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Abstract

We describe a framework for reformulating and solving optimization problems that gener-
alizes the well-known framework originally introduced by Benders. We discuss details of the
application of the procedures to several classes of optimization problems that fall under the
umbrella of multilevel/multistage mixed integer linear optimization problems. The application
of this abstract framework to this broad class of problems provides new insights and a broader
interpretation of the core ideas, especially as they relate to duality and the value functions of
optimization problems that arise in this context.

1 Introduction

This paper describes a framework for reformulating and solving optimization problems that extends
the well-known framework of Benders [1962]. Although the basic elements of the framework are
known, we provide a self-contained development of the key concepts and illustrate in detail the
principles involved by applying them to the solution of several classes of optimization problems,
including one to which they have not previously been applied. These classes of problems are all
contained under the broad umbrella of what we informally refer to as multilevel/multistage mixed
integer linear optimization problems (MMILPs). MMILPs comprise a broad class of optimization
problems in which multiple decision makers (DMs), with possibly competing objectives, make
decisions in sequence over time. Each DM’s decision impacts the options available to other DMs
at other (typically later) stages1. In economics, these problems fall under the general umbrella
of game theory. We do not formally define the broad class comprising MMILPs here, but rather

∗bsuresh@lehigh.edu
†ted@lehigh.edu
1We use the term “stage” in describing the decision epochs of an MMILP, rather than the alternative “level” used

in the multilevel optimization literature because of its broader connotation and connection to stochastic optimization.
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describe some specific subclasses contained within it. Readers wishing to have a more complete
overview of MMILPs should refer to Bolusani et al. [2020].

Although Benders’ technique was originally applied to standard mathematical optimization prob-
lems with an underlying structure suggesting a partition of the variables into exactly two sets, it
can be similarly applied not only to more general classes of optimization problems, but by exten-
sion, to l-stage problems in which there is an obvious division of the variables into l sets. Because
an l-stage MMILP is most naturally defined recursively in terms of an (l − 1)-stage MMILP, the
very structure of MMILPs seems to suggest solution by an approach similar to the one suggested
by Benders. The recursive structure also mirrors that of the polynomial time hierarchy (PTH,
originally introduced by Stockmeyer [1976]), a recursively defined family of complexity classes into
which MMILPs can naturally be categorized. The lowest level of the PTH is the well-known class
P of problems solvable in time polynomial in the size of the input, and the lth level (whose class
of primary interest is denoted ΣP

l ) is comprised of problems solvable in polynomial time given an
oracle for problems in the (l − 1)st level. The decision versions of MMILPs with l levels are pro-
totypical complete problems for ΣP

l [Jeroslow, 1985], meaning that all other problems in the class
can be reduced to MMILPs.

Benders’ framework is, first and foremost, a technique for reformulation. Using this technique,
MMILPs can be recast as standard mathematical optimization problems. The reformulation usually
results in an exponential increase in size relative to the original formulation, and a number of
additional transformations may be necessary to get the final problem into a form in which a blackbox
solver can digest it. Because of the exponential increase in size, the reformulation must generally be
solved either by an approach based on a convergent iterative approximation scheme or by utilizing
a relaxation to obtain bounds that can then be used to drive a branch-and-bound algorithm.
These two approaches are closely related, as the relaxations required in the latter approach can
be obtained by terminating the iterative approximation procedure before convergence. We further
discuss approaches based on branch and bound in Section 2.3.

In the remainder of the paper, we focus only on the iterative approximation approach, which can be
seen as a generalization of the cutting-plane method for solving mixed integer linear optimization
problems (MILPs). This approach can be applied recursively, essentially decomposing the problem
by stage, with the subproblem (introduced formally in Section 2) that arises when solving an l-stage
problem being an (lexicographic) optimization problem with l − 1 stages. The main contributions
of this work are (1) the development of an abstract framework for generalizing the principles of
Benders’ technique for reformulation that encompasses non-traditional problem classes, (2) the
specification of an associated algorithmic procedure that generalizes the standard cutting-plane
algorithm and is based on iterative approximation of functions arising from the projection of the
original problem into the space of a specified subset of variables, and (3) its application to the solu-
tion of mixed integer two-stage/bilevel linear optimization problems (MIBLPs). To our knowledge,
this is the first algorithm for MIBLPs that utilizes a generalized Benders’ approach. This paper
does not aim at discussing efficiency or comparing the algorithms described herein to alternatives.
While we have implemented a proof-of-concept for the algorithms described here, a full-featured,
efficient implementation would require substantial additional development.

The paper is organized as follows. In Section 2, we discuss the principles underlying our generalized
Benders’ framework at a high level in the context of a general optimization problem, including
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concepts of bounding functions and general duality. We also highlight the relationships between
this framework and certain existing algorithms at an abstract level. In Section 3, we illustrate
these principles concretely with two examples, summarizing existing algorithms for the case in
which there are two stages and the objective functions are the same in both stages. Section 4 goes
into more detail in describing an algorithm for general MIBLPs, the special case of MMILPs in
which there are only two stages. Finally, we conclude in Section 5 by briefly discussing a conceptual
extension of the algorithm for MIBLPs to general MMILPs with l stages.

2 Benders’ Principle

In this section, we introduce the basic principles of the framework. We first describe it in a very
general context and then focus on the special case in which the objective and constraint functions
are additively separable. The idea of such a generalization of Benders’ original algorithm is not new.
As far back as the 1970s, Geoffrion [1972] had already proposed a similar idea. Its application to
MMILPs, however, provides new insights and broader interpretations of the core ideas.

What we generally mean by a Benders-type approach is a technique for reformulation and/or
solution of an optimization problem that operates in a subspace associated with a specified subset of
variables from the original compact formulation. We refer to this subset of variables as the first-stage
variables throughout the paper, although Benders’ technique only really provides a separation of
the problem into independent “stages” once we assume additive separability. The essential element
underlying any Benders-type method is a projection operation. Projecting an optimization problem
means projecting both its feasible region and its objective function, in the fashion we describe, in
order to obtain a valid reformulation involving only first-stage variables. By “valid reformulation,”
we mean one in which the set of optimal solutions of the projected problem is the projection of the
set of optimal solutions of the original problem, though one could define the concept of validity in
other ways.

The projection operation is natural in applications where the optimal values of the first-stage
variables are of primary concern, while the remaining variables are present only to model the later-
stage effects of the first-stage decisions. The goal of the projection operation, however, is purely
pragmatic—it is to construct a reformulation that is somehow algorithmically advantageous. The
advantage may either be because the associated relaxations are more effective or simply because
the reformulation has a form that makes the employment of existing blackbox solvers easier. The
reformulation process necessarily introduces complex functions of the first-stage variables, which
model the effects mentioned above. Algorithms for solving these reformulations generally construct
approximations of these functions, as we detail in the following sections.

2.1 General Optimization Problems

We first consider the following very general form of optimization problem in which the variables are
partitioned into two sets, the first- and second-stage variables, denoted by x ∈ Rn1 and y ∈ Rn2 ,
respectively. The problem is then

min
x∈X, y∈Y

{f(x, y) | F (x, y) ≥ 0} , (1)
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where f : Rn1 × Rn2 → R is the objective function and F : Rn1 × Rn2 → Rm is the constraint
function, with X ⊆ Rn1

+ and Y ⊆ Rn2
+ denoting the additional disjunctive constraints on the values

of the variables. Typically, we have X = Zr1+ × Rn1−r1
+ and Y = Zr2+ × Rn2−r2

+ , and we therefore
consider that form of sets for the remainder of the paper. By convention, we take the optimal
objective value to be ∞ if the feasible region

F = {(x, y) ∈ X × Y | F (x, y) ≥ 0}

is empty and −∞ if the problem (1) is unbounded. We assume that in all other cases, the problem
has a finite minimum that can be attained.

2.1.1 Projection and the Subproblem

The simple yet fundamental idea is that (1) can be equivalently formulated as

min
x∈X

{
min
y∈Y
{f(x, y) | F (x, y) ≥ 0}

}
.

By replacing the inner optimization problem with a function, we obtain the reformulation

min
x∈X

fx(x), (2)

in terms of only the first-stage variables, where

fx(x) = min
y∈Y
{f(x, y) | F (x, y) ≥ 0} ∀x ∈ Rn1 . (3)

In this new formulation, fx is a function that returns the objective function value of the optimal
feasible combination of values for both first- and second-stage variables, given fixed values for the
first-stage variables.

Although the formulation (2) does not explicitly involve projection, we define by convention that
fx(x) =∞ if x 6∈ projx(F), where

projx(F) = {x ∈ X | F (x, y) ≥ 0 for some y ∈ Y } (4)

is the projection of the feasible region of (1) into the space of the first-stage variables. (We similarly
define fx(x) = −∞ if the optimization problem on the right-hand side of (3) is unbounded.) This
means that fx plays a dual role. First, it effectively prevents any first-stage solution that is not
in the projected feasible region from being considered (provided the projected feasible region is
non-empty). Second, it is also what we earlier described informally as the projection of the original
objective function, since it ensures that the objective function value in the projected optimization
problem with respect to x̂ ∈ projx(F) is exactly the value that would have been obtained if solving
the original problem with the first-stage variables fixed to x̂. Overall, the reformulation (2) can then
be considered to be the projection of (1) into the space of the first-stage variables. The evaluation
of fx for particular first-stage solutions is the aforementioned subproblem. More details about its
role in the overall solution process are provided in Section 2.1.3.
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2.1.2 Bounding Functions and the Master Problem

In principle, the optimal value of (1), as well as an optimal first-stage solution, can be obtained
by solving (2). However, we usually do not have a closed-form description of fx and even when
such closed form exists in theory, its description is typically of exponential size and would thus be
impractical. We therefore replace fx in (2) with a dual bounding function

¯
fx (defined below) to

obtain the relaxation known as the master problem.

Definition 1 (Dual Bounding Function). A function
¯
fx : Rn1 → R∪{±∞} is said to be a dual

bounding function with respect to the projection of the objective function f if

¯
fx(x) ≤ fx(x) ∀x ∈ Rn1 .

