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Apportionment with Parity Constraints

Claire Mathieu * Victor Verdugo †

Abstract

In the classic apportionment problem the goal is to decide how many seats of a parliament
should be allocated to each party as a result of an election. The divisor methods provide a
way of solving this problem by defining a notion of proportionality guided by some rounding
rule. Motivated by recent challenges in the context of electoral apportionment, we consider
the question of how to allocate the seats of a parliament under parity constraints between
candidate types (e.g. equal number of men and women elected) while at the same time
satisfying party proportionality.

We consider two different approaches for this problem. The first mechanism, that follows
a greedy approach, corresponds to a recent mechanism used in the Chilean Constitutional
Convention 2021 election. We analyze this mechanism from a theoretical point of view. The
second mechanism follows the idea of biproportionality introduced by Balinski and Demange
[Math. Program. 1989, Math. Oper. Res. 1989]. In contrast with the classic biproportional
method by Balinski and Demange, this mechanism is ruled by two levels of proportional-
ity: Proportionality is satisfied at the level of parties by means of a divisor method, and
then biproportionality is used to decide the number of candidates allocated to each type and
party. We provide a theoretical analysis of this mechanism, making progress on the theo-
retical understanding of methods with two levels of proportionality. A typical benchmark
used in the context of two-dimensional apportionment is the fair share (a.k.a matrix scaling),
which corresponds to an ideal fractional biproportional solution. We provide lower bounds
on the distance between these two types of solutions, and we explore their consequences in
the context of two-dimensional apportionment.
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1 Introduction

How many seats should be allocated to each political party in an election? This basic question
plays a fundamental role in the political organization of societies, and its study has a long and
rich history. The idea of proportionality has been at the core of electoral apportionment methods
over the last two centuries, and this notion is captured by the divisor methods. These methods
are specified by rounding rules with the goal of assigning to each political party a number of
seats that is proportional to the number of votes they get. In this work we study the setting
of an electoral process where, apart from the typical proportionality condition, it is required to
achieve parity between the representatives of two parts of the population. Recently, the Chilean
Constitutional Convention election of 2021 implemented a new electoral mechanism with the
goal of achieving these two goals: Political proportionality and gender parity. In this work we
analyze the mechanism used for this election, and we also analyze other mechanism based on
biproportionality, a notion introduced by Balinski and Demange that extends the classic divisor
methods to a two-dimensional setting [2, 3].

1.1 A Greedy Apportionment Mechanism

In October 25, 2020, there was a 2-question referendum in Chile to approve the design of a
new Political Constitution. The first question was: Do you want a new Political Constitution? and
the possible answers were yes and no. The winning option was yes with nearly 80% of the total
number of votes. The election for the Constitutional Convention, which is the representative body
in charge of writing the new constitution, happened in May 15-16, 2021. The law approved in
March 2020 establishes a mechanism by which the seats of the convention in each political district
of the country have to be allocated in order to achieve gender parity and party proportionality [12,
11]. In what follows we call this method the greedy & parity correction mechanism. Our first goal is
to present, formalize and analyze this algorithm, to obtain structural properties of its output.

In our first result we analyze this mechanism from a structural point of view, showing that it
satisfies a set of desired properties for an apportionment method. Then, we study this mechanism
from an optimality point of view. That is, can we show that the greedy & parity correction
mechanism is optimal for some natural objective? We provide a positive answer for this question
by showing that this mechanism computes an optimal solution for a certain natural objective,
where the goal is to elect a set of representatives that maximize the number of votes obtained,
while at the same time achieving proportionality at the party level. The analysis of the mechanism
can be found in Section 3.

1.2 A Biproportional Apportionment Mechanism

The notion of proportionality and divisor methods can be extended to the case in which we have
two dimensions that rule the apportionment instance. In the setting of the present paper, the
parties represent one dimension of the problem and the types represent a second dimension of
the problem. Balinski and Demange formally defined the notion of biproportionality for integral
solutions and gave a complete characterization [3, 2]. We analyze a method for the apportionment
problem with type parity based on biproportionality. We call this mechanism the biproportional
parity mechanism. We analyze this mechanism from a structural an axiomatic point of view. The
formal description of the mechanism and its analysis can be found in Section 4.

This mechanism can be seen as a two stage optimization problem in which the first level en-
sures party proportionality, and then the second level guarantees biproportionality. We remark
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that the number of seats for each party are computed from the instance and they are not part of
the input, which contrasts with the typical biproportional method where the voting matrix and
the seats distributions are fixed and part of the input [21, 3]. This interaction of two levels of
apportionment requires a careful treatment, and we make progress on one of the research direc-
tions mentioned by Demange [10] on the theoretical understanding of the interaction between
these two levels of proportionality.

1.3 Comparing the Fair Share and the Biproportional Solution

If one relaxes the integrality condition in the biproportional setting, then such a solution is known
as fair share or matrix scaling, an object that has been studied extensively in the optimization,
statistics and algorithms communities. This solution is not directly implementable in the electoral
context since they generally look for integral solutions, but the fair share is used as a benchmark
in order to evaluate the quality of a two-dimensional apportionment [19]. Then, the following
question arises naturally: How far are the biproportional solution and the fair share? We provide
lower bounds to answer for this question. We show that for every integer value ℓ and every
rounding rule, we can find an instance where the ℓ1 distance between the biproportional solution
and the fair share is at least ℓ. A second metric of interest is given by the fraction of rows in
which the biproportional solution does not respect the rounded fair share. We show that this
value is in general bounded away from zero. We provide this analysis in Section 5.

In the one-dimensional case, the fair share is the fractional solution obtained by assigning to
each party a number of seats proportional to the number of votes. Balinski and Young proved
that the Jefferson method is the unique divisor method that never violates the fair share rounded
down, while the Adams method is the unique that never violates the fair share rounded up [5].
Our lower bounds state that these properties are broken in the two-dimensional setting. Finally,
in Section 6 we provide some consequences of our results for the quality of apportionment,
including an impossibility result for two-dimensional apportionment. We also compare the two
apportionment mechanisms presented in terms of the fair share.

1.4 Literature Overview

The divisor methods are widely used at national and regional level and we refer to the book
by Balinski and Young [5] and the recent book by Pukelsheim [21] for a deep treatment of the
theory and use of these methods. Rote and Zachariasen [23] and later Gaffke and Pukelsheim
[14, 13] provided a network flow approach for computing a biproportional solution. Recently,
Cembrano et al. [6] studied the multidimensional generalization of the biproportional method,
and provided existence, complexity and algorithmic results. Other two-dimensional approaches
have been considered, most of them based on network flow techniques [22, 24, 15, 9]. We refer to
Maier et al. for a real-life benchmark study for the biproportional method [19].

The basic algorithmic idea behind many algorithms to find a fair share or matrix scaling
is based on the Sinkhorn alternate scaling method [25]. Balinski and Demange [2] proposed
an algorithm for matrix scaling based on this idea and their algorithm was later analyzed in
terms of computational complexity [18]. Remarkable are the algorithms provided by Kalantari
and Khachiyan [17] and Nemirovski and Rothblum [20]. Recently, there has been progress on
designing faster algorithms for matrix scaling, motivated by its application on machine learning
and the analysis of large data sets [7, 1, 8]. We refer to the survey by Idel for a treatment of the
theory, applications, algorithms and a historical overview of matrix scaling [16].
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2 Preliminaries

Formally, consider an election with n political parties and a set of candidates C. Each candidate
c ∈ C belongs to exactly one of the parties, partyI(c) ∈ [n], the candidate garners a certain number
of votes, votesI (c) ∈ Z+ and is of one of two types, typeI (c) ∈ {f,m}. Finally, we are given a
strictly positive integer number h corresponding to the total number of seats to be allocated,
called the house size. In the apportionment problem with type parity, we have to find an allocation
of the candidates filling every seat and satisfying the following conditions. The first condition
is that the total number of seats must be occupied by an equal number of candidates from each
type to the extent possible. That is, each of the h available seats is filled and when h is even the
total number of seats occupied for the candidates of type f is equal to the total number of seats
occupied by the candidates of type m; when h is odd, the amounts differ by exactly one seat. The
second condition is that the number of candidates allocated from each party is proportional to
the total number of votes obtained by the party, a notion that is formally captured by a divisor
method.

2.1 Divisor Methods and Signpost Sequences

In the most basic form of the apportionment problem, the input is given by a pair (Q, h) where Q is
a vector of dimension n, encoding the number of votes garnered by each party, and h is a strictly
positive integer number representing the house size. The output, deciding how many of the h
seats are given to each party, is formally described by a vector S of dimension n such that Si is
a non-negative integer for every i ∈ [n] and ∑i∈[n] Si = h. Clearly, such a vector S always exists,
but usually it is required that the solution S satisfies certain desirable properties that restrict the
set of feasible solutions.

One of the most studied and widely used methods was stated by Thomas Jefferson in 1792:
For each party i ∈ [n] let Si = R(Qi/λ) with λ ∈ R+ s.t. ∑i∈[n]R(Qi/λ) = h, where R
is the rounding function defined as follows: for every x ∈ R we have that R(x) ∈ Z and
x− 1 ≤ R(x) ≤ x. Observe that when x is fractional the rounding function coincides with the
floor of x. This method belongs to a broader family known as divisor methods, and they are used
in various countries at national and regional level [5, 21]. Their main feature is the fact that they
capture the notion of proportionality in the case where allocations have to be integral. Formally,
we say that a function γ : N → R+ is a signpost sequence if it satisfies the following properties:

(a) γ(0) = 0.

(b) For every n ≥ 1 we have that γ(n) ∈ [n− 1, n].

(c) If there exists k ≥ 2 such that γ(k) = k− 1, then γ(ℓ) < ℓ for every ℓ ≥ 1. If there exists
k ≥ 1 such that γ(k) = k, then γ(ℓ) > ℓ− 1 for every ℓ ≥ 2.

In particular, every signpost sequence γ is strictly increasing over the strictly positive integers.
Every signpost sequence γ has a corresponding rounding function Rγ : R+ → N defined as
follows: Rγ(0) = {0}, Rγ(t) = {n} when t ∈ (δ(n), δ(n + 1)) and Rγ(t) = {n − 1, n} when
t = γ(n) > 0. For every signpost sequence γ we can construct an apportionment method for
the instances (Q, h) as follows: For each party i ∈ [n] let Si = Rγ(Qi/λ) with λ ∈ R+ such
that ∑i∈[n]Rγ(Qi/λ) = h. We remark that this solution is not necessarily unique, and we denote
by Aγ(Q, h) the set of solutions. The multiplicity of solutions occurs in very specific cases and
for most of the instances observed in practice we have that Aγ(Q, h) is uniquely defined. The
Jefferson method is the divisor method associated to the signpost sequence γ(n) = n for every
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positive integer n. For a detailed treatment of apportionment theory and divisor methods we
refer to the book of Balinski and Young [5]. The following lemma summarizes a few properties
of the divisor methods that we use in our analysis, and its proof can be found in the Appendix.

Lemma 1. Let (Q, h) be an instance of the apportionment problem and let γ be a signpost sequence. Then,
the following holds.

(a) Suppose that (Q, h) is such that ∑i∈[n]Qi/λ = h for some λ > 0 and such that Qi/λ ∈ Z for
every i ∈ [n]. Then, Aγ(Q, h) = {Q/λ}.

(b) For every positive real α > 0, we have that Aγ(Q, h) = Aγ(αQ, h).

(c) Suppose that (Q, h) and (Q′, h) are such that Qp > Q′p for some party p ∈ [n] and Qi = Q′i for
every i 6= p. Then, for every J ∈ Aγ(Q, h) and J ′ ∈ Aγ(Q′, h) we have that Jp ≥ J ′p.

