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ABSTRACT. We describe convergence acceleration schemes for multistep optimization algorithms. The extrap-
olated solution is written as a nonlinear average of the iterates produced by the original optimization method.
Our analysis does not need the underlying fixed-point operator to be symmetric, hence handles e.g. algo-
rithms with momentum terms such as Nesterov’s accelerated method, or primal-dual methods. The weights are
computed via a simple linear system and we analyze performance in both online and offline modes. We use
Crouzeix’s conjecture to show that acceleration performance is controlled by the solution of a Chebyshev prob-
lem on the numerical range of a non-symmetric operator modeling the behavior of iterates near the optimum.
Numerical experiments are detailed on logistic regression problems.

1. INTRODUCTION

Extrapolation techniques, such as Aitken’s ∆2 or Wynn’s ε-algorithm, provide an improved estimate of
the limit of a sequence using its last few iterates, and we refer the reader to [Brezinski and Zaglia, 2013] for
a complete survey. These methods have been extended to vector sequences, where they are known under
various names, e.g. Anderson acceleration [Anderson, 1965, Walker and Ni, 2011], minimal polynomial
extrapolation [Cabay and Jackson, 1976] or reduced rank extrapolation [Eddy, 1979].

Classical optimization algorithms typically retain only the last iterate or the average of iterates [Polyak
and Juditsky, 1992] as their best estimate of the optimum, throwing away all the information contained in
the converging sequence. This is highly wasteful from a statistical perspective and extrapolation schemes
estimate instead the optimum using a weighted average of the last iterates produced by the underlying algo-
rithm, where the weights depend on the iterates (i.e. a nonlinear average). Overall, computing those weights
means solving a small linear system so nonlinear acceleration has marginal computational complexity.
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Recent results by [Scieur et al., 2016] adapted classical extrapolation techniques related to Aitken’s ∆2,
Anderson’s method and minimal polynomial extrapolation to design extrapolation schemes for accelerating
the convergence of basic optimization methods such as gradient descent. They showed that using only
iterates from fixed-step gradient descent, extrapolation algorithms achieve the optimal convergence rate
of [Nesterov, 2013] without any modification to the original algorithm. However, these results are only
applicable to iterates produced by single-step algorithms such as gradient descent, where the underlying
operator is symmetric, thus excluding much faster momentum-based methods such as SGD with momentum
or Nesterov’s algorithm. Our results here seek to extend those of [Scieur et al., 2016] to multistep methods,
i.e. to accelerate accelerated methods.

Our contribution here is twofold. First, we show that the accelerated convergence bounds in [Scieur et al.,
2016] can be directly extended to multistep methods when the operator describing convergence near the
optimum has a particular block structure, by modifying the extrapolating sequence. This result applies in
particular to Nesterov’s method and the stochastic gradient algorithms with a momentum term. Second,
we use Crouzeix’s recent results [Crouzeix, 2007, Crouzeix and Palencia, 2017, Greenbaum et al., 2017] to
show that, in the general non-symmetric case, acceleration performance is controlled by the solution of a
Chebyshev problem on the numerical range of the linear, non-symmetric operator modelling the behavior of
iterates near the optimum. We characterize the shape of this numerical range for various classical multistep
algorithms such as Nesterov’s method [Nesterov, 1983], and Chambolle-Pock’s algorithm [Chambolle and
Pock, 2011].

We then study the performance of our technique on a logistic regression problem. The online version
(which modifies iterations) is competitive with L-BFGS in our experiments and significantly faster than
classical accelerated algorithms. Furthermore, it is robust to miss-specified strong convexity parameters.

Organization of the paper. In Section 2, we describe the iteration schemes that we seek to accelerate,
introduce the Regularized Nonlinear Acceleration (RNA) scheme, and show how to control its convergence
rate for linear iterations (e.g. solving quadratic problems).

In Section 3 we show how to bound the convergence rate of acceleration schemes on generic nonsym-
metric iterates using Crouzeix’s conjecture and bounds on the minimum of a Chebyshev problem written
on the numerical range of the nonsymmetric operator. We apply these results to Nesterov’s method and the
Chambolle-Pock primal-dual algorithm in Section 4.

We extend our results to generic nonlinear updates using a constrained formulation of RNA (called CNA)
in Section 5. We show optimal convergence rates in the symmetric case for CNA on simple gradient descent
with linear combination of previous iterates in Section 6, producing a much cleaner proof of the results
in [Scieur et al., 2016] on RNA. In Section 7, we show that RNA can be applied online, i.e. that we can
extrapolate iterates produced by an extrapolation scheme at each iteration (previous results only worked in
batch mode) and apply this result to speed up Nesterov’s method.

2. NONLINEAR ACCELERATION

We begin by describing the iteration template for the algorithms to which we will apply acceleration
schemes.

2.1. General setting. Consider the following optimization problem

min
x∈Rn

f(x) (1)

in the variable x ∈ Rn, where f(x) is strongly convex with parameter µ with respect to the Euclidean norm,
and has a Lipschitz continuous gradient with parameter L with respect to the same norm. We consider the
following class of algorithms, written{

xi = g(yi−1)

yi =
∑i

j=1 α
(i)
j xj + β

(i)
j yj−1,

(2)
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where xi, yi ∈ Rd and g : Rd → Rd is an iterative update, potentially stochastic. For example, g(x) can be
a gradient step with fixed stepsize, in which case g(x) = x− h∇f(x). We assume the following condition
on the coefficients α and β, to ensure consistency [Scieur et al., 2017b],

1T (α+ β) = 1, ∀k, αj 6= 0.

We can write these updates in matrix format, with

Xi = [x1, x2, . . . , xi], Yi = [y0, y1, . . . , yi−1]. (3)

Using this notation, (2) reads (assuming x0 = y0)

Xi = g(Yi−1) , Yi = [x0, Xi]Li, (4)

where g(Y ) stands for [g(y0), g(y1), . . . , g(yi−1)] and the matrix Li is upper-triangular of size i × i with
nonzero diagonal coefficients, with columns summing to one. The matrix Li can be constructed iteratively,
following the recurrence

Li =

[
Li−1 α[1:i−1] + Li−1β

01×i−1 αi

]
, L0 = 1. (5)

In short, Li gathers coefficients from the linear combination in (2). This matrix, together with g, character-
izes the algorithm.

The iterate update form (2) is generic and includes many classical algorithms such as the accelerated
gradient method in [Nesterov, 2013], where{

xi = g(yi−1) = yi−1 − 1
L∇f(yi−1)

yi =
(

1 + i−1
i+2

)
xi − i−1

i+2 xi−1.

As in [Scieur et al., 2016] we will focus on improving our estimates of the solution to problem (1) by
tracking only the sequence of iterates (xi, yi) produced by an optimization algorithm, without any further
oracle calls to g(x). The main difference with the work of [Scieur et al., 2016] is the presence of a linear
combination of previous iterates in the definition of y in (2), so the mapping from xi to xi+1 is usually
non-symmetric. For instance, for Nesterov’s algorithm, the Jacobian of xi+1 with respect to xi, yi reads

Jxi+1 =

[
0 Jg(

1 + i−2
i+1

)
I − i−2

i+1I

]
6= JTxi+1

where Jxi+1 is the Jacobian of the function g evaluated at xi+1. In what follows, we show that looking at
the residuals

r(x) , g(x)− x, ri = r(yi−1) = xi − yi−1, Ri = [r1 . . . ri], (6)

allows us to recover the convergence results from [Scieur et al., 2016] when the Jacobian of the function g,
written Jg, is symmetric. Moreover, we extend the analysis for non symmetric Jacobians. This allows us
to accelerate for instance accelerated methods or primal-dual methods. We now briefly recall the key ideas
driving nonlinear acceleration schemes.

2.2. Linear Algorithms. In this section, we focus on iterative algorithms g that are linear, i.e., where

g(x) = G(x− x∗) + x∗. (7)

The matrix G is of size d× d, and, contrary to [Scieur et al., 2016], we do not assume symmetry. Here, x∗

is a fixed point of g. In optimization problems where g is typically a gradient mapping x∗ is the minimum
of an objective function. Its worth mentioning that (7) is equivalent to Ax + b, thus we do not require x∗

to evaluate the mapping g(x). We first treat the case where g(x) is linear, as the nonlinear case will then be
handled as a perturbation of the linear one.

