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Abstract

In the non-uniform k-center problem, the objective is to cover points in a metric space with
specified number of balls of different radii. Chakrabarty, Goyal, and Krishnaswamy [ICALP
2016, Trans. on Algs. 2020] (CGK, henceforth) give a constant factor approximation when there
are two types of radii. In this paper, we give a constant factor approximation for the two radii
case in the presence of outliers. To achieve this, we need to bypass the technical barrier of
bad integrality gaps in the CGK approach. We do so using “the ellipsoid method inside the
ellipsoid method”: use an outer layer of the ellipsoid method to reduce to stylized instances and
use an inner layer of the ellipsoid method to solve these specialized instances. This idea is of
independent interest and could be applicable to other problems.

1 Introduction

In the non-uniform k-center (NUkC) problem, one is given a metric space (X, d) and balls of different
radii r1 > · · · > rt, with ki balls of radius type ri. The objective is to find a placement C ⊆ X
of centers of these

∑
i ki balls, such that they cover X with as little dilation as possible. More

precisely, for every point x ∈ X there must exist a center c ∈ C of some radius type ri such that
d(x, c) ≤ α · ri and the objective is to find C with α as small as possible.

Chakrabarty, Goyal, and Krishnaswamy [CGK20] introduced this problem as a generalization
to the vanilla k-center problem [Gon85, HS85, HS86] which one obtains with only one type of
radius. One motivation arises from source location and vehicle routing: imagine you have a fleet
of t-types of vehicles of different speeds and your objective is to find depot locations so that any
client point can be served as fast as possible. This can be modeled as an NUkC problem. The
second motivation arises in clustering data. The k-center objective forces one towards clustering
with equal sized balls, while the NUkC objective gives a more nuanced way to model the problem.
Indeed, NUkC generalizes the robust k-center problem [CKMN01] which allows the algorithm to
throw away z points as outliers. This is precisely the NUkC problem with two types of radii, r1 = 1,
k1 = k, r2 = 0, and k2 = z.

Chakrabarty et al. [CGK20] give a 2-approximation for the special case of robust k-center
which is the best possible [HS85, Gon85]. Furthermore, they give a (1 +

√
5)-factor approximation

algorithm for the NUkC problem with two types of radii (henceforth, the 2-NUkC problem). [CGK20]
also prove that when t, the number of types of radii, is part of the input, there is no constant factor
approximation algorithms unless P=NP. They explicitly leave open the case when the number
of different radii types is a constant, conjecturing that constant-factor approximations should be
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possible. We take the first step towards this by looking at the robust 2-NUkC problem. That is,
the NUkC problem with two kinds of radii when we can throw away z outliers. This is the case of
3-radii with r3 = 0.

Theorem 1. There is a 10-approximation for the Robust 2-NUkC problem.

Although the above theorem seems a modest step towards the CGK conjecture, it is in fact a
non-trivial one which bypasses multiple technical barriers in the [CGK20] approach. To do so, our
algorithm applies a two-layered round-or-cut framework, and it is foreseeable that this idea will
form a key ingredient for the constantly many radii case as well. In the rest of this section, we
briefly describe the [CGK20] approach, the technical bottlenecks one faces to move beyond 2 types
of radii, and our approach to bypass them. A more detailed description appears in Section 2.

One key observation of [CGK20] connects NUkC with the firefighter problem on trees [FKMR07,
CC10, ABZ18]. In the latter problem, one is given a tree where there is a fire at the root. The
objective is to figure out if a specified number of firefighters can be placed in each layer of the tree,
so that the leaves can be saved. To be precise, the objective is to select ki nodes from layer i of
the tree so that every leaf-to-root path contains at least one of these selected nodes.

Chakrabarty et al. [CGK20] use the integrality of a natural LP relaxation for the firefighter
problem on height-2 trees to obtain their constant factor approximation for 2-NUkC. In particular,
they show how to convert a fractional solution of the standard LP relaxation of the 2-NUkC problem
to a feasible fractional solution for the firefighter LP. Since the latter LP is integral for height-2
trees, they obtain an integral firefighting solution from which they construct an O(1)-approximate
solution for the 2-NUkC problem. Unfortunately, this idea breaks down in the presence of outliers
as the firefighter LP on height-2 trees when certain leaves can be burnt (outlier leaves, so to speak)
is not integral anymore. In fact, the standard LP-relaxation for Robust 2-NUkC has unbounded
integrality gap. This is the first bottleneck in the CGK approach.

Although the LP relaxation for the firefighter problem on height-2 trees is not integral when some
leaves can be burnt, the problem itself (in fact for any constant height) is solvable in polynomial
time using dynamic programming (DP). Using the DP, one can then obtain (see, for instance,
[Kai11]) a polynomial sized integral LP formulation for the firefighting problem. This suggests the
following enhancement of the CGK approach using the ellipsoid method. Given a fractional solution
x to Robust 2-NUkC, use the CGK approach to obtain a fractional solution y to the firefighting
problem. If y is feasible for the integral LP formulation, then we get an integral solution to the
firefighting problem which in turn gives an O(1)-approximation for the Robust 2-NUkC instance
via the CGK approach. Otherwise, we would get a separating hyperplane for y and the poly-sized
integral formulation for firefighting. If we could only use this to separate the fractional solution
x from the integer hull of the Robust 2-NUkC problem, then we could use the ellipsoid method
to approximate Robust 2-NUkC. This is the so-called “round-or-cut” technique in approximation
algorithms.