(d) Suppose that (Q, h) and (Q′, h) are such that Qp > Q′p for some party p ∈ [n] and Qi = Q′i for
every i 6= p. Then, for every J ∈ Aγ(Q, h) there exists J ′ ∈ Aγ(Q′, h) such that the following
holds: Jp ≥ J ′p and for every i 6= p we have that Ji ≤ J ′i .

2.2 The Apportionment Problem with Type Parity

An instance with types is represented as a tuple I = (C, partyI , votesI , typeI , h). We denote by
Ci the set of candidates from party i, by C t the set of candidates with type t and C t

i = Ci ∩ C t

are the candidates in the intersection of both. Observe that to every instance with types I
we can associate an instance Q(I) = (Q, h) of the classic apportionment problem by defining
Qi = ∑c∈Ci

votesI(c) for each party i ∈ [n] and by using the same house size h of I . Furthermore,
for every instance I we are given a total order (C,≻I ) over the set of candidates C such that the
following holds: For every c, c ∈ C we have that c ≻I c whenever votesI (c) > votesI (c). For
any subset D ⊆ C, the top candidate of D is the largest candidate in D according to ≻I and for
a natural value k, the top/worst k candidates of D correspond to the subset of k largest/smallest
candidates of D. The scaling of this instance by a positive real α corresponds to the instance
αI = (C, partyI , α · votesI , typeI , h). We assume that the ranking of the candidates according to
≻αI is the same obtained from ≻I .

In the apportionment problem with type parity, given an instance with types and a signpost
sequence γ, we look for an allocation E : C → {0, 1} satisfying the following conditions:

(A) Type Parity.
∣

∣

∣ ∑c∈Cf E(c)−∑c∈Cm E(c)
∣

∣

∣
= (h mod 2).

(B) Party Proportionality. For every i ∈ [n] we have ∑c∈Ci
E(c) = Ji, where J ∈ Aγ(Q(I)).

We say that E is a feasible solution for (I , γ) if there exists J ∈ Aγ(Q(I)) such that E satisfies
conditions (A) and (B). We denote by X (I , γ) the set of feasible solutions for (I , γ). We say that
an instance I is feasible for γ if X (I , γ) 6= ∅. Unfortunately, there are instances and signpost
sequences for which is not possible to simultaneously achieve both (A) and (B). Consider the
following instance: We have two parties {1, 2} and h = 16 available seats. Party 1 has fourteen
candidates in total, eight of type f and six of type m. Party 2 has two candidates in total, one of
type f and one of type m. Since h is even, any feasible assignment must allocate eight seats to
type m, but in total we have only seven candidates of that type. In the following proposition we
show that determining the feasibility of an instance can be done by using linear programming.
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Proposition 1. Let I be an instance and let J ∈ Aγ(Q(I)) for some signpost sequence γ. Let
Z(I ,J , γ) be the polytope of feasible solutions defined by the following linear program:

∑
i∈[n]

yit ≥ ⌊h/2⌋ for each t ∈ {f,m}, (1)

yif + yim = Ji for every i ∈ [n], (2)

0 ≤ yit ≤ |C t
i | for every i ∈ [n] and each t ∈ {f,m}. (3)

Then, there exists a solution satisfying (A)-(B) if and only if Z(I ,J , γ) 6= ∅.

Proof. By total unimodularity it holds that Z(I ,J , γ) = conv({y ∈ Z(I ,J , γ) : y is integral})
and therefore Z(I ,J , γ) 6= ∅ if and only if there exists an integral solution y ∈ Z(I ,J , γ). On
the other hand, for every integral y consider the solution Ey : C → {0, 1} defined as follows: For
every i ∈ [n] and each t ∈ {f,m}, let Ey(c) = 1 when c belongs to the top min{yit, |C t

i |} candidates
of |C t

i |, and zero otherwise. It holds that Ey satisfies (A) and (B) for some J ∈ Aγ(Q(I)) if and
only if y ∈ Z(I ,J , γ).

Of particular interest is the subset of instances that satisfy the next condition:

(Supply Condition) I satisfies the supply condition if |C t
i | ≥ ⌈h/2⌉ for each i ∈ [n] and t ∈ {f,m}.

In the following lemma we show that instances satisfying the supply condition are feasible for
every divisor method γ used in condition (B).

Lemma 2. Let I be an instance satisfying the supply condition. Then, we have Z(I ,J , γ) 6= ∅ for every
J ∈ Aγ(Q(I)). In particular, for every signpost sequence γ we have X (I , γ) 6= ∅.

Proof. Let γ be a signpost sequence and take an instance I satisfying the supply condition. We
show that Z(I ,J , γ) 6= ∅ for every J ∈ Aγ(Q(I)) when I satisfies the supply condition. To
show that this polytope is not empty, it is sufficient to prove that the dual of the linear program
(1)-(3) is not unbounded. The dual is given by the following linear program:

maximize ⌊h/2⌋(βf + βm) + ∑
i∈[n]
Jiξi − ∑

i∈[n]
uif |Cfi | − ∑

i∈[n]
uim|Cmi | (4)

subject to βf + ξi ≤ uif for every i ∈ [n], (5)

βm + ξi ≤ uim for every i ∈ [n], (6)

β, u ≥ 0. (7)

We show that for any feasible solution (ξ, β, u) the objective value is upper bounded by zero,
which suffices to imply that Z(I ,J , γ) 6= ∅. Observe that constraints (5)-(6) implies that for
every feasible solution (ξ, β, u) and every i ∈ [n] it holds that ξi ≤ 1

2(uif − βf + uim − βm). Then,
we have that the objective value of a feasible solution (ξ, β, u) can be upper bounded by

⌊h/2⌋(βf + βm) +
1

2 ∑
i∈[n]
Ji

(

uif − βf + uim − βm

)

− ∑
i∈[n]

uif |Cfi | − ∑
i∈[n]

uim|Cmi |

≤
(

⌊h/2⌋ − h/2
)

(βf + βm) +
1

2 ∑
i∈[n]

(

Ji − 2⌈h/2⌉
)(

uif + uim

)

≤ 0,

since I satisfies the supply condition, ∑i∈[n] Ji = h and the last inequality holds from β, u ≥ 0
and Ji ≤ h ≤ 2⌈h/2⌉ for every i ∈ [n]. Proposition 1 implies that for every signpost sequence γ

we have that X (I , γ) 6= ∅.
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Definition 1. Let W be a subset of instances and let ∆ be the set of signpost sequences. A set valued
function M from W × ∆ is a valid apportionment mechanism over W if for every signpost sequence γ

the following holds: M(I , γ) ⊆ X (I , γ) for every I ∈ W , andM(I , γ) 6= ∅ when X (I , γ) 6= ∅.

Given an instance I , consider an instance G = (C, partyG , votesG , typeG , h) such that the fol-
lowing holds: typeI = typeG , partyI = partyG , there exists a candidate c ∈ C with votesG(c) >

votesI (c) and votesI(s) = votesG(s) for every s ∈ C with s 6= c. We say that G is a voting increment
of I in c ∈ C.

Definition 2. LetW be the subset of instances satisfying the supply condition. We say that a set valued
functionM fromW ×∆ is γ-satisfactory overW ifM is a valid apportionment mechanism overW and
furthermore it satisfies the following properties:

(I) Exactness. Let I ∈ W be an instance such that votesI ∈ X (I , γ). ThenM(I , γ) = {votesI}.

(II) Scaling. For every instance I ∈ W , every signpost sequence γ, and every positive real α, we have
M(I , γ) =M(αI , γ).

(III) Monotonicity. Let I ∈ W be an instance with set of candidates C and let G and c ∈ C such that
G is a voting increment of I in c ∈ C. Then, for every EI ∈ M(I , γ) there exists EG ∈ M(G, γ)
such that EG(c) ≥ EI (c).

The first property states that when the votes of the instance is a already a feasible solution,
the mechanism must return this as the solution. The second property states that the solution
returned by the mechanism is invariant under votes scaling, and the third property states that a
candidate does not lose a seat as a consequence of garnering at least one additional vote, while
the rest of the candidates remains the same. The following proposition states that feasibility is
preserved under scaling and voting increments for the instances satisfying the supply condition.

Proposition 2. Suppose that I is feasible for a signpost sequence γ. Then, for every positive real α, we
have that αI is feasible for a signpost sequence γ. Furthermore, when I satisfies the supply condition, we
have that every voting increment G of I is feasible for every signpost sequence γ.

Proof. Observe that thanks to Lemma 1 we have that Aγ(Q(I)) = Aγ(Q(αI)), and therefore for
every X (I , γ) ⊆ X (αI , γ). Therefore, when I is feasible for γ, we have that αI is feasible for γ

as well. When I satisfies the supply condition, we have that any voting increment G satisfies the
supply condition as well, and therefore by Lemma 2 we have that X (G, γ) 6= ∅ for every γ.

3 The Greedy & Parity Correction Mechanism

In this section we describe and analyze the greedy & parity correction mechanism. Before pre-
senting the mechanism we need the following definition.

Definition 3. Given an instance I and J ∈ Aγ(Q(I)) we define the type oblivious solution TJ as
follows: For every party i ∈ [n] let TJ (c) = 1 for the top Ji candidates of Ci and let TJ (s) = 0 otherwise.

That is, the type oblivious solution allocates as many of the top candidates of each party as
required according to J , regardless of the candidate types. Thus it satisfies the party proportion-
ality property (B), but in general it does not satisfythe type parity property (A). The mechanism
performs two phases: In the first phase, it computes a type oblivious solution. When type parity
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is not satisfied by the type oblivious solution, there is a second phase in which candidates from
the over-represented type, from worst to top on the ranking, are replaced by a top available can-
didate from the same party and from the under-represented type. The full description of this
procedure can be found in Algorithm 1.

Algorithm 1 Greedy & Parity Correction

Input: An instance I satisfying the supply condition and J ∈ Aγ(Q(I)).
Output: A solution EJ satisfying condition (A) and (B).

⊲ Phase 1: Greedy.

1: Compute the type oblivious solution TJ .
2: if |∑c∈Cm TJ (c)−∑c∈Cf TJ (c)| = (h mod 2) then we stop and return TJ .

3: Otherwise, let t⋆ be the over represented type in TJ and let t⋆ be the under represented type;
continue to Phase 2 and initialize E ← TJ .

⊲ Phase 2: Parity Correction.

4: while |∑c∈Cm E(c)−∑c∈Cf E(c)| 6= (h mod 2) do
5: Let s ∈ C t⋆ be the worst ranked in {c ∈ C t⋆ : E(c) = 1}, and let i ∈ [n] be such that c ∈ Ci.
6: Let s ∈ C t⋆

i be the best ranked in {c ∈ C t⋆
i : E(c) = 0} when this subset is not empty.

7: We update the allocation: E(s) ← 0 and E(s)← 1. That is, s replaces s in the allocation.

8: Return EJ = E .

The greedy & parity correction mechanism, denoted by MG, is defined as follows: For every
pair (I , γ) we have that MG(I , γ) = {EJ : J ∈ Aγ(Q(I))} where EJ is the solution returned
by Algorithm 1. We remark that when the set Aγ(Q(I)) is just a singleton, the apportionment
mechanism will be defined uniquely for the instance. We have observed that the supply condi-
tion guarantees the feasibility of an instance (Lemma 2) and now we show it is also necessary for
Algorithm 1 to terminate with a solution. For that, consider the following instance I with two
parties {1, 2} and h = 8 available seats, where each party has three candidates of each type. The
information per party is summarized below.

Party 1 c1 c2 c3 c4 c5 c6

votesI 4 3 1 165 164 163
typeI m m m f f f

Party 2 c7 c8 c9 c10 c11 c12

votesI 93 92 91 9 8 7
typeI m m m f f f

Since h is even, four candidates of each type have to be elected. Observe that the total
number of votes obtained by party 1 is 500 and the total number of votes obtained by party
2 is 300. Since h = 8, by Lemma 1 (a) we have that for every signpost sequence it holds that
Aγ(Q(I)) = {(5, 3)}. Phase 1 of the Algorithm 1 yields the five seats for party 1 and three seats
for party 2. Therefore, at the end of Phase 1, we have that E(cj) = 1 for every j ∈ [6] \ {3} (party
1) and E(cj) = 1 for j ∈ {7, 8, 9} (party 2). In total we have five candidates of type m and three of
type f.

In the first iteration of Phase 2 we select the worst candidate that is currently elected and of
type m, which is c2, but when the algorithm tries to replace it we have that the pool of candidates
{s ∈ Cf1 : E(s) = 0} is empty. Therefore, the algorithm is not able to terminate with a solution
meeting the requirements. In contrast, this instance is feasible for every signpost sequence γ: It
is sufficient to update the solution E by doing E(c9) = 0 and E(c10) = 1. The following is our
first result regarding this mechanism.
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Theorem 1. For every signpost sequence γ we have thatMG is γ-satisfactory over the instances satisfying
the supply condition.

Before proving the theorem, in the following lemma we prove that the greedy & parity cor-
rection mechanism is a valid apportionment mechanism.

Lemma 3. Let I be an instance satisfying the supply condition and consider J ∈ Aγ(Q(I)) for some
signpost sequence γ. Then, the solution EJ computed by Algorithm 1 satisfies conditions (A) and (B). In
particular, the greedy & parity correction mechanism MG is a valid apportionment mechanism over the
instances satisfying the supply condition.

Proof. Let I be an instance that satisfies the supply condition and let γ be a signpost sequence.
By Lemma 2 we have that X (I , γ) 6= ∅ and therefore it is sufficient to show that MG(I , γ) ⊆
X (I , γ). Upon completion of Phase 1, the party proportionality condition (B) is satisfied, and
this condition is preserved is preserved throughout Phase 2. During Phase 2 it holds that the
unbalance |∑c∈Cf E(c)−∑c∈Cm E(c)| decreases by two with every swap, and thanks to the supply
condition, there are always enough candidates of each party to do the reassignments of Phase 2
without getting stuck, so the algorithm terminates when the unbalance is equal to zero or one,
and at that point the type parity condition (A) is satisfied.

Proof of Theorem 1. By Lemma 3 we have that the greedy & parity correction mechanism is a valid
apportionment mechanism over the instances satisfying the supply condition. Therefore, it re-
mains to check that mechanism satisfies the properties (I)-(II)-(III). Recall that for every instance
I we denote by P(I) the matrix with entries in [n]× {f,m} such that Pit(I) = ∑c∈C t

i
votesI (c).

Exactness. Now suppose that we are given an instance where the function votesI is such that
votesI (c) ∈ {0, 1} for every candidate c ∈ C and the function votesI satisfies (A) and (B). That is,
there are exactly h votes and exactly h candidates obtain exactly one vote each. Since votesI sat-
isfies (A), we have that ∑c∈C votesI (c) = h = ∑i∈[n](Pif(I) +Pim(I)) and therefore, we have that
Qi(I) = Pif(I) + Pim(I) for each party i ∈ [n] and ∑i∈[n]Qi(I) = h, which by Lemma 1 (a)
with λ = 1 implies that for every signpost sequence γ we have Aγ(Q(I)) = {J } where
Ji = Pif(I) + Pim(I) for each party i ∈ [n]. Therefore, at the end of Phase 1 the candidates
selected by the type oblivious solution are exactly those who obtained a vote. Since votesI satis-
fies condition (B), parity is already satisfied and therefore 1 does not enter Phase 2. Therefore, in
this case we haveMG(I , γ) = {votesI} for every signpost sequence γ and property (I) is satisfied.

Scaling. Let α be a non-negative real and consider the instance αI = (C, partyI , α · votesI , typeI , h).
By Lemma 1 (b) we have that Aγ(Q(αI)) = Aγ(Q(I)) for every signpost sequence γ. Therefore,
for every J ∈ Aγ(Q(I)) we have that the type oblivious solution for I is the same obtained
for αI . During Phase 2, since the ranking according to ≻αI is the same obatined from ≻I , the
trajectory followed by Algorithm 1 for αI and J is the same as in I and J , resulting in the same
final solution at the end of the execution.

Monotonicity. Let I and G be two instances as described in the statement of property (III). We
remark that G satisfies the supply condition since I does. Suppose that G is a voting increment of
I in candidate c and let p and g be the party and type of c respectively. In particular, we have that
Ppg(G) > Ppg(I) and Pit(I) = Pit(G) for every pair (i, t) 6= (p, g). Therefore, by Lemma 1 (c)
it holds that Jp(G) ≥ Jp(I) for every J (I) ∈ Aγ(Q(I)) and J (G) ∈ Aγ(Q(G)). Therefore,
the total number of candidates from party p assigned to a seat at the end of Phase 1 for I and
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J (I) ∈ Aγ(Q(I)) is larger than the number obtained for G and every J (I) ∈ Aγ(Q(G)). In
Phase 2 the swaps occur between candidates of the same party, and therefore the total number of
candidates assigned to a given party remains invariant. Since the ranking of the candidate c in
the total order (C,≻I ) is at least as good as the ranking in the total order (C,≻G), we have that if
EG(c) = 1 at the end of Phase 2, then EI(c) = 1 as well. Therefore property (III) is satisfied.

3.1 Optimality Characterization of the Greedy & Parity Correction Mechanism

Given I with candidates C, let c1, c2, c2, . . . , c|C| be the candidates in C sorted in non-increasing
order according to the total order ≻I and we denote by RankI(c) the ranking of the candidate
c in this order. In what follows, given E : C → {0, 1}, we denote by V(E) the vector such that
Vj(E) = E(cj) for every j ∈ {1, 2, . . . , |C|}. Given two vectors x, y ∈ {0, 1}|C| , the length of the
common prefix between x and y is equal to ℓ if xj = yj for every j ∈ {1, 2, . . . , ℓ} and xℓ+1 6= yℓ+1,
and we denote this length by Prefix(x, y). For every pair (I , γ) and J ∈ Aγ(Q(I)), let HJ (I)
be the set of feasible solutions that maximize the length of the common prefix with TJ , that is,

HJ (I) = argmax
{

Prefix(V(E),V(TJ )) : E satisfies (A) and (B)
}

.

Theorem 2. For every instance I that satisfies the supply condition and J ∈ Aγ(Q(I)), the Algorithm
1 computes a solution EJ ∈ HJ (I) that maximizes the total number of votes, that is,

∑
c∈C
EJ (c) · votesI (c) ≥ ∑

c∈C
E(c) · votesI (c) for every E ∈ HJ (I).

That is, among the set of solutions having the longest common prefix with the type oblivious
solution, Algorithm 1 selects one that maximizes the total number of votes obtained by the
selected candidates. We state two structural lemmas before proving this theorem.

Lemma 4. Let I be an instance that satisfies the supply condition. Consider J ∈ Aγ(Q(I)) for some
signpost sequence γ and let EJ be the solution computed by Algorithm 1. Suppose that the type oblivious
solution TJ does not satisfy the type parity condition (A) and consider ℓ = Prefix(V(EJ ),V(TJ )) < |C|.
Then, we have that EJ (cℓ+1) = 0 and TJ (cℓ+1) = 1.

Proof. By Lemma 3 we have that EJ satisfies the type parity and the party proportionality con-
ditions (A)-(B). Consider the candidate cℓ+1 and suppose that TJ (cℓ+1) = 0. Then, we have that
EJ (cℓ+1) = 1 and therefore the candidate cℓ+1 was included in the solution during the second
phase of Algorithm 1, replacing other other candidate s in the same party of cℓ+1, from the other
type, and such that TJ (s) = 1 and EJ (s) = 0. Since ℓ = Prefix(V(EJ ),V(TJ )) we have that the
ranking of s in the order ≻I must be larger than ℓ, but this is a contradiction: Since the type
oblivious selected s but it did not select cℓ+1 we have that the ranking of s is less than the ranking
of cℓ+1. Then, we conclude that TJ (cℓ+1) = 1 and EJ (cℓ+1) = 0.

Lemma 5. Let I be an instance that satisfies the supply condition and consider J ∈ Aγ(Q(I)) for some
signpost sequence γ. Suppose that the type oblivious solution TJ does not satisfy the type parity condition
(A) and let t⋆ be the over represented type in this solution. Take ℓ = Prefix(V(EJ ),V(TJ )) < |C|. Then,
for every c ∈ C of type t⋆ such that EJ (c) = 1, we have RankI (c) ≤ ℓ.

Proof. By Lemma 4 we have that EJ (cℓ+1) = 0 and TJ (cℓ+1) = 1. Since cℓ+1 is allocated in the
type oblivious solution but it is not allocated in the solution EJ , it means that the candidate cℓ+1

belongs to the over represented type t⋆ in the type oblivious solution. Since the length of the
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common prefix between V(EJ ) and V(TJ ) is equal to ℓ, we have that cℓ+1 was the last candidate
of type t⋆ that was swapped in the second phase of Algorithm 1 in order to satisfy the type parity
condition (A). In particular, we have that EJ (c) = 0 for every candidate c ∈ C of type t⋆ with
RankI(c) > ℓ.

Proof of Theorem 2. Let EJ be the solution computed by Algorithm 1 in instance I and J ∈
Aγ(Q(I)). Consider ℓ = Prefix(V(EJ ),V(TJ )) and suppose there is other solution Ẽ satisfying
(A)-(B) and such that Prefix(V(Ẽ ),V(TJ )) ≥ ℓ+ 1. In particular, it means that there is an over
represented type in the type oblivious solution TJ and we denote it by t⋆. By Lemma 5 we have
that RankI(c) ≤ ℓ for every c ∈ C of type t⋆ such that EJ (c) = 1 and we denote this set of
candidates by A. Since the length of the common prefix between V(Ẽ ) and V(TJ )) is at least
ℓ+ 1, we have Prefix(V(Ẽ),V(EJ )) = ℓ and therefore A ⊆ {c ∈ C t⋆ : Ẽ (c) = 1}. This implies that

∑c∈C t⋆ Ẽ (c) ≥ |A|+ Ẽ(cℓ+1) = |A|+ 1, but this contradicts the fact that Ẽ is a feasible solution
that satisfies the type parity condition (A). We conclude that EJ ∈ HJ (I). Now suppose that
there exists other solution β ∈ HJ (I) such that

∑
c∈C
EJ (c) · votesI (c) < ∑

c∈C
β(c) · votesI (c). (8)

Let B be the subset of candidates such that RankI(c) ≤ ℓ. In particular, we have that EJ (c) = β(c)
for every c ∈ B and therefore we have that ∑c∈C\B EJ (c) · votesI(c) < ∑c∈C\B β(c) · votesI(c). By

Lemma 5 we have that {c ∈ C t⋆ : EJ (c) = 1} ⊆ B and since EJ (c) = β(c) for every c ∈ B we
conclude that {c ∈ C t⋆ : β(c) = 1} ⊆ B. This inclusion, together with the strict inequality (8),
implies the existence of two candidates s, s̃ ∈ Ci for some i ∈ [n] and from the under represented
type t⋆ such that EJ (s) = β(s̃) = 0, E(s̃) = β(s) = 1 and votesI(s̃) < votesI(s). But this
contradicts the swapping rule in Phase 2 of Algorithm 1: the candidate s should be included
before including s̃, that is, if EJ (s̃) = 1 then we necessarily have EJ (s) = 1. This concludes the
proof.

4 The Biproportional Parity Mechanism

In the following we describe a biproportional mechanism based on the biproportional method
introduced by Balinski and Demange [2, 3]. We say that (P ,S ,J , φ) is a two-dimensional instance
with supply if both P and S are integral matrices with entries in [n]×{f,m}, J is an n dimensional
non-negative integral vector and φ is a non-negative integral vector with entries in {f,m} such
that ∑i∈[n] Ji = φf + φm. The vectors J and φ are called row and column marginals, respectively.

Definition 4. Let (P ,S ,J , φ) be a two-dimensional instance with supply and let δ be a signpost sequence.
Given a matrix x with integer entries in [n]× {f,m}, a vector λ ∈ R

n
+ and µ = (µf , µm) ∈ R

2
+, we say

that the triplet (x, λ, µ) is a biproportional solution for (P ,S ,J , φ) with signpost sequence δ if for each
i ∈ [n] and each t ∈ {f,m} the following holds:

xit ∈ Rδ(Pitλiµt) when xit < Sit, (9)

xif + xim = Ji, (10)

∑
i∈[n]

xit = φt. (11)

0 ≤ xit ≤ Sit. (12)

11



We denote by Bδ(P ,S ,J , φ) the set of integral matrices x such that there exist λ and µ for
which (x, λ, µ) is a δ-biproportional solution for (P ,S ,J , φ). In particular, we refer to (9) as the
biproportionality condition.

4.1 A Network Flow Approach

Given a signpost sequence δ such that δ(1) > 0, we follow the approach based on network
flows to compute a biproportional solution x ∈ Bδ(P ,S ,J , φ), based on the idea by Rote and
Zachariasen [23] and more recently by Gaffke and Pukelsheim [14]. In our case we consider a
capacitated version of the biproportional method, as a result of the upper bound on the value of
each entry of x given by the supply matrix.

Consider a graph with n + 4 vertices given by a source v, one vertex ui for each i ∈ [n], one
vertex vt for each type t ∈ {f,m} and one sink v. There is an edge from the source v to every
ui with i ∈ [n] and with a capacity lower bound equal to Ji. For every i ∈ [n] and each type
t ∈ {f,m} the graph has Sit parallel edges eit1, eit2, . . . , eit|Sit| between ui and vt. Those edges have
a capacity upper bound equal to one and the the edge eitℓ has a cost of log(δ(ℓ)/Pit) for each
ℓ ∈ [Sit]. Finally, there is an edge from both vf and vm to v with a capacity lower bound of φf

and φm respectively. The associated minimum cost flow problem is the following:

minimize
n

∑
i=1

|Sif |
∑
ℓ=1

wifℓ log (δ(ℓ)/Pif ) +
n

∑
i=1

|Sim|
∑
ℓ=1

wimℓ log (δ(ℓ)/Pim) , (13)

subject to
|Sif |
∑
ℓ=1

witℓ = zit for every i ∈ [n] and each t ∈ {f,m}, (14)

zif + zim = Ji for every i ∈ [n], (15)

∑
i∈[n]

zit = φt for each t ∈ {f,m}, (16)

0 ≤ witℓ ≤ 1 for every i ∈ [n], t ∈ {f,m} and ℓ ∈ [Sit]. (17)

The variable zit represents the total number of seats that are allocated in the solution for party
i ∈ [n] and type t ∈ {f,m}. One could equivalently write the program above as a convex
piecewise linear flow problem by not including the set of variables witℓ. Constraint (15) indicates
that the allocation should respect the row marginals and constraint (16) enforces the solution to
satisfy the type marginals. In the following let (x, w) be an optimal solution of (13)-(17) and let
Λ ∈ R

I and U ∈ R
J be the dual solutions associated to the constraints (15) and (16) respectively.

We refer to the tuple (x, w, Λ,U , β) as the optimal primal dual pair, which satisfies the following
conditions,

Λi + Ut + βitℓ ≤ log(δ(ℓ)/Pit), (18)

witℓ (Λi + Ut + βitℓ − log(δ(ℓ)/Pit)) = 0, (19)

βitℓ(witℓ − 1) = 0, (20)

βitℓ ≤ 0, (21)

for every party i ∈ [n], each type t ∈ {m, f} and every ℓ ∈ [Sit], where βitℓ is the dual variable
associated to the upper bound in constraint (17) on the value of witℓ. The following result sum-
marizes the main properties of this network flow problem. We recall that by the network flow
theory we know that every optimal extreme point x of the problem (13)-(16) is such that xit ∈ Z

for each party i ∈ [n] and type t ∈ {f,m}.

12



Lemma 6. Let (P ,S ,J , φ) be a two-dimensional instance with supply and let x be a matrix with integer
entries and dimensions [n]× {f,m}. Consider λ ∈ R

n
+ and µ = (µf , µm) ∈ R

2
+. Take Λi = log(λi) for

every party i ∈ [n] and consider Uf = log(µf) and Um = log(µm). Then, (x, λ, µ) is a biproportional
solution for the two-dimensional instance (P ,S ,J , φ) if and only if there exists an integer vector w and
a non-positive vector β such that (x, w, Λ,U , β) is an optimal primal dual pair of (13)-(16).

Proof. Suppose that (x, w, Λ,U , β) is an optimal primal dual pair of (13)-(16) where x is an ex-
treme point. We start by observing that for each i ∈ [n] and each type t ∈ {f,m}, we have
that witℓ = 1 for ℓ ∈ {1, . . . , xit} and witk = 0 for k ∈ {xit + 1, . . . ,Sit}. This comes directly
by the fact that for each i ∈ [n] and each type t ∈ {f,m} the function log(δ(ℓ)/Pit) is strictly
increasing as a function of ℓ and since xit ∈ Z. Consider i ∈ [n] and t ∈ {f,m} such that
xit < Sit. By condition (19) when ℓ = xit we have that Λi + Ut + βitℓ − log(δ(xit)/Pit) = 0, that is
δ(xit) = Pite

Λi eUt eβitℓ = Pitλiµte
βitℓ ≤ Pitλiµt, where the last inequality comes from the fact that

βitℓ ≤ 0 by condition (21). On the other hand, when ℓ = xit + 1 we have that xitℓ = 0 and therefore
the complementary slackness condition (20) implies that βitℓ = 0. Then, condition (18) implies
that Λi + Ut ≤ log(δ(xit + 1)/Pit), that is δ(xit + 1) ≥ Pitλiµt, and therefore xit ∈ Rδ(Pitλiµt).
We conclude that (x, λ, µ) is a biproportional solution with signpost sequence δ.

Conversely, suppose that the triplet (x, λ, µ) is a biproportional solution with divisor δ for the
two-dimensional instance (P ,S ,J , φ). For each party i ∈ [n] and each type t ∈ {f,m}, consider
witℓ = 1 for ℓ ≤ xit and witℓ = 0 is zero otherwise. We remark this is possible since xit ≤ Sit.
Furthermore, for each party i ∈ [n] and each type t ∈ {f,m}, let βitℓ = log(δ(ℓ)/Pit)− Λi − Ut

for ℓ ≤ xit and βitℓ = 0 otherwise. By construction, the tuple (x, w, Λ,U , β) defined in this
way satisfies the complementary slackness constraints (19)-(20). Since (x, λ, µ) is a biproportional
solution, we have that δ(xit) ≤ Pitλiµt = Pite

Λi eUt , which implies that log(δ(xit)/Pit)−Λi−Ut ≤
0. Therefore, by the monotonicity of the signpost sequence δ we have that

βitℓ = log(δ(ℓ)/Pit)−Λi − Ut ≤ log(δ(xit)/Pit)−Λi − Ut ≤ 0

for each ℓ ≤ xit, and in consequence constraint (21) is satisfied since βitℓ = 0 for ℓ > xit. By
construction of β we have that constraint (18) is satisfied with equality when ℓ ≤ xit. By the
biproportionality of (x, λ, µ) we also have that δ(xit + 1) ≥ Pitλiµt = Pite

Λi eUt , and therefore
log(δ(xit + 1)/Pit) ≥ Λi + Ut. Thus, by the monotonicity of the signpost sequence δ we have that

log(δ(ℓ)/Pit) ≥ log(δ(xit + 1)/Pit) ≥ Λi + Ut = Λi + Ut + βitℓ

for each ℓ > xit, since βitℓ = 0 is zero in this case. By strong duality, we conclude that
(x, w, Λ,U , β) is an optimal primal dual pair.

4.2 Description of the Biproportional Parity Mechanism

Given an instance I , we define P(I) and S(I) with entries in [n] × {f,m} such that Pit(I) =

∑c∈C t
i
votesI (c) and Sit(I) = |Cit|. We say that t ∈ {f,m} is vote leading when the total number of

votes garnered by candidates of type t is strictly larger than the number of votes garnered by the
other type. In case of equality, the vote leading type is decided according to some tie breaking
rule. We assume that this tie breaking rule is invariant under scaling: If t is vote leading in an
instance I , then t is vote leading in αI for every positive real α. The parity marginal for I , denoted
by φ(I), is a vector with entries in {f,m} such that φf(I) + φm(I) = h and the following holds:
When h is even we have φf(I) = φm(I) = h/2, and when h is odd we have φt(I) = ⌈h/2⌉ for
the vote leading type t ∈ {f,m}.
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We now describe the mechanism based on biproportionality. We remark that in our approach
the marginals of the biproportional problem are computed from the input. In particular, the party
marginals depend strongly on the votes, since they are computed by using an apportionment
method at the level of the parties.

Algorithm 2 Biproportional Parity

Input: An instance I satisfying the supply condition and J ∈ Aγ(Q(I)).
Output: A set of allocations satisfying condition (A) and (B).

1: For every i ∈ [n] and each t ∈ {f,m} define Pit(I) = ∑c∈C t
i
votesI(c) and Sit(I) = |Cit|.

2: For every x ∈ Bδ(P(I),S(I),J , φ(I)) do the following: For every i ∈ [n] and each t ∈ {f,m},
define Ex(c) = 1 for every c ∈ C t

i that belongs to the top xit candidates from C t
i , and zero

otherwise.
3: Return ΘJ = {Ex : x ∈ Bδ(P(I),S(I),J , φ(I))}.

The δ-biproportional parity mechanism, denoted byMB
δ , is defined as follows: For every pair (I , γ)

we have MB
δ (I , γ) is equal to the union of the sets ΘJ where J ∈ Aγ(Q(I)) and ΘJ is the

set computed by Algorithm 2. This algorithm computes a biproportional solution for an instance
(P(I),S(I),J , φ(I)) where J ∈ Aγ(Q(I)) and φ(I) is the parity marginal for I . The following
is the first main result for this mechanism.

Theorem 3. For every signpost sequence δ with δ(1) > 0 and every signpost sequence γ we have that
MB

δ is γ-satisfactory over the instances satisfying the supply condition.

Before proving the theorem, we show that when the instance I satisfies the supply condition,
there exists a biproportional solution for the corresponding instance.

Proposition 3. Let I be an instance satisfying the supply condition, let γ be a signpost sequence and
consider J ∈ Aγ(Q(I)). Then, for every δ with δ(1) > 0 we have that Bδ(P(I),S(I),J , φ(I)) 6= ∅.
In particular, we have thatMB

δ (I , γ) 6= ∅.

Proof. Thanks to Lemma 6 it is sufficient to show that there exists a pair (z, w) satisfying the
constraints (14)-(17) for the two-dimensional instance (P(I),S(I),J , φ(I)). By Lemma 2 and
Proposition 1 we have that there exists an integral vector y ∈ Z(I ,J , γ). It satisfies the following:

∑
i∈[n]

yit ≥ ⌊h/2⌋ for each t ∈ {f,m},

yif + yim = Ji for every i ∈ [n],

0 ≤ yit ≤ Sit(I) for every i ∈ [n] and each t ∈ {f,m}.

Given an integral y satisfying the above set of inequalities we define the pair (z(y), w(y)) as
follows: For every i ∈ [n] and each t ∈ {f,m} we have witℓ(y) = 1 for each ℓ ∈ [yit] and zero

otherwise; zit(y) = ∑
Sit

ℓ=1 witℓ(y). Suppose that h is even. Since ∑i∈[n] Ji = h, in this case we have
that ∑i∈[n] yit = h/2 = φt(I) for each t ∈ {f,m} and by construction the pair (z(y), w(y)) satisfies
(14)-(17) for the two-dimensional instance (P(I),S(I),J , φ(I)). Now suppose that h is odd and
let s̄ be the vote leading type and s the other type. If ∑i∈[n] yis̄ = ⌈h/2⌉ then the pair (z(y), w(y))
satisfies (14)-(17). Otherwise, consider any i ∈ [n] such that yis > 0, and define the solution ȳ
as follows: ȳis̄ = yis̄ + 1, ȳis = yis − 1 and ȳjt = yjt otherwise. Observe that yis̄ ≤ ⌊h/2⌋ and
therefore ȳis̄ ≤ ⌈h/2⌉ ≤ Sis̄. Then, by construction we have that the pair (z(ȳ), w(ȳ)) satisfies
(14)-(17) for the two-dimensional instance (P(I),S(I),J , φ(I)).
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Lemma 7. Let I be an instance satisfying the supply condition and consider J ∈ Aγ(Q(I)) for some
signpost sequence γ. Then, for every signpost sequence δ, every solution in the output of Algorithm
2 satisfies conditions (A) and (B). In particular, the δ-biproportional parity mechanism MB

δ is a valid
apportionment mechanism over the instances satisfying the supply condition.

Proof. Let I be an instance that satisfies the supply condition and let γ be a signpost sequence.
Consider J ∈ Aγ(Q(I)) Thanks to Proposition 3 we have that MB

δ (I , γ) 6= ∅ and therefore it
is sufficient to show in what follows that MB

δ (I , γ) ⊆ X (I , γ). Let Ex ∈ ΘJ , where ΘJ is the
output of Algorithm 2 and x ∈ (P(I),S(I),J , φ(I)). By construction it holds that ∑c∈Ci

Ex(c) =
xif + xim = Ji for every i ∈ [n] and therefore Ex satisfies condition (B). On the other hand, we
have that ∑c∈C t Ex(c) = ∑i∈[n] xit = φt(I). By definition of the parity marginals it holds that
|φf(I)− φm(I)| = (h mod 2) and therefore Ex satisfies condition(A).

Before proving Theorem 3 we need a few more technical results about the biproportional
solutions and the minimum cost flow problem (13)-(17).

Definition 5. Given two different matrices x and x̃ satisfying (10)-(11), we say that two different parties
p, q ∈ [n] induce a cycle for x and x̃ if the following inequalities are satisfied: x̃pf ≥ xpf + 1, x̃pm ≤
xpm − 1, x̃qm ≥ xqm + 1 and x̃qf ≤ xqf − 1.

Observe that such two parties inducing a cycle are always guaranteed to exists when x 6= x̃
since both have the same row and column marginals. The first statement in the following lemma
corresponds to a structural result for the instances in which there is no unique biproportional
solution, and that is closely related to these cycles.

Lemma 8. Let (P ,S ,J , φ) be a two-dimensional instance with supply. Then, for every signpost sequence
δ the following holds:

(a) Let (x, λ, µ) and (x̃, λ̃, µ̃) be δ-biproportional solutions for (P ,S ,J , φ) with x 6= x̃. Then, there
exists two parties p, q ∈ [n] inducing a cycle for x and x̃ and such that δ(xpf + 1) = Ppfλpµf ,
δ(xpm) = Ppmλpµm, δ(xqm + 1) = Ppmλpµm and δ(xqf ) = Pqfλqµf .

(b) For every positive real value α > 0, we have that (x, λ, µ) is a δ-biproportional solution for
(P ,S ,J , φ) if and only if (x, 1√

α
λ, 1√

α
µ) is a biproportional solution for (αP ,S ,J , φ).

To prove Lemma 8 we use the following result that holds even for more general instances
where the number of columns is larger than two. For simplicity, we state a form of the result that
suffices for our purposes.

Theorem 4 ([21]). Let (G,J , φ) be a two-dimensional instance. Then, for every signpost sequence δ, we
have that x ∈ Bδ(G, φ,J ) if and only if for any pair i, j ∈ [n] we have that

δ(xif)

Gif
· δ(xjm)

Gjm
≤ δ(xim + 1)

Gim
· δ(xjf + 1)

Gjf
and

δ(xim)

Gim
· δ(xjf )

Gjf
≤ δ(xif + 1)

Gif
· δ(xjm + 1)

Gjm
.

Furthermore, x is the unique δ-biproportional solution if every inequality is satisfied strictly.

Proof of Lemma 8. Since x 6= x̃ and ∑i∈[n] xif = ∑i∈[n] x̃if , there exist two parties p, q ∈ [n] such
that x̃pf ≥ xpf + 1 and x̃qf ≤ xqf − 1 < Sq,f . It follows that p and q induce a cycle for x and x̃
since xpf + xpm = x̃pf + x̃pm and xqf + xqm = x̃qf + x̃qm and therefore x̃pm ≤ xpm − 1 < Sp,m and
x̃qm ≥ xqm + 1. By Theorem 4 we have that

δ(x̃pf)

Ppf

· δ(x̃qm)

Pqm

≤ δ(x̃pm + 1)

Ppm

· δ(x̃qf + 1)

Pqf

,
δ(xpm)

Ppm

· δ(xqf)

Pqf

≤ δ(xpf + 1)

Ppf

· δ(xqm + 1)

Pqm

.
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The above inequalities, together with the fact that p and q induces a cycle for x and x̃, and the
monotnicity of the signpost sequence δ, imply that

δ(xpm)

Ppm

· δ(xqf )

Pqf

≤ δ(xpf + 1)

Ppf

· δ(xqm + 1)

Pqm

≤ δ(x̃pf)

Ppf

· δ(x̃qm)

Pqm

≤ δ(x̃pm + 1)

Ppm

· δ(x̃qf + 1)

Pqf

≤ δ(xpm)

Ppm

· δ(xqf )

Pqf

,

and therefore the chain of inequalities is actually a chain of equalities. Then, we recover on
one side that δ(xpm) = Ppmλpµm and δ(xqf) = Pqfλqµf , and from the other side we recover
δ(xpf + 1) = Ppfλpµf and δ(xqm + 1) = Pqmλqµm. We have that (b) follows since the scaling
performed on the multipliers leaves invariant the quantities in (9).

Proof of Theorem 3. By Lemma 7 we have that the δ-biproportional parity mechanism is a valid ap-
portionment mechanism over the instances satisfying the supply condition. Therefore, it remains
to check that mechanism satisfies the properties (I)-(II)-(III). Recall that for every instance I we
denote by P(I) the matrix with entries in [n]× {f,m} such that Pit(I) = ∑c∈C t

i
votesI (c).

Exactness. Now suppose that we are given an instance where the function votesI is such that
votesI (c) ∈ {0, 1} for every candidate c ∈ C and the function votesI satisfies (A) and (B). That
is, there are exactly h votes and exactly h candidates obtain exactly one vote each. Since votesI
satisfies (A), we have that ∑c∈C votesI (c) = h = ∑i∈[n](Pif(I) + Pim(I)) and therefore, we have
that Qi(I) = Pif(I) + Pim(I) for each party i ∈ [n] and ∑i∈[n]Qi(I) = h, which by Lemma 1 (a)
with λ = 1 implies that for every signpost sequence γ we have that Aγ(Q(I)) = {J } where
Ji = Pif(I) + Pim(I) for each party i ∈ [n]. Therefore, for every signpost sequence γ we have a
unique instance (P(I),S(I),J , φ(I)) in this case.

For each party i ∈ [n] consider the all ones vector In
i = 1 and for the type consider If = Im = 1.

We claim that the triplet (P(I), In, I) is the unique δ-biproportional solution (P(I),S(I),J , φ(I)).
We start by showing that it is a biproportional solution. The conditions (9) and (12) are clearly sat-
isfied since Pit(I) ∈ Rδ(Pit(I)) for each i ∈ [n] and each t ∈ {f,m}, and since ∑c∈C t

i
votesI (c) =

Pit(I) ≤ Sit(I). We now check that x = P(I) satisfies (10)-(11). Since the function votesI
is binary and it satisfies (A), we have that ∑i∈[n] Pit(I) = ∑c∈C t votesI (c) = φt(I) for each
type t ∈ {f,m}, and therefore (P(I), In, I) satisfies (11). Since votesI satisfies (B), we have that

∑c∈Ci
votesI(c) = Ji = Pif + Pim for every i ∈ [n]. Then, (P(I), In, I) satisfies constraint (10).

Suppose there exists a different solution (x̃, λ̃, µ̃) for the instance. By Lemma 8 (a), we
have that there exist two parties p, q ∈ [n] inducing a cycle for P(I) and x̃ and therefore
δ(Ppf(I) + 1) = Ppf(I) and δ(Ppm(I)) = Ppm(I), but this goes in contradiction to the dis-
junction property (c) satisfied by the signpost sequence δ. Therefore, (P(I), In, I) is the unique
δ-biproportional solution in this case. In consequence, step 2 of Algorithm 2 allocates exactly one
seat to each of the candidates that got exactly one vote and it outputs {votesI}. This shows that
property (I) is satisfied.

Scaling. Let α be any positive real and consider the instance αI = (C, partyI , α · votesI , typeI , h)
obtained by scaling the number of votes. By Lemma 1 (b) we have Aγ(Q(I)) = Aγ(Q(αI)).
Furthermore, by Lemma 8 (b), for every signpost sequence γ and every J ∈ Aγ(Q(I)) =
Aγ(Q(αI)) the δ-biproportional solutions of the scaled instance (αP(I),S(I),J , φ(I)) coin-
cides with the set of solutions for (P(I),S(I),J , φ(I)). Therefore, Algorithm 2 computes the
same allocations as in the instance I . This shows that property (II) is satisfied.
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Monotonicity. Let I and G be two instances satisfying the supply condition such that G is a
voting increment of I in c ∈ C. Suppose that c ∈ Cp and let g be the type of c. In particular,
we have that Ppg(I) < Ppg(G) and Pit(I) = Pit(G) for every pair (i, t) 6= (p, g). Consider
J ∈ Aγ(Q(I)). By Lemma 1 (d) there exists J ′ ∈ Aγ(Q(G)) such that Jp ≤ J ′p and Ji ≥ J ′i
for every i 6= p. In order to show the monotonicity property it is sufficient to prove that for ev-
ery biproportional solution (x(I), λ(I), µ(I)) of (P(I),S(I),J , φ(I)) and every biproportional
solution (x(G), λ(G), µ(G)) of (P(G),S(G),J ′, φ(G)) we have that

xpg(I) ≤ xpg(G). (22)

From this the property follows, since the position of the candidate c in the total order (C,≻G) is
at least the position in the total order (C,≻I ) and therefore Ex(G)(c) ≥ Ex(I)(c). Observe that by
Lemma 1 (c) the inequality (22) holds immediately if there is a unique party. Otherwise, suppose
the claim does not hold, that is, suppose that there exists two solutions x(I) and x(G) such that
xpg(I) > xpg(G) and n ≥ 2. Assume that g = f.

Claim 1. If xpf(I) > xpf(G), there exists a party q 6= p such that the following holds: (a) xpf(G) ≤
xpf(I)− 1, (b) xpm(G) ≥ xpm(I) + 1, (c) xqf(G) ≥ xqf (I) + 1, and (d) xqm(G) ≤ xqm(I)− 1.

We prove the claim after finishing the proof of the lemma. The claim, together with the fact that
Ppf(I) < Ppf(G) and Pqm(I) = Pqm(G), implies that

δ(xpf (I))
Ppf(I)

· δ(xqm(I))
Pqm(I)

>
δ(xpf(G) + 1)

Ppf(G)
· δ(xqm(G) + 1)

Pqm(G)
(23)

By Theorem 4, together with parts (c) and (b) of the claim, and the fact that Pqf(I) = Pqf(G) and
Ppm(I) = Ppm(G), we can lower bound the right hand side of the above inequality as follows,

δ(xpf(G) + 1)

Ppf (G)
· δ(xqm(G) + 1)

Pqm(G)
≥ δ(xqf (G))
Pqf(G)

· δ(xpm(G))
Ppm(G)

≥ δ(xqf (I) + 1)

Pqf(I)
· δ(xpm(I) + 1)

Ppm(I)
≥ δ(xpf (I))
Ppf(I)

· δ(xqm(I))
Pqm(I)

,

which contradicts inequality (23). We recall that the first and third inequality in the above chain
follow by applying Theorem 4. Therefore property (III) is satisfied. We now prove Claim 1. Since
J ′p ≥ Jp we have xpf (G) + xpm(G) ≥ xpf (I) + xpm(I). Since xpf(G) ≤ xpf(I)− 1, we conclude
that xpm(G)− 1 ≥ xpm(I), that proves (b). Since the number of seats to allocate in both I and G
is the same, we have that φf(G) ≥ φf(I). Therefore, we have

xpf (G) + ∑
i 6=p

xif(G) = φf(G) ≥ φf(I) ≥ xpf (I) + ∑
i 6=p

xif(I) > xpf(G) + ∑
i 6=p

xif(I),

which implies the existence of a party q 6= p such that xqf(G) > xqf(I). On the other hand, we
have that J ′q ≤ Jq and therefore xqf (G) + xqm(G) ≤ xqf (I) + xqm(I). Since xqf (G) > xqf (I) we
conclude that xqm(G) < xqm(I). The integrality of both x(I) and x(G) implies (c) and (d).

5 The Fair Share as Benchmark

Recall that the goal in the biproportional setting is to achieve proportionality in both dimensions,
while at the same time finding an integral solution. If one relaxes the integrality condition, then
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such a solution is known as fair share or matrix scaling, an object that has been studied exten-
sively in the optimization, statistics and algorithms communities. This solution is also used as
benchmark in order to evaluate the proportionality obtained by two-dimensional apportionment
methods [19]. In what follows we restrict attention to the case in which the entries of the sup-
ply matrix S of a two-dimensional instance (P ,S ,J , φ) are all equal to φf + φm. In this case,
condition (12) becomes redundant and we just refer to (P ,J , φ) as a two-dimensional instance.

Definition 6. Let (P ,J , φ) be a two-dimensional instance. We say that a strictly positive matrix F of
dimensions [n]× {f,m} is a fair share of (P ,J , φ) if there exists a strictly positive real vector λ ∈ R

n
+

and µf , µm ∈ R+ such that for each i ∈ [n] and each t ∈ {f,m} the following holds:

Fit = Pitλiµt, (24)

Fif +Fim = Ji, (25)

∑
i∈[n]
Fit = φt. (26)

We say that (F , λ, µ) is the fair share tuple for the two-dimensional instance (P ,J , φ).

Conditions (25) and (26) guarantee that the fair share satisfies the marginals, while condition
(24) ensures the proportionality of the solutions according to both dimensions. We start by
describing the convex optimization program that determines the value of the fair share. Let
(P ,J , φ) be a two-dimensional instance with marginals J and φ and strictly positive P . Consider
the following strictly convex optimization problem,

minimize ∑
i∈[n]

yif

(

log (yif/Pif)− 1
)

+ ∑
i∈[n]

yim

(

log (yim/Pim)− 1
)

(27)

subject to yif + yim = Ji for every i ∈ [n], (28)

∑
i∈[n]

yit = φt for each t ∈ {f,m}, (29)

yit ≥ 0 for every i ∈ [n] and each t ∈ {f,m}. (30)

Constraints (28) and (29) enforces every solution to satisfy the party and type marginals respec-
tively. Given a vector ω, we denote by exp(ω) the vector obtained by applying the exponential
to each of the entries of ω.

Proposition 4. Let (P ,J , φ) be a two-dimensional instance with P strictly positive. Then, there exists
a unique optimal primal dual solution of (27)-(30). Furthermore, (F , exp(Λ), exp(U)) is a fair share of
(P ,J , φ) if and only if (F , Λ,U) is an optimal primal dual solution of (27)-(30).

Proof. The optimization problem (27)-(30) is strictly convex and satisfies the Slater condition.
Then, there exists a unique solution F and it is strictly positive. For a optimal primal dual pair
(F , λ, µ), the KKT optimality conditions are equivalent to log(Fit/Pit)− Λi − Ut = 0 for every
i ∈ [n] and t ∈ {f,m}, that is, Fit = Pit · exp(Λi) · exp(Ut).

Proposition 5. Let (G,J , φ) be a two-dimensional instance with G strictly positive and such that the
following holds: ∑i∈[n] Git = φt for each t ∈ {f,m} and Gif + Gim = Ji for each i ∈ [n]. Then, G is the
fair share of (αG,J , φ) for every positive real α.

Proof. For every i ∈ [n] define λi = 1/
√

α and for each t ∈ {f,m} define µt = 1/
√

α. For every
i ∈ [n] and for each t ∈ {f,m} we have that Git = (αGit)λiµt, and therefore G satisfies conditions
(24)-(26) defining the fair share of G. The uniqueness of the fair share implies that G is the fair
share of (αG,J , φ).
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5.1 Positive Result for two-dimensional Instances with Two Rows and Two Columns

Consider the particular case of two-dimensional instances of 2× 2. In the following result we
show that for this case the biproportional solution does not violate the bounds given by rounding
(up or down) the fair share.

Theorem 5. For every two-dimensional instance (P ,J , φ) where P is a strictly positive matrix of 2× 2,
and for every signpost sequence δ, we have ⌊Fit⌋ ≤ xit ≤ ⌈Fit⌉ for every x ∈ Bδ(P ,J , φ), where F is
the fair share of (P ,J , φ).

Proof of Theorem 5. Let x ∈ Bδ(P ,J , φ) and suppose that x1f ≥ ⌈F1f⌉+ 1. Since both x and F
have the same row and column marginals, we have that x2f ≤ ⌊F2f⌋ − 1, x1m ≤ ⌊F1m⌋ − 1 and
x2m ≥ ⌈F2m⌉+ 1. In particular, F1m ≥ 1 and F2f ≥ 1. Let (F , λ, µ) be the fair share tuple and
consider Φ = λ1λ2µfµm. Therefore, and since δ is a signpost sequence, we have that

δ(x1f)

P1f
· δ(x2m)

P2m
= Φ · δ(x1f)

F1f
· δ(x2m)

F2m
≥ Φ · δ(⌈F1f⌉+ 1)

F1f
· δ(⌈F2m⌉+ 1)

F2m
≥ Φ · ⌈F1f⌉

F1f
· ⌈F2m⌉
F2m

≥ Φ.

On the other hand, we have that

δ(x1m + 1)

P1m
· δ(x2f + 1)

P2f
= Φ · δ(x1m + 1)

F1m
· δ(x2f + 1)

F2f

≤ Φ · δ(⌊F1m⌋)
F1m

· δ(⌊F2f⌋)
F2f

≤ ⌊F1m⌋
F1m

· ⌊F2f⌋
F2f

≤ Φ.

If any of the entries of the fair share F is fractional, then at least one of the inequalities above is
strict, and threfore this contradicts the first set of inequalities in Theorem 4. Otherwise, suppose
that F is integral. In this case, and by Theorem 4, all the above inequalities are satisfied with
equality, from where we get that δ(⌈F1f⌉ + 1) = ⌈F1f⌉ and δ(⌊F1m⌋ − 1) = ⌊F1m⌋, but this
contradicts the disjunction property (c) satisfied by the signpost sequence δ. We conclude that
x1f ≤ ⌈F1f⌉. By an analogous reasoning we show that when x1f ≤ ⌈F1f⌉ − 1 the second set of
inequalities in Theorem 4 is contradicted. Therefore, we have that ⌊F1f⌋ ≤ x1f ≤ ⌈F1f⌉. Since
both x and F have the same marginal for f, we conclude that ⌊F2f⌋ ≤ x2f ≤ ⌈F2f⌉, and since
both x and F have the same row marginals we conclude that ⌊Fim⌋ ≤ xim ≤ ⌈Fim⌉ for each
i ∈ {1, 2}.

5.2 Negative Results for two-dimensional Instances

We show in our next result that the distance between the biproportional solution and the fair
share can be arbitrarily high, in the following precise sense.

Theorem 6. For every positive integer ℓ and every signpost sequence δ, there exists a two-dimensional
instance Dℓ,δ such that the following holds: There exists a unique δ-biproportional solution y of Dℓ,δ, such
that y1f ≥ F1t + ℓ and y1m ≤ F1m− ℓ, where F is the fair share of Dℓ,δ. In particular, ‖y−F‖1 = Ω(ℓ).

That is, for every integer value ℓ and every signpost sequence δ, we can find an instance
where the allocation for the first row in the biproportional solution differs by ℓ from the fair
share in each of its entries. To prove Theorem 6 we need the following simple proposition.

Proposition 6. Let δ be a signpost sequence such that δ(1) > 0 and let ℓ be a positive integer. Consider
the function Γℓ,δ : R+ → R given by Γℓ,δ(y) = δ(7 + ℓ) · δ(3)/(21− 7y) − δ(1)2/(ℓy). Then, there
exists a positive integer number nℓ,δ such that Γℓ,δ(ℓ/nℓ,δ) < 0.
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Proof. The function Γℓ,δ is continuous in the interval (0, 1) and since δ(1) > 0 we have Γℓ,δ(y) →
−∞ when y → 0. Therefore, there exists a large enough positive integer number nℓ,δ such that
Γℓ,δ(ℓ/nℓ,δ) < 0.

Proof of Theorem 6. Let δ be a signpost sequence such that δ(1) > 0 and let ℓ be a positive integer.
Let nℓ,δ be the integer number guaranteed to exist by Proposition 6 and let yℓ,δ = ℓ/nℓ,δ. Consider
the matrix P with nℓ,δ + 1 rows and two columns defined as follows: P1f = 7 and P1m = ℓ;
Pif = yℓ and Pim = 3− yℓ for every i ∈ {2, 3, . . . , nℓ,δ + 1}. We define the row marginals J such
that J1 = 7 + ℓ and Ji = 3 for every i ∈ {2, 3, . . . , nℓ,δ + 1}, and the type marginals φ such that
φf = 7 + nℓ,δyℓ,δ = 7 + ℓ and φm = ℓ+ nℓ,δ(3− yℓ,δ) = 3nℓ,δ.

By construction the type marginals are integral. Consider the instance Dℓ,δ = (nℓ,δP ,J , φ).
Since the matrix P is such that ∑i∈[nℓ,δ+1] Pit = φt for each t ∈ {f,m} and Pif +Pim = Ji for each

i ∈ [nℓ,δ + 1], by Proposition 5 we have that P is the fair share of (nℓ,δP ,J , φ). Furthermore, by
Lemma 8 (b) we have that Bδ(nℓ,δP ,J , φ) = Bδ(P ,J , φ). Therefore, it is sufficient to compare
the biproportional solutions of (P ,J , φ) with respect to P .

P =











7 ℓ

yℓ,δ 3− yℓ,δ
...

...
yℓ,δ 3− yℓ,δ











J =











7 + ℓ

3
...
3











φ =

(

7 + ℓ

3nℓ,δ

)

x =











7 + ℓ 0
0 3
...

...
0 3











Figure 1: Two-dimensional instance and its biproportional solution when δ(1) > 0.

Consider the matrix x defined as follows: x1f = 7+ ℓ, xim = 3 for each i ∈ {2, 3, · · · , nℓ,δ + 1} and
the rest of the entries are equal to zero. We verify next in what follows that x ∈ Bδ(P ,J , φ), and
furthermore, x is unique. The matrix x satisfies, by construction, the row and column marginals.
Since the rows in {2, 3, nℓ,δ + 1} of P are all equal, and the same holds for x, it is enough to show
that the inequalities of Theorem 4 are satisfied for the rows one and two. Observe that

δ(x1f)

P1f
· δ(x2m)

P2m
− δ(x1m + 1)

P1m
· δ(x2f + 1)

P2f
=

δ(7 + ℓ)

7
· δ(3)

3− yℓ,δ
− δ(1)2

ℓyℓ,δ
= Γℓ,δ(ℓ/nℓ,δ) < 0,

and the other set of inequalities is immediately satisfied strictly since x2f = x1m = 0 and δ(0) = 0.
By Theorem 4 we conclude that x ∈ Bδ(P ,J , φ) = Bδ(Dℓ,δ) and since the inequalities are satisfied
strictly we have that x is the unique δ-biproportional solution of the instance Dℓ,δ.

Suppose now that δ(1) = 0. Consider the matrix P with ℓ+ 2 rows and two columns defined
as follows: P1f = ℓ + 1 and P1m = 1; Pif = 1/(ℓ + 1) and Pim = 3 − 1/(ℓ + 1) for every
i ∈ {2, 3, . . . , ℓ+ 2}. We define the row marginals J such that J1 = ℓ+ 2 and Ji = 3 for every i ∈
{2, 3, . . . , ℓ+ 2}, and the type marginals φ such that φf = ℓ+ 2 and φm = 3ℓ+ 3. By construction
the type marginals are integral. Consider in this case the instance Dℓ,δ = ((ℓ+ 1)P ,J , φ). Since
the matrix P is such that ∑i∈[nℓ,δ+1] Pit = φt for each t ∈ {f,m} and Pif + Pim = Ji for each

i ∈ [nℓ,δ + 1], by Proposition 5 we have that P is the fair share of (nℓ,δP ,J , φ). Furthermore, by
Lemma 8 (b) we have that Bδ((ℓ+ 1)P ,J , φ) = Bδ(P ,J , φ). Therefore, it is sufficient to compare
the biproportional solutions of (P ,J , φ) with respect to P .
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1/(ℓ+ 1) 3− 1/(ℓ+ 1)
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Figure 2: Two-dimensional instance and its biproportional solution when δ(1) = 0.

Consider the matrix x defined as follows: xif = 1 for each i ∈ {1, 2, · · · , nℓ,δ + 1}, xim = ℓ + 1,
xim = 2 for each i ∈ {2, 3, · · · , nℓ,δ + 1} and the rest of the entries are equal to zero. We verify
next in what follows that x ∈ Bδ(P ,J , φ), and furthermore, x is unique. The matrix x satisfies
by construction the row and column marginals. Since the rows in {2, 3, ℓ+ 2} of P are all equal,
and the same holds for x, it is enough to show that the inequalities of Theorem 4 are satisfied for
the rows one and two. Observe that

δ(x1f)

P1f
· δ(x2m)

P2m
− δ(x1m + 1)

P1m
· δ(x2f + 1)

P2f
=

δ(1)

ℓ+ 1
· δ(3)

3− 1/(ℓ+ 1)
− δ(ℓ+ 2)

1
· δ(2)

1/(ℓ+ 1)

= −(ℓ+ 1) · δ(ℓ+ 2) · δ(2) < 0,

δ(x2f)

P2f
· δ(x1m)

P1m
− δ(x1f + 1)

P1f
· δ(x2m + 1)

P2m
=

δ(1)

1/(ℓ+ 1)
· δ(ℓ+ 1)

1
− δ(2)

ℓ+ 1
· δ(3)

3− 1/(ℓ+ 1)

= −δ(2) · δ(3)
3ℓ+ 2

< 0,

By Theorem 4 we conclude that x ∈ Bδ(P ,J , φ) = Bδ(Dℓ,δ) and since the inequalities are satisfied
strictly we have that x is the unique δ-biproportional solution of Dℓ,δ.

5.3 Fraction of Rows Violating the Fair Share Rounding

Formally, given a two-dimensional instance (P ,J , φ) with fair share F and given a signpost se-
quence δ, let Λδ be the fraction of rows for which a biproportional solution x ∈ Bδ(P ,J , φ) does
not respect the fair share rounded up or down respectively, that is, Λδ(x,P ,J , φ) = 1

n |{(i, t) :
xit > Fit}|. Observe that in an instance with two columns, if in a row one of two entries is
smaller (larger) than the fair share rounded down (up), then the other entry of the same row is
necessarilly larger (smaller) that the fair share rounded up (down). That is, whenever there is a
rounding violation, it happens to both entries of the row. The following is our main result in this
line.

Theorem 7. Let δ be a signpost sequence. Then, the following holds:

(a) When δ(1) > 0, there exists a two-dimensional instance Tδ for which there is a unique δ-biproportional
solution x of Tδ and Λδ(x, Tδ) ≥ 1/(1 + ⌈δ(1)−2 + 1⌉).

(b) When δ(1) = 0, there exists a two-dimensional instance Tδ for which there is a unique δ-biproportional
solution x of Tδ and Λδ(x, Tδ) ≥ 1/3.

Furthermore, these instances have type marginals satisfying φf = φm.
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That is, the theorem states that even when we restrict to instances where φf = φm for the types,
the fraction of rows that violate the fair share rounding is in general bounded away from zero,
by a strictly positive constant. In particular, when δ(1) = 1, which is the case for the Jefferson
rounding, Theorem 7 states the existence of a two-dimensional instance with only three rows for
which the unique biproportional solution violates the fair share rounding in one row. Same holds
for other classic rounding with δ(1) = 0, the Adams rounding.

Proof of Theorem 7. Let δ be a signpost sequence such that δ(1) > 0 and let nδ = ⌈δ(1)−2 + 1⌉.
Consider the matrix P with 1 + nδ rows defined as follows: P1f = 3nδ − 1, P1m = 1, Pif = 1/nδ

for each i ∈ {2, 3, . . . , nδ + 1} and Pim = 3− 1/nδ for each i ∈ {2, 3, . . . , nδ + 1}. We define the
marginals as follows: J δ

1 = 3nδ and Ji = 3 for each i ∈ {2, 3, . . . , nδ + 1}, and the type marginals
are given by φf = φm = 3nδ. Consider the instance Tδ = (nδP ,J , φ).

By construction, we have that ∑
nδ+1
i=1 Pif = φf , ∑

nδ+1
i=1 Pim = φm and Pif + Pim = Ji for each

i ∈ [nδ + 1]. Therefore, by Propoposition 5 we have that P is the fair share of (nδP ,J , φ).
Furthermore, by Lemma 8 (b) we have that Bδ(nδP ,J , φ) = Bδ(P ,J , φ). Therefore, it is sufficient
to compare the biproportional solutions of (P ,J , φ) with respect to P . Consider the matrix x
defined as follows: x1f = 3nδ, x1m = 0, xif = 0 for each i ∈ {2, 3, . . . , nδ + 1} and xim = 3 for each
for each i ∈ {2, 3, . . . , nδ + 1}. In what follows we prove that x ∈ Bδ(P ,J , φ). From here the
theorem follows since Λδ(x, Tδ) = 1/(nδ + 1) = 1/(1 + ⌈δ(1)−2 + 1⌉).

P =











3nδ − 1 1
1/nδ 3− 1/nδ

...
...

1/nδ 3− 1/nδ











J =











3nδ

3
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3nδ 0
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Figure 3: Two-dimensional instance and its biproportional solution when δ(1) > 0.

To check that x ∈ Bδ(P ,J , φ) it is sufficient to verify that the inequalities of Theorem 4 are
satisfied for x. Furthermore, by symmetry it is enough to check that the set of inequalities hold
for the rows one and two. We have that the choice of nδ guarantees that

δ(x1f)

P1f
· δ(x2m)

P2m
− δ(x2f + 1)

P2f
· δ(x1m + 1)

P1m
=

δ(3nδ)

3nδ − 1
· δ(3)

3− 1/nδ
− δ(1)

1/nδ
· δ(1)

1

≤ 3nδ

3nδ − 1
· 3

3− 1/nδ
− nδ · δ(1)2

= nδ

(

9nδ

(3nδ − 1)2
− δ(1)2

)

< 0,

where in the second inequality we used that for every x ≥ 2 it holds that 1/(x − 1) > 9x/(3x −
1)2, and the last inequality holds by the definition of nδ. On the other hand, for the second
inequality we have that

δ(x2f)

P2f
· δ(x1m)

P1m
− δ(x1f + 1)

P1f
· δ(x2m + 1)

P2m
=

δ(0)

1/nδ
· δ(0)

1
− δ(3nδ + 1)

3nδ − 1
· δ(4)

3− 1/nδ

= −δ(3nδ + 1)

3nδ − 1
· δ(4)

3− 1/nδ
< 0,

since δ(0) = 0. The inequalities are satisfied strictly, therefore x is the unique δ-biproportional
solution of Tδ. That concludes the proof for the case when δ(1) > 0.
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Now suppose that δ(1) = 0 and let εδ ∈ (0, 1) be any rational value such that

3δ(6)− 14δ(5)

3δ(6) + 7δ(5)
≤ εδ ≤

21δ(5)

3δ(6) + 7δ(5)
.

We remark that this value exists, since δ(6) ≤ 6 and δ(5) ≥ 5 and therefore 3δ(6) − 14δ(5) <

21δ(5). Consider the matrix P with three rows and two columns defined as follows: P1f = 7,
P1m = 3, P2f = εδ, P2m = 3− εδ, P3f = 1− εδ and P4m = 2 + εδ. We define the marginals as
follows: J1 = 10 and J2 = J3 = 3, and the type marginals are given by φf = φm = 8. Consider
the instance Tδ = (αδP ,J , φ) where αδ is the smallest positive integer number such that αδεδ is
integer. By construction we have that ∑

3
i=1 Pif = φf , ∑

3
i=1 Pim = φm and Pif + Pim = Ji for each

i ∈ [3]. Therefore, by Propoposition 5 we have that P is the fair share of (P ,J , φ). Furthermore,
by Lemma 8 (b) we have that Bδ(αδP ,J , φ) = Bδ(P ,J , φ). Therefore, it is sufficient to compare
the biproportional solutions of (P ,J , φ) with respect to P . Consider the matrix x defined as
follows: x1f = 6, x1m = 4, x2f = x3f = 1 and x2m = x3m = 2. In what follows we prove that
x ∈ Bδ(P ,J , φ). From here the theorem follows since Λδ(x, Tδ) = 1/3.

P =





7 3
εδ 3− εδ

1− εδ 2 + εδ



 J =





10
3
3



 φ =

(

8
8

)

x =





6 4
1 2
1 2





Figure 4: Two-dimensional instance and its biproportional solution when δ(1) = 0.

To check that x ∈ Bδ(P ,J , φ) it is sufficient to verify that the inequalities of Theorem 4 are
satisfied for x. We have that the inequalities for rows two and three are satisfied directly since
x2f = x3f = 1, x2m = x3m > 1 and δ(1) = 0. Consider the rows one and two. The choice of εδ

guarantee that

δ(x1f)

P1f
· δ(x2m)

P2m
− δ(x2f + 1)

P2f
· δ(x1m + 1)

P1m
=

δ(6)

7
· δ(2)

3− εδ
− δ(2)

εδ
· δ(5)

3
< 0.

On the other hand, for the second inequality we have that

δ(x2f)

P2f
· δ(x1m)

P1m
− δ(x1f + 1)

P1f
· δ(x2m + 1)

P2m
=

δ(1)

εδ
· δ(4)

3
− δ(8)

7
· δ(4)

3− εδ

= −δ(8)

7
· δ(4)

3− εδ
< 0,

since δ(0) = 0. Now consider rows one and three. The choice of εδ guarantee that

δ(x1f)

P1f
· δ(x3m)

P3m
− δ(x3f + 1)

P3f
· δ(x1m + 1)

P1m
=

δ(6)

7
· δ(2)

2 + εδ
− δ(2)

1− εδ
· δ(5)

3
< 0.

On the other hand, for the second inequality we have that

δ(x3f)

P3f
· δ(x1m)

P1m
− δ(x1f + 1)

P1f
· δ(x3m + 1)

P3m
=

δ(1)

1− εδ
· δ(4)

3
− δ(7)

7
· δ(3)

2 + εδ

= −δ(7)

7
· δ(3)

2 + εδ
< 0,

since δ(0) = 0. Since the inequalities are satisfied strictly, x is the unique δ-biproportional
solution of Tδ. That concludes the proof for the case when δ(1) > 0.
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6 Consequences on the Quality of Apportionment

In the setting of biproportional apportionment by Balinski and Demange, a two-dimensional
instance corresponds to a triplet (V, R, C) where V is a matrix of dimensions p× d, R is a vector
in Z

p and C is a vector in Z
d such that ∑i∈[p] Ri = ∑j∈[d] Cj. We say that a set valued function ϕ

is a two-dimensional apportionment method if for every two-dimensional instance (V, R, C) we have
that every x ∈ ϕ(V, R, C) is a non-negative and integral matrix of dimensions p× d that satisfies
the following: ∑j∈[d] xij = Ri for every i ∈ [p] and ∑i∈[p] xij = Cj for every j ∈ [d]. Given a
signpost sequence δ, a δ-biproportional solution of an instance (V, R, D) is defined exactly by the
conditions (9)-(12) for every i ∈ [p] and every t ∈ [d], and where Sit = h for every i ∈ [p] and
every t ∈ [d].

Balinski and Demange proved that the family of biproportional methods are the unique two-
dimensional apportionment methods that satisfy a list of natural properties (exactness, mono-
tonicity, uniformity) that we call the BD properties [3][Section II, p. 711]. The fair share of
an instance (V, R, D) is defined exactly by the conditions (24)-(26) for every i ∈ [p] and every
t ∈ [d]. We say that a two-dimensional method satisfies the lower quota property if the output of
the method is always at least the fair share rounded down. Similarly, a two-dimensional method
satisfies the upper quota property if the output of the method is always at most the fair share
rounded up. Our results from Section 5 for the case of d = 2, together with the characterization
of Balinski and Demange, imply the following impossibility result.

Corollary 1. There is no two-dimensional apportionment method that simultaneously satisfy the BD

properties and the lower quota property. Similarly, there is no two-dimensional apportionment method
that simultaneously satisfy the BD properties and the upper quota property.

This constrasts with the one dimensional case d = 1 where the BD properties are compat-
ible with the lower quota or upper quota properties. The Jefferson method is the unique divi-
sor method that satisfies the lower quota property, while Adams method is the unique divisor
method that satisfies the upper quota property [5]. Balinski and Young [5] studied the stronger
property where both lower and upper quota are satisfied simultaneously, known as the staying
within fair share property. They studied this stronger property in the context of the one dimen-
sional (d = 1) apportionment problem, where the fair share in that case corresponds to the
fractional assignment obtained by assigning seats proportionally to the votes obtained for each
party. Surprisingly, in this case there is a strong impossibility result: Balinski and Young showed
that there is no divisor method staying within fair share [5, Corollary 6.1, p.130]. As a corollary
of Theorems 5 and 7 we get the following corollary.

Corollary 2. For every signpost sequence δ with δ(1) > 0, the δ-biproportional parity mechanism stays
within fair share for instances satisfying the supply condition with only two parties. On the other hand,
for every signpost sequence δ, the δ-biproportional parity mechanism does not stay within fair share for
instances with three or more parties.

For the greedy & parity correction mechanism, the picture can be in principle worse than in
the biproportional setting, and this would not be surprising since the main goal of this mecha-
nism is not to achieve biproportionality. However, we show that the fair share rounding violation
of the solution obtained by the greedy & parity correction mechanism can be in general very
high. Given a valid apportionment mechanism M, given a signpost sequence γ and a solution
E ∈ M(I , γ), we define the two-dimensional instance (P(I),J (E), φ(E)) such that for each
party i ∈ [n] and each type t ∈ {f,m} we have Ji(E) = ∑c∈Ci

E(c) and φt(E) = ∑c∈C t E(c). We
denote by F(E) the fair share of the instance (P(I),J (E), φ(E)).
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Theorem 8. There exists an instance I with two parties that satisfies the supply condition and such that
for every signpost sequence γ and every E ∈ MG(I , γ) we have ∑c∈C t

i
E(c) /∈ {⌊Fit(E)⌋, ⌈Fit(E)⌉} for

each i ∈ {1, 2} and each type t ∈ {f,m}. In particular, the greedy & parity correction mechanism does
not stay within fair share.

This contrasts with the positive result in Corollary 2 for the biproportional parity mechanism
that guarantees to stay within fair share for instances with only two parties. In what follows we
provide the details on the construction of the family of instances in order to show Theorem 8.

Consider the instance I defined as follows: we have two parties and each party has six
candidates. The house size is equal to h = 6. For each party we have six candidates of each type,
that is, Cf

i = {ci,1, ci,2, ci,3} and Cm
i = {ci,4, ci,5, ci,6}, with i ∈ {1, 2}. The votes for the candidates

are defined as follows: We have votesI(c1,j) = 345 for j ∈ {1, 2, 3} and votesI (c1,j) = 55 for
j ∈ {4, 5, 6}; votesI(c2,j) = 184 for j ∈ {1, 2, 3} and votesI(c2,j) = 16 for j ∈ {4, 5, 6}. Since
the house size is even we have that φf(I) = φm(I) = 3. We remark that I satisfies the supply
condition, and therefore the greedy & parity correction mechanism 1 is guaranteed to terminate
with a feasible allocation thanks to Lemma 3.

Lemma 9. Let E be the output of Algorithm 1 in instance I . Then, the following holds: ∑c∈Cf1 E(c) = 3,

∑c∈Cm1 E(c) = 1, ∑c∈Cf2 E(c) = 0 and ∑c∈Cm2 E(c) = 2.

Proof. We first show that for every signpost sequence γ we have Aγ(Q(I)) = {(4, 2)}. We have
that Q1(In) = 342 · 3 + 52 · 3 + 3 · 6 = 1200, and Q2(In) = 181 · 3 + 13 · 3 + 3 · 6 = 600. Therefore,
it follows by Lemma 1 (a): The unique solution is given by taking λ = 300, Qi(In)/λ ∈ Z for
each i ∈ {1, 2} and Q1(I)/λ +Q2(I)/λ = 4 + 2 = 6. In Phase 1 the algorithm selects the top
four candidates of party 1, and the top two candidates of party 2. The top four candidates of
party 1 are given by c1,1, c1,2, c1,3 of type f and one candidate c1,j1 with j1 ∈ {4, 5, 6} of type m. The
top two candidates of party 2 are c2,k2

and c2,ℓ2
of type f with k2, ℓ2 ∈ {1, 2, 3}. Therefore, at the

end of Phase 1, the algorithm has selected a total of five candidates of type f and one candidates
of type m, that is, the overrepresented type is t⋆ = f and t⋆ = m.

From the set of selected candidates of type f, we have that exactly two of them received 184
votes, while three of them received 345 votes. The selected candidates that received 184 votes
are exactly those given by c2,k2

and c2,ℓ2
of type f and therefore they are replaced by the top

two candidates of type m of the same party, which in this case corresponds to two candidates
c2,r2 and c2,s2 with r2, s2 ∈ {4, 5, 6} that received 16 votes each. Parity has been achieved and
the algorithm terminates with the following output: {c ∈ Cf1 : E(c) = 1} = {c1,1, c1,2, c1,3},
{c ∈ Cm1 : E(c) = 1} = {c1,j1}, {c ∈ Cf2 : E(c) = 1} = ∅ and {c ∈ Cm2 : E(c) = 1} = {c2,r2 , c2,s2}.
That concludes the proof.

Proof of Theorem 8. Let λ1 = 1/25 and λ2 = 1/20, and let µf = 1/23 and µm = 1/3 be the multipli-
ers associated to the types. Let F ∈ R

2×2 be the matrix such that for each i ∈ {1, 2} and each type
t ∈ {f,m} we have Fit = λiµt ∑c∈C t

i
votesI(c), that is, F1f = 1.8, F1m = 2.2, F2f = 1.2 and F2m =

0.8. Then, (F , λ, µ) satisfies conditions (24)-(26) and the uniqueness of the fair share implies that
F is the fair share F(E) of the two-dimensional instance (P(I),J (E), φ(E)). By Lemma 9, we
have ∑c∈Cf1 E(c) > ⌈F1f⌉, ∑c∈Cm1 E(c) < ⌊F1m⌋, ∑c∈Cf2 E(c) < ⌊F2f⌋ and ∑c∈Cm2 E(c) > ⌈F2f⌉.
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7 Appendix

Proof of Lemma 1. Properties (a)-(b) come directly from the definition of a divisor method. We
now prove (c). Suppose there exist J ∈ Aγ(Q, h) and J ′ ∈ Aγ(Q′, h) such that Jp < J ′p.
By the population monotonicity property [5][Appendix A, p. 117], since Q′p/Q′i > Qp/Qi for
every i 6= p and Jp < J ′p, it holds that J ′ ≤ Ji for every i 6= p. But then we have that

∑j∈[n] J ′j < ∑j∈[n] Jj, which is contradiction since the house size is equal in both instances. That

concludes (c).
We now prove (d). Consider the instance obtained from (Q, h) and any J ∈ Aγ(Q, h) as

follows: The parties set is [n] \ {p}, the votes are given by Tj = Qj for each j 6= p and the house
size is h−Jp. In particular, the restriction of J to the parties in [n] \ {p} belongs toAγ(T , h−Jp).
Similarly, consider the instance obtained from (Q′, h) and any J ′ ∈ Aγ(Q′, h) as follows: The
parties set is [n] \ {p}, the votes are given by Tj = Q′j = Qj for each j 6= p and the house size is

h−J ′p. In particular, the restriction of J ′ to the parties in [n] \ {p} belongs to Aγ(T , h−J ′p).
Observe that by property (c) we have that Jp ≥ J ′p for every J ∈ Aγ(Q, h) and J ′ ∈

Aγ(Q′, h). Fix a solution J ∈ Aγ(Q, h) and fix a solution J ′ ∈ Aγ(Q′, h). Define the vector G
with entries in [n] \ {p} such that Gj = Jj for every j 6= p. In particular, G belongs to Aγ(T , h−
Jp). By the house monotonicity property [5][Appendix A, p. 117] the following holds: There
exists S ∈ Aγ(T , h − J ′p) such that Jj = Gj ≤ Sj for every j 6= p. For any such solution
S ∈ Aγ(T , h − J ′p) consider the vector H defined as follows: Hp = J ′p and Hj = Sj for every
j 6= p. By the uniformity property of divisor methods [4, 3] we have that H ∈ Aγ(Q′, h) and it
satisfies that Hj ≥ Jj for every j 6= p. This concludes (d).
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