It is called strong at x̂ ∈ X if

¯
fx(x̂) = fx(x̂).

Given a dual bounding function, the master problem is then

min
x∈X ¯

fx(x). (5)

Naturally, for any relaxation-based method to be practical, solving the relaxation (in this case, (5))
should be easier than solving the original problem (in this case, (2)). The difficulty of solving (5),
however, is directly related to the structure of the function

¯
fx itself. In the cases discussed later,

this function is piecewise linear and the master problem can be formulated as an MILP.

2.1.3 Overall Algorithm

The overall method is to iteratively improve the master problem formulation by strengthening
¯
fx.

In iteration k, candidate solution xk is generated by solving the current master problem (yielding
a lower bound on the optimal value of (1)), and fx(xk) is then evaluated (yielding an upper bound
on the optimal value of (1)). The algorithm alternates between solution of the master problem and
the subproblem until upper and lower bounds are equal.

Although the evaluation of fx(xk) apparently involves only the determination of the optimal solution
value, the solution of the subproblem also typically produces, as a byproduct, a primal-dual proof
of optimality for the problem on the right-hand side of (3). It is from this primal-dual proof that
we extract a dual bounding function

¯
fkx that is strong at xk. The form of this primal-dual proof and

the structure of
¯
fkx depends strongly on the form of the original problem. We examine particular

cases in Section 2.2.2.

It is possible that an algorithm following this general outline will either converge to a local optimum
or not converge at all (see Sahinidis and Grossmann [1991]), but the convergence of the method
to a global optimal solution can be guaranteed under two conditions that are satisfied in many
important cases. The first of these is that we update

¯
fx in each iteration k in such a way that

we guarantee that it is strong not only at xk but also at all xi, i < k. This can be most easily
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Generalized Benders’ Framework for Solving (1)

Step 0. Initialize k ← 1, UB0 =∞, LB0 = −∞,
¯
f0
x(x) = −∞ for all x ∈ Rn1 .

Step 1. Solve the master problem (lower bound)

a) Construct the dual bounding function
¯
fx(x) = max

0≤i≤k−1¯
f ix(x) and formulate the master prob-

lem (7).

b) Solve (7) to obtain an optimal solution (xk, zk). Set LBk ← zk.

Step 2. Solve the subproblem (upper bound)

a) Solve (3) for the given xk to obtain an optimal solution yk and strong dual bounding function

¯
fkx such that

¯
fkx (xk) = fx(xk). Set UBk ← fx(xk).

b) Termination check: UBk = LBk?

1. If yes, STOP. (xk, yk) is an optimal solution to (1).

2. If no, set k ← k + 1 and go to Step 1.

Figure 1: Outline of the generalized Benders’ decomposition framework

accomplished by taking the maximum of the bounding functions generated at each iteration. That
is, after iteration k,

¯
fx(x) = max

1≤i≤k¯
f ix(x), (6)

where
¯
f ix is the dual bounding function obtained in iteration i ≤ k of the algorithm. In such cases,

the master problem (5) is usually reformulated using a standard trick to eliminate the maximum
operator by introducing an auxiliary variable z to obtain

min
x∈X

z

s.t. z ≥
¯
f ix(x) 1 ≤ i ≤ k.

(7)

The formulations (7) and (5) are equivalent in this case because z must be equal to the maximum
of the individual bounding functions at optimality. In the literature, the constraints z ≥

¯
f ix(x) for

1 ≤ i ≤ k in (7) are sometimes called Benders’ optimality constraints. Depending on how the master
problem is reformulated, it may also sometimes be necessary to explicitly exclude xk 6∈ projx(F)
from the feasible region of the master problem, in which case the associated constraints are called
Benders’ feasibility constraints.

The overall approach is outlined in Figure 1. Theorem 1 due to Hooker and Ottosson [2003] shows
that Algorithm 1 converges in a finite number of steps under the additional condition that projx(F)
is finite.

Theorem 1 (Hooker and Ottosson [2003], Theorem 2). If the function
¯
fx is defined as in (6)

and
¯
f ix is strong at xi in each iteration i, then

¯
fx remains a valid dual bounding function that is
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strong at all previous iterates and the method converges to the optimal value in a finite number of
iterations under the assumption that |projx(F)| <∞.

The proof of this result is rather straightforward. In fact, a slightly more general result also holds,
since the overall dual bounding function need not be constructed in this particular way, as long as
we can ensure that it is strong at all the previous iterates. In practical implementations, however,
taking the maximum of previous bounding functions is a natural approach and it is the one we
adopt here.

This general framework still leaves many steps unspecified and raises many questions regarding
implementation in specific cases. These questions will be answered in detail for the several cases of
our interest in Sections 3 and 4.

2.2 Additively Separable Optimization Problems

We now move to the more specific setting that is central to the application of Benders’ method to
optimization problems in which the constraint and objective functions are additively separable.

Definition 2 (Additively Separable Function). A function f : Rn1 × Rn2 → R is additively
separable if ∃ g : Rn1 → R and h : Rn2 → R such that f(x, y) = g(x)+h(y) for all (x, y) ∈ Rn1×Rn2.

When the functions f and F are additively separable, such separability allows us to reformulate
these problems in ways that enhance intuition and also ease implementation. As such, let g :
Rn1 → R, h : Rn2 → R, G : Rn1 → Rm, and H : Rn2 → Rm be such that f(x, y) = g(x) + h(y)
and F (x, y) = G(x) +H(y) for all (x, y) ∈ Rn1 ×Rn2 . Because we are specifically interested in the
case of linear functions, we also introduce a right-hand side b ∈ Rm, as is standard for problems
involving linear functions. We then obtain the new form of general optimization problem

min
x∈X, y∈Y

{g(x) + h(y) | G(x) +H(y) ≥ b} (8)

that we consider in the rest of the paper.

2.2.1 Projection and the Value Function

A reformulation of (8) analogous to (2), obtained upon projecting into the space of the first-stage
variables, is

min
x∈X
{g(x) + φ (b−G(x))} , (9)

where
φ(β) = min

y∈Rn2
+

{h(y) | y ∈ P2(β) ∩ Y } ∀β ∈ Rm, (10)

and
P2(β) =

{
y ∈ Rn2

+

∣∣ H(y) ≥ β
}
∀β ∈ Rm

is a parametric family of polyhedra containing points satisfying the second-stage feasibility con-
ditions, which can now be considered fully independently, due to the additive separability. By
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convention, φ(β) = +∞ for β ∈ Rm if P2(β) ∩ Y = ∅, and φ(β) = −∞ for β ∈ Rm if the problem
on the right-hand side of (10) is unbounded.

As opposed to the earlier-defined function fx, which was parameterized on the first-stage solution,
φ is parameterized on the right-hand side of the associated second-stage optimization problem
(which is in turn determined by the first-stage solution). The second-stage optimization problem,
analogous to the earlier defined subproblem (3), is to evaluate φ at a specific right-hand side. In
the context of the framework described in Figure 1, φ would be evaluated in iteration k of the
algorithm at the right-hand side βk = b−G(xk).

Those readers familiar with the more general duality theory associated with mixed integer linear
optimization problems (see, e.g., Nemhauser and Wolsey [1988] and Güzelsoy and Ralphs [2007])
will recognize φ as the value function of the second-stage problem. The value function of the
second-stage problem and the associated dual problem are crucial elements of the framework in the
additively separable case, so we now briefly review these basic concepts.

2.2.2 General Duality and Dual Functions

The function generally referred to as “the” value function of an optimization problem is one that
returns the optimal objective value for a given right-hand side vector. As in the general framework
from Section 2.1, we form the master problem by replacing this value function with a function
that bounds it from below. Such functions are known as dual functions, so called because they
can be interpreted as solutions to a general dual problem and reflect the essential role of duality in
Benders-type reformulations. For a particular right-hand side β̂ ∈ Rm, the general dual problem

max
D∈Υm

{
D(β̂)

∣∣∣ D(β) ≤ φ(β) ∀β ∈ Rm
}

(11)

associated with (10) is an optimization problem over a class Υm ⊆ {υ | υ : Rm → R} of real-valued
functions. The objective of the dual problem is to construct a function that bounds the value
function from below and for which the bound is as strong as possible at β̂. As such, we define a
(strong) dual function as follows.

Definition 3 (Dual Function). A dual function D : Rm → R ∪ {±∞} is one that satisfies
D(β) ≤ φ(β) for all β ∈ Rm. It is called strong at β̂ ∈ Rm if D(β̂) = φ(β̂).

The dual problem itself is called strong if Υm is guaranteed to contain a strong dual function. As
long as the value function itself is real-valued2 and is a member of Υm, then the dual problem will
be strong, since the value function itself is an optimal solution of (11).

Exact solution algorithms that produce certificates of optimality typically do it by providing a
primal solution, which certifies an upper bound, and a dual function (solution to (11)), which
certifies a lower bound. When these bounds are equal, the combination provides the required
certificate of optimality. Dual functions can be obtained in a variety of ways, but one obvious

2When the value function is not real-valued everywhere, we have to show that there exists a real-valued function
that coincides with the value function whenever the value function is real-valued and is itself real-valued everywhere
else, but is still a feasible dual function (see Wolsey [1981]).
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way to construct them is to consider the value function of a relaxation of the problem. Most
solution algorithms for linear and mixed integer linear optimization problems work by iteratively
constructing such a dual function.

The connection between the general dual and Benders’ framework should be clear. The strong dual
function constructed as a certificate of optimality when solving the subproblem (evaluating φ) is a
function that can be directly used in strengthening the global dual function that defines the current
master problem. In fact, it is useful to think of the subproblem not as that of evaluating φ, but
rather of solving a dual problem of the form (11) to obtain a strong dual function, which is what
we actually need for forming the master problem in the next iteration.