Unfortunately, this method also fails and indicates a much more serious bottleneck in the CGK
approach. Specifically, there is an instance of Robust 2-NUkC and an x in the integer hull of its
solutions, such that the firefighting instance output by the CGK has no integral solution! Thus,
one needs to enhance the CGK approach in order to obtain O(1)-approximations even for the
Robust 2-NUkC problem. The main contribution of this paper is to provide such an approach. We
show that if the firefighting instance does not have an integral solution, then we can tease out
many stylized Robust 2-NUkC instances on which the round-or-cut method provably succeeds, and
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an O(1)-approximation to any one of them gives an O(1)-approximation to the original Robust
2-NUkC instance.

Our Approach. Any solution x in the integer hull of NUkC solutions gives an indication of where
different radii centers are opened. As it turns out, the key factor towards obtaining algorithms for
the Robust 2-NUkC problem is observing where the large radii (that is, radius r1) balls are opened.
Our first step is showing that if the fractional solution x tends to open the r1-centers only on
“well-separated” locations then in fact, the round-or-cut approach described above works. More
precisely, if the Robust 2-NUkC instance is for some reason forced to open its r1 centers on points
which are at least cr1 apart from each other for some constant c > 4, then the CGK approach
plus round-or-cut leads to an O(1)-approximation for the Robust 2-NUkC problem. We stress that
this is far from trivial and the natural LP relaxations have bad gaps even in this case. We use our
approach from a previous paper [CN19] to handle these well-separated instances.

But how and why would such well-separated instances arise? This is where we use ideas from
recent papers on fair colorful clustering [BIPV19, JSS20, AAKZ20]. If x suggested that the r1-radii
centers are not well-separated, then one does not need that many balls if one allows dilation. In
particular, if p and q are two r1-centers of a feasible integral solution, and d(p, q) ≤ cr1, then just
opening one ball at either p or q with radius (c+ 1)r1 would cover every point that they each cover
with radius r1-balls. Thus, in this case, the approximation algorithm gets a “saving” in the budget
of how many balls it can open. We exploit this savings in the budget by utilizing yet another
observation from Adjiashvili, Baggio, and Zenklusen [ABZ18] on the natural LP relaxation for the
firefighter problem on trees. This asserts that although the natural LP relaxation for constant
height trees is not integral, one can get integral solutions by violating the constraints additively by
a constant. The aforementioned savings allow us to get a solution without violating the budget
constraints.

In summary, given an instance of the Robust 2-NUkC problem, we run an outer round-or-cut
framework and use it to check whether an instance is well-separated or not. If not, we straightaway
get an approximate solution via the CGK approach and the ABZ observation. Otherwise, we use
enumeration (similar to [AAKZ20]) to obtain O(n) many different well-separated instances and for
each, run an inner round-or-cut framework. If any of these well-separated instances are feasible,
we get an approximate solution for the initial Robust 2-NUkC instance. Otherwise, we can assert a
separating hyperplane for the outer round-or-cut framework.

Related Work. NUkC was introduced in [CGK20] as a generalization to the k-center prob-
lem [Gon85, HS85, HS86] and the robust k-center problem [CKMN01]. In particular CGK reduce
NUkC to the firefighter problem on trees which has constant approximations [FKMR07, CC10,
ABZ18] and recently, a quasi-PTAS [RS20]. NUkC has also been studied in the perturbation re-
silient [ABS12, AMM17, CG18] settings. An instance is ρ-perturbation resilient if the optimal clus-
tering does not change even when the metric is perturbed up to factor ρ. Bandapadhyay [Ban20]
gives an exact polynomial time algorithm for 2-perturbation resilient instances with constant num-
ber of radii.

As mentioned above, part of our approach is inspired by ideas from fair colorful k-center cluster-
ing [BIPV19, JSS20, AAKZ20] problems studied recently. In this problem, the points are divided
into t color classes and we are asked to cover mi, i ∈ {1, . . . , t} many points from each color by
opening k-centers. The idea of moving to well-separated instances are present in these papers. We
should mention, however, that the problems are different, and their results do not imply ours.

The round-or-cut framework is a powerful approximation algorithm technique first used in a
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paper by Carr et al. [CFLP00] for the minimum knapsack problem, and since then has found use in
other areas such as network design [CCKK15] and clustering [ASS17, Li15, Li16, CN19, AAKZ20].
Our multi-layered round-or-cut approach may find uses in other optimization problems as well.

2 Detailed Description of Our Approach

In this section, we provide the necessary technical preliminaries required for proving Theorem 1 and
give a more detailed description of the CGK bottleneck and our approach. We start with notations.
Let (X, d) be a metric space on a set of points X with distance function d : X×X −→ R≥0 satisfying
the triangle inequality. For any u ∈ X we let B(u, r) denote the set of points in a ball of radius r
around u, that is, B(u, r) = {v ∈ X : d(u, v) ≤ r}. For any set U ⊆ X and function f : U → R, we
use the shorthand notation f(U) :=

∑
u∈U f(u). For a set U ⊆ X and any v ∈ X we use d(v, U)

to denote minu∈U d(v, u).
The 2-radii NUkC problem and the robust version are formally defined as follows.

Definition 1 (2-NUkC and Robust 2-NUkC). The input to 2-NUkC is a metric space (X, d) along
with two radii r1 > r2 ≥ 0 with respective budgets k1, k2 ∈ N. The objective of 2-NUkC is to find
the minimum ρ ≥ 1 for which there exists subsets S1, S2 ⊆ X such that (a) |Si| ≤ ki for i ∈ {1, 2},
and (b)

⋃
i

⋃
u∈Si

B(u, ρri) = X. The input to Robust 2-NUkC contains an extra parameter m ∈ N,
and the objective is the same, except that condition (b) is changed to |

⋃
i

⋃
u∈Si

B(u, ρri)| ≥ m.

An instance I of Robust 2-NUkC is denoted as ((X, d), (r1, r2), (k1, k2),m). As is standard, we will
focus on the approximate feasibility version of the problem. An algorithm for this problem takes
input an instance I of Robust 2-NUkC, and either asserts that I is infeasible, that is, there is no
solution with ρ = 1, or provides a solution with ρ ≤ α. Using binary search, such an algorithm
implies an α-approximation for Robust 2-NUkC.

Linear Programming Relaxations. The following is the natural LP relaxation for the feasibility
version of Robust 2-NUkC. For every point v ∈ X, covi(v) denotes its coverage by balls of radius
ri. Variable xi,u denotes the extent to which a ball of radius ri is open at point u. If instance I is
feasible, then the following polynomial sized system of inequalities has a feasible solution.

{(covi(v) : v ∈ X, i ∈ {1, 2}) :
∑
v∈X

cov(v) ≥ m (Robust 2-NUkC LP)∑
u∈X

xi,u ≤ ki ∀i ∈ {1, 2}

cov1(v) =
∑

u∈B(v,r1)

x1,u, cov2(v) =
∑

u∈B(v,r2)

x2,u ∀v ∈ X

cov(v) = cov1(v) + cov2(v) ≤ 1 ∀v ∈ X
xi,u ≥ 0 ∀i ∈ {1, 2}, ∀u ∈ X}

For our algorithm, we will work with the following integer hull of all possible fractional coverages.
Fix a Robust 2-NUkC instance I = ((X, d), (r1, r2), (k1, k2),m) and let F be the set of all tuples
of subsets (S1, S2) with |Si| ≤ ki. For v ∈ X and i ∈ {1, 2}, we say F covers v with radius ri if
d(v, Si) ≤ ri. Let Fi(v) ⊆ F be the subset of solutions that cover v with radius ri. Moreover, we
would like F1(v) and F2(v) to be disjoint, so if S ∈ F1(v), we do not include it in F2(v). The
following is the integer hull of the coverages. If I is feasible, there must exist a solution in PI

cov.
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{(covi(v) : v ∈ X, i ∈ {1, 2}) :
∑
v∈X

(cov1(v) + cov2(v)) ≥ m (PI
cov)

∀v ∈ X, i ∈ {1, 2} covi(v)−
∑

S∈Fi(v)

zS = 0 (PI
cov.1)

∑
S∈F

zS = 1 (PI
cov.2)

∀S ∈ F zS ≥ 0} (PI
cov.3)

Fact 1. PI
cov lies inside Robust 2-NUkC LP.

Firefighting on Trees. As described in Section 1, the CGK approach [CGK20] is via the firefighter
problem on trees. Since we only focus on Robust 2-NUkC, the relevant problem is the weighted 2-
level fire fighter problem. The input includes a set of height-2 trees (stars) with root nodes L1 and
leaf nodes L2. Each leaf v ∈ L2 has a parent p(v) ∈ L1 and an integer weight w(v) ∈ N. We use
Leaf(u) to denote the leaves connected to a u ∈ L1 (that is, {v ∈ L2 : p(v) = u}). Observe that
{Leaf(u) : u ∈ L1} partitions L2. So we could represent the edges of the trees by this Leaf partition.
Hence the structure is identified as (L1, L2, Leaf,w).

Definition 2 (2-Level Fire Fighter (2-FF) Problem). Given height-2 trees (L1, L2, Leaf,w) along
with budgets k1, k2 ∈ N, a feasible solution is a pair T = (T1, T2), Ti ⊆ Li, such that |Ti| ≤ ki for
i ∈ {1, 2}. Let C(T ) := {v ∈ L2 : v ∈ T2 ∨ p(v) ∈ T1} be the set of leaves covered by T . The
objective is to maximize w(C(T )). Hence a 2-FF instance is represented by ((L1, L2, Leaf,w), k1, k2).

The standard LP relaxation for this problem is quite similar to the Robust 2-NUkC LP. For each
vertex u ∈ L1 ∪ L2 there is a variable 0 ≤ yu ≤ 1 that shows the extent to which u is included in
the solution. For a leaf v, Y (v) is the fractional amount by which v is covered through both itself
and its parent.

max
∑
v∈L2

w(v)Y (v) :
∑
u∈Li

yu ≤ ki, ∀i ∈ {1, 2}; (2-FF LP)

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2; yu ≥ 0, ∀u ∈ L1 ∪ L2

Remark 1. The following figure shows an example where the above LP relaxation has an integrality
gap. However, 2-FF can be solved via dynamic programming in O(n3) time and has similar sized
integral LP relaxations.

