arXiv:2108.02897v2 [math.OC] 21 Jul 2022

Resolvent Splitting for Sums of Monotone Operators
with Minimal Lifting

Yura Malitsky* Matthew K. Tam!

July 25, 2022

Abstract

In this work, we study fixed point algorithms for finding a zero in the sum of n > 2 maximally
monotone operators by using their resolvents. More precisely, we consider the class of such
algorithms where each resolvent is evaluated only once per iteration. For any algorithm from
this class, we show that the underlying fixed point operator is necessarily defined on a d-fold
Cartesian product space with d > n — 1. Further, we show that this bound is unimprovable by
providing a family of examples for which d = n—1 is attained. This family includes the Douglas—
Rachford algorithm as the special case when n = 2. Applications of the new family of algorithms
in distributed decentralised optimisation and multi-block extensions of the alternation direction
method of multipliers (ADMM) are discussed.

Keywords. monotone operator - splitting algorithm - decentralised optimisation - ADMM
MSC2020. 47HO05 - 65K10 - 90C30

1 Introduction

In this work, we study fixed point algorithms for finding a zero in the sum of finitely many maximally
monotone operators defined on a real Hilbert space H. That is, we consider problems of the form

find = € H such that 0 € ZAZ-@), (1)
i=1
where the set-valued operator A;: X = H is maximally monotone for all i € {1,...,n}. We

focus on so-called backward schemes for solving (1). That is, we assume the operator A; is only
available through its resolvent Ja, := (Id+4;)~!. Such methods are the backbone of modern
optimisation [8]. Although resorting exclusively to the use of resolvents for (1) may seem restrictive,
it is worth noting that algorithms have interpretations as the resolvents of appropriately choosen
monotone operators [11, 15].

To be more precise, this work considers the class of so-called frugal resolvent splittings in the
sense of Ryu [22] which form a special class of backward schemes. Roughly speaking, a fixed point
algorithm for solving (1) is a member of this class if it can be described using only vector addition,
scalar multiplication, and each of the resolvents J4,,...,J4, once per iteration. The best known
examples of frugal resolvent splittings are the prozimal point algorithm [21] for n = 1 and the
Douglas—Rachford algorithm [16, 11] for n = 2.

The memory requirements of a fixed point algorithm can be measured using the notion of
lifting [22]. A fixed point algorithm has d-fold lifting if its underlying fixed point operator can be
defined on the d-fold Cartesian product H% := Hx (d) x#. Since the amount of memory needed to

*Department of Mathematics, Linkoping University, 581 83 Linkoping, Sweden. Email: yurii.malitskyi@liu.se
TSchool of Mathematics & Statistics, The University of Melbourne, Parkville VIC 3010, Australia.
Email: matthew.tam@unimelb.edu.au

href:yurii.malitskyi@liu.se
href:matthew.tam@unimelb.edu.au

work with vectors in H? is d-times larger than vectors in 7, the quantity d can be used to compare
different algorithms. In practice, algorithms with less lifting (i.e., smaller d for given n) can be
desirable as they allow for larger problems to be solved with less computational resources. The
best algorithms according to this criteria are said to have minimal lifting. That is, the smallest
amount of lifting (for a given n) while still solving all feasible instance of (1).

Motivated by this property, this work studies the relationship between the number of monotone
operators in (1), as specified by n, and the minimal amount of lifting in frugal resolvent splitting
for solving (1), denoted by d*(n). The first few values of d*(n) are known in the existing literature,
as we now explain. For n = 1, the proximal point algorithm is a frugal resolvent splitting with
1-fold lifting (which is necessarily a minimal lifting), so d*(1) = 1. For n = 2, the Douglas—
Rachford algorithm is a frugal resolvent splitting with 1-fold lifting, so d*(2) = 1. For n = 3, Ryu
[22, 2] devised a scheme with 2-fold lifting and established its minimality in [22, Theorem 3]. As a
consequence, d*(3) = 2. For n > 4, the value of d*(n) has remained an open problem. Indeed, Ryu’s
scheme for n = 3 does not seem to generalise to the n > 4 setting (see Remark 4.7). Nevertheless,
the pattern provided by the first few terms does suggest that d*(n) =n — 1 for n > 2.

In the first part of this work, we fully resolve the aforementioned open question by showing that
it is indeed the case that d*(n) = n — 1 for n > 2. This is established in two steps: we first show
that d*(n) > n—1 for n > 2 using techinques inspired by [22], and we then show the bound cannot
be improved by providing a new family of frugal resolvent splittings for (1) with (n— 1)-fold lifting.
We believe this family of algorithms, which does not rely on the usual product space reformulation
(see Remark 2.7), to be of interest in its own right. Indeed, in the second part of this work, we
investigate implications and applications of the new family of algorithms for structured optimisation
problems. More precisely, we use the family to devise two novel schemes: a method for distributed
optimisation which is decentralised in the sense that it does not require a “central coordinator”,
and a multi-block extension of the alternating direction method of multipliers (ADMM). Numerical
examples are included to illustrate the methods, although this is not our main focus.

The remainder of this work is structured as follows. In Section 2, we recall the necessarily
preliminaries on fixed point algorithms. In Section 3, we establish the purported lower bound
for d*(n) and, in Section 4, we introduce the new family of frugal resolvent splittings and proof
convergence. In Section 5, we devise a scheme for distributed decentralised optimisation which uses
resolvents and, in Section 6, we present our multi-block extension of ADMM. Finally, Section 7
concludes by outlining a number of directions and open questions for future research.

2 Fixed Point Encodings

Throughout this work, H denotes a real Hilbert space with inner-product (-, -) and induced norm ||-||.
A set-valued operator B: H = H is said to be monotone if

(x —y,u—v) >0 V(z,u), (y,v) € gra B :={(x,u) : u € B(z)}.

A monotone operator is mazimally monotone if no proper extension is monotone. The resolvent of
an operator B: H = H is the operator given by Jp := (I+ B)~!. When B is maximally monotone,
its resolvent Jp is single-valued with full domain, and firmly nonexpansive [17].

Let A, denote the set of all n-tuples of maximally monotone operators on H. In other words,
A= (A1,...,A,) € A, if and only if A;: H = H is maximally monotone for all i € {1,...,n}.
Each A € A, induces an instance of the n-operator monotone inclusion problem given by

find z € H such that 0 € ZAz(x) (2)

i=1

Note that the definition of A,, does not require the existence of a solution to (2). Further, due to
commutativity of vector addition in H, all cyclic permutations of an n-tuple A € A, induce the
same instance of (2).

In the first part of this work, we study the structure of fixed point iterations for solving (2)
whose update step can be defined in terms of the resolvents of the monotone operators Ay, ..., A,.

Following Ryu [22], we formalise this idea in terms of two operators both parameterised by A € A,:
a fized point operator, denoted T4, and a solution operator, denoted S 4. The fixed point operator
can be thought of as the basis for an iterative algorithm with the corresponding solution operator
mapping its fixed points to solutions.

Definition 2.1 (Fixed point encoding [22]). A pair of operators (T4, S4) is a fixed point encoding
for A, if, for all A € A,,

FixTy # @ < zer <ZAZ> #@ and z € FixTy = Sa(z) € zer <ZAZ>)
i=1

i=1

Ezample 2.2. The prozimal point algorithm is the fixed point encoding for A; defined by Ty = J4,
and S4 = Id. The Douglas—Rachford algorithm is the fixed point encoding for A defined by

Ty =1d+Ja,(2Ja, —1Id) — Ja, and Sy = Ja,. (3)

Let z = (z1,20) € H2. Then Ryu’s splitting algorithm [2, 22] is the fixed point encoding for A3
defined by

1 Jas (JAI (Zl) — 21+ Ja, (‘]A1 (21) + 22) - 22) — Ja, (Zl)

TA@) =24 5 | (U (z1) = 21+ Ty (Jay (21) o 22) — 22) — g (Ja, (1) + 22)

and S4(z) = Ja, (z1).

Definition 2.3 (Resolvent splitting [22]). A fized point encoding (T'a,S4) is a resolvent splitting
if, for all A € A,,, there is a finite procedure that evaluates Ta and S at a given point that uses
only vector addition, scalar multiplication, and the resolvents of Ay, ..., Ay.

Definition 2.3 does not specify the number of times per iteration that the resolvents of Ay, ..., A,
can be used. Thus, without further restrictions, the computational cost per iteration of two different
resolvent splittings need not be the same. The following definition provides a slight refinement as
one way to address this.

Definition 2.4 (Frugality [22]). A resolvent splitting (Ta, Sa) is frugal if, for all A € A,,, there is
a finite procedure that evaluates Tao and Sa at a given point that uses only vector addition, scalar
multiplication, and each of the resolvents of A1,..., A, exactly once.