We introduce P(1)
[N ], the set of all polynomials p whose degree is exactly N (i.e., the leading coefficient is

nonzero), and whose coefficients sum to one. More formally,

P(1)
[N ] = {p ∈ R[x] : deg(p) = N, p(1) = 1}. (8)
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The following proposition extends a result by Scieur et al. [2016] showing that iterates in (2) can be written
using polynomials in P(1)

[N ]. This formulation is helpful to derive the rate of converge of the Nonlinear
Acceleration algorithm.

Proposition 2.1. Let g be the linear function (7). Then, the N -th iteration of (2) is equivalent to

xN = x∗ +G(yN−1 − x∗), yN = x∗ + pN (G)(x0 − x∗), for some pN ∈ P(1)
[N ]. (9)

Proof. We prove (9) iteratively. Of course, at iteration zero,

y0 = x∗ + 1 · (x0 − x∗),

and 1 is indeed polynomial of degree zero whose coefficient sum to one. Now, assume

yi−1 − x∗ = pi−1(G)(x0 − x∗), pi−1 ∈ P(1)
[i−1].

We show that
yi − x∗ = pi(G)(x0 − x∗), pi ∈ P(1)

[i] .

By definition of yi in (2),

yi − x∗ =
∑i

j=1 α
(i)
j xj + β

(i)
j yi−1 − x∗,

where (α+ β)T 1 = 1. This also means that

yi − x∗ =
∑i

j=1 α
(i)
j (xj − x∗) + β

(i)
j (yj−1 − x∗).

By definition, xj − x∗ = G(yj−1 − x∗), so

yi − x∗ =
∑i

j=1

(
α
(i)
j G+ β

(i)
j I
)

(yj−1 − x∗).

By the recurrence assumption,

yi − x∗ =
∑i

j=1

(
α
(i)
j G+ β

(i)
j I
)
pj−1(G)(x0 − x∗),

which is a linear combination of polynomials, thus yi − x∗ = p(G)(x0 − x∗). It remains to show that
p ∈ P(1)

[i] . Indeed,

deg(p) = max
j

max
{

(1 + deg(pj−1(G)))1αj 6=0, deg(pj−1(G))1βj 6=0

}
,

where 1αj 6=0 = 1 if αj 6= 0 and 0 otherwise. By assumption, αi 6= 0 thus

deg(p) ≥ 1 + deg(pi−1(G)) = i.

Since p is a linear combination of polynomials of degree at most i,

deg(p) = i.

It remains to show that p(1) = 1. Indeed,

p(1) =

i∑
j=1

(
α
(i)
j 1 + β

(i)
j

)
pj−1(1).

Since
(
α
(i)
j 1 + β

(i)
j

)
= 1 and pj−1(1) = 1, p(1) = 1 and this proves the proposition.

2.3. Regularized Nonlinear Acceleration Scheme. We now propose a modification of RNA that can ac-
celerate any algorithm of the form (2) by combining the approaches of Anderson [1965] and Scieur et al.
[2016]. We introduce a mixing parameter η, as in Anderson acceleration (which only impact the constant
term in the rate of convergence). Throughout this paper, RNA will refer to Algorithm 1 below.
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Algorithm 1 Regularized Nonlinear Acceleration (RNA)

1: Data: Matrices X and Y of size d×N constructed from the iterates as in (2) and (3).
2: Parameters: Mixing η 6= 0, regularization λ ≥ 0.

3: 1. Compute matrix of residuals R = X − Y .
4: 2. Solve

cλ =
(RTR+ (λ‖R‖22)I)−11N

1TN (RTR+ (λ‖R‖22)I)−11N
. (10)

5: 3. Compute extrapolated solution yextr = (Y − ηR)cλ.

2.4. Computational Complexity. Scieur et al. [2016] discuss the complexity of Algorithm 1 in the case
where N is small (compared to d). When the algorithm is used once on X and Y (batch acceleration), the
computational complexity is O(N2d), because we have to multiply RT and R. However, when Algorithm
(1) accelerates iterates on-the-fly, the matrix RTR can be updated using only O(Nd) operations. The
complexity of solving the linear system is negligible as it takes only O(N3) operation. Even if the cubic
dependence is bad for large N , in our experiment N is typically equal to 10, thus adding a negligible
computational overhead compared to the computation of a gradient in large dimension which is higher by
orders.

2.5. Convergence Rate. We now analyze the convergence rate of Algorithm 1 with λ = 0, which corre-
sponds to Anderson acceleration [Anderson, 1965]. In particular, we show its optimal rate of convergence
when g is a linear function. In the context of optimization, this is equivalent to the application of gradient
descent for minimizing quadratics. Using this special structure, the iterations (9) produce a sequence of
polynomials and the next theorem uses this special property to bound the convergence rate. Compared to
previous work in this vein [Scieur et al., 2016, 2017a] where the results only apply to algorithm of the form
xi+1 = g(xi), this theorem applies to any algorithm of the class (2) where in particular, we allow G to be
nonsymmetric.

Theorem 2.2. Let X , Y in (3) be formed using iterates from (2). Let g be defined in (7), where G ∈ Rd×d
does not have 1 as eigenvalue. The norm of the residual of the extrapolated solution yextr, written

r(yextr) = g(yextr)− yextr,

produced by Algorithm 1 with λ = 0, is bounded by

‖r(yextr)‖2 ≤ ‖I − η(G− I)‖2 ‖p∗N−1(G)r(x0)‖2,
where p∗N−1 solves

p∗N−1 = argmin
p∈P(1)

[N−1]

‖p(G)r(x0)‖2. (11)

Moreover, after at most d iterations, the algorithm converges to the exact solution, satisfying ‖r(yextr)‖2 = 0.

Proof. First, we write the definition of yextr from Algorithm 1 when λ = 0,

yextr − x∗ = (Y − ηR)c− x∗.
Since cT 1 = 1, we have X∗c = x∗, where X∗ = [x∗, x∗, . . . , x∗, ]. Thus,

yextr − x∗ = (Y −X∗ − ηR)c.

Since R = G(Y −X∗),
yextr − x∗ = (I − η(G− I))(Y −X∗)c.

We have seen that the columns of Y −X∗ are polynomials of different degrees, whose coefficients sums to
one (9). This means

yextr − x∗ = (I − η(G− I))

N−1∑
i=0

cipi(G)(x0 − x∗).
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In addition, its residual reads

r(yextr) = (G− I)(yextr − x∗)

= (G− I)(I − η(G− I))
N−1∑
i=0

pi(G)(x0 − x∗)

= (I − η(G− I)

N−1∑
i=0

cipi(G)r(x0).

Its norm is thus bounded by

‖r(yextr)‖ ≤ ‖I − η(G− I)‖‖
N−1∑
i=0

cipi(G)r(x0)︸ ︷︷ ︸
=Rc

‖.

By definition of c from Algorithm 1,

‖r(yextr)‖ ≤ ‖I − η(G− I)‖ min
c:cT 1=1

‖
N−1∑
i=0

cipi(G)r(x0)‖.

Because pi are all of degree exactly equal to i, the pi are a basis of the set of all polynomial of degree at most
N − 1. In addition, because pi(1) = 1, restricting the sum of coefficients ci to 1 generates the set P(1)

[N−1].
We have thus

‖r(yextr)‖ ≤ ‖I − η(G− I)‖ min
p∈P(1)

[N−1]

‖p(G)r0‖.

Finally, when N > d, it suffice to take the minimal polynomial of the matrix G named pmin,G, whose
coefficient are normalized by pmin,G(1). Since the eigenvalues of G are strictly inferior to 1, pmin,G(1)
cannot be zero.

In optimization, the quantity ‖r(yextr)‖2 is proportional to the norm of the gradient of the objective
function computed at yextr. This last theorem reduces the analysis of the rate of convergence of RNA to the
analysis of the quantity (11). In the symmetric case discussed in [Scieur et al., 2016], this bound recovers
the optimal rate in [Nesterov, 2013] which also appears in the complexity analysis of Krylov methods
(like GMRES or conjugate gradients [Golub and Varga, 1961, Golub and Van Loan, 2012]) for quadratic
minimization.