Figure 1: A 2-FF instance with budgets k1 = k2 = 1. Multiplicity w is 1 for the circle leaves and 3
for the triangles. The highlighted nodes have y = 1/2 and the rest of the nodes have y = 0. The
objective value for this y is 4 × 1/2 + 6 = 8 but no integral solution can get an objective value of
more than 7.
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2.1 CGK’s Approach and its Shortcomings

Given fractional coverages (cov1(v), cov2(v) : v ∈ X), the CGK algorithm [CGK20] runs the
classic clustering subroutine by Hochbaum and Shmoys [HS85] in a greedy fashion. In English,
the Hochbaum-Shmoys (HS) routine partitions a metric space such that the representatives of each
part are well-separated with respect to an input parameter. The CGK algorithm obtains a 2-FF
instance by applying the HS routine twice. Once on the whole metric space in decreasing order of
cov(v) = cov1(v)+cov2(v), and the set of representatives forms the leaf layer L2 with weights being
the size of the parts. The next time on L2 itself in decreasing order of cov1 and the representatives
form the parent layer L1. These subroutines and the subsequent facts form a part of our algorithm
and analysis.

Algorithm 1 HS

Input: Metric (U, d), parameter r ≥ 0, and assignment {cov(v) ∈ R≥0 : v ∈ U}
1: R← ∅ . The set of representatives
2: while U 6= ∅ do
3: u← arg maxv∈U cov(v) . The first client in U in non-increasing cov order
4: R← R ∪ u
5: Child(u)← {v ∈ U : d(u, v) ≤ r} . Points in U at distance r from u (including u itself)
6: U ← U\Child(u)
7: end while

Output: R, {Child(u) : u ∈ R}

Algorithm 2 CGK

Input: Robust 2-NUkC instance ((X, d), (r1, r2), (k1, k2),m), dilation factors α1, α2 > 0, and as-
signments cov1(v), cov2(v) ∈ R≥0 for all v ∈ X

1: (L2, {Child2(v), v ∈ L2})← HS((X, d), α2r2, cov = cov1 + cov2)
2: (L1, {Child1(v), v ∈ L1})← HS((L2, d), α1r1, cov1)
3: w(v)← |Child2(v)| for all v ∈ L2

4: Leaf(u)← Child1(u) for all u ∈ L1

Output: 2-FF instance ((L1, L2, Leaf,w), (k1, k2))

Definition 3 (Valuable 2-FF instances). We call an instance T returned by the CGK algorithm
valuable if it has an integral solution of total weight at least m. Using dynamic programming, there
is a polynomial time algorithm to check whether T is valuable.

Fact 2. The following are true regarding the output of HS: (a) ∀u ∈ R,∀v ∈ Child(u) : d(u, v) ≤ r,
(b) ∀u, v ∈ R : d(u, v) > r, (c) The set {Child(u) : u ∈ R} partitions U , and (d) ∀u ∈ R,∀v ∈ Child(u) :
cov(u) ≥ cov(v).

Lemma 1 (rewording of Lemma 3.4. in [CGK20]). Let I be a Robust 2-NUkC instance. If for any
fractional coverages (cov1(v), cov2(v)) the instance 2-FF created by Algorithm 2 is valuable, then
one obtains an (α1 + α2)-approximation for I.

Lemma 1 suggests that if we can find fractional coverages so that the corresponding 2-FF instance T
is valuable, then we are done. Unfortunately, the example illustrated in Figure 2 shows that for any
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(α1, α2) there exists Robust 2-NUkC instances and fractional coverages (cov1(v), cov2(v)) ∈PI
cov in

the integer hull, for which the CGK algorithm returns 2-FF instances that are not valuable.

Figure 2: At the top, there is a feasible Robust 2-NUkC instance with k1 = 2, k2 = 3, and m = 24.
There are 6 triangles representing 3 collocated points each, along with 12 circles, each representing
one point. The black edges are distance r1 > α2r2 and the grey edges are distance α1r1. There are
two integral solutions S and S′ each covering exactly 24 points. S1 = {u1, u4}, S2 = {u2, v2, u3},
S′1 = {u2, u3}, and S′2 = {u1, v1, u4}. Having zS = zS′ = 1/2 in PI

cov, gives cov1 of 1/2 for all the
points and cov2 of 1/2 for the triangles. The output of Algorithm 2 is the 2-FF instance at the
bottom. According to Proposition 1 the highlighted nodes have y = 1/2 and the rest of the nodes
have y = 0 with objective value 12 × 1/2 + 18 = 24 but no integral solution can get an objective
value of more than 23.

2.2 Our Idea

Although the 2-FF instance obtained by Algorithm 2 from fractional coverages (cov1(v), cov2(v) :
v ∈ X) may not be valuable, [CGK20] proved that if these coverages come from (Robust 2-NUkC LP),
then there is always a fractional solution to (2-FF LP) for this instance which has value at leastm.

Proposition 1 (rewording of Lemma 3.1. in [CGK20]). Let (cov1(v), cov2(v) : v ∈ X) be any
feasible solution to Robust 2-NUkC LP. As long as α1, α2 ≥ 2, the following is a fractional solution
of 2-FF LP with value at least m for the 2-FF instance output by Algorithm 2.

yv =

{
cov1(v) v ∈ L1

min{cov2(v), 1− cov1(p(v))} v ∈ L2.