It is worth emphasising that, given a point z, the procedure for evaluating T4 and S4 described
in Definition 2.4 must compute both T'4(z) and S4(z) using each of the resolvents precisely once.
In other words, the resolvent evaluations used to compute S4(z) must be the same as those used
to compute T4(z). As will be demonstrated in Section 3, every frugal resolvent splitting can be
expressed and analysed in terms of six coefficient matrices which fully define such a method.

Ezxample 2.5. All fixed point encodings in Example 2.2 are frugal resolvent splittings. For an
example of a resolvent splitting for A = (Ay) € A; which is not frugal, consider (T4, S4) given by

Tx :Id—i-JAl(QJAI —Id) — JA1 and Sy = JAl,

which coincides with the Douglas-Rachford algorithm applied to inclusion 0 € (A; + A1)(x). The
resolvent splitting (T4, S4) is not frugal in general because any procedure for computing 7’4 requires
the resolvent J4, to be evaluated twice.

Definition 2.6 (Lifting [22]). Let d € N. A fized point encoding (Ta, Sa) is a d-fold lifting for A,
if Ta: HY — HY and Sa: HY — H.

Using the well-known product space reformulation, it is straightforward to derive a frugal re-
solvent splitting for A,, with n-fold lifting. In what follows, denote the diagonal subspace in H™
by

Ap={z=(21...,20) EH" 121 = = 2, }.

Ezample 2.7 (Product space formulation). Let A = (A1,...,4,) € A,. Then
x € zer <ZAZ> — x=(z,...,x) €zer (A+ Na,),
i=1

where N, denotes the (convex) normal cone to A,. Consider the operators Ty: H" — H" and
Sq:H" — H given by

T4 =1d +JA(2PAn —1Id) — Pp, and Sqp = PiPp,,

where Pp, denotes the projection onto A,, Ja = (Ja,,...,J4,), and P; denotes the projection
onto the first product coordinate of a vector in H™. Then (T4,S4) is a frugal resolvent splitting
of A,, with n-fold lifting. In fact, T4 coincides with the Douglas—Rachford operator applied to the
monotone operators Ny, and A.

In light of Example 2.7, it is natural to ask if there exists a frugal resolvent splitting for A,
with d-fold lifting for d < n. Indeed, this will be the main question we consider in the following
section.

3 Frugal Resolvent Splittings with Lifting

Suppose (T'4,S4) is a frugal resolvent splitting for A,, with d-fold lifting where d < n. By defi-
nition, there exists a finite procedure for evaluating T4 and S4 using only vector addition, scalar
multiplication and the resolvents of Aq,..., A, precisely once. The form of such a procedure may
be completely described in terms of a number of matrices, as we now explain.

Consider evaluation of T4 at an arbitrary point z = (21,..., zq) € H?. By frugality, each of the
resolvents J4,,...,Ja, is evaluated precisely once in the computation of T)4(z). Thus there exist
points x = (x1,...,2,) € H" and y = (y1,...,Yn) € H" used in the procedure such that

x=July) <= 0ex—-y+ Ax). (4)

The resolvents in (4) are computed in some order in the evaluation of T4(z). Without loss of
generality, we assume they are computed in the order Jyu, (y1),...,Ja, (yn). Since T4 is a resolvent
splitting, y; is a linear combination of points already computed in the process of evaluating 7'4(z).
Thus, we must have y; € span{z1,...,z4} and

Yi € SPan{z1, ..., 24, Tl -y Tie1,Yls- -, Yi1} = spanf{z1,..., 24, T1, ..., Ti—1} Vi >2,

with the coefficients in these linear combinations independent of z, z and y. Thus, in a slight abuse
of notation,! we may express this compactly as

y = Bz + Lx. (5)

where B € R™*¢ contains the coefficients of z1,..., 2, and L € R™ " is a lower-triangular matrix
with zeros on the diagonal which contains the coefficients of x. Since T4 is a frugal resolvent
splitting, we also have

Ta(z) € span{z1, ..., 24, X1y, Tpy Y1y« -+ Yn} = SPAN{ 21, ..., 24, T1, -« ., Tn }s

where, as before, the coefficients in the linear combinations independent of z and x. Hence there
exists T, € R4 and T, € R¥" guch that?

Ty(z) =T,z + T,x. (6)

!Strictly speaking, (5) should be written as y = (B ® Id)z 4 (L ® Id)x where ® denotes the Kronecker product.
In the special case when H =R, B®Id = B and L ® Id = L, and the two expressions coincide.

2We emphasise that the coefficient matrices T, and T, are constant and do not have any dependence on z or x.
The subscripts are merely labels to indicate which variables the coefficients belong to. An analogous remark applies
to the coefficient matrices S, and Sz in (7).

Similarly, frugality also ensures

Sa(z) € span{z1,..., 24, L1, Tpy Y1y« - s Yn} = SPAN{ 21, ..., 24, X1y - -, Tn }s

hence there exists matrices S, € R4 and S, € R ™ such that
Sa(z) =S,z + S;x. (7)

Thus, altogether, any frugal resolvent splitting for A,, with d-fold lifting is completed described by
(4), (5), (6) and (7), and the matrices B, L, T, Ty, S, S,. With this in mind, the results in this
section are formulated in terms of these matrices.

We shall require the following technical lemma.

Lemma 3.1. Let (T4,S4) be a frugal resolvent splitting for A,. Let M denote the block matriz
given by
0 Id —-1d Id
M := B L —-Id 0
T,—-1d T, 0 0

-
If z € FixTy, then there exists v = [z Xy a} € ker M with a € A(x). Conversely, if

-
v=|z x Yy a} € ker M and a € A(x), then z € FixTx, x = Ja(y) and Sa(z) = S,z + Szx.

Proof. Suppose z € FixT4. Then there exists x,y € H" defined by (4)—(6) such that

x—y+ A(x) }ZC
Bz+Lx—y =M v 2> 0.
(T, —1d)z + T,x A(x)

-
Consequently, there exists a € A(x) such that v := [z Xy a} € ker M.

-
Conversely, suppose v = {z Xy a] € ker M and a € A(x). The first row of M gives

0O=x—-y+aex—y+Ax) = x = Jy(y), the second row of M gives y = Bz + Lx, and the
last row of M together with (6) gives z = T,z + T,x = T4(z) = z € FixTy4. Thus, as z,x,y
satisfy (4)—(6), (7) implies Sa(z) = S,z + Szx. O

The following result shows that the solution mapping of a frugal resolvent splitting is necessarily
of a specific form.

Proposition 3.2 (Solution mappings). Let (T4, S4) be a frugal resolvent splitting for A,,. Then,
for allz € FixTy4 and x = Ja(y), we have

Proof. Let A € A,, let z € FixT4 and set z* = S4(z). By Lemma 3.1, there exists a vector
T

vi=1lz X ¥y é} € ker M with a € A(x) and z* = Sa(z) = S,z + Syx. Next, consider the

n-tuples of operators A, AM . AM ¢ A, given by

0

AO(x)=a and AV (x)=a+ x;—x;| Vi=1,...,n.

Since v € ker M and a = AU)(x), Lemma 3.1 implies z € Fix Ty and X = J 4 (y) and S y)(z2) =
S.z + Syx = z*. Consequently, we have 0 = >"1" | AZ(-O) (x*) =i a; and
n) n
OIZAEJ)(.T*) :Z&Z'—I—ZC*—.fj :l‘*—:fj Vj: 1,...,n,
i=1 i=1
from which it follows that 2* = Z; = .-+ = Z,. Finally, since X = J40)(¥), we have y — X
A (%) = a and hence Yo yi —nax* = > a; = 0. The proof is now complete.

O

Thanks to Example 2.7, we know that there exists a frugal resolvent splitting for A,, with d-fold
lifting with d = n. The following propositions show that there are no frugal resolvent splittings
with lifting when d < n — 2, and thereby extends [22, Theorem 3] beyond the setting with n = 3.

Theorem 3.3 (Minimal lifting). Let (T4, S4) be a frugal resolvent splitting for A, with d-fold
lifting. If n > 2, thend >n — 1.

Proof. Suppose, by way of a contradiction, that (T4, S4) is a frugal resolvent splitting for .4,, with
d-fold lifting such that d < n —2. Let A € A, with zer(}.;-; A;) # @ and z € FixT4. By

i
Lemma 3.1, there exists v = {z Xy a] € ker M with a € A(x). In particular, the last row of

M implies that 0 = (T, — Id)z + T,x. Since T, € R™" and d < n — 2, the rank-nullity theorem
implies dimker T, = n —rank T, > n — d > 2. Thus, since dim A,, = 1, there exists x ¢ A,, such
that T,x = T,x.

Set z := z, y := Bz + LX, a := y — %X and consider A € A, given by A(x) = a. Then
v = [Z Xy é}—r € ker M with a € A(x). By the Lemma 3.1, z € Fix Ty and X = J4(y). On
the other hand, Proposition 3.2 implies x € A,,. Thus a contradiction is obtained and so completes
the proof. n

Theorem 3.3 provides a lower bound on the value of d for frugal resolvent splittings with d-
folding lifting, but says nothing about whether this bound is tight. In the following section, we
address this question by showing that it is indeed unimprovable for A,,.

