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Abstract

We consider a class of hierarchical noncooperative N-player games where the ith player
solves a parametrized stochastic mathematical program with equilibrium constraints (MPEC)
with the caveat that the implicit form of the ith player’s in MPEC is convex in player strategy,
given rival decisions. Few, if any, general purpose schemes exist for computing equilibria even
for deterministic specializations of such games. We develop computational schemes in two dis-
tinct regimes: (a) Monotone regimes. When player-specific implicit problems are convex, then
the necessary and sufficient equilibrium conditions are given by a stochastic inclusion. Under a
monotonicity assumption on the operator, we develop a variance-reduced stochastic proximal-
point scheme that achieves deterministic rates of convergence in terms of solving proximal-point
problems in monotone/strongly monotone regimes and the schemes are characterized by opti-
mal or near-optimal sample-complexity guarantees. Finally, the generated sequences are shown
to be convergent to an equilibrium in an almost-sure sense in both monotone and strongly
monotone regimes; (b) Potentiality. When the implicit form of the game admits a potential
function, we develop an asynchronous relaxed inexact smoothed proximal best-response frame-
work. However, any such avenue is impeded by the need to efficiently compute an approximate
solution of an MPEC with a strongly convex implicit objective. To this end, we consider the
smoothed counterpart of this game where each player’s problem is smoothed via randomized
smoothing. Notably, under suitable assumptions, we show that an η-smoothed game admits
an η-approximate Nash equilibrium of the original game. Our proposed scheme produces a
sequence that converges almost surely to an η-approximate Nash equilibrium in both relaxed
and unrelaxed settings. This scheme is reliant on computing the proximal problem, a stochas-
tic MPEC whose implicit form has a strongly convex objective, with increasing accuracy in
finite-time. The smoothing framework allows for developing a variance-reduced zeroth-order
scheme for such problems that admits a fast rate of convergence. Numerical studies on a class
of multi-leader multi-follower games suggest that variance-reduced proximal schemes provide
significantly better accuracy with far lower run-times. The relaxed best-response scheme scales
well will problem size and generally displays more stability than its unrelaxed counterpart.

1 Introduction

In this paper, we consider the class of N-player noncooperative hierarchical games in uncertain
regimes. We consider a class of N-player games in which the ith player solves the following
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parametrized problem.

min
xi∈Xi

fi(x
i,x−i) , E

[
g̃i(x

i,x−i, ξ(ω)) + h̃i(x
i,yi(x, ξ(ω)), ω)

]
subject to E[c̃i(x

i, ξ(ω))] ≤ 0,
(Playeri(x

−i))

where xi ⊆ Xi ⊆ Rni ,
∑N

i=1 ni = n, ξ : Ω → Rd represents the d−valued random variable,
g̃i : Rn × Rd → R, c̃i : Rni × Rd → R, and h̃i : Rni+mi × Rd → R are real-valued functions,
yi : Xi × Rd → Rmi is a single-valued mapping corresponding to the unique solution of the ith
player’s lower-level problem, given x, and i ∈ {1, · · · ,N}. Note that x−i , {xj}j 6=i, X−i ,

∏
j 6=iXj

and X ,
∏N
i=1Xi. In Section 3.1, we consider the generalization where the ith player’s problem is

additionally constrained by E[c̃i(x
i, ξ(ω))] ≤ 0 where c̃i : Rni × Rd → R. Suppose the associated

probability space is (Ω,P,F) and E[•] represents the expectation with respect to the probability
measure P. In the remainder of the paper, we suppress the ξ for expository clarity and refer
to yi(x, ξ(ω)) by yi(x, ω). Suppose the ω-specific lower-level problem associated with player i is
defined as the unique solution to a parametrized variational inequality problem, defined as

yi(x, ω) = SOL (Yi, Fi(•,x, ω)) , for ω ∈ Ω

where SOL(Yi, Fi(•,x, ω)) denotes the solution set of a parametrized variational inequality problem
VI(Yi, Fi(•,x, ω)), Fi : Rmi × Rn × Rd → Rmi is a real-valued map, and Yi ⊆ Rmi is a closed and
convex set. This is a flexible framework that subsumes a broad class of games as shown next.

1.1. Convex hierarchical games under uncertainty. Consider the proposed class of
noncooperative convex hierarchical games denoted by Gchl. For any game G ∈ Gchl, for i = 1, · · · ,N,
the ith player’s problem, denoted by (Playeri(x

−i)) is a convex program for every x−i ∈ X−i. The
class Gchl subsumes the following subclasses. We refer to this subclass of
(i) Single-level noncooperative games with expectation-valued objectives. When hi ≡ 0 for i ∈
{1, · · · ,N} where hi(x) , E[h̃i(x

i,yi(x, ω), ω)], this reduces to a class of single-level games with
expectation-valued objectives. This class of games has been extensively studied, both in terms of
analysis when the problem (Playeri(x

−i)) is convex for every x−i ∈ X−i [1, 2] as well as computation
when the game admits suitable monotonicity [3] or potentiality properties [4], amongst others.

(ii) Multi-leader multi-follower games under uncertainty. Multi-leader multi-follower games arise
when there is a collection of followers that participate in a noncooperative game, parametrized by
leader-level decisions. Contingent on the equilibrium decisions of the followers, leaders compete
in a noncooperative game. This class of games, referred to as multi-leader multi-follower games,
have been analyzed in stylized deterministic [5] and stochastic [6, 7] (see recent survey in [8]).
While existence of such equilibria in such games is by no means a given (see [9] for simple settings
where equilibria fail to exist), existence guarantees have been provided for subclasses in stylized
settings [5, 10, 11] as well as under the availability of a potential function [12]. Computation
of equilibria has focused on considering the associated complementarity problems [13, 6]; prior
efforts have included smoothing approaches [14], heuristic approaches [15, 10], and sampling-based
approximations [6]. However, almost all of the approximation/smoothing approaches have focused
on computing solutions to necessary conditions [13, 14], rather than equilibria. To the best of
our knowledge, there are no convergent schemes for such games or reasonable subclasses even in
deterministic settings.

(iii) Bilevel games under uncertainty. We define bilevel games as being a subclass of multi-leader
multi-follower games in which the lower-level problem is parametrized by xi with no dependence
on rival decisions x−i.
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1.2. Focus of paper. Our interest lies in the class of hierarchical convex games, where Xi
is a closed and convex set in Rni , gi(xi,x−i) , E[g̃i(x

i,x−i, ω)] is a convex function on Xi, and
fi(•,x−i) is convex for every x−i ∈ X−i ,

∏
j 6=iXj . Our focus is on two subclasses of such games.

(a) Monotone games. Monotone games represent a subclass of hierarchical convex games, where
T is a monotone map on X ,

∏N
i=1Xi and T (x) ,

∏N
i=1 ∂xifi(x

i,x−i). Equilibria of this game are
entirely captured by the solution set of the monotone inclusion 0 ∈ T (x), where T is expectation-
valued. Monotonicity of the game immediately follows when the hierarchical term is “private”
(i.e. the lower-level problem is independent of x−i) and G is a monotone map where G(x) ,∏N
i=1 ∂xigi(x

i,x−i). However, monotonicity also holds when the hierarchical term is not necessarily
private (cf. [6]). We focus on developing techniques for resolving monotone stochastic inclusions
via Monte-Carlo sampling schemes, a class of problems for which little is available when T is both
expectation-valued and set-valued.

(b) Potential games. Potential games [4] represent a subclass of hierarchical convex games charac-
terized by a potential function P (x) such that for any i ∈ {1, · · · ,N} and any xi ∈ Xi,

P (xi,x−i)− P (zi,x−i) = fi(x
i,x−i)− fi(zi,x−i), for all xi, zi ∈ Xi.

Potentiality of the game immediately follows when the bilevel term is private and there exists a
potential function P such that P (xi,x−i)−P (zi,x−i) = gi(x

i,x−i)−gi(zi,x−i) for all xi, zi ∈ Xi. In
such cases, the original game has a potential function given by P (x) +

∑N
i=1 E[h̃i(x

i,yi(xi, ω), ω)].
However, potentiality also follows in multi-leader multi-follower games where the bilevel term is
not shared [12, 14]. Under a suitable potentiality assumption, we focus on developing efficient
asynchronous best-response schemes for settings where yi(·, ω) is a single-valued map.

Research goal. Our goal lies in developing provably convergent and efficient first-/zeroth-
order schemes for computing equilibria for subclasses of games in (a) and (b).

1.3. Challenges and contributions. Equilibria of the most general forms of such games are
challenging to compute, given the inherent nonconvexity in player problems, the presence of expec-
tations over general measure spaces, and the lack of any underlying structure such as potentiality
or monotonicity. However, even when potentiality or monotonicity of the Cartesian product of the
subdifferential map of the implicit objectives, computation of equilibria remains challenging for sev-
eral reasons, some of which are specified next. (i) Expectation-valued and nonsmooth objectives and
constraints. Both the objectives and constraints may be both nonsmooth and expectation-valued,
implying that standard projection-based schemes employed for deterministic convex strategy sets
cannot be employed. (ii) Hierarchical structure. The hierarchical structure significantly compli-
cates the application of available schemes. By replacing the lower-level problem using its necessary
and sufficient conditions leads to ill-posed nonlinear and nonconvex optimization problems, i.e.
mathematical programs with equilibrium constraints (MPECs) [16]. While the implicit structure
retains convexity but resolving the resulting variational problem is complicated by the presence of
uncertainty and multi-valuedness. (iii) Absence of structure in inclusion problem. Prior research
on structured monotone inclusions has relied on single-valuedness and Lipschitz continuity in the
expectation-valued map, a property that is unavailable here. (iv) Data privacy requirements. In
some instances, player objectives and strategy sets are private and cannot be shared, precluding
the adoption of centralized schemes.
Outline and contributions. The remainder of the paper is organized into five sections. In
Section 2, we provide some preliminaries on the hierarchical games of interest. Sections 3 and 4
focus on monotone and potential variants of such games while Section 5 examines the numerical
behavior of the scheme. We conclude in Section 6. Our main contributions are articulated next.
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I. Monotone hierarchical games under uncertainty. In Section 3, we present a stochas-
tic proximal-point framework for computing solutions to the necessary and sufficient conditions
of such games, compactly characterized by monotone stochastic generalized equations where the
operator is either strongly monotone or maximal monotone. Notably, such claims can be ex-
tended to regimes with expectation-valued constraints under suitable properties. In contrast with
available stochastic proximal-point schemes, we compute an inexact resolvent of the expectation
T (x) , E[Φ(x,y(x, ω), ω)] via stochastic approximation. We show that when the sample-size se-
quences are raised at a suitable rate, we prove that the resulting sequence of iterates converges
either at a linear rate (strongly monotone) or at a rate of O(1/k) (maximal monotone) (in terms
of a suitable expectation-valued metric) matching the deterministic rate. This leads to oracle com-
plexities of O(1/ε) under geometrically increasing sample-sizes (strongly monotone) and O(1/ε2a+1)
for a > 1 when the sample-size is raised at the rate of d(k + 1)2ae (maximal monotone). These
statements are further supported by almost-sure convergence guarantees. Notable distinctions with
prior work are as follows: (i) The schemes achieve deterministic rates of convergence, implying far
better practical behaviour; (ii) The statements allow for state-dependent noise, significantly widen-
ing the reach of such schemes; and (iii) In strongly monotone regimes, the techniques allow for
geometric rate statements and optimal sample-complexities.

II. Potential hierarchical games under uncertainty. We consider a smoothing-based frame-
work in which we consider the computation of equilibria of an η-smoothed game characterized by a
suitable potentiality requirement. In fact, the equilibria of the original game can be related to that
of the smoothed game in terms of the best-response residual and under suitable conditions, limit
points of the sequence of η-smoothed equilibria are equilibria of the original game. We then present
an asynchronous smoothed inexact proximal best-response scheme for computing an equilibrium
of the smoothed game. The scheme relies on leveraging a zeroth-order scheme for computing an
inexact best-reponse of a given player’s problem. In addition, we develop an relaxed counterpart
where players average between their current strategy and a best-response. Both the asynchronous
scheme and their relaxed counterpart are equipped with almost-sure convergence guarantees to an
approximate Nash equilibrium.

III. Numerical behavior. Both sets of schemes are applied on a subclass of multi-leader multi-
follower games complicated by uncertainty. In monotone settings, we observe that the proposed
variance-reduced proximal-point schemes provide solutions of superior accuracy in a fraction of the
time required by standard stochastic approximation schemes. Under a potentiality assumption,
both the asynchronous relaxed inexact smoothed best-response scheme and its relaxed counterpart
display convergent behavior but the relaxed scheme displays a higher degree of stability later in
the process.

2 Preliminaries

In this section, we begin by providing some preliminaries on bilevel convex games in Section 2.1,
followed by a description of hierarchical monotone and potential games in Section 2.2. We conclude
with a more elaborate description of two prototypical hierarchical convex games in Section 2.3 where
monotonicity and potentiality properties are highlighted. In Section 2.4, we conclude with a brief
commentary on the assumptions of single-valuedness of y(•, ω) and the convexity of the implicit
player-specific objective and provide a preliminary literature survey to show that these assumptions
have relatively broad applicability.
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2.1 A taxonomy of bilevel convex games

We begin by considering a single-level N-player noncooperative game in which the ith player solves
a parametrized optimization problem given by

min
xi∈Xi

gi(x
i,x−i), (Agenti(x

−i))

where Xi ⊆ Rn is a closed and convex set and gi(•,x−i) is convex on Xi for any x−i ∈ X−i. We
denote the class of convex single-level games by Gcsl. It may be recalled that an ε-Nash equilibrium
is given by a tuple x∗ε , {x1,∗, · · · ,xN,∗} such that for i = 1, · · · ,N,

gi(x
i,∗,x−i,∗) ≤ gi(xi,x−i,∗) + ε, ∀ xi ∈ Xi. (ε-NE)

When ε = 0, x∗ε reduces to the standard Nash equilibrium. In a hierarchical generalization of this
game, the ith player’s objective is modified by the addition of a term hi(x

i,yi(x)) where yi(x)
represents a solution to a lower-level variational inequality problem VI(Yi, Fi(x, •)). This problem
requires a vector yi ∈ Yi that satisfies

(ŷi − yi)TFi(x,y
i) ≥ 0, ∀ ŷi ∈ Yi. (VI(Yi, Fi(x, •)))

Consequently, the ith player in a hierarchical game solves the following parametrized problem.

min
xi∈Xi

fi(x
i,x−i) , gi(x

i,x−i) + hi(x
i,yi(x)). (Hier-Agenti(x

−i))

We denote the subclass of hierarchical convex games by Gchl while monotone and potential variants
are referred to as Gchl

mon and Gchl
pot, respectively. Each of these subclasses is discussed in greater detail.

Before proceeding, we make a well-posedness assumption on the existence of an equilibrium.

Ground Assumption (G1) Throughout this paper, we assume that the hierarchical convex
game admits a Nash equilibrium.

Naturally, there are instances when multi-leader multi-follower games fail to admit an equilibrium.
Pang and Fukushima [9] provide precisely such an instance. However, when player objectives are
convex, given rival decisions, and strategy sets are compact, existence of equilibria follows from
fixed-point arguments [17]. Absent convexity, existence of equilibria in multi-leader multi-follower
games is more challenging to show and potentiality arguments have been adopted to show that
existence follows if a suitable optimization problem is solvable [12].

2.2 Hierarchical monotone and potential games

We now consider the class of monotone convex single-level games (see Appendix A.1. for a de-
scription of games, variational inequality problems, inclusions, and monotonicity), denoted by
Gcsl

mon. Any element of this class is characterized by monotonicity of the map G on X where
G(x) ,

∏N
i=1 ∂xigi(x) and

∏N
i=1Xi denotes the Cartesian product of sets X1, · · · ,XN. In fact, we

may relate a game G ∈ Gcsl
mon with a counterpart Ĝ ∈ Gchl

mon, where Gchl
mon denotes the subclass of

hierarchical convex games with a monotone map. The proofs are provided in Appendix.

Proposition 1. Consider a game G ∈ Gcsl
mon where the ith player solves (Agenti(x

−i)) for 1, · · · ,N
and yi(•) is a single-valued map. Furthermore, consider a game Ĝ where the ith player solves
(Hier-Agenti(x

−i)) for 1, · · · ,N.
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(a) Suppose hi is convex and hi(x
i,yi(x)) = hi(x

i,yi(xi)) for i = 1, · · · ,N, i.e. the hierarchical
term is private.
(b) Suppose hi(x

i,yi(x)) = h(x) for i = 1, · · · ,N where h is a convex function on X , i.e. the
hierarchical term is common across all players.
Then we have that Ĝ ∈ Gchl

mon.

In short, monotone single-level games often induce monotone hierarchical games when the hier-
archical structure emerges in a particular fashion. Next, we consider the class of potential convex
single-level games, denoted by Gcsl

pot. Corresponding to an element G ∈ Gcsl
pot is a potential function

P (x) such that for any given i ∈ {1, · · · ,N}, we have

P (xi,x−i)− P (x̃i,x−i) = gi(x
i,x−i)− gi(x̃i,x−i),

for any xi, x̃i ∈ Xi and any x−i ∈ X−i. We may then develop a relationship between G and a
related game Ĝ that lies in the subclass of hierarchical convex potential games.

Proposition 2. Consider a game G ∈ Gcsl
pot where the ith player solves (Agenti(x

−i)) for 1, · · · ,N
and P denotes its potential function. Furthermore, consider a game Ĝ where the ith player solves
(Hier-Agenti(x

−i)) for 1, · · · ,N. Then the following hold.
(a) Suppose hi(x

i,yi(x)) = hi(x
i,yi(xi)), i.e. the hierarchical term is private. Then P̂ (x) ,

P (x) +
∑N

i=1 hi(x
i,yi(xi)) for any x ∈ X .

(b) Suppose hi(x
i,yi(x)) = h(x) where h is a convex function on X , i.e. the hierarchical term is

common across all players. Then P̂ (x) , P (x) + h(x) for any x ∈ X .
Then Ĝ ∈ Gchl

pot with an associated potential function P̂ .

2.3 Applications

(a) A subclass of monotone stochastic bilevel games. Consider a class of bilevel games with N
players, denoted by N , {1, · · · ,N}, where each player’s objective has two terms, the first of which
is parametrized by rival decisions x−i while the second is independent of rival decisions. In general,
this class of games is challenging to analyze since the player problems are nonconvex. Adopting a
similar approach in examining a stochastic generalization of a quadratic setting examined in [14]
with a single follower where M = 1, suppose the ω-specific lower-level problem corresponding to
player i is

min
yi≥ `i(xi,ω)

1
2(yi)TQi(ω)yi − bi(xi, ω)Tyi, (Loweri(x

−i, ω))

where Qi(ω) is a positive definite and diagonal matrix for every ω ∈ Ω, bi(•, ω) and `i(•, ω) are
affine functions for every ω ∈ Ω. Suppose the leaders compete in a noncooperative game in which
the ith leader solves

min
xi ∈Xi

E
[
g̃i(x

i,x−i, ω) + ai(ω)Tyi(xi, ω)
]
,

where g̃(•,x−i, ω) is a convex function, yi(xi, ω) denotes the unique lower-level solution given the
upper-level decision xi and realization ω associated with player i and scenario ω, and Xi is a closed
and convex set in R. The lower-level solution set associated with player i is denoted by yi(xi, ω),
given leader-level decisions xi, can be derived by considering the necessary and sufficient conditions
of optimality:{

0 ≤ λi ⊥ yi − `i(xi, ω) ≥ 0

0 = Qi(ω)yi − bi(xi, ω)− λi

}
or
{

yi(xi, ω) , max
{
Qi(ω)−1bi(x

i, ω), `i(x
i, ω)

}}
.
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We may then eliminate the lower-level decision in the player’s problem, leading to a nonsmooth
stochastic Nash equilibrium problem given by the following:

min
xi∈Xi

E

g̃i(xi,x−i, ω) + ai(ω)T max{Qi(ω)−1bi(x
i, ω), `i(x

i, ω)}︸ ︷︷ ︸
, h̃i(xi,ω)

 .
Under suitable assumptions h̃i(•, ω) is a convex function. For instance, it suffices if bi(•, ω) and
`i(•, ω) are convex for every ω, Qi(ω) is a positive diagonal matrix and ai(ω) is a nonnegative vector
for every ω. This follows from observing that h̃i(x

i, ω) is a scaling of the maximum of two convex
functions. Consequently, the necessary and sufficient equilibrium conditions of this game are given
by 0 ∈ ∂xiE[g̃i(x

i,x−i, ω) + h̃i(x
i, ω)] +NXi(xi) for i = 1, . . . ,N. Since h̃i(•, ω) is a convex function

in xi for every ω, then the necessary and sufficient equilibrium conditions are given by 0 ∈ T (x),
where

T (x) , E [Φ(x, ω)] , (SGE-a)

where Φ(x, ω) ,
N∏
i=1

[
∂xi
[
g̃i(x

i,x−i, ω) + h̃i(x
i, ω)

]
+NXi(xi)

]
.

(i) Monotonicity of game. Suppose gi(x
i,x−i) , E[g̃i(x

i,x−i)] and gi(•,x−i) is convex and C1 on
an open set containing Xi and G is a monotone map on X , where

G(x) ,

 ∇x1g1(x1,x−1)
...

∇xNgN (xN,x−N)

 .

Then the resulting hierarchical game is qualified as monotone.
(ii) Potentiality of game. If the collection of objectives g1, · · · , gN admit a potential function P (x)
satisfying the following for any i ∈ N .

P (xi,x−i)− P (zi,x−i) = gi(x
i,x−i)− gi(zi,x−i), for any xi, zi ∈ Xi.

Then the hierarchical convex game has an associated potential function given by P̃ (x) = P (x) +∑N
i=1 E[h̃i(x

i, ω)] and may be qualified as a potential game.

(b) A multi-leader stochastic Stackelberg-Nash-Cournot equilibrium problem. Consider an oligopolis-
tic setting with M+N firms where M followers compete in a noncooperative game while N leaders
compete in a game subject to the equilibrium decisions of the followers [5, 9, 11, 12]. Suppose the
jth follower solves the following parametrized problem.

max
yj ≥ 0

(
p(yj + Y −j +X,ω)yj − cj(yj)

)
, (Followerj(X,y

−j , ω))

where X = xi + x−i. Suppose the inverse demand function p(·, ω) is defined as p(u, ω) = a(ω) −
b(ω)u. Under this condition, the follower’s objective can be shown to be strictly concave in yj [6].
Consequently, the concatenated necessary and sufficient equilibrium conditions of the lower-level
game are given by the following conditions.

0 ≤ y ⊥ ∇yc(y)− p(X + Y, ω)1− p′(X + Y, ω)y ≥ 0. (Equilfoll(X,ω))

7



We observe that (Equilfoll(X,ω)) is a strongly monotone variational inequality problem for X ≥ 0
and for every ω ∈ Ω. Consequently, y : R+ × Ω→ RM

+ is a single-valued map and is convex in its
first argument for every ω if cj is quadratic and convex for j = 1, · · · ,M [6, Prop. 4.2]. In fact, it
can be claimed that y(·, ω) is a piecewise C2 and non-increasing function with ∂xiy(X,ω) ⊂ (−1, 0]
for X ≥ 0. Consider the ith leader’s problem, defined as

max
xi≥0

[
E
[
p(xi +X−i + Y (xi +X−i, ω), ω)xi

]
− Ci(xi)

]
. (Leaderi(x

−i))

Consequently, we have that

0 3 xi ⊥ E
[
−p(xi +X−i + Y (xi +X−i, ω), ω) + (1 + ∂xiY (X,ω))b(ω)xi

]
+∇xiCi(x

i) ∈ 0.

By concatenating the problems for players 1, · · · ,N, we obtain the following complementarity
problem.

0 3 x ⊥ E [−p(X + Y (X,ω), ω)1] +
(
∇xiCi(x

i)
)N
i=1

+

N∏
i=1

{E[(1 + ∂xiY (X,ω))b(ω)xi]} ∈ 0.

This may be viewed as the following inclusion:

0 ∈ T (x) , E[Φ(x, ω)],

where Φ(x, ω) , −p(X + Y (X,ω), ω)1 +
(
∇xiCi(x

i)
)N
i=1

+
N∏
i=1

{
[(1 + ∂xiY (X,ω))b(ω)xi]

}
+NR+

n
.

This map has been proven to be monotone in [6, Thm. 4.1].

2.4 A comment on the assumptions

In this subsection, we briefly comment on the assumptions of uniqueness of lower-level problems
and the convexity of the resulting “implicit” player-specific objective, focusing on the challenges
associated with weakening these assumptions. Naturally, one may inquire as to whether such as-
sumptions are far too restrictive to be employed in practice. We conclude this section with a
preliminary literature survey where it can be observed that this is not the case and such avenues
have found broad applicability across a range of settings.

(a) Uniqueness of y(•, ω). As noted, we have imposed a suitably monotonicity requirement on
the lower-level parametrized variational inequality problem that allows for claiming the uniqueness
of the lower-level problem for a given x and ω. Absent such an assumption, the player problem can
be modeled either optimistically or pessimistically as follows [16].

(Playeroptim
i (x−i))

 min
xi∈X i

min
y

fi(x
i,x−i,y)

subject to y ∈ SOL(Y, F (x, •))

 .

(Playerpessim
i (x−i))

 min
xi∈X i

max
y

fi(x
i,x−i,y)

subject to y ∈ SOL(Y, F (x, •))

 .

8



Topic Uniqueness of y(•, ω) Convexity of fi(•,x−i) References

Hierarchical Cournot games X X [5, 15]
Strategic behavior in power markets X X [20, 11, 21, 6, 10, 22]
Telecommunication markets X X [6, 23]
Global emission control X X [24]
Supply-chain networks X X [25]
Generation capacity expansion games X X [26, 27]
Gas markets X X [28]

Table 1: Applications of hierarchical games

When y(•, ω) is a single-valued map, the above two problems coincide, but in general, both of the
above parametrized problems are in general nonconvex optimization problems, falling within the
category of mathematical programs with equilibrium constraints(MPECs) [16]. In such instances,
the original hierarchical game reduces to a noncooperative game in which each player solves a math-
ematical program with equilibrium constraints (a nonconvex program). Existence of equilibria to
the original hierarchical game is not guaranteed (see [9, 12] for simple instances where equilibria fail
to exist) and there are no clean tractable conditions for expressing “global” Nash equilibria. One
could naturally “regularize” the lower-level when the map F (x, •) is monotone on Y for every x.
However, such avenues need far more study since it has been discovered that regularized trajectories
are not guaranteed to converge as noted in [18].

(b) Convexity of player problems. We impose a convexity assumption on the implicit upper-
level objective f(•,y(•)) where y(x) is a unique solution to the lower-level problem given upper-level
decision x. There are several issues with weakening convexity for the player problems.

(i) Absence of equilibrium conditions for nonconvex games. First, a Nash equilibrium is defined
at a set of player-specific decisions at which no player has an incentive to deviate. Naturally,
in nonconvex regimes, this requires that each player is at her global minimum, given rival
decisions. Yet, in general, there are no tractable equilibrium conditions for such a point
and absent significant structure, we believe that the computation of such equilibria, while
compelling and relevant, is currently out of reach.

(ii) Nash-stationary equilibria. Second, one could naturally employ stationarity conditions but
the resulting solutions cannot be guaranteed to be equilibria. Our focus in this paper is on
global equilibria and not Nash stationary equilibria (as defined in [19]).

Applications. Third, the assumptions imposed in (a) and (b) might be viewed as far too restrictive
in practice. We believe that this may not be the case. In particular, the presence of lower-level
uniqueness and upper-level convexity (in an implicit sense) are far more widespread and occur in a
wide range of applications. Table 1 provides a subset of such applications where such models have
found applicability and it is seen that both (a) and (b) are seen to hold in the setting of interest.

3 VR proximal-point schemes for stochastic hierarchical mono-
tone games

In this section, we will consider the class of stochastic hierarchical monotone games. In Section 3.1,
we discuss how equilibrium conditions of such games can be recast as inclusions in settings with and
without expectation-valued constraints. An efficient variance-reduced proximal scheme is developed
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for computing equilibria of such games in Section 3.2 (via resolving the associated inclusions). In
Section 3.3–3.4, we conclude this section with a discussion of the convergence theory and rate
statements for such schemes in monotone and strongly monotone regimes and conclude with a
comment on the broader applicability of the framework for monotone inclusions in Section 3.5.

3.1 Hierarchical games and monotone inclusions

We recall the N-player convex hierarchical game G ∈ Gchl of interest in which the ith player solves
the following hierarchical optimization problem parametrized by x−i.

min
xi

E[f̃i(x
i,yi(x, ω),x−i, ω)]

subject to xi ∈ Xi,
(Playeri(x

−i))

where f̃i(x
i,yi(x, ω),x−i, ω) , g̃i(xi,x−i, ξ(ω)) + h̃i(x

i,yi(x, ξ(ω)), ω). Under the assumption that
for any ω ∈ Ω, f̃i(x

i,x−i,y(x, ω), ω) is convex in xi over Xi for any x−i ∈ X−i ,
∏
j 6=iXj .

Consequently, the necessary and sufficient conditions of the game are compactly captured by an
inclusion problem. This is formalized next.

Proposition 3 (Equivalence to a stochastic inclusion problem). Consider a N-player game
G ∈ Gchl in which the ith player solves the parametrized problem (Playeri(x

−i)) for i = 1, · · · ,N.
Then x∗ , {x1,∗, · · · ,xN,∗} is an equilibrium of G if and only if

0 ∈ T (x∗) , E [Φ(x∗,y(x∗, ω), ω)] ,

where Φ(x∗,y(x∗, ω), ω) ,
N∏
i=1

[
∂xi f̃i(x

i,∗,x−i,∗,yi(x∗, ω), ω) +NXi(xi,∗)
]
. (1)

Proof. By the convexity of the player-specific problems, x∗ , {x1,∗, · · · ,xN,∗} is an equilibrium of
G if and only if x∗ , {x1,∗, · · · ,xN,∗} collectively solves this set of generalized equations

0 ∈ ∂x1

[
E[f̃1(x1,x−1,y1(x, ω), ω)]

]
+NX1(x1)

...

0 ∈ ∂xN

[
E[f̃N(xN,x−N,yN(x, ω), ω)]

]
+NXN

(xN)

 . (2)

Via [29, Prop. 1.4.2], it can then be shown that x∗ , {x1,∗, · · · ,xN,∗} is a solution of (2) if and
only if x∗ , {x1,∗, · · · ,xN,∗} is a solution of

0 ∈ T (x∗) , E [Φ(x∗,y(x∗, ω), ω)] .

We now consider the extension of such problems where the player problems have private expectation-
valued constraints; in particular, suppose the ith player solves the expectation-valued constrained
counterpart of (Playeri(x

−i)), denoted by (Playercon
i (x−i)), for i = 1, · · · ,N. We define (Playercon

i (x−i))
as follows.

min
xi∈Xi

E
[
f̃i(x

i,yi(x, ω),x−i, ω)
]

subject to E
[
c̃i(x

i, ω)
]
≤ 0.

(Playercon
i (x−i))
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Under the additional assumption that E [c̃i(•, ω)] is convex in xi on Xi and under a suitable regular-
ity condition, xi,∗ is an optimal solution of (Playercon

i (x−i)) if and only if {xi,∗,pi,∗} is a primal-dual
solution of the following system.0 ∈ ∂xi

[
E[f̃i(x

i,∗,x−i,yi(xi,∗,x−i, ω), ω)]
]

+ ∂xi
[
E[c̃i(x

i,∗, ω)
]T

pi,∗ +NXi(xi)

0 ∈ −E[c̃i(x
i,∗, ω)] +NR+

mi
(pi,∗).

 .

This allows us to restate the necessary and sufficient equilibrium conditions of the hierarchical game
with private expectation-valued constraints as follows.

0 ∈ ∂x1

[
E[f̃1(x1,x−1,y1(x, ω), ω)]

]
+ ∂x1

[
E[c̃1(x1, ω)

]T
p1 +NX1(x1)

0 ∈ −E[c̃1(x1, ω)] +NR+
m1

(p1)

...

0 ∈ ∂xN

[
E[f̃N(xN,x−N,yN(x, ω), ω)]

]
+ ∂xN

[
E[c̃N(xN, ω)

]T
pN +NXN

(xN)

0 ∈ −E[c̃N(xN, ω)] +NR+
mN

(pN)


.

Proposition 4 (Hierarchical games with expectation-valued constraints and stochastic
inclusions). Consider a N-player game G ∈ Gchl in which the ith player solves the parametrized
problem (Playercon

i (x−i)) for i = 1, · · · ,N. For i = 1, · · · ,N, suppose a regularity condition holds
for player’s problem at xi,∗, given x−i,∗. Then x∗ is an equilibrium of G if and only if {x∗,p∗} is
the solution of the following inclusion problem

0 ∈ Ψ(x∗,p∗) , E [Λ(x∗,y(x∗, ω),p∗, ω)] ,

where Λ(x,y(x, ω),p, ω) is defined as

Λ(x,y(x, ω),p, ω) ,
N∏
i=1

{
∂xi
[
E[f̃i(x

i,x−i,yi(x, ω), ω)]
]

+ ∂xi
[
E[c̃i(x

i, ω)
]T

pi +NXi(xi)
}
×

N∏
i=1

{
−E[c̃i(x

i, ω)] +NR+
mi

(pi)
}
,

x∗ , {x1,∗, · · · ,xN,∗}, and p∗ , {p1,∗, · · · ,pN,∗}, respectively.

Recall that in general, the map Φ (and Λ) is not necessarily monotone. However, there are many
instances both in non-hierarchical [30, 31] and hierarchical [22, 32, 6, 14, 11, 5] regimes where
monotonicity of Φ (or its single-valued variant) does indeed hold and that represents our focus.
However, resolving such inclusion problems is by no means a simple propoposition since Φ is an
expectation-valued and possibly set-valued monotone map. Unfortunately, there are no efficient
existing schemes in general settings for resolving such problems and we present a variance-reduced
proximal-point framework for this problem.

3.2 Variance-reduced proximal-point framework for hierarchical monotone games

In this subsection, we present a variance-reduced proximal-point method for stochastic inclusion
problems of the form 0 ∈ T (x) = E[Φ(x,y(x, ω), ω)] where Φ(x,y(x, ω), ω) is defined in (1).
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Throughout this subsection, x∗ denotes a solution of 0 ∈ T (x), implying that 0 ∈ T (x∗) or x∗ ∈
T−1(0). Deterministic proximal-point methods require computing (I + λT )−1 at every step, a
challenging proposition since the expectation is unavailable in closed form. Our scheme retains the
expectation-valued T (x) in the resolvent operator, which is subsequently approximated via Monte-
Carlo sampling, leading to an error; in effect, we articulate the resolvent problem then utilize
sampling to get an approximation. Given x0 ∈ Rn, (VR-SPP) generates a sequence {xk}, where
xk+1 is updated as

Variance-reduced proximal-point method

xk+1 := (I + λkT )−1(xk) + ek, (VR-SPP)

where ek denotes the random error in computing the resolvent (I+λkT )−1 when employing Monte-
Carlo sampling schemes. We review some preliminary results and assumptions in Sections 3.2.1
and 3.2.2, respectively and then discuss a player-specific stochastic approximation framework for
computing an inexact resolvent in Section 3.2.3. Subsequently, we analyze (VR-SPP) for maximal
monotone and strongly monotone regimes in Sections 3.3 and 3.4, respectively.

3.2.1 Preliminaries on proximal-point schemes

Consider the generalized equation

0 ∈ T (x) , E[Φ(x,y(x, ω), ω)], (SGE)

where T is a set-valued maximal monotone map and Φ(•,y(•, ω), ω) is defined in (1). A standard
scheme to solve (SGE) in deterministic regimes is the proximal point algorithm proposed in [33,
34, 35]. Given an x0,

xk+1 := (I + λkT )−1(xk), (PP)

where λk denotes the parameter of the proximal operator. The map (I+λkT )−1, referred to as the
resolvent of T , is denoted by JTλk , (I+λkT )−1 [34]. The resolvent of T is a single-valued, nonexpan-

sive map for a monotone T ; the domain of JTλk is equal to Rn if T is maximal monotone [29]. In [34],
Rockafellar developed a proximal-point framework for generalized equations with monotone opera-
tors, presenting a linear rate statement for strongly monotone T . This avenue has inspired several
inexact proximal-point methods, including the classical inexact version [34] and newer hybrid proxi-
mal extragradient (HPE) variants [36, 37, 38]. More recently, in [39], Corman and Yuan proved that
under maximal monotonicity, the proximal-point scheme produced sequences which diminishes to
zero at the rate of O(1/k) under an appropriate metric while a linear rate can be proven in strongly
monotone regimes. In this section, we develop a stochastic proximal point framework in which the
resolvent of the expectation-valued map, denoted by (I+λkE[Φ(x,y(x, ω), ω)])−1, is approximated
with increasing accuracy via a stochastic approximation framework. Notably, a variance-reduced
framework is proposed through which a linear rate (for strongly monotone T ) and a sublinear rate
O(1/k) (for monotone T ) are derived with optimal or near-optimal sample-complexity. Notably,
both schemes achieve deterministic iteration complexities in resolvent evaluations. When T enjoys
an amenable structure, splitting-based approaches have emerged as an alternative.

While stochastic counterpart of the proximal gradient method (and its accelerated counterpart)
have received much attention [42, 43, 44, 45], stochastic generalizations of the proximal-point
method have been less studied. Koshal, Nedić and Shanbhag [3] presented one of the first in-
stances of a stochastic iterative proximal-point method for strictly monotone stochastic variational
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Table 2: Variance-reduced vs Stochastic proximal-point schemes

Alg/Prob. Map E[‖G(x, ω)‖2] ≤ λk; Nk Statements

[40] (OPT) fL M2 O(1/k); 1 E[f(x̄k)− f∗] ≤ O( 1√
k

)

[40] (OPT) σf,ω , (∇f)L M2 O(1/k); 1 E[‖xk − x∗‖2] ≤ O( 1
k

)

[41] (OPT) fL M2 λ; 1 E][f(x̄k)− f∗] ≤ O( 1√
k

)

[41] (OPT) σf , fL M2 O(1/k); 1 E][f(x̄k)− f∗] ≤ O( 1
k

)

(VR-SPP)
(SGE)

σT M2
1 ‖x‖2 +M2

2
λ;dρ−2ke
ρ < 1

xk
k→∞−−−−→
a.s.

x∗

E[‖xk − x∗‖] ≤ O(qk)

(VR-SPP)
(SGE)

MM M2
1 ‖x‖2 +M2

2
λ;dk2ae
a > 1

xk
k→∞−−−−→
a.s.

x∗ ∈ X∗

E[‖Tλ(xk)− x∗‖] ≤ O( 1
k
)

fL, (∇f )L: Lipschitz constants of convex f, ∇f; σf , σf,ω: strong convexity constant of f, f(·, ω),
σT : strong monotonicity constant of T, MM: Maximal monotone, G(·, ω): subgradient of f(·, ω)

inequality problems and provided almost-sure convergence. In the context of minimizing E[f(x, ω)],
Ryu and Boyd [46] proved that the stochastic proximal scheme (defined as (SPI) below) admitted
a rate of convergence O(1/k) in mean-squared error when f(·, ω) is C2, L(ω)-smooth, and strongly
convex where E[L2(ω)] <∞.

xk+1 := argmin
x∈X

{
f(x, ωk) + 1

2λk
‖x− xk‖22

}
. (SPI)

These statements were extended to model-based regimes by Asi and Duchi [47] where f(·, ωk) is
replaced by an appropriate model function. Subsequently, Patrascu and Necoara [40] imposed a
constraint x ∈ ∩kXωk and employed an additional projection step onto Xωk at each step. Rate
statements are provided for both convex and strongly convex regimes without the smoothness
requirements. More recently, Davis and Drusvyatskiy [41] provided similar statements in convex
regimes while extending the rate statements to weakly convex regimes. Our focus is on the stochastic
generalized equation which requires an x ∈ Rn such that

0 ∈ T (x) , E[Φ(x,y(x, ω), ω)],

where the components of the map Φ are denoted by Φi, i = 1, . . . , n, Ti : Rn×Ω⇒ Rn is a set-valued
map, E[·] denotes the expectation, and the associated probability space is given by (Ω,F ,P). The
only related work is that by Bianchi [48]; he proves a.s. convergence of a stochastic proximal-point
(SPP) scheme under maximal monotonicity and requires computing the resolvent of the sampled
map T (·, ω) at each step, as defined next.

xk+1 := (I + λkΦ(•,y(•, ωk), ωk))−1(xk). (SPP)

Rate statements (available for stochastic optimization) are summarized in Table 2. When the oper-
ator T may be cast as the sum of two operators A and B, there has been significant study of splitting
methods [49, 50, 51, 52] when the expectation-valued operator is single-valued in the optimization
regime [42, 43, 44, 45, 53] and more generally [54, 55] when A is Lipschitz and expectation-valued
while B is maximal monotone. Sample-average approximation techniques have also been devel-
oped [56, 57] as a form of approximation framework.

Gaps in stochastic proximal schemes. Several gaps emerge in studying prior work. (i) Gap
between deterministic and stochastic rates. Deterministic schemes for strongly monotone and mono-
tone generalized equations display linear and O(1/k) rate in resolvent operations while stochastic
analogs display rates of O(1/k) and O(1

√
k), respectively. This leads to far poorer practical behav-

ior particularly when the resolvent is challenging to compute, e.g., in strongly monotone regimes,
the complexity in resolvent operations can improve from O(1/ε) to O(log(1/ε)). (ii) Absence of
rate statements for monotone operators. To the best of our knowledge, there appear to be no
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non-asymptotic rate statements available in monotone regimes. (iii) State-dependent bounds on
subgradients and second moments. Many subgradient and stochastic approximation schemes im-
pose bounds of the form E[‖G(x, ω)‖2] ≤M2 where G(x, ω) ∈ ∂f(x, ω) or E[‖w‖2 | x] ≤ ν2 where
w = ∇xf(x, ω)−∇xf(x). Both sets of assumptions are often challenging to impose non-compact
regimes.

Motivation in developing (VR-SPP). We draw motivation from these gaps in developing
variance-reduced proximal schemes that can (a) achieve deterministic rates of convergence with
either identical or slightly worse oracle complexities in both monotone and strongly monotone
regimes; (b) accommodate state-dependent bounds to allow for non-compact domains; and (c)
allow for possibly biased oracles in select settings. Collectively, these schemes have provably better
iteration complexity in resolvent operations, leading to superior empirical behavior.

3.2.2 Assumptions and supporting results

Throughout this section, we assume that the game G admits the following ground assumption.

Ground Assumption (G2) Consider the N-player game G in which the ith player is
defined as (Playeri(x

−i)) for i = 1, · · · ,N. For i = 1, · · · ,N, the parametrized lower-level
mapping Fi(•,x, ω) is a strongly monotone map for x ∈ X and for every ω ∈ Ω. The
associated map T , defined as (1), is monotone.

We formalize an assumption on T which is useful when providing convergence guarantees.

Assumption 1. The mapping T is maximal monotone.

While our original game is assumed to induce a monotone stochastic inclusion, our framework
relies on solving a sequence of strongly monotone problems. To this end, the following assumption
specifies a strong monotonicity assumption on T .

Assumption 2. The mapping T is σ-strongly monotone, i.e. there exists σ > 0 such that (u −
v)T(x− y) ≥ σ‖x− y‖2, ∀x,y ∈ Rn, u ∈ T (x), v ∈ T (y).

Next, we define the Yosida approximation operator [58].

Definition 1 (Yosida approximation). For a set-valued maximal monotone operator T : Rn →
Rn and for λ > 0, the Yosida approximation operator is denoted as Tλ(•) and is defined as Tλ ,
1
λ(I − JTλ ).

We now provide some properties of JTλ and Tλ.

Lemma 1 (Properties of Tλ and JTλ ). [34, 39] Given a maximal monotone map T and a positive
scalar λ > 0, the following hold.

(a) x ∈ T−1(0) if and only if x is a zero of Tλ, i.e. 0 ∈ T (x) ⇐⇒ Tλ(x) = 0.

(b) Tλ is a single-valued and 1
λ -Lipschitz continuous map.

(c) JTλ is a single-valued and non-expansive map.

Next, we assume the existence of a stochastic first-order oracle that can provide estimator of T (x),
given by v(x, ω) ∈ Φ(x, ω) that satisfies suitable moment bounds under state-dependent noise. Note
that the state-dependence assumption is crucial since it allows for dealing with the unconstrained
settings where compactness of the iterates cannot be guaranteed via projection, for instance.
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Assumption 3 (Stochastic first-order oracle for T with state-dependent bounds). There
exists a stochastic first-order oracle that given an x produces v(x, ω) such that E[v(x, ω) | x] =
v(x) and E[‖v(x, ω)‖2 | x] ≤ M2

1 ‖x‖2 + M2
2 a.s., where v(x) ∈ T (x) for all x and v(x, ω) ∈

Φ(x,y(x, ω), ω).

3.2.3 Approximating (I + λkE[Φ(x,y(x, ω), ω)])−1 via stochasic approximation

Our framework relies on computing inexact resolvents with error ek via (VR-SPP). Recall that
the the resolvent problem can be rewritten as follows with λk = λ.[

x̃k+1 = (I + λT )−1(xk)
]
≡
[
0 ∈ T (x̃k+1) + 1

λ(x̃k+1 − xk)
]
. (3)

However, T is an expectation-valued map where evaluating Φ(x,y(x, ω), ω) requires solving a lower-
level problem with solution y(x, ω). Therefore exact solutions of (3) can generally not be provided
in finite time. We now discuss how one may compute approximate solutions of such problem in
finite time. We begin by defining Fk(•) as

0 ∈ Fk(z) , T (z) + 1
λ(z− xk), where T (z) = E[Φ(z,y(z, ω), ω)], (4)

We observe that Fk is 1
λ -monotone. Let u ∈ F̃k(z, ω) , Φ(z,y(z, ω), ω) + 1

λ(z−xk) and it follows
that u = v + 1

λ(z − xk) where v ∈ Φ(x,y(x, ω), ω). In addition, we have E[‖v‖2] ≤ M2
1 ‖z‖2 + M2

2

(by Assumption 3). We remind the reader that z, u, and v are defined as the tuple of the analogous
player-specific counterparts, defined as

z =

 z1

...
zN

 , u =

u1

...
uN

 , and v =

 v1

...
vN

 ,

respectively. Therefore, we have that

E[‖u‖2] ≤ 2E[‖v‖2] + 2
λ2
E[‖z− xk‖2] ≤ 2M2

1 ‖z‖2 + 2M2
2 + 2

λ2
E[‖z− xk‖2]

≤ 4M2
1 ‖xk‖2 + 2M2

2 + (4M2
1 + 2

λ2
)E[‖z− xk‖2]. (5)

If zk0 = xk, an inexact solution can be computed by taking Nk steps of the update rule (SA), defined
as follows where αj denotes the steplength.

zkj+1 := zkj − αjukj , for j = 0, · · · , Nk − 1, (SA)

where ukj = vkj +
zkj−xk

λ and vkj ∈ Φ(zkj ,y(zkj , ωj,k), ωk,j).

The update rule (SA) can be explicitly written for each player as follows for j = 0, · · · , Nk − 1.
zk,1j+1 := zk,1j − αju

k,1
j

...

zk,Nj+1 := zk,Nj − αjuk,Nj

 , where

v
k,i
j ∈ ∂xi f̃i(x

k,i,xk,−i,yi(xk, ωk,j), ωk,j) +NXi(xk,i),

uk,ij = vk,ij +
zk,ij −x

k,i

λ for i = 1, · · · ,N.

 (6)

Upon termination after Nk steps, xk+1,i := zk,iNk for i = 1, · · · ,N. As part of the proposed scheme,
we generate N0, N1 · · · , NK−1 samples from the first-order oracle, where Nk samples are used at
the kth step. Consequently, we define Fk as the history up to iteration k as follows.

Fk ,
{
{x0,i}Ni=1, {{v

0,i
j }

N
i=1}

N0−1
j=0 , · · · , {{vk−1,i

j }Ni=1}
Nk−1−1
j=0

}
.
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We define the history Fk,j at iteration j ≥ 1 of the inner scheme as follows.

Fk,j , Fk−1 ∪
{
{{vk,i` }

N
i=1}

j−1
`=0

}
.

We are now ready to formally define the variance-reduced proximal-point scheme for hierarchical
monotone games.

Var-reduced proximal-point scheme for hierarchical monotone games (VR-SPP)

(0) Let k = 0, x0,i ∈ Xi for i = 1, · · · ,N. Given K, λ, {Nk}K−1
k=0 , and {αj}Nk−1

j=0 .

(1) While k < K,

(2) Let zk,i0 = xk,i for i = 1, · · · ,N. Generate {{zk,ij }Ni=1}
Nk
j=1 by updating for j = 1, · · · , Nk.

zk,1j+1 := zk,1j − αju
k,1
j

...

zk,Nj+1 := zk,Nj − αjuk,Nj

 , where

v
k,i
j ∈ ∂xi f̃i(x

k,i,xk,−i,yi(xk, ωk,j), ωk,j) +NXi(xk,i),

uk,ij = vk,ij +
zk,ij −x

k,i

λ for i = 1, · · · ,N.


(3) Let xk+1,i = zk,iNk for i = 1, · · · ,N.

(4) Set k := k + 1 and go to (1).

Computing an element of ∂xi f̃i(x,y(x, ω), ω). The reader will observe that the scheme requires

computing vk,ij ∈ ∂xi f̃i(xk,i,xk,−i,y(xk, ωk,j), ωk,j).

(i) Closed-form expression entirely in terms of x. In the first application in Section 2.3, y(x, ω)
can be expressed in closed form in terms of x; for instance, in this case yi(x

i, ω) =
max{Qi(ω)−ibi(x

i, ω), `i(x
i, ω)).

(ii) Expression in terms of y(x, ω) and ∂xy(x, ω). In the second application in Section 2.3,
∂xi f̃i(x

k,i,xk,−i,yi(xk, ωk,j), ωk,j) is not available in closed form but can be expressed in terms
of y(x, ω) and ∂xy(x, ω). We observe that the hierarchical structure emerges because y(x, ω)
is not available in closed form and requires solving the lower-level problem (Equilfoll(X,ω)).
In short, the structure of ∂xy(x, ω) needs to be derived via the model.

(iii) No problem structure. Approaches (i) and (ii) require leveraging problem structure. In the
absence of such structure, we would need to employ smoothing and then compute a (sampled)
gradient. However, the resulting gradient estimator is conditionally biased. It remains an
open question as to whether this bias can be addressed within the above framework since no
schemes exist to the best of our knowledge for resolving such problems with possibly biased
oracles.

In the remainder of this subsection, we will provide a rigorous rationale for why zkNk satisfies a
suitable error bound in an expectation-valued sense. We utilize the following lemma in the next
proposition, both of which are proved in the Appendix.

Lemma 2. Given positive scalars c,M, θ and J1 ∈ Z+, consider the recursive inequality given by

Aj+1 ≤ (1 − 2cαj)Aj +
α2
jM2

2 where αj = θ
j for j ≥ J1 and Aj ≥ 0 for all j. Suppose J2 , d2cθe,
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J , max{J1, J2}, and B , θ2π2

12 . Then for j ≥ J , we have that Aj ≤
max

{
M2θ2

2(2cθ−1) ,JAJ
}

j ≤
M2θ2

2(2cθ−1) +J(A1+BM2)

j .

Proposition 5. Consider a 1
λ -strongly monotone map Fk defined as (4). Suppose Assumption 3

holds and 0 ∈ Fk(JTλ (xk)). If J1 , d2λθ(4M2
1 + 2

λ2
)e, J2 , d θλe, J , max{J1, J2}, then

E[‖zkj − JTλ (xk)‖2 | Fk] ≤
ν21‖xk‖2+ν22

2j for j ≥ J,

where ν2
1 and ν2

2 are defined as

ν2
1 ,

((
θ2

2(2cθ−1) + JB
) (

136M2
1 + 64

λ2

)
+ 8J

)
and

ν2
2 , 4

(
θ2

2(2cθ−1) + JB
)
M2

2 + 8
((

θ2

2(2cθ−1) + JB
) (

16M2
1 + 8

λ2

)
+ J

)
‖x∗‖2.

The super-martingale convergence lemma is also employed in our analysis [59].

Lemma 3. Let rk, uk, δk, ψk be nonnegative random variables adapted to σ-algebra Fk, and let
the following relations hold almost surely:

E[rk+1 | Fk] ≤ (1 + uk)rk − δk + ψk, ∀k;
∞∑
k=0

uk <∞, and
∞∑
k=0

ψk <∞.

Then a.s., limk→∞ rk = r and
∑∞

k=0 δk <∞, where r ≥ 0 is a random variable.

3.3 Convergence analysis under monotonicity

We begin with a result from [39] and subsequently recall a bound on the sequence of iterates
produced by a deterministic exact proximal-point scheme [39, Lemma 2.5].

Lemma 4. [39] Given a set-valued maximal monotone operator T : Rn ⇒ Rn, let JTλ denote
the resolvent operator while Tλ denotes the Yosida approximation operator of T . Then Tλ(x) ∈
T (JTλ (x)) for all x ∈ Rn.

Lemma 5. Let Assumption 1 hold. Consider any sequence generated by (VR-SPP). Then the
following holds for all k > 0:

‖JTλ (xk)− x∗‖2 = ‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 − 2λTλ(xk)T(JTλ (xk)− x∗).

The next lemma allows for proving convergence of iterates generated by (VR-SPP).

Lemma 6. Let Assumptions 1 and 3 hold. Suppose λ > 0 and Nk , d(k + 1)2ae for all k > 0,
where a > 1. Consider a sequence generated {xk} generated by (VR-SPP). Then {‖xk − x∗‖} is
convergent almost surely.

Proof. From non-expansivity of JTλ [34], we obtain the following relation

‖JTλ (xk)− x∗‖2 ≤ ‖xk − x∗‖2. (7)

By adding and subtracting JTλ (xk), we may bound E[‖xk+1 − x∗‖] as follows.

E[‖xk+1 − x∗‖ | Fk] ≤ E[‖JTλ (xk)− x∗‖ | Fk] + E[‖xk+1 − JTλ (xk)‖ | Fk]
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(Prop. 5)

≤ ‖JTλ (xk)− x∗‖+

√
ν21‖xk‖2+ν22√

Nk

≤ ‖JTλ (xk)− x∗‖+

√
ν21‖xk‖2+ν22+2ν1ν2‖xk‖√

Nk
(8)

= ‖JTλ (xk)− JTλ (x∗)‖+ ν1‖xk‖+ν2√
Nk

(Lemma 1)

≤ ‖xk − x∗‖+ ν1(‖xk−x∗‖+‖x∗‖)+ν2√
Nk

(9)

= (1 + ν1√
Nk

)‖xk − x∗‖+ ν1‖x∗‖+ν2√
Nk

= (1 + ν1√
Nk

)vk − δk + ψk,

where vk, δk, and ψk are nonnegative random variables defined as vk , ‖xk − x∗‖, δk , 0, and

ψk ,
ν1‖x∗‖+ν2√

Nk
. By Lemma 3, vk → v̄ ≥ 0 almost surely.

Proposition 6 (a.s. convergence of (VR-SPP)). Consider a sequence {xk} generated by
(VR-SPP). Let Assumptions 1 and 3 hold. Suppose λ > 0 and Nk , d(k + 1)2ae for all k > 0,

where a > 1. Then for any x0, xk
k→∞−−−→
a.s.

x∗ ∈ X∗ where X∗ denotes the solution set of (SGE).

Proof. From Lemma 6, {‖xk − x∗‖} is convergent a.s. implying that there exists C such that a.s.,
‖xk − x∗‖2 ≤ C2 for all k. Recall that ‖xk+1 − x∗‖2 can be bounded as follows:

‖xk+1 − x∗‖2 ≤ ‖JTλ (xk)− x∗‖2 + ‖xk+1 − JTλ (xk)‖2

+ 2‖JTλ (xk)− x∗‖‖xk+1 − JTλ (xk)‖. (10)

By Lemma 4,

(Tλ(xk)− Tλ(x∗))T(JTλ (xk)− JTλ (x∗)) ≥ 0,

≡ (Tλ(xk))T(JTλ (xk)− x∗) ≥ 0, (11)

by noticing that Tλ(x∗) = 0 and JTλ (x∗) = x∗. By substituting (11) in Lemma 5,

‖JTλ (xk)− x∗‖2 = ‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 − 2λTλ(xk)T(JTλ (xk)− x∗)

≤ ‖xk − x∗‖2 − λ2‖Tλ(xk)‖2. (12)

By substituting the bound (12) in (10) and taking expectations conditioned on Fk, we obtain the
following bound.

E[‖xk+1 − x∗‖2 | Fk] ≤ ‖JTλ (xk)− x∗‖2 + E[‖xk+1 − JTλ (xk)‖2 | Fk]
+ 2‖JTλ (xk)− x∗‖E[‖xk+1 − JTλ (xk)‖ | Fk] (13)

≤ ‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 +
ν21‖xk‖2+ν22

Nk
+ 2‖xk − x∗‖

(
ν1‖xk‖+ν2√

Nk

)
(14)

≤ ‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 +
ν21 (2‖xk−x∗‖2+2‖x∗‖2)+ν22

Nk

+ 2‖xk − x∗‖
(
ν1(‖xk−x∗‖+‖x∗‖)+ν2√

Nk

)
= (1 +

2ν21
Nk

+ 2ν1√
Nk

)‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 +
2ν21‖x∗‖2+ν22

Nk

+ 2‖xk − x∗‖
(
ν1‖x∗‖+ν2√

Nk

)
≤ (1 +

2ν21
Nk

+ 2ν1√
Nk

)‖xk − x∗‖2 − λ2‖Tλ(xk)‖2 +
2ν21‖x∗‖2+ν22

Nk
+ 2C

(
ν1‖x∗‖+ν2√

Nk

)
.

By definition of Nk,
∑

k
1
Nk

<
∑

k
1√
Nk

< ∞. By Lemma 3, {‖xk − x∗‖} is convergent and∑
k λ

2‖Tλ(xk)‖2 <∞ in an a.s. sense. Therefore, in an a.s. sense, we have limk→∞ ‖Tλ(xk)‖2 = 0.

18



Since {‖xk − x∗‖2} is a convergent sequence in an a.s. sense, {xk} is bounded a.s. and has a
convergent subsequence. Consider any convergent subsequence of {xk} with index set denoted by
K. Suppose its limit point is x̄. Consequently, by the continuity of Tλ, we have that limk∈K Tλ(xk) =
Tλ(x̄) = 0. It follows that x̄ is a solution to 0 ∈ T (x). Consequently, we have that limk∈K xk =
x̄ ∈ X∗, in an a.s. sense. It follows that {‖xk − x̄‖2} is convergent and its unique limit point is
zero. Thus every subsequence of {xk} converges a.s. to x̄, implying that the entire sequence of
{xk} converges to x̄ almost surely.

We conclude this subsection with a rate statement for (VR-SPP).

Proposition 7 (Rate of convergence of (VR-SPP) under maximal monotonicity). Let
Assumptions 1 and 3 hold, λ > 0, and Nk , d(k + 1)2ae for all k > 0, where a > 1. Consider a
sequence {xk} generated by (VR-SPP).

(a) For any k ≥ 0, we have that E[‖Tλ(xk)‖2] = O
(

1
k+1

)
.

(b) Suppose xK+1 satisfies E[‖Tλ(xK+1)‖2] ≤ ε. Then the oracle complexity of computing such an
xK+1 satisfies

∑K
k=0Nk = O

(
1

ε2a+1

)
.

Proof. (a) By taking unconditional expectations on (9),

E[‖xk+1 − x∗‖] ≤ E[‖xk − x∗‖] + ν1(E[‖xk−x∗‖]+‖x∗‖)+ν2√
Nk

≤ E[‖xk − x∗‖] + ν1(C+‖x∗‖)+ν2√
Nk

≤ ‖x0 − x∗‖+
∞∑
i=0

ν1(C+‖x∗‖)+ν2√
Ni

, (15)

where ‖xk − x∗‖ ≤ C a.s. for all k ≥ 0. Taking unconditional expectations over (13),

E[‖xk+1 − x∗‖2] ≤ E[‖JTλ (xk)− x∗‖2] + E[‖xk+1 − JTλ (xk)‖2]

+ 2E[‖JTλ (xk)− x∗‖]E[E[‖xk+1 − JTλ (xk)‖ | Fk]].
(12)

≤ E[‖xk − x∗‖2]− λ2E[‖Tλ(xk)‖] + E[‖xk+1 − JTλ (xk)‖2]

+ 2E[‖JTλ (xk)− x∗‖]E[E[‖xk+1 − JTλ (xk)‖ | Fk]]. (16)

By non-expansivity of JTλ and by substituting (15) in (7),

E[‖JTλ (xk)− x∗‖] ≤ E[‖xk − x∗‖] ≤ ‖x0 − x∗‖+
∞∑
i=0

ν1(C+‖x∗‖)+ν2√
Ni

. (17)

Inserting (17) into (16), we obtain the following bound:

E[‖xk+1 − x∗‖2] ≤ E[‖xk − x∗‖2]− λ2E[‖Tλ(xk)‖2] +
ν21‖xk‖2+ν22

Nk

+ 2ν1‖xk‖+ν2√
Nk

(
‖x0 − x∗‖+

∞∑
i=0

ν1(C+‖x∗‖)+ν2√
Ni

)
≤ E[‖xk − x∗‖2]− λ2E[‖Tλ(xk)‖2] +

ν21 (2C2+2‖x∗‖2)+ν22
Nk

+ 2ν1(C+‖x∗‖)+ν2√
Nk

(
‖x0 − x∗‖+

∞∑
i=0

ν1(B+‖x∗‖)+ν2√
Ni

)
.
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Defining E1 ,
∑∞

i=0
1√
Ni

, E2 ,
∑∞

i=0
1
Ni

, D1 , ν2
1(2C2 + 2‖x∗‖2) +ν2

2 and D2 , ν1(C+‖x∗‖) +ν2,

and summing from i = 0, · · · , k, we get

λ2
k∑
i=0

E[‖Tλ(xi)‖2] ≤ ‖x0 − x∗‖2 − E[‖xk+1 − x∗‖2]

+
k∑
i=0

(
D1
Ni

+ 2D2√
Ni

(
‖x0 − x∗‖+D2

∞∑
`=0

1√
N`

))
≤ ‖x0 − x∗‖2 +D1E2 + 2D2E1‖x0 − x∗‖+ 2D2

2E
2
1

=
(
‖x0 − x∗‖+D2E1

)2
+D1E2 +D2

2E
2
1 . (18)

We now proceed to analyze
∑k

i=0 E[‖Tλ(xi)‖2] by noting that

Tλ(xk) = 1
λ(xk − JTλ (xk)) = 1

λ(xk+1 − JTλ (xk)− (xk+1 − xk))

= 1
λ(xk+1 − JTλ (xk))− 1

λ(JTλ (xk+1)− JTλ (xk))− (Tλ(xk+1)− Tλ(xk))

It follows that

(Tλ(xk+1)− Tλ(xk))TTλ(xk) = 1
λ(Tλ(xk+1)− Tλ(xk))T(xk+1 − JTλ (xk))

− 1
λ(Tλ(xk+1)− Tλ(xk))T(JTλ (xk+1)− JTλ (xk))︸ ︷︷ ︸

≥ 0

−‖Tλ(xk+1)− Tλ(xk)‖2

≤ 1
λ(Tλ(xk+1)− Tλ(xk))T(xk+1 − JTλ (xk))− ‖Tλ(xk+1)− Tλ(xk)‖2. (19)

Then we have

‖Tλ(xk+1)‖2 = ‖Tλ(xk)‖2 + ‖Tλ(xk+1)− Tλ(xk)‖2 + 2(Tλ(xk+1)− Tλ(xk))TTλ(xk)

(19)

≤ ‖Tλ(xk)‖2 − ‖Tλ(xk+1)− Tλ(xk)‖2

+ 2
λ‖Tλ(xk+1)− Tλ(xk)‖‖xk+1 − JTλ (xk)‖

≤ ‖Tλ(xk)‖2 − ‖Tλ(xk+1)− Tλ(xk)‖2 + ‖Tλ(xk+1)− Tλ(xk)‖2 + D1
λ2Nk

= ‖Tλ(xk)‖2 + D1
λ2Nk

. (20)

By (20), we have the following relationship.

‖Tλ(xk)‖2 ≤ ‖Tλ(xi)‖2 +
k−1∑
j=i

D1
λ2Nj

, ∀i = 0, · · · , k − 1. (21)

Thus, we have (k + 1)‖Tλ(xk)‖2 ≤
∑k

i=0 ‖Tλ(xi)‖2 +
∑k

i=0

∑k−1
j=i

D1
λ2Nj

, implying that

E[‖Tλ(xk)‖2]
(18),(21)

≤ (‖x0−x∗‖+D2E1)
2
+D1E2+D2

2E
2
1

λ2(k+1)
+

D1
∑k
i=0

∑k−1
j=i

1
Nj

λ2(k+1)
.

Recalling Nk = d(k + 1)2ae, a > 1, it follows that

k∑
i=0

k−1∑
j=i

1
Nj

=
k∑
i=0

k−1∑
j=i

1
d(j+1)2ae ≤

k∑
i=0

k−1∑
j=i

1
(j+1)2a

≤
∫ k+1

0

∫ k+1

y

dxdy
(x+1)2a

≤ 1
(2a−1)(a−1) .
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Since
∑∞

i=0
1√
Ni+1

< +∞ and
∑∞

i=0
1

Ni+1
< +∞, we have E[‖Tλ(xk)‖2] ≤ Ĉ

k+1 = O
(

1
k+1

)
, where

Ĉ ,
(‖x0−x∗‖+D2E1)

2
+D1E2+D2

2E
2
1

λ2
+ D1

λ2(a−1)(2a−1)
.

(b) Suppose xK+1 is such that E[‖Tλ(xK+1)‖2] ≤ ε. From (a), for sufficiently small ε,

K∑
k=0

Nk ≤
dĈ/εe−1∑
k=0

Nk =

dĈ/εe−1∑
k=0

d(k + 1)2ae ≤ 2

dĈ/εe−1∑
k=0

(k + 1)2a

≤ 2

∫ Ĉ/ε

x=0
(x+ 1)2a dx ≤ 2(Ĉ/ε+1)2a+1

2a+1 ≤
(

Ĉ
ε2a+1

)
.

3.4 Convergence analysis of (VR-SPP) under strong monotonicity

Next, we derive a rate statement under a strong monotonicity assumption on T . We begin by
deriving a bound on ‖JTλ (xk)− x∗‖, akin to [39, Prop. 3].

Lemma 7. Let Assumption 2 hold and let λ > 0. Assume x∗ ∈ T−1(0) is a solution. Then we
have the following for all k:

‖JTλ (xk)− x∗‖ ≤ (1 + σλ)−1‖xk − x∗‖.

Proof. Suppose yk+1 = JTλ (xk) or xk = (I + λT )(yk+1) = yk+1 + λvk+1 where vk+1 ∈ T (yk+1). In
addition, x∗ = JTλ (x∗) or x∗ = x∗ + λv∗ where 0 = v∗ ∈ T (x∗). Since T is σ-strongly monotone,
we have that

‖vk+1 − v∗‖‖yk+1 − x∗‖ ≥ (vk+1 − v∗)T(yk+1 − x∗) ≥ σ‖yk+1 − x∗‖2

=⇒ ‖vk+1 − v∗‖ ≥ σ‖yk+1 − x∗‖.

Consequently, we may bound ‖xk − x∗‖2 from below as follows.

‖xk − x∗‖2 = ‖yk+1 + λvk+1 − (x∗ + λv∗)‖2

= ‖yk+1 − x∗‖2 + λ2‖vk+1 − v∗‖2 + 2λ(yk+1 − x∗)T(vk+1 − v∗)
≥ (1 + 2σλ)‖yk+1 − x∗‖2 + λ2‖vk+1 − v∗‖2 ≥ (1 + σλ)2‖yk+1 − x∗‖2,

where the first inequality follows from the strong monotonicity of T and the second inequality is a
consequence of ‖vk+1 − v∗‖2 ≥ σ2‖yk+1 − x∗‖2. It follows that

‖xk − x∗‖2 ≥ (1 + σλ)2‖yk+1 − x∗‖2 = (1 + σλ)2‖JTλ (xk)− x∗‖2.

We conclude by deriving a rate under a strong monotonicity requirement.

Proposition 8 (Linear convergence of (VR-SPP) under strong monotonicity). Let As-
sumptions 2 and 3 hold. Suppose {xk} denotes a sequence generated by (VR-SPP) and x∗ denotes
a unique solution to 0 ∈ T (x). Furthermore, suppose ‖x0 − x∗‖ ≤M . Then the following hold.
(a) Suppose Nk = bρ−(k+1)c where 0 < ρ < 1 and q , 1+d

(1+σλ)2
< 1 for d sufficiently small. Then

E[‖xk − x∗‖2] ≤ D̃ρ̃k where D̃ > 0 and ρ̃ = max{q, ρ} if q 6= ρ and ρ̃ ∈ (q, 1) if q = ρ.
(b) The oracle complexity to ensure that E[‖xK+1 − x∗‖2] ≤ ε satisfies

∑K
k=0Nk ≤ O

(
1
ε

)
.
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Proof. (a) By invoking Lemma 7 and Prop. 5, we obtain the following:

E[‖xk+1 − x∗‖2] ≤ (1 + d)E[‖yk+1 − x∗‖2] + (1 + 1
d)E[‖xk+1 − yk+1‖2]

≤ qE[‖xk − x∗‖2] + (1 + 1
d) DNk , q ,

(1+d)
(1+σλ)2

, D , ν2
1(2C2 + 2‖x∗‖2) + ν2

2 , (22)

and d > 0 is chosen such that (1+d)
(1+σλ)2

< 1. Recall that Nk can be bounded as seen next.

Nk = bρ−(k+1)c ≥
⌈

1
2ρ
−(k+1)

⌉
≥ 1

2ρ
−(k+1). (23)

We now consider three cases.
(i): q < ρ < 1. Using (23) in (22) and defining D̄ = 2(1 + 1

2)D, D̃ , (M + D̄
1−q/p), we obtain

E[‖xk+1 − x∗‖2] ≤ qE[‖xk − x∗‖2] +
(1+ 1

d
)D

Nk
≤ qE[‖xk − x∗‖2] + D̄ρk+1

≤ qk+1‖x0 − x∗‖+ D̄

k+1∑
j=1

qk+1−jρj ≤Mqk+1 + D̄ρk+1
k+1∑
j=1

( qρ)k+1−j ≤ D̃ρk+1.

(ii): ρ < q < 1. Akin to (i) and defining D̃ apprioriately, E[‖xk+1 − x∗‖2] ≤ D̃qk+1.
(iii): ρ = q < 1. If ρ̃ ∈ (q, 1) and D̂ > 1

ln(ρ̃/q)e , proceeding similarly we obtain

E[‖xk+1 − x∗‖2] ≤ qk+1E[‖x0 − x∗‖2] + D̄
k+1∑
j=1

qk+1 ≤Mqk+1 + D̄
k+1∑
j=1

qk+1

= Mqk+1 + D̄(k + 1)qk+1
[60,Lemma 4]

≤ D̃ρ̃k+1, where D̃ , (M + D̂).

Thus, {xk} converges linearly in an expected-value sense.
(b) Case (i): If q < ρ < 1. From (a), it follows that

E[‖xK+1 − x∗‖2] ≤ D̃ρK+1 ≤ ε =⇒ K ≥ log1/ρ(D̃/ε)− 1.

If K = dlog1/ρ(D̃/ε)e− 1, then (VR-SPP) requires
∑K

k=0Nk evaluations. Since Nk = bρ−(k+1)c ≤
ρ−(k+1), then we have

dlog1/ρ(D̃/ε)e−1∑
k=0

ρ−(k+1) =

dlog1/ρ(D̃/ε)e∑
t=1

ρ−t ≤ 1

ρ2
(

1
ρ−1

) (1
ρ

)dlog1/ρ(D̃/ε)e

≤ 1

ρ
(

1
ρ−1

) (1
ρ

)log1/ρ(D̃/ε)+1
≤ 1

(1−ρ)

(
1
ρ

)log1/ρ(D̃/ε)
≤ 1

(1−ρ)

(
D̃
ε

)
.

We omit cases (ii) and (iii) which lead to similar complexities.

Remark 1. Several aspects deserve additional emphasis.
(a) Rates and asymptotics. To the best of our knowledge, we remain unaware of a.s. convergence
(an exception being Bianchi [48]) and rate statements under state-dependent noise requirements
for either monotone or strongly monotone inclusions. Note that Bianchi [48] develops a stochastic
proximal-point scheme that does not come equipped with rate statements; however, since the re-
solvent requires computing at every step, its practical behavior for large-scale regimes tends to be
poorer when the resolvent is challenging to compute.
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(b) Algorithm parameters. The inner steplengths of the (SA) scheme utilize the user-specified prox-
imal parameter while the outer steps in (VR-SPP) employ a constant user-specified steplength.
The sample-sizes are also free of algorithm parameters. The minimum number of steps J1 in each
inner step do require knowing M1 but this may be possible to obviate by using an increasing se-
quence of minimal number of steps.
(c) Lipschitzian parameters. Unlike (SA) schemes, this scheme does not tend to be as hampered by
ill-conditioning since outer steplengths are not contingent on Lipschitzian parameters while inner
steps are also user-specified.
(d) Practical implementations of VR schemes. To achieve an error of ε = 10−3, (VR-SPP) requires
O(109) samples for the maximal monotone mapping or O(103) samples for the strongly monotone
mapping, respectively. In a typical finite sum optimization problem minE[f(x)] := 1

n

∑n
i=1 fi(x),

n is larger than 109, thus the number of samples needed in both of our schemes is not expensive.
If a sharper rate is wanted in this case, we just set Nk = n to prevent unboundedness of Nk.

3.5 Broader applicability of scheme for monotone stochastic inclusions

The variance-reduced proximal-point framework has broader applicability in addressing the stochas-
tic counterpart of generalized equations [61], a class of problems that has seen recent study via
sample-average approximation (SAA) techniques [62]. Formally, the stochastic generalized equa-
tion requires an x ∈ Rn such that

0 ∈ E[T (x, ξ(ω))], (SGE)

where the components of the map T are denoted by Ti, i = 1, . . . , n, ξ : Ω→ Rd is a random variable,
Ti : Rn ×Ω⇒ Rn is a set-valued map, E[·] denotes the expectation, and the associated probability
space is given by (Ω,F ,P).The expectation of a set-valued map leverages the Aumann integral [63]
and is formally defined as E[Ti(x, ξ(ω))] =

{∫
vi(ω)dP (ω) | vi(ω) ∈ Ti(x, ξ(ω))

}
. Consequently,

the expectation E[T (x, ω)] can be defined as a Cartesian product of the sets E[Ti(x, ω)], defined
as E[T (x, ω)] ,

∏n
i=1 E[Ti(x, ω)]. We motivate (SGE) by considering some examples. Consider

the stochastic convex optimization problem [64, 65, 66] given by min
x∈X

E[g(x, ω)], where g(•, ω) is a

convex function for every ω and X is a closed and convex set. Such a problem can be equivalently
stated as 0 ∈ T (x) , E[G(x, ω)] + NX (x), where G(x, ω) = ∂g(x, ω) and NX (x) denotes the
normal cone of X at x. In fact, both the single-valued [67, 68, 69] and multi-valued [70] stochastic
variational inequality problems can be cast as stochastic inclusions as well as seen by 0 ∈ T (x) ,
E[F (x, ω)] +NX (x), where F (•, ω) is either single-valued or set-valued. This introduces a pathway
for examining stochastic analogs of traffic equilibrium [70] and Nash equilibrium problems [2] as
well as a host of other problems subsumed by variational inequality problems [29].

4 Partially distributed schemes for hierarchical potential games

In this section, we again consider an N-player noncooperative game G where the ith player’s
problem is defined by the parametrized hierarchical problem (Playeri(x

−i)), defined in Section 3,
and restated next.

min
xi∈X i

fi(x
i,x−i) , E

[
f̃i(x

i,yi(x, ω),x−i, ω)
]
, (Playeri(x

−i))

where f̃i(x
i,yi(x, ω),x−i, ω) , g̃i(xi,x−i, ω)+h̃i(x

i,yi(x, ω), ω). In this section, under the assump-
tion that for any ω ∈ Ω, f̃i(x

i,x−i,yi(x, ω), ω) is convex in xi over Xi for any x−i ∈
∏
j 6=iXj and G
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admits a suitable potentiality assumption, we propose and prove the asymptotic convergence of an
asynchronous smoothed proximal best-response scheme (and its relaxed counterpart) for comput-
ing an approximate Nash equilibrium in Section 4.1. This scheme relies on computing increasingly
accurate best-responses, which are provided via a zeroth-order method that processes the implicit
form of the hierarchical problem. To this end, we introduce and discuss a zeroth-order framework
for computing an approximate solution of a hierarchical stochastic convex program in Section 4.3.

4.1 A smoothing-based framework for hierarchical games

Recall that for i ∈ {1, · · · ,N}, fi(•,x−i) is convex but not necessarily L-smooth on Xi for every
x−i ∈ X−i. In fact, it may be recalled that

fi(x
i,x−i) , E[f̃i(x

i,yi(x, ω),x−i, ω)]

and computing even a subgradient is not immediate. Instead, the function may be evaluated,
suggesting the development of a gradient-free method facilitated by introducing a randomized
smoothing of fi. This smoothing allows for both claiming the Li,η-smoothness of the smoothed
function (for a suitable Li,η) and providing a relation between fi and fi,η. Such smoothing tech-
niques have a storied history, traceable to the 1900s [71] and employed for resolving nonsmooth
convex optimization [72, 73] and monotone games [74]. We formally define an η-smoothed game
Gη, given a game G ∈ Gchl

pot. We make the following assumption.

Assumption 4. For i = 1, · · · ,N, fi(•,x−i) has uniformly bounded subgradients over X , i.e. for
every x ∈ X , we have that ‖d̃i‖ ≤ L0 where d̃i ∈ ∂xifi(xi,x−i).

Naturally, one might ask if such an assumption is indeed valid in the current setting. Inspired
by [75] and [76, Prop. 1], we provide Prop. 14 in Appendix A.2. that provides conditions under
which the above assumption holds.

Definition 2 (An η-smoothed noncooperative game Gη). Consider a game G ∈ Gchl
pot in which

the ith player solves (Playeri(x
−i)). Suppose Gη denotes a related game in which for i = 1, · · · ,N,

the ith player’s smoothed problem is defined as

min
xi∈X i

fi,η(x
i,x−i) , Eui∈Bi

[
E
[
f̃i(x

i + ηui,y
i(xi + ηui,x

−i, ω),x−i, ω)
]]
, (Playeri,η(x

−i))

where Bi ⊆ Rni is a sphere centered at the origin and ui is independent of ω.

Absent such a smoothing, while techniques are available for resolving this hierarchical problem
(which is in effect an MPEC) (cf. [16, 77]), we remain unaware of techniques that can provide
ε-solutions of such problems in finite time. In fact, in recent work [76], we have developed a zeroth-
order framework for precisely such problems and in this paper, we consider a variant of such a
scheme for contending with the proximal best-response problem in Section 4.3. Next, we discuss
the impact of smoothing on the convexity and Lipschitz continuity of the gradient of fi(•,x−i) via
a result from [76, Lemma 1].

Lemma 8 (Convexity and smoothness of fi,η(•,x−i). For i = 1, · · · ,N, suppose fi,η(•,x−i)
is defined as fi,η(x

i,x−i) , Eui∈Bi [fi(x
i + ηui,x

−i)] where ui is uniformly distributed in a ball
Bi ⊆ Rni . Then there exists an (αi, βi) such that the following hold.
(a) fi,η(•,x−i) is convex and αi/η-smooth for every x−i ∈ X−i, i.e.

‖∇xifi,η(x
i,x−i)−∇xifi,η(y

i,x−i)‖ ≤ αi
η ‖x

i − yi‖ for any xi,yi ∈ Xi.
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(b) For any x ∈ X ,

fi(x) ≤ fi,η(x) ≤ fi(x) + ηβi. (24)

Furthermore, ᾱ = max
i=1,··· ,N

αi and β̄ = max
i=1,··· ,N

βi.

Proof. We provide a proof sketch. (a) While convexity of fi,η(•,x−i) for any x−i ∈ X−i follows
from [78, Lemma 2(a)], αi

η −smoothness of fi,η(•,x−i) follows from [78, Lemma 2(c)] by invoking
the uniform boundedness of the subgradients. (b) The left-hand side of (24) is a consequence of
employing Jensen’s inequality while the right-hand side is a result of the subgradient inequality
and the uniform boundedness of subgradients.

Comment. Note that if Assumption 4 is weakened to the uniform bound that ‖d̃i‖ ≤ B0‖x‖2 +L0

where d̃i ∈ ∂xifi(x), we may still invoke this result under the requirement that Xi is a bounded set
for i = 1, · · · ,N.

Throughout this section, we make the following ground assumption.

Ground Assumption (G3) Consider the N-player game G in which the ith player is
defined as (Playeri(x

−i)) for i = 1, · · · ,N. For i = 1, · · · ,N, the parametrized lower-
level mapping Fi(•,x, ω) is a strongly monotone map for x ∈ X and for every ω ∈ Ω.
Assumption 4 holds, Gη is a potential game for any η > 0, Pη(x) denotes its potential
function, and Pη(x) ≥ P̃η for every x ∈ X .

We should emphasize that in many settings, potentiality of G implies potentiality of Gη. For
purposes of brevity, we do not discuss this further. Associated with G , we define the proximal
best-response [79] of player i as follows, given rival decisions x−i.

Bi(x) , argmin
vi∈Xi

[
fi(x

i,x−i) + c
2‖v

i − xi‖2
]

(PBRi(x))

where fi(x
i,x−i) , E

[
f̃i(x

i,yi(xi,x−i, ω),x−i, ω)
]
.

Similarly, we may define the η-smoothed proximal best-response of player i as follows.

Bi,η(x) , argmin
vi∈Xi

[
fi,η(x

i,x−i) + c
2‖v

i − xi‖2
]

(SPBRi,η(x))

where fi,η(x
i,x−i) , Eui∈Bi

[
E
[
f̃i(x

i + ηui,y
i(xi + ηui,x

−i, ω),x−i, ω)
]]
.

Our next result provides a deeper understanding of the relationship between Bi(x) and Bi,η(x).

Proposition 9 (Proximal best-response map (PBR) and its smoothed variant (SPBRη)).
Consider a game G ∈ Gchl

pot. For any i ∈ {1, · · · ,N}, suppose fi(•,x−i) is a convex function for any
x−i ∈ X−i and Xi ⊆ Rni is a closed and convex set. For any i ∈ {1, · · · ,N}, suppose fi,η(•,x−i) de-
notes the η−smoothing of fi(•,x−i). Suppose Bi(x) and Bi,η(x) denote the proximal best-response
and smoothed proximal-response for i ∈ {1, · · · ,N}. Then the following hold for any i ∈ {1, · · · ,N}.

(a) Both Bi(x) and Bi,η(x) are single-valued maps for x ∈ X , where X ,
∏N
i=1Xi.

(b) For any i ∈ {1, · · · ,N} and x−i ∈
∏
j 6=iXj , fi,η(•,x−i) converges continuously to fi(•,x−i),

i.e. fi,η(x
i
η,x
−i) → fi(x

i,x−i) for all xiη → xi where xiη ∈ Xi and xi ∈ Xi. Further, fi,η(•,x−i)
converges uniformly to fi(•,x−i) on every bounded subset of Rni .
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Proof. (a) follows from strong convexity of the proximal problems while (b) is a consequence of
[80, Cor. 3.3].

In fact, it can be shown that a fixed-point of the η-smoothed proximal best-response map is an
η-approximate Nash equilibrium.

Proposition 10 (Fixed-point of (SPBRη) is NE of Gη). Consider an N-player noncooperative
game G where the ith player solves (Playeri(x

−i)), given rival decisions x−i. For i = 1, · · · ,N,
suppose fi(•,x−i) is convex on Xi for any x−i ∈ X−i. Suppose xη , {x1,η, · · · ,xN,η} is a fixed
point of the η-smoothed best-response map. Then the following hold.
(a) xη is a fixed point of (SPBRη(•)), i.e. xi,η = Bi,η(x

i,η,x−i,η) for i = 1, · · · ,N if and only if xη

is a Nash equilibrium of Gη.
(b) If xη is a fixed point of SPBRη(•), then xη is an ηβ̄-Nash equilibrium of G where β̄ , max

i∈{1,··· ,N}
βi.

Proof. (a) follows directly from [79, Prop. 1.5]. We proceed to prove (b). Suppose xη , {x1,η, · · · ,xN,η}
is a fixed point of the η-smoothed best-response map (SPBR(•)). Then we have that

xj,η = Bj,η(x
j,η,x−j,η), j = 1, · · · ,N.

From (a), we have that xη is a Nash equilibrium of Gη. It follows that

fj,η(x
j,η,x−j,η) ≤ fj,η(xj ,x−j,η), ∀xj ∈ Xj for j = 1, · · · ,N. (25)

By leveraging the property of the smoothed function fj,η(•,x−j), we have that

fj(x
j,η,x−j,η)

(24)

≤ fj,η(x
j,η,x−j,η)

(25)

≤ fj,η(x
j ,x−j,η), ∀xj ∈ Xj

(24)

≤ fj(x
j ,x−j,η) + ηβj , ∀xj ∈ Xj

It follows that xη is an ηβ̄-Nash equilibrium of G where β̄ , maxi∈{1,··· ,N} βi.

We now turn to the question of deriving error bounds on the best-response residual for the original
game by leveraging solutions of the η-smoothed game. This avenue requires proving a simple result
that relates Bi(x) and Bi,η(x) for any i ∈ {1, · · · ,N} and η > 0.

Proposition 11 (Relating equilibria of Gη to Equilibria of G ). Suppose the conditions of
Prop. 9 hold. Then the following hold.
(i) For any x ∈ X , we have that ‖Bi(x)−Bi,η(x)‖2 ≤ 2ηβ

c .

(ii) Suppose x ∈ X . Then the best-response residual for the original game G is bounded as follows.

N∑
i=1

‖xi −Bi(x)‖2 ≤ 2
N∑
i=1

‖xi −Bi,η(x)‖2 + 8Nη2β2

c2
.

(iii) Suppose x∗η ,
{

x1,∗
η · · · ,xN,∗

η

}
denotes an equilibrium of Gη. Then the best-response residual

for the original game is bounded as follows.

N∑
i=1

‖xi,∗η −Bi(x∗η)‖2 ≤
8Nη2β2

c2
.
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Proof. By strong convexity, we have that

fi(Bi,η(x),x−i) ≥ fi(Bi(x),x−i) + c
2‖Bi(x)−Bi,η(x)‖2

fi,η(Bi(x),x−i) ≥ fi,η(Bi,η(x),x−i) + c
2‖Bi(x)−Bi,η(x)‖2.

Adding the above inequalities, we obtain the result as follows.

c‖Bi(x)−Bi,η(x)‖2 ≤ fi(Bi,η(x),x−i)− fi,η(Bi,η(x),x−i) + fi,η(Bi(x),x−i)− fi(Bi(x),x−i)

≤ |fi(Bi,η(x),x−i)− fi,η(Bi,η(x),x−i)|+ |fi,η(Bi(x),x−i)− fi(Bi(x),x−i)|
≤ 2ηβ.

(ii) This result follows by noting that

N∑
i=1

‖xi −Bi(x)‖2 ≤ 2
N∑
i=1

(
‖xi −Bi,η(x)‖2 + ‖Bi(x)−Bi,η(x)‖2

)
≤ 2

N∑
i=1

‖xi −Bi,η(x)‖2 + 8Nη2β2

c2
.

(iii) This follows from (ii) and by noting that
∑N

i=1 ‖xi −Bi,η(x)‖2 = 0 for x = x∗η.

We will now examine the question of whether the sequence of equilibria {x∗η}η↓0, where x∗η is an
equilibrium of the smoothed game Gη, converges to an equilibrium of G . We begin by providing
the following definition for multi-epiconvergence of a collection of functions from [81, Def. 1].

Definition 3 (Multi-epiconvergence). Suppose fi,η : Rni → R for i = 1, · · · ,N. The family of
functions {fi,η}Ni=1 multi-epiconverges to the functions {fi}Ni=1 on X if the following two conditions
hold for every i = 1, · · · ,N and every x ∈ X .

(ME(i)) For every sequence {x−iη } ⊂ X−i converging to x−i, there exists a sequence {xiη} ⊂ Xi
converging to xi such that

lim sup
η→0

fi,η(x
i
η,x
−i
η ) ≤ fi(xi,x−i).

(ME(ii)) For every sequence {xη} ⊂ X converging to x,

lim inf
η→0

fi,η(x
i
η,x
−i
η ) ≥ fi(xi,x−i).

In [81], by leveraging the property of multi-epiconvergence, convergence of the sequence of ap-
proximate equilibria to its true counterpart is proven. We reproduce this result here.

Theorem 9 (Convergence of approximate Nash equilibria [81, Thm. 1]). Consider the
game G and suppose the following hold.

(C.I.) For i = 1, · · · ,N, suppose Xi ⊆ Rni is a closed and convex set.

(C.II.) Suppose that the family {{fi,η}Ni=1} multi-epiconverges to the functions {fi}Ni=1.

If the sequence {x∗η} converges to x∗ where x∗η is an equilibrium of Gη with functions {fi,η}Ni=1,
then x∗ is a Nash equilibrium of G .
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Note that Theorem 9 does not necessitate even the convexity of the player-specific objectives.
Naturally, this result provides asymptotic guarantees but does not address the computability of
the η-smoothed equilibrium problem with nonconvex player-specific problems. Furthermore, in
our case, our problem is blessed with convexity and consequently, we may employ a corollary of
Theorem 9, restated next with an explicit prescription of the condition (Pc) from [81, Cor. 1].

Corollary 1 (Convergence of approximate Nash equilibria under convexity [81, Cor. 1]).
The conclusions of Theorem 9 hold under the following conditions.

(D.I.) For every i = 1, · · · ,N and every η > 0, the function fi,η(•,x−i) is convex for every
x−i ∈ X−i.
(D.II.) For every i = 1, · · · ,N, the following holds

lim
η→0

fi,η(x
i,x−iη ) = fi(x

i,x−i) (26)

for every xi ∈ Xi and every sequence {x−iη } ⊂ X−i converging to x−i ∈ X−i.

We now prove that Corollary 1 can be invoked under suitable requirements.

Proposition 12 (Asymptotic convergence of {xη}). Consider the game G ∈ Gchl, its smoothed
counterpart Gη, and the sequence {xη}. For i = 1, · · · ,N, suppose fi(•,x−i) is a strongly lower
semicontinuous function on Xi for every x−i ∈ X−i and fi(x

i, •) is a continuous function for every
xi ∈ Xi. Then x is an equilibrium of G .

Proof. To invoke Corollary 1, it suffices to show that conditions (D.I.) and (D.II.) hold.
Since G is a convex hierarchical game, we have that fi(•,x−i) is convex on Xi for every x−i ∈ X−i.

We may then invoke Lemma 8 to claim that fi,η(•,x−i) is convex on Xi for every x−i ∈ X−i.
Therefore, (D.I.) holds.

Suppose xi ∈ Xi and a sequence {x−iη } ⊂ X−i converges to x−i ∈ X−i. Since fi(x) ≤ fi,η(x) ≤
fi(x) + ηβi (by Lemma 8(b)), it follows that

lim
η→0

fi(x
i,x−iη ) ≤ lim

η→0
fi,η(x

i,x−iη ) ≤ lim
η→0

(fi(x
i,x−iη ) + ηβi).

By continuity of fi(x
i, •) and by noting that limη→0 x−iη = x−i ∈ X−i, we have that

fi(x
i,x−i) ≤ lim

η→0
fi,η(x

i,x−iη ) ≤ fi(xi,x−i).

Consequently, (D.II.) holds.

Comment. We note that the convergence claim can be strengthened to a claim of subsequential
convergence as long as X is a compact set. This allows for claiming the existence of a convergent
subsequence, whose limit point via the above result is the desired equilibrium of the original game.

4.2 An asynchronous smoothed proximal best-response framework

Prior to presenting our asynchronous smoothed relaxed best-response scheme, we provide some
background. Recall that in best-response schemes, each player selects a best-response (BR), given
current rival strategies [82, 83]. Such avenues have been applied on engineering applications [84],
where the BR is expressible in closed form. Proximal BR schemes appear to have been first
discussed by Facchinei and Pang [1], where they showed that the set of fixed points of the proximal
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BR map is equivalent to the set of Nash equilibria under convexity of the player-specific problems.
Asynchronous BR schemes have been shown to be convergent by Altman et al. [85]. Recently,
in [86], two synchronous schemes were proposed for computing an equilibrium of a noncooperative
game with risk-averse players under a contractivity assumption on the proximal BR map. Under
related assumptions, we develop rate and asymptotic guarantees for randomized synchronous and
asynchronous variants [87]. In 2011, Facchinei et al. [88] proposed several regularized Gauss-Seidel
BR schemes for generalized potential games, where it was shown that limit points are Nash equilibria
when each player’s subproblem is convex. Extensions to stochastic regimes were considered in [89]
where almost-sure convergence guarantees were provided for an efficient asynchronous best-response
scheme where the best-responses were solved with increasing accuracy under the assumption that
player-specific objectives were Li-smooth uniformly in rival decisions.

Gaps in prior schemes. Unfortunately, the scheme in [89] cannot be applied since it requires
player-specific smoothness properties and does not incorporate a relaxation. This motivates the
development of a scheme that can accommodate (i) nonsmoothness and (ii) relaxation.

Accordingly, we develop an asynchronous relaxed inexact smoothed BR scheme (ARSPBR). At
every step in (ARSPBR), player i is randomly selected based on a prescribed probability pi. Then
player i takes an inexact relaxed best-response step based on γk and εi,k while other players do
not update their strategy. If γk = 1 and c, the proximal weight, is sufficiently large, then this step
reduces to an inexact best-response step. Step (2) of the algorithm necessitates an inexact solution
to the hierarchical problem (Playerη(x

−i,k)). We propose a zeroth-order scheme recently developed
in a parallel paper and articulate both the scheme and its error analysis in Section 4.3.

Asynchronous relaxed smoothed proximal best-response (ARSPBR) scheme

(0) Let k = 0, zi,0 = xi,0 ∈ Xi for i = 1, · · · ,N, and pi ∈ (0, 1) for i = 1, · · · ,N with∑N
i=1 pi = 1. Given η > 0 and relaxation sequence {γk}.

(1) Select a player ik = i ∈ {1, · · · ,N} with probability pi > 0.

(2) Update zk+1 and xk+1 as follows.

zi,k+1 :=

{
(1− γk)xi,k + γk

(
Bi,η(x

k)
)

; i = ik

xi,k; i 6= ik

xi,k+1 :=

{
zi,k+1 + εi,k+1; i = ik

zi,k+1; i 6= ik.

(ARSPBR)

(3) Stop if k > K, Stop; else return to Step 1, k := k + 1.

It can be observed that the update for xi,k+1 for i = ik can be rewritten as follows.

xi,k+1 := zi,k+1 + εi,k+1

= (1− γk)xi,k + γkBi,η(x
k) + εi,k+1

= (1− γk)xi,k + γk

(
Bi,η(x

k) + εi,k+1

γk

)
. (27)

In effect, xi,k+1 is a consequence of averaging between the previous belief xi,k and an inexact best-
response using the relaxation weight γk. When γk = 1, this reduces to the unrelaxed scheme and
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(27) reduces to

xi,k+1 = Bi,η(x
k) + εi,k+1. (28)

This inexact best-response is an an εi,k

γk
-optimal solution of the best-response problem. Prior

schemes on resolving protypical hierarchical problems of this form (i.e. MPECs) are not equipped
with non-asymptotic rate guarantees. However, in Section 4.3, we develop a zeroth-order scheme
with non-asymptotic rate guarantees when each player’s objective is convex given rival decisions.
Before proceeding, we define the history of the process. Suppose F0 , {x0}. Suppose F ′k and Fk
are defined as

F ′1 = F0 ∪ {i1},
F1 = F ′0 ∪ {ω1,j1 , · · · , ω1,j1},

...

F ′k = Fk−1 ∪ {ik−1},
Fk = F ′k−1 ∪ {ωk−1,j1 , · · · , ωk−1,jk−1

}.

Note that the samples {ωk,j1 , · · · , ωk,jk} are employed in computing an approximate best-response in
iteration k via a zeroth-order Monte-Carlo sampling scheme. We are now ready to derive asymptotic
guarantees for the asynchronous relaxed inexact best-response scheme.

Proposition 13 (Almost-sure convergence for asynchronous relaxed inexact best-re-
sponse scheme). Consider a game G ∈ Gchl. For any i ∈ {1, · · · ,N}, suppose fi(•,x−i) is
a convex function for any x−i ∈ X−i and Xi ⊆ Rni is a closed and convex set. Consider the
smoothed counterpart of G , denoted by Gη where Gη ∈ Gchl

pot; for any i ∈ {1, · · · ,N}, suppose
fi,η(•,x−i) denotes the η-smoothing of fi(•,x−i). Suppose Pη denotes the potential function of Gη
where Pη(x) ≥ P̃ for any x ∈ X + ηB. Here P̃ denotes a lower bound on Pη(x). Suppose Bi(x)
and Bi,η(x) denote the proximal best-response and smoothed proximal-response for i ∈ {1, · · · ,N}.
Then the following hold for any i ∈ {1, · · · ,N}. Consider a sequence {xk} generated by (ASRPBR)
scheme. Then the following hold.

(a) For k ≥ 0, the following holds almost surely.

E[Pη(x
k+1)− P̃η | Fk] ≤ (Pη(x

k)− P̃η)− γk
(
c− Lγk

2

)
‖Bi,η(xk)− xi,k‖2

+

N∑
i=1

MiE[‖εi,k+1‖ | Fk]. (29)

(b) Suppose one of the following hold. (i) {γk} is a decreasing non-summable but square-summable
sequence where γk < 2c

L for every k; (ii) γk = γ = 1 and c > L
2 . Furthermore, suppose∑∞

k=0

∑N
i=1MiE[‖εi,k+1‖ | Fk] <∞. Then

lim
k→∞

N∑
i=1

‖xi,k −Bi,η(xk)‖2 = 0 almost surely. (30)

(c) Suppose (30) holds. Then {xk} converges to the set of Nash equilibria of Gη in an a.s. sense.
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Proof. (a) For ease of exposition, we let ik, the player selected at the kth iteration, be denoted by
i. Since fi,η is L-smooth where L = α

η , we have that

fi,η(z
i,k+1,x−i,k) ≤ fi,η(xi,k,x−i,k) + γk∇xifi,η(x

i,k,x−i,k)T(Bi,η(x
k)− xi,k)

+
Lγ2k

2 ‖Bi,η(x
k)− xi,k‖2. (31)

Furthermore, by the optimality conditions of (SPBRi,η(x
k)), we have that

0 ≤ (∇xifi,η(Bi,η(x
k),x−i,k) + c(Bi,η(x

k)− xi,k))T(xi,k −Bi,η(xk))

≤ −∇xifi,η(x
i,k,x−i,k)

T
(Bi,η(x

k)− xi,k)− c‖Bi,η(xk)− xi,k‖2, (32)

a consequence of the monotonicity of ∇xifi,η(•,x−i,k). By adding (31) and γk×(32), we obtain that

fi,η(z
i,k+1,x−i,k) ≤ fi,η(xi,k,x−i,k)− γk

(
c− Lγk

2

)
‖Bi,η(xk)− xi,k‖2. (33)

Next, we derive a bound on fi,η(x
i,k+1,x−i,k)− fi,η(zi,k+1,x−i,k) by the mean value theorem.

fi,η(x
i,k+1,x−i,k)− fi,η(zi,k+1,x−i,k) = ∇xifi,η(x̃i,x

−i,k+1)T(xi,k+1 − zi,k+1)

=⇒ |fi,η(xi,k+1,x−i,k)− fi,η(zi,k+1,x−i,k)| ≤Mi‖εi,k+1‖, (34)

where x̃i ∈ [xi,k+1, zi,k+1]. Consequently, we have that

Pη(x
k+1)− Pη(xk) = Pη(x

i,k+1,x−i,k)− Pη(xi,k,x−i,k)
= fi,η(x

i,k+1,x−i,k)− fi,η(xk)
= fi,η(x

i,k+1,x−i,k)− fi,η(zi,k+1,x−i,k) + fi,η(z
i,k+1,x−i,k)− fi,η(xk)

(33)

≤ −γk
(
c− Lγk

2

)
‖Bi,η(xk)− xi,k‖2 + fi,η(x

i,k+1,x−i,k)− fi,η(zi,k+1,x−i,k)

(34)

≤ −γk
(
c− Lγk

2

)
‖Bi,η(xk)− xi,k‖2 +Mi‖εi,k+1‖.

Since εj,k+1 = 0 for j 6= i, we have that

Pη(x
k+1)− Pη(xk) ≤ −γk

(
c− Lγk

2

)
‖Bi,η(xk)− xi,k‖2 +

N∑
i=1

Mi‖εi,k+1‖.

By taking expectations with respect to Fk, we have that in an a.s. sense that

E[Pη(x
k+1)− P̃η | Fk] ≤ (Pη(x

k)− P̃η)− γk
(
c− Lγk

2

)
E[‖Bi,η(xk)− xi,k‖2 | Fk]

+
N∑
i=1

MiE[‖εi,k+1‖ | Fk]

= (Pη(x
k)− P̃η)− γk

(
c− Lγk

2

)
E[E[‖Bi,η(xk)− xi,k‖2 | F ′k+1] | Fk]

+

N∑
i=1

MiE[‖εi,k+1‖ | Fk]

= (Pη(x
k)− P̃η)− γk

(
c− Lγk

2

) N∑
i=1

pi‖Bi,η(xk)− xi,k‖2
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+

N∑
i=1

MiE[‖εi,k+1‖ | Fk],

where the second equality follows from the tower law of conditional expectation and the last equality
arises from recalling that ‖Bi,η(xk)− xi,k‖2 is adapted to Fk for every i ∈ {1, · · · ,N}.
(b(i)) By choice, γk <

2c
L = 2cη

α for every k. Since {γk} is a diminishing sequence with
∑

k γ
2
k <∞,

for sufficiently large K, c − Lγk
2 ≥ c̃. Consequently, it suffices to consider a shifted recursion to

claim that for k > K, the following holds a.s.

E[Pη(x
k+1)− P̃η | Fk] ≤ (Pη(x

k)− P̃η)− γk c̃
N∑
i=1

pi‖Bi,η(xk)− xi,k‖2

+
N∑
i=1

MiE[‖εi,k+1‖ | Fk].

Since {(Pη(xk) − P̃η)} is a nonnegative sequence and
∑∞

k=0

∑N
i=1MiE[‖εi,k+1‖ | Fk] < ∞, we

have that {(Pη(xk)− P̃η)} is convergent a.s. and
∑∞

k=0 γk
∑N

i=1 ‖Bi,η(xk)− xi,k‖2 <∞ a.s. Since∑∞
k=0 γk =∞, we have that

lim inf
k→∞

N∑
i=1

‖Bi,η(xk)− xi,k‖2 = 0.

Consequently, along some subsequence K, we have that limk∈K,k→∞
∑N

i=1 ‖Bi,η(xk) − xi,k‖2 = 0.

It remains to show that
∑N

i=1 ‖Bi,η(xk)− xi,k‖2 k∈K(ω)−−−−−→
k→∞

0 in an a.s. sense for almost every ω ∈ Ω.

We proceed by contradiction. Suppose for ω ∈ Ωc ⊆ Ω and P(ω | ω ∈ Ωc) > 0 , we have that

lim inf
k∈K(ω)

N∑
i=1

‖Bi,η(xk)− xi,k‖2 ≥ v̄.

Therefore, for every K(ω), there exists a K(ω) such that
∑N

i=1 ‖Bi,η(xk)−xi,k‖2 ≥ v̄
2 for k ≥ K(ω).

This implies that with finite probability,
∑

k∈K(ω)

∑N
i=1 γk‖Bi,η(xk)−xi,k‖2 ≥

∑
k≥K(ω),k∈K(ω) γk‖Bi,η(xk)−

xi,k‖2 ≥
∑

k≥K(ω),k∈K(ω)
γk v̄
2 = ∞. But this contradicts the claim that

∑∞
k=1 γk

∑N
i=1 ‖Bi,η(xk) −

xi,k‖2 <∞ almost surely. Therefore,
∑N

i=1 ‖Bi,η(xk)− xi,k‖2 a.s.−−−→
k→∞

0.

(b(ii)) Since γk = 1 for every k and c > L/2, (29) reduces to

E[Pη(x
k+1)− P̃η | Fk] ≤ (Pη(x

k)− P̃η)−
(
c− L

2

) N∑
i=1

‖Bi,η(xk)− xi,k‖2

+
N∑
i=1

MiE[‖εi,k+1‖ | Fk].

By invoking the Robbins-Siegmund lemma, we have that
∑N

i=1 ‖Bi,η(xk)−xi,k‖2 <∞ a.s., implying

that
∑N

i=1 ‖Bi,η(xk)− xi,k‖2 a.s.−−−→
k→∞

0 for i = 1, · · · ,N.

(c) This follows by [89, Th. 1(b)].
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4.3 A zeroth-order scheme for resolving SPBRi,η(x
−i)

At the kth step of the (ARSPBR) scheme, the relaxed inexact scheme and its unrelaxed counterpart

require computing an
(
εi,k

γk

)
-solution to (SPBRi,η(x

k)). We develop a scheme for computing such

a solution in this subsection; in particular, we consider the inexact resolution of the smoothed
best-response problem given by (SPBRi,η(x

−i)).

min
vi∈Xi

φi,η(v
i,x) ,

[
fi,η(v

i,x−i) + c
2‖v

i − xi‖2
]
. (35)

We denote an optimal solution to this problem by vi,∗ and our goal lies in developing a scheme that
generates a sequence {vi,t} such that E[‖vi,t−vi,∗‖2 | x] ≤ Cqt, where C and q are positive scalars
and q ∈ (0, 1). We observe that φη is an O( 1

η )-smooth and c-strongly convex expectation-valued

function. Since φi,η is O( 1
η )-smooth, one might imagine that a standard stochastic approximation

scheme can be applied for computing an approximate solution of (35). However, this requires
computing a sampled gradient of fi,η(•,x−i). Unfortunately, one may recall that a sampled gra-
dient of fi,η(•,x−i) requires computing the sampled gradient of h̃η(x

i,yi(x, ω), ω) where yi(x, ω)
represents the solution of a lower-level parametrized variational inequality problem. Instead, we
construct a zeroth-order scheme that relies only on function values to approximate the gradient
of h̃η(x

i,yi(x, ω)). To this end, we develop a randomized smoothing-based zeroth-order scheme
inspired by [73]. In particular, we define φη as

φi,η(v
i,x) = Eui∈Bi

[
fi,η(v

i + ηui,x−i) + c
2‖v

i + ηui − xi‖2
]

= Eui∈Bi
[
E
[
g̃i(v

i + ηui,x−i, ω) + h̃i,η(v
i + ηui,yi(vi + ηui,x−i, ω), ω) | ui

]
+ c

2‖v
i + ηui − xi‖2

]
= Eui,ω

[
g̃i(v

i + ηui,x−i, ω) + h̃i,η(v
i + ηui,yi(vi + ηui,x−i, ω), ω) + c

2‖v
i + ηui − xi‖2

]
,

where ω and ui are independent random variables, Bi , {ui ∈ Rni | ‖ui‖ ≤ 1}, the inner expectation
is with respect to ω, conditional on ui while the outer expectation is with respect to ui. The gradient
of φη(v

i,x) is given by the following

∇viφi,η(v
i,x) = Evi∈ηSi

[(
fi,η(v

i + vi,x−i) + c
2‖v

i + vi − xi‖2
)
niv

i

η‖vi‖

]
, (36)

where Si denote the surface of the ball Bi, i.e., Si , {vi ∈ Rni | ‖vi‖ = 1}. A mini-batch
approximation of the zeroth-order approximation of the gradient by using Nt samples {ωj , vi,j}Ntj=1

is denoted by

g̃i,η,φ,Nt(v,x) ,
Nt∑
j=1

ni
η [g̃i(vi+ηvi,j ,x−i,ωj)+h̃i,η(vi+ηvi,j ,yi(vi+ηvi,j ,x−i,ωj),ωj)+

c
2‖v

i+ηvi,j−xi‖2]
(

vi,j

‖vi,j‖

)
Nt

.

We observe that this mini-batch approximation satisfies suitable unbiasedness and moment assump-
tions in an almost-sure sense, a standard requirement in stochastic approximation approaches.

Lemma 10. [76, Lemma 3] For any i ∈ {1, · · · ,N}, suppose wi,t = gi,η,φ,Nt(v
i,t,x)−∇viφi,η(v

i,t,x).
Then the following hold for any vi,t ∈ Xi + ηBi and any x ∈ X .
(a) Evi,ω

[
wi,t | vi,t,x

]
= 0 almost surely.

(b) Evi,ω
[
‖wi,t‖2 | vi,t,x

]
≤ ν2

Nt
almost surely.
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Next, we recall that φi,η(•,x) is Lipschitz continuous on a compact set Xi + ηBi (which follows
from convexity over a compact set Xi + ηB uniformly in x on X . Further from [76, Lemma 1], we
recall that φi,η(•,x) is (L0ni

η + c)-smooth on Xi + ηBi uniformly in x. Both claims are formalized
in the next Lemma.

Lemma 11. Consider the game G ∈ Gchl
pot and its smoothed counterpart Gη. Then the following

hold. Suppose Xi is bounded for i = 1, · · · ,N.
(a) For any i ∈ {1, · · · ,N}, the function φi,η(•,x) is convex and Lipschitz continuous on Xi + ηBi
with constant L0 uniformly in x on X .
(b) The gradient of φi,η(•,x), defined as (36), is Lipschitz continuous on X uniformly in x on X
with constant L0ni

η + c.

We now consider the application of the following scheme to (35). Given a vi,0 ∈ Xi, a sequence
{vi,t} is constructed as follows.

vi,t+1 := ΠXi
[
vi,t − ζt

(
gi,η,φ,Nt(v

i,t,x) + wi,t
)]
, t > 0 (ZSOL)

where wi,t = gi,η,φ,Nt(v
i,t,x)−∇viφi,η(v

i,t,x). Suppose F̃0 = {vi,0} and F̃t = F̃t−1 ∪ {vt}.

Lemma 12 (Rate statement for zeroth-order scheme for Bi,η(x
k)). Suppose the scheme

(ZSOL) is applied on (35) where φi,η(•,x) is c-strongly convex and α-smooth, where α = L0ni
η + c.

Suppose ζt = ζ < c
α2 , q = (1−2cζ+2ζ2α2) < 1, and Nt = dq−(t+1)e for every t. Then the following

holds for a suitable positive scalar C, E[‖vi,t − vi,∗‖2 | x] ≤ qtC, for t > 0.

Proof. Recall that

‖vi,t+1 − vi,∗‖2 ≤ ‖vi,t − vi,∗‖2 − 2ζt(v
i,t − vi,∗)T(gi,η,φ,Nt(v

i,t,x)− gi,η,φ,Nt(v
i,∗,x))

+ 2ζ2
t ‖wi,t‖2 − 2γtw

T
i,t(v

i,t − vi,∗) + 2ζ2
t α

2‖vi,t − vi,∗‖2

≤ (1− 2cζt + 2ζ2
t α

2)‖vi,t − vi,∗‖2 − 2γtw
T
i,t(v

i,t − vi,∗) + 2ζ2
t ‖wi,t‖2.

Taking expectations conditioned on x, we obtain that

E
[
‖vi,t+1 − vi,∗‖2 | x

]
≤
(
1− 2cζt + 2ζ2

t α
2
)
E[‖vi,t − vi,∗‖2 | x]− 2ζtE[E[wi,t | F̃t,x]︸ ︷︷ ︸

= 0

| x]T (vi,t − vi,∗)

+ 2ζ2
t E[E[‖wi,t‖2 | F̃t,x]︸ ︷︷ ︸

≤ ν2

Nt

| x] ≤
(
1− 2cζt + 2ζ2

t α
2
)
E[‖vi,t − vi,∗‖2 | x] +

2ζ2t ν
2

Nt
.

By setting ζt = ζ such that (1− 2cζ + 2ζ2α2) = q < 1, we have that

E
[
‖vi,t+1 − vi,∗‖2 | x

]
≤ qE[‖vi,t − vi,∗‖2 | x] + 2ζ2ν2qt+1 ≤ qt+1C,

where C is a suitably defined positive scalar.

We observe that in (27), Bi,η(x
k) = vi,∗ and εi,k+1 , vi,t− vi,∗. Therefore by employing Jensen’s

inequality, we may show that E[‖εi,k+1‖ | xk] ≤
√
Cqt/2. We conclude with a comment on the

relationship between the two proposed schemes.

Comment on the relationship between (ARSPBR) and (VR-SPP).
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(i) Monotonicity vs Potentiality. Section 3 focuses on the resolution of a monotone hierarchical
game where the “monotonicity” of the game corresponds the monotonicity of the concatenated
player-specific subdifferential maps. However, Section 4 considers a class of potential hierarchical
game where the potentiality is again with respect to the implicit player-specific objectives.

(ii) Gradient-response vs Best-response. Section 3 develops a partially distributed stochastic proximal-
point scheme for resolving the associated stochastic inclusion problem, where players take gradient-
response steps (with a modified proximal term). Section 4 presents an inexact best-response scheme
that can be implemented in a partially distributed regime.

5 Numerical Results

In Section 5.1, we apply the (VR-SPP) scheme to resolving the class of multi-leader multi-follower
games considered in Section 2.3(b). In addition, we also examine how such schemes cope with
expectation-valued constraints. In Section 5.2, we apply (ARSPBR) to a class of hierarchical
games in uncertain settings as described in Section 5.2.

5.1 A multi-leader multi-follower problem under uncertainty

In this section, we apply (VR-SPP) on a multi-leader multi-follower game described in Section
2.3 (Example b).
5.1.1. Problem parameters and algorithm specifications. Suppose N = 13 leaders and M =
10 followers and let Ci is generated from the distribution U(0, 100) for i = 1, · · · ,N, where U(l, u)
denotes the uniform distribution on the interval [l, u]. Furthermore, cj = 50, for j = 1, · · · ,M,
b = 7 and a(ω) ∼ U(33, 37). We compare our proposed scheme with a more standard stochastic
approximation scheme applicable on monotone inclusion 0 ∈ T (x) and specify their algorithm
parameters. Solution quality is compared by estimating the residual function res(x) = ‖Tλ(x)‖.
(i) (SG): Stochastic subgradient framework. Here, we employ the following stochastic subgradient
scheme to generate {{xk,i}Ni=1}.

xk+1,1 := ΠX1

[
xk,1 − αkuk,1

]
...

xk+1,N := ΠXN

[
xk,N − αkuk,N

]
 , where uk,i ∈ ∂xi f̃i(x,y(x, ω), ω) (SG)

for i = 1, · · · ,N. In (SG), αk ,
α0√
k
, where α0 = 0.1. x0 is randomly generated in [0, 1]M .

(ii) (VR-SPP). We apply the (VR-SPP) scheme defined in Section 3.2.3 in which we employ
Nk = b1.1k+1c, a proximal parameter λ = 0.1 and a diminishing steplength α0

k with α0 = 0.1 to
approximate the resolvent via the (SA) scheme (also presented in Section 3.2.3).

5.1.2. Performance comparison and insights. In Fig. 1, we compare the numerical perfor-
mance between (SG) and (VR-SPP) with various parameters under the same number of samples.
The thick line indicates the average performance and the transparent area is the variability over
20 simulations. We examine their sensitivities to the number of players, variability and steplength,
respectively, in Table 3. First, both Fig.1 and Table 3 show that on this class of problems, (VR-
SPP) significantly outperforms (SG) schemes. Second, (VR-SPP) takes far less time than (SG)
while providing far more accurate solutions. The distinctions in time emerge since (VR-SPP)
utilizes an increasing sample-size policy and thus it takes far fewer resolvent steps than (SG). In
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each iteration, we use a (SG) scheme to evaluate ‖Tλ(xk)‖; therefore (VR-SPP) uses far fewer
outer iterations, leading to far shorter runtimes.

Figure 1: Trajectories for (SG) and (VR-SPP)

Table 3: Errors and time comparison of (SG) and (VR-SPP) with various parameters

N
SG VR-SPP

res(xk) Time res(xk) Time
13 1.3e-2 6.7 5.0e-4 0.26
23 1.6e-2 13.8 5.2e-4 0.45
33 1.7e-2 28.8 5.8e-4 0.53
43 1.8e-2 41.1 5.7e-4 0.61

α0
SG VR-SPP

res(xk) Time res(xk) Time
0.1 1.3e-2 6.7 5.0e-4 0.26
0.2 2.5e-2 6.6 5.7e-4 0.26
0.5 2.9e-2 6.6 1.3e-3 0.26
1 3.5e-2 6.7 1.7e-3 0.26

a
SG VR-SPP

res(xk) Time res(xk) Time
[33, 37] 1.3e-2 6.7 5.0e-4 0.26
[30, 40] 3.5e-2 6.7 7.6e-4 0.27
[25, 45] 5.0e-2 6.7 1.7e-3 0.26
[20, 50] 6.6e-2 6.7 2.5e-3 0.26

The errors and time in the table are the average results of 20 runs

5.1.3. Incorporating expectation-valued constraints. We now consider an extension of
this game where each player is faced by expectation-valued constraints. Specifically, we impose a
constraint E[ci(x

i, ωi)] ≤ 0 where ci(x
i, ωi) = xi − Ui + ωi for i = 1, · · · ,N. We choose Ui = 5 and

ωi ∼ U(−1, 1) for i = 1, · · · ,N. With these additional expectation-valued constraints, we again
compare the (SG) and (VR-SPP) schemes in Table 4. It can be seen that akin to earlier, the
(VR-SPP) scheme is not overly impaired by the presence of expectation-valued constraints.

5.2 A monotone stochastic bilevel game

We apply (ARSPBR) on the game in Section 2.3(a). We evaluate the solution quality of player i
by the residual function res(xi) = ‖xi − Bi,η(x−i)‖ and use res(x) =

∑N
i=1 res(xi)/N to denote

the residual across multiple players in a game.
5.2.1. Problem parameters and algorithm specifications. We assume that there are N = 13
players and each with a single follower. Furthermore, let Qi = 3 and we reuse the symbol of bi and
li, letting bi(x

i) = bix
i and li(x

i) = lix
i, for i = 1, · · · ,N, bi and li are generated from U(0, 3) and

U(0, 1), respectively. Suppose g̃i(x
i,x−i) = 1

2di ·(x
i)2+3xi ·

∑N
j=1x

j , where di is randomly generated
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Table 4: Comparison of (SG) and (VR-SPP) for games with expectation-valued constraints

N
SG VR-SPP

res(xk) Time res(xk) Time
13 1.6e-2 6.8 5.9e-4 0.28
23 1.9e-2 14.3 6.3e-4 0.46
33 2.0e-2 29.4 6.8e-4 0.54
43 2.2e-2 42.3 7.4e-4 0.64

α0
SG VR-SPP

res(xk) Time res(xk) Time
0.1 1.6e-2 6.8 5.9e-4 0.28
0.2 2.1e-2 6.9 7.7e-4 0.29
0.5 4.6e-2 6.9 1.3e-3 0.28
1 7.1e-2 7.0 1.8e-3 0.30

a
SG VR-SPP

res(xk) Time res(xk) Time
[33, 37] 1.6e-2 6.8 5.9e-4 0.28
[30, 40] 4.7e-2 6.8 1.3e-4 0.28
[25, 45] 5.3e-2 6.9 2.6e-3 0.28
[20, 50] 6.9e-2 6.8 4.4e-3 0.28

The errors and time in the table are the average results of 20 runs

from U(0, 100) for i = 1, · · · ,N. The random parameter is ai(ω) ∼ U(33, 37), for i = 1, · · · ,N. At
iteration k, we run Tk = dlog(k1.5)e steps in (ZSOL) and we use Nt = d1.5t+1e samples for t > 0.
In addition, we assume steplength ζt = 0.01, ∀t > 0 and smoothing parameter η = 0.1.