Therefore, the problematic instances are precisely 2-FF instances that are integrality gap examples
for (2-FF LP). Our first observation stems from what Adjiashvili, Baggio, and Zenklusen [ABZ18]
call “the narrow integrality gap of the firefighter LP”.

Lemma 2 (From Lemma 6 of [ABZ18]). Any basic feasible solution {yv : i ∈ {1, 2}, v ∈ Li} of the
2-FF LP polytope has at most 2 loose variables. A variable yv is loose if 0 < yv < 1 and yp(v) = 0
in case v ∈ L2.

In particular, if y(L1) ≤ k1−2, then the above lemma along with Proposition 1 implies there exists
an integral solution with value ≥ m. That is, the 2-FF instance is valuable. Conversely, the fact
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that the instance is not valuable asserts that y(L1) > k1−2 which in turn implies cov1(L1) > k1−2.
In English, the fractional coverage puts a lot of weight on the points in L1.

This is where we exploit the ideas in [BIPV19, JSS20, AAKZ20]. By choosing α1 > 2 to be
large enough in Proposition 1, we can ensure that points in L1 are “well-separated”. More precisely,
we can ensure for any two u, v ∈ L1 we have d(u, v) > α1r1 (from Fact 2). The well-separated
condition implies that the same center cannot be fractionally covering two different points in L1.
Therefore, cov1(L1) > k1 − 2 if (cov1, cov2) ∈PI

cov is in the integer hull, then there must exist an
integer solution which opens at most 1 center that does not cover points in L1. For the time being
assume in fact no such center exists and cov1(L1) = k1. Indeed, the integrality gap example in
Figure 2 satisfies this equality.

Our last piece of the puzzle is that if the cov1’s are concentrated on separated points, then
indeed we can apply the round-or-cut framework to obtain an approximation algorithm. To this
end, we make the following definition, and assert the following theorem.

Definition 4 (Well-Separated Robust 2-NUkC). The input is the same as Robust 2-NUkC, along
with Y ⊆ X where d(u, v) > 4r1 for all pairs u, v ∈ Y , and the algorithm is allowed to open the
radius r1-centers only on points in Y .

Theorem 2. Given a Well-Separated Robust 2-NUkC instance there is a polynomial time algorithm
using the ellipsoid method that either gives a 4-approximate solution, or proves that the instance is
infeasible.

We remark the natural (Robust 2-NUkC LP) relaxation still has a bad integrality gap, and we need
the round-or-cut approach. Formally, given fractional coverages (cov1, cov2) we run Algorithm 2
(with α1 = α2 = 2) to get a 2-FF instance. If the instance is valuable, we are done by Lemma 1.
Otherwise, we prove that (cov1, cov2) /∈PI

cov by exhibiting a separating hyperplane. This crucially
uses the well-separated-ness of the instance and indeed, the bad example shown in Figure 2 is not
well-separated. This implies Theorem 2 using the ellipsoid method.

In summary, to prove Theorem 1, we start with (cov1, cov2) purported to be in PI
cov. Our goal

is to either get a constant approximation, or separate (cov1, cov2) from PI
cov. We first run the

CGK Algorithm 2 with α1 = 8 and α2 = 2. If cov1(L1) ≤ k1 − 2, we can assert that the 2-FF
instance is valuable and get a 10-approximation. Otherwise, cov1(L1) > k1 − 2, and we guess the
O(n) many possible centers “far away” from L1, and obtain that many well-separated instances.
We run the algorithm promised by Theorem 2 on each of them. If any one of them gives a 4-
approximate solution, then we immediately get an 8-approximate1 solution to the original instance.
If all of them fail, then we can assert cov1(L1) ≤ k1−2 must be a valid inequality for PI

cov, and thus
obtain a hyperplane separating (cov1, cov2) from PI

cov. The polynomial running time is implied
by the ellipsoid algorithm. Note that there are two nested runs of the ellipsoid method in the
algorithm. Figure 3 below shows an illustration of the ideas.

2.3 Discussion

Before we move to describing algorithms proving Theorem 2 and Theorem 1, let us point out why
the above set of ideas does not suffice to prove the full CGK conjecture, that is, give an O(1)-
approximation for NUkC with constant many type of radii. Given fractional coverages, the CGK

1The factor doubles as we need to double the radius, but that is a technicality.
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Figure 3: Our framework for approximating Robust 2-NUkC. The three black arrows each represent
separating hyperplanes we feed to the outer ellipsoid. The box in the bottom row stating “4-
approximation for well-separated Robust 2-NUkC” runs the inner ellipsoid method.

algorithm now returns a t-layered firefighter instance and again if such an instance is valuable
(which can be checked in nO(t) time), we get an O(1)-approximation. As above, the main challenge
is when the firefighter instance is not valuable. Theorem 2, in fact, does generalize if all layers are
separated. Formally, if there are t types of radii, and there are t sets Y1, . . . , Yt such that (a) any two
points p, q ∈ Yi are well-separated, that is, d(p, q) > 4ri, and (b) the ri-radii centers are only allowed
to be opened in Yi, then in fact there is an O(1)-approximation for such instances. Furthermore,
if we had fractional coverages (cov1, cov2, . . . , covt) such that in the t-layered firefighter instance
returned, all layers have “slack”, that is covi(Li) ≤ ki − t, then one can repeatedly use Lemma 2
to show that the tree instance is indeed valuable.

The issue we do not know how to circumvent is when some layers have slack and some layers
do not. In particular, even with 3 kinds of radii, we do not know how to handle the case when
the first layer L1 is well-separated and cov1(L1) = k1, but the second layer has slack cov2(L2) ≤
k2 − 3. Lemma 2 does not help since all the loose vertices may be in L1, but they cannot all be
picked without violating the budget. At the same time, we do not know how to separate such cov’s,
or whether such a situation arises when cov’s are in the integer hull. We believe one needs more
ideas to resolve the CGK conjecture.

3 Approximating Well-Separated Robust 2-NUkC

In this section we prove Theorem 2 stated in Section 2.2. As mentioned there, the main idea is to
run the round-or-cut method, and in particular use ideas from a previous paper [CN19] of ours.
The main technical lemma is the following.
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Lemma 3. Given Well-Separated Robust 2-NUkC instance I and fractional coverages ( ˆcov1(v), ˆcov2(v)),
if the output of the CGK Algorithm 2 is not valuable, there is a hyperplane separating ( ˆcov1(v), ˆcov2(v))
from PI

cov. Furthermore, the coefficients of this hyperplane are bounded in value by |X|.

Remark 2. We need to be careful in one place. Recall that HS is used in the CGK Algorithm 2. We
need to assert in HS, that points u with d(u, Y ) ≤ r1 are prioritized over points v with d(v, Y ) > r1
to be taken in L1. This is w.l.o.g. since cov1(v) = 0 if d(v, Y ) > r1 by definition of Well-Separated
Robust 2-NUkC.
Using the ellipsoid method, the above lemma implies Theorem 2.

Proof of Theorem 2. The goal is to either prove PI
cov is empty, or give a 4-approximate solution.

To do so, we run the ellipsoid algorithm. Each time the ellipsoid algorithm provides a purported
fractional point ( ˆcov1(v), ˆcov2(v)) ∈ PI

cov and asks for a separating hyperplane. Given such a
solution, we first check if ˆcov1(v) = 0 for all v with d(v, Y ) > r1. By the well-separatedness
property of I, this must be a valid equality and we can force the ellipsoid method to run over
these equalities. Then we run CGK Algorithm 2 with this ( ˆcov1, ˆcov2) and α1 = α2 = 2. If the
resulting 2-FF instance is valuable, we get a 4-approximate solution by Lemma 1. If not, Lemma 3
provides a separating hyperplane to feed to ellipsoid. Since our hyperplanes can be described in
polynomial size, ellipsoid terminates in polynomial time, either giving us some ˆcov leading to a
4-approximation along the way, or prompts that PI

cov is empty thereby proving I is infeasible.

The rest of this section is dedicated to proving Lemma 3. Fix a well-separated Robust 2-NUkC
instance I. Recall that Y ⊆ X is a subset of points, and the radius r1 centers are only allowed to
be opened at Y . Let T be the 2-FF instance output by Algorithm 2 on I and cov with α1 = α2 = 2.
Recall, T = ((L1, L2, Leaf,w), k1, k2). The key part of the proof is the following valid inequality in
case T is not valuable.

Lemma 4. If T is not valuable
∑

v∈L2
w(v)cov(v) ≤ m− 1 for any cov(v) ∈PI

cov.

Before we prove Lemma 4, let us show how it proves Lemma 3. Given ( ˆcov1, ˆcov2) we first check2

that
∑

u∈X ˆcov(u) ≥ m, or otherwise that would be the hyperplane separating it from PI
cov. Now

recall that in Algorithm 2, for v ∈ L2, w(v) = |Child2(v)| which is the number of points assigned to
v by HS (see Line 1 of Algorithm 2). By definition of w and then parts d) and c) of Fact 2,∑

v∈L2

w(v) ˆcov(v) =
∑
v∈L2

∑
u∈Child(v)

ˆcov(v) ≥
∑
v∈L2

∑
u∈Child(v)

ˆcov(u) =
∑
u∈X

ˆcov(u) ≥ m.

That is, ( ˆcov1, ˆcov2) violates the valid inequality asserted in Lemma 4, and this would complete the
proof of Lemma 3. All that remains is to prove the valid inequality lemma above.

of Lemma 4. Fix a solution cov ∈ PI
cov and note that this is a convex combination of coverages

induced by integral feasible solutions in F . The main idea of the proof is to use the solutions in F
to construct solutions to the tree instance T . Since T is not valuable, each of these solutions will
have “small” value, and then we use this to prove the lemma. To this end, fix S = (S1, S2) ∈ F
where |Si| ≤ ki for i ∈ {1, 2}. The corresponding solution T = (T1, T2) for T is defined as follows:
For i ∈ {1, 2} and any u ∈ Li, u is in Ti iff Si ∈ Fi(u). That is, d(u, Si) ≤ ri.

2recall, ˆcov(v) = ˆcov1(v) + ˆcov2(v).
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Proposition 2. T satisfies the budget constraints |Ti| ≤ ki for i ∈ {1, 2}.

Proof. For i ∈ {1, 2} and two different u, v ∈ Ti by Fact 2 and our choice of αi = 2, d(u, v) > 2ri.
By the triangle inequality, a facility in Si cannot cover both u and v meaning |Ti| ≤ |Si| ≤ ki.

The next claim is the only place where we need the well-separated-ness of I. Basically, we will
argue that the leaves covered by T1 capture all the points covered by S1.

Proposition 3. If u ∈ L1 but u /∈ T1 then no v ∈ Leaf(u) can be covered by a ball of radius r1 in
S1.

Proof. We will prove the contrapositive by showing that if u = p(v) and v is covered through f ∈ S1,
then u as well must be covered by the same f and therefore, u ∈ T1. Consider the following two
cases: either d(u, Y ) > r1 in which case, by our assumption on HS, v is prioritized over u to be chosen
in L1 so this cannot happen. Thus, we must have d(u, Y ) ≤ r1 which means there is fu ∈ Y with
d(u, fu) ≤ r1. This fu has to be equal to f otherwise, by definition of Y we must have d(f, fu) > 4r1
that contradicts the following: d(fu, f) ≤ d(fu, u) + d(u, v) + d(v, f) ≤ r1 + α1r1 + r1 = 4r1.

Next, we can prove that overall, the leaves covered by T capture the whole set of points covered
by S. Recall that C(T ) = {v ∈ L2 : v ∈ T2∨ p(v) ∈ T1} is the set of leaves covered by T . For v ∈ X
let F (v) := F1(v) ∪F2(v) be the set of solutions that cover v.

Proposition 4. Take 2-FF solution T corresponding to Well-Separated Robust 2-NUkC solution S
as described earlier. We have: ∑

v∈L2:S∈F (v)

w(v) ≤ w(C(T )).

That is, the total w of the points covered by S is at most w(C(T )).

Proof. The leaves covered by T are covered either by T1 or T2. Thus, we get

w(C(T )) =
∑
u∈T1

∑
v∈Leaf(u)

w(v) +
∑
u/∈T1

∑
v∈Leaf(u):v∈T2

w(v). (1)

The first of these terms can be lower-bounded as∑
u∈T1

∑
v∈Leaf(u)

w(v) ≥
∑
u∈T1

∑
v∈Leaf(u):S∈F (v)

w(v).

that is, we only consider the leaves v of u ∈ T1 which are covered by the Robust 2-NUkC solution
S. The second term, by definition of T2 is∑

u/∈T1

∑
v∈Leaf(u):v∈T2

w(v) =
∑
u/∈T1

∑
v∈Leaf(u):S∈F2(v)

w(v) =
∑
u/∈T1

∑
v∈Leaf(u):S∈F (v)

w(v).

where the last equality uses Proposition 3 which implies for u /∈ T1 and v ∈ Leaf(u), d(v, S1) > r1.
Thus, the solution S covers v iff S2 covers v. Plugging back in (1), we complete the proof.
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The proof of Lemma 4 now follows from the fact that T is not valuable thus w(C(T )) ≤ m− 1 and
therefore, for any S ∈ F we have

∑
v∈L2:S∈F (v) w(v) ≤ m− 1. So we have:∑

v∈L2

w(v)cov(v) =(PI
cov.1)

∑
v∈L2

w(v)
∑

S∈F (v)

zS =
∑
S∈F

zS
∑
v∈L2:

S∈F (v)

w(v)

≤ (m− 1)
∑
S∈F

zS =(PI
cov.2)

m− 1.

4 The Main Algorithm: Proof of Theorem 1

As mentioned in Section 2, we focus on the feasibility version of the problem: given an instance I
of Robust 2-NUkC we either want to prove it is infeasible, that is, there are no subsets S1, S2 ⊆ X
with (a) |Si| ≤ ki and (b) |

⋃
i

⋃
u∈Si

B(u, ri)| ≥ m, or give a 10-approximation that is, open subsets
S1, S2 that satisfy (a) and |

⋃
i

⋃
u∈Si

B(u, 10ri)| ≥ m. To this end, we apply the round-or-cut

methodology on PI
cov. Given a purported ˆcov := ( ˆcov1(v), ˆcov2(v) : v ∈ X) we want to either use

it to get a 10-approximate solution, or find a hyperplane separating it from PI
cov. Furthermore, we

want the coefficients in the hyperplane to be poly-bounded. Using the ellipsoid method we indeed
get a polynomial time algorithm thereby proving Theorem 1.

Upon receiving ˆcov, we first check whether ˆcov(X) ≥ m or not, and if not that will be the
separating hyperplane. Henceforth, we assume this holds. Then, we run CGK Algorithm 2 with
α1 = 8 and α2 = 2 to get 2-FF instance T = ((L1, L2, Leaf,w), (k1, k2)). Let {yv : v ∈ L1 ∪ L2} be
the solution described in Proposition 1. Next, we check if ˆcovi(Li) = y(Li) ≤ ki for both i ∈ {1, 2};
if not, by Proposition 1 that hyperplane would separate ˆcov from PI

cov (and even Robust 2-NUkC
LP in fact). The algorithm then branches into two cases.
Case I: y(L1) ≤ k1 − 2. In this case, we assert that T is valuable, and therefore by Lemma 1 we
get an α1 + α2 = 10-approximate solution for I via Lemma 1, and we are done.

Proposition 5. If y(L1) ≤ k1 − 2, then there is an integral solution T for T with w(C(T )) ≥ m.