Remark 3.4. The definition of a resolvent splitting (Definition 2.3) only allows the resolvents
Jay,...,Ja, to be used in evaluation of T4 and S4. Since the resolvent J,, 4, for parameter
w; > 0 is typically no more difficult to compute than the resolvent J4,, a natural generalisation of
Definition 2.3 is to allow the resolvents J, a,, ..., Ju, 4, for parameters wy,...,w, > 0, not nec-
essarily all equal. After the publication of this work, this setting has been considered in [1] under
the name “paramterised resolvent splittings”. In the same work, it was shown that the conclusion
of Theorem 3.3 also holds for parameterised resolvents splitting [1, Theorem 2.10]. Examples of
frugal parameterised resolvents splitting which attain this bound can be found in [10, 5].

4 A Family of Resolvent Splitting

In this section, we provide an example of a frugal resolvent splitting for A,, with (n—1)-fold lifting,
assuming n > 2. Due to Theorem 3.3 this is unimprovable for this problem class. In what follows,
the set of integers between k,l € N is denoted

kk+1,....0 itk <l
[1] = { R ALl iR <
%} otherwise.

Let v € (0,1) and A = (Ay,...,A,) € A,. Consider the operator Tx: H" 1 — H"~! given by

T2 — I
r3 — T2
Ta(m) =z +7 | (8)
Ty — Tp—1

where x = (21,...,2,) € H" depends on z = (z1,...,2,_1) € H" ! and is given by

L1 = JAl(Zl)7
T, = JAi(Zi +xio1—zi1) Yie [[2,77, — 1]], (9)
Tp = Ja, (1 4+ Tpo1 — 2n—1)-

Remark 4.1. For n = 2, the operator T4 described by (8)—(9) is an under-relaxation of the standard
Douglas—Rachford algorithm. Indeed, in this case, T'4: H — H can be expressed as

Ta() = 24 (o2 = 01) = 47 (Taa 2T, (2) = 2) = T () = (1= 3) 44T RasRas - (10)

where R4, = 2J 4, —1d denotes the reflected resolvent of the monotone operator A;. The (unrelaxed)
Douglas—Rachford algorithm in (3) corresponds to the limiting case with v = 1. For n = 3, the
operator T is different than the one described by Ryu in [22, Theorem 4] (see also [2, Theorem
8]), which in the notation used in this section, corresponds to

w1 = Ja, (21)
Z—Z+7y (i;:i;) where < w9 = Ja,(z2 + 1) (11)
x3 = Jas(r1 — 21 + 22 — 22).
As we will discuss in Remark 4.7, it is currently not obvious how to extend this method to the
setting where n > 4.

Let denote the set of all points (z,Z) € H" ! x H where z = (z1, ..., 2z,_1) satisfying
JA1 (21)3

JAi(Ei —Zi—1 +i‘) 1€ [[2,7”L — 1]],

Ja

n(2.7_3 — Zn—l)-

8 8
1

T
Lemma 4.2. Letn >2, A= (Ay,...,A,) € A, and v > 0. The following assertions hold.
(a) If z € Fix Ty, then there exists x € H such that (z,z) € §Q.

(b) If & € zer (3_j—1 A;), then there exists z € H such that (z,%) € Q.
(c) If (z,x) € Q, then z € FixTy4 and & € zer (311 A;).
Consequently,

FixTh#0 <— Q# 90 — zer(

=1

Proof. (a): Let z € FixT4 and set Z := Ja,(Z1). Since T4(z) = z, (8) implies (z,z) € Q.
(b): Let & € zer (37 A;). Then there exists v = (v1,...,v,) € H" such that ; € A;(Z) and
", v; = 0. Define the vector z = (z1,...,2,-1) € H" ! according to
Z1:=x+wv € (Id +A1).§E,
Zii=vi+ Zio1= (@ +v) -2+ 2z € (Id4+A4)(Z) — 2+ zi-1 Vi€ [2,n—1].

Then z = Ja,(z1) and & = Ja,(z; — Zi—1 +) for i € [2,n — 1]. Furthermore, we have

n—1 n—1
Id+A)@) 2T+ =2— Y vi=2T— (21— &) — Y _ (% — Zi_1) = 2T — Zn_1,
=1 =2

which implies that £ = Jg4, (22 — Z,—1). Altogether, we have (z,z) € €.
(c): Let (z,z) € Q. It follows that z € Fix T'. Further, the definition of the resolvent implies

Al(i’) 521 —T
Az(f> Dz —ZzZi1 W€ [[2,77, — 1]]
An(:i') 5T — Zp_1.

Summing together the above inclusions gives & € zer (3_;- 4;), which completes the proof. O

Lemma 4.3. Letn > 2, A= (Ay,...,A,) € Aand vy > 0. Then, for all z = (z1,...,2,) € H* !
and z = (z1,...,2,) € H" ™, we have

ITa(z) — Ta@)|? + “ﬂrmd ~T4)(2) — (1d T4 (2)

1 n—1 n—1 B 9 B
=T @) - Y1 -T @ < 2 -2 (12)
i=1 i=1
In particular, if v € (0,1), then Ty is y-averaged nonexpansive.
Proof. For convenience, denote zt := T4(z) and z* := T4(z). Further, let x = (z1,...,2,) € H"
be given by (9) and let x = (Z1,...,Z,) € H" be given analogously. Since z; — z; € Aj(x1) and

z1 — &1 € A1(Z1), monotonicity of A; implies

0 < (z1 — 71, (21 —21) — (21 — 1))
= <$2 AN (Zl — 561) — (21 — Zfl)> —+ <$1 — X9, (21 — 1‘1) — (21 — i‘l)> (13)

Fori e [2,n — 1], zi—zi—1+xi—1—x; € Ai(x;) and 2z, —Z;—1 +Ti—1 —T; € Ai(Z;). Thus monotonicity
of A; yields
0 < (i —Ti, (2 — zim1 + Tim1 — @) — (% — Zim1 + Tio1 — Ty))
= (i — Ty, (20 — w5) — (2 — T4)) — (x5 — Ti, (21 — Tim1) — (Zic1 — Tio1))
= (Ti1 — T, (20 — i) — (2 — @) + (@ — @ig1, (2 — @) — (5 — Ty))
— (i — %1, (zic1 — 2i-1) — (Zic1 — Ti1)) — (Tie1 — Ziy (2im1 — Tio1) — (Zic1 — %i-1))-
Summing this inequality for i € [2,n — 1] and simplifying gives

0<(Zn = Zn-1,(2n-1 —Tp-1) = (Zn-1 — Tn—1) — (T 2—3_31,(Z1—331)—(51—3—31)>

+ Z — 1’14,_1, — fL'z) Zi — xz Z - xz—f—la - wz) - (21‘ - jz» (14)

=1
Since x1 + Tp—1 — Tp — 2n—1 € Ap(zyn) and Ty + Tp—1 — Tp — Zn—1 € An(Zn), monotonicity of A,
gives
0< <-73n — Tn, (1'1 +Tp1 —Tn — anl) - (:i'l + Tp—1— Ty — 2n71)>
= <-Tn — T, (xnfl - anl) - (jnfl - anl» + <5L'n — Tp, (l‘l - j1) - (Cﬂn - in»
_<33n — Tp—1, (Zn—l - -Tn—l) - (Zn—l - fin—l» (15)

- <J_f'n — Tp—1, (zn—l - xn—l) - (gn—l - fn—l)>

1 _ _ _ _
+ 5 (lan = 212 = e = Zall” = (@1 = 2a) = @1~ 20)[17).

Adding (13), (14) and (15) and rearranging gives
0< Z i = %) = (i1 = Tip1), T — xi) —) (@ — T) = (Tir1 — Tivr), 2 — Z)

1 _ _ _ _
+ 5 (lay = 21 =l = Zall” = (@1 = 20) = @1 = 2a)[7) . (16)

The first term in (16) can be expressed as

n—1
Z((fﬂz — %) — (Tig1 — Tig1), Ti — x3)
1=1
1n—1
=52 (Il = Zen|* = o = il ~ @i — zi01) = (@ — 201))
=1 (17)
1 2 2 1 = 2
=2<||xn—xn|| ~ a1 — & —722||<z2-—zr>—<zz-—z+>||>
i=1
1 _ 2 R + = =2
=5 (lon =@l = lan = 21 = iz —2%) = (2= 7))

and the second term in (16) can be expressed as

n—1

Z<(9Cz‘ —2iy1) — (& — Tigt1), 20 — %)

1
gt (18)
1

Thus, substituting (17) and (18) into (16) and simplifying gives
+ _ 42 1 + 7 _ =12 7 7 3|12 A
Iz — 27| + it l(z—2") = (Z2-2") " +7l(z1 =) = (@1 —ZW) I < |z — 2" (19)

Note that (9) implies

n—1 n n—1 n—1
Y@ = an) =y (@1 = Zn) =7 D (@ — wip1) =YD (@i = Zip1) = Y (2= 257) = D (5 —),
i=1 i=1 i=1 i=1
Substituting this into (19) gives (12), which completes the proof. O
Remark 4.4. In general, Lemma 4.3 cannot be improved in the sense that T4 need not be averaged
nonexpansive if v > 1. Indeed, consider the setting withn > 3, v =1, and A; =--- = A4, = 0.
Then Ja, = Ja, = -+ = Ja, = 1d and hence
Z1 Z9
zZ9 z3
Ta(z)=Ta| : [=] :
Zn—2 Zn—1
Zn—1 Z1

Consequently, T4 is an isometry and hence not averaged nonexpansive.
However, in the special case when n = 2, Lemma 4.3 recovers the known result that T4 is
averaged nonexpansive when ~y € (0,2). Indeed, if n = 2, then

n—1 n—1
1Y G-z =2 E=-2DI =l -2 - & -2
i=1 =1

Consequently, the second and third terms in (12) can be combined to give
_ 2—rx _ _
ITa(z) = Ta(2)|* + T\I(Id ~Ta)(z) — Id=Ta)(7)|* < ||z - 2[|%

Thus, if n = 2 and v € (0,2), then T4 is 3-averaged nonexpansive.

The following theorem, which is concerned with convergence of Algorithm 1, is our main result
for this section.

Theorem 4.5. Letn > 2, let A= (A1,...,A,) € A, with zer (377 A;) # @, and let v € (0,1).
Given z° € H" 1, let (z¥) € H" ! and (x¥) C H" be the sequences given by (20) and (21),
respectively. Then the following assertions hold.

(a) The sequence (z*) converges weakly to a point z € Fix Ty.

(b) The sequence (x*) converges weakly to a point (z,...,x) € H" with x € zer (371 A;).

Algorithm 1: Minimal resolvent splitting for finding a zero of 1" ; A; when n > 2.
Input: Choose z° = (29,...,2% ;) € H" L and v € (0,1).
for k=1,2,... do

Compute zF 1 = (41 ... 2F1) € #*=1 according to
L
k k
x5 — a3
2" = Ty(2%) = 2" + 4) , (20)
wh —
where x¥ = (z¥,...,2F) € H" is given by
xlf =Ja (Z{g)v
v =Ja (e — 2 i) ViE2n-1], (21)
wh = Ja, (2t + 2y — 25).

Proof. Since zer (>_1' | A;) # &, Lemma 4.2(b) implies Fix T4 # &. Since v € (0,1), Lemma 4.3
implies T4 is y-averaged nonexpansive. By applying [3, Theorem 5.15], we therefore deduce that
(z*) converges weakly to a point z € Fix T4 and that limg_,o [|2°T! — 2¥|| = 0.

By Lemma 4.2(a), there exists £ € H such that (z,z) € Q. By nonexpansivity of resolvents
and boundedness of (z*), it follows that (x*) is also bounded. Further, (20) and the fact that
limy o0 [|Z2°T! — 2¥|| = 0 implies that

lim ||zF —2F ||| =0 Vi=2,...,n. (22)
k—o0

Next, using the definition of the resolvent, (21) implies

AN ((F—af) = (2, —ab) 52 Vie[2,n—1]
Ap(af) 3 af —ap — (25 —2h_y)
which can be written as the inclusion
Al 0 0 ... 0 —-Id 2k — b ok — ak
At 0 0 ... 0 —-Id (25 — k) — (2F — 2b) xk — 2k
S I S : > : (23)
A;il 0O 0 ... 0 —-1Id (Zrlifl - 335171) - (2572 - 905172) xlfzfl - 35]73
A, Id Id ... Id 0 zk ok — ok

Note that the operator in the inclusion (23) is maximally monotone as the sum of two maximally
monotone operators, the latter having full domain [3, Corollary 24.4(i)]. Consequently, it is demi-
closed [3, Proposition 20.32]. That is, its graph is sequentially closed in the weak-strong topology.

Let w € H" be an arbitrary weak cluster point of the sequence (x*). As a consequence of (22),
w = (z,...,2) for some x € H. Taking the limit along a subsequence of (x*) which converges
weakly to w in (23), using demiclosedness and unravelling the resulting expression gives

Ai(z) 2z21—=x
Az(l‘) Szi—zi1 Vi€ [[2,’” — 1ﬂ
Ap(z) 2 — zp-1,

which implies (z,z) € Q. In particular, z € Fix T4 and = = J4,(21) € zer (3 i Ai).

10

In other words, w = (z,...,x) € H" with x := Jy4,(z1) is the unique weak sequential cluster
point of the bounded sequence (x*). We therefore deduce that (x*) converges weakly to w, which
completes the proof. O

The following corollary, which attains the lower bound given in Theorem 3.3, is an immediate
consequence of Theorem 4.5. Thus, in the terminology of Ryu [22], the scheme described by
Theorem 4.5 has “minimal lifting”.

Corollary 4.6. Let n > 2. There exists a frugal resolvent splitting (Ta, Sa) for Ay, with (n—1)-fold
lifting. Moreover, there exists no frugal resolvents splitting for A, with d-fold lifting for d < n — 2.

The following remark comments on the difficulties of extending [22, Theorem 4] to a four oper-
ator scheme. Such an extension seems not to be straightforward without additional assumptions.

Remark 4.7 (Extensions of Ryu splitting). Let A = (Ay, Aa, Az, A4) € Ay and «y € (0,1). Consider
the operator T: H? — H? given by

JA1 2’1)

(
T = Ja, (22 + 1)

(

(

T(z)=z+~|x4—2x2| where (24)
= Ju,

T 23 + X — x1)
x4—JA4 x1—21+1‘2—22+l’3—Z3),

which can be considered as a four operator extension of (11). By using the definition of the
resolvents, it can be shown that for this scheme

zeFixT = 11 =x9=23=1m4 €zer (A] + Ao+ Az + Ay).

However, its fixed point iteration does not converge for all A = (A1, As, A3, Ay) € Ay with zer(A; +
As + As + Ay) # @. To see this, let H = R and take 47 = Ay = A3 = Ay = 0, so that
Ja, = Ja, = Jas = Ja, = Id. In this case, T'(z) simplifies to

22 1 ~ 0
T(z)=z+~ 0 = Pz where P:=|0 1 0
21+ 23 1 0 1+’Y

In particular, if z = (0,0, 1), then T%(z) = P*z = (1 + v)*z which diverges as k — oo.
Interestingly, the operator described by (24) can be shown to be y-averaged nonexpansive if the

fourth operator A4 is 1-strongly monotone, rather than just monotone. Further, if A4 is S-strongly

monotone for some 5 € (0,1), then %A4 is 1-strongly monotone. In this case, (24) can instead be

applied the operators %Al, %Ag, %Ag, %A4 where we note that zer (Zle Ai) = zer (24 L4,)

=173
Remark 4.8. Since the sequence (x*) is weakly convergent to (x,...,z), it follows that x¥ — x? -0
as k — +oo for all 4,5 € {1,...,n}. However, (22) shows convergence is actually strong. That is,
we have
lim ||zF — m?H =0 Vi,je{l,...,n}.
k—o0

4.1 The Limiting Case under Uniform Monotonicity

We conclude this section with the following theorem which deals with the limiting case in Theo-
rem 4.5. That is, the case where v = 1.

Theorem 4.9. Let n > 2, let A = (Ay,...,A,) € A, with zer (311 Ai) # &, and let v € (0,1].
Further suppose A;: H = H is uniformly monotone with modulus ¢; for alli € {2,...,n}. Given
20 € L et (2F) € H ! and (xF) € H™ be the sequences given by (20) and (21), respectively.
Then the following assertions hold.

(a) The sequence (z*) converges weakly to a point z € FixTy.

11

(b) The sequence (x*) converges strongly to a point (z,...,x) € H" with x € zer (31, A;).

Proof. Since zer (3 ;- A;) # @, Lemma 4.2(a) implies there exists (z,z) € Q which implies z €
Fix Ty and x € zer (3_;; A;). By repeating the proof of Lemma 4.3 but using uniform monotonicity
in place of monotonicity, we obtain

_ 1—v 1 = _
25+ — z)|* + THZk — 27+ ;Hl’]f —apllP+ 2y di(llaf —2f) < |l2" —zl* vk eN.
i—2

Since 7y € (0, 1] this implies

_ 1 = _
12+ — 2> + ;Hx'f —apl® +2v) dillaf —zll) < 2" —z||* vk eN. (25)
1=2

It follows that (||z* — Z||?) is non-increasing and hence convergent. Taking the limit as k — 400
in (25) then gives that 2§ — 2% — 0 and 2% — x for all i € {2,...,n}. Hence the sequence (x*)
converges strongly to (z,...,x) € H", which establishes (b).

To establish (a), first note that T4 is nonexpansive due to Lemma 4.3. Let z’ be an arbi-
trary weak cluster point of the bounded sequence (z*). Since x* — (z,...,z), (20) implies that
(Id —T4)(2*) — 0 which, since Id —T}4 is demiclosed [3, Theorem 4.27], implies z' € Fix T,4. Thus,
applying [3, Theorem 5.5], gives that (z*) converges weakly to a point in Fix T4 as claimed. O

Remark 4.10. The limiting case (i.e., v = 2) of Douglas—Rachford splitting (10) for a finding a zero
in the sum of n = 2 operators is known as Peaceman—Rachford splitting [20]. Theorem 4.9 can be
considered as an extension of Peaceman—Rachford splitting for n > 2 operators, in the sense that
it represents the limiting case of our proposed method. For n > 2, a zero in the sum of n operators
can be found using Peaceman—Rachford splitting applied to the product formulation (Example 2.7)
provided that all n operators are uniformly monotone. In contrast, Theorem 4.9 only requires n— 1
of the operators to be uniformly monotone.

5 Distributed Decentralised Optimisation

The structure of the update step in Algorithm 1 is especially well suited to being performed in a
distributed decentralised way, without the need for a “central coordinator” to enforce consensus.
Specifically, we consider a cycle graph with n nodes labelled 1 through n. Each node in the graph
represents a device, and two devices can communicate with one another only if their nodes are
adjacent. In our setting, this means that node 7 can communicate with nodes ¢ — 1 and 7 + 1
(mod n). For each i € {1,...,n}, we assume that node ¢ only knows the operator A;. In addition,
we assign updating of z1,...,2,-1 to nodes 2,...,n, respectively. With this in mind, we give the
following protocol (Algorithm 2) for distributed decentralised implementation of Algorithm 1.

In total, the protocol described in Algorithm 2 requires each node to send exactly two messages
per iteration; node i sends one message to node i — 1 and one to node ¢ + 1 (mod n). As node
i is responsible for computing the sequence (%) (which converges to a solution) in this protocol,
each node always keeps track of its own approximate solution. Also note that not all steps in
Algorithm 2 must be completed in the stated order. For example, after completing Step 3, nodes
2,...,n — 1 can commence Step 1 of the next iteration without waiting for node n to complete
Step 4.

5.1 Numerical Example: /;-Consensus

To illustrate the method, consider the simple unconstrained optimisation problem given by

in |z —ci| 4+ |z — 26
min |z —cpf + - + |z — ¢al, (26)

12

Algorithm 2: Protocol for distributed decentralised implementation of Algorithm 1.
Input: Let v € (0,1). For each i € {2,...,n}, node i chooses 2 € H.

for k=1,2,... do
1. For each i € {2,...,n}, node i sends zf_l to Node ¢ — 1;

2. Node 1 computes 2§ = J4, (2F) and sends 2% to nodes 2 and n;

3. For each 7 € {2,...,n — 1}, node i computes

k ko _k k
wy = Ja, (2 — 2 3),

sends a:f to node ¢ + 1, and updates szll = zf,l + ”y(azf . 375'21);

4. Node n computes
k k k k
Lp = JAn (wl — 251t xn—l)

and updates 2"l = 2F | 4 (ak — 2k)

where c¢q,...,¢, € R are given. Through its first order optimality condition, this problem is
equivalent to the monotone inclusion

find z € R such that 0 € ZAi(x), where A; := 0| - —¢;.
i=1

We solve this in the decentralised way described above. Since the resolvent of A; has an explicit
form, Algorithm 1 is straightforward to implement (using the protocol described in Algorithm 2).
Alternatively, we can rewrite (26) as the constrained minimisation problem given by

min i |zy —ci| + -+ |z — ¢y| subject to Lx =0, (27)

X=(Z1,..,Tn)€

where L € R"*™ is the Laplacian of the cycle graph, that is L;j; = 2 for all + € [1,n] and L;; = —1
if |i — j| =1 (mod n) and 0 otherwise. In words, Lx amounts to the exchange of the coordinates
of x between nodes in the way permitted by the network topology. Formulation (27) can be solved
using the primal dual hybrid gradient (PDHG) algorithm [6, 9] given by
xFH = profo(xk — rL*yk) (28)

yk—i-l _ yk + UL(2XI<:+1 _ Xk),

where f(x) := ||x — ¢y and 70| L||* < 1.

However, (28) turns out not to be the best way to use the PDHG to solve (27). Instead, one can
first replace the constraint in (27) with the constraint v/Lx = 0, where v/L is the unique positive
semidefinite matrix such that (v/L)? = L. Then, after making the change of variables v¥ = /Ly*,
the PDHG scheme (28) with v/L in place of L can be expressed as

{xk"'l = prox,rf(xk —7vP) (20)

Vk+1 — Vk + O,L(2Xk+1 . Xk),

where 7 and o are only required to satisfy the weaker inequality 7o||L|| < 1.

Both Algorithm 1 and the PDHG algorithm (29) use approximately the same number of vari-
ables and have approximately the same amount of computation/communication per iteration. To
compare their performance, we measure the residuals of the two algorithms: %sz“ —z*|| for Algo-

1/2
rithm 1 and (%kaﬂ — xF||2 4 Lyt — R — 2(VL(xFH — xF), yh T — yk>) / for PDHG. The
latter residual comes from the interpretation of PDHG as the proximal point algorithm and after

1/2
some algebra it can be written simply as (%Hx’”l —xF||2 4 (v — vk,xk>) . Comparison of

13

n=10 n=100 n=1000

10! 102
1072 1071 l
10-° 1074 —
1078 107
, N —e— PDHG-1
10-1 1071 . 1071 —+— PDHG-2
-14 14 , ~— PDHG3
10 10 10~ —— Alg.1
—— ———
0 100 200 300 0 10000 20000 30000 40000 50000 00 02 04 06 08 1.0

le6

Figure 1: Results for problem (26). x-axis: iterations, y-axis: residuals

these two residuals is justified because they corresponds to successive iterations of the underlying
fixed point operators.

For n € {10,100,1000}, we generated the numbers ¢; randomly by sampling the standard
normal distribution. The initial point for Algorithm 1 was taken as z° = 0 € R"~! and for PDHG
as (x%,y%) = (0,0) € R® x R™. Algorithm 1 was run with v = 0.9 and PDHG with stepsizes given
by

(7’0’)6{(1 1>(1 10)(10 1)}

| VI VIzT o Iz VIET \VIED 10V/1Z]

(we refer to these choices as PDHG versions 1, 2, and 3, respectively). The results are shown in
Figure 1 and suggest favourable performance of Algorithm 1, but further investigation is needed.

6 Multi-block ADMM

The alternating direction method of multipliers (ADMM) is an algorithm for solving minimisation
problems of the form

min fi(w1) + f(ws) subject to Ajw; + Agwy = b, (30)

w=(w1,ws

where f1: Hi — (—o0,+o00] and fao: Ha — (—00, +00] are proper Isc convex functions, A;: Hi — H
and As: Ho — H are bounded linear opeartors, and b € H is a given vector. ADMM is known to
be equvialent to applying the Douglas—Rachford method to the Fenchel dual of (30) [12, 11]. As
the family of resolvent splitting introduced in Section 4 includes the Douglas—Rachford method as
the special case when n = 2 (see Remark 4.1), it is natural to investigate an analogous equivalence
in the setting when n > 3.

Before proceeding, we recall some notation. The Fenchel conjugate of an extended real-valued
function g is denoted g*(z) := sup,{(z,y) — g(y)}. Given a set C, its indicator function, denoted
tc, is the function which takes the value 0 on C and 400 outside C.

Consider the separable minimisation problem

n n
i (w; bject t Aw; =b 31
T S CE R S o
where f1,..., fn are proper lsc convex functions, Ai,..., A, are bounded linear operators, and
b € H is a given vector. Denote f(w) := >, fi(w;) and A := {Al An}. Then (31) can be
expressed as the Fenchel primal problem given by
pi= m“i/n{f(w) + Lgpy (Aw)}. (32)

which has Fenchel dual given by

d:= sgp{—f*(A*x) — i (=2)}.

14

Since f* =@, f}, L“Eb} = (b,-) and A* = | : |, this dual problem is equivalent to
Aj,
n—1
nf(3" f7 (~Alz) + g°(2)} where g*(x) = fi(—Aa) — (b.a). (33)
i=1

In what follows, we derive a multi-block extension of the ADMM algorithm by applying the
new resolvent splitting from Section 4 to the dual problem (33). Such an extension is of interest
because, even when n = 3, the natural “direct extension of ADMM” need not converge [7].

We begin by examining the so-called “averaged operator” form of our proposed ADMM exten-
sion. To simplify the presentation of our derivation, we will use the following lemmas.