2.2.3 Overall Algorithm

The overall method is largely similar to that described in Figure 1. We relax the reformulation (9)
to obtain a master problem

min
x∈X

g(x) + z

s.t. z ≥ φ (b−G(x)) ,
(12)

in which the value function φ is replaced by a dual function φ. Solving this master problem in

iteration k yields a solution (xk, zk) and a lower bound g(xk)+zk. We then evaluate φ at b−G(xk)
to obtain a dual function φk strong at b−G(xk) and an upper bound g(xk) + φ(b−G(xk)). This
dual function is combined with previously produced such functions to obtain a global dual function
that is strong at all previous iterates, ensuring eventual convergence under the same conditions as
in Theorem 1.

Naturally, the exact form and structure of the dual functions involved is crucially important to the
tractability of the overall algorithm, as we do need a method of (re)formulating and solving the
master problem in each iteration. In the cases discussed in this paper, the dual function takes on
relatively simple forms. For linear optimization problems (LPs), the value function is convex and
there is always a strong dual function that is a simple linear function. This linear function is an
optimal solution to the usual LP dual, which is a subgradient of the LP value function.

In the case of mixed integer linear optimization, dual functions can be obtained as a by-product of a
branch-and-bound algorithm. Roughly speaking, the lower bound produced by a branch-and-bound
algorithm is the minimum of lower bounds produced for the individual subproblems associated with
the leaf nodes of the branch-and-bound tree. Thus, the overall dual function is the minimum of
dual functions for these subproblems. In the MILP case, the subproblem dual functions utilized
are affine functions derived from the dual of the LP relaxation of the subproblem associated with
a given node. Thus, in the simplest case, the dual function is the minimum of affine functions.

This method of constructing dual functions from branch-and-bound trees can be extended to vir-
tually any problem that can be solved by a relaxation-based branch-and-bound algorithm. The
lower bound arising from the branch-and-bound tree is the minimum of lower bounds on individual
subproblems, which are typically (but not always) derived as dual functions of convex relaxations.
The overall dual function is thus a minimum of dual functions for individual leaf nodes, as in the
MILP case. In Sections 3.2.1 and 4.2 below, we describe in detail the application of this principle
to the derivation of dual functions for the MILP and lexicographic MILP cases.
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2.3 Relationship to Other Methodologies

An important question is how general this framework is and how existing algorithms are related.
The framework presented is at a high level of abstraction and, therefore, very generic. It is likely
that almost all Benders-type procedures can be seen as special cases or at least subtle variations
on the same theme, since any reformulation of the problem in a subspace would necessarily involve
a projection operation in some form. Of course, as with all algorithms described at this level of
abstraction, many important details need to be filled in to attain a practical algorithm for specific
problem classes, so the development of customized algorithms for specific classes is still very much
needed. The framework only provides a way to understand relationships and a starting template
for building algorithms.

As mentioned earlier, Benders’ reformulation technique generally increases the size of the formu-
lation exponentially relative to the original compact formulation and the reformulation may well
be in a wholly different class than the original problem (e.g., the projection of a linear problem
may involve nonlinear functions, see Section 3.1). This is analogous to the way in which a minimal
description of the convex hull of feasible solutions of a standard MILP has a description of expo-
nential size with respect to its original formulation. With a reformulation of exponential size, as
in the solution of MILPs, the most obvious approaches are ones based on iterative outer approx-
imation, suggesting a generalized cutting plane-type method. Such methods produce a sequence
of relaxations similar to what we referred to as the “master problem,” whose solutions converge
to the exact optimum. From this point of view, a traditional cutting-plane algorithm for solving
the problem in its original compact form is just one possible approach on a continuum ranging
from projecting out none of the variables to projecting out all the variables. (The latter option of
projecting out all the variables would essentially be equivalent to constructing the value function
of the original problem.)

To take a specific example, Codato and Fischetti [2006] propose a Benders-type algorithm that
employs so-called combinatorial Benders’ cuts (also known as no-good cuts). These cuts can be seen
as Benders’ feasibility constraints in the framework of this paper because they remove individual
first-stage solutions that are not in the projection of the feasible region. The set of all such cuts,
along with the requirement that the first-stage variables be binary, provides an exact description
of the projected feasible region. And since the objective function does not depend on the second-
stage variables, Benders’ optimality constraints are not needed. As another example, Sen and
Sherali [2006] discuss a Benders-type algorithm for solving two-stage stochastic mixed integer linear
optimization problems (2SSMILPs). They propose linear Benders’ cuts that can be viewed as
Benders’ optimality constraints. These cuts are obtained by applying the disjunctive cut principle
[Balas, 1979] to the disjunction based on LP relaxations of leaf nodes of the branch-and-bound tree
for solving MILP subproblems.

As with cutting plane methods for MILPs, when convergence of such a method is slow, the process
can be terminated early to obtain a bound. This bounding procedure can be embedded within
a branch-and-bound framework to obtain what is called a branch-and-Benders’-cut algorithm in
the literature and is essentially a generalized branch-and-cut method. Rahmaniani et al. [2017]
provides a list of works that propose such an algorithm. Note that another reason for embedding
the procedure in a branch-and-bound framework is to simplify the master problem by restricting
the form of the functions involved so that exact reformulation is no longer possible. For example,
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we may want the master problem to be convex for reasons of efficiency. Because the functions
involved can be non-convex even when the original formulation contains only linear functions, this
would rule out exact reformulation. By partitioning the feasible region into small enough regions,
convex reformulations become possible. This is analogous to the notion of spatial branching in
mixed integer nonlinear optimization.

Hybrid options are also possible, especially in multistage optimization. The most obvious approach
is to allow the later-stage variables to remain in the master problem. This obviates the need for
dual bounding functions and avoids some of the difficulties associated with projection of the feasible
region, while retaining the possibility of viewing the optimization as being over the space of the
first-stage variables only. This is the approach taken in most branch-and-cut algorithms for solving
bilevel optimization problems [Tahernejad et al., 2020]. We discuss this possibility further in the
context of MIBLPs in the literature review of Section 4.

3 Applications From the Literature

In this section, we describe the application of the generalized framework presented in Section 2
to derive algorithms already existing in the literature. We describe these applications here to
emphasize their commonality, and to provide concrete examples in settings in which the application
of the principles is relatively straightforward and the abstractions reduce to familiar algorithmic
concepts.

3.1 Linear Optimization Problems

We begin by considering the application of Benders’ framework to the standard LP

min
{
c>x+ d>y

∣∣∣ Ax+Gy ≥ b, (x, y) ∈ Rn1
+ × Rn2

+

}
, (13)

where A ∈ Qm×n1 , G ∈ Qm×n2 , b ∈ Qm, c ∈ Qn1 , and d ∈ Qn2 . This problem is the special case
of (8) in which g(x) = c>x, h(y) = d>y, G(x) = Ax, and H(y) = Gy for all x ∈ X = Rn1

+ and
y ∈ Y = Rn2

+ .

3.1.1 Projection

Projecting into the space of the first-stage variables, we obtain the reformulation

min
x∈Rn1

+

{
c>x+ φLP (b−Ax)

}
, (14)

where
φLP (β) = min

{
d>y

∣∣∣ Gy ≥ β, y ∈ Rn2
+

}
∀β ∈ Rm,

is the value function of the second-stage optimization problem, which is an LP. This reformulation
is nothing more than the instantiation of the reformulation (9) in the context of (13).
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Value functions are well-studied and well-understood in the linear optimization case (see, e.g.,
Bertsimas and Tsitsiklis [1997] for details). The structure of φLP arises from that of the feasible
region

D =
{
η ∈ Rm+

∣∣∣ G>η ≤ d}
of the standard LP dual of the second-stage problem, which is the LP

max
η∈D

η>(b−Ax̂) (15)

when the first-stage solution is x̂ ∈ Rn1
+ . Although it may not be obvious, this dual problem

is precisely equivalent to the general dual (11) in the LP case. This can be seen by noting the
constraints ensure that the dual solution is a subgradient of φLP and hence represents a (linear)
dual function. By noting that the above maximum can be taken over the set E of extreme points
of D, assuming D is bounded, it is easy to derive that

φLP (β) = max
η∈E

{
η>β

}
∀β ∈ Rm. (16)

That is, the value function is the maximum of linear functions corresponding to members of E .
Although this function is convex and nicely structured, the cardinality of E is exponential in general,
so enumerating them is impractical. The global dual function we use to construct the master
problem is thus formed from a small collection of these extreme points, as described next.

3.1.2 Master Problem

In accordance with the principles described earlier, we form the master problem by replacing φLP
in (14) with a global dual function φ

LP
that is the maximum of the strong dual functions produced

in each iteration of the algorithm. In this context, the strong dual functions produced at each
iteration are the linear functions associated with solutions to the dual (15) of the second-stage
problem. This results in the master problem

min c>x+ z

s.t. z ≥ φi
LP

(b−Ax) = ηi
>

(b−Ax), 1 ≤ i ≤ k
x ∈ Rn1

+ ,

(17)

in iteration k, where ηi ∈ E is an optimal solution of (15) in iteration i. Note that if the optimal
solution to the master problem in iteration k is (xk, zk), then we have

zk = φ
LP

(b−Axk) = max
1≤i≤k

ηi
>

(b−Axk),

as desired, and this master problem is the equivalent to (12) in this context.

3.1.3 Overall Algorithm

In iteration k of the algorithm, we begin by solving a master problem (17) to obtain its optimal
solution xk. The subproblem is then to evaluate φLP at βk = b− Axk by solving the dual (15) to
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obtain ηk ∈ E . By defining φk
LP

(β) = ηk
>
β for all β ∈ Rm, we obtain that φk

LP
is a dual function

for φLP that is strong at βk.

The overall method is then to add one constraint of the form

z ≥ ηk>(b−Ax) (18)

to the master problem in each iteration k in which (15) has a finite optimum. In case (15) in
iteration k is unbounded, then xk is not a member of the projection of the feasible region (defined
as in (4)) and we instead add a constraint of the form

0 ≥ σk>(b−Ax), (19)

where σk is the extreme ray of D that proves infeasibility of the second-stage problem.