Proof. Since y(L1) ≤ k1−2, we see that there is a feasible solution to the slightly revised LP below.

max
∑
v∈L2

w(v)Y (v) :
∑
u∈L1

yu ≤ k1 − 2,
∑
u∈L2

yu ≤ k2,

Y (v) := yp(v) + yv ≤ 1, ∀v ∈ L2

Consider a basic feasible solution {y′v : v ∈ L1 ∪ L2} for this LP, and let T1 := {v ∈ L1 : y′v > 0}.
By definition y′(T1) = y′(L1) ≤ k1 − 2. According to Lemma 2, there are at most 2 loose variables
in y′. So there are at most 2 fractional vertices in T1. This implies |T1| ≤ k1. Let U be the set of
leaves that are not covered by T1, that is, U := {v ∈ L2 : p(v) /∈ T1}. Let T2 be the top k2 members
of U according to decreasing w order. We return T = (T1, T2).

We claim T has value at least m, that is, w(C(T )) ≥ m. Note that w(C(T )) = w(T2) +∑
u∈T1

w(Leaf(u)). By the greedy choice of T2, w(T2) ≥
∑

v∈U w(v)y′v. Since y′p(v) = 0 for

any v ∈ U , we have w(T2) ≥
∑

v∈U w(v)y′v =
∑

v∈U w(v)Y ′(v). Furthermore, by definition,
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∑
u∈T1

w(Leaf(u)) =
∑

v∈L2\U w(v) which in turn is at least
∑

v∈L2\U w(v)Y ′(v). Adding up proves
the claim as the objective value is at least m.

w(C(T )) ≥
∑
v∈U

w(v)Y ′(v) +
∑

v∈L2\U

w(v)Y ′v =
∑
v∈L2

w(v)Y ′(v) ≥ m.

Case II, y(L1) > k1−2. In this case, we either get an 8-approximation or prove that the following
is a valid inequality which will serve as the separating hyperplane (recall ˆcov1(L1) = y(L1)).

cov1(L1) ≤ k1 − 2. (2)

To do so, we need the following proposition which formalizes the idea stated in Section 2.2 that in
case II, we can enumerate over O(|X|) many well-separated instances.

Proposition 6. Let (cov1, cov2) ∈ PI
cov be fractional coverages and suppose there is a subset

Y ⊆ X with d(u, v) > 8r1 for all u, v ∈ Y . Then either cov1(Y ) ≤ k1 − 2, or at least one of the
following Well-Separated Robust 2-NUkC instances are feasible

I∅ := ((X, d), (2r1, r2), (k1, k2), Y,m)

Iq := ((X\B(q, r1), d), (2r1, r2), (k1 − 1, k2), Y,m− |B(q, r1)|) ∀q ∈ X : d(q, Y ) > r1.

Before proving the above proposition, let us use it to complete the proof of Theorem 1. We
let Y := L1, and obtain the instances I∅ and Iq’s as mentioned in the proposition. We apply
the algorithm in Theorem 2 on each of them. If any of them returns a solution, then we have an
8-approximation. More precisely, if I∅ is feasible, Theorem 2 gives a 4-approximation for it which
is indeed an 8-approximation for I (the extra factor 2 is because I∅ uses 2r1 as its largest radius).
If Iq is feasible for some q ∈ X and Theorem 2 gives us a 4-approximate solution S′ = (S′1, S

′
2) for

it and S = (S′1 ∪ {q}, S′2) is an 8-approximation for I. If none of them are feasible, then we see
that cov1(L1) ≤ k1 − 2 indeed serves as a separating hyperplane between ˆcov and PI

cov. This ends
the proof of Theorem 1.

Proof of Proposition 6. Let us assume cov1(Y ) > k1 − 2, and prove that one of the proposed Well-
Separated Robust 2-NUkC instances are feasible. First of all, note that the described Well-Separated
Robust 2-NUkC instances indeed satisfy the definition: Y is separated enough for radius 2r1 and
by definition of q, Y ⊆ (X\B(q, r1)).

Suppose, for the sake of contradiction, none of the described Well-Separated Robust 2-NUkC
instances are feasible. Since cov1(Y ) > k1− 2 and cov ∈PI

cov, there has to be some S = (S1, S2) ∈
F such that S1 covers strictly more than k1−2 points in Y . Take any such S. There are two types
of centers in S1, the ones that do contribute to cov1(Y ), and the ones that do not. The former is
A := {f ∈ S1 : d(f, Y ) ≤ r1} and the latter is B := {f ∈ S1 : d(f, Y ) > r1}. By our assumption of
cov1(Y ) > k1 − 2 and the fact that Y points are more than 2r1 apart, |A| > k1 − 2. This leaves us
with |B| ≤ 1.

Let IB be the Well-Separated Robust 2-NUkC instance corresponding to this B (i.e. IB = I∅
if B = ∅ and IB = Iq if B = {q}). We construct a feasible solution S′ for IB which contradicts
our assumption. By definition of IB, S′ only needs to cover as many points as (A,S2) covers
in I. That is, m points if B = ∅ and m − |B(q, r1)| points if B = {q}. Setting S′2 := S2 and
S′1 := {f ∈ Y : d(f,A) ≤ 1} does the trick: S′ balls with radii 2r1 and r2, cover all the elements in
X that are covered by (A,S2) in I. Also note that S′ satisfies the budget constraints.
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