3. CROUZEIX’S CONJECTURE & CHEBYSHEV POLYNOMIALS ON THE NUMERICAL RANGE

We have seen in (11) from Theorem 2.2 that the convergence rate of nonlinear acceleration is controlled
by the norm of a matrix polynomial in the operator G, with

‖r(yextr)‖2 ≤ ‖I − η(G− I)‖2 ‖p∗N−1(G)r(x0)‖2,

where r(yextr) = yextr − g(yextr) and p∗N−1 solves

p∗N−1 = argmin
p∈P(1)

[N−1]

‖p(G)r(x0)‖2.

The results in [Scieur et al., 2016] recalled above handle the case where the operatorG is symmetric. Bound-
ing ‖p(G)‖2 whenG is non-symmetric is much more difficult. Fortunately, Crouzeix’s conjecture [Crouzeix,
2004] allows us to bound ‖p(G)‖2 by solving a Chebyshev problem on the numerical range of G, in the
complex plane.
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Theorem 3.1 (Crouzeix [2004]). Let G ∈ Cn×n, and p(x) ∈ C[x], we have

‖p(G)‖2 ≤ c max
z∈W (G)

|p(z)|

for some absolute constant c ≥ 2.

Here W (G) ⊂ C is the numerical range of the matrix G ∈ Rn×n, i.e. the range of the Rayleigh quotient

W (G) , {x∗Gx : ‖x‖2 = 1, x ∈ Cn} . (12)

[Crouzeix, 2007] shows c ≤ 11.08 and Crouzeix’s conjecture states that this can be further improved to
c = 2, which is tight. A more recent bound in [Crouzeix and Palencia, 2017] yields c = 1 +

√
2 and there is

significant numerical evidence in support of the c = 2 conjecture [Greenbaum et al., 2017]. This conjecture
has played a vital role in providing convergence results for e.g. the GMRES method [Saad and Schultz,
1986, Choi and Greenbaum, 2015].

Crouzeix’s result allows us to turn the problem of finding uniform bounds for the norm of the matrix
polynomial ‖p(G)‖2 to that of bounding p(z) over the numerical range of G in the complex plane, an
arguably much simpler two-dimensional Chebyshev problem.

3.1. Numerical Range Approximations. The previous result links the convergence rate of accelerated al-
gorithms with the optimum value of a Chebyshev problem over the numerical range of the operator G and
we now recall classical methods for computing the numerical range. There are no generic tractable methods
for computing the exact numerical range of an operator G. However, efficient numerical methods approx-
imate the numerical range based on key structural properties. The Toeplitz-Hausdorff theorem [Hausdorff,
1919, Toeplitz, 1918] in particular states that the numerical range W (G) is a closed convex bounded set.
Therefore, it suffices to characterize points on the boundary, the convex hull then yields the numerical range.

Johnson [1978] made the following observations using the properties of the numerical range,

max
z∈W (G)

Re(z) = max
r∈W (H(G))

r = λmax(H(G)) (13)

W (eiθG) = eiθW (G), ∀θ ∈ [0, 2π), (14)

where Re(z) is the real part of complex number z, H(G) is the Hermitian part of G, i.e. H(G) =
(G+G∗)/2 and λmax(H(G)) is the maximum eigenvalue of H(G). The first property implies that the
line parallel to the imaginary axis is tangent to W (G) at λmax(H(G)). The second property can be used to
determine other tangents via rotations. Using these observations Johnson [1978] showed that the points on
the boundary of the numerical range can be characterized as pθ = {v∗θGvθ : θ ∈ [0, 2π)} where vθ is the
normalized eigenvector corresponding to the largest eigenvalue of the Hermitian matrix

Hθ =
1

2
(eiθG+ e−iθG∗) (15)

The numerical range can thus be characterized as follows.

Theorem 3.2. [Johnson, 1978] For any G ∈ Cn×n, we have

W (G) = Co{pθ : 0 ≤ θ < 2π}
where Co{Z} is the convex hull of the set Z.

Note that pθ cannot be uniquely determined as the eigenvectors vθ may not be unique but the convex hull
above is uniquely determined.

3.2. Chebyshev Bounds & Convergence Rate. Crouzeix’s result means that bounding the convergence
rate of accelerated algorithms can be achieved by bounding the optimum of the Chebyshev problem

min
p∈C[z]
p(1)=1

max
z∈W (G)

|p(z)| (16)

where G ∈ Cn×n. This problem has a trivial answer when the numerical range W (G) is spherical, but the
convergence rate can be significantly improved when W (G) is less isotropic.
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3.2.1. Exact Bounds on Ellipsoids. We can use an outer ellipsoidal approximation of W (G), bounding the
optimum value of the Chebyshev problem (16) by

min
p(z)∈C[x]
p(1)=1

max
z∈Er
|p(z)| (17)

where
Er , {z ∈ C : |z − 1|+ |z + 1| ≤ r + 1/r}. (18)

This Chebyshev problem has an explicit solution in certain regimes. As in the real case, we will use Cn(z),
the Chebyshev polynomial of degree k. Fischer and Freund [1991] show the following result on the optimal
solution to problem (17) on ellipsoids.

Theorem 3.3. [Fischer and Freund, 1991, Th. 2] Let k ≥ 5, r > 1 and c ∈ R. The polynomial

Tk,κ(z) = Tk(z)/Tk(1− κ)

where

Tk(z) =
1

2

(
vk +

1

vk

)
, v =

1

2

(
z +

1

z

)
is the unique solution of problem (17) if either

|1− κ| ≥ 1

2

(
r
√
2 + r−

√
2
)

or

|1− κ| ≥ 1

2ar

(
2a2r − 1 +

√
2a4r − a2r + 1

)
where ar = (r + 1/r)/2.

The optimal polynomial for a general ellipse E can be obtained by a simple change of variables. That is,
the polynomial T̄k(z) = Tk(

c−z
d )/Tk(

c−1
d ) is optimal for the problem (17) over any ellipse E with center

c, focal distance d and semi-major axis a. It can be easily seen that the maximum value is achieved at the
point a on the real axis. That is the solution to the min max problem is given by T̄k(a). Figure 1 shows the
surface of the optimal polynomial with degree 5 for a = 0.8, d = 0.76 and c = 0.
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FIGURE 1. Surface of the optimal polynomial T̄n(z) with degree 5 for a = 0.8, d = 0.76
and c = 0.

Figure 2 shows the solutions to the problem (17) with degree 5 for various ellipses with center at origin,
various eccentricity values e = d/a and semi-major axis a. Here, zero eccentricity corresponds to a sphere,
while an eccentricity of one corresponds to a line.
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FIGURE 2. Optimal value of the Chebyshev problem (17) for ellipses with centers at origin.
Lower values of the maximum of the Chebyshev problem mean faster convergence. The
higher the eccentricity here, the faster the convergence.

4. ACCELERATING NON-SYMMETRIC ALGORITHMS

We have seen in the previous section that (asymptotically) controlling the convergence rate of the non-
linear acceleration scheme in Algorithm 1 for generic operators G means bounding the optimal value of the
Chebyshev optimization problem in (16) over the numerical range of the operator driving iterations near the
optimum. In what follows, we explicitly detail this operator and approximate its numerical range for two
classical algorithms, Nesterov’s accelerated method [Nesterov, 1983] and Chambolle-Pock’s Primal-Dual
Algorithm [Chambolle and Pock, 2011]. We focus on quadratic optimization below. We will see later in
Section 5 that, asymptotically at least, the behavior of acceleration on generic problems can be analyzed as
a perturbation of the quadratic case.

4.1. Nesterov’s Accelerated Gradient Method. The iterates formed by Nesterov’s accelerated gradient
descent method for minimizing smooth strongly convex functions with constant stepsize follow{

xk = yk−1 − α∇f(yk−1)

yk = xk + β(xk − xk−1)
(19)

with β =
√
L−√µ√
L+
√
µ

, where L is the gradient’s Lipschitz continuity constant and µ is the strong convexity

parameter. This algorithm is better handled using the results in previous sections, and we only use it here to
better illustrate our results on non-symmetric operators.

4.1.1. Nesterov’s Operator in the quadratic case. When minimizing quadratic functions f(x) = 1
2‖Bx −

b‖2, using constant stepsize 1/L, these iterations become,{
xk − x∗ = yk−1 − x∗ − 1

LB
T (Byk−1 − b)

yk − x∗ = xk − x∗ + β(xk − x∗ − xk−1 + x∗).

or again, [
xk − x∗
yk − x∗

]
=

[
0 A
−βI (1 + β)A

] [
xk−1 − x∗
yk−1 − x∗

]
where A = I − 1

LB
TB. We write G the non-symmetric linear operator in these iterations, i.e.

G =

[
0 A
−βI (1 + β)A

]
(20)

9



The results in Section 2 show that we can accelerate the sequence zk = (xk, yk) if the solution to the minmax
problem (16) defined over the numerical range of the operator G is bounded.

4.1.2. Numerical Range. We can compute the numerical range of the operator G using the techniques de-
scribed in Section (2). In the particular case of Nesterov’s accelerated gradient method, the numerical range
is a convex hull of ellipsoids. We show this by considering the 2 × 2 operators obtained by replacing the
symmetric positive matrix G with its eigenvalues, to form

Gj =

[
0 λj
−βI (1 + β)λj

]
for j ∈ {1, 2, · · · , n} (21)

where 0 < λ1 ≤ λ2 ≤ · · · ≤ λn < 1 are the eigenvalues of the matrix A. We have the following result.

Theorem 4.1. The numerical range of operator G is given as the convex hull of the numerical ranges of the
operators Gj , i.e. W (G) = Co{W (G1),W (G2), · · · ,W (Gn)}.

Proof. Let v1, v2, · · · , vn be eigen vectors associated with eigen values λ1, λ2, · · · , λn of the matrix A.
We can write

A =
n∑
j=0

λjvjv
T
j I =

n∑
j=0

vjv
T
j

Let t ∈W (G) ⊂ C. By definition of the numerical range, there exists z ∈ C2n with z∗z = 1 and

t = z∗
[

0 A
−βI (1 + β)A

]
z

= z∗
[

0
∑n

j=1 λjvjv
T
j

−β
∑n

j=1 vjv
T
j (1 + β)

∑n
j=1 λjvjv

T
j

]
z

=

n∑
j=0

z∗
([

0 λj
−β (1 + β)λj

]
⊗ vjvTj

)
vec([z1, z2])

=
n∑
j=0

z∗ vec

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T)

and since vjvTj vjv
T
j = vjv

T
j , this last term can be written

t =
n∑
j=0

Tr

(
vjv

T
j [z1, z2]

[
0 λj
−β (1 + β)λj

]T
[z1, z2]

∗vjv
T
j

)

=

n∑
j=0

Tr(vjv
T
j )

(
[vTj z1, v

T
j z2]

[
0 λj
−β (1 + β)λj

]T
[z∗1vj , z

∗
2vj ]

T

)

Now, let wj = [z∗1vj , z
∗
2vj ]

T , and

yj =
wTj Gjwj

‖wj‖22
and by the definition of the numerical range, we have yj ∈W (Gj). Therefore,

t =

n∑
j=0

(
wTj Gjwj

‖wj‖22

)
‖wj‖22

hence
t ∈ Co(W (G1),W (G2), · · · ,W (Gn)).

10



We have shown that if t ∈ W (G) then t ∈ Co(W (G1),W (G2), · · · ,W (Gn)). We can show the converse
by following the above steps backwards. That is, if t ∈ Co(W (G1),W (G2), · · · ,W (Gn)) then we have,

t =

n∑
j=0

θj

(
wTj Gjwj

‖wj‖22

)
where θj > 0,

∑n
j=0 θj = 1 and wj ∈ C2. Now, let

z =
n∑
j=0

vec(vjw
T
j )θ

1/2
j

‖wj‖

and we have,

t =
n∑
j=0

[z∗1vjz
∗
2vj ]Gj

[
vTj z1
vTj z2

]
wherein we used the fact that vTj vk = 0 for any j 6= k and vTj vj = 1 in computing wTj = [z∗1vjz

∗
2vj ]. We

also note that z∗z = 1 by the definition of z and rewriting the sum in the matrix form we can show that
t ∈W (G) which completes the proof.

To minimize the solution of the Chebyshev problem in (16) and control convergence given the normaliza-
tion constraint p(1) = 1, the point (1, 0) should be outside the numerical range. Because the numerical range
is convex and symmetric w.r.t. the real axis (the operator G is real), this means checking if the maximum
real value of the numerical range is less than 1.

For 2× 2 matrices, the boundary of the numerical range is given by an ellipse [Donoghue, 1957], so the
numerical range of Nesterov’s accelerated gradient method is the convex hull of ellipsoids. The ellipse in
[Donoghue, 1957] can be determined directly from the entries of the matrix as in Johnson [1974],as follows.

Theorem 4.2. [Johnson, 1974] For any real 2 by 2 matrix[
a b
c d

]
the boundary of the numerical range is an ellipse whose axes are the line segments joining the points x to y
and w to z respectively where,

x =
1

2
(a+ d− ((a− d)2 + (b+ c)2)1/2)

w =
a+ d

2
− i
∣∣∣∣b− c2

∣∣∣∣
y =

1

2
(a+ d+ ((a− d)2 + (b+ c)2)1/2)

z =
a+ d

2
+ i

∣∣∣∣b− c2

∣∣∣∣
are the points in the complex plane.

This allows us to compute the maximum real value of W (G), as the point of intersection of W (G) with
the real line which can be computed explicitly as,

re(G) = maxRe(W (G)) = max
j
Re(W (Gj))

=
1

2

(
(1 + β)λn +

√
λ2n(1 + β)2 + (λn − β)2

)
where λn = 1− µ

L .
We observe that re(G) is a function of the condition number of the problem and takes values in the

interval [0, 2]. Therefore, RNA will only work on Nesterov’s accelerated gradient method when re(G) < 1
11



holds, which implies that the condition number of the problem κ = L
µ should be less than around 2.5 which

is highly restrictive.
An alternative approach is to use RNA on a sequence of iterates sampled every few iterations, which is

equivalent to using powers of the operator G. We expect the numerical radius of some power of operator G
to be less than 1 for any conditioning of the problem. This is because the iterates are converging at an
R−linear rate and so the norm of the power of the operator is decreasing at an R−linear rate with the
powers. Therefore, using the property that the numerical radius is bounded by the norm of the operator we
have,

re(Gp) = maxRe(W (Gp)) ≤ rGp ≤ ‖Gp‖ ≤ Cpρp

where rGp is the numerical radius ofGp. Figure 3 shows the numerical range of the powers of the operatorG
for a random matrix BTB with dimension d = 50. We observe that after some threshold value for the
power p, (1, 0) lies outside the field values corresponding to Gp thus guaranteeing that the acceleration
scheme will work. We also observe that the boundaries of the field values are almost circular for higher
powers p, which is consistent with results on optimal matrices in [Lewis and Overton, 2018]. When the
numerical range is circular, the solution of the Chebyshev problem is trivially equal to zp so RNA simply
picks the last iterate and does not accelerate convergence.
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FIGURE 3. Numerical range for the linear operator in Nesterov’s method, on a random qua-
dratic problem with dimension 50. Left: Operator G. Right: Various operator powers Gp.
The RNA scheme will improve convergence whenever the point (1, 0) lies outside of the
numerical range of the operator.

The difficulty in performing RNA on Nesterov’s accelerated gradient method arises from the fact that the
iterates can be non-monotonic. The restriction that 1 should be outside the numerical range is necessary for
both non-symmetric and symmetric operators. In symmetric operators, the numerical range is a line segment
on the real axis and the numerical radius and spectral radius are equal, so this restriction is equivalent to
having spectral radius less than 1, i.e. having monotonically converging iterates.

4.2. Chambolle-Pock’s Primal-Dual Algorithm. Chambolle-Pock is a first-order primal-dual algorithm
used for minimizing composite functions of the form

min
x
hp(x) := f(Ax) + g(x) (22)

where f and g are convex functions and A is a continuous linear map. Optimization problems of this form
arise in e.g. imaging applications like total variation minimization (see Chambolle and Pock [2016]). The
Fenchel dual of this problem is given by

max
y
hd(y) := −f∗(−y)− g∗(A∗y) (23)

12



where f∗, g∗ are the convex conjugate functions of f, g respectively. These problems are primal dual for-
mulations of the general saddle point problem,

min
x

max
y

< Ax, y > +g(x)− f∗(y), (24)

where f∗, g are closed proper functions. Chambolle and Pock [2011] designed a first-order primal-dual
algorithm for solving these problems, where primal-dual iterates are given by

yk+1 = Proxσf∗(yk + σAx̄k)

xk+1 = Proxτg(xk − τA∗yk+1)

x̄k+1 = xk+1 + θ(xk+1 − xk)
(25)

where σ, τ are the step length parameters, θ ∈ [0, 1] is the momentum parameter and the proximal mapping
of a function f is defined as

Proxτf (y) = arg min
x

{
‖y − x‖2/(2τ) + f(x)

}
Note that if the proximal mapping of a function is available then the proximal mapping of the conjugate of
the function can be easily computed using Moreau’s identity, with

Proxτf (y) + Prox
1/τ
f∗ (y/τ) = y

The optimal strategy for choosing the step length parameters σ, τ and the momentum parameter θ depend on
the smoothness and strong convexity parameters of the problem. When f∗ and g are strongly convex with
strong convexity parameters δ and γ respectively then these parameters are chosen to be constant values
given as

σ =
1

‖A‖

√
γ

δ
τ =

1

‖A‖

√
δ

γ
θ =

(
1 +

2
√
γδ

‖A‖

)−1
(26)

to yield the optimal linear rate of convergence. When only one of f∗ or g is strongly convex with strong
convexity parameter γ, then these parameters are chosen adaptively at each iteration as

θk = (1 + 2γτk)
−1/2 σk+1 = σk/θk τk+1 = τkθk (27)

to yield the optimal sublinear rate of convergence.
A special case of the primal-dual algorithm with no momentum term, i.e., θ = 0 in (25) is also known

as the Arrow-Hurwicz method (Mizoguchi [1960]). Although theoretical complexity bounds for this algo-
rithm are worse compared to methods including a momentum term, it is observed experimentally that the
performance is either on par or sometimes better, when step length parameters are chosen as above.

We first consider algorithms with no momentum term and apply RNA to the primal-dual sequence zk =
(yk, xk). We note that, as observed in the Nesterov’s case, RNA can only be applied on non-symmetric
operators for which the normalization constant 1 is outside their numerical range. Therefore, the step length
parameters τ, σ should be suitably chosen such that this condition is satisfied.

4.2.1. Chambolle-Pock’s Operator in the Quadratic Case. When minimizing smooth strongly convex qua-
dratic functions where f(Ax) = 1

2‖Ax− b‖
2 and g(x) = µ

2‖x‖
2, the proximal operators have closed form

solutions. That is

Proxσf∗(y) =
y − σb
1 + σ

and Proxτg(x) =
1

1 + τµ
.

Iterates of the primal-dual algorithm with no momentum term can be written as,

yk+1 =
yk + σAxk − σb

1 + σ
, xk+1 =

xk − τAT yk+1

1 + τµ
13



Note that the optimal primal and dual solutions satisfy y∗ = Ax∗ − b and x∗ = −1
µ A

T y. This yields the
following operator for iterations

G =

[
I

1+σ
σA
1+σ

τAT

(1+σ)(1+τµ)
I

1+τµ −
τσATA

(1+σ)(1+τµ) .

]
(28)

Note that G is a non-symmetric operator except when σ = τ
1+τµ , in which case the numerical range is a line

segment on the real axis and the spectral radius is equal to the numerical radius.

4.2.2. Numerical Range. The numerical range of the operator can be computed using the techniques de-
scribed in Section 2. As mentioned earlier, the point 1 should be outside the numerical range for the Cheby-
shev polynomial to be bounded. Therefore, using (13), we have, re(G) = maxRe(W (G)) = λmax

(
G+G∗

2

)
The step length parameters σ, τ should be chosen such that the above condition is satisfied. We observe em-
pirically that there exists a range of values for the step length parameters such that re(G) < 1. Figure 4
shows the numerical range of operator G for σ = 4, τ = 1/‖ATA‖ with two different regularization con-
stants and Figure 5 shows the regions for which re(Gp) ≤ 1 (converging) for different values of σ and τ .
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FIGURE 4. Field values for the Sonar dataset [Gorman and Sejnowski, 1988] with σ =
4, τ = 1/‖ATA‖. The dataset has been scaled such that ‖ATA‖ = 1. Left: µ = 10−3,
right: µ = 10−1. The smaller numerical range on the right means faster convergence.

5. RNA ON NONLINEAR ITERATIONS

In previous sections, we analyzed the rate of convergence of RNA on linear algorithms (or quadratic
optimization problems). In practice however, the operator g is not linear, but can instead be nonlinear with
potentially random perturbation. In this situation, regularizing parameter ensures RNA converges [Scieur
et al., 2016].

In this section, we first introduce the CNA algorithm, a constrained version of RNA that explicitly bounds
the norm of the coefficients c for the linear combinations. We show its equivalence with the RNA algorithm.
Then, we analyze the rate of convergence of CNA when g is a linear function perturbed with arbitrary errors,
whose origin can be nonlinearities and/or random noises.

5.1. Constrained Nonlinear Acceleration. We now introduce the constrained version of RNA, replacing
the regularization term by the hard constraint

‖c‖2 ≤
1 + τ√
N
.
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FIGURE 5. Plot of the re(Gp) = 1 frontier with degree p = 5 for the Sonar dataset [Gor-
man and Sejnowski, 1988] for different values of τ and σ. White color represents values
for which re(Gp) ≤ 1 (converging) and black color represents values re(Gp) > 1 (not
converging). Left: µ = 10−3. Right: µ = 10−1.

In this algorithm, the parameter τ > 0 controls the norm of the coefficients c. Of course, all the previous
analysis applies to CNA, as RNA with λ = 0 is exactly CNA with τ =∞.

Algorithm 2 Constrained Nonlinear Acceleration (CNA)
Data: Matrices X and Y of size d×N constructed from the iterates as in (2) and (3).
Parameters: Mixing η 6= 0, constraint τ ≥ 0.

1. Compute matrix of residuals R = X − Y .
2. Solve

c(τ) = argminc:cT 1=1 ‖Rc‖2 s.t. ‖c‖2 ≤ 1+τ√
N

(29)

3. Compute extrapolated solution yextr = (Y − ηR)c(τ).

5.2. Equivalence Between Constrained & Regularized Nonlinear Acceleration. The parameters λ in
Algorithm 1 and τ in Algorithm 2 play similar roles. High values of λ give coefficients close to simple
averaging, and λ = 0 retrieves Anderson Acceleration. We have the same behavior when τ = 0 or τ =∞.
We can jump from one algorithm to the other using dual variables, since (10) is the Lagrangian relaxation of
the convex problem (29). This means that, for all values of τ there exists λ = λ(τ) that achieves cλ = c(τ).
In fact, we can retrieve τ from the solution cλ by solving

1+τ√
N

= ‖cλ‖2.

Conversely, to retrieve λ from c(τ), it suffices to solve∥∥∥∥ (RTR+ (λ‖R‖22)I)−11N
1TN (RTR+ (λ‖R‖22)I)−11N

∥∥∥∥2 =
(1 + τ)2

N
, (30)

assuming the constraint in (29) tight, otherwise λ = 0. Because the norm in (30) is increasing with λ, a
binary search or one-dimensional Newton methods gives the solution in a few iterations.

The next proposition bounds the norm of the coefficients of Algorithm 1 with an expression similar
to (29).
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Proposition 5.1. The norm of cλ from (10) is bounded by

‖cλ‖2 ≤ 1√
N

√
1 + 1

λ (31)

Proof. See Scieur et al. [2016], (Proposition 3.2).

Having established the equivalence between constrained and regularized nonlinear acceleration, the next
section discusses the rate of convergence of CNA in the presence of perturbations.

5.3. Constrained Chebyshev Polynomial. The previous results consider the special cases where λ = 0 or
τ = 0, which means that ‖c‖ is unbounded. However, Scieur et al. [2016] show instability issues when ‖c‖ is
not controlled. Regularization is thus required in practice to make the method more robust to perturbations,
even in the quadratic case (e.g., round-off errors). Unfortunately, this section will show that robustness
comes at the cost of a potentially slower rate of convergence.

We first introduce constrained Chebyshev polynomials for the range of a specific matrix. Earlier work
in [Scieur et al., 2016] considered regularized Chebyshev polynomials, but using a constrained formulation
significantly simplifies the convergence analysis here. This polynomial plays an important role in Section 5.4
in the convergence analysis.

Definition 5.2. The Constrained Chebyshev Polynomial T τ,GN (x) of degree N solves, for τ ≥ 0,

T τ,GN (x) , argmin
p∈P(1)

[N ]

max
x∈W (G)

p(x) s.t. ‖p‖2 ≤ 1+τ√
1+N

(32)

in the variable p ∈ P(1)
[N ], where W (G) is the numerical range of G. We write Cτ,GN , ‖T τ,GN (G)‖2 the norm

of the polynomial T τ,GN applied to the matrix G.

5.4. Convergence Rate of CNA without perturbations. The previous section introduced constrained
Chebyshev polynomials, which play an essential role in our convergence results when g is nonlinear and/or
iterates (2) are noisy. Instead of analyzing Algorithm 1 directly, we focus on its constrained counterpart,
Algorithm 2.

Proposition 5.3. Let X , Y (3) be build using iterates from (2) where g is linear (7) does not have 1 as
eigenvalue. Then, the norm of the residual (6) of the extrapolation produced by Algorithm 2 is bounded by

‖r(yextr)‖2 ≤ ‖I − η(G− I)‖2‖r(x0)‖2 Cτ,GN−1, (33)

where τ ≥ 0 and Cτ,GN is defined in (32).

Proof. The proof is similar to the one of Theorem 2.2. It suffices to use the constrained Chebyshev
polynomial rather than the rescaled Chebyshev polynomial from Golub and Varga [1961].

Proposition 5.3 with τ = ∞ gives the same result than Theorem 2.2. However, smaller values of τ give
weaker results as Cτ,GN−1 increases. However, smaller values of τ also reduce the norm of coefficients c(τ)

(29), which makes the algorithm more robust to noise.
Using the constrained algorithm in the context of non-perturbed linear function g yields no theoretical

benefit, but the bounds on the extrapolated coefficients simplify the analysis of perturbed non-linear opti-
mization schemes as we will see below.

In this section, we analyze the convergence rate of Algorithm 2 for simplicity, but the results also hold for
Algorithm 1. We first introduce the concept of perturbed linear iteration, then we analyze the convergence
rate of RNA in this setting.

Perturbed Linear Iterations. Consider the following perturbed scheme,

X̃i = X∗ +G(Ỹi−1 −X∗) + Ei, Ỹi = [x0, X̃i]Li, (34)

where X̃i and Ỹi are formed as in (3) using the perturbed iterates x̃i and ỹi, and Li is constructed using
(5), and we write Ei = [e1, e2, . . . , ei]. For now, we do not assume anything on ei or Ei. This class
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contains many schemes such as gradient descent on nonlinear functions, stochastic gradient descent or even
Nesterov’s fast gradient with backtracking line search for example.

The notation (34) makes the analysis simpler than in [Scieur et al., 2016, 2017a], as we have the explicit
form of the error over time. Consider the perturbation matrix Pi,

Pi , R̃i −Ri, (35)

Proposition 5.4 shows that the magnitude of the perturbations ‖Pi‖ is proportional to the noise matrix ‖Ei‖,
i.e., ‖Pi‖ = O(‖Ei‖).

Proposition 5.4. Let Pi be defined in (35), where (X̃i, Ỹi) and (X̃i, Ỹi) are formed respectively by (4) and
(34). Let L̄j = ‖L1‖2‖L2‖2 . . . ‖Lj‖2. Then, we have the following bound

‖Pi‖ ≤ 2‖Ei‖L̄i
i∑

j=1

‖G‖j .

Proof. First, we start with the definition of R and R̃. Indeed,

R̃i −Ri = X̃i −Xi − (Ỹi−1 − Yi−1).
By definition,

X̃i −Xi = G(Ỹi−1 −X∗) +X∗ + Ei −G(Yi−1 −X∗)−X∗ = G(Ỹi−1 − Yi−1) + Ei

On the other side,
Ỹi−1 − Yi−1 = [0; X̃i−1 −Xi−1]Li−1

We thus have

Pi = X̃i −Xi − (Ỹi−1 − Yi−1),
= G(Ỹi−1 − Yi−1) + Ei − [0; X̃i−1 −Xi−1]Li−1,

= G([0; X̃i−1 −Xi−1]Li−1) + Ei − [0;G(Ỹi−2 − Yi−2) + Ei−1]Li−1,

= G[0;Pi−1]Li−1 + Ei − [0;Ei−1]Li−1.

Finally, knowing that ‖Ei‖ ≥ ‖Ei−1‖ and ‖Li‖ ≥ 1, we expand

‖Pi‖ = ‖G‖‖Pi−1‖‖Li−1‖+ ‖Ei‖+ ‖Ei−1‖‖Li−1‖
≤ ‖G‖‖Pi−1‖‖Li−1‖+ 2‖Ei‖‖Li−1‖

to have the desired result.

We now analyze how close the output of Algorithm 2 is to x∗. To do so, we compare scheme (34) to its
perturbation-free counterpart (4). Both schemes have the same starting point x0 and “fixed point” x∗. It is
important to note that scheme (34) may not converge due to noise. The next theorem bounds the accuracy
of the output of CNA.

Theorem 5.5. Let yextr be the output of Algorithm (2) applied to (34). Its accuracy is bounded by

‖(G− I)
(
yextr − x∗

)
‖ ≤ ‖I − η(G− I)‖

(
Cτ,GN−1‖(G− I)(x0 − x∗)‖︸ ︷︷ ︸

acceleration

+ 1+τ√
N

(
‖PN‖+ ‖EN‖

)︸ ︷︷ ︸
stability

)
.

Proof. We start with the following expression for arbitrary coefficients c that sum to one,

(G− I)
(

(Ỹ − ηR̃)c− x∗
)
.

Since
R̃ = X̃ − Ỹ = (G− I)(Ỹ −X∗) + E,

we have
(G− I)(Ỹ −X∗) = (R̃− E).
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So,
(G− I)(Ỹ −X∗ − ηR̃)c = (R̃− E)c− η(G− I)R̃c.

After rearranging the terms we get

(G− I)
(

(Ỹ − ηR̃)c− x∗
)

= (I − η(G− I))R̃c− Ec. (36)

We bound (36) as follow, using coefficients from (29),

‖I − η(G− I)‖‖R̃c(τ)‖+ ‖E‖‖c(τ)‖.

Indeed,

‖R̃c(τ)‖2 = min
c:cT 1=1, ‖c‖≤ 1+τ√

N

‖R̃c‖2.

We have

min
c:1T c=1, ‖c‖≤ 1+τ√

N

‖R̃c‖2, ≤ min
c:1T c=1 ‖c‖≤ 1+τ√

N

‖Rc‖2 + ‖PRc‖2,

≤

(
min

c:1T c=1 ‖c‖≤ 1+τ√
N

‖Rc‖2

)
+ ‖PR‖2

1 + τ√
N
,

≤ Cτ,GN−1‖r(x0)‖+
‖PR‖(1 + τ)√

N
.

This prove the desired result.

This theorem shows that Algorithm 2 balances acceleration and robustness. The result bounds the accu-
racy by the sum of an acceleration term bounded using constrained Chebyshev polynomials, and a stability
term proportional to the norm of perturbations. In the next section, we consider the particular case where g
corresponds to a gradient step when the perturbations are Gaussian or due to non-linearities.

6. CONVERGENCE RATES FOR CNA ON GRADIENT DESCENT

We now apply our results when g in (4) corresponds to the gradient step

x− h∇f(x), (37)

where f is the objective function and h a step size. We assume the function f twice differentiable, L-smooth
and µ-strongly convex. This means

µI ≤ ∇2f(x) ≤ LI. (38)

Also, we assume h = 1
L for simplicity. Since we consider optimization of differentiable functions here, the

matrix∇2f(x∗) is symmetric.
When we apply the gradient method (37), we first consider its linear approximation

g(x) = x− h∇2f(x∗)(x− x∗). (39)

with stepsize h = 1/L. We identify the matrix G in (7) to be

G = I − ∇
2f(x∗)

L
.

In this case, and because the Hessian is now symmetric, the numerical range W (G) simplifies into the line
segment

W (G) = [0, 1− κ],

where κ = µ
L < 1 often refers to the inverse of the condition number of the matrix∇2f(x∗).
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In the next sections, we study two different cases. First, we assume the objective quadratic, but (39) is
corrupted by a random noise. Then, we consider a general nonlinear function f , with the additional assump-
tion that its Hessian is Lipchitz-continuous. This corresponds to a nonlinear, deterministic perturbation of
(39), whose noise is bounded by O(‖x− x∗‖2).

6.1. Random Perturbations. We perform a gradient step on the quadratic form

f(x) =
1

2
(x− x∗)A(x− x∗), µI � A � LI.

This corresponds to (39) with∇f(x∗) = A. However, each iteration is corrupted by ei, where ei is Gaussian
with variance σ2. The next proposition is the application of Theorem 5.5 to our setting. To simplify results,
we consider η = 1.

Proposition 6.1. Assume we use Algorithm (2) with η = 1 on N iterates from (34), where g is the gradient
step (37) and ei are zero-mean independent random noise with variance bounded by σ2. Then,

E[‖∇f(yextr)‖] ≤ (1− κ) Cτ,GN−1‖∇f(x0)‖+ E , (40)

where

E ≤ (1− κ)
1 + τ√
N
Lσ

N∑
j=1

(1− κ)jL̄j .

In the simple case where we accelerate the gradient descent algorithm, all Li = I and thus

E ≤ 1+τ√
N
Lσ
κ .

Proof. Since η = 1,
‖I − η(G− I)‖ = ‖G‖ ≤ 1− κ.

Now, consider E[‖E‖]. Because each ei are independents Gaussian noise with variance bounded by σ, we
have,

E[‖E‖] ≤
√
E[‖E‖2] ≤ σ.

Similarly, for P (35), we use Proposition (5.4) and we have

E[‖P‖] ≤ E[‖Ei‖]
(

1 +
∑i

j=1(1− κ)jL̄j

)
≤ σ

(
1 +

∑i
j=1(1− κ)jL̄j

)
Thus, Eκ,τN in Theorem 5.5 becomes

Eκ,τN ≤ σ(1+τ)√
N

(
2 +

∑N
j=1(1− κ)jL̄j

)
Finally, it suffice to see that

(G− I)(x− x∗) + x∗ = (A/L)(x− x∗) + x∗ =
1

L
∇f(x),

and we get the desired result. In the special case of plain gradient method, Li = I so L̄i = 1. We then get∑N
j=1(1− κ)j ≤

∑∞
j=1(1− κ)j ≤ 1

κ .

which is the desired result.

This proposition also applies to gradient descent with momentum or with our online acceleration algo-
rithm (48). We can distinguish two different regimes when accelerating gradient descent with noise. One
when σ is small compared to ‖f(x0)‖, and one when σ is large. In the first case, the acceleration term
dominates. In this case, Algorithm 2 with large τ produces output yextr that converges with a near-optimal
rate of convergence. In the second regime where the noise dominates, τ should be close to zero. In this case,
using our extrapolation method when perturbation are high naturally gives the simple averaging scheme. We
can thus see Algorithm (2) as a way to interpolate optimal acceleration with averaging.
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6.2. Nonlinear Perturbations. Here, we study the general case where the perturbation ei are bounded by
a function of D, where D satisfies

‖ỹi − x∗‖2 ≤ D ∀i. (41)

This assumption is usually met when we accelerate non-divergent algorithms. More precisely, we assume
the perturbation are bounded by(

‖I − η(G− I)‖‖PN‖+ ‖E‖
)
≤ γ
√
NDα. (42)

where γ and α are scalar. Since ‖PN‖ = O(‖E‖) by proposition 5.4, we have that

‖ei‖ ≤ O(Dα)⇒ (42). (43)

We call these perturbations ”nonlinear” because the error term typically corresponds to the difference be-
tween g and its linearization around x∗. For example, the optimization of smooth non-quadratic functions
with gradient descent can be described using (42) with α = 1 or α = 2, as shown in Section 6.3. The next
proposition bounds the accuracy of the extrapolation produced by Algorithm (2) in the presence of such
perturbation.

Proposition 6.2. Consider Algorithm (2) with η = 1 on N iterates from (34), where perturbations satisfy
(41). Then,

‖(G− I)(yextr − x∗)‖ ≤ (1− κ)
(
Cτ,GN−1 ‖(G− I)(x0 − x∗)‖+ E

)
where E ≤ (1 + τ)γDα.

Proof. Combine Theorem 5.5 with assumption (42).

Here, ‖x0 − x∗‖ is of the order of D. This bound is generic as does not consider any strong structural
assumption on g, only that its first-order approximation error is bounded by a power of D. We did not even
assume that scheme (34) converges. This explains why Proposition 6.2 does not necessary give a convergent
bound. Nevertheless, in the case of convergent scheme, Algorithm 2 with τ = 0 output the average of
previous iterates, that also converge to x∗.

However, Proposition 6.2 is interesting when perturbations are small compared to ‖x0−x∗‖. In particular,
it is possible to link τ andDα so that Algorithm 2 asymptotically reach an optimal rate of convergence, when
D → 0.

Proposition 6.3. If τ = O(D−s) with 0 < s < α− 1, then, when D → 0, Proposition 6.2 becomes

‖(G− I)(yextr − x∗)‖ ≤ (1− κ)

(
1−
√
κ

1 +
√
κ

)N−1
‖(G− I)(x0 − x∗)‖

The same result holds with Algorithm 1 if λ = O(Dr) with 0 < r < 2(α− 1).

Proof. By assumption,
‖x0 − x∗‖ = O(D).

We thus have, by Proposition 6.2

‖(G− I)(yextr − x∗)‖ ≤ (1− κ)
(
Cτ,GN−1O(D) + (1 + τ)O(Dα)

)
.

τ will be a function of D, in particular τ = D−s. We want to have the following conditions,

lim
D→0

(1 + τ(D))Dα−1 = 0, lim
D→0

τ = inf .

The first condition ensures that the perturbation converge faster to zero than the acceleration term. The
second condition ask τ to grow as D decreases, so that CNA becomes unconstrained. Since τ = D−s, we
have to solve

lim
D→0

Dα−1 +Dα−s−1 = 0, lim
D→0

D−s = inf .
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Clearly, 0 < s < α− 1 satisfies the two conditions. After taking the limit, we obtain

‖(G− I)(yextr − x∗)‖ ≤ (1− κ)Cτ,GN−1‖(G− I)(x0 − x∗)‖
SinceW (G) is the real line segment [0, 1−κ], and because τ →∞, we end with an unconstrained minimax
polynomial. Therefore, we can use the result from Golub and Varga [1961],

min
p∈P(1)

[N ]

max
λ∈[0,1−κ]

|p(λ)| ≤
(

1−
√
κ

1 +
√
κ

)N−1
.

For the second result, by using (31),

‖cλ‖2 ≤
1√
N

√
1 +

1

λ
.

Setting
1 + τ√
N

=
1√
N

√
1 +

1

λ

with τ = D−s gives the conditions.

This proposition shows that, when perturbations are of the order ofDα with α > 1, then our extrapolation
algorithm converges optimally once the ỹi are close to the solution x∗. The next section shows this holds,
for example, when minimizing function with smooth gradients.

6.3. Optimization of Smooth Functions. Let the objective function f be a nonlinear function that follows
(38), which also has a Lipchitz-continuous Hessian with constant M ,

‖∇2f(y)−∇2f(x)‖ ≤M‖y − x‖. (44)

This assumption is common in the convergence analysis of second-order methods. For the convergence
analysis, we consider that g(x) perform a gradient step on the quadratic function

1

2
(x− x∗)∇2f(x∗)(x− x∗). (45)

This is the quadratic approximation of f around x∗. The gradient step thus reads, if we set h = 1/L,

g(x) =

(
I − ∇

2f(x∗)

L

)
(x− x∗) + x∗. (46)

The perturbed scheme corresponds to the application of (46) with a specific nonlinear perturbation,

x̃i+1 = g(ỹi)− 1
L(∇f(ỹi)−∇2f(x∗)(ỹi − x∗))︸ ︷︷ ︸

=ei

. (47)

This way, we recover the gradient step on the non-quadratic function f . The next Proposition shows that
schemes (47) satisfies (42) with α = 1 when D is big, or α = 2 when D is small.

Proposition 6.4. Consider the scheme (47), where f satisfies (44). If ‖yi − x∗‖ ≤ D, then (43) holds with
α = 1 for large D or α = 2 for small D, i.e.,

‖ei‖ = ‖ 1

L
(∇f(ỹi)−∇2f(x∗)(ỹi − x∗))‖ ≤ min{‖yi − x∗‖,

M

2L
‖yi − x∗‖2} ≤ min{D, M

2L
D2}.

Proof. The proof of this statement can be found in Nesterov and Polyak [2006].

The combination of Proposition 6.3 with Proposition 6.4 means that RNA (or CNA) converges asymptot-
ically when λ (or τ ) are set properly. In other words, if λ decreases a little bit faster than the perturbations,
the extrapolation on the perturbed iterations behave as if it was accelerating a perturbation-free scheme. Our
result improves that in Scieur et al. [2016, 2017a], where r ∈]0, 2(α−1)3 [.
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7. ONLINE ACCELERATION

We now discuss the convergence of online acceleration, i.e. coupling iterates in g with the extrapolation
Algorithm 1 at each iteration when λ = 0. The iterates are now given by

xN = g(yN−1), yN = RNA(X,Y, λ, η), (48)

where RNA(X,Y, λ, η) = yextr with yextr the output of Algorithm 1. By construction, yextr is written

yextr =
∑N

i=1 c
λ
i (yi−1 − η(xi − yi−1)).

If cλN 6= 0 then yextr matches (2), thus online acceleration iterates in (48) belong to the class of algorithms
in (2). If we can ensure cλN 6= 0, applying Theorem 2.2 recursively will then show an optimal rate of
convergence for online acceleration iterations in (48). We do this for linear iterations in what follows.

7.1. Linear Iterations. The next proposition shows that either cλN 6= 0 holds, or otherwise yextr = x∗ in
the linear case.

Proposition 7.1. LetX , Y (3) be built using iterates from (2). Let g be defined in (7), where the eigenvalues
of G are different from one. Consider yextr the output of Algorithm 1 with λ = 0 and η 6= 0. If R = X − Y
is full column rank, then cλN 6= 0. Otherwise, yextr = x∗.

Proof. Since, by definition, 1T cλ = 1, it suffices to prove that the last coefficient cλN 6= 0. For simplicity,
in the scope of this proof we write c = cλ We prove it by contradiction. Let R− be the matrix R without its
last column, and c− be the coefficients computed by RNA using R−. Assume cN = 0. In this case,

c = [c−; 0] and Rc = R−c−.

This also means that, using the explicit formula for c in (10),

(RTR)−11
1(RTR)−11

=

[
(RT−R−)−11
1(RT−R−)−11

; 0

]
, ⇔ (RTR)−11 =

[
(RT−R−)−11; 0

]
.

The equivalence is obtained because

1(RTR)−11 = 1T c = 1T c− = 1(RT−R−)−11.
We can write c and c− under the form of a linear system,

RTRc = α1N , (RT−R−)c− = α1N−1,

where α = 1(RTR)−11 = 1(RT−R−)−11, which is nonzero. We augment the system with c− by concate-
nating zeros,

RTRc = α1N ,
[
(RT−R−) 0N−1×1
01×N−1 0

] [
c−
0

]
= α

[
1N−1

0

]
Let r+ be the residual at iteration N . This means R = [R−, r+]. We substract the two linear systems,[

0 RT r+
rT+R rT+r+

] [
c−
0

]
=

[
0

α 6= 0

]
The N − 1 first equations tells us that either (RT r+)i or c−,i are equal to zero. This implies

(RT r+)T c =

N−1∑
i=1

(RT r+)Ti ci = 0.

However, the last equation reads
(RT r+)T c+ 0 · rT+r+ 6= 0.

This is a contradiction, since
(RT r+)T c+ 0 · rT+r+ = 0.

Now, assume R is not full rank. This means there exist a non-zero linear combination such that

Rc = 0.
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However, due to its structure R is a Krylov basis of the Krylov subspace

KN = span[r0, Gr0, . . . , G
N ]

If the rank of R is strictly less N (says N − 1), this means

KN = KN−1.

Due to properties of the Krylov subspace, this means that

r0 =

N−1∑
i=1

αiλivi

where λi are distinct eigenvalues of G, and vi the associated eigenvector. Thus, it suffices to take the
polynomial p∗ that interpolates the N − 1 distinct λi. In this case,

p∗(G)r0 = 0.

Since p(1) 6= 0 because λi ≤ 1− κ < 1, we have

min ‖Rc‖ = min
p∈P(1)

[N−1]

‖p(G)r0‖ =
p∗(G)

p(1)
r0 = 0.

which is the desired result.

This shows that we can use RNA to accelerate iterates coming from RNA. In numerical experiments, we
will see that this new approach significantly improves empirical performance.

7.2. RNA & Nesterov’s Method. We now briefly discuss a strategy that combines Nesterov’s acceleration
with RNA. This means using RNA instead of the classical momentum term in Nesterov’s original algo-
rithm. Using RNA, we can produce iterates that are asymptotically adaptive to the problem constants, while
ensuring an optimal upper bound if one provides constants L and µ. We show below how to design a con-
dition that decides after each gradient steps if we should combine previous iterates using RNA or Nesterov
coefficients.

Nesterov’s algorithm first performs a gradient step, then combines the two previous iterates. A more
generic version with a basic line search reads{

Find xi+1 : f(xi+1) ≤ f(yi)− 1
2L‖f(yi)‖22

yi+1 = (1 + β)xi+1 − βxi, β = 1−
√
κ

1+
√
κ
.

(49)

The first condition is automatically met when we perform the gradient step xi+1 = xi −∇f(xi)/L. Based
on this, we propose the following algorithm.

Algorithm 3 Optimal Adaptive Algorithm

Compute gradient step xi+1 = yi − 1
L∇f(yi).

Compute yextr = RNA(X,Y, λ, η).
Let

z =
yextr + βxi

1 + β

Choose the next iterate, such that

yi+1 =

{
yextr If f(z) ≤ f(xi)− 1

2L‖f(xi)‖22,
(1 + η)xi − ηxi−1 Otherwise.
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Algorithm 3 has an optimal rate of convergence, i.e., it preserves the worst case rate of the original
Nesterov algorithm. The proof is straightforward: if we do not satisfy the condition, then we perform a
standard Nesterov step ; otherwise, we pick z instead of the gradient step, and we combine

yi+1 = (1 + η)z − ηxi−1 = yextr.

By construction this satisfies (49), and inherits its properties, like an optimal rate of convergence.

8. NUMERICAL RESULTS

We now study the performance of our techniques on `2-regularized logistic regression using acceleration
on Nesterov’s accelerated method1.

We solve a classical regression problem on the Madelon-UCI dataset [Guyon, 2003] using the logistic
loss with `2 regularization. The regularization has been set such that the condition number of the function
is equal to 106. We compare to standard algorithms such as the simple gradient scheme, Nesterov’s method
for smooth and strongly convex objectives [Nesterov, 2013] and L-BFGS. For the step length parameter,
we used a backtracking line-search strategy. We compare these methods with their offline RNA accelerated
counterparts, as well as with the online version of RNA described in (48).
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FIGURE 6. Logistic loss on the Madelon [Guyon, 2003]. Comparison between offline (left)
and online (right) strategies for RNA on gradient and Nesterov’s method. We use `-BFGS
(with ` = 100 gradients stored in memory) as baseline. Clearly, one step of acceleration
improves the accuracy. The performance of online RNA, which applies the extrapolation at
each step, is similar to that of L-BFGS methods, though RNA does not use line-search and
requires 10 times less memory.

We observe in Figure 6 that offline RNA improves the convergence speed of gradient descent and Nes-
terov’s method. However, the improvement is only a constant factor: the curves are shifted but have the
same slope. Meanwhile, the online version greatly improves the rate of convergence, transforming the basic
gradient method into an optimal algorithm competitive with line-search L-BFGS.

In contrast to most quasi-Newton methods (such as L-BFGS), RNA does not require a Wolfe line-search
to be convergent. This is because the algorithm is stabilized with a Tikhonov regularization. In addition, the
regularization in a way controls the impact of the noise in the iterates, making the RNA algorithm suitable
for stochastic iterations [Scieur et al., 2017a].

We also tested the performance of online RNA on general non-symmetric algorithm, Primal-Dual Gradi-
ent Method (PDGM) [Chambolle and Pock, 2011] defined in (25) with θ = 0. We observe in Figure 7 that
RNA has substantially improved the performance of the base algorithm.

1The source code for the numerical experiments can be found on GitHub at https://github.com/windows7lover/
RegularizedNonlinearAcceleration
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FIGURE 7. Logistic loss on the Madelon [Guyon, 2003]. Left : `2 regularization parameter
µ = 10−2. Right : µ = 102. Comparison of online RNA on primal-dual gradient methods
with other first-order algorithms.
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