Observe that the master problem, the subproblem, and the constraints added to the master problem
are identical to the corresponding components in a classical Benders’ decomposition algorithm for
LPs. Conventionally, in the context of LPs, these constraints are referred to as Benders’ cuts
with (18) being Benders’ optimality cut and (19) being Benders’ feasibility cut. Next, we discuss
how to further generalize to the class of 2SSMILPs.

3.2 Two-Stage Stochastic Mixed Integer Linear Optimization Problems

The case of 2SSMILPs generalizes the case discussed in the previous section in two important ways.
First, we introduce stochasticity, which is modeled by specifying a finite number of possible scenarios
in the second stage, resulting in a block-structured constraint matrix overall. This generalization
on its own is relatively straightforward and results in the method known in the literature as the
L-shaped method for solving stochastic linear optimization problems with recourse [Van Slyke and
Wets, 1969]. However, we also wish to allow integer variables into the second stage. Although this
does not require any modification of the framework itself, it results in a more complex structure
for the value function of the second-stage problem and hence, a more complex reformulation for
the master problem. We now summarize an algorithm for solving 2SSMILPs that was originally
developed by Hassanzadeh and Ralphs [2014a].

To model the stochasticity, we introduce a random variable U over an outcome space Ω representing
the set of possible scenarios for the second-stage problem. We assume that U is discrete, i.e., that
the outcome space Ω is finite so that ω ∈ Ω represents which of the finitely many scenarios is
realized. In practice, this assumption is not very restrictive, as one can exploit any algorithm for
the case in which Ω is assumed finite to solve cases where Ω is not (necessarily) finite by utilizing
a technique for discretization, such as sample average approximation (SAA) [Shapiro, 2003].

Under these assumptions, a 2SSMILP is then a problem of the form

min c>x+ Eω∈Ω

[
d2>yω

]
s.t. A1x ≥ b1

A2
ωx+G2yω ≥ b2ω ∀ω ∈ Ω

x ∈ X, yω ∈ Y,

(20)
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where c ∈ Qn1 , d2 ∈ Qn2 , A1 ∈ Qm1×n1 , G2 ∈ Qm2×n2 , and b1 ∈ Qm1 . A2
ω ∈ Qm2×n1 and b2ω ∈ Qm2

represent the realized values of the random input parameters in scenario ω ∈ Ω, i.e., U(ω) =
(A2

ω, b
2
ω). The first term in the objective function represents the immediate cost of implementation

of the first-stage solution, while the second term is an expected cost over the set of possible future
scenarios.

3.2.1 Projection

We now reformulate the problem by exploiting two important properties. First, since U is discrete,
we may associate with it a discrete probability distribution defined by p ∈ R|Ω| such that 0 ≤ pω ≤ 1
and

∑
ω∈Ω pω = 1, where pω represents the probability of the scenario ω ∈ Ω. This allows us to

replace the expectation above with a finite sum. Second, we note that the second-stage problem
has a natural block structure so that the problem decomposes perfectly into |Ω| smaller problems,
which differ only in the right-hand side vector once the first-stage solution is fixed (an advantage
of using Benders’ approach in this setting). Thus, when we project this problem as before into the
space of the first-stage variables, we obtain the reformulation

min

{
c>x+

∑
ω∈Ω

pωφIP (b2ω −A2
ωx)

∣∣∣∣∣ A1x ≥ b1, x ∈ X

}
, (21)

where the value function φIP associated with the second-stage problem is defined by

φIP (β) = min
y∈Rn2

+

{
d2>y

∣∣∣ y ∈ P2(β) ∩ Y
}
∀β ∈ Rm2 , (22)

and
P2(β) =

{
y ∈ Rn2

+

∣∣ G2y ≥ β
}
∀β ∈ Rm2 . (23)

By convention, φIP (β) =∞ if the feasible region {y ∈ Rn2
+ | y ∈ P2(β)∩Y } is empty, and φIP (β) =

−∞ if the second-stage problem associated with β is unbounded, which results in φIP (β) = −∞
for all β ∈ Rm2 . Note that the single second-stage value function that appeared in the analogous
reformulation in Section 2.2 is replaced here with expected value of the value function across all
scenarios, expressed as a weighted sum. Although each scenario results in a separate outcome,
the evaluation of those scenario outcomes is done in principle using the single second-stage value
function φIP , which links the scenarios. Thus, the subproblem is to evaluate the weighted sum of
φIP across all scenarios for a fixed first-stage solution.

It is clear from (21) that solving (20) (directly or iteratively) requires exploiting the structure of the
MILP value function (22), just as we exploited the structure of the LP value function in solving (14)
in Section 3.1. Therefore, we now take a quick detour to discuss this structure and construction of
a strong dual in the MILP case.

Value Function. The structure of the value function of an MILP is by now well-studied. Early
foundational works include Johnson [1973, 1974], Blair and Jeroslow [1977, 1979, 1982, 1984],
Jeroslow [1978, 1979], Bachem and Schrader [1980], Bank et al. [1983] and Blair [1995]. A number
of later works extended these foundational results [Güzelsoy and Ralphs, 2007, Güzelsoy, 2009,
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Figure 2: MILP value function φIP (24)

Hassanzadeh and Ralphs, 2014b, Hassanzadeh, 2015]. What follows is a summary of results from
these later works.

Let us first look at an example to get some intuition about the structure of φIP .

Example 1 Consider the following parametric MILP, described by its associated value function,
plotted in Figure 2.

φIP (β) = min 2y1 + 4y2 + 3y3 + 4y4

s.t. 2y1 + 5y2 + 2y3 + 2y4 ≥ β,
y1, y2, y3 ∈ Z+, y4 ∈ R+

(24)

The function shown in Figure 2 is observed to be piecewise linear, non-decreasing, non-convex, and
non-concave. These are all properties of general value functions of the form (22), but there are also
several other important properties that are not evident from this simple example. In particular,
the value function may be discontinuous, but is always lower semi-continuous and also subadditive.

Another important property of φIP that is evident from Figure 2 is that its epigraph is the union
of a set of convex radial cones. These cones are translations of the epigraph of the value function
of a single parametric LP, the so-called continuous restriction of the given MILP (defined later in
Section 4.2) resulting from fixing the integer variables. Hassanzadeh and Ralphs [2014b] further
proved that the value function can be described within any bounded region by specifying a finite
set of points of strict local convexity of φIP , which are the locations of the extreme points of these
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radial cones (assuming the epigraph of the LP value function is a pointed cone). This resulted in
a finite discrete representation of φIP (see Hassanzadeh and Ralphs [2014b] for additional details
and formal results).

Although there exist effective algorithms for evaluating φIP for a single fixed right-hand side β̂
(e.g., any method for solving the associated MILP), it is difficult to explicitly construct the entire
function because this evidently requires solution of a sequence of MILPs. Algorithms for evaluating
φIP at a right-hand side β̂, such as branch-and-bound algorithm, do, however, produce information
about its structure beyond the single value φIP (β̂). This information comes in the form of a dual
function that is strong at β̂. We next describe the form and structure of these dual functions.

Dual Functions. We focus here on dual functions from the branch-and-bound algorithm, which
is the most widely used solution method for solving MILPs. We refer the reader to Güzelsoy [2009]
and Güzelsoy and Ralphs [2007] for an overview of other methods. Wolsey [1981] was the first to
propose that dual functions could be extracted from branch-and-bound trees, as described in the
following result.

Theorem 2 (Wolsey [1981], Theorem 19). Let β̂ ∈ Rm2 be such that φIP (β̂) < ∞ and suppose T
is the set of indices of leaf nodes of a branch-and-bound tree resulting from evaluation of φIP (β̂).
Then there exists a dual function φ

IP
: Rm2 → R ∪ {±∞} of the form

φ
IP

(β) = min
t∈T

(
β>ηt + αt

)
∀β ∈ Rm2 , (25)

where ηt ∈ Rm2 is an optimal solution to the dual of the LP relaxation associated with node t
and αt ∈ R is the product of the optimal reduced costs and variable bounds of this LP relaxation.
Further, φ

IP
is strong at β̂, i.e., φ

IP
(β̂) = φIP (β̂).

The interpretation of the function φ
IP

in (25) is conceptually straightforward. The solution to the

LP relaxation of node t of the branch-and-bound tree yields the dual function β>ηt + αt, which
bounds the optimal value of the relaxation problem associated with that node. The overall lower
bound yielded by the tree is then the smallest bound yielded by any of the leaf nodes. This is the
usual lower bound yielded by a branch-and-bound-based MILP solver during the solution process.
Finally, we obtain φ

IP
by interpreting the optimal solution to the dual of the LP relaxation in each

node as a function of β. There are additional subtle details involving construction of appropriate
dual functions for infeasible nodes, but we omit these details here.

In principle, stronger dual functions can be obtained. For example, stronger functions can be con-
structed from the branch-and-bound tree by considering non-leaf nodes, suboptimal dual solutions
arising during the solution process, full LP value function at each leaf node t instead of a single
hyperplane β>ηt+αt, etc. Further details on these methods are mentioned in Güzelsoy and Ralphs
[2007] and Hassanzadeh and Ralphs [2014a].

Example 2 Figure 3 shows the dual functions obtained upon applying the result in Theorem 2 to
the MILP (24). We solve this MILP with three values of the right-hand side β.
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Figure 3: Dual functions for (24)

Table 1: Data for construction of the dual function from the branch-and-bound tree in Example 2

t Branching constraint ηt ηt ηt β>ηt + αt

1 y2 ≤ 0 1 (0, 0, 1, 2) (0, -1, 0, 0) β

2 y2 ≥ 1 0 (2, 4, 3, 4) (0, 0, 0, 0) 4

• β = 5: There is only one node in the associated branch-and-bound tree with the optimal dual
solution η = 0.8, η = (0.4, 0, 1.4, 2.4), and η = (0, 0, 0, 0). This results in the dual function

φ1
IP

(β) = 0.8β ∀β ∈ R.

