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Abstract

In this paper, we consider the problem of computing the entire sequence of the maximum
degree of minors of a block-structured symbolic matrix (a generic partitioned polynomial
matrix) A = (Aαβxαβt

dαβ), where Aαβ is a 2 × 2 matrix over a field F, xαβ is an indeter-
minate, and dαβ is an integer for α = 1, 2, . . . , µ and β = 1, 2, . . . , ν, and t is an additional
indeterminate. This problem can be viewed as an algebraic generalization of the maximum
weight bipartite matching problem.

The main result of this paper is a combinatorial O(µνmin{µ, ν}2)-time algorithm for
computing the entire sequence of the maximum degree of minors of a (2 × 2)-type generic
partitioned polynomial matrix of size 2µ × 2ν. We also present a minimax theorem, which
can be used as a good characterization (NP ∩ co-NP characterization) for the computation
of the maximum degree of minors of order k. Our results generalize the classical primal-
dual algorithm (the Hungarian method) and minimax formula (Egerváry’s theorem) for the
maximum weight bipartite matching problem.

Keywords: Generic partitioned polynomial matrix, Degree of minor, Weighted
Edmonds’ problem, Weighted non-commutative Edmonds’ problem

1 Introduction

The maximum weight bipartite matching problem is one of the most fundamental problems in
combinatorial optimization, which admits a minimax theorem, called Egerváry’s theorem [7],
and a primal-dual augmenting path algorithm, called the Hungarian method [27]. In particular,
the Hungarian method outputs, for all possible values of k, a matching of size k having maximum
weight among all matchings with the same size. This can be rephrased as: the Hungarian method
computes the entire sequence of the maximum degree of minors of a certain symbolic polynomial
matrix. Indeed, for a bipartite graph G = ({1, 2, . . . ,m}, {1, 2, . . . , n};E) with edge weights dij
for ij ∈ E, we define the matrix A(t) by (A(t))ij := xijt

dij if ij ∈ E and zero otherwise, where xij
is a variable for each edge ij and t is another variable. Then the maximum weight of a matching
of size k in G is equal to the maximum degree δk(A(t)) of the minors of order k, i.e.,

δk(A(t)) := sup{deg detB(t) | B(t): k × k submatrix of A(t)}, (1.1)

∗A preliminary version of this paper [20] has appeared in the proceedings of the 22nd Conference on Integer
Programming and Combinatorial Optimization (IPCO 2021).

†Department of Communications and Computer Engineering, Graduate School of Informatics, Kyoto University,
Kyoto 606-8501, Japan. Email: iwamasa@i.kyoto-u.ac.jp
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where the determinant detB(t) of B(t) is regarded as a polynomial in t and δ0(A(t)) := 0. Thus,
the entire sequence

(

δ0(A(t)), δ1(A(t)), . . . , δmin{m,n}(A(t))
)

of the maximum degree of minors
equals the sequence of the maximum weights of a matching of size k for k = 0, 1, . . . ,min{m,n};
the Hungarian method computes this.

The above algebraic interpretation is generalized to weighted Edmonds’ problem‡(see [14]),
which asks to compute the entire sequence of the maximum degree of minors of

A(t) = A1(t)x1 +A2(t)x2 + · · · +Aℓ(t)xℓ. (1.2)

Here Ak(t) is a polynomial matrix over a field F with an indeterminate t, i.e., each entry of
Ak(t) is a polynomial in t over F, and xk is a different variable from t for each k = 1, 2, . . . , ℓ.
This problem is a weighted generalization of a well-studied algebraic problem called Edmonds’
problem [6]: It asks to compute the rank of

A = A1x1 +A2x2 + · · ·+Aℓxℓ, (1.3)

where Ai is a matrix over F and xi is a variable for i = 1, 2, . . . , ℓ. (Weighted) Edmonds’ problem
can capture various matching-type tractable combinatorial optimization problems including not
only the maximum (weight) bipartite matching problem but also the maximum (weight) nonbi-
partite matching, (weighted) linear matroid intersection, and (weighted) linear matroid parity
problems; see [38, 30, 2]. Although a randomized polynomial-time algorithm for (weighted) Ed-
monds’ problem is known (if |F| is large) [29, 37], a deterministic polynomial-time algorithm
is not known even for Edmonds’ problem, which is a prominent open problem in theoretical
computer science (see e.g., [26]).

In this paper, we address the problem of computing the entire sequence of the maximum
degree of minors (weighted Edmonds’ problem) of the following (2× 2)-block-structured matrix:

A(t) =











A11x11t
d11 A12x12t

d12 · · · A1νx1νt
d1ν

A21x21t
d21 A22x22t

d22 · · · A2νx2νt
d2ν

...
...

. . .
...

Aµ1xµ1t
dµ1 Aµ2xµ2t

dµ2 · · · Aµνxµνt
dµν











, (1.4)

where Aαβ is a 2×2 matrix over a field F, xαβ is a variable, and dαβ is an integer for α = 1, 2, . . . , µ
and β = 1, 2, . . . , ν, and t is another variable. A matrix A(t) of the form (1.4) is called a (2× 2)-
type generic partitioned polynomial matrix.

The main result of this paper is as follows, where we define δk(A(t)) as (1.1) for a (2×2)-type
generic partitioned polynomial matrix A(t).

Theorem 1.1. Let A(t) be a (2×2)-type generic partitioned polynomial matrix of the form (1.4).
There exists a combinatorial O(µνmin{µ, ν}2)-time algorithm for computing the entire sequence
(

δ0(A(t)), δ1(A(t)), . . . , δmin{2µ,2ν}(A(t))
)

of the maximum degree of minors of A(t).

Our problem and result are related to the noncommutative analog of weