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Abstract

Simple bilevel problems are optimization problems in which we want to find an optimal

solution to an inner problem that minimizes an outer objective function. Such problems

appear in many machine learning and signal processing applications as a way to eliminate

undesirable solutions. In our work, we suggest a new approach that is designed for bilevel

problems with simple outer functions, such as the l1 norm, which are not required to be

either smooth or strongly convex. In our new ITerative Approximation and Level-set EX-

pansion (ITALEX) approach, we alternate between expanding the level-set of the outer

function and approximately optimizing the inner problem over this level-set. We show that

optimizing the inner function through first-order methods such as proximal gradient and

generalized conditional gradient results in a feasibility convergence rate of O(1/k), which

up to now was a rate only achieved by bilevel algorithms for smooth and strongly convex

outer functions. Moreover, we prove an O(1/
√
k) rate of convergence for the outer function,

contrary to existing methods, which only provide asymptotic guarantees. We demonstrate

this performance through numerical experiments.

1 Introduction

We are interested in the following convex bilevel optimization problem (where we use

the terminology of outer and inner levels). The outer level is given by the following

constrained minimization problem:

min
x∈X∗

ω(x), (BLP)

∗shimrits@technion.ac.il
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where ω is convex and bounded from below on X∗. The set X∗ is the non-empty

set of minimizers of the inner level problem, which has the form of a classical convex

composite model, given by:

min
x∈Rn
{ϕ(x) := f(x) + g(x)}, (P)

where f is convex and continuously differentiable with a Lipschitz-continuous gradient,

and g is an extended real-valued, closed, and convex function. We denote the optimal

value of (P) as ϕ∗ and the optimal value of (BLP) as ω∗. The exact assumptions on

the structure of this problem will be given in Section 3.

This type of problem, also known sometimes as simple bilevel programming or

hierarchical convex optimization, is a particular case of a general bilevel programming

problem (as described in [10]). It is considered in many machine learning, signal

processing, and regression applications as a key approach to solve underdetermined

problems. Indeed, in order to find a sparse solution to (P) we would be interested in

solving the bilevel problem (BLP) with ω(x) = ‖x‖1 [9] and in order to find a dense

solution we would choose ω(x) = ‖x‖22 [23]. However, since these bilevel problems are

generally hard to solve, a common approach is to incorporate ω as a regularization term

and solve the relaxed problem minx{ϕ(x) + λω(x)}. Such a regularization approach

leads to the famous LASSO model when ω is the l1 norm [9, 22] and to the ridge

regression model when ω is the l2 norm [15, 23]. While in some cases there exists a

small enough value λ for which the regularized and bilevel problems are equivalent

[23], finding this λ is not a trivial task.

Motivated by the case ω(x) = ‖x‖1, in this work we will focus mainly on the cases

where ω is convex but not necessarily smooth or strongly convex.

1.1 Main challenges of Bilevel optimization problem

The (BLP) can be reformulated as the following simple convex optimization problem:

min
x∈Rn

ω(x)

s. t ϕ(x) ≤ ϕ∗,
(BLP’)

where ϕ∗ is the exact (or approximated) optimal value of (P). However, while this

problem is convex, problem (BLP’) inherently does not satisfy the necessary regularity

conditions (e.g Slater’s condition) to apply strong duality or KKT conditions [17,

Theorem 3.1.17]. Consequently, off-the-shelf algorithms to solve this problem that

rely on primal-dual relations, such as interior-point algorithm, may fail. Moreover,

even when ω is smooth, classical first-order algorithms, such as projected gradient,

cannot be applied because the orthogonal projection over X∗ = Levϕ(ϕ
∗) may be hard
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to compute. These difficulties persist even when ϕ∗ is approximated to high accuracy,

and numerical difficulties prevent solving it using existing algorithms.

1.2 Existing methods for Bilevel convex optimization

During the last two decades, several first-order methods have been suggested to solve

(BLP). We highlight some of them here. An extensive review of algorithms for simple

bilevel optimization is available in [10].

One class of algorithms for solving problem (BLP) is based on applying a first-order

operator (or a sequence of them) on the regularized problem

φk(x) = ϕ(x) + λkω(x),

at each iteration k, where the regularization parameter sequence {λk}k∈N satisfies

limk→∞ λk = 0 and
∑∞

k=1 λk =∞. The algorithms in this class differ from each other

in their assumptions and the operator used. In [21], Solodov suggests the Iterative

Regularized Projected Gradient (IR-PG) method. IR-PG applies a projected gradient

step to φk at iteration k, subject to the additional assumptions that ω is continuously

differentiable with an Lω-Lipschitz continuous gradient and g(x) = δC(x), where δC

is the indicator function of a closed convex set C.1 In [14], Helou and Simões suggest

to apply a three step variation of the ǫ-subgradient method, under the additional as-

sumptions that f and ω have bounded (sub)gradients, and g = δC(x) as before. In

this algorithm, the first step is an accelerated-gradient step on f , the second step is

a subgradient step or proximal step on ω, and the third step is projection onto set

C. These two works are first-order variants of an algorithm first suggested by Cabot

[8] and recently extended by Dutta and Pandit [10], in which a proximal point step

is applied to φk at each iteration. Although the proximal point algorithm is very

general, as it does not assume any structure on either ϕ or ω, its iterations may be

extremely computationally expensive, as the proximal operator of a sum of convex

functions is generally not simple to calculate even when computing the proximal op-

erator for each function individually is easy [1]. Moreover, all the methods mentioned

above prove asymptotic convergence to a solution of the bilevel problem, however

they do not provide rates for this convergence. In [7], Beck and Sabach present the

Minimal Norm Gradient (MNG) method for the case where ω is a σω-strongly convex

and continuously differentiable function with an Lω-Lipschitz continuous gradient, for

example ω(x) = ‖x‖22. This is the first method to provide any rate of convergence

result for problem BLP. MNG uses a notion of cutting planes, where at each iteration

two half-spaces are constructed, and the outer function is minimized on the intersec-

1Both IR-PG and MNG, as well as their convergence results, can easily be extended to the case where g is a
proximal friendly function [5, chapter 6].
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tion of these two half-spaces. They show that MNG converges to the optimal solution

of the bilevel problem and has an O(1/
√
k) convergence rate for the inner problem,

that is, for obtaining a feasible solution for the bilevel problem. It is also important

to notice that even though constructing the half-spaces involves standard first-order

computations, the method requires solving an optimization problem in each iteration,

which in some cases cannot be done analytically.1

In [19], under similar assumptions to [7], Sabach and Shtern suggested the Bilevel

Gradient Sequential Averaging Method (BiG-SAM). The algorithm takes a convex

combination between a proximal gradient step over the inner function and a gradient

step over the outer function, i.e, the general step of the method is

xk+1 = αk(x
k − s∇ω(xk)) + (1− αk) proxtg(x

k − t∇f(xk)),

where the sequence {αk} satisfies the following properties: limk→∞ αk = 0,
∑∞

k=1 αk =

∞, limk→∞
αk

αk+1
= 1. Their algorithm uses the non-expansiveness of the proximal-

gradient operator over functions with Lipschitz-continuous gradient, and the con-

traction property of the gradient step over strongly-convex functions with Lipschitz-

continuous gradient to get a O(1/k) convergence rate for the inner problem. The

authors also show that through smoothing, their algorithm can be adapted to the

case where ω is the sum of a Lipschitz-continuous but nonsmooth function and a

smooth strongly convex function, e.g., the elastic net function ω(x) = ‖x‖1 + ρ‖x‖22.
They show that, in this case, the algorithm converges to the optimal solution of (BLP)

where ω is replaced by its Moreau envelope [5, chapter 6.7], and the iteration complex-

ity for obtaining an ε-feasible solution for the bilevel problem is O( 1
εδ2

), where δ > 0 is

the required uniform accuracy on the approximation of the outer objective function.

In [20], Shehu et al. present iBiG-SAM, a variation of BiG-SAM with an inertial

step. While the convergence of iBiG-SAM was proven without a convergence rate,

[20] provides several numerical examples indicating it may outperform BiG-SAM.

In [2], Amini and Yousefian extended the IR-PG method for the case where ω

is strongly convex but not necessarily differentiable (for example the ’elastic net’

function). They also deviate from the classical composite model for ϕ, and assume

instead that f(x) =
∑m

i=1 fi(x), where fi are proper, closed, real-valued, and convex

for all i ∈ {1, . . . , m}, and g = δC where C is compact. Each iteration of their

algorithm, named Iterative Regularized Incremental projected subGradinet (IR-IG)

method, is an incremental projected subgradient step [5, section 8.4] over the sum of

functions
∑m

i=1(fi(x) +
λk

m
ω(x)). The authors showed that by choosing stepsizes and

λk properly, the algorithm converges to the solution of the problem, and the inner

problem value converges at a rate of O(1/k0.5−β) for any fixed β ∈ (0, 0.5).

As seen above, existing algorithms require ω to be strongly convex in order to
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obtain rate guarantees. Moreover, all existing rates are in terms of inner-function

objective, that is, in terms of feasibility rather than optimality of problem (BLP).

1.3 Contribution

In this paper, we present a new optimization scheme called ITerative Approximation

and Level-set EXpansion (ITALEX) to solve the bilevel problem (BLP). The method

alternates between applying an approximate optimization oracle to solve the problem

of minimizing a surrogate inner function ϕ̂α over a given level-set of the outer function

ω, and enlarging the aforementioned level-set. By carefully enlarging the level-set we

guarantee the method will provide an ε-feasible and
√
ε-optimal solution for the bilevel

problem, that is, for any ε > 0 the method outputs x̃ such that

ϕ(x̃) ≤ ϕ∗ + ε, ω(x̃)− ω∗ ≤ O(
√
ε). (1.1)

To summarize the novelty and contribution of the paper:

• We propose a new scheme to solve bilevel problems, called ITALEX, that assumes

neither strong convexity nor differentiability of ω, and can be easily applied to

important bilevel problems, such as ones where ω is an lp norm.

• ITALEX is the first scheme to provide a rate of convergence for the outer func-

tion’s optimality gap.

• We prove that under our mild assumptions, using generalized conditional gradient

or proximal gradient as our approximate optimization oracle within ITALEX re-

sults in an iteration complexity of O(1/ε) to obtain an ε-feasible and
√
ε-optimal

solution. In particular, our assumptions on the outer function ω generalize the

setting in which it is strongly convex. Thus, ITALEX achieves the best known

feasibility convergence rate, previously obtained by BiG-SAM, which utilizes the

stronger assumption that ω is both smooth and strongly convex.

• We show that a variation of our scheme can be used when ϕ is smooth in order to

also guarantee super-optimality with respect to the outer problem, i.e, ω(x̃) ≤
ω∗.

• We demonstrate the applicability of this approach in numerical experiments,

where we compare ITALEX to existing methods.

A comparison between the assumptions and convergence rates of ITALEX and

other first-order methods that provide rate of convergence results is presented in Ta-

ble 1.
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Method ϕ = f + g
properties

ω properties Convergence
rate for (P)

Convergence
to ω∗

MNG [7] Classical composite Smooth, strongly
convex

O
(

1√
k

)

Asymptotic

BiG-SAM
[19]

Classical composite Smooth, strongly
convex

O
(

1
k

)

Asymptotic

IR-IG [2] f is a finite sum,
g = δC , C compact

Strongly convex O
(

1
k0.5−β

)

β ∈ (0, 0.5)
Asymptotic

ITALEX

[This
paper]

Classical composite
Norm-like function
(Assumption 1)

O
(

1
k

)

O
(

1√
k

)

Smooth Super-
optimal

Table 1: Comparison between bilevel optimization methods

1.4 Mathematical notations

In this paper we use the following standard notation: Vectors and matrices are written

in bold. Given closed and convex set C, we denote its indicator function by δC , the

orthogonal projection of x onto C is denoted by PC(x) = argmin{‖y − x‖2 : y ∈ C}
and the distance between x and C is denoted as dist(x, C). Moreover, if C is compact

we can define its diameter DC = max{‖u− v‖ : u,v ∈ C}. Given function ω,

we denote its α-Level set as Levω(α) = {x : ω(x) ≤ α}, its domain as dom(ω)

and its epigraph as epi(ω). The subdifferential set at point x is denoted as ∂ω(x).

Unless stated otherwise ‖ · ‖ and 〈·, ·〉 denote the euclidean norm and inner product,

respectively. Given a positive definite matrix Q we denote ‖x‖Q ≡
√

x⊤Qx. For any

vector x ∈ Rn, and scalar r > 0, we denote the closed ball of radius r centered in x

by B(x, r) = {y ∈ Rn : ‖y − x‖ ≤ r}. For a matrix D we denote its minimal and

maximal eigenvalue as λmin(D) and λmax(D), respectively. The set {1, 2, ..., m} for

some integer m is denoted as [m], and for a real number r, [r]+ = max{r, 0}.

2 Preliminaries

2.1 Generalized Conditional and Proximal Gradient Methods

and the Surrogate Optimality Gap

In our analysis we consider a continuous optimality measure related to some opti-

mization algorithm. One possible continuous optimality measure, associated with the

generalized conditional gradient algorithm, is the surrogate optimality gap.

Definition 1. [5, Definition 13.2]: The surrogate optimality gap for a function ϕ ≡
f + g, where f is convex, continuously differentiable with Lf -Lipschitz continuous

gradient, and g is an extended real-valued convex function with compact domain, is
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given by

S(x) = max
p

{〈

∇f(x),x− p
〉

+ g(x)− g(p)
}

(2.1)

The surrogate optimality gap has a dual role in our analysis as both an optimality

measure and as a sufficient decrease measure. Indeed, the surrogate optimality gap

S(x) provides an upper bound on the true optimality gap, as shown in the following

lemma,

Lemma 1. [5, Lemma 13.12, Theorem 13.6] For any x ∈ dom(g)

S(x) ≥ ϕ(x)− min
y∈Rn
{ϕ(y)},

moreover, S(x) = 0 if and only if x is a minimizer of ϕ.

To view the role of S(x) as a sufficient decrease measure we turn to the Gen-

eralized Conditional Gradient (GCG) method, in which S(x) arises naturally as

part of the convergence analysis. The GCG method [3] was developed for optimizing

composite functions, such that dom(g) is compact. The GCG updating step is given

by

xk+1 = xk + ηk
(

p(xk)− xk
)

,

where

p(x) ∈ argmin {〈∇f(x),p〉+ g(p)} .

Note that p(x) is a maximizer of the optimization problem defined in (2.1). The

following result shows that for a specific step-size choice, S(x) serves as a sufficient

decrease measure for the GCG step.

Lemma 2. [5, Lemma 13.8]: Let {xk}k∈N be the sequence generated by the GCG

method with adaptive stepsize ηk = min
{

1, S(xk)
Lf‖p(xk)−xk‖2

}

or with stepsize chosen by

exact line search. Then,

ϕ(xk)− ϕ(xk+1) ≥ 1

2
min

{

S(xk),
S2(xk)

LfD2
dom(g)

}

.

Thus, the connection between the surrogate optimality gap S(x) and the GCG

method, naturally leads to the use of the GCG method as a descent scheme in our

method.

Another commonly used descent scheme that we are going to employ as part of

our method is the Proximal Gradient (PG) method. The PG method can also be

applied on the classical composite model discussed above. The PG method consists

of the following update step

xk+1 = T (xk) ≡ prox 1

Lk
g

(

xk − 1

Lk

∇f(xk)

)

, (2.2)
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where

proxg(x) = argmin
u∈Rn

{

g(u) +
1

2
‖x− u‖2

}

, (2.3)

and Lk is either constant in [Lf ,∞) or chosen by a backtracking procedure. The

surrogate optimality gap S(x) can also be connected to the proximal gradient method

updating step by [6, Section 2.2.2]. Since S(x) is not computed as part of the PG

method, we can establish another optimality measure S̃(x), which only depends on

T (x). Utilizing Lemma 1 and [6, Lemma 2.6], we show that, similarly to the relation

between S(x) and the GCG method, S̃(x) also serves as a sufficient decrease measure

for the PG method.

Lemma 3. Let {xk}k∈N be the sequence generated by the PG method as in (2.2).

Assume that D(xk) ≡ DLevϕ(ϕ(xk)) ≤ D̄ <∞ for all k ∈ N, and denote

S̃(xk) = 2max

{

ϕ(xk)− ϕ
(

xk+1
)

,

√

Lk

2
D(xk)2 (ϕ(xk)− ϕ (xk+1))

}

.

Let ϕ∗ = miny∈Rn ϕ(y). Then, for all k ∈ N

ϕ(xk)− ϕ∗ ≤ S̃(xk).

Proof. Let x∗ be an optimal solution of ϕ. Thus, x∗,xk ∈ Levϕ(ϕ(x
k)), and

∥

∥xk − x∗∥
∥ ≤

D(xk). For any given point x ∈ dom(g), define SD(x)(x) = minp∈B(x,D(x)){〈∇f(x),p〉+
g(p)}, which can be viewed as the surrogate optimality gap of the function ϕ̂x =

ϕ + δB(x,D(x)). Since x∗ ∈ B(x, D(x)), it is also a minimizer of ϕ̂x, and by Lemma 1

we have SD(x)(x) ≥ ϕ̂x(x) − ϕ̂x(x
∗) = ϕ(x) − ϕ(x∗). Since PG is a descent method,

T (x) ∈ Levϕ(ϕ(x)) [5, Lemma 10.14], and so it is equal to the proximal gradient step

applied to ϕ̂x, i.e.,

T (x) = argmin
u

{f(x) + 〈∇f(x),u− x〉+ Lf

2
‖u− x‖2 + g(u) + δB(x,D(x))(u)}.

Thus, we can conclude directly from the definition of PDA step in [6, Definition 2.1]

and the fact that the proximal gradient step is a 1-PDA [6, Section 2.2.2], that for

any t ∈ [0, 1]

ϕ(T (x)) ≤ ϕ(x)− t · SD(x)(x) +
LkD(x)2

2
t2, ∀t ∈ [0, 1],

Choosing t = min
{

1,
√

2(ϕ(xk)−ϕ(xk+1))
LfD(xk)2

}

derives the wanted result.

Lemma 3 is the proximal gradient analogue to Lemma 1. Its proof uses the decrease

property of the PG method to show that the defined S̃(x) is indeed an optimality

8



measure.

2.2 Error bounds

In our analysis, we utilize a global error-bound on the function ω. For this we assume

that ω is bounded from below by
¯
ω = infx∈Rn(ω(x)) < ∞. The global error-bound

bounds the distance between a point and a level set of a function, using the difference

in the function’s values.

Definition 2. For a convex function ω we say it has a κ-power γ-global error-bound

for some κ ∈ (0, 2] and γ > 0 if for any x ∈ Rn and any α ≥
¯
ω

dist(x,Levω(α))
κ ≤ γ[ω(x)− α]+.

Note that if ω is real-valued σ-strongly convex function, it has such an error bound

with κ = 2.

Proposition 1. Let ω be a σ-strongly convex function, then ω has a global error-bound

with κ = 2, γ = 2
σ
.

Proof. Set α ≥
¯
ω. If x ∈ Levω(α) the statement trivially holds. Otherwise, let x

satisfy ω(x) > α. Denote xα = PLevω(α)(x) and let u = argmaxv∈∂ω(xα)〈v,x−xα〉. By
[5, Theorem 3.26], the directional derivitive in direction x−xα satisfies ω′(xα,x−xα) =

〈u,x − xα〉, and since ω(x̃) > α for all x̃ ∈ (xα,x], ω′(xα,x − xα) ≥ 0. Therefore,

using the first order characterization of strong convexity [5, Theorem 5.24] we obtain

ω(x) ≥ ω(xα) + 〈u,x− xα〉+ σ

2
‖x− xα‖2 ≥ α+

σ

2
dist2 (x,Levω(α)) ,

which is equivalent to the desired result.

Moreover, Definition 2 is more general than strong convexity, and non strongly

convex functions may also have such a global error bound. Specifically, the following

result, which is a direct consequence of [16, Theorem 1] for function Γ = ω(x) − α,

provides an easy method for verifying a 1-power global error bound for a given function

ω, and finding the associated constant γ.

Proposition 2. Let ω be a closed, proper, and convex function, and let

τ = inf
x,v
{‖v‖ : v ∈ ∂ω(x), ω(x) >

¯
ω}

If τ > 0, then ω has a global error bound with κ = 1 and γ = τ−1, i.e.,

dist(x,Levω(α)) ≤ γ[ω(x)− α]+, ∀x ∈ R
n, α ≥

¯
ω.

9



In Table 2, we show several examples of functions ω that have a global error bound

and their associated κ and γ. As can be seen by these examples, the existence and

the derivation of γ can be computed easily in many important cases, including the

interesting cases where ω is an ℓp norm.

ω Parameters Levω(α) κ γ

η(x) + σ
2 ‖x‖

2
η convex, σ > 0 Strongly-convex 2 2

σ

max
j∈[m]

{〈aj ,x〉 − bj} aj ∈ Rn, j ∈ [m], b ∈ Rm Polytope 1 maxj∈[m]{‖aj‖−1}

‖x− x0‖Q Q ∈ Sn, Q ≻ 0, x0 ∈ Rn Ellipsoid 1 1√
λmin(Q)

‖x− x0‖p x0 ∈ Rn,
1 ≤ p ≤ 2

p > 2
ℓp-ball 1

1

n
1

2
−

1

p

‖x‖1 + ρ ‖x‖22 ρ > 0 Elastic net ’ball’
1 1

2 1
ρ

Table 2: Error bound constants

3 The method and its implementation

3.1 Approach and general scheme

Our approach is based on a formulation of problem (BLP), which is related to the

formulation (BLP’). The main idea behind the method is that in many important

bilevel problems, projecting onto the level sets of ω is much easier than projecting

onto X∗, the implicitly defined feasible set. Take for example the l1 norm, even

though it is not differentiable and not strongly convex, its level sets are l1 balls, which

are amenable to linear oracles and projections. This insight encouraged us to explore

a different formulation of (BLP) for which we will later derive our algorithm. A key

element of this formulation is the function H : R2n+1 → (−∞,+∞],

H(x, z, α) = ϕ(x) + ‖z− x‖2 + δepi(ω)(z, α) ≡







ϕ(x) + ‖x− z‖2 , ω(z) ≤ α

∞, ω(z) > α

Note that H(x, z, α) is an extended real-valued convex function. For our analysis we

will also use the extended real-valued one dimensional function h : R → (−∞,+∞]

given by

h(α) = min
x∈Rn,z∈Rn

H(x, z, α) = min
x∈Rn

{

ϕ(x) + dist(x,Levω(α))
2
}

. (Pα)

For the following results and definitions we also use the notation
¯
ω = infx{ω(x)}

(which may be equal to −∞). The following result presents some key properties of

10



h(·), which we will use in our analysis, and are proven in Appendix A

Lemma 4. Given the definition of h(·) in (Pα) the following holds:

(i) h(·) is a one dimensional convex function

(ii) h(·) is nonincreasing, and is decreasing for any α ∈ (
¯
ω, ω∗).

As in the (BLP’) formulation, we denote ϕ∗ to be the optimal value of (P) and

X∗ to be its optimal solution set. Since ϕ(x) = ϕ∗ for all x ∈ X∗, the goal of our

algorithm is to find the solution to the following optimization problem, which has the

same optimal value as the bilevel problem (BLP)

min
x,z,α
{α : H(x, z, α) ≤ ϕ∗} . (BLPα)

The general scheme of the algorithm is based on two main operations:

(i) Approximately optimizing problem (Pα) for a given α level set of the outer func-

tion ω.

(ii) Expanding the the level set by increasing α while maintaining α ≤ ω∗, where ω∗

is the optimal value of (BLP).

We will first show the general scheme of our method, ITerative Approximation and

Level-set EXpansion (ITALEX), and then, under some mild assumptions, provide

concrete implementations of the operators used in the algorithm. We now define two

oracles that lie at the core of our algorithm.

Definition 3. The operator Oω,ϕ(x, z, α, ϕ̄, ε) is called an Approximation Oracle if for

any ε > 0, ϕ̄ ≥ ϕ∗, α ≥
¯
ω, x ∈ dom(ϕ), z ∈ Levω(α) it returns a triple (ρ,y1,y2) ∈

R+ × dom(g)× Levω(α) (the value of which may depend on x and z) such that

ρ ∈
[ε

2
, h(α)− ϕ̄

]

or ϕ(y1) + ‖y1 − y2‖2 ≤ ϕ̄+ ε, ρ = 0.

From the definition of the approximation oracle, it is clear that a strictly positive

ρ can be returned only if h(α) − ϕ̄ ≥ ε/2, and ρ = 0 can only be returned if there

exists a y1 ∈ dom(g) and y2 ∈ Levω(α) such that h(α) ≤ ϕ(y1)+ ‖y1 − y2‖2 ≤ ϕ̄+ ε.

Thus, in the case where ε/2 ≤ h(α)− ϕ̄ ≤ ε both outputs are possible. Note that the

inclusion of x and z in the definition of the oracle allows us to use these inputs as a

starting point for the algorithm to find y and ρ, a fact that would prove crucial for

obtaining the convergence rates in Section 3.2.

Definition 4. The operator Eω,ϕ(α, ϕ̄, ρ) is called an Expansion Oracle if there exists

a non-decreasing continuous function ∆ : R++ → R++ such that for any ϕ̄ ≥ ϕ∗
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satisfies2

h(ω∗ −∆(ρ)) ≤ ϕ̄+ ρ, ∀ρ : ∆(ρ) ∈ (0, ω∗ −
¯
ω], (3.1)

and the oracle returns β ∈ R satisfying

β ∈







[α +∆(ρ), ω∗], α ≤ ω∗, 0 < ρ ≤ h(α)− ϕ̄,

R, otherwise.
(3.2)

Note that the expansion oracle maintains a level set defined by β that is bounded

from above by the optimal value of (BLP).

We begin by presenting Algorithm 1, the ITALEX scheme for a Fixed Tolerance

(ITALEX-FT). For a given ε and ϕ̄ > ϕ∗, ITALEX-FT produces a solution x such that

ϕ(x) ≤ ϕ̄+ ε
2
and dist(x,Levω(ω

∗)) ≤ √ε. We then show that for a given decreasing

sequence ǫr → 0, if we can generate ϕ̄r ≤ ϕ∗ + ǫr

2
, then nesting Algorithm 1 in a loop

over r ∈ [R] results in the ITALEX with Changing Tolerance (ITALEX-CT) scheme,

presented in Algorithm 2. For any ε > 0, ITALEX-CT guarantees that there exists

Algorithm 1: ITALEX - Fixed tolerance (ITALEX-FT)

Input: ε > 0, ϕ̄ ≥ ϕ∗, approximation oracle Oω,ϕ, expansion oracle Eω,ϕ,
α̃0 ≤ ω̄, x̃0 ∈ dom(ϕ), z̃0 ∈ Levω(α̃0).

for k = 1, 2, ... do
(ρk, x̃

k, z̃k) = Oω,ϕ(x̃k−1, z̃k−1, α̃k−1, ϕ̄,
ε
2
)

if ϕ(x̃k) +
∥

∥x̃k − z̃k
∥

∥

2 ≤ ϕ̄+ ε
2
then

return α̃k−1 and (x̃k, z̃k)
else

α̃k = Eω,ϕ(α̃k−1, ϕ̄, ρk)
end

end

Algorithm 2: ITALEX - Changing tolerance (ITALEX-CT)

Input: ǫ1, α0 ≤ ω∗, x0 ∈ dom(g), z0 ∈ Levω(α0),u
0 ∈ dom(g)

for r = 1, 2, . . . do
Compute ur = C(ur−1, ǫr

2
), ϕ̄r = ϕ(ur).

if ϕ(xr−1) + ‖xr−1 + zr−1‖2 > ϕ̄r + ǫr
2
then

(αr,x
r, zr) ← ITALEX-FT(ǫr, ϕ̄

r, Oω,ϕ, Eω,ϕ, αr−1, x
r−1, zr−1)

else
(xr, zr) = (xr−1, zr−1) and αr = αr−1

end
Update ǫr+1 =

ǫr
2

end

2If
¯
ω = −∞ then the condition should hold true for any ∆(ρ) ∈ (0,∞)
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an R such that

ϕ(xR)− ϕ∗ ≤ ε and dist(xR,Levω(ω
∗)) ≤

√
ε. (3.3)

Thus, in order to generate the sequence {ϕ̄r}r∈[R], we assume that we have at our

disposal an algorithm C for solving problem (P), which provided with a starting point

u and a tolerance ǫ produces a vector v such that ϕ(v) ≤ ϕ∗+ ǫ. Note that algorithm

C can be run in parallel to ITALEX-CT, and since it solves the easier problem (P), it

is expected to have a faster convergence rate than ITALEX-CT.

The ability of ITALEX-CT to solve problem BLP is summarized in the following

result.

Theorem 1. Let Oϕ,ω be an approximation oracle (as in Definition 3), and Eϕ,ω be

an expansion oracle with a corresponding function ∆ (as in Definition 4). Then,

(i) ITALEX-FT (Algorithm 1) is well defined, and terminates after Ñ ≤ ω∗−ω(z̃0)
∆(ε/4)

iterations with a level set α̃Ñ−1 and a vector x̃Ñ satisfying:

α̃Ñ−1 ∈ [ω∗ −∆
(ε

4

)

, ω∗], dist(x̃Ñ ,Levω(ω
∗)) ≤

√
ε, ϕ(x̃Ñ) ≤ ϕ̄+

ε

2
. (3.4)

(ii) Let {xr−1}r∈N be the iterates produced by ITALEX-CT (Algorithm 2). Then, for

any ε > 0, after R ≤ ⌈log2
(

ǫ1
ε

)

⌉+1 iterations, we obtain the iterate xR satisfying

(3.3) with a total of N ≤ ω∗−ω(z0)
∆( ε

4
)

+R calls to the approximation oracle.

Proof. (i) Assume that there exists a finite Ñ such that Eω,ϕ outputs a point α̃Ñ−1

satisfying

ω∗ ≥ α̃Ñ−1 > ω∗ −∆
(ε

4

)

. (3.5)

Then, from Lemma 4, and by the definition of ∆, we obtain that

h(α̃Ñ−1) < h
(

ω∗ −∆
(ε

4

))

≤ ϕ̄+
ε

4
.

Therefore, the interval [ ε
4
, h(α̃Ñ−1)− ϕ̄] is empty, and at iteration Ñ the approx-

imation oracle Oω,ϕ(x̃Ñ−1, z̃Ñ−1, α̃Ñ−1, ϕ̄,
ε
2
) cannot output ρ ∈ [ ε

4
, h(αÑ−1)− ϕ̄].

Thus, Oω,ϕ outputs ρ = 0 and (x̃Ñ , z̃Ñ) such that

ϕ(x̃Ñ) + dist(x̃Ñ ,Levω(ω
∗))2 ≤ ϕ(x̃Ñ) + dist(x̃Ñ ,Levω(α

Ñ−1))2 ≤ ϕ̄+
ε

2
.

Such x̃Ñ must exist since there exist vectors y1 and y2 that are an ε
4
optimal

solution to (Pα) with α̃Ñ−1, and thus

ϕ(y1) + dist(y1,Levω(α̃
Ñ−1))2 ≤ ϕ(y1) + ‖y1 − y2‖2 ≤ h(α̃Ñ−1) +

ε

4
≤ ϕ̄+

ε

2
.
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Finally, using the condition on x̃Ñ and the non-negativity of the distance function

we obtain (3.4).

We now show that such a finite Ñ exists. Assume to the contrary, specifically,

that for all k ≤ K ≡ ω∗−ω(z̃0)

∆( ε
4)

+ 1 the algorithm is not terminated. Since the

algorithm is not terminated, it follows from the definition of Oω,ϕ that ε
4
≤ ρk ≤

h(α̃k−1)− ϕ̄, and therefore, by definition of Eω,ϕ

α̃k − α̃k−1 ≥ ∆
(ε

4

)

> 0. (3.6)

Summing over k = 1, 2, . . . , K − 1, we have

ω∗ −∆
(ε

4

)

− ω(z̃0) ≥ α̃K−1 − α̃0 ≥ (K − 1)∆
(ε

4

)

= ω∗ − ω(z̃0),

where the first inequality follows from the definitions of α̃0 and our assumption

that K does not satisfy (3.5), and the equality follows from the definition of K.

Thus, arriving at a contradiction. We can therefore deduce that Ñ ≤ K − 1.

(ii) In any outer-iteration r of Algorithm 2, (i) guarantees that after Nr calls to the

approximation oracle

dist(xr,Levω(ω
∗)) ≤ √ǫr, ϕ(xr) ≤ ϕ̄+

ǫr
2
≤ ϕ∗ + ǫr,

with

Nr ≤
ω∗ − ω(zr−1)

∆
(

ǫr
4

) ≤ αr +∆
(

ǫr
4

)

− αr−1

∆
(

ǫr
4

) =
αr − αr−1

∆
(

ǫr
4

) + 1,

where the second inequality follows from the condition on the outputed αr and

ω(zr−1) ≤ αr−1. Thus, taking R iterations ensures that ǫR ≤ ε, satisfying (3.3).

To calculate a bound on the total number of calls to the approximation oracle

N we use

N =

R
∑

r=1

Nr ≤
R
∑

r=1

(

αr − αr−1

∆
(

ǫR
4

) + 1

)

=
αR − α0

∆
(

ǫR
4

) +R ≤ ω∗ − ω(z0)

∆
(

ǫR
4

) +R

where the first inequality is due to ∆(·) being nondecreasing, and ǫr ≥ ǫR for

all r ≤ R, and the last inequality is a direct result of the definition of α0 and

αR ≤ ω∗ from (i).

Although the implementation of the general scheme of ITALEX-FT is currently

opaque, in the following sections we will show under some mild assumptions a closed

formula for our expansion oracle, and two implementations of the approximation oracle

using the GCG and PG methods.
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3.2 Expansion oracle construction

In this subsection, we will show how to construct an oracle Eω,ϕ. For this purpose,

we need to find a lower bound for ω∗ using our ρ ≤ h(α)− ϕ∗, and use it later as an

update rule for αk.

Our first assumption restricts the structure of the outer-function ω.

Assumption 1. ω(·) is a convex norm-like function. That is, ω : Rn → R is convex

and satisfies the following properties.

(a) For any α ∈ R, The level set Levω(α) is compact.

(b) ω has a κ-power γ-global error-bound, i.e.,

∃γ > 0, κ ∈ (0, 2] : ∀x ∈ R
n, dist(x,Levω(α))

κ ≤ γ[ω(x)− α]+.

Assumption 1(a) is easily satisfied by any closed coercive function, and is signif-

icantly weaker than the strong-convexity assumption made in previous works. As-

sumption 1(b) is satisfied for functions such as the ones in Table 2. Specifically,

Assumption 1 is holds when ω is any norm.

We are now ready to construct the expansion oracle.

Theorem 2. Let Assumption 1 hold. Define ∆ : R++ → R++ as ∆(ρ) = ρκ/2

γ
. Then,

Eω,ϕ(α, ϕ̄, ρ) = α +∆(ρ) is an expansion oracle.

Proof. From the definition of ∆(ρ), it is easy to see that for any ρ > 0 it is a non-

negative and increasing function of ρ. Moreover, let x∗ be an optimal solution of

problem (BLP). Then, it follows from (Pα) that for any α ∈ [
¯
ω, ω∗]

h(α) ≤ ϕ(x∗) + dist(x∗,Levω(α))
2 ≤ ϕ(x∗) + (γ(ω∗ − α))

2/κ, (3.7)

where the last inequality follows from Assumption 1(b). Thus, for any ρ such that

∆(ρ) ∈ (0, ω∗ −
¯
ω] defining α̃ = ω∗ − ∆(ρ), and plugging it back into (3.7) we

immediately obtain property (3.1). Moreover, setting 0 < ρ ≤ h(α)− ϕ̄ ≤ h(α)− ϕ∗,

combining (3.7) with the definition of ∆(·) implies

∆(ρ) ≤ (h(α)− ϕ∗)κ/2

γ
≤ ω∗ − α,

which proves inclusion (3.2).

Plugging the definition of the expansion oracle from Theorem 2 into Theorem 1

results in the following iteration complexity bound on ITALEX-CT.

15



Corollary 1. Let Assumption 1 hold. For any ε > 0, after R ≤ ⌈log2
(

ǫ1
ε

)

⌉ + 1

iterations of ITALEX-CT, requiring a total number of calls the approximation oracle

equal to N , where

N ≤ 2κγ(ω∗ − ω(z0))

εκ/2
+R,

we obtain a solution xR such that (3.3) is satisfied and additionally

ω(xR)− ω∗ ≤ ℓω,R0

√
ε

where ω̄ be an upper bound on ω∗, and ℓω,R0
is the finite Lipschitz constant of ω over

the compact set

W0 =
{

x ∈ R
n : dist(x,Levω(α0)) ≤ R0 ≡ (γ(ω̄ − ω(z0)))

1/κ +
√
ε
}

.

Proof. The limit on N , ϕ(xR), and dist
(

xR,Levω(ω
∗)
)

are a direct result of plugging

∆(ρ) from Theorem 2 into Theorem 1(ii). To show the second part, we will first

prove that xR and x̃ = PLevω(ω∗)(x
R) belong to set W0. By definition of distance and

projection we have that

dist(xR,Levω(α0)) ≤
∥

∥xR − PLevω(α0)(x̃)
∥

∥

≤
∥

∥xR − x̃
∥

∥+
∥

∥x̃− PLevω(α0)(x̃)
∥

∥

= dist(xR,Levω(ω
∗)) + dist(x̃,Levω(α0)).

Moreover, by Assumption 1(b),

dist(x̃,Levω(α0))
κ ≤ γ(ω∗ − α0) ≤ γ(ω̄ − ω(z0)).

Since (3.4) from Theorem 1 holds, the above inequalities imply that xR, x̃ ∈ W0.

Since ω is convex with dom(ω) = Rn, [4, Theorem 7.36] implies that ω is Lipschitz

continuous over compact sets. By Assumption 1(a) we know that W0 is compact and

thus ℓω,R0
exists. Thus, applying the Lipschitz property on xR and x̃ together with

(3.4) implies that

ω(xR)− ω∗ ≤ ℓω,R0

∥

∥xR − x̃
∥

∥=ℓω,R0
dist(xR,Levω(ω

∗)) ≤ ℓω,R0

√
ε.

3.3 Approximation oracle construction using first-order meth-

ods

In this section, we show that one can construct approximation oracles using first-order

methods. We start by presenting a general approach for constructing an approxima-
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tion oracle based on the notion of an optimality measure. Then, we show how to

apply this general approach to specific first-order methods such as GCG and PG.

We start by making the following standard assumption on the structure of the

inner function ϕ.

Assumption 2. The inner function ϕ ≡ f + g satisfies the following:

(a) f : Rn → R is convex and continuously differentiable with a Lipschitz-continuous

gradient with constant Lf , i.e.,

‖∇f(x)−∇f(y)‖ ≤ Lf‖x− y‖, ∀x,y ∈ R
n.

(b) g : Rn → R ∪ {∞} is a proper, closed, and convex function.

For ease of notation in the following sections, we define the function ϕ̂α : Rn×Rn →
R ∪ {∞} for any y = (y1,y2) to be

ϕ̂α(y) = ϕ(y1) + ‖y1 − y2‖2 + δLevω(α)(y2).

It is obvious that ϕ̂α is a composite function. Specifically, ϕ̂α = f̂ + ĝα, where

f̂(y) = f(y1) + ‖y1 + y2‖2 is convex and continuously differentiable with (Lf + 2)-

Lipschitz continuous gradient, and ĝα(y) = g(y1) + δLevω(α)(y2).

3.3.1 A General Approach for Approximation Oracle Construction

We start by presenting a general approach for the construction of approximation

oracles. This approach is based on the existence of algorithms that satisfy convergence

with regard to an optimality measure which we now define.

Definition 5. A continuous optimality measure µα : dom(g) × Levω(α) → R+ is a

continuous function with the following properties:

(i) For any (y1,y2) ∈ dom(g)× Levω(α)

µα(y) ≥ ϕ(y1) + ‖y1 − y2‖2 − h(α) ≡ ϕ̂α(y)− h(α).

(ii) µα(y) = 0 if and only if y is an optimal solution of problem (Pα), and specifically,

y2 = PLevω(α)(y1).

Now assume that we have at our disposal an iterative optimization algorithm A.
Given a starting point y0 and a level set parameter α, utilizing A to solve problem (Pα)

generates iterates {(yj+1, µα(yj))}j∈N satisfying

lim
j→∞

µα(yj) = 0, (3.8)
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Algorithm 3: A µα based Approximation Algorithm

Input: Initial point y0 ≡ (y0
1,y

0
2) ∈ dom(g)× Levω(α), α ≤ ω∗, ϕ̄ ≥ ϕ∗, ε, and

algorithm A satisfying (3.8).
for j = 0, 1, 2, ... do

Apply one iteration of A at point yj to obtain yj+1 and µα(yj). (A-STEP)
if ϕ̂α(yj)− ϕ̄ ≤ ε then

Exit and return (ρ,y) = (0,yj)
end
if ϕ̂α(yj)− ϕ̄− µα(yj) > ε

2
then

Exit and return (ρ,y) = (ϕ̂α(yj)− ϕ̄− µα(yj),yj)
end

end

with respect to some associated continuous optimality measure µα. Notice that we

require algorithm A to compute µα(yj) as part of generating iterate yj+1. We can now

define an approximation oracle that utilises such an algorithm. This approximation

oracle is presented in Algorithm 3.

We will now prove that Algorithm 3 is indeed an approximation algorithm.

Theorem 3. Let A be an algorithm with associated continuous optimization oracle µα

satisfying (3.8). Then, Algorithm 3 is a well defined approximation algorithm, which

concludes after a finite number of iterations.

Proof. First we will show that the algorithm will terminate after a finite number of

iterations. Since µα(yj)→ 0, Definition 5(ii) implies ϕ̂α(yj)→ h(α).

Therefore, if there exists a δ > 0 such that h(α) ≤ ϕ̄ + ε − δ, after some finite

number of iterations J1, ϕ̂
α(yJ1)−h(α) ≤ δ. Thus, the algorithm will terminate after

at most J1 steps with an output (0, yJ1) satisfying

ϕ(yJ1) ≤ ϕ̄+ ε.

Assume that the algorithm did not terminate by the first stopping condition. Define

the function

ρ(y) = ϕ̂α(y)− ϕ̄− µα(y)

for any y ∈ dom(g)× Levω(α). Definition 5(ii) implies that

ρ(y) = ϕ̂α(y)− ϕ̄− µα(y) ≤ ϕ̂α(y)− ϕ̄− (ϕ̂α(y)− h(α)) = h(α)− ϕ̄.

Since it did not terminate by the first condition, there are two options: (i) h(α) ≥ ϕ̄+ε

(ii) it was terminated by the second conditions for some J2 ≤ J1. In case (i), for a
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large enough J2, we will have that

µα(yJ2) <
ε

2
≤ h(α)− ϕ̄− ε

2
≤ ϕ̂α(yJ2)− ϕ̄− ε

2
,

where the first inequality follows from (3.8), and the last inequality stems from the

suboptimality of yJ2. In both cases (i) and (ii), ITALEX-FT terminates after a finite

number of steps by the second stopping condition, with ρ = ρ(yJ2) ∈ [ ε
2
, h(α)− ϕ̄].

To conclude, the algorithm is terminated by one of the stopping conditions after a

finite number of steps, and satisfying the requirements of the approximation oracle in

Definition 3.

3.3.2 Convergence rate analysis using sufficient decrease assumption

In the previous section, we showed that, given a continuous optimality measure µα and

an iterative algorithmA for which it converges to 0, we can construct an approximation

oracle. Under some additional assumptions on algorithm A used in Algorithm 3,

we can bound the number of total iterations of the algorithm A needed during the

execution of ITALEX-CT. We will later show that these conditions are satisfied by

widely used first-order methods such as GCG and PG.3

Assumption 3. For any α ≤ ω∗, and any starting point y0 ∈ dom(g) × Levω(α),

algorithm A with optimality measure µα generates a sequence
{

(yj , µα(yj−1))
}

j∈N
that satisfies

ϕ̂α(yj−1)− ϕ̂α(yj) ≥ min{η1µα(yj−1), η2
(

µα(yj−1)
)2}, (3.9)

for some η1 ∈ (0, 1)and η2 ∈ (0,+∞].

Using this sufficient decrease assumption on algorithm A, in the convergence anal-

ysis of ITALEX-FT we will analyze the total number of iterations of A used by

ITALEX-CT. In order to establish such a result we require the following technical

lemma, the proof of which is given in appendix B.

Lemma 5. Let {ξp}p∈N be a non-negative sequence, and let η > 0 such that ξp+1 ≤
ξp − ηξ2p+1 for any p ∈ N . Then, for any p ∈ N

ξp ≤
max{ 2

η
, ξ1}

p
.

We are now ready to prove the complexity result for ITALEX-CT using an ap-

proximation oracle utilizing a sub-algorithm A that satisfies the sufficient decrease

property of Assumption 3. For the analysis, we fix an iteration r of ITALEX-CT,

3In fact, it can be shown that they are satisfied by any PDA method as defined in [6].
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and define Mk to be the number of calls to A during the kth iteration of ITALEX-

FT. Additionally, for any j ∈ [Mk] we also define the vector yk,j to be the output

of he jth call to algorithm A during the kth iteration of ITALEX-FT, and initialize

yk,0 = (x̃k−1, z̃k−1). Note that (x̃k, z̃k) = yk,Mk−1. Using these definitions we prove

the following result.

Theorem 4. Consider the ITALEX-CT algorithm (Algorithm 2) that uses the ap-

proximation oracle presented in Algorithm 3 with A satisfying Assumption 3. Then,

for any ε > 0, the total number of A iterations used by ITALEX-CT to produce xR

satisfying (3.3) is given by M̄ ≤ K1 +K2 +N , where

K1 = log 1

1−η1

(

min

{

η2
η1
,
4

ǫ1

}

(

ϕ(x0) +
∥

∥z0 − x0
∥

∥

2 − ϕ̄1

)

)

,

K2 =
32

η2ε
+
(

log 1

1−η1

(9) + 2
)(⌈

log2

(ǫ1
ε

)⌉

+ 1
)

,

N is the total number of calls to the approximation oracle, and R is the total number

of iteration of ITALEX-CT with bounds given in Theorem 1(ii).

Proof. We begin by computing the total number of iterations of A for some fixed

ITALEX-CT iteration r ∈ [R], which we denote by M̄r. Let Nr be the total number of

ITALEX-FT iterations, or equivalently, the total number of calls to the approximation

oracle within the rth ITALEX-CT iteration, then M̄r =
∑Nr

k=1Mk. Moreover, the

stopping condition for ITALEX-FT ensures that in its last (Nr) iteration the first

stopping criteria of the approximation oracle is used and so the last inner iterate

(iterate MNr − 1 in ITALEX-FT iteration Nr) satisfies

ϕ̂α̃Nr−1(yNr,MNr−1) ≤ ϕ̄r +
ǫr
2
. (3.10)

Moreover, for any iteration k ∈ [Nr] and any j ∈ [Mk−1], since the stopping condition
of Algorithm 3 was not satisfied in the previous inner iteration

µα̃k−1(yk,j−1) ≥ ϕ̂α̃k−1(yk,j−1)− ϕ̄r −
ǫr
4
≥ 0. (3.11)

Furthermore, Assumption 3 states that for all k ∈ [Nr] and any j ∈ [Mk]

ϕ̂α̃k−1(yk,j)≤ ϕ̂α̃k−1(yk,j−1)−min{η1µα̃k−1(yk,j−1), η2µ
α̃k−1(yk,j−1)2}. (3.12)

Defining

dk,j ≡ ϕ̂α̃k−1(yk,j)−
(

ϕ̄r +
ǫr
4

)

, k ∈ [Nr], j ∈ {0, . . . ,Mk}
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we can plug bound (3.11) into (3.12) to obtain for all j ∈ [Mk]

dk,j ≤ dk,j−1 −min{η1dk,j−1, η2(d
k,j−1)2} (3.13)

Moreover, since α̃k−1 ≤ α̃k and yk,Mk−1 = yk+1,0, we have ϕ̂α̃k−1(yk,Mk−1) = ϕ̂α̃k(yk+1,0)

and dk,Mk−1 = dk+1,0. Thus, we can define ξ0 = d1,0, and

ξp = dk,j, p =

k−1
∑

i=1

(Mi − 1) + j, 1 ≤ j ≤Mk − 1, k = 1, . . . , Nr

i.e., ξp is a unified sequence of all dk,j, ordered first by the ITALEX-FT iteration

index k, and then by the inner iteration index j not accounting for inner iteration 0

at each k. Thus, (3.13) is equivalent to

ξp ≤ ξp−1 −min{η1ξp−1, η2ξ
2
p−1}. (3.14)

By the definition of dk,j and since y1,0 = (x̃0, z̃0) = (xr−1, zr−1), we have that

ξ0 = d1,0= ϕ̂α̃0(y1,0)− ϕ̄r −
ǫr
4

= ϕ̂αr−1(xr−1, zr−1)− ϕ̄r −
ǫr
4
, (3.15)

and from (3.10) we deduce that ξp ≤ ǫr
4
for p = M̄r −Nr.

We look at the values of ξp in two stages: (1) p < K1,r in which ξp > η1
η2

(2) K1,r ≤
p ≤ M̄r − Nr in which ξp ≤ η1

η2
. In stage 1, the minimum in (3.14) is attained in the

first term, and (3.14) is equivalent to ξp ≤ (1− η1)ξp−1. Thus, the smallest K1,r such

that ξK1,r ≤ max{ ǫr
4
, η1
η2
} is bounded by

K1,r =

⌈

log 1

1−η1

(

min

{

η2
η1
,
4

ǫr

}

(

ϕ̂αr−1(xr−1, zr−1)− ϕ̄r −
ǫr
4

)

)⌉

.

Let K2,r = M̄r − Nr − K1,r. K2,r > 0 only if ǫr
4

< η1
η2
. Thus, if K2,r > 0, any

K1,r ≤ p ≤ K1,r +K2,r, i.e., any second stage iteration, satisfies

ξp+1 ≤ ξp −min{η1ξp, η2ξ2p} = ξp − η2ξ
2
p ≤ ξp − η2ξ

2
p+1

where the equality follows from ξp ≤ η1
η2

and (3.14), and the inequality results from ξp

being nonincreasing. Thus, by Lemma 5

ξp ≤
max

{

2
η2
, ξK1,r

}

p+ 1−K1,r

. (3.16)

Since η1 ∈ (0, 1), we obtain ξK1,r ≤ η1
η2
≤ 2

η2
, and (3.16) implies that the smallest K2,r
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such that ξK1,r+K2,r ≤ ǫr
4
satisfies

K2,r ≤
⌈

4

ǫr
· 2
η2

=
8

ǫrη2

⌉

. (3.17)

Finally, we use the fact that for every r > 0

ϕ̂αr(xr, zr)− ϕ̄r+1−
ǫr+1

4
= dNr ,MNr−1+ϕ̄r− ϕ̄r+1+

ǫr− ǫr+1

4
≤ 9ǫr+1

4
. (3.18)

where the equality follows from αr = α̃Nr−1, (x
r, zr) = yNr,MNr−1, and 2ǫr+1 = ǫr, and

the inequality follows from ϕ̄r+1 ≥ ϕ∗, ϕ̄r−ϕ∗ ≤ ǫr
2
, and dNr ,MNr−1 ≤ ǫr

2
(the stopping

criteria of ITALEX-FT). Thus, combining (3.17), the definition of ϕ̂αr , and (3.18) we

obtain the following bounds.

K1,r ≤







⌈

log 1

1−η1

(

min
{

η2
η1
, 4
ǫ1

}(

ϕ(x0)+‖x0 − z0‖2− ϕ̄1

))⌉

, r = 1,
⌈

log 1

1−η1

(9)
⌉

, r > 1,

K2,r ≤







0, η1 ∈
(

0, η2ǫr
4

]

,
⌈

8
η2ǫr

⌉

, η1 ∈ (η2ǫr
4
, 1).

Recall that

M̄ =

R
∑

r=1

M̄r =

R
∑

r=1

(K1,r +K2,r +Nr) =

R
∑

r=1

K1,r +

R
∑

r=1

K2,r +N, (3.19)

where N is given by Theorem 1(ii). Thus, it is left to compute a bound on the sum

of K1,r and K2,r over r. We define K1 and K2 as follows:

K1,1−1≤ log 1

1−η1

(

min

{

η2
η1
,
4

ǫ1

}

(

ϕ(x0)+
∥

∥x0 − z0
∥

∥

2− ϕ̄1

)

)

≡ K1

R
∑

r=2

K1,r+
R
∑

r=1

K2,r+1≤R(log 1

1−η1

(9) + 1) +
R
∑

r=1

(

8

η2ǫr
+ 1

)

≤ R(log 1

1−η1

(9) + 2) +

R
∑

r=1

8

ǫR2R−rη2

≤
(⌈

log2

(ǫ1
ε

)⌉

+ 1
)

(log 1

1−η1

(9) + 2) +
32

εη2
≡ K2.

where the last inequality follows from plugging the bound on R from Theorem 1(ii)

and the fact ǫR < ε ≤ ǫR−1 = 2ǫR. Plugging the bounds of K1, K2 into (3.19) obtains

the desired result.
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3.3.3 Implementation using first-order methods

In the two previous sections, we presented a general approximation oracle that utilizes

a sufficient descent iterative algorithm A and proved the iteration complexity of using

such an oracle within ITALEX-CT. We now discuss two specific first-order algorithms

that can be used as A: The GCG and the PG.

Implementation via GCG.

In order to prove that GCG can be used in the approximation oracle, we need

to define its associated continuous optimality measure and show that GCG satisfies

Assumption 3 with respect to this measure. Throughout this section we also assume

that dom(g) is compact.

We start by defining the optimality measure Sα associated with GCG for solving

problem (Pα), by adapting definitions and the lemmas in Section 2 from problem (P)

to problem (Pα). Thus, for any α ≥
¯
ω, we define

Dα ≥ Ddom(g) +DLevω(α) ≥ Ddom(ĝα), (3.20)

an upper bound on the sum of the diameter of dom(g) and the diameter of the α-

Level set of ω, which is finite under assumption 1(a). Using these notations we adapt

Definition 1 to function ϕ̂α. The α-surrogate optimality gap is denoted as

Sα(y) ≡
〈

∇f̂(y),y− pα(y)
〉

+ ĝα(y)− ĝα(pα(x)),

where

pα(y) ∈ argmin
p∈Rn×Rn

{

〈∇f̂(y),p〉+ ĝα(p)
}

.

Note that pα(y) = (pα(y)1,p
α(y)2) such that

pα(y)1 ∈ argmin
p1∈Rn

{〈∇f(y1) + 2(y1 − y2),p1〉+ g(p1)} ,

pα(y)2 ∈ argmin
p2∈Levω(α)

{〈2(y2 − y1),p2〉} .

Thus, the GCG can be applied to function ϕ̂α if it can be applied to ϕ and there exists

a simple linear oracle over Levω(α). Using these definitions, we obtain the following

corollary of Lemma 1 and Lemma 2 from Section 2.

Corollary 2. Sα(·) is a continuous optimality measure for problem (Pα) associated

with GCG with adaptive stepsize. Moreover, GCG satisfies Assumption 3 with respect

to Sα(·), i.e., for any α ≥
¯
ω and for any y0 ∈ dom(ĝα) ≡ dom(g)× Levω(α) the jth
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iteration of GCG satisfies

ϕ̂α(yj)− ϕ̂α(yj+1) ≥ 1

2
min

{

Sα(yj),
Sα(yj)2

(Lf + 2)D2
α

}

, (3.21)

Proof. Let α ≥
¯
ω, for any u ∈ dom(ĝα) = dom(g)× Levω(α), which is compact due

to Assumption 1(a). Therefore, by Lemma 1 we obtain

Sα(u) ≥ ϕ̂α(u)− h(α).

Moreover, Sα(u) = 0 if and only if u ∈ argminy∈Rn×Rn{ϕ̂α(y)} by [5, Theorem 13.6].

Thus, Sα(·) is a continuous optimality measure. Furthermore, by [5, Theorem 13.9],

applying GCG to problem (Pα) guarantees that

lim
j→∞

Sα(yj) = 0.

Finally, since Dα is greater or equal to the diameter of dom(ĝα), by Lemma 2 we

obtain (3.21).

Thus, we can utilize the GCG as our algorithm A, with iterations defined in Al-

gorithm 4. A straight forward result of Theorem 4 for the specific implementation of

Algorithm 4 as (A− STEP ) in the approximation oracle follows.

Algorithm 4: (A-STEP):Generalized Conditional Gradient Step

Input: yj ∈ dom(g)× Levω(α), α
pj = argminu∈Rn×Rn{〈∇f̂(yj),u〉+ ĝα(u)}
Sα(yj) = 〈∇f̂(yj),yj − pj〉+ ĝα(yj)− ĝα(pj)

ηj = min{1, Sα(yj)
(Lf+2)‖yj−pj‖}

yj+1 = yj + ηj(p
j − yj)

Output: yj+1, Sα(yj)

Corollary 3. Let Assumptions 1 and 2 hold, and dom(g) be compact. Let the ap-

proximation oracle Oϕ,ω be Algorithm 3 using Algorithm 4 as an iteration of A, and
let the expansion oracle Eϕ,ω be the one defined in Theorem 2. Then, for any ε > 0,

ITALEX-CT requires at most K1 +K2 +N iterations of GCG, where

K1 = log2

(

min

{

2

2(Lf + 2)D2
ω∗

,
4

ǫ1

}

(

ϕ(x0) +
∥

∥z0 − x0
∥

∥

2 − ϕ̄1

)

)

,

K2 =
64(Lf + 2)D2

ω∗

ε
+ (log2 (9) + 2)

(⌈

log2

(ǫ1
ε

)⌉

+ 1
)

,

N =

⌈

2κγ(ω∗ − ω(z0))

εκ/2

⌉

+
⌈

log2

(ǫ1
ε

)⌉

+ 1.
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Proof. Since at every call to the approximation oracle αk ≤ ω∗, Dαk
≤ Dω∗ and it

follows from Corollary 2 that Assumption 3 holds with

η1 =
1

2
, η2 =

1

2(Lf + 2)D2
ω∗

. (3.22)

Plugging (3.22) and Corollary 1 in Theorem 4 gives the desired result.

Remark 1. Algorithm 4 can be replaced by a variation of GCG with backtracking

[18]. This algorithm does not require knowledge of a global Lipschitz constant Lf and

yields similar convergence guarantees.

Implementation via PG.

Similarly to the case of GCG, in order to use PG in the approximation oracle,

we need to define its associated continuous optimality measure and show that PG

satisfies Assumption 3 with respect to this measure. Moreover, we require that this

continuous optimality measure would be obtained directly from the PG iterations with

no additional computational cost.

Therefore, we first need to define the basic iteration of the PG algorithm for prob-

lem (Pα). For any α ≥
¯
ω, we define the α-proximal gradient mapping with regard to

function ϕ̂α at point y as:

T α(y) ≡ prox 1

Lf+2
ĝα

(

y − 1

Lf + 2
∇f̂(y)

)

.

Moreover, it is evident that T α(y) = (T α(y)1, T
α(y)2) where

T α(y)1 = prox 1

Lf+2
g

(

y1 −
1

Lf + 2
(∇f(y1) + 2(y1 − y2))

)

,

T α(y)2 = PLevω(α)

(

Lfy2 + 2y1

Lf + 2

)

,

and thus can easily be computed if g is a prox-friendly function and the projection

onto Levω(α) is simple.

Since computing the optimality measure Sα(y) is the same as computing the GCG

step, we need an alternative optimality measure based on T α. To do this, we first

show that for any y ∈ dom(g)× Levω(α) the diameter of Levϕ̂α(ϕ̂α(y)) is bounded.

Lemma 6. Let Assumptions 1 and 2 hold. Let ϕ̄ ≤ ϕ∗ + ε/2, let α ∈ [
¯
ω, ω∗], and let

y ∈ dom(g)× Levω(α). Then

DLevϕ̂α (ϕ̂α(y)) ≤ D̃α(y) ≡ min

{

Dα,

√

6
(

ϕ̂α(y)− ϕ̄+
ε

2

)

+ 4D2
Levω(α)

}

,

where Dα is defined in (3.20).
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Proof. Let u,v ∈ Levϕ̂α(ϕ̂α(y)). Then, it follows from ϕ̂α(y) < ∞ that u2,v2 ∈
Levω(α) and u1,v1 ∈ dom(g), implying that

‖u2 − v2‖ ≤ DLevω(α) (3.23)

and ‖u− v‖ ≤ Dα. Moreover, by the definition of ϕ̂α

‖u1 − v1‖2 ≤ 3(‖u1 − u2‖2 + ‖v1 − v2‖2 + ‖u2 − v2‖2)
≤ 3

(

ϕ̂α(u)− ϕ(u1) + ϕ̂α(v)− ϕ(v1) +D2
Levω(α)

)

≤ 6(ϕ̂α(y)− ϕ∗) + 3D2
Levω(α), (3.24)

where the second inequality follows from the definition of ϕ̂α and (3.23), and the

last inequality follows from ϕ(u1), ϕ(v1) ≥ ϕ∗. Combining the (3.23), (3.24), and

ϕ̄ ≤ ϕ∗ + ε/2 achieves the desired result.

Using D̃α(y) defined above, and defining

S̃α(y) = 2max

{

ϕ̂α(y)− ϕ̂α(T α(y)), D̃α(y)

√

Lf + 2

2
(ϕ̂α(y)− ϕ̂α(T α(y)))

}

,

we immediately obtain the following implication of Lemma 3.

Corollary 4. S̃α(·) is a continuous optimality measure associate with PG for prob-

lem (Pα).

Proof. Let α ∈ R, and let y ∈ dom(g)×Levω(α), Then. it follows from Lemma 3, that

replacing ϕ by ϕ̂α we obtain

S̃α(y) ≥ ϕ̂α(y)− h(α),

Thus, satisfying the first property of definition 5. Moreover, it follows from [5, Corol-

lary 10.8] that ϕ̂α(y) − ϕ̂α (T α(y)) ≥ 0 for all y, and is equal to 0 if and only if y

is optimal. Thus, S̃α(y) satisfies the second condition of definition 5. Notice that

since the sequence ϕ(yj) generated by PG converges, the sequence ϕ(yj)−ϕ (T α(yj))

converges to 0, and therefore so does S̃α(yj).

We can now consider the implementation of the (A−STEP ) in the approximation

oracle using the PG step presented in Algorithm 5. The following result is a direct

implication of applying Theorem 4 to this implementation.

Corollary 5. Let Assumptions 1 and 2 hold. Let the approximation oracle Oϕ,ω be

Algorithm 3 using Algorithm 5 as an iteration of A, and let the expansion oracle Eϕ,ω
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Algorithm 5: (A-STEP):Proximal Gradient Step

Input: yj ∈ dom(g)× Levω(α), α

yj+1 = proxĝα
(

yj − 1
Lf+2
∇f̂(yj)

)

Set D̃α(y
j) = min

{

Dα,
√

6
(

ϕ̂α(yj)− ϕ̄α + ε
2

)

+ 4D2
Levω(α)

}

Set ζj = ϕ̂α(yj+1)− ϕ̂α(yj)

Calculate S̃α(yj) = 2max

{

ζj ,
√

Lf+2

2
D̃α(yj)2ζj

}

Output: yj+1, S̃α(yj)

be the one defined in Theorem 2. Then, for any ε > 0, ITALEX-CT requires at most

K1 +K2 +N iterations of PG, where

K1 = log2

(

min

{

2

2(Lf + 2)D̂2
0

,
4

ǫ1

}

(

ϕ(x0) +
∥

∥z0 − x0
∥

∥

2 − ϕ̄1

)

)

,

K2 =
64(Lf + 2)D̂2

0

ε
+ (log2 (9) + 2)

(⌈

log2

(ǫ1
ε

)⌉

+ 1
)

,

N =

⌈

2κγ(ω∗ − ω(z0))

εκ/2

⌉

+
⌈

log2

(ǫ1
ε

)⌉

+ 1,

with ∆0 = ϕ(x0) + ‖x0 − z0‖2 − ϕ∗ + ǫ1
2
and D̂2

0 = min
{

6∆0 + 4D2
Levω(ω)∗

, D2
ω∗

}

.

Proof. By the definition of S̃α, either

ϕ̂α(y)− ϕ̂α (T α(y)) =
1

2
S̃α(y), (3.25)

or, S̃α(y) = D̃α(y)
√

2(Lf + 2) (ϕ̂α(y)− ϕ̂α (T α(y))), implying

ϕ̂α(y)− ϕ̂α (T α(y)) =
S̃α(y)2

2(Lf + 2)D̃α(y)2
. (3.26)

We fix the iteration r ∈ [R] of ITALEX-CT. The sequence of {α̃k−1}k∈N in ITALEX-

FT is non-decreasing, ϕ̂α̃k(y) ≥ ϕ̂α̃k+1(y) for any y ∈ R2n. Thus, the sequence

{ϕ̂α̃k−1((x̃k−1, z̃k−1))}k∈N is nonincreasing and bounded from above by ϕ̂α̃0((x̃0, z̃0)) =

ϕ̂αr−1((xr−1, zr−1)) ≤ ϕ̂α0((x0, z0)) = v0. Moreover, since α̃k ≤ ω∗, DLevω(α̃k) ≤
DLevω(ω∗) and Dα̃k

≤ Dω∗ . Combining this with ϕ̄ ≡ ϕ̄r ≥ ϕ∗ and ε ≤ ǫ1, we ob-

tain that D̂0 ≥ D̃α̃k−1
(y) for any y ∈ Levϕ̂α̃k−1 (v0). Combining (3.25), (3.26), and this

upper bound D̂0, implies that for any ITALEX-FT iterate k and PG iterate j it holds

that

ϕ̂α̃k−1(yk,j)− ϕ̂α̃k−1

(

yk,j+1
)

≥ min

{

1

2
S̃α̃k−1(yk,j),

S̃α̃k−1(yk,j)2

2(Lf + 2)D̂2
0

}

.

Hence, Assumption 3 holds with η1 =
1
2
, η2 =

1

2(Lf+2)D̂2
0

. Plugging N from Corollary 1
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in Theorem 4 we obtain the desired result.

Remark 2. Algorithm 5 can be replaced with a PG algorithm in which the step-size

is determined by a backtracking procedure, using a local Lipschitz constant of the

gradient [5, Section 10.4.3]. This algorithm does not require knowledge of a global

Lipschitz constant Lf and admits similar convergence guarantees.

Remark 3. A similar proof can be used for any nonincreasing 1
β
-PDA method as

described in [6] by computing S̃α using the PDA method and multiplying it by β to

get an optimality measure.

4 Special case: smooth inner function

In this section, we address the special case where g = 0, that is ϕ ≡ f is a smooth

function. We show that in this case, a variation of ITALEX-CT presented in Algo-

rithm 1 can be used to get a slightly stronger result, guarantying that for any iteration

k the iterator xk is super-optimal, i.e., ω(xk) ≤ ω∗.

We start by redefining function H and h from Section 3.1 as

H(x, α) = f(x) + δepi(ω)(x, α), h(α) = min
x∈Rn

H(x, α),

consequently eliminating the need for variables z (or equivalently restricting z = x).

We still use the same approach of finding the minimal α for which h(α) ≤ ϕ∗. Thus,

as before, we are required to construct an approximation oracle and an expansion

oracle satisfying Definitions 3 and 4, respectively.

Note that due to the new definition of h the expansion oracle defined in Theorem 2

is no longer valid. Thus, we present a new expansion oracle, which also relies on

the structure of ϕ. This expansion oracle requires knowledge of the global Lipschitz

constant Lf of the gradient of f .

Proposition 3. Let Assumption 1 hold, and let Assumption 2 hold with g = 0. Define

∆ : R++ → R++ as ∆(ρ) = 1
γ

(

2ρ
Lf

)κ/2

. Then, Eω,ϕ(α, ϕ̄, ρ) = α+∆(ρ) is an expansion

oracle.

Proof. From the definition of ∆(ρ), it is easy to see that for any ρ > 0 it is a non-

negative and increasing function of ρ. Moreover, let x∗ be an the optimal solution of

problem (BLP), let α ∈ [
¯
ω, ω∗], and let x̃ = PLevω(α)(x

∗). Then,

h(α) ≤ ϕ(x̃) = f(x̃) ≤ f(x∗) + 〈∇f(x∗), x̃− x∗〉+ Lf

2
‖x̃− x∗‖2

≤ ϕ∗ +
Lf

2
dist(x∗,Levω(α))

2 ≤ ϕ∗ +
Lf

2
(γ(ω∗ − α))

2/κ
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where the first inequality is due to the definition of x̃ and h(α), the second inequality

is due to the Descent Lemma [17, Lemma 1.2.3], the third inequality follows from the

optimality of x∗ implying that ∇f(x∗) = 0 and f(x∗) = ϕ∗, and the last inequality is

due to Assumption 1. The rest of the proof is identical to that of Theorem 2.

Redefining ϕ̂α as

ϕ̂α(x) = f(x) + δLevω(α)(x),

results again in a composite function with compact domain with diameter DLevω(α).

Therefore, we can use approximation oracles based on GCG or PG, as before, with

appropriate optimality measures. Thus, the following result follows directly from

Theorems 1 and 4, and the fact that ω(xk) ≤ αk ≤ ω∗ at each outer iteration k. The

proof is similar to the proofs of Theorem 4, Corollaries 1, 3 and 5, and thus is not

presented.

Corollary 6. Let Assumptions 1 hold and let Assumption 2 hold with g ≡ 0. Then,

ITALEX-CT with the approximation oracle presented in Algorithm 3 using GCG or

PG as the iteration of A and the expansion oracle defined in Proposition 3, outputs a

vector xR, with R ≤
⌈

log2
(

ǫ1
ε

)⌉

+ 1, such that

ϕ(xR)− ϕ∗ ≤ ε, and ω(xR) ≤ ω∗,

after at most K1 +K2 +N inner (GCG/PG) iterations, where

K1 = log2

(

min

{

1

LfD2
Levω(ω∗)

,
4

ǫ1

}

(

ϕ(x0)− ϕ̄1

)

)

,

K2 =
64LfDLevω(ω∗)

ε
+ (log2 (9) + 2)

(⌈

log2

(ǫ1
ε

)⌉

+ 1
)

,

N =

⌈

(

2Lf

ε

)κ/2

γ(ω∗ − ω(x0))

⌉

+
⌈

log2

(ǫ1
ε

)⌉

+ 1.

5 Numerical results

In this section, we present a set of numerical experiments for comparing ITALEX-CT

with existing methods. The general setup considers an inner function ϕ = f+g where

the smooth function f is given by

f(x) = ‖Ax− b̃‖2,

which has a Lf -Lipschitz continuous gradient with Lf = λmax(A
TA). Each experiment

differs in the choice of the nonsmooth g and outer function ω. The functions ω satisfy

Assumption 1, where γ and κ are given by Table 2.
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Following the numerical experiments in [7], we used the “regularization tools”

MATLAB package [13] to generate problems of the formAx = b. Thus, the parameter

A ∈ Rn×n and the variable x ∈ Rn with n = 1000 were generated exactly by the

functions ”phillips”,”foxgood”,”baart” of the package (unless stated otherwise, see

Sections 5.2 and 5.3). For each setting we generate I = 50 instances of the problem

where in each instance i, the vector b̃ = Ax+ν
i and each component of νi is sampled

from a normal distribution with µ = 0 and σ = 10−2.

In each experiment, we compared two variations of the ITALEX-CT method, re-

ferred to hereafter as ITALEX, where the approximation oracle is implemented by

either PG or GCG, with the methods mentioned in Table 1. We let each of the meth-

ods run for 30 minutes. The total number of the PG/GCG iterations of method m

in realization i is denoted as M̄i,m. We denote the set of methods compared in an

experiment by M. For each realization i and tested method m we define {xk
i,m}k∈N

as the sequence produced by the method, and for each time t, we compute x̃t
i,m as

the last iterate that was produced before time t. Thus, we compare the average inner

function normalized optimality gap, given by

∆ϕt,m =
1

I

I
∑

i=1

ϕ(x̃t
i,m)− ϕ∗

i

‖x∗
i ‖2

,

where ϕ∗
i denotes the optimal value of the inner function, which was computed using

CVX [11] for MATLAB and Gurobi version 9.1.1 solver [12], and x∗
i denotes the

approximated optimal solution of the bilevel problem. We note that the use of ‖x∗
i ‖2

in the denominator is due to the fact that the guarantees for the algorithms are usually

in the form of ϕ(xk)−ϕ∗

‖x0−x∗‖2 ([19], [7]), and in this paper we provide a guarantee of the form
ϕ(xk)−ϕ∗

D2
ω∗

which also scales up with ‖x∗‖2. Since the optimal solution of the bilevel

problem is unknown, x∗
i was taken as the iterate achieving the minimal ϕ value by

any method tested.

To compare the value of the outer function, we could not use off-the shelf solvers

to solve (BLP’) in order to evaluate ω∗
i , as we encountered the numerical problems

described in Subsection 1.1. Therefore, we compare the ratio between the outer func-

tion values to the maximum value achieved by any of the algorithms, that is, denoting

ωi
max = maxm∈M,k

{

ω
(

xk
i,m

)}

we measure

∆ωt,m =
1

I

I
∑

r=1

1−
ω(x̃t

i,m)

ωi
max

.

Notice that a higher value of ∆ω corresponds with a lower value of ω. This measure

will indicate how close each method is to ω∗
i for each realization i. We would generally

expect that lower level of ∆ϕ will correspond with higher levels of ω (and therefore,

30



lower levels of ∆ω). Since [7] demands that x0 be argminx∈Rn{ω(x)}, and ITALEX

demands that ω(x0) ≤ ω∗, we used x0 = 0 in all the experiments. All experiments

were ran on an Intel(R) Xeon(R) Gold 6254 CPU @ 3.10 GHz with a total of 300 GB

RAM and 72 threads, using MATLAB 2019a, where each method was allowed to run

on only one thread.

5.1 Smooth and strongly convex outer function

In the first experiment, we used the same setup as in the numerical experiments in

[19], solving integral equations. Thus, g(x) ≡ δRn
+
is the indicator function of the

non-negative orthant, f is as described above, and the outer function is defined as

ω(x) = ‖x‖Q =
√

x⊤Qx, where the positive definite matrix Q = L⊤L + I, and L,

generated by the function ′get l(1000, 1)′ from [13], approximates the first-derivative

operator. In this experiment, since optimizing over ω or ω2 is equivalent, we can

compare ITALEX with methods that require both strong convexity and smoothness

of the outer function: BiG-SAM [19], iBiG-SAM [20], IR-PG [21], and MNG [7].

The GCG implementation of ITALEX requires a bounded feasible set. Therefore, we

utilized D̃α(y) from Lemma 6, and for any fixed level set αk and inner iteration yj ∈
R2n we redefined ĝαk = δCαk

(yj) + δLevω(αk), where Cα(y) = {x ∈ Rn
+ : ‖x‖ ≤ D̃α(y)},

and applied the GCG step.

The values of ∆ϕt,m and ∆ωt,m over time are presented in Figure 1. Table 3

summarizes these values for t equal to 30 minutes. As can be seen, while there is

not a consistently superior method in all three data sets, ITALEX-GCG is consis-

tently the slowest. However, for the Foxgood data set, ITALEX-PG achieves the best

performance, and for the other two data sets, ITALEX-PG achieves the second best

Figure 1: ∆ϕ and ∆ω over time for ϕ(x) = ‖Ax− b‖2 + δRn
+
and ω(x) = ‖x‖Q.
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Method
Baart Foxgood Phillips

∆ϕ ∆ω ∆ϕ ∆ω ∆ϕ ∆ω

ITALEX -
PG

1.41e−5
(1.7e−5)

1.87e−2
(2.7e−2)

1.10e−7
(8.3e−8)

8.49e−4
(9.5e−4)

2.74e−5
(6.2e−6)

1.52e−2
(1.2e−2)

ITALEX -
GCG

2.83e−4
(6.9e−5)

8.66e−2
(5.0e−2)

3.49e−5
(4.1e−6)

2.87e−2
(3.4e−3)

8.77e−5
(1.5e−5)

3.15e−2
(1.7e−2)

BiG-SAM 1.54e−5
(2.0e−5)

2.44e−2
(3.5e−2)

1.12e−7
(8.1e−8)

1.13e−3
(9.8e−4)

3.11e−5
(7.1e−6)

2.22e−2
(1.3e−2)

iBiG-SAM 1.56e−5
(2.0e−5)

2.52e−2
(3.5e−2)

1.14e−7
(8.2e−8)

1.30e−3
(9.6e−4)

3.12e−5
(7.3e−6)

2.23e−2
(1.3e−2)

IR-PG 1.10e−5
(1.3e−5)

1.27e−4
(3.9e−4)

1.26e−7
(9.4e−8)

1.82e−3
(1.1e−3)

2.34e−5
(5.2e−6)

0.00e+0
(0.0e+0)

MNG 1.80e−5
(2.3e−5)

2.96e−2
(4.3e−2)

1.17e−7
(9.9e−8)

9.06e−4
(1.6e−3)

3.75e−5
(9.9e−6)

2.78e−2
(1.7e−2)

Table 3: Mean error (standard deviation) after 30 minutes for ϕ(x) = ‖Ax− b‖2 + δRn
+

and ω(x) = ‖x‖Q.

performance, second only IR-PG. The slower rate of ITALEX-GCG can be explained

by the large diameter of the constructed compact domain needed to apply the GCG

step. All methods exhibit a clear trade-off between the inner and outer function

values.

5.2 Nonsmooth and strongly convex outer function

In the next experiment, we want to evaluate the performance of the different methods

in a sparse setting. We therefore chose b̃ = Ax̃+ ν
i, where x̃ is a sparse vector, such

that x̃ ∈ R1,000, ‖x̃‖0 = 200 (taking 200 randomly selected components of x), and ν
i

is generated by normal distribution with mean 0 and standard deviation σ = 10−3. In

this set of experiments, we take g ≡ 0 and choose ω(x) to be the strongly convex and

nonsmooth elastic-net function ω(x) = ‖x‖1 + ρ‖x‖2 with ρ = 0.05. We compared

both implementations of ITALEX (with GCG and PG) to the only two methods that

can deal with this type of outer function: IR-IG [2] and BiG-SAM [19] applied to a

smoothed function ω, with two different uniform-accuracy smoothing parameters δ = 1

and δ = 1e− 3. The smoothing is done, as described in [19], by taking x − s∇ω̃(x)
instead of x − s∇ω(x), with ω̃ = Hδ + ρ‖x‖2, where Hδ is the Huber function, and

s = 2δ, where (as the l1 norm is 1-Lipschitz continuous). The results are shown in

Figure 2 and Table 4.

Since in the first steps of IR-IG the value of ω increases significantly, we took

ω∗
i = maxk≥500,m∈M

{

ω
(

xk
i,m

)}

. Therefore, for larger values of ω (that appear only in

IR-IG) we cannot show ∆ω. For all the data sets, ITALEX with GCG is the fastest and

IR-IG is the slowest, in terms of inner function convergence, where the latter achieves

∆ϕ values that are larger by five orders of magnitude from the former. Moreover,

while ITALEX with PG and BiG-SAM with smoothing parameter δ = 1 have similar
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Figure 2: ∆ϕ and ∆ω over time for ϕ(x) = ‖Ax− b‖2, ω(x) = ‖x‖1 + ρ‖x‖2.

convergence with respect to the inner problem, BiG-SAM obtains significantly higher

(suboptimal) outer function values due to the rough smoothing. Moreover, BiG-SAM

with δ = 10−3 converges noticeably slower compared to ITALEX, especially in the

beginning, probably due to the complexity of smoothed BiG-SAM, which is O(1/εδ2).

Method
Baart Foxgood Phillips

∆ϕ ∆ω ∆ϕ ∆ω ∆ϕ ∆ω

ITALEX -
PG

1.78e−5
(1.1e−5)

1.91e−1
(8.8e−3)

6.80e−7
(5.5e−8)

2.50e−1
(9.2e−4)

6.45e−5
(1.9e−5)

1.76e−1
(1.6e−2)

ITALEX -
GCG

9.05e−7
(8.0e−6)

1.47e−1
(3.5e−2)

5.50e−8
(3.0e−8)

2.35e−1
(7.1e−3)

6.39e−5
(1.9e−5)

1.53e−1
(1.2e−2)

BiG-SAM
δ = 1

5.31e−6
(7.4e−6)

2.99e−4
(6.5e−4)

7.69e−7
(8.4e−8)

2.93e−2
(5.7e−3)

7.39e−5
(1.9e−5)

1.24e−1
(6.7e−3)

BiG-SAM
δ = 10−3

2.12e−4
(1.7e−5)

2.00e−1
(9.0e−3)

8.82e−8
(3.3e−8)

2.47e−1
(9.3e−4)

7.67e−5
(1.9e−5)

1.95e−1
(4.8e−4)

IR-IG 7.15e−1
(5.1e−2)

9.90e−1
(2.8e−4)

5.68e−2
(1.2e−3)

6.32e−1
(4.1e−3)

1.59e+1
(2.0e−1)

9.51e−1
(4.3e−3)

Table 4: Mean error (standard deviation) after 30 minutes for ϕ(x) = ‖Ax− b‖2) and
ω(x) = ‖x‖1 + ρ‖x‖2.

5.3 Nonsmooth and non-strongly convex outer function

For our last set of experiments, we tackle the setting that motivated the development of

ITALEX, the case where ω is neither smooth nor strongly convex. In these experiments

we again choose g ≡ 0, and set ω(x) = ‖x‖1. The data was generated as in the elastic-

net experiment. Since no existing first-order methods can address this setting, we only

show a comparison between the two ITALEX implementations in Figure 3.
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Figure 3: ∆ϕ and ∆ω over time for ϕ(x) = ‖Ax− b‖2 and ω(x) = ‖x‖1.

We observe that in this example, in contrast to the previous one, ITALEX-CT with

PG has a significantly faster inner function convergence rate than that ITALEX-CT

with GCG. We believe this is due to the difference between the linear convergence

rate of the PG compared to the sublinear convergence rate of GCG for optimizing

the least square function over a polyhedral set [24]. In order to compare ITALEX-CT

against some benchmark, we compare its results to the ones obtained by iterative

regularization. That is, we solve the following problems

minϕ(x) + λℓω(x), (Pλ)

with decreasing values of λℓ. Specifically, we chose λℓ =
1
2ℓ
λmax(A

⊤A), where ℓ ∈ [15].

We solved each of the regularized problems using CVX with Gurobi solver, and com-

puted the values of ω and ϕ. In Figure 4 we present the trade-off graph between

∆ϕ(x) and ∆ω(x) for both ITALEX-CT implementations and for the iterative regu-

larization. The graph for ITALEX-CT was constructed by computing ω∗
i = ω(xi

λ15
)

for each instance i. For the ITALEX-CT method, for each instance i, variant m, and

value of ∆ϕ we computed

∆ωi
m(∆ϕ) = 1− 1

ω∗
i

min
k∈[Ki,m]

{ω(xk
i,m) : ∆ϕ(xk

i,m) ≤ ∆ϕ}.

We then computed the average and percentile value over the realizations. For the

iterative regularization graph, for each value λℓ, given xi
λℓ
, the solution (Pλ) for the

rth realization, we computed ∆ϕ(xr
λℓ
) and ∆ω(xr

λℓ
). We then computed the average

and percentiles of these values over the realizations.
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Figure 4: ∆ϕ vs. 1 −∆ω for ϕ(x) = ‖Ax − b‖2 and ω(x) = ‖x‖1. The lines indicate
the average values, while the shaded regions indicate the area between the 10th and
90th percentiles

In Figure 4, we see that during its execution, ITALEX follows the line of the

iterative regularization, and is sometimes better (below it), this pattern stems from

the fact that ITALEX follows H(x, α) for increasing α and the iterative regularization

essentially solves the Lagrangian relaxation of H(x, α) (see definition in Section 4)

with λ being an optimal value of the dual variable corresponding to some (unknown)

α. Nevertheless, contrary to iterative regularization, ITALEX does not require solving

multiple optimization problems to obtain the above lines. Interestingly ITALEX with

PG exhibits a ’step’ structure that occurs due to PG making large expansion steps

and, at the same time, a large number of iterations in each approximation oracle.

This ‘step’ structure also occurs in ITALEX with GCG, however, due to the smaller

expansion steps which stem from the difference in the optimality measures of PG and

GCG, this structure disappears when averaging across realizations.

6 Discussion and conclusions

In this paper, we presented a general methodology called ITALEX, to solve simple

convex bilevel optimization problems. We showed that our methodology guarantees

convergence to an optimal solution of the bilevel problem, and that it can be applied

under milder assumptions about the structure of the outer function than the assump-

tions used in previous work. Specifically, ITALEX-CT does not require the outer

function to be strongly convex or smooth. We also presented two implementations of

ITALEX-CT using GCG and PG, which obtain an O(1/ε) iteration complexity for

the inner function convergence, the same as the best known complexity for the case

of smooth and strongly convex outer function, and is the first method to show an

O(1/
√
ε) iteration complexity for the outer function convergence.

As to future work, we believe that under more restrictive assumptions on the

structure of ϕ and ω, an accelerated convergence of ITALEX-CT with respect to the
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inner function may be obtained. It is also of interest to identify the classes of problems

for which PG works better than GCG and vice versa.
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Appendix A Proof of Lemma 4

Proof. (i) H(x, z, α) is an extended value function that is jointly convex in x, z, and

α, as a sum of the convex functions ϕ(x) + ‖x− z‖2 and the indicator function

over the convex set epi(ω). Since by definition h(α) is a partial minimization of

convex function H(x, z, α), by [5, Theorem 2.18], it is also convex.

(ii) First, we will show h is a nonincreasing function. Let α1 ≤ α2, since Levω(α1) ⊆
Levω(α2), it is clear that

h(α2) = min
x∈Rn,

z∈Levω(α2)

{ϕ(x) + ‖x− z‖2} ≤ min
x∈Rn,

z∈Levω(α1)

{ϕ(x) + ‖x− z‖2} = h(α1).

By the definition of ω∗, for any α ≥ ω∗ we have that h(α) = ϕ∗ = h(ω∗), and for

any α < ω∗, we have that h(α) > ϕ∗. Therefore, it remains to show that for any

¯
ω ≤ α1 < α2 < ω∗, h(α1) > h(α2). The choice of α2 implies that there exists

λ ∈ (0, 1) such that α2 = λα1 + (1 − λ)ω∗. Thus, by the convexity of h(·) we

have that

h(α2) ≤ λh(α1) + (1− λ)h(ω∗) < h(α1),

where the final inequality follows from the fact that α1 < ω∗, and therefore

h(α1) > ϕ∗, thus concluding the proof.

Appendix B Proof of Lemma 5

Proof. First denote a = max{ 2
η
, ξ1}. We will prove the statement by induction. In

the case p = 1, ξ1 ≤ a
1
= max{ 2

η
, ξ1} trivially holds. Now, assume that the statement

is true for j = 1, ..., p, we will prove it also holds for p + 1. By the properties of the

sequence and the induction assumption, we have

(1 + ηξp+1)ξp+1 ≤ ξp ≤
a

p
(B.1)
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Assume to the contrary that ξp+1 > a
p+1

, then by multiplying (B.1) by p(p + 2)2 we

obtain

p2 + p+ ηap < p2 + 2p+ 1.

By definition of a, the above inequality implies

2p =
2

η
ηp ≤ ηap < p + 1,

and since p ≥ 1, we obtain a contradiction. Thus, ξp+1 ≤ a
p+1

.
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