• β = 0: There is still only one node in the tree with the optimal dual solution η = 0,
η = (2, 4, 3, 4), and η = (0, 0, 0, 0). This results in the dual function

φ2
IP

(β) = 0 ∀β ∈ R.

• β = 2: There are three nodes in the tree, i.e., one root node and two leaf nodes resulting
from the branching disjunction y2 ≤ 0 ∨ y2 ≥ 1. The optimal dual solution and the resulting
dual function β>ηt+αt at each leaf node t are mentioned in Table 1. This results in the dual
function

φ3
IP

(β) = min{β, 4} ∀β ∈ R.
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Naturally, as in the formulation of the master problem, the value function approximation can be
improved by taking the maximum of multiple dual functions strong at different right-hand sides.
In the above example, the dual function max{φ1

IP
(β), φ2

IP
(β), φ3

IP
(β)} is already seen to be a

reasonable approximation of the full value function.

As mentioned earlier, solving the subproblem in an iteration requires evaluating φIP at |Ω| right-
hand side vectors corresponding to |Ω| scenarios, for a fixed first-stage solution. Specifically, in
iteration k of the algorithm, we solve

φIP (b2ω −A2
ωx

k) = min d2>y

s.t. G2y ≥ b2ω −A2
ωx

k

y ∈ Y

for all ω ∈ Ω, where xk is the fixed first-stage solution in the current iteration. The result is a
scenario dual function φk

IP ω
of the form (25) for each ω ∈ Ω.

3.2.2 Master Problem

By exploiting the specific structure of the dual functions described in the previous section, we
can straightforwardly adapt the algorithmic framework from Section 2 to obtain an algorithm for
solving (21) similar to that derived by the authors in Hassanzadeh and Ralphs [2014a].

Introducing auxiliary variables zω for each scenario, as in previous reformulations, we obtain the
master problem in iteration k as

min c>x+
∑
ω∈Ω

pωzω

s.t. A1x ≥ b1

zω ≥ max
1≤i≤k

φi
IP ω

(b2ω −A2
ωx) ∀ω ∈ Ω

x ∈ X.

(26)

Because each scenario dual function is the minimum of a collection of affine functions, the over-
all master problem can be eventually reformulated as an MILP by introducing additional binary
variables (see Hassanzadeh and Ralphs [2014a] for details).

3.2.3 Overall Algorithm

Putting this all together, in each iteration k, a master problem of the form (26) is solved to obtain
its optimal solution (xk, {zkω}ω∈Ω) and a lower bound. Following that, the subproblem is solved,
which consists of evaluating φIP (b2ω − A2

ωx
k) for each ω ∈ Ω using a branch-and-bound algorithm.

The result is a strong dual function (25) for each scenario, as well as an overall upper bound. If the
upper and lower bounds are equal, then we are done. Otherwise, the dual functions are fed back
into the master problem and the method is iterated until the upper and lower bounds converge.
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4 Mixed Integer Bilevel Linear Optimization Problems

We now move on to a detailed discussion of the application of this generalization of Benders’
principle to MIBLPs. As described earlier, MIBLPs are two-stage MMILPs in which the variables at
each stage are conceptually controlled by different DMs with different objective functions. MIBLPs
model problems in game theory, specifically the Stackelberg games introduced by Von Stackelberg
[1934]. Bilevel optimization problems in the form presented here were formally introduced and the
term was coined in the 1970s by Bracken and McGill [1973], but computational aspects of such
optimization problems have been studied since at least the 1960s (see, e.g., Wollmer [1964]). Most
of the initial research was limited to continuous bilevel linear optimization problems containing
only continuous variables and linear constraints in both the stages.

Study of bilevel optimization problems containing integer variables and algorithms for solving them
is generally acknowledged to have been initiated by Moore and Bard [1990], who discussed the
computational challenges of solving such problems and suggested one of the earliest algorithms, a
branch-and-bound algorithm, which converges to an optimal solution if all first-stage variables are
integer or all second-stage variables are continuous. Since then, many works have focused on special
cases, such as those in which the first-stage variables are all binary or all second-stage variables are
continuous. It is only in the past decade or so that study of exact algorithms for the general case in
which there are both continuous and general integer variables in both stages has been undertaken.

Table 2 provides a timeline of the main developments in the evolution of such exact algorithms,
indicating the types of variables supported in both the first and second stages (C indicates con-
tinuous, B indicates binary, and G indicates general integer). Most of these works are either pure
cutting plane or branch-and-cut algorithms in the full space of first- and second-stage variables,
and hence, are not technically included under the umbrella of the framework of this paper. Only
three works, Saharidis and Ierapetritou [2009], Zeng and An [2014] and Yue et al. [2019], present
themselves as decomposition algorithms. Of these three, only the first work is a pure Benders-type
algorithm, but it focuses on the special case with all continuous second-stage variables, in which
case the reformulation can be done using standard KKT conditions and the Benders’ cuts are linear.
The other two works deviate from our approach in significant ways since their master problems are
in the full space of first- and second-stage variables.

Although no existing algorithm for the general MIBLP case can be considered as a pure Benders-
type algorithm, there nevertheless must necessarily be some connection between all algorithms for
solving MIBLPs because of the necessity to at least implicitly construct primal approximations of
the MILP value function (22), a topic introduced in Section 4.2. In the particular case when the
objective functions for the two stages disagree, such primal approximation of the value function
cannot be avoided. But while this need for primal approximation may make it appear as if some
algorithmic alternatives are also in fact Benders-type algorithms, it is the need for explicit dual
approximations that sets such algorithms apart. The dual approximation is necessary precisely
because of the projection operation that is necessary when the second-stage variables are not present
in the master problem. Once second-stage variables are present in the master problem, the dual
approximation is no longer needed. With respect to the specific algorithmic step of constructing
primal functions, the construction methods of existing works can be seen as special cases of our
method, which is to construct a parametric primal function (34) (see Section 4.2). For example, the
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Table 2: Evolution of algorithms for bilevel optimization

Citation Stage 1 Variable Types Stage 2 Variable Types

Wen and Yang [1990] B C
Bard and Moore [1992] B B
Fáısca et al. [2007] B, C B, C
Garcés et al. [2009] B C
Saharidis and Ierapetritou [2009] B, C C
DeNegre and Ralphs [2009], DeNegre [2011] G G
Köppe et al. [2010] G or C G
Baringo and Conejo [2012] B, C C
Xu and Wang [2014] G G, C
Zeng and An [2014] G, C G, C
Caramia and Mari [2015] G G
Caprara et al. [2016] B B
Hemmati and Smith [2016] B, C B, C
Lozano and Smith [2017] G G, C
Wang and Xu [2017] G G
Fischetti et al. [2017], Fischetti et al. [2018] G, C G, C
Yue et al. [2019] G, C G, C
Tahernejad et al. [2020] G, C G, C

primal functions in Lozano and Smith [2017] and Yue et al. [2019] are (non-parametric) constant
functions, and those in Caprara et al. [2016] are a special case that exploits the specific structure
of the problem to obtain parametric functions that are linear in the first-stage variables.

4.1 Formulation

To state the class of problems formally, we must introduce a type of constraint that cannot be
expressed in the canonical language of mathematical optimization. In addition to the usual linear
constraints, we have a constraint that requires the second-stage solution to be optimal with respect
to a problem that is parametric in the first-stage solution. The formulation including this constraint,
as it usually appears in the literature on bilevel optimization, is

min c>x+ d1>y

s.t. A1x+G1y ≥ b1

x ∈ X

y ∈ arg min {d2>y̌

s.t. G2y̌ ≥ b2 −A2x

y̌ ∈ Y },

(27)

where A1 ∈ Qm1×n1 , G1 ∈ Qm1×n2 , b1 ∈ Qm1 , A2 ∈ Qm2×n1 , G2 ∈ Qm2×n2 , b2 ∈ Qm2 , c ∈ Qn1 ,
d1 ∈ Qn2 , and d2 ∈ Qn2 . Note that the above-mentioned parametric problem is nothing but the
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evaluation of φIP (b2 −A2x), where φIP is the MILP value function (22).

Underlying the above formulation are a number of assumptions. First, there is an implicit as-
sumption that whenever the evaluation of φIP (b2−A2x) yields multiple optimal solutions, the one
that is most advantageous for the first-stage DM is chosen. This form of MIBLP is known as the
optimistic case and is just one of several variants. The pessimistic variant, for example, is one in
which the second-stage solution chosen is always the one least advantageous for the first-stage DM.
It should also be pointed out that we explicitly allow the second-stage variables in the constraints
A1x+G1y ≥ b1. This is rather non-intuitive but there are applications for which this is a necessary
element. We now define so-called linking variables.

Definition 4 (Linking Variables). Linking variables are the first-stage variables whose indices
are in the set

L =
{
i ∈ {1, . . . , n1} | A2

i 6= 0
}
,

where A2
i denotes the ith column of A2.

Assumption 1. All linking variables are integer variables.

This assumption is required to ensure the existence of an optimal solution for the given MIBLP.
The optimal solution may not be attainable when there are linking variables that are continuous
and second-stage variables that are integer [Moore and Bard, 1990, Vicente et al., 1996, Köppe
et al., 2010].

Assumption 2. All first-stage variables are linking variables.

Since we focus on optimistic bilevel problems, all non-linking variables can simply be moved to the
second stage without loss of generality. This assumption is made primarily for ease of exposition,
nevertheless results in a mathematically equivalent MIBLP, despite the inconsistency with the
intent of the original model. In combination with Assumption 1, this assumption implies that all
first-stage variables are integer variables, i.e., n1 = r1.

