(x, x̂) on x ∈ [0, 1] for sufficiently small
x̂, due to the fact that −b /∈ [0, 1]. Since x + b 6= 0, we have that

∣∣∣maxx∈{0,1}
−ξ∂∆(x,x̂)

∂x̂

∣∣∣
x̂=0

∣∣∣ < ∞.
Thus, there exists l <∞ such that v5(x̂)− v(0) ≤ lx̂+ o(x̂) for x̂ ↓ 0.

(b) If −b ∈ [0, 1] and −a /∈ [0, 1], a similar analysis can be conducted to obtain l < ∞ such that
v5(x̂)− v(0) ≤ lx̂+ o(x̂) for x̂ ↓ 0.

(c) If −a = −b = 0 or −a = −b = 1, then S(0) = [0, 1]2 so that v5(x̂)− v(0) ≤ 0.
(d) (subcase 1) If −a = 0 with −b ∈ (0, 1] (see Fig 2b), we have S(0) ⊇ [−b, 1] × [0, 1] and S5(x̂) ⊂

[−b− q̂x̂, 1]× [0, 1] (since (q̂a− â)x̂ ≥ 0). Therefore, for q̂ ≤ 0, v5(x̂)− v(0) ≤ 0 and for q̂ > 0,

v5(x̂)− v(0)

≤max

 max r − h(x, y)− v(0)
s.t. (x, y) ∈ S(0) ,

max (r − h(x, y))− (r − h(−b, y))
s.t. xy + ax+ by + âx̂+ q̂x̂y = c

(x, y) ∈ [0, 1]2\S(0)


≤max

{
0 ,

max h(−b, y)− h(x, y)
s.t. (x, y) ∈ [−b− q̂x̂,−b]× [0, 1]

}
.

Note that for x ∈ [−b− q̂x̂,−b], using concavity of h, we have that

h(x, y) ≥ x

−b
h(−b, y) +

−b− x
−b

h(0, y)

≥ −b− x
−b

(hm − hM ) + h(−b, y) ≥ q̂x̂

−b
(hm − hM ) + h(−b, y).

Thus v5(x̂)− v(0) ≤ max
{

0, q̂(h
m−hM )
b x̂

}
and we obtain l <∞ such that v5(x̂)− v(0) ≤ lx̂.

(subcase 2) If −a = 1 with −b ∈ [0, 1), this is the same as (i)(d)1 as we might perform x ← 1 − x
together with y ← 1− y.
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(e) (subcase 1) If −b = 0 with −a ∈ (0, 1) (see Fig 2c), we have S(0) ⊇ ([0, 1] × [−a, 1]) ∪ ({0} × [0, 1])
and S5(x̂) ⊂ ([0, 1]× [−a, 1])∪ ([0,−q̂x̂]× [0, 1]). For q̂ ≥ 0 we have S5(x̂) ⊂ S(0) so v5(x̂)− v(0) ≤ 0.
For q̂ < 0, we have

v5(x̂)− v(0)

≤ max

 max r − h(x, y)− v(0)
s.t. (x, y) ∈ S(0) ,

max (r − h(x, y))− (r − h(0, y))
s.t. xy + ax+ by + âx̂+ q̂x̂y = c

(x, y) ∈ [0, 1]2\S(0)


≤ max

{
0 ,

max h(0, y)− h(x, y)
s.t. (x, y) ∈ [0,−q̂x̂]× [0, 1]

}
.

For (x, y) ∈ [0,−q̂x̂]× [0, 1], using concavity of h, we write

h(x, y) ≥ (1− x)h(0, y) + xh(1, y) ≥ h(0, y)− x(h(0, y)− h(1, y))

≥ h(0, y)− x(hM − hm) ≥ h(0, y) + q̂x̂(hM − hm).

Thus v5(x̂)− v(0) ≤ max
{

0, q̂(hm − hM )x̂
}
and we get l <∞ such that v5(x̂)− v(0) ≤ lx̂.

(subcase 2) If −b = 1 with −a ∈ (0, 1), the argument is the same as for (i)(e)1 after performing
x← 1− x and y ← 1− y.

(ii) We next consider the case when c+ ab 6= 0. As discussed above, we assume c+ ab+ (q̂a− â)x̂ ≥ 0 for all
x̂ > 0 and sufficiently small, and thus c + ab > 0. In addition, if (x, y) ∈ S(x̂) for x̂ > 0 and sufficiently
small, we have x > −b− q̂x̂, y > −a or x < −b− q̂x̂, y < −a but not both.

(a) In the case x < −b − q̂x̂, y < −a for (x, y) ∈ S(x̂), we denote S′(0) = S(0) ∩ {(x, y) | y < −a, x <
−b} ⊆ S(0). Since (0, 0) ∈ S′(0), we may assume (1, 1) /∈ S′(0), or S′(0) ⊇ [0, 1]2. Then clearly
S(x̂) ⊆ S(0) and therefore v5(x̂) ≤ v(0) ≤ 0.

(Subcase 1) If S′(0) = {(0, 0)} (see Fig 2d), we have c = 0 and a, b < 0. Thus, for x̂, we obtain a
curve between (0,− âx̂

b+q̂x̂ ) and (− âx̂a , 0). Thus, for any (x, y) within the curve, from concavity of h, it
is clear that

h(x, y) ≥ min

{
h(0, 0), h

(
0,− âx̂

b+ q̂x̂

)
, h

(
− âx̂
a
, 0

)
, h

(
− âx̂
a
,− âx̂

b+ q̂x̂

)}
≥ h(0, 0) + min

{
0,− âx̂

b+ q̂x̂
(h(0, 1)− h(0, 0)),− âx̂

a
(h(1, 0)− h(0, 0)),

− âx̂

b+ q̂x̂
(h(0, 1)− h(0, 0))− âx̂

a
(h(1, 0)− h(0, 0))

}
≥ h(0, 0) + max

{
0,− âx̂

b+ q̂x̂
,− âx̂

a
,− âx̂

b+ q̂x̂
− âx̂

a

}
(hm − hM )

= h(0, 0) + ξx̂+ o(x̂), (x̂ ↓ 0)

where the second inequality uses the concavity of h and the fact that for sufficiently small x̂, − âx̂
b+q̂x̂ +

(− âx̂a ) ≤ 1, and ξ is a constant obtained by taking the derivative of the “max" term times hm − hM
(since a, b < 0, the term is differentiable.) Thus, by setting l = ξ we have v5(x̂) − v(0) ≤ lx̂ + o(x̂)
for all sufficiently small x̂.
(Subcase 2) If S′(0)\{(0, 0)} 6= ∅, but (0, 1), (1, 0) /∈ S′(0) (see Fig 2e). Then the curve for x̂ = 0 is
between (0, cb ) and ( ca , 0). We find x̃, ỹ such that (x̃, c2b ), (

c
2a , ỹ) are within the curve. From the convex

nature of one part of the hyperbola, it can be verified that ỹ > c/2b, x̃ > c/2a. Consider x ∈ [0, x̃] and
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denote y′(x) = (c− ax)/(x+ b), noting that (x, y′(x)) ∈ S(0) and

wx(x, x̂) := max
y
{ (r − h(x, y))− v(0) | (x, y) ∈ S5(x̂) },

≤ max

 maxy (r − h(x, y))− v(0))
s.t. (x, y) ∈ S(0) ,

maxy (r − h(x, y))− (r − h(x, y′))
s.t. xy + ax+ by + âx̂+ q̂x̂y = c,

(x, y) ∈ [0, 1]2\S(0)