Lemma 6.1. Let hy: H' — (—o0,+00] and hy: H — (—o00,+00] be proper lsc convex functions,
and let A: H' — H be a bounded linear operator. Denote h(z) := hi(—A*z2) + hi(2). If

1
(&,9) € argmin {hl(w) + ha(y) + (2, Az —y) + §HA$ - yH2}

v . (34)
= arg min {hl(az) + ha(y) + §HA:1€ —y+ z\Q} ,

x?y

then prox,(z) = z + (A% —). Moreover, the minimum in (34) is attained provided that: (a) hy is
coercive or A*A is invertible, and (b) h = (b,-) for some vector b € H'.
Proof. Suppose the minimum in (34) is attained at (#,79) and denote w := z + (A% —). By
first-order optimality in (34), we have —A*w € dh1(#) and w € dha(f). Since (Oh1)~! = dh} and
(Ohg)~! = Oh3, it follows that 0 € (—A)Oh}(—A*w) + Ohi(w) + (w — z) which, in turn, implies

1 1
w € argmin{h](—A"u) + hi(u) + §||u — 2||*} = argmin{h(u) + §||u — 2|}

Thus, prox,(z) = w = z + (A% —), which establishes the first claim.
Further, suppose h3 = (b, -) for some b € H. Then hy = h3* = 14, and hence (%,) attains the
minimum in (34) if and only if § = b and

a?eargmin{d)(x) = hl(x)+;|]Aa:—b+zH2}. (35)

If hy is coercive, then ¢ is also coercive due to nonnegativity || - [|2. If A*A is invertible, then
x> 5| Az —b+2||? = $(zx, A*Az) + (x, A*(2 — b)) + ||z — b||? is supercoercive by [3, Exercise 17.1]
and hence ¢ is cocercive by [3, Proposition 11.14]. Thus, in either case, ¢ is coercive, and so the
minimum in (35) is attained due to [3, Proposition 11.15]. This establishes the second claim and
completes the proof. O

Lemma 6.2. Let h: H — (—o0, +00] be a proper lsc convex function, let A: H' — H be a bounded
linear operator, and let (u*) C H be a bounded sequence. Suppose that h is coercive or A*A is
invertible. Then, any sequence (w*) C H' satisfying

1
w* € arg min {h(w) + §HAw + uk||2} VEk € N, (36)

1s bounded.

Proof. Suppose, by way of a contradiction, that (w”) is not bounded. Then, without loss of
generality, we assume that ||w*|| — 400 as k — +o00. Using the same argument as in the second
part of the proof of Lemma 6.1, we deduce that function ¢(w) := h(w) + 1||Aw||? is coercive and
hence ¢(w*) — 400 as k — +oo. Since h is proper, (36) implies

1 1 1 1
+00 > h(w') + 5|yAwl + uP||2 > h(w") + §\|Awk + uP|2 > h(w®) + ZyyAwkH? — iHukH2 Vk € N.

Since (u*) is bounded, this inequality implies that the sequence (h(w*) 4+ 1||Aw*||?) is bounded
above. This is a contradiction, and so the proof is complete. O

15

Algorithm 3: Multi-block ADMM for (31) in averaged operator form.
Input: Choose z° = (2?,...,2% ;) and v € (0,1).
for k=1,2,... do

1. Compute w* = (w¥, ..., w¥) according to
k : 1 k2
w} € argmin{ fu(wy) + LAy + 24]%) (37a)
w1
1 i—1
wh € argmin{ f;(w;) + §H Z A]-wé»€ + Ajw; + 2F|?) Vi e [2,n—1] (37b)
w; =1
1 n—1
wk € argmin{ f,,(w,) + 5]\2A1w’f +> Ajw§-c + Apw, — b+ 25} (37¢)
2. Update z"t1 = (/... 2F1) according to
szH = Zf + V(sz-s-l - Zf) + 7Ai+1wi-€+1 Vi€ [1,n—2] (37d)
ot =2y (= 2h)+ y(Arwf + Agw) — b). (37e)

Recall that (w,z) is a Kuhn-Tucker pair for (32) if —A*x € 9f(w) and x € Jig)(Aw). In
particular, when such a pair exists, w is a primal solution and x is a dual solution. Moreover, by
using properties of the Fenchel conjugate, it can be seen that (w,z) being a Kuhn—Tucker pair is
equivalent to w € 0f*(—A*z) and Aw € Oufyy () which implies

M=

0€ (A (—A"z) + iy () =) (=A)Of (= Ajx) + 0(b,-) (z)

~
Il
e

(38)

3

N

O(fi o (A7) (x) + 09" (x),
1

=

We are ready to derive our multi multi-block extension of ADMM and analyse its convergence.
The averaged operator form of our proposed algorithm is given in Algorithm 3 and its convergence
analysed in Theorem 6.3.

Theorem 6.3 (Multi-block ADMM — averaged operator form). Let n > 2. Suppose (32) has a
Kuhn—Tucker pair, and that, for each i € {1,...,n}, either f; is coercive or AfA; is invertible. Let
v € (0,1). Given z° = (29,...,20 1), consider the sequences (z*) and (w") given by Algorithm 3.
Then:

(a) The sequence (W*) is bounded and every weak limit point is a solution of the primal prob-
lem (32). Moreover, if AfA; is invertible for alli € {1,...,n}, then (w*) converges strongly.

b) For each i € {1,...,n — 1}, the sequence (zF + i Auwk converges weakly to a solution of
7 J=14%4
the dual problem (33).

(¢) The residual sequence converges strongly to zero. That is, > iy Aiwf — b as k — +o0.
Proof. Let F := (Fy,...,F,) € A, denote the n-tuple of maximally monotone operators given by

,._{a(:o<—A:>> i=1,...,n—1,

39
ag* 1 =n. (39)

Since (32) has a Kuhn-Tucker pair, (38) shows that zer(> -, F;) # @. Hence F = (Fi,...,F,)
satisfies all the assumptions required to apply Theorem 4.5. To this end, let (z*) denote the

16

sequence given by

o — o
k k
T3 — T3
2" = Tp(2%) = 2" 4+) , (40)
R

where the sequence (x¥) is given by

k k k
vy = Jp (2)) = PI“OXfl*o(_A;)(Zﬂ,
xf = Jpl.(z:ff + xf_l - Zf—l) = prOXfi*o(—A;‘)(zzk + xf—l - sz—l) Vi€ [2,n—1], (41)
fo =Jr, (:clf + xﬁ_1 - 25—1) = ProXg« (fclf + xﬁ—1 - Zﬁ—l)‘

Using Theorem 4.5 applied to F' € A,,, we deduce that (zk) converges weakly to a point z € FixTr

and that (x*) converges weakly to a point (z,...,z) with x € zer(3"; F;). Moreover, Remark 4.8
gives that ||zF — mf” —0ask —ooforalli,je{l,...,n}
Next, using Lemma 6.1, we express (41) as
af = 2 + Ajwf,
ol =2 4 (2 — 2l) + Al Vi€ [2,n—1] (42)
wh = + (@ — 2h_y) + Anw) — b

for some sequence (w") satisfying
. 1
w® € arg min {fl(wl) + §|]A1w1 + zlf]2}
w1

1
wf’ € arg min {fi(wi) + 5l diwi + Fak — zgf_l”?} Vie[2,n—1] (43)

wj

. 1
wa € arg min {fn(wn) + §\|Anwn — b+ :E]f + $fb—1 — z,li_lHQ} .

Wn

By substituting (42) into (43) and (40), we obtain (37). Thus, to complete the proof, it remains to
establish assertions (a), (b) and (c), which we do in reverse order.

(c) Summing the system of equations in (42) gives
Ayl + -+ Ayt —b=aF — a2k 50 as k— 4o0.
(b) Follows by combining weak convergence of (x*) to (z,...,z) with (42).

(a) Since (z*) and (x*) are bounded, Lemma 6.2 implies that (w*) given by (43) is also bounded.
Let w = (w1, ..., w,) be a weak cluster point (w*). Combining (42) and (43) gives

0
Ab(zh — ok
Ofi(wk) > Atk Wie {1,...,n} = Af(w") +A*zh > 2 g D1 (44)

A (2 —)

Since Li‘fb} = (b,), we have (3L{b})_1 = b. Thus, using the equality in (44), we deduce that
(8L{b})*1(x’f) =b=Awr +2f —2F — <8L{b})71($lf) — AwF 3 2f — 2 (45)
By combining (44) and (45), we obtain the maximally monotone inclusion

0
A (e} — af)

of 0 A wk> :
o) DGR

n

oy —

17

Since the graph of a maximally monotone operators is demiclosed [3, Proposition 20.32], taking
the limit along a subsequence of (w*) which converges to w and unravelling the resulting
expression gives

—A*zr € 0f(w) and Aw(aL{b})_1($) = T € Jippy(AWw).

That is, (w, x) is a Kuhn-Tucker pair for (32) and so, in particular, w solves the primal prob-
lem (32). Moreover, if AfA; are invertible for all ¢ € {1,...,n}, then A*A is also invertible [3,
Example 3.29]. Consequently, Aw"* — b implies that w* = (A*A)"!A*AwF — (A*A)~LA*D.