Assumption 3. The set

{(x, y) ∈ Rn1
+ × Rn2

+ | y ∈ P1(b1 −A1x) ∩ P2(b2 −A2x)}

is bounded, where
P1(β1) =

{
y ∈ Rn2

+

∣∣ G1y ≥ β1
}

and P2(β2) (as defined in (23)) represent families of polyhedra consisting of all points satisfying
G1y ≥ β1 and G2y ≥ β2 for given right-hand sides β1 ∈ Rm1 and β2 ∈ Rm2 . Assumption 3 is made
to avoid uninteresting cases involving unboundedness, but is easy to relax in practice.

Assumption 4. For all x ∈ Rn1, we have

φIP (b2 −A2x) > −∞,

or, equivalently {
r ∈ Rn2

+

∣∣∣ G2r ≥ 0, d2>r < 0
}

= ∅.

Assumption 4 is also made to avoid uninteresting cases involving unboundedness. Observe that in
the case φIP (b2 −A2x) = −∞ for a given value of x, then φIP (b2 −A2x) = −∞ for all values of x.
Note that Assumptions 2-4 can be relaxed in practice.
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4.2 Projection

We now apply the familiar operations of Benders’ framework to the formulation (27). Upon pro-
jecting into the space of the first-stage variables, we obtain the reformulation

min
x∈X

{
c>x+ ρ(b1 −A1x, b2 −A2x)

}
, (28)

where ρ is the second-stage reaction function, defined as

ρ(β1, β2) = min
{
d1>y

∣∣∣ y ∈ P1(β1), y ∈ arg min
{
d2>y̌

∣∣∣ y̌ ∈ P2(β2) ∩ Y
}}

. (29)

Observe that the reaction function has embedded within it exactly the kind of optimality constraint
we tried to eliminate by using projection to reformulate the given MIBLP. Although the reaction
function appears at first to be the value function of a general bilevel optimization problem, it
is actually the value function of a lexicographic MILP. To see this, note that the evaluation of
ρ(β1, β2) for known values of (β1, β2) can be done in two steps. First, we evaluate MILP

φIP (β2) = min
{
d2>y̌

∣∣∣ y̌ ∈ P2(β2) ∩ Y
}
.

Then, we have

ρ(β1, β2) = min
{
d1>y

∣∣∣ d2>y ≤ φIP (β2), y ∈ P1(β1) ∩ P2(β2) ∩ Y
}
, (30)

which is an MILP. In other words, the evaluation of ρ(β1, β2) is an optimization problem over
the set of optimal solutions to a given (non-parametric) MILP. Once φIP (β2) is known, the set of
optimal solutions over which we are trying to optimize is the feasible set of an MILP. The reason
this is not a bilevel optimization problem is simply because the right-hand side vector β2 is not
parametric, i.e., it is a known vector. In the next part of this section, we examine the properties
and structure of the reaction function before discussing how to construct associated dual functions.

Reaction Function. As with all value functions, ρ(β1, β2) =∞ for a given (β1, β2) ∈ Rm1×Rm2

if either {y ∈ Rn2
+ | y ∈ P1(β1) ∩ P2(β2) ∩ Y } = ∅ or φIP (β2) = −∞ (which cannot happen under

Assumption 4), and ρ(β1, β2) = −∞ for all (β1, β2) ∈ Rm1 × Rm2 if the lexicographic MILP is

itself unbounded, i.e., {r ∈ Rn2
+ | G1r ≥ 0, G2r ≥ 0, d1>r < 0} 6= ∅ (which cannot happen under

Assumption 3).

We now illustrate the structure of the reaction function with a simple example. Although its
structure is combinatorially more complex than that of the MILP value function, it nevertheless
also has a piecewise polyhedral structure. We do not provide formal results concerning the structure
and properties of the reaction function here, but these can be derived by application of techniques
similar to those used to derive the structure of the MILP value function.

Example 3 Consider the following reaction function arising from an MIBLP with G1 = 0.

ρ(β) = min − y1 + y2 − 5y3 + y4

s.t. (y1, y2, y3, y4) ∈ arg min {2y̌1 + 4y̌2 + 3y̌3 + 4y̌4

s.t. 2y̌1 + 5y̌2 + 2y̌3 + 2y̌4 ≥ β
y̌1, y̌2, y̌3 ∈ Z+, y̌4 ∈ R+}

(31)
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Figure 4: Reaction function ρ (31)

This function can be reformulated as

ρ(β) = min − y1 + y2 − 5y3 + y4

s.t. 2y1 + 5y2 + 2y3 + 2y4 ≥ β
2y1 + 4y2 + 3y3 + 4y4 ≤ φIP (β)

y1, y2, y3 ∈ Z+, y4 ∈ R+.

using the MILP value function φIP , which is the same as for (24). The function ρ is plotted in
Figure 4.

As usual, we do not have an exact description of ρ in general, so we cannot solve (28) directly, but
instead replace ρ in (28) with a dual function ρ. Following the earlier procedure, this dual function

is taken to be the maximum of the strong dual functions ρk obtained by solving a subproblem in
each iteration k. The resulting master problem in iteration k is

min c>x+ z

s.t. z ≥ ρi(b1 −A1x, b2 −A2x), 1 ≤ i ≤ k
x ∈ X.

(32)

Similarly, the subproblem in iteration k is to evaluate ρ(b1 −A1xk, b2 −A2xk) for the solution xk

to (32), in order to construct a dual function ρk that is strong at (b1 −A1xk, b2 −A2xk). We next
detail the construction of this strong dual function.
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Figure 5: Dual functions for (31)

Dual Functions. As we have already noted, the subproblem in iteration k is to evaluate the
reaction function (29) for (β1, β2) = (b1−A1xk, b2−A2xk). This problem is an MILP and we have
the following theorem based on Theorem 2.

Theorem 3. Let (β̂1, β̂2) ∈ Rm1 × Rm2 be such that ρ(β̂1, β̂2) < ∞ and suppose T is the set of

indices of leaf nodes of a branch-and-bound tree resulting from evaluation of ρ(β̂1, β̂2). Then there
exists a dual function

˜
ρ : Rm1 × Rm2 → R ∪ {±∞} of the form

˜
ρ(β1, β2) = min

t∈T

(
β1>η1,t + β2>η2,t + φIP (β2)ηφ,t + αt

)
∀(β1, β2) ∈ Rm1 × Rm2 , (33)

where (η1,t, η2,t, ηφ,t) ∈ Rm1 × Rm2 × R is a dual feasible solution of the LP relaxation associated
with node t, and αt ∈ R is the product of reduced costs and variable bounds of this LP relaxation.

Further, this dual function is strong at (β̂1, β̂2) if
˜
ρ(β̂1, β̂2) = ρ(β̂1, β̂2).

The interpretation of this result is similar to the interpretation of Theorem 2. Let us look at an
example that depicts these functions.

Example 4 Figure 5 shows five dual functions obtained upon applying the result in Theorem 3 to
the reaction function (31) (

˜
ρ1 for β = 0,

˜
ρ2 for β = 1,

˜
ρ3 for β = 2,

˜
ρ4 for β = 5, and

˜
ρ5 for β = 8).

As expected, these dual functions are piecewise polyhedral. For example, solving (31) with β = 8
as an equivalent MILP (after obtaining φIP (8) at first) yields the dual information (dual solution
and reduced costs) from leaf nodes of the branch-and-bound tree shown in Table 3.
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Table 3: Data for construction of the dual function in Example 4

t Branching constraint (η2,t, ηφ,t) ηt ηt η2,t>β + ηφ,tφIP (β) + αt

1 y2 ≥ 2 (0,−5
3) (7

3 ,
23
3 , 0,

7
3) (0, 0, 0, 0) −5

3φIP (β) + 46
3

2 y2 ≤ 1, y1 ≤ 0 (11,−9) (0, 0, 0, 15) (-5, -18, 0, 0) 11β − 9φIP (β)− 18

3 y2 ≤ 1, y1 ≥ 1, y3 ≤ 0 (3,−3.5) (0, 0, 0, 9) (0, 0, -0.5, 0) 3β − 3.5φIP (β)

4 y2 ≤ 1, y1 ≥ 1, y3 ≥ 1 (13,−16) (5, 0, 17, 39) (0, 0, 0, 0) 13β − 16φIP (β) + 22

This results in the dual function

˜
ρ5(β) = min

{
−5

3
φIP (β) +

46

3
, 11 β − 9φIP (β)− 18, 3β − 3.5φIP (β), 13β − 16 φIP (β) + 22

}
,

containing the MILP value function φIP . The remaining dual functions are obtained the same
way.

It is clear from Theorem 3 that the construction of
˜
ρ in (33) implicitly requires construction of

the value function φIP . However, the construction of φIP is itself a difficult task and generally
impractical. Further, the complex structure of φIP makes the structure of

˜
ρ highly complex. To

work around this difficulty, we replace φIP in (30) with a primal function, which bounds the value
function from above and is strong at the given right-hand side. This replacement results in an
alternative dual function (which we denote by ρ) that is still strong at the given right-hand side.
We use ρ in place of

˜
ρ in our work. To this end, we now embark on a small diversion into MILP

primal functions.

Primal Functions. In contrast with dual functions, strong primal functions bound the value
function from above.

Definition 5 (Primal Function). A primal function P : Rm2 → R ∪ {±∞} is one that satisfies
P (β) ≥ φIP (β) for all β ∈ Rm2. It is strong at β̂ ∈ Rm2 if P (β̂) = φIP (β̂).

An obvious way to construct such a function is to consider the value function of a restriction of the
given MILP (see Güzelsoy [2009] and Güzelsoy and Ralphs [2007] for methods of construction). The
following theorem presents the main result for constructing strong primal functions from restrictions
of the given MILP.