=

{
max{0, h(x, y′(x))− h(x, y′(x) + ∆(x, x̂))} ∆(x, x̂) ≥ 0
0 ∆(x, x̂) < 0

where
∆(x, x̂) :=

c− ax− âx̂
x+ b+ q̂x̂

− c− ax
x+ b

=
axq̂ − âx− âb− cq̂
(x+ b+ q̂x̂)(x+ b)

x̂,

while noting that if ∆(x, x̂) < 0, then (x, y′(x) + ∆(x, x̂)) ∈ S(0).
Note that [0, x̃] ⊆ ProjxS′(0) and thus x+b < 0 for x ∈ [0, x̃] and therefore for 0 < x̂ < x̂0 sufficiently
small, we obtain q̂x̂

x+b ≥ −
1
2 or 2x+b+q̂x̂

x+b ≥ 1 for any x ∈ [0, x̃]. Thus for ∆(x, x̂) ≥ 0,

∆(x, x̂) ≤ 2
axq̂ − âx− âb− cq̂

(x+ b)2
x̂ ≤ max

x∈[0,x̃]

{
2
axq̂ − âx− âb− cq̂

(x+ b)2

}
x̂ := l′5,xx̂

while noting that continuity gives l′5,x <∞ independent of x, x̂.
Now for the case of ∆(x, x̂) ≥ 0 we have that

h(x, y′(x))− h(x, y′(x) + ∆(x, x̂))

≤ ∆(x, x̂)

1− y′(x)
(h(x, y′(x))− h(x, 1)) ≤ ∆(x, x̂)

1− y′(x)
(hM − hm)

≤ (hM − hm) max
x∈[0,x̃]

{
1

1− y′(x)

}
max
x∈[0,x̃]

∆(x, x̂)

≤ (hM − hm) max
x∈[0,x̃]

{
1

1− y′(x)

}
l′5,xx̂,

Therefore, there exists l5,x <∞ independent of x, x̂ such that wx(x, x̂) ≤ l5,xx̂+ o(x̂).
A similar analysis of wy(y, x̂) := maxx{r−h(x, y)−v(0)|x, y ∈ S(0)} provides wy(y, x̂) ≤ l5,yx̂+o(x̂)
for x̂ ↓ 0, where l5,y is a constant independent of y ∈ [0, ỹ] and x̂.
Finally, we combine the results for wx and wy. Since they cover the whole curve with overlapping,
we have v5(x̂)− v(0) ≤ max{l5,x, l5,y}x̂+ o(x̂) for x̂ ↓ 0.
(Subcase 3) If (0, 1) ∈ S′(0) but (1, 0) /∈ S′(0) (see Fig 2f), we apply a similar analysis for wy(y, x̂) with
y ∈ [0, 1] and obtain a constant l5,y independent of y and x̂. We thus get v5(x̂)− v(0) ≤ l5,yx̂+ o(x̂)
for x̂ ↓ 0.
(Subcase 4) If (1, 0) ∈ S′(0) but (0, 1) /∈ S′(0) (see Fig 2g), we apply a similar analysis for wx(x, x̂)
with x ∈ [0, 1] and similarly obtain a constant l5,x independent of x and x̂.
(Subcase 5) If (1, 0), (0, 1) ∈ S′(0) (see Fig 2h). Then the curve for x̂ = 0 is between (1, c−a1+b ) and
( c−b1+a , 1). Similar to (ii)(a)2, we find x̃, ỹ such that (x̃, c−a+b+1

2+2b ), ( c−b+a+1
2+2a , ỹ) are within the curve.

From the convex nature of one part of the hyperbola, we have ỹ > c−b+a+1
2+2a and x̃ > c−a+b+1

2+2b . Similar
to (ii)(a)2, we consider wx(x, x̂) for x ∈ [ c−a+b+1

2+2b , 1] and wy(y, x̂) for y ∈ [ c−b+a+1
2+2a , 1]. We obtain l5,x

and l5,y. Therefore, we write v5(x̂)− v(0) ≤ max{l5,x, l5,y}x̂+ o(x̂) for x̂ ↓ 0.
(b) If for x̂ ∈ (0, x̂0), and for (x, y) ∈ S(x̂) x > −b− q̂x̂, y > −a, we denote S′(0) = S(0) ∩ {y > −a, x >
−b} ⊆ S(0). If (1, 1) ∈ S′(0) while (0, 0) /∈ S′(0), the proof is the same as (ii)(a) as we can perform
x← 1− x with y ← 1− y.

Combining the discussions for (i) and (ii) shows that there exists l5 <∞ such that v5(x̂)−v(0) ≤ l5x̂+o(x̂)
for x̂ ↓ 0.
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5 Proof of Proposition 1
Proposition 1. Consider any feasible solution (x′, y′) ∈ Q. Then∑

i∈J0∪J1

γi(x
′
i, y
′
i) ≥

∑
i∈J0

ψ(aix
′
iy
′
i) +

∑
i∈J1

ψ(aix
′
iy
′
i − ai)

≥ ψ

(∑
i∈J0

aix
′
iy
′
i +

∑
i∈J1

(aix
′
iy
′
i − ai)

)
≥ φ

(∑
i∈J0

aix
′
iy
′
i +

∑
i∈J1

aix
′
iy
′
i −

∑
i∈J1

ai

)

= max
(xI ,yI)∈[0,1]2|I|

{
r − h(xI , yI)

∣∣∣ ∑
i∈I

aixiyi ≥ d−
∑

i∈J0∪J1

aix
′
iy
′
i

}
≥ r − h(x′I , y

′
I),

where the first inequality holds because of assumptions (iii) and (iv), the second inequality holds because
assumption (ii) requires ψ(·) to be subadditive over its range, the third inequality holds because assumption (i)
requires ψ(·) to be an upper bound on φ(·), the equality holds from the definition of φ(·), and the last inequality
is satisfied because (x′I , y

′
I) is a feasible solution to the preceding optimization problem.

6 Proof of Theorem 2
Theorem 2. Suppose Q 6= ∅. It follows from [23] that the extreme points of Q are such that (x∗j , y

∗
j ) ∈ {0, 1}2

for all j ∈ [n]\{i} for some i ∈ [n].
Assume first that Q has an extreme point (x∗, y∗) where x∗i y∗i /∈ {0, 1} for some i ∈ [n] with ai > 0. Define

the partition Λ with I = {i}, J0 = {j|x∗jy∗j = 0}, and J1 = {j|x∗jy∗j = 1}. Since
∑n
j=1 ajx

∗
jy
∗
j = d, we have

ai > aix
∗
i y
∗
i = d−

∑
i∈J1 aj = dΛ > 0. Since dΛ > 0, we conclude that Λ is a minimal cover yielding partition.

Assume second that all extreme points (x∗, y∗) are such that (x∗i , y
∗
i ) ∈ {0, 1}2 for all i ∈ [n] with ai > 0.

Denote I+ = {i ∈ [n] | ai > 0} and, for K1,K2 ⊆ I+, define

QK1,K2 := conv

 (x, y) ∈ [0, 1]2n

∣∣∣∣∣∣∣∣∣∣

∑n
i=1 aixiyi ≥ d

xi = 0, i ∈ K1

yi = 0, i ∈ K2

xi = 1, i ∈ I+\K1

yi = 1, i ∈ I+\K2

 .

It is clear that conv(Q) = conv(
⋃
K1,K2⊆I+ QK1,K2

). Because, for any K1,K2 ⊆ I+, QK1,K2
is a polytope [51,

Proposition 17], we conclude that conv(Q) is a polytope.

7 Proof of Theorem 3
Theorem 3. For i ∈ [n], define

Qi =

{
(x, y) ∈ [0, 1]2n

∣∣∣∣∣ (xj , yj) = (1, 1), ∀j ∈ [n]\i√
ai
√
xiyi ≥

√
di

}
.

First observe that, because ai for i ∈ [n] form a minimal cover, we have that ai > di := d−
∑
j 6=i aj for each i.

This implies that sets Qi are nonempty. We next argue that conv(Q) = conv(Q̄) where Q̄ :=
⋃n
i=1Qi. To this

end, consider any extreme point (x, y) of Q. Then, [23] shows that there exists a partition (I0, I1, {i}) of [n]
such that xjyj = 0 for j ∈ I0, xjyj = 1 for j ∈ I1 and xiyi ∈ [0, 1]. Because ai for i ∈ [n] form a minimal cover,
it must be that |I0| = 0 as otherwise

∑n
j=1 ajxjyj ≤

∑
j∈I1 aj < d. We conclude that (x, y) ∈ Qi. Since Q is

compact, it follows that conv(Q) ⊆ conv(Q̄). Further, since Qi ⊆ Q̄ ⊆ Q, it is clear that conv(Q̄) ⊆ conv(Q).
We now use disjunctive programming to obtain an extended formulation of conv(Q̄). This formulation

introduces convex multipliers λi and copies (xi, yi) of variables (x, y) for each disjunct Qi. Because disjunct Qi
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yields constraints yij = xij = λi for j 6= i, variables xij and yij for j 6= i can be eliminated from the formulation
in favor of λi. Renaming variables xii as x̂i, we obtain

xj = x̂j +
∑
i 6=j λi ∀j ∈ [n]

yj = ŷj +
∑
i 6=j λi ∀j ∈ [n]√

ai
√
x̂iŷi ≥

√
diλi ∀i ∈ [n]

λi ≥ x̂i, ŷi ≥ 0 ∀i ∈ [n]∑n
i=1 λi = 1

because the constraint functions of each Qi are positively homogeneous.
Using the fact that

∑
i 6=j λi = 1−λj , we obtain x̂j = xj − (1−λj) and ŷj = yj − (1−λj). Eliminating these

variables from the formulation, we obtain
√
ai
√

(xi − (1− λi)) · (yi − (1− λi)) ≥
√
diλi ∀i ∈ [n]

1− λi ≤ xi, yi ≤ 1 ∀i ∈ [n]∑n
i=1 λi = 1.

(10)

Because projecting variables λi from the above formulation seems difficult, we relax the above set by using, for
each i ∈ [n] the following inequality

√
ai (
√
xiyi − (1− λi)) ≥

√
ai
√

(xi − (1− λi)) · (yi − (1− λi)), (11)

which holds as
(√
xiyi − (1− λi)

)2 ≥ xiyi − (xi + yi)(1− λi) + (1− λi)2 = (xi − (1− λi))(yi − (1− λi)) where
the first inequality is obtained by expanding the square and using the arithmetic-geometry mean inequality
−2
√
xiyi ≥ −(xi + yi). Substituting (11) in (10), we obtain:

λi ≥
√
ai√

ai−
√
di

(
1−√xiyi

)
∀i ∈ [n]

λi ≥ 1− xi ∀i ∈ [n]
λi ≥ 1− yi ∀i ∈ [n]

xi, yi ≤ 1 ∀i ∈ [n]∑n
i=1 λi = 1.

(12)

Using Fourier-Motzkin to project variables λi, we obtain (x, y) ∈ [0, 1]2n together with
n∑
i=1

max
{ √

ai√
ai −

√
di

(1−√xiyi) , 1− xi, 1− yi
}
≤ 1,

which is a convex inequality. Retaining only the first term in the maximum for each pair (xi, yi) and multiplying
through by −1 yields the weaker convex inequality (3).

8 Proof of Theorem 4
In this section, we provide a proof of Theorem 4. We say that G ∈ Rn is a set of the covering type if whenever
x̂ ∈ G, then x̃ ∈ G for all x̃ ∈ Rn such that x̃ ≥ x̂. Due to lack of space we skip the proof of the next proposition;
see [17] for a similar result.

Proposition 3. Let B = [0, 1]n and let G and H be sets of the covering type, such that conv(G ∩ B) ⊆ H.
If there exists θ ≥ 1, such that for any c ≥ 0, zl ≤ z∗ ≤ θzl, where z∗ := min{cᵀx|x ∈ G ∩ B} and zl :=
min{cᵀx|x ∈ H ∩B}, then (θH) ∩B ⊆ conv(G ∩B).

Following Proposition 3, Theorem 4 will be proven if, for all (p, q) ∈ R2n
+ ,

z∗ := min

{
n∑
i=1

(pixi + qiyi)
∣∣∣ n∑
i=1

aixiyi ≥ d, (x, y) ∈ [0, 1]2n

}

zl := min

{
n∑
i=1

(pixi + qiyi)
∣∣∣ n∑
i=1

√
ai√

ai −
√
di

(
√
xiyi − 1) ≥ −1, (x, y) ∈ [0, 1]2n

}
satisfy zl ≤ z∗ ≤ 4zl. To this end, we prove first four ancillary results in Lemmas 1-4.
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Assumption 1. pi ≥ qi, ∀i ∈ [n].

Assumption 1 is without loss of generality as it can always be achieved by renaming variables xi as yi, if
necessary.

Lemma 1. For α ∈ [0, 1] and i ∈ [n], define

θi(α) = min
{
pixi + qiyi

∣∣∣ √xiyi = α
(xi, yi) ∈ [0, 1]2

}
.

Then, θi(α) = 0 when pi = 0. Further, when pi > 0,

θi(α) =

 2
√
piqi · α when α ≤

√
qi
pi

pi · α2 + qi when α ≥
√

qi
pi
.

Proof. When pi = 0, it follows from Assumption 1 that qi = 0. The result holds trivially. For pi > 0, setting
xi = α2/yi, we write θi(α) = min{piα2/yi + qiyi |α2 ≤ yi ≤ 1}, a problem with linear constraints and a convex
objective over R+. When qi = 0, y∗i = 1 is optimal and the result follows as x∗i = α2. When qi > 0, the problem
has y∗i =

√
pi/qiα ≥ α ≥ α2 as unique stationary point over R+. We conclude that ȳi = min{y∗i , 1} is optimal

for the constrained problem.

Lemma 2. Let α∗i :=
√

di
ai
. Then, z∗ = mini∈[n]

{∑
j∈[n]\{i}(pj + qj) + θi(α

∗
i )
}
.

Proof. Since an optimal solution to the problem defining z∗ can always be chosen among the extreme points of
Q and since the proof of Theorem 3 in Section 7 establishes that extreme points of Q belong to

⋃n
i=1Qi, we

write that z∗ = mini∈[n] min{pᵀx+ qᵀy | (x, y) ∈ Qi}. Points of Qi satisfy xj = yj = 1 for j 6= i and aixiyi ≥ di.
Since pi ≥ qi ≥ 0, it suffices to consider solutions that satisfy √xiyi =

√
di/ai = α∗i in the above problem,

yielding the result.

Rearranging the variables if necessary, assume from now on that z∗ =
∑
i∈[n−1](pi + qi) + θn(α∗n). As a

consequence of this assumption and Lemma 2, we obtain that

θj(α
∗
j ) + pn + qn ≥ θn(α∗n) + pj + qj , ∀j ∈ [n]. (13)

Lemma 3. Let τi(α) = (pi + qi) · α2. Then τi(α) ≤ θi(α) for α ∈ [0, 1].

Proof. When pi = 0, the result is clear. Assume therefore that pi > 0. When α ≥
√
qi/pi, we write that

θi(α) = piα
2 + qi ≥ piα

2 + qiα
2 = τi(α), where the inequality holds because α ∈ [0, 1]. When α ≤

√
qi/pi (or

equivalently √qi ≥
√
piα), we write that θi(α) = 2

√
qi
√
piα ≥ 2piα

2 ≥ (pi + qi)α
2, where the last inequality

holds because pi ≥ qi ≥ 0.

Lemma 4. Assume that (x, y) ∈ [0, 1]2n satisfies (3), i.e.,
∑n
i=1

√
ai√

ai−
√
di

(
√
xiyi − 1) ≥ −1. Define αi =

√
xiyi

for i ∈ [n]. Then (i) α∗i ≤ αi for all i ∈ [n], (ii) αi < 1
2 for at most one i ∈ [n].

Proof. Statement (i) trivially holds, as any √xiyi < α∗i =
√
di/ai invalidates (3), even if we set xj = yj = 1 for

j ∈ [n]\{i}. For (ii), assume by contradiction there exists distinct indices i1 and i2 in [n] such that αi1 ≤ αi2 < 1
2 .

Then
∑n
i=1

√
ai√

ai−
√
di

(
√
xiyi−1) <

∑
i∈{i1,i2}

√
ai√

ai−
√
di

(
− 1

2

)
≤
∑
i∈{i1,i2}

(
− 1

2

)
= −1, which violates (3).

We are now ready to give a proof of Theorem 4 that inequality (3) yields strong bounds for optimization
problems over Q.

Theorem 4. Let (x̃, ỹ) be an optimal solution for the relaxation defining zl and let α̃i =
√
x̃iỹi. From Lemma 4,

it is sufficient to consider the following three cases.
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First assume that α̃j ≤ 1
2 for some j < n. Lemma 4 implies α̃i ≥ 1

2 for i 6= j. Then

4zl = 4

n∑
i=1

θi(α̃i) ≥ 4

 ∑
i∈[n]\{j}

(pi + qi)α̃
2
i + θj(α̃j)


≥ 4

 ∑
i∈[n]\{j}

(pi + qi)
1

4
+ θj(α̃j)

 =
∑

i∈[n]\{j}

(pi + qi) + 4θj(α̃j)

≥
∑

i∈[n]\{j,n}

(pi + qi) + θj(α
∗
j ) + (pn + qn)

≥
∑

i∈[n]\{j,n}

(pi + qi) + pj + qj + θn(α∗n) = z∗,

where the first inequality holds because of Lemma 3, the second inequality holds because αi ≥ 1
2 for i 6= j, the

third inequality is because α∗j ≤ α̃j from Lemma 4 and because θj is monotonically increasing, and the fourth
inequality holds because of (13).

Second assume that α̃n ≤ 1
2 . Lemma 4 implies that α̃i ≥ 1

2 for i < n. Similarly, 4zl = 4
∑n
i=1 θi(α̃i) ≥

4(
∑n−1
i=1 (pi+qi)α̃

2
i+θn(α̃n)) ≥ 4(

∑n−1
i=1 (pi+qi)

1
4 +θn(α̃n)) =

∑n−1
i=1 (pi+qi)+4θn(α̃n) ≥

∑n−1
i=1 (pi+qi)+θn(α∗n) =

z∗.
Finally assume that α̃i ≥ 1

2 for all i, and we use the same proof as just given.

9 Proof of Theorem 5
In this section, we provide a proof of Theorem 5, which gives a subadditive over-approximation to the lifting
function of the minimal covering inequality. We first pose

Assumption 2. 0 < ∆ ≤ a1 ≤ a2 ≤ . . . ≤ an.

Assumption 2 can always be achieved by reordering the variables since the notion of minimal cover requires
that ai ≥ ∆ for i ∈ [n]; see discussion following Notation 1.

We next present ancillary results in Lemmas 5-9 and Proposition 4 that are used in the derivation of
the approximation of the lifting function. The proof of Lemma 5 is straightforward and can be obtained by
investigating signs of derivatives.

Lemma 5. For u ≥ max{α, β} where α, β > 0, the function f(u) :=
√
u−
√
u−α√

u−
√
u−β is decreasing when α > β and

increasing when α < β.

Lemma 6 establishes that the lifting function φ(δ) exhibits local convexity.

Lemma 6. Any point δ of the lifting function φ(δ) corresponding to an optimal solution (x, y) with at least one
index i such that xiyi ∈ (0, 1), is locally convex, i.e., there exists r > 0 and ξ such that φ(δ+ η) ≥ φ(δ) + ξη for
all η ∈ [−r, r].

Proof. Let δ̇ be a point for which an optimal solution (ẋ, ẏ) to the problem defining φ(δ̇) is such that ẋiẏi ∈ (0, 1).
Define r = min{ẋiẏi, 1− ẋiẏi}/2 > 0. Consider η ∈ [−r, r] and construct (x, y) so that xj = ẋj , yj = ẏj for any
j 6= i and xiyi = ẋiẏi − η. From the feasibility of (ẋ, ẏ) for δ̇, we conclude that (x, y) is a feasible solution to
the optimization problem defining φ(δ̇ + η). Therefore,

φ(δ̇ + η)− φ(δ̇) ≥
√
ai√

ai −
√
di

(√
ẋiẏi −

√
ẋiẏi − η

)
=

ai +
√
aidi

ai − di

(√
ẋiẏi −

√
ẋiẏi − η

)
≥ ai +

√
aidi

2∆
√
ẋiẏi

η,

where the last inequality holds because ai − di = ∆ and because the concavity of the square root function over
R+ implies that

√
ẋiẏi − η ≤

√
ẋiẏi − 1

2
√
ẋiẏi

η.
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To obtain the tightest linear over-approximation of φ(δ) for δ ∈ (0,∞), we next narrow down the set of
points δ where function φ(δ)/δ can achieve a local maximum.

Proposition 4. Assume that δ̇ > 0 is a local maximizer of the function φ(δ)/δ and that (ẋ, ẏ) is an optimal
solution to the problem defining φ(δ̇). Then either

(i) all (ẋi, ẏi) pairs belong to {0, 1}2, or

(ii) there exists r > 0 such that φ(δ + η)/(δ + η) = φ(δ)/δ for all η ∈ (−r, r).

Proof. Assume that (i) does not hold, i.e., there exists i ∈ [n] for which ẋiẏi ∈ (0, 1). We show that (ii) holds.
From Lemma 6, there exists ξ and r > 0 such that φ(δ̇ + η) ≥ φ(δ̇) + ξη for η ∈ (−r, r). Without loss of
generality, we assume r < δ̇. We consider two cases. Assume first that ξ ≥ φ(δ̇)/δ̇. For any η ∈ (0, r) we have
φ(δ̇ + η) ≥ φ(δ̇) + ξη ≥ φ(δ̇)

δ̇
(δ̇ + η) or equivalently φ(δ̇ + η)/(δ̇ + η) ≥ φ(δ̇)/δ̇. Assume second that ξ ≤ φ(δ̇)/δ̇.

For any η ∈ (−r, 0) we have φ(δ̇+ η) ≥ φ(δ̇) + ξη ≥ φ(δ̇)

δ̇
(δ̇+ η) or equivalently φ(δ̇+ η)/(δ̇+ η) ≥ φ(δ̇)/δ̇. From

analyzing these cases, we see that δ̇ can be a local maximum only if η = φ(δ̇)/δ̇ and all points in (δ − r, δ + r)
are also local maxima.

We now derive a linear over-approximation to the function φ(δ) for δ ≥ 0.

Lemma 7. Define l+ :=
√
ai0+
√
di0

∆
√
di0

if I> 6= ∅ and l+ := 1
∆ otherwise. Then φ(δ) ≤ l+δ for δ ≥ 0.

Proof. The result holds trivially for δ = 0 since φ(δ) = 0. Our main tool to prove this result is Proposition 4
which will allow us to verify the value of φ(δ)/δ only for a finite set of values of δ. However, since Proposition 4
holds only for δ > 0, we first prove the result in an interval that has 0 as an end point.

As mentioned above, the first part of the proof investigates the function φ in a neighborhood of the point
δ = 0. There are two cases to consider.

For the first case, assume that I> 6= ∅. Consider δ ∈ [0,min{ai0 −∆,∆}/2]. Because the problem defining
φ consists of maximizing a convex function, optimal solutions can be found at extreme points of the feasible
region. It follows that there exists an optimal solution that is such that x∗i y∗i ∈ {0, 1} for all i ∈ [n]\{j} for
some j ∈ [n].

Further, at most one index k ∈ [n]\{j} can be such that x∗ky
∗
k = 0 as otherwise

∑n
i=1 aix

∗
i y
∗
i ≤

∑n
i=1 ai−2∆ =

d−∆ < d− δ which would made this solution infeasible for the problem defining φ.
Also, if there exists k with x∗ky

∗
k = 0, then ak = ∆. If not, ak ≥ ai0 and thus

∑
aix
∗
i y
∗
i ≤ d + ∆ − ai0 <

d − δ, infeasible. Thus, −∆ − δ =
∑n
i=1 aix

∗
i y
∗
i −

∑n
i=1 ai = ajx

∗
jy
∗
j − aj − ak, i.e., ajx∗jy∗j = aj − δ, and as

√
ak√

ak−
√
dk

=
√

∆√
∆−0

= 1, we obtain

φ(δ) =

√
aj

√
aj −

√
dj

(1−
√
x∗jy
∗
j ) =

√
aj −

√
aj − δ

√
aj −

√
aj −∆

≤
√
an −

√
an − δ√

an −
√
an −∆

:= η(δ),

where the last step follows from Lemma 5. Note that η is well-defined and convex on [0,∆]. Therefore, it is
easy to verify that η(δ) ≤ δ/∆ for δ ∈ [0,∆], and thus φ(δ) ≤ δ/∆ ≤ l+δ for δ ∈ [0,min{ai0 −∆,∆}/2].

If there is no k with x∗ky
∗
k = 0, we can verify aj > ∆ and ajx∗jy∗j = aj −∆− δ. Thus,

φ(δ) =

√
aj

√
aj −

√
dj

(1−
√
x∗jy
∗
j )− 1

=

√
aj −

√
aj −∆− δ

√
aj −

√
aj −∆

− 1 ≤
√
ai0 −

√
ai0 −∆− δ

√
ai0 −

√
ai0 −∆

− 1 := ξ(δ),

where the last step follows Lemma 5. The function ξ(δ) is again convex. Therefore, it is easy to verify that

ξ(δ) ≤
√
ai0+
√
di0

∆
√
di0

δ for δ ∈ [0, ai0 −∆]. Thus we obtain that φ(δ) ≤ l+δ for δ ∈ [0,min{ai0 −∆,∆}/2].

For the second case I> = ∅, i.e., a1 = . . . = an = ∆. Note that in this case n ≥ 2. Consider δ ∈ [0,∆/2].
Similar to above, there exists an optimal solution that is such that x∗i y∗i ∈ {0, 1} for all i ∈ [n]\{j} for some
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j ∈ [n]. In addition, there exists exactly one index k ∈ [n]\{j} with x∗ky∗k = 0, or otherwise we obtain aj > ∆ a
contradiction to I> = ∅. As

√
ak√

ak−
√
dk

= 1 and ajx∗jy∗j = ∆x∗jy
∗
j = ∆− δ, we obtain

φ(δ) =

√
aj

√
aj −

√
dj

(1−
√
x∗jy
∗
j ) =

√
∆−

√
∆− δ√

∆
≤ δ

∆
≤ l+δ, δ ∈ [0,∆/2].

The second part of the proof investigates the function φ away from the origin. As we are attempting to show
that φ(δ)/δ bounded from above by l+, it is sufficient to consider all local maximas of φ(δ)/δ. It follows from
Proposition 4 that it is sufficient to verify the condition at values of δ such that xiyi ∈ {0, 1} for i ∈ [n]. (This
is because, at other local maximas, the function φ(δ)/δ is locally constant and so it is sufficient to check at the
end points of these “constant intervals" where xiyi ∈ {0, 1}.) Any such local maximum δ is therefore such that
there exists S ⊆ [n] with xiyi = 0 for i ∈ S and xiyi = 1 for i /∈ S. We denote it as δS . It is easily verified that
δS =

∑
i∈S ai −∆. Let S = {i1, i2, . . . , ik} such that ai1 ≤ . . . ≤ aik , and we have

φ(δS) = −1 +
∑
i∈S

ai +
√
aidi

∆
=

k−1∑
j=1

aij +
√
aijdij

∆
+
dik +

√
aikdik

∆
.

Consider two cases. On the one hand, if aik > ∆, then I> 6= ∅ and ai0 ≤ aik . Thus,

φ(δS) =

k−1∑
j=1

√
aij +

√
dij

∆
√
aij

aij +

√
dik +

√
aik

∆
√
dik

dik

≤
k−1∑
j=1

√
ai0 +

√
di0

∆
√
di0

aij +

√
di0 +

√
ai0

∆
√
di0

dik =

√
ai0 +

√
di0

∆
√
di0

δS = l+δ
S ,

where the inequality follows from the fact that
√
a+
√
a−∆√

a−∆
= 1 +

√
1 + ∆

a−∆ is decreasing on a for a > ∆, and

the second last equality holds because δS =
∑k−1
j=1 aij + dik .

On the other hand, if aik = ∆, then we have dik = dij = 0 for any ij ∈ S. Thus

φ(δS) =

k−1∑
j=1

aij +
√
aijdij

∆
+
dik +

√
aikdik

∆
=

1

∆
δS ≤ l+δS .

Next, we derive an over-approximation of φ(δ) when δ ≤ 0.

Lemma 8. Define l− := 1
∆ . For δ ≤ 0, we have

φ(δ) =


−∞ δ < −∆
√
an −∆−

√
an −∆− δ

√
an −

√
an −∆

−∆ ≤ δ ≤ 0.

Further, φ(δ) ≤ l−δ for δ ∈ [−∆, 0].

Proof. When δ < −∆, φ(δ) = −∞ as the right-hand-side of the problem defining φ is larger than
∑n
i=1 ai.

Consider therefore the case when 0 ≥ δ ≥ −∆. There exists an optimal solution (x∗, y∗) of the problem defining
φ(δ) that is such that x∗i = y∗i = 1 for all i ∈ [n]\{j} for some j ∈ [n]. Further, ajx∗jy∗j = aj −∆− δ. We obtain

φ(δ) = maxj

[√
aj −

√
aj −∆− δ

√
aj −

√
aj −∆

]
− 1 =

√
an −

√
an −∆− δ

√
an −

√
an −∆

− 1,

where the last step follows from Lemma 5. Finally, observe that φ(δ) is convex in δ. Therefore, by taking a linear
inequality tight at δ = 0 and δ = −∆, we obtain that φ(δ) ≤ δ/∆ = l−δ since φ(0) = 0 and φ(−∆) = −1.
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By combining Lemmas 7 and 8, we obtain the following over-approximation of φ:

φ(δ) ≤ ψ̃(δ) :=

 −∞ δ ≤ −∆
l−δ −∆ ≤ δ ≤ 0
l+δ 0 ≤ δ.

Note that the function ψ̃ is not subadditive. Lemma 9 describes a subadditive function that upper bounds ψ̃,
thus giving a subadditive upper bound of φ.

Lemma 9. It holds that l+ ≥ l− > 0. Further, the function

ψ(δ) =


l+(δ + ∆)− l−∆ δ ≤ −∆

l−δ −∆ ≤ δ ≤ 0

l+δ 0 ≤ δ

is subadditive.

Proof. Define ψ̊(δ) := l−δ when δ ≤ 0 and ψ̊(δ) := l+δ when δ ≥ 0. Function ψ̊(δ) satisfies ψ̊ ≥ ψ and is
subadditive since it is straightforward to verify that l+ ≥ l− > 0. Thus, for u, v, such that u, v, u+v ∈ [−∆,+∞),
we already have that ψ(u)+ψ(v) ≥ ψ(u+v). It remains to consider the cases where at least one of u, v or u+v
belongs to (−∞,−∆]. We do so by considering the possible values of u + v and by assuming without loss of
generality that u ≥ v. We use the fact that for δ ≤ 0, ψ(δ) = min{l+(δ+ ∆)− l−∆, l−δ} ≥ l+δ. There are three
cases to consider. First assume that u+ v ≥ 0. In this case, ψ(u) +ψ(v)−ψ(u+ v) ≥ l+u+ l+v− l+(u+ v) = 0.
Second assume that −∆ ≤ u + v ≤ 0. In this case, v ≤ −∆ and u ≥ 0 so that ψ(u) + ψ(v) − ψ(u + v) =
l+u+ l+(v + ∆)− l−∆− l−(u+ v) = (l+ − l−)(u+ v + ∆) ≥ 0. Third assume that u+ v ≤ −∆. There are two
subcases. If v ≤ −∆, we have ψ(u) + (ψ(v)− ψ(u+ v)) ≥ l+u+ (l+(v + ∆)− l+(u+ v + ∆)) = 0. If v ≥ −∆,
then 0 ≥ u ≥ v ≥ −∆. Therefore ψ(u) + ψ(v)− ψ(u+ v) ≥ l−u+ l−v − l−(u+ v) = 0.

Theorem 5. Combining Lemmas 7, 8, and 9 yields Theorem 5.

10 Proof of Theorem 6
Theorem 6. Following Theorems 3 and 5, it is sufficient to show that γi(x, y) ≥ ψ(aixy) for i ∈ J0 and γi(x, y) ≥
ψ(ai(xy− 1)) for i ∈ J1, where ψ is the subadditive over-approximation of φ derived in Theorem 5. We discuss
the possible cases.

(i) Assume i ∈ J+
0 . We must find γi(x, y) ≥ ψ(aixy) = l+aixy for (x, y) ∈ [0, 1]2 where the equality

holds as ai > 0. As min{x, y} ≥ xy is the best concave upper bound for (x, y) ∈ [0, 1]2, we choose
γi(x, y) = l+ai min{x, y}.

(ii) Assume i ∈ J−1 . We must find γi(x, y) ≥ ψ(ai(xy − 1)) = l+(aixy − ai) = l+ai(xy − 1) for (x, y) ∈ [0, 1]2

where the equality holds since ai < 0. As max{x + y − 1, 0} ≤ xy is the best convex lower bound for
(x, y) ∈ [0, 1]2, we choose γi(x, y) = l+ai(max{x+ y − 1, 0} − 1) = −l+ai min{2− x− y, 1}.

(iii) Assume i ∈ J−0 . We must find γi(x, y) ≥ ψ(aixy) for (x, y) ∈ [0, 1]2. As ai < 0, ψ(aixy) = min{l−aixy, l+aixy+
l+∆− 1} ≤ min{l−ai(x+ y − 1), l+ai(x+ y − 1) + l+∆− 1, 0} := γi(x, y).

(iv) Assume i ∈ J+
1 . In this case, we must find γi(x, y) ≥ ψ(aixy − ai) for (x, y) ∈ [0, 1]2. Since ai > 0,

ψ(aixy − ai) = min{l−ai(xy − 1), l+ai(xy − 1) + l+∆ − 1}. Similar to (iii), we have ψ(aixy − ai) ≤
l−ai(min{x, y} − 1) =: h̃(x, y), and ψ(aixy − ai) ≤ l+ai(min{x, y} − 1) + l+∆ − 1 =: g̃(x, y). Thus,
γ(x, y) = min{h̃(x, y), g̃(x, y)} is a concave upper bound of ψ.

Next we improve this upper bound when ai ≥ ai0 > ∆. As g and h (defined in Theorem 6) are concave,
it remains to show the following:

Claim 1. For ai ≥ ai0 > ∆, min{g(x, y), h(x, y)} ≥ ψ(aixy − ai) for (x, y) ∈ [0, 1]2.
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Observe that

ψ(aixy − ai) =

 l+ai((
√
xy)2 − 1) + l+∆− 1 if 0 ≤ √xy ≤

√
1− ∆

ai

l−ai((
√
xy)2 − 1) if

√
1− ∆

ai
≤ √xy ≤ 1.

Consider first the function gi(x, y) =
√
ai −∆

√
ail+
√
xy − l+(ai −∆)− 1:

• √xy ∈ [0,
√

1− ∆
ai

]: gi(x, y) ≥ −1 + (ai(
√
xy)2 − ai + ∆)l+ = ψ(aixy − ai).

• √xy ∈ [
√

1− ∆
ai
, 1]: we simply prove ĝi(t) := l+

√
ai −∆

√
ai
√
t−l+(ai−∆)−1 ≥ l−ai(t−1) =: fi(t),

for t ∈ [1−∆/ai, 1]. To this end, we verify: (i) ĝi(1− ∆
ai

) = fi(1− ∆
ai

) and (ii) ĝi(1) ≥ fi(1). This is
sufficient since ĝi is a concave function and fi is a linear function. The proof of (i) is straightforward.
To prove (ii) observe that ĝi(1) = l+

√
ai −∆

√
ai − l+(ai − ∆) − 1 ≥ fi(1) = l−ai(1 − 1) = 0 is

equivalent to verifying l+ ≥ 1√
ai−∆(

√
ai−
√
ai−∆)

or equivalently
√
ai0+
√
ai0−∆√

ai0−∆
≥
√
ai+
√
ai−∆√

ai−∆
which

holds since ai ≥ ai0 .

Consider second the function hi(x, y) =
√
ai√

ai−
√
di

(
√
xy − 1):

• √xy ∈ [
√

1− ∆
ai
, 1]: by construction, hi(x, y) ≥ l−ai(xy − 1) ≥ ψ(aixy − ai).

• √xy ∈ [0,
√

1− ∆
ai

]: first observe that ĥi(t∗) = fi(t
∗) for t∗ =

√
1− ∆

ai
, where fi(t) := l+ai(t− 1) +

l+∆− 1. Since hi(x, y) is concave it is sufficient to verify that ĥi(0) ≥ fi(0). This condition holds as√
ai√

ai−
√
ai−∆

≤ 1 + (ai −∆)l+ which is equivalent to l+ ≥ 1√
ai−∆(

√
ai−
√
ai−∆)

.

References
[1] Agostinho Agra and Miguel Fragoso Constantino. Lifting two-integer knapsack inequalities. Math. Program.

, 109(1):115–154, 2007.

[2] Kurt M. Anstreicher, Samuel Burer, and Kyungchan Park. Convex hull representations for bounded prod-
ucts of variables. arXiv preprint arXiv:2004.07233, 2020.

[3] Alper Atamtürk. On the facets of the mixed–integer knapsack polyhedron. Math. Program. , 98(1):145–175,
2003.

[4] Alper Atamtürk. Sequence independent lifting for mixed-integer programming. Oper. Res. , 52(3):487–490,
2004.

[5] Alper Atamtürk and Vishnu Narayanan. Lifting for conic mixed-integer programming. Math. Program. ,
126(2):351–363, 2011.

[6] Gennadiy Averkov and Amitabh Basu. Lifting properties of maximal lattice-free polyhedra. Math. Program.
, 154(1-2):81–111, 2015.

[7] Egon Balas. Facets of the knapsack polytope. Math. Program. , 8(1):146–164, 1975.

[8] Egon Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete Appl.
Math. , 89(1-3):3–44, 1998.

[9] Egon Balas and Robert G. Jeroslow. Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. ,
4(4):224–234, 1980.

23



[10] Egon Balas and Eitan Zemel. Facets of the knapsack polytope from minimal covers. SIAM J. Appl. Math.
, 34(1):119–148, 1978.

[11] Amitabh Basu, Manoel Campêlo, Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Unique
lifting of integer variables in minimal inequalities. Math. Program. , 141(1-2):561–576, 2013.

[12] Amitabh Basu, Gérard Cornuéjols, and Matthias Köppe. Unique minimal liftings for simplicial polytopes.
Math. Oper. Res. , 37(2):346–355, 2012.

[13] Amitabh Basu, Santanu S. Dey, and Joseph Paat. Nonunique lifting of integer variables in minimal in-
equalities. SIAM J. Discrete Math. , 33(2):755–783, 2019.

[14] Amitabh Basu and Joseph Paat. Operations that preserve the covering property of the lifting region. SIAM
J. Optim. , 25(4):2313–2333, 2015.

[15] Aharon Ben-Tal and Arkadi Nemirovski. Lectures on modern convex optimization: analysis, algorithms,
and engineering applications. SIAM, 2001.

[16] Daniel Bienstock, Chen Chen, and Gonzalo Munoz. Outer-product-free sets for polynomial optimization
and oracle-based cuts. Math. Program. , 183:1–44, 2020.

[17] Merve Bodur, Alberto Del Pia, Santanu S Dey, Marco Molinaro, and Sebastian Pokutta. Aggregation-based
cutting-planes for packing and covering integer programs. Math. Program. , 171(1):331–359, 2018.

[18] Samuel Burer. A gentle, geometric introduction to copositive optimization. Math. Program. , 151(1):89–116,
2015.

[19] Sebastián Ceria, Cécile Cordier, Hugues Marchand, and Laurence A. Wolsey. Cutting planes for integer
programs with general integer variables. Math. Program. , 81(2):201–214, 1998.

[20] Kwanghun Chung, Jean-Philippe P. Richard, and Mohit Tawarmalani. Lifted inequalities for 0-1 mixed-
integer bilinear covering sets. Math. Program. , 145(1-2):403–450, 2014.

[21] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. A geometric perspective on lifting. Oper.
Res. , 59(3):569–577, 2011.

[22] Santanu S. Dey and Jean-Philippe P. Richard. Linear-programming-based lifting and its application to
primal cutting-plane algorithms. INFORMS J. Comput. , 21(1):137–150, 2009.

[23] Santanu S. Dey, Asteroide Santana, and Yang Wang. New SOCP relaxation and branching rule for bipartite
bilinear programs. Optim. Eng. , 20(2):307–336, 2019.

[24] Santanu S. Dey and Laurence A. Wolsey. Composite lifting of group inequalities and an application to
two-row mixing inequalities. Discrete Optim. , 7(4):256–268, 2010.

[25] Santanu S. Dey and Laurence A. Wolsey. Constrained infinite group relaxations of MIPs. SIAM J. Optim.
, 20(6):2890–2912, 2010.

[26] Santanu S. Dey and Laurence A. Wolsey. Two row mixed-integer cuts via lifting. Math. Program. , 124(1-
2):143–174, 2010.

[27] Daniel Espinoza, Ricardo Fukasawa, and Marcos Goycoolea. Lifting, tilting and fractional programming
revisited. Oper. Res. Lett. , 38(6):559–563, 2010.

[28] Andres Gómez. Submodularity and valid inequalities in nonlinear optimization with indicator variables,
2018. Available at Optimization online.

[29] Ralph E. Gomory and Ellis L. Johnson. Some continuous functions related to corner polyhedra. Math.
Program. , 3(1):23–85, 1972.

24



[30] Xiaoyi Gu, Santanu S. Dey, and Jean-Philippe P. Richard. Lifting convex inequalities for bipartite bilinear
programs. In Mohit Singh and David P. Williamson, editors, Integer Programming and Combinatorial Op-
timization - 22nd International Conference, IPCO 2021, Atlanta, GA, USA, May 19-21, 2021, Proceedings,
volume 12707 of Lecture Notes in Computer Science, pages 148–162. Springer, 2021.

[31] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Lifted flow cover inequalities for mixed
0-1 integer programs. Math. Program. , 85(3):439–467, 1999.

[32] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Sequence independent lifting in mixed
integer programming. J. Comb. Optim. , 4(1):109–129, 2000.

[33] Oktay Günlük and Yves Pochet. Mixing mixed-integer inequalities. Math. Program. , 90(3):429–457, 2001.

[34] Akshay Gupte. Mixed integer bilinear programming with applications to the pooling problem. PhD thesis,
Georgia Institute of Technology, 2012.

[35] Peter L. Hammer, Ellis L. Johnson, and Uri N. Peled. Facet of regular 0–1 polytopes. Math. Program. ,
8(1):179–206, 1975.

[36] Konstantinos Kaparis and Adam N. Letchford. Local and global lifted cover inequalities for the 0–1
multidimensional knapsack problem. Eur. J. Oper. Res. , 186(1):91–103, 2008.

[37] Matthias Köppe and Yuan Zhou. An electronic compendium of extreme functions for the Gomory–Johnson
infinite group problem. Oper. Res. Lett. , 43(4):438–444, 2015.

[38] Alexander Martin and Robert Weismantel. The intersection of knapsack polyhedra and extensions. In In-
ternational Conference on Integer Programming and Combinatorial Optimization, pages 243–256. Springer,
1998.

[39] Garth P. McCormick. Computability of global solutions to factorable nonconvex programs: Part i — convex
underestimating problems. Math. Program. , 10(1):147–175, 1976.

[40] Gonzalo Muñoz and Felipe Serrano. Maximal quadratic-free sets. In International Conference on Integer
Programming and Combinatorial Optimization, pages 307–321. Springer, 2020.

[41] Amar K. Narisetty, Jean-Philippe P. Richard, and George L. Nemhauser. Lifted tableaux inequalities for
0–1 mixed-integer programs: A computational study. INFORMS J. Comput. , 23(3):416–424, 2011.

[42] Trang T. Nguyen, Jean-Philippe P. Richard, and Mohit Tawarmalani. Deriving convex hulls through lifting
and projection. Math. Program. , 169(2):377–415, 2018.

[43] Manfred W. Padberg. On the facial structure of set packing polyhedra. Math. Program. , 5(1):199–215,
1973.

[44] Manfred W. Padberg. A note on zero-one programming. Oper. Res. , 23(4):833–837, 1975.

[45] Hamidur Rahman and Ashutosh Mahajan. Facets of a mixed-integer bilinear covering set with bounds on
variables. J. Global Optim. , 74(3):417–442, 2019.

[46] Jean-Philippe P. Richard. Lifting techniques for mixed integer programming. Wiley Encyclopedia of Oper-
ations Research and Management Science, 2010.

[47] Jean-Philippe P. Richard, Ismael R. de Farias Jr, and George L. Nemhauser. Lifted inequalities for 0-1
mixed integer programming: Basic theory and algorithms. Math. Program. , 98(1-3):89–113, 2003.

[48] Jean-Philippe P. Richard, Ismael R. de Farias Jr, and George L. Nemhauser. Lifted inequalities for 0-1
mixed integer programming: Superlinear lifting. Math. Program. , 98(1-3):115–143, 2003.

[49] Jean-Philippe P. Richard and Santanu S. Dey. The group-theoretic approach in mixed integer programming.
In 50 Years of Integer Programming 1958-2008, pages 727–801. Springer, 2010.

25



[50] Jean-Philippe P. Richard, Yanjun Li, and Lisa A. Miller. Valid inequalities for MIPs and group polyhedra
from approximate liftings. Math. Program. , 118(2):253–277, 2009.

[51] Jean-Philippe P. Richard and Mohit Tawarmalani. Lifting inequalities: a framework for generating strong
cuts for nonlinear programs. Math. Program. , 121(1):61–104, 2010.

[52] Asteroide Santana and Santanu S. Dey. The convex hull of a quadratic constraint over a polytope. SIAM
J. Optim. , 30(4):2983–2997, 2020.

[53] Mohit Tawarmalani, Jean-Philippe P. Richard, and Kwanghun Chung. Strong valid inequalities for orthog-
onal disjunctions and bilinear covering sets. Math. Program. , 124(1-2):481–512, 2010.

[54] Laurence A. Wolsey. Facets and strong valid inequalities for integer programs. Oper. Res. , 24(2):367–372,
1976.

[55] Laurence A. Wolsey. Valid inequalities and superadditivity for 0–1 integer programs. Math. Oper. Res. ,
2(1):66–77, 1977.

[56] Bo Zeng and Jean-Philippe P. Richard. A framework to derive multidimensional superadditive lifting
functions and its applications. In International Conference on Integer Programming and Combinatorial
Optimization, pages 210–224. Springer, 2007.

[57] Bo Zeng and Jean-Philippe P. Richard. A polyhedral study on 0–1 knapsack problems with disjoint
cardinality constraints: facet-defining inequalities by sequential lifting. Discrete Optim. , 8(2):277–301,
2011.

[58] Bo Zeng and Jean-Philippe P. Richard. A polyhedral study on 0–1 knapsack problems with disjoint cardi-
nality constraints: strong valid inequalities by sequence-independent lifting. Discrete Optim. , 8(2):259–276,
2011.

26


	1 Introduction
	1.1 Generating strong cutting planes through lifting
	1.2 Goal of this paper
	1.3 Main contributions

	2 Main results
	2.1 Sufficient conditions under which seed inequalities can be lifted
	2.2 A framework for sequence-independent lifting
	2.3 A seed inequality from a minimal covering set
	2.4 Lifting the bilinear cover inequality

	3 Future directions
	4 Proof of Theorem 1
	5 Proof of Proposition 1
	6 Proof of Theorem 2
	7 Proof of Theorem 3
	8 Proof of Theorem 4 
	9 Proof of Theorem 5
	10 Proof of Theorem 6