The proof is now complete.]

Remark 6.4. The form of ADMM in Theorem 6.3 is a a multi-block version of the “averaged
operator” form of two-block ADMM as it appears in [13, Equations (77)-(79)]. In the two-block
setting, Theorem 6.3 includes [4, Proposition 5.4.1] as a special case.

Next, we express the multi-block ADMM extension in Theorem 6.3 in terms of the augmented

Lagrangian. Recall that the augmented Lagrangian of (32) is the function £ given by

n

L(wyy ..., wn, 1) ::Zf ,u,ZAwZ—b fHZAwZ—bH

i=1

The augmented Lagrangian form of our proposed algorithm in terms of £ is given in Algorithm 4
and its converged analysed in Corollary 6.5.

Algorithm 4: Multi-block ADMM for (31) in augmented Lagrangian form.
Input: Choose pu® = (uY,..., %) and v € (0,1).
for k=1,2,... do

1. Compute w = (wlf, ceey wﬁ) according to
wlf+1 = arg min ﬁ(wh w]2€7] 7wfz7 le) (463)
wy
wfﬂ = argmin C(w’fﬂ, ceey wf—i_l,wi, wfﬂ e ,wffﬂuf) Vi€ [2,n—1]] (46b)
w;
wflJrl = arg min ﬁ(w’f“, .. wﬁ—'—%? Wn, :u’n) (460)
Wn,

2. Update pFtt = (ub*t .. puF+1) according to

k+1 k & k k+1
Mi " = Miy1 t (Ajwj — Ajwi™)
" j_zi;g T Vie[l,n—1] (46d)

+ (L=) (uf — pir + Aiprwfyy — Ai+1wff11)

uﬁ—i—l Mk+1 (Z Ajw;?—i-l o b) (466)
j=1

Corollary 6.5 (Multi-block ADMM — augmented Lagrangian form). Let n > 2. Suppose (32) has
a Kuhn—Tucker pair, and that, for eachi € {1,...,n}, either f; is coercive or A} A; is invertible. Let

€ (0,1). Given u° = (u9,...,ul), consider the sequences (wW*) and (u*) given by Algorithm 4.
Then:

(a) The sequence (W") is bounded and every weak limit point is a solution of the primal prob-
lem (32). Moreover, if AfA; is invertible for alli € {1,...,n}, then (w*) converges strongly.
(b) The sequences (p¥), ..., (uk) converge weakly to a solution of the dual problem (33).

18

(c) The residual sequence converges strongly to zero. That is, > iy Aiwf — b as k — +oo.
Proof. The proof is a continuation of the proof of Theorem 6.3. To this end, let (z¥), (x*) and
(w") be as in the proof of Theorem 6.3. Define pu* = (u¥, ..., uF) according to

2Pt ZAw —b) i=1,...,n—1,
M;ﬂ_ j=i+1 (47)
2 Akt i=n.

Substituting (47) into (37a)-(37c) gives

witt = argmin{ 1 (wy) + fHAlwl-i-ZA w — b+ pf[I*}
w1 7=2

wéc—&-l :argwmin{fi(wz ”ZA wk+1+sz+ Z A w b+M§H2} Vi € [[2,71—1]]
v Jj=i+1

Wn

. 1
wit = argmin{fu(wn) + 5 | 5 A Ay, — b+ |2},
j=1

which is equivalent to (46a)-(46¢). Similarly, substituting (47) into (37d) & (37e) gives (46d) & (46e).
We therefore have that assertions (a) and (c) follow immediately from Theorem 6.3(a) & (c).
To establish assertion (b), observe that

<o

Ca ZAjw?H) +3 (Ajwé? - Ajwa) — O Ajul—b) ie[l,n-1]
7=1 7=1 Jj=1
k+1 1+ A w 1 =n.

(48)

Convergence of (uF) to a dual solution of (33) follows with the help of Theorem 6.3(b) & (c) by
taking the limit as & — 400 in (48). In taking this limit, we note that HAjw;-c - Ajw;“HH — 0 for

all j € {1,...,n} as a consequence of combining (42) with the fact that ||z"T! — z*|| — 0 and that
|af — || = 0 for all i,5 € {1,...,n}. O
Remark 6.6. If the operators Fs, ..., F, in (39) are uniformly monotone, then Theorem 4.9 can be

used in place of Theorem 4.5 to allow the limiting case with v = 1. In this case, setting ¢ =n—1 in
(46d) gives u¥ | = uF for all k € N, which can be substituted into (46¢) to eliminate the sequence
(pk) from Algorithm 3. In particular, in the case when v = 1 and n = 2, (46) reduces to the
standard form of two-block ADMM given by

k+1 _ . ko k
wyT = argmin L(wy,ws, uy)
wi
k+1 _ . k+1 k
wy T =argmin L(w]", wy, 1y)
w

Mlchrl Mk+1 (Alwlerl + Agw’;“ _ b) ‘

6.1 Numerical Example: Robust PCA with Partial Information

In this section, we provide a numerical illustration of our multi-block ADMM method in robust
principle component analysis. Given a matrix M € R™*"™, the robust principle component analysis
(PCA) problem is to find two matrices L, S € R™*™ such that L is low rank and S is sparse. In [25],
this problem is formulated as the convex minimisation problem

min ||L||« + A||S|l1 subject to L+ S = M. (49)
L,SeRm*n
where || - ||« denotes the nuclear norm, || - ||; denotes the ¢;-norm, and A > 0. The parameter A is

chosen to balance the competing effects of the nuclear norm, which promotes low rankedness of L,
and the ¢;-norm, which promotes sparsity in S.

19

In practice, it is not always possible to observe all the entries of the matrix M € R™*", Instead,
one observes only entries of M corresponding to some index set Q C {1,...,m} x {1,...,n}. That
is, the entry M;; is known if (4,j) € Q. To deal with robust PCA problem having only partial
knowledge of M, [24] proposed an extension of (49) given by

min ||L||« + A||S]1 subject to ||[Po(M — L —S)|r <5,
L,S,PERm*n

where P denotes the orthogonal projection onto matrices supported by 2 and 6 > 0. By setting
C:={D e R™": ||Po(D)||r < 0}, this problem can be expressed as given by

min ||L||« + A||S]1 + tc(D) subject to L+ S+ D= M. (50)
L,S,DeRmxn
The problem (50) can be solved using a three block ADMM-type method known as alternating
splitting augmented Lagrangian method (ASALM) [24]. This method is given by

1
DM = argmin{ = ||L* + S* + D — M + 1*||?}
pec 2

1
S = argmin{\||S||; + = ||L* + S + DFY — M + pF %)
SERan 2 (51)
1
LM = arg min{||L||. + SlIE+ SEFL L DRFL M4 R 2)
LGR’N’LX‘IL

,uk+1 — Mk + (Lk+1 + Sk+1 + Dk+1 . M)

Despite its numerical performance, the theoretical underpinnings of ASALM are not completely
understood. Indeed, the authors of [24] were only able to showed boundedness of the ASALM
iterates in a special case. This is consistent with counter-examples for convergence of the direct
extension of ADMM to three blocks [7].

Remark 6.7. Noting that (50) is of the form specified by (31), we may apply the three block version
of our multi-block ADMM developed in Section 6. It is interesting to compare the similarities of
(51) with (46) in limiting case with v = 1 which can be expressed as

1
DM = argmin{ = | LF + S* + D — M + uf|?}
Dpec 2
1
S*H = argmin{X|| S|l + 5 [|[LF + 5 + DM — M + 5%}
SeRan 2
1
LMt = argmin{|| L. + S| L + S 4+ D — M+ g}
LeRmxn

1 = (18 - T4
H§+1 _ MIIC+1 + (Lk+1 + Sk+1 + Dk‘-l-l . M)

As compared to (51), (46) has two copies of the the “dual variable” in its update. The p}-update
in (46) allows for correction by L¥ — L**+! not present in (51).

We now compare (51) and the multi-block ADMM in Algorithm 3 on randomly generated
test problems. We took L to be a binary “checker-board” matrix, generated S by sampling the
standard normal distribution in approximately 15% of its entries, and generated the set Q to be
approximately 40% of entries. The partial matrix M was then computed elementwise according
to M;; = Lyj + Si; for all (4,7) € Q. A random examples of L, M and 2 generated in this way is
shown in Figure 2.

We ran both methods for a 20 x 20 and a 40 x 40 instance of (50). The best parameters in
(50) for this instance were found by trial and error to be A = 0.25 and 6 = 0.1. For Algorithm 3,
the stepsize v was chosen as v = 0.8. All methods were initialised with the zero matrices. After
2000 iterations, the reconstructions of L for both algorithms were inspected and were visually
indistinguishable.

20

-10 -10
-35

~08 30 -08
25

06 0.6
2.0

04 15 04
10

02 02
05

0.0 0.0 0.0

Figure 2: A random instance of (49) for m = n = 20: (left) the low rank matrix L, (center) the
noisy partial matrix M, and (rlght) the set) representing the observed entries.

10! —8— ASALM 10! —8— ASALM
5 —#— Algorithm 3 —#— Algorithm 3
o 10 o 102
[®)] [®)]
& 1075 G -5
S 6 10
¢ 107 ¢ 10
+— -
© ©
8 10_11 SI_) 10711
10-14 10-14
0 500 1000 1500 2000 0 500 1000 1500 2000
iterations iterations
(a) m=n=20 (b) m=n =140

Figure 3: Results for problem (49).

We compared the progress of both algorithms as a function of iterations in Figure 3. To do so,
we monitored the relative change of the recovered low rank and sparse components of the solution
which is given by

[(LFH, 554 = (24, 59)]
I(L%, Sk +1

This quantity was used in [24, Section 9] as a stopping criteria for ASALM. Although the relative
change for both methods decays to the same final value, Figure 3 shows that ASALM is faster in
terms of iterations. However, its poorer theoretical properties, as compared to Algorithm 3, may
counterbalance this is in some situations.

7 Conclusions

In this work, we have introduced a family of frugal resolvent splittings with minimial lifting in
the sense of Ryu [22]. We investigated applications of this family in distributed decentralised
optimisation and in multi-block ADMM. To conclude, we outline possible directions for further
research arising from this work.

Characterising frugal resolvent splittings for n operators. The proximal point algorithm
and the Douglas—Rachford algorithm are the unique frugal resolvent splittings for n = 1 and n = 2,
respectively [22]. For n > 3, there seems to be multiple distinct schemes (i.e., this work and [22, 2]).
It would be interesting to characterise and enumerate all possible frugal resolvents splittings for a
given number of monotone operators. Iterations with different structure will be potentially useful
for distributed decentralised optimisation with non-cyclic network topologies.

21

Behaviour on infeasible and pathological problems. In this work, we only analysed our
frugal resolvent splitting and our multi-block ADMM in the consistent, non-pathological setting.
In the literature, the behaviour of the Douglas—Rachford method and two-block ADMM applied to
infeasible and/or pathological problems is relatively well understood [23] within the framework of
Pazy’s trichotomy theorem [19]. It would be interesting to analyse the behaviour our methods in
potentially infeasible and/or pathological settings.

Iteration complexity of the multi-block ADMM. In our analysis of ADMM, Theorem 6.3
focused on convergence of the iterates generated by the algorithm, but did not consider iteration
complexity. The worst-case iteration complexity of two-block ADMM is known to be O(1/k) in
the ergodic sense [14, 18]. It would be interesting to investigate the iteration complexity of our
multi-block ADMM extension to see if it is still O(1/k).

Interpretations in terms of the PPA. The Douglas—Rachford algorithm can be interpreted
as a proximal point algorithm applied to the so-called “splitting operator” (see [11]). Since our
proposed framework is a generalisation of the Douglas-Rachford algorithm to n operators, it is
natural to ask if it can also be understood as an instance of the proximal point algorithm.

Acknowledgements

The work of YM was supported by the Wallenberg Al, Autonomous Systems and Software Program
(WASP) funded by the Knut and Alice Wallenberg Foundation. The project number is 305286.
MKT is supported in part by Australian Research Council grant DE200100063. The authors would
like to thank the anoymous referees for helpful comments, which included the improved PDHG
formulation given in (29).

References

[1] Aragén Artacho, F. J., Bot, R. I. & Torregrosa-Belén, D. (2022). A primal-dual splitting algo-
rithm for composite monotone inclusions with minimal lifting. Preprint: arXiw:2202.09665v1.

[2] Aragén Artacho, F. J., Campoy, R., & Tam, M. K. (2021). Strengthened splitting methods
for computing resolvents. Computational Optimization and Applications, 80, 549-585.

[3] Bauschke, H. H., & Combettes, P.L. (2017). Convez analysis and monotone operator theory
in Hilbert spaces, 2nd Ed. CMS Books in Mathematics, Springer International Publishing.

[4] Bertsekas, D. P. (2015). Convex Optimization Algorithms, Athena Scientific, Massachuesetts.

[5] Campoy, R. (2022). A product space reformulation with reduced dimension for splitting
algorithms. Computation Optimization and Applications., 1-30. DOIL: 10.1007/s10589-022-
00395-7

[6] Chambolle, A. & Pock, T (2011). A first-order primal-dual algorithm for convex problems
with applications to imaging. Journal of Mathematical Imaging and Vision, 40, 1, 120-145.

[7] Chen, C., He, B., Ye, Y., & Yuan, X. (2016). The direct extension of ADMM for multi-
block convex minimization problems is not necessarily convergent. Mathematical Programming,
Series A, 155, 57-79.

[8] Combettes, P. & Pesquet, J.-C. (2011). Proximal splitting methods in signal processing. Fized-
Point Algorithms for Inverse Problems in Science and Engineering, 185-212.

[9] Condat, L. (2013). A primal-dual splitting method for convex optimization involving Lips-
chitzian, proximable and linear composite terms. Journal of Optimization Theory and Appli-
cations, 158(2):460-479.

22

http://arxiv.org/abs/2202.09665
https://doi.org/10.1007/s10589-022-00395-7
https://doi.org/10.1007/s10589-022-00395-7

[10]

[11]

[12]

[13]

[19]

[20]

[21]

22]

[23]

[24]

[25]

Condat, L., Kitahara, D., Contreras, A. & Hirabayashi, A. (2022). Proximal splitting algo-
rithms for convex optimization: a tour of recent advances, with new twists. SIAM Review, to
appear. Preprint: arXiv:1912.00137v7.

Eckstein, J., & Bertsekas, D. P. (1992). On the Douglas—Rachford splitting method and the
proximal point algorithm for maximal monotone operators. Mathematical Programming, 55(1),
293-318.

Gabay, D. (1983). Applications of the method of multipliers to variational inequalities. In:
Studies in mathematics and its application., Vol. 15, pp. 299-331. Elsevier.

Giselsson, P., Filt, M., & Boyd, S. (2016). Line search for averaged operator iteration. In:
2016 IEEE 55th Conference on Decision and Control (CDC), pp. 1015-1022.

He, B., & Yuan, X. (2012). On the O(1/n) convergence rate of the Douglas-Rachford alter-
nating direction method. SIAM Journal on Numerical Analysis, 50(2), 700-709.

He, B. & Yuan, X. (2012). Convergence analysis of primal-dual algorithms for a saddle-point
problem: from contraction perspective. SIAM Journal on Imaging Sciences, 5(1), 119-149.

Lions, P. L., & Mercier, B. (1979). Splitting algorithms for the sum of two nonlinear operators.
SIAM Journal on Numerical Analysis, 16(6), 964-979.

Minty, G. J. (1962). Monotone (nonlinear) operators in Hilbert space. Duke Mathematical
Journal, 29(3), 341-346.

Monteiro, R. D., & Svaiter, B. F. (2013). Iteration-complexity of block-decomposition algo-
rithms and the alternating direction method of multipliers. SIAM Journal on Optimization,
23(1), 475-507.

Pazy, A. (1971). Asymptotic behavior of contractions in Hilbert space. Israel Journal of
Mathematics, 9(2), 235-240.

Peaceman, D. W., & Rachford, Jr, H. H. (1955). The numerical solution of parabolic and
elliptic differential equations. Journal of the Society for industrial and Applied Mathematics,
3(1), 28-41.

Rockafellar, R. T. (1976). Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14(5), 877-898.

Ryu, E. K. (2020). Uniqueness of DRS as the 2-operator resolvent-splitting and impossibility
of 3-operator resolvent-splitting. Mathematical Programming, 182(1), 233-273.

Ryu, E. K., Liu, Y., & Yin, W. (2019). Douglas-Rachford splitting and ADMM for pathological
convex optimization. Computational Optimization and Applications, T4(3), TAT-T78.

Tao, M., & Yuan, X. (2011). Recovering low-rank and sparse components of matrices from
incomplete and noisy observations. SIAM Journal on Optimization, 21(1), 57-81.

Wright, J., Ganesh, A., Rao, S. R., Peng, Y., & Ma, Y. (2009). Robust principal component
analysis: Exact recovery of corrupted low-rank matrices via convex optimization. In NIPS
(Vol. 58, pp. 289-298).

23

http://arxiv.org/abs/1912.00137

	1 Introduction
	2 Fixed Point Encodings
	3 Frugal Resolvent Splittings with Lifting
	4 A Family of Resolvent Splitting
	4.1 The Limiting Case under Uniform Monotonicity

	5 Distributed Decentralised Optimisation
	5.1 Numerical Example: 1-Consensus

	6 Multi-block ADMM
	6.1 Numerical Example: Robust PCA with Partial Information

	7 Conclusions