Theorem 4 (Güzelsoy [2009], Theorem 3.39). Consider the MILP value function (22). Let K ⊆
N := {1, . . . , n2}, s ∈ R|K|+ be given, and define the function φ̄N\K : Rm2→R ∪ {±∞} such that

φ̄N\K(β) =
∑
i∈K

d2
i si + φN\K

(
β −

∑
i∈K

G2
i si

)
∀β ∈ Rm2 ,
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where G2
i is the ith column of G2 and

φN\K(β) = min
∑

i∈N\K

d2
i yi

s.t.
∑

i∈N\K

G2
i yi ≥ β

yi ∈ Z+ ∀i ∈ I, yi ∈ R+ ∀i ∈ C,

where I ⊆ N and C ⊆ N represent sets of indices for integer and continuous variables respectively.
Then, φ̄N\K is a valid primal function of φIP , i.e., φ̄N\K(β) ≥ φIP (β) ∀β ∈ Rm2, if si ∈ Z+ ∀i ∈
I ∩K and si ∈ R+ ∀i ∈ C ∩K. Further, the function φ̄N\K will be strong at a given right-hand

side β̂ ∈ Rm2 if and only if si = y∗i ∀i ∈ K where y∗ is an optimal solution of φIP (β̂).

By convention, for a known β̂ ∈ Rm2 , we consider φN\K(β̂) = ∞ if the corresponding problem

is infeasible and φN\K(β̂) = −∞ if the problem is unbounded. The above result indicates that a
primal function obtained from a restriction in which the values of certain variables have been fixed
is strong at β̂ ∈ Rm2 if the fixed values of these variables correspond to those of an optimal solution
at β̂. A convenient approach is to fix all the integer variables to their optimal values. If there are
no continuous variables in the problem, then the resulting primal function is

φ̄∅(β) =

{ ∑
i∈I

d2
i y
∗
i if β = β̂

∞ otherwise
,

which is a single point, but still a valid strong primal function at β̂. If continuous variables exist,
then the restriction is a continuous restriction mentioned earlier. The resulting value function φC
is nothing but the value function of an LP discussed briefly in Section 3.1. Let us now look at an
example of using continuous restrictions to generate primal functions.

Example 5 Consider the MILP (24). Figure 6 demonstrates four primal functions obtained upon
applying the result in Theorem 4 to this MILP. Specifically, φ̄1

N\K for β = 0, φ̄2
N\K for β = 2, φ̄3

N\K
for β = 4, and φ̄4

N\K for β = 5. Here, we consider continuous restrictions of the given MILP. For

example, for β = 0, the optimal solution of (24) is (0, 0, 0, 0) resulting in the following continuous
restriction.

φC(β) = min {4y4 | 2y4 ≥ β, y4 ∈ R+} ∀β ∈ R

It is easy to observe that this LP value function is

φC(β) =

{
0 if β ≤ 0
2β otherwise

,

which itself is the required primal function φ̄1
N\K because the integer component of the MILP

objective function is zero. Other primal functions can be constructed in a similar way by solving
the MILP with a new right-hand side, calculating the integer component of the MILP objective
function at its optimal solution, and simply translating φC based on this integer component value.
The primal function can be strengthened in the same way as dual functions are strengthened, by

26



Figure 6: Primal functions for (24)

considering the minimum of multiple such (strong) functions. The epigraph of such a function is
the minimum of convex radial cones and equals the epigraph of the value function when enough
such cones are considered, as mentioned in Section 3.2.1.

Although LPs are themselves easy to solve, obtaining a full description of the LP value function
φC is still difficult, so we consider a partial function that we can easily obtain. Specifically, we use
a single hyperplane of (16) to construct φ̄N\K . In Example 5, this is equivalent to considering only
one of the two hyperplanes forming the cone corresponding to φC . It is obvious from Figure 6 that
any single hyperplane cannot form a valid primal function in the entire domain of the right-hand
side vector. Therefore, we also need to restrict the domain of the right-hand side vector to only
the region in which the single hyperplane is a valid upper bound.

Let y∗ = (y∗I , y
∗
C) be an optimal solution of an instance of (29) for a known right-hand side (β̂1, β̂2),

where I and C correspond to sets of indices of second-stage integer and continuous variables re-

spectively. This inherently implies that φIP (β̂2) = d2>y∗. The value function φC of the continuous
restriction is then

φC(β) = min d2
C
>
yC

s.t. G2
CyC ≥ β

yC ≥ 0.

Let η∗ be an optimal solution of the dual of this LP, with right-hand side β2 −G2
Iy
∗
I . Then η∗>β

is a dual function strong at β2 −G2
Iy
∗
I . From the theory of LP duality, we know that this function

provides a valid upper bound as long as η∗ remains optimal, which is the case for all β such that

27



(G2
B)−1β ≥ 0, where B is the index set corresponding to the optimal basis and G2

B is the optimal
basis matrix.

Thus, we obtain our final primal function with a restricted domain

φ̄IP (β2) =

{ (
β2 −G2

Iy
∗
I

)>
η∗ + d2

I
>
y∗I if

(
G2
B

)−1 (
β2 −G2

Iy
∗
I

)
≥ 0

∞ otherwise
(34)

with which we replace φIP in (33). This ensures that the dual function ρ that we construct in each
iteration of the algorithm is valid for all values of (β1, β2).

4.3 Master Problem

Combining the results obtained in the previous section, the final form of ρ is

ρ(β1, β2) = min
t∈T

(
β1>η1,t + β2>η2,t + φ̄IP (β2)ηφ,t + αt

)
, (35)

where φ̄IP is the primal function (34). This results in the optimality constraint

z ≥ min
t∈T

(
β1>η1,t + β2>η2,t + φ̄IP (β2)ηφ,t + αt

)
(36)

that we add to the master problem in each iteration of the algorithm, with (β1, β2) = (b1−A1x, b2−
A2x). Finally, the updated master problem after iteration k of the algorithm is

min c>x+ z

s.t. z ≥ min
t∈Ti

{(
b1 −A1x

)>
η1,t
i +

(
b2 −A2x

)>
η2,t
i + φ̄iIP (b2 −A2x)ηφ,ti + αti

}
1 ≤ i ≤ k

x ∈ X,

(37)

where the vectors, matrices, sets, and functions with the subscript and superscript i correspond to
the information obtained in iteration i ≤ k of the algorithm.

4.4 Overall Algorithm

We now have all the components required for solving (27) with the generalized Benders’ decompo-
sition algorithm in Figure 1. In each iteration k of the algorithm, a master problem of the form (37)
is solved to obtain its optimal solution (xk, zk) and a global lower bound. Then, the subproblem
is solved as an equivalent MILP, by evaluating (29) at (b1 −A1xk, b2 −A2xk), to obtain a branch-
and-bound tree and a global upper bound. Finally, an optimality constraint of the form (36) is
constructed and added to the master problem to strengthen z. This constraint introduces some
nonlinear components in the master problem but they can be linearized (as mentioned below) to
obtain an MILP formulation for the master problem. These steps are repeated until the termination
criterion is achieved.

We now illustrate the above discussion with an example.
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Table 4: Data for construction of the dual function in Example 6.

t (η2,t
1 , ηφ,t1 ) (η1,t

1
, η2,t

1
, η3,t

1
, η4,t

1
) (η̄1,t

1 , η̄2,t
1 , η̄3,t

1 , η̄4,t
1 ) η2,t

1

>
β + ηφ,t1 φ̄1

IP (β) + αt1

1 (3.29, -3.86) (0.14, 0, 0, 9.86) (0, 0, 0, 0) 3.29β − 3.86 φ̄1
IP (β)

Example 6 Consider the MIBLP

min x1 − 3x2 − y1 + y2 − 5y3 + y4

s.t. − x1 + 2x2 ≤ 1

x1 ≤ 3, x2 ≤ 2, x1, x2 ∈ Z+

(y1, y2, y3, y4) ∈ arg min {2y̌1 + 4y̌2 + 3y̌3 + 4y̌4

s.t. 2y̌1 + 5y̌2 + 2y̌3 + 2y̌4 ≥ x1 + x2

y̌1, y̌2, y̌3,∈ Z+, y̌4 ∈ R+},

(38)

which is based on (24) and (31). Based on earlier discussion, we solve four optimization problems in
iteration k of the algorithm: a master problem, an MILP (24) (with βk = xk1+xk2), a subproblem (31)
(with βk = xk1 + xk2), and a continuous restriction of (24).

Iteration 1. Our initial dual function is simply ρ0(β) = −∞ for all β ∈ Rm2 and solving the initial

master problem yields the optimal solution (x1
1, x

1
2) = (3, 2) and z1 = −∞, so that LB1 = −∞.

Then, we solve (24) with right-hand side x1
1 + x1

2 = 5 to obtain φIP (x1
1 + x1

2) = 4. Next, we solve
the subproblem to obtain its optimal solution (y1

1, y
1
2, y

1
3, y

1
4) = (0, 1, 0, 0), so we have ρ(x1

1 +x1
2) = 1

and UB1 = x1
1 − 3x1

2 + ρ(x1
1 + x1

2) = −2. We obtain the dual information (dual solution, positive
and negative reduced costs) shown in Table 4 from the branch-and-bound tree, which has only one
node.

Since UB1 6= LB1, we further solve the continuous restriction to obtain its optimal dual solution
η∗1 = 0 and optimal basis inverse matrix (G2

B,1)−1 = [−1]. Finally, we construct and add the dual
function

ρ1(β) = min{3.29β − 3.86φ̄1
IP (β)} = 3.29 β − 3.86φ̄1

IP (β),

where

φ̄1
IP (β) =

{
4 if β ≤ 5
∞ otherwise.

,

to the master problem and proceed to the next iteration.

For conciseness, we now mention only ρk(β) and φ̄kIP (β) obtained in each iteration k.

Iteration 2.

ρ2(β) = −5

3
φ̄2
IP (β)

φ̄2
IP (β) =

{
0 if β ≤ 0
∞ otherwise

Iteration 3.
ρ3(β) = min

{
0.5φ̄3

IP (β),−4.5 φ̄3
IP (β) + 8.5

}
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Figure 7: Primal functions constructed in the algorithm for solving (38)

φ̄3
IP (β) =

{
2 if β ≤ 2
∞ otherwise

Iteration 4.

ρ4(β) = min

{
−5

3
φ̄4
IP (β) +

23

3
, 17β − 13φ̄4

IP (β), −0.5φ̄4
IP (β), 21β − 26φ̄4

IP (β) + 40

}

φ̄4
IP (β) =

{
4 if β ≤ 4
∞ otherwise

Iteration 5. Solving the updated master problem yields (x5
1, x

5
2, z

5) = (1, 1,−1) and LB5 = −3.
Solving the subproblem yields (y5

1, y
5
2, y

5
3, y

5
4) = (1, 0, 0, 0), ρ(x5

1 + x5
2) = −1 and UB5 = −3. Since

UB5 = LB5, the termination criterion is achieved. Hence, we stop the algorithm with an optimal
solution (x∗1, x

∗
2, y
∗
1, y
∗
2, y
∗
3, y
∗
4) = (1, 1, 1, 0, 0, 0).

Figure 7 shows the value function φIP and its primal functions obtained in every iteration. Similarly,
Figure 8 shows the reaction function ρ and its dual functions. The function values are infinite
wherever there is no plot. These figures illustrate the fact that overall approximations of φIP and ρ
are strengthened after every iteration. After the final iteration, the approximation function values
are the same as the exact function values at the right-hand side x∗1 + x∗2 = 2.

We now briefly discuss the linearization of the master problem (37). For notational simplicity, we
drop the subscripts and superscripts denoting the algorithmic iteration. There are two types of
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Figure 8: Dual functions constructed in the algorithm for solving (38)

nonlinearities in this problem: (1) the if-else condition in (34) and (2) the minimization operator
in (35). We eliminate these nonlinearities by introducing binary variables and big-M parameters.
This results in the following MILP form of the master problem.

min c>x+ z

s.t. z ≥
(
b1 −A1x

)>
η1,t +

(
b2 −A2x

)>
η2,t + φ̄IP (b2 −A2x)ηφ,t + αt −MD(1− ut) (39a)∑

t∈T
ut = 1 (39b)

φ̄IP (b2 −A2x) =
(
b2 −A2x−G2

Iy
∗
I

)>
η∗ + d2

I
>
y∗I +MP v (39c)

−Mv1 ≤
(
G2
B

)−1 (
b2 −A2x−G2

Iy
∗
I

)
≤ M̄

(
1− v1

)
− ε (39d)

Mv −
∑

i∈{1,...,m2}

v1
i ≥ 0 (39e)

v −
∑

i∈{1,...,m2}

v1
i ≤ 0 (39f)

x ∈ X, z free, φ̄IP free, ut ∈ B ∀t ∈ T, v ∈ B, v1
i ∈ B ∀i ∈ {1, . . . ,m2}

Constraints (39a)-(39b) eliminate the minimization operator by adding the binary variables ut
for t ∈ T and the big-M parameter MD. Constraints (39c)-(39f) eliminate the if-else condition
by adding the binary variables v, v1

i for i ∈ {1, . . . ,m2} and the big-M parameters M , M̄ and
M . Specifically, the constraints (39d)-(39f) impose domain restriction on the first-stage vari-
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ables with respect to the primal function (34). This in turn restricts the domain of the right-
hand sides for which φIP may be evaluated. The main idea is to set some v1

i = 0 whenever(
G2
Bi

)−1 (
b2 −A2x−G2

Iy
∗
I

)
≥ 0 and to set v1

i = 1 whenever
(
G2
Bi

)−1 (
b2 −A2x−G2

Iy
∗
I

)
< 0,

where
(
G2
Bi

)−1
is the ith row of the optimal basis matrix inverse. If at least one v1

i = 1, then v = 1
further implying φ̄IP will have a very large value which is as required. If all v1

i = 0, then v = 0
further implying φ̄IP will have a finite value which is also as required. Finally, ε is also a parameter
corresponding to the domain restriction constraints added to deal with the strict inequality arising
from “otherwise” condition in (34), and is the trickiest of all parameters to evaluate. The discussion
on finding appropriate values of big-M and ε parameters is out of the scope of this paper.

5 Conclusions

We have described a generalization of Benders’ decomposition framework and illustrated its princi-
ples by applying it to several well-known classes of optimization problems that fall under the broad
umbrella of MMILPs. The development of an abstract framework for generalizing the principles of
Benders’ technique for reformulation that encompasses non-traditional problem classes, the speci-
fication of an associated algorithmic procedure, and its application to the class of MIBLPs are our
main contributions. These stemmed from our observation that Benders’ framework can be viewed
as a procedure for iterative refinement of dual functions associated with the value function arising
from the projection of the original problem into the space of first-stage variables, and that this
basic concept can be applied to a wide range of problems defined by additively separable functions.

A conceptual extension of the generalized Benders’ decomposition algorithm from MIBLPs to
the case of general MMILPs is straightforward. Similar to MIBLPs, an l-stage MMILP can be
formulated as a standard mathematical optimization problem by considering a constraint requiring
values of all but first-stage variables to be optimal for an (l−1)-stage MMILP that is parametric in
the first-stage variables, in addition to the usual linear constraints. Then, assuming that all input
vectors and matrices are rational of appropriate dimensions without loss of generality, we have an
l-stage MMILP with a parametric right-hand side β defined as

MMILPl(β) = min d11>x1 + d12>x2 + . . .+ d1l>xl

s.t. A11x1 +A12x2 + . . .+A1lxl ≥ β
x1 ∈ X1

(x2, x3, . . . , xl) ∈ optimal set of MMILPl−1(b2 −A21x1),

(40)

where MMILPl−1(b2−A21x1) denotes an (l−1)-stage MMILP with the parametric right-hand side
b2 − A21x1, which in turn is a linear function of first-stage variables, defined similar to (40) but
with l − 1 variable vectors, as

MMILPl−1(β) = min d22>x2 + d23>x3 + . . .+ d2l>xl

s.t. A22x2 +A23x3 + . . .+A2lxl ≥ β
x2 ∈ X2

(x3, x4, . . . , xl) ∈ optimal set of MMILPl−2(b3 −A31x1 −A32x2).

(41)
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These formulations exhibit the natural recursive property of MMILPs that we spoke about in the
beginning of the paper. It should be clear why this recursive structure also means that the proposed
framework makes it easy to envision algorithms for solving such problems (whether these algorithms
are practical is another question). We can project (40) (for a fixed β = b1) into the space of the
first-stage variables to obtain master and subproblems. The subproblem itself involves an (l − 1)-
stage MMILP (41), and solution of it calls for solving this (l− 1)-stage MMILP. This (l− 1)-stage
MMILP can as well be solved with the generalized Benders’ principle due to the recursive structure.
Strong dual functions can be constructed using techniques similar to those described earlier in the
paper.

Although not discussed here, this framework can be readily applied to even broader classes of
problems, such as those discussed in Bolusani et al. [2020], which incorporate stochasticity. While
it is unclear whether such algorithms would be of practical interest, the algorithmic abstraction
itself serves to illustrate basic theoretical principles, such as concepts of general duality and why
l-stage MMILPs are canonical hard problems for stage l of the polynomial time hierarchy.

The algorithms described in this paper are naive in the sense that their efficient implementations
for practical purposes would require substantial additional development, especially for the classes
of MIBLPs and MMILPs. To this end, our plans include enhancement of these algorithms by
working in the areas of preprocessing techniques, warm starting of master and subproblem solves,
cut management, a branch-and-Benders’-cut framework, alternative linearization techniques, and
other enhancements, as well as incorporating aspects of these techniques into hybrid, non-Benders-
type algorithms.
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Fáısca N, Dua V, Rustem B, Saraiva P, Pistikopoulos E (2007) Parametric global optimisation for
bilevel programming. Journal of Global Optimization 38:609–623
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Güzelsoy M, Ralphs T (2007) Duality for mixed-integer linear programs. International Journal
of Operations Research 4:118–137, URL http://coral.ie.lehigh.edu/~ted/files/papers/

MILPD06.pdf

Hassanzadeh A (2015) Two-stage stochastic mixed integer optimization. PhD, Lehigh

Hassanzadeh A, Ralphs T (2014a) A generalized Benders’ algorithm for two-stage stochas-
tic program with mixed integer recourse. Tech. rep., COR@L Laboratory Technical Re-
port 14T-005, Lehigh University, URL http://coral.ie.lehigh.edu/~ted/files/papers/

SMILPGenBenders14.pdf

Hassanzadeh A, Ralphs T (2014b) On the value function of a mixed integer linear optimiza-
tion problem and an algorithm for its construction. Tech. rep., COR@L Laboratory Technical
Report 14T-004, Lehigh University, URL http://coral.ie.lehigh.edu/~ted/files/papers/

MILPValueFunction14.pdf

Hemmati M, Smith J (2016) A mixed integer bilevel programming approach for a competitive set
covering problem. Tech. rep., Clemson University

Hooker J, Ottosson G (2003) Logic-based Benders decomposition. Mathematical Programming
96(1):33–60

Jeroslow R (1978) Cutting plane theory: Algebraic methods. Discrete Mathematics 23:121–150

Jeroslow R (1979) Minimal inequalities. Mathematical Programming 17:1–15

Jeroslow R (1985) The polynomial hierarchy and a simple model for competitive analysis. Math-
ematical Programming 32(2):146–164, DOI 10.1007/BF01586088, URL https://doi.org/10.

1007/BF01586088

Johnson E (1973) Cyclic groups, cutting planes, and shortest paths. In: Hu T, Robinson S (eds)
Mathematical Programming, Academic Press, New York, NY, pp 185–211

Johnson E (1974) On the group problem for mixed integer programming. Mathematical Program-
ming Study 2:137–179

35

https://doi.org/10.1007/BF00934810
https://doi.org/10.1007/BF00934810
http://coral.ie.lehigh.edu/~ted/files/papers/MenalGuzelsoyDissertation09.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MenalGuzelsoyDissertation09.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MILPD06.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MILPD06.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/SMILPGenBenders14.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf
http://coral.ie.lehigh.edu/~ted/files/papers/MILPValueFunction14.pdf
https://doi.org/10.1007/BF01586088
https://doi.org/10.1007/BF01586088
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