Figure 2: Trajectories for (ARSPBR) with different relaxation and smoothing parameters

5.2.2. Performance comparison and insights. In Fig. 2, we compare the plots for (AR-
SPBR) with different relaxation sequences (left) and varying smoothing parameters (right). All
the trajectories clearly show the schemes converge to the optimal solution. While none of the
relaxation schemes perform better in early stages, they tend to have superior performance and a
higher degree of stability as the process continues. In addition, we examine their sensitivities to
various parameters in Table 5. Again, we note that the relaxation schemes provide more accurate
solutions with a similar level of effort.
5.2.3. Convergence of smoothed equilibria to the true equilibrium. To show that the
sequence of equilibria {x∗η}η↓0 converges to x∗, an equilibrium of the original game, we provide values
of two metrics in Table 6. that are the best-response residual for the smoothed game ‖x∗η−B(x∗η)‖,
where B(x∗η) ,

{
B1(x∗η), · · · , BN(x∗η)

}
and the residual ‖x∗η − x∗‖. To compute the equilibrium of

the original game, we make a slight modification to some algorithm parameters. Here we assume
bi = 3 and li = 1 for all i. It is not difficult to see that in player i’s optimization problem, the optimal
solution xi,∗ should be negative. It follows that yi(xi,∗, ω) , max

{
Qi(ω)−1bi(x

i,∗, ω), `i(x
i,∗, ω)

}
=

Qi(ω)−1li(x
i,∗, ω). Therefore, in (SGE-a), ∂xiE[g̃i(x

i,x−i, ω) + h̃i(x
i, ω)] is linear and single-valued
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Table 5: Errors and time of (ARSPBR) with (γk = 1) and (γk = k−0.51)

N
γk = 1 γk = k−0.51

res(xk) Time res(xk) Time
13 6.1e-4 7.6 4.0e-5 7.6
23 6.2e-4 9.3 1.3e-4 9.2
33 6.4e-4 11.4 4.8e-4 11.4
43 6.0e-4 15.4 6.3e-4 15.3

ζt
γk = 1 γk = k−0.51

res(xk) Time res(xk) time
1e-2 6.1e-4 7.6 4.0e-5 7.6
5e-3 6.8e-4 7.4 4.8e-5 7.3
2e-3 7.2e-4 7.5 5.2e-5 7.4
1e-3 7.6e-4 7.7 5.6e-5 7.6

a
γk = 1 γk = k−0.51

res(xk) Time res(xk) Time
[33, 37] 6.1e-4 7.6 4.0e-5 7.6
[30, 40] 6.8e-4 7.7 4.3e-5 7.4
[25, 45] 7.2e-4 7.5 5.0e-5 7.6
[20, 50] 8.0e-4 7.7 5.1e-5 7.8

The errors and time in the table are the average results of 20 runs

which means we can use PATH to compute the true equilibrium.
Insights. It can be observed that the distance to the true equilibria diminishes to zero as one

gets increasingly accurate equilibria of games with progressively smaller η. This aligns with the
theoretical claim in Section 4.1.

Table 6: Residuals of equilibria of the smoothed games under various smoothing parameters

η 0.2 0.1 0.01 0.001 0.0001

N = 13
‖x∗η −B(x∗η)‖ 1.1e-3 3.3e-4 5.6e-5 6.0e-5 2.3e-5
‖x∗η − x∗‖ 1.2e-3 3.4e-4 5.2e-5 3.6e-5 3.1e-5

N = 23
‖x∗η −B(x∗η)‖ 5.5e-1 2.9e-4 5.0e-5 3.9e-5 3.6e-5
‖x∗η − x∗‖ 1.1e-1 3.8e-4 5.4e-5 4.8e-5 4.3e-5

N = 33
‖x∗η −B(x∗η)‖ 7.8e-1 7.6e-3 8.2e-5 7.6e-5 5.7e-5
‖x∗η − x∗‖ 1.8e-1 1.2e-3 1.0e-4 9.2e-5 7.4e-5

6 Concluding remarks

We consider a class of hierarchical convex games under uncertainty, a class of games in which
the implicit form of the player-specific problems is convex, given rival decisions. In fact, certain
subclasses of multi-leader multi-follower games are known to lie in the considered class of games.
We present two sets of schemes for computing equilibria of such games. Of these, the first is a
variance-reduced proximal-point framework and can contend with monotone regimes, admitting
optimal deterministic rates of convergence and near-optimal sample complexities. The second can
process smoothed potential variants of such games via an asynchronous relaxed smoothed proximal
best-response scheme. Notably, sequences produced by such schemes converge almost surely to an
η-approximate Nash equilibrium of the original game where η denotes a fixed smoothing parameter.
We develop a geometrically convergent zeroth-order scheme for computing the best response which
reduces to resolving a mathematical program with equilibrium constraints, a problem that is known
to be strongly convex in its implicit form. While preliminary numerics are promising, we believe
that this is but a first step in developing a rigorous foundation for a broad class of hierarchical
games complicated by risk, nonsmootheness, and nonconvexity.
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A Appendix

A.1. Variational inequality problems, Inclusions, and monotonicity.

(a) Variational inequality problems and inclusions. Consider a variational inequality prob-
lem VI(X , F ) where X is a closed and convex set and F : Rn → Rn is a single-valued continuous
map. Such a problem requires an x such that

(x̃− x)TF (x) ≥ 0, ∀x̃ ∈ X .

Furthermore, VI(X , F ) can also be written as an inclusion problem, i.e.

x solves VI(X , F ) ⇐⇒ 0 ∈ F (x) +NX (x).

Consider an N-player game G where for i = 1, · · · ,N, the ith player minimizes the parametrized
smooth convex optimization problem defined as

min
xi∈Xi

fi(x
i,x−i). (Agenti(x

−i))

By convexity assumptions, the set of Nash equilibria of G is equivalent to the solution set of the
variational inequality problem VI(X , F ) where X ,

∏N
i=1Xi and

F (x) ,

 ∇x1f1(x)
...

∇xNfN(x)

 . (37)

If f is a nonsmooth convex function, then the subdifferential ∂f is also a monotone set-valued (or
multi-valued) map on X . In addition, if fi(•,x−i) is not necessarily smooth, then the associated
set of equilibria are given by the solution of VI(X , T ) where

T (x) ,
N∏
i=1

∂xifi(x
i,x−i). (38)

(b) Monotonicity properties. Consider VI(X , F ). Then the map F is monotone on X if
(F (x) − F (y))T(x − y) ≥ 0 for all x,y ∈ X . Monotonicity may also emerge in the context of
N-player noncooperative games. In particular, one may view G as being monotone if and only if
the associated map F , defined as (37), is monotone on X . In the special case when N = 1, this
reduces to the gradient map of a smooth convex function f , denoted by ∇f , being monotone. This
can also be generalized to set-valued regimes. For instance, the map T , defined as (38), arising
from a noncooperative game G with nonsmooth player-specific objectives is said to be monotone if
for any x,y ∈ X and any u ∈ T (x) and v ∈ T (y), we have (u− v)T(x− y) ≥ 0.

(c) Monotonicity in the context of single-leader single-follower. Consider a single-leader
single-follower problem in which the follower’s objective g(x, •) is a strongly convex function on Y,
a closed and convex set while X is also a closed and convex.

min
x∈X

f(x,y(x)), where (Leader)

y(x) = argmin
y∈Y

g(x,y). (Follower)
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There are many instances when f(•,y(•)) is a convex function on X (see [5, 11, 90, 6] for some
instances) implying that ∂f(•,y(•)) is a monotone map on X . In other words, the implicit problem
in leader-level decisions can be seen to be characterized by a convex objective with a monotone
map. However, when viewing the problem in the full space of x and y, i.e.

min
x∈X ,y

f(x,y)

(ỹ − y)T∇yg(x,y) ≥ 0, ∀ỹ ∈ Y.

In the full space of x and y, this is indeed a nonconvex optimization problem [16]; however, the
implicit problem in x may be convex under some assumptions and the resulting subdifferential map
is then monotone.

A.2. Proofs.

Proof of Proposition 1.

Proof. In both cases, it is not difficult to see thatH is a monotone map whereH(x) ,
∏N
i=1 ∂xihi(x

i,x−i).
Consequently, if T is defined as T (x) = G(x) + H(x), then T is a monotone map which follows
from the monotonicity of G, defined as G(x) ,

∏N
i=1 ∂xigi(x

i,x−i).

Proof of Proposition 2.

Proof. For (a), potentiality follows by noting that for any xi, x̃i ∈ Xi and x−i ∈ X−i, we have

P̂ (xi,x−i)− P̂ (x̃i,x−i) = P (xi,x−i)− P (x̃i,x−i) + hi(x
i,yi(xi))− hi(x̃i,yi(x̃i))

= gi(x
i,x−i) + hi(x

i,yi(xi,x−i))− (gi(x̃
i,x−i) + hi(x̃

i,yi(x̃i,x−i))).

For (b), proceeding in a similar fashion, it follows that for any xi, x̃i ∈ Xi and x−i ∈ X−i, we have

P̂ (xi,x−i)− P̂ (x̃i,x−i) = P (xi,x−i)− P (x̃i,x−i) + h(xi,x−i)− h(x̃i,x−i)

= gi(x
i,x−i) + hi(x

i,yi(xi,x−i))− (gi(x̃
i,x−i) + hi(x̃

i,yi(x̃i,x−i))).

Proof of Lemma 2.

Proof. Suppose J2 denotes a positive integer such that (1− 2cαj) ≥ 0 for j ≥ J2, i.e. J2 = d2cθe ≥
2cθ. Let J , max{J1, J2} and D , max

{
M2θ2

2(2cθ−1) , JAJ
}
. For j = J , the inductive hypothesis holds

trivially. If it holds for some j > J ,

Aj+1 ≤ (1− 2cαj)Aj +
α2
jM2

2 ≤ (1− 2cαj)
D
j +

α2
jM2

2

= (1− 2cαj)
D
j + 2(2cθ−1)

2j
θ2M2

2(2cθ−1)j ≤ (1− 2cαj)
D
j + 2cθ−1

j
D
j

≤ (1− 2cθ
j )Dj + 2cθ−1

j
D
j = D

j −
2cθD
j2

+ 2cθD
j2
− D

j2
≤ Dj −

D
j(j+1) = D

(j+1) .

It remains to get a bound on AJ .

AJ ≤ (1− 2cαJ−1)AJ−1 +
α2
J−1M

2

2 ≤ AJ−1 +
α2
J−1M

2

2

40



≤
(

(1− 2cαJ−2)AJ−2 +
α2
J−2M

2

2

)
+

α2
J−1M

2

2 ≤ A1 +M2
J−1∑
`=1

α2
`

2

≤ A1 + M2θ2π2

12 , A1 +BM2, since
J−1∑
`=0

1
`2
≤ π2

6 . (39)

Consequently, for j ≥ J , Aj ≤
max

{
M2θ2

2(2cθ−1) ,JAJ
}

2j ≤
M2θ2

2(2cθ−1) +J(A1+BM2)

2j .

Proof of Proposition 5.

Proof. Throughout this proof, we refer to JTλ (xk) by zk,∗ to ease the exposition. Consider the
update rule given by (SA), given z0 = xk. We have that

‖zj+1 − zk,∗‖2 = ‖zj − αjuj − zk,∗‖2 = ‖zj − zk,∗‖2 + α2
j‖uj‖2 − 2αju

T
j (zj − zk,∗).

Taking expectations on both sides, we obtain that

E[‖zj+1 − zk,∗‖2 | Fk,j ] = ‖zj − zk,∗‖2 + α2
jE[‖uj‖2 | Fk,j ]

− 2αjE[uTj (zj − zk,∗) | Fk,j ]
= ‖zj − zk,∗‖2 + α2

jE[‖uj‖2 | Fk,j ]− 2αjE[uj | Fk,j ]T(zj − zk,∗)

= ‖zj − zk,∗‖2 + α2
jE[‖uj‖2 | Fk,j ]− 2αj ū

T
j (zj − zk,∗)

− 2E[αj(uj − ūj)T(zj − zk,∗) | Fk,j ]︸ ︷︷ ︸
= 0

= ‖zj − zk,∗‖2 + α2
jE[‖uj‖2 | Fk,j ]− 2αj(ūj − ū∗k)T(zj − zk,∗),

where ūj ∈ Fk(zj), E[αj(uj − ūj)
T(zj − zk,∗) | Fk,j ] = αj(E[uj | Fk,j ] − ūj)

T(zj − zk,∗) = 0,
0 = ū∗k ∈ Fk(zk,∗) and (ūj − ū∗k)T(zj − zk,∗) ≥ 1

λ‖zj − zk,∗‖2 by the 1
λ -strong monotonicity of Fk.

Consequently, we have that

E[‖zj+1 − zk,∗‖2 | Fk,j ] ≤ (1− 2αj
λ )‖zj − zk,∗‖2 + α2

jE[‖uj‖2 | Fk,j ]
(5)

≤ (1− 2αj
λ )‖zj − zk,∗‖2 + α2

j (4M
2
1 ‖xk‖2 + 2M2

2 + (4M2
1 + 2

λ2
)‖zj − xk‖2)

≤ (1− 2αj
λ )‖zj − zk,∗‖2 + α2

j ((8M
2
1 + 4

λ2
)‖zj − zk,∗‖2 + 4M2

1 ‖xk‖2

+ 2M2
2 + (8M2

1 + 4
λ2

)‖zk,∗ − xk‖2)

≤ (1− 2αj(
1
λ − αj(4M

2
1 + 2

λ2
))‖zj − zk,∗‖2

+ α2
j (4M

2
1 ‖xk‖2 + 2M2

2 + (8M2
1 + 4

λ2
)‖zk,∗ − xk‖2)

≤ (1− αj
λ )‖zj − zk,∗‖2 + α2

j (4M
2
1 ‖xk‖2 + 2M2

2 + (8M2
1 + 4

λ2
)‖zk,∗ − xk‖2),

where the last inequality follows from αj(8M
2
1 + 4

λ2
) ≤ 1

2λ for j ≥ J1 where j ≥ J1 , d2λθ(8M2
1 +

4
λ2

)e. Taking expectations conditioned on Fk and recalling that E[[‖zj+1 − zk,∗‖2 | Fk,j ] | Fk] =
E[‖zj+1 − zk,∗‖2 | Fk] since Fk ⊂ Fk,j , we obtain the following inequality for j ≥ J1,

E[‖zj+1 − zk,∗‖2 | Fk] ≤ (1− αj
λ )E[‖zj − zk,∗‖2 | Fk]

+α2
j (4M

2
1E[‖xk‖2 | Fk] + 2M2

2 + (8M2
1 + 4

λ2
)E[‖zk,∗ − xk‖2 | Fk]).
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Consequently, if αj = θ
j , we have a recursion given by

Aj+1 ≤ (1− 2cαj)Aj +
α2
jM2

2 , j ≥ J1

where Aj , E[‖zj − zk,∗‖2 | Fk], c = 1
2λ , αj = θ

j , and M2/2 = 4M2
1E[‖xk‖2 | Fk] + 2M2

2 + (8M2
1 +

4
λ2

)E[‖zk,∗ − xk‖2 | Fk]. By Lemma 2, we have that

Aj ≤
M2θ2

2(2cθ−1) + J(A1 +BM2)

2j
, j ≥ J (40)

where J , max{J1, J2}, J2 , d2cθe, and B , θ2π2

12 . Since A1 = E[‖zk,∗−xk‖2 | Fk], the numerator
in (40) may be further bounded as follows.

M2θ2

2(2cθ−1) + J(A1 +BM2) =
(

θ2

2(2cθ−1) + JB
)
M2 + JA1

≤
(

θ2

2(2cθ−1) + JB
)

(8M2
1 ‖xk‖2 + 4M2

2 + (16M2
1 + 8

λ2
)E[‖zk,∗ − xk‖2 | Fk])

+ JE[‖zk,∗ − xk‖2 | Fk]

=
(

θ2

2(2cθ−1) + JB
)

(8M2
1 ‖xk‖2 + 4M2

2 )

+
((

θ2

2(2cθ−1) + JB
) (

16M2
1 + 8

λ2

)
+ J

)
E[‖zk,∗ − xk‖2 | Fk]. (41)

We have that

E[‖zk,∗ − xk‖2 | Fk] ≤ 2‖xk − x∗‖2 + 2E[‖zk,∗ − x∗‖2 | Fk]
= 2‖xk − x∗‖2 + 2E[‖JTλ (xk)− x∗‖2 | Fk]
≤ 2‖xk − x∗‖2 + 2‖xk − x∗‖2 ≤ 8‖xk‖2 + 8‖x∗‖2,

where the second inequality follows from ‖JTλ (xk) − x∗‖ = ‖JTλ (xk) − JTλ (x∗)‖ ≤ ‖xk − x∗‖.
Consequently, from (41), M2θ2

2(2cθ−1) + J(A1 +BM2) ≤ ν2
1‖xk‖2 + ν2

2 , where

ν2
1 ,

((
θ2

2(2cθ−1) + JB
) (

136M2
1 + 64

λ2

)
+ 8J

)
and

ν2
2 , 4

(
θ2

2(2cθ−1) + JB
)
M2

2 + 8
((

θ2

2(2cθ−1) + JB
) (

16M2
1 + 8

λ2

)
+ J

)
‖x∗‖2.

Proposition 14. For i = 1, · · · ,N, consider the problem (Playeri(x
−i). Suppose for i = 1, · · · ,N,

(a.i) and (a.ii) hold.
(a.i) Xi ⊆ Rni and Yi ⊆ Rmi are closed and convex sets.

(a.ii) Fi(x, •, ω) is a µF (ω)-strongly monotone and LF (ω)-Lipschitz continuous map on Y uniformly
in x ∈ X for every ω ∈ Ω, and there exist scalars µF , LF > 0 such that infω∈Ω µF (ω) ≥ µF and
supω∈Ω LF (ω) ≤ LF .

Suppose f̃i(x,yi, ω) is continuously differentiable on C×Rmi for every ω ∈ Ω where C is an open set

containing X and X is bounded. Then the function f imp
i , defined as f imp

i (x) , E[f̃(x,y(x, ω), ω)],
is Lipschitz continuous and directionally differentiable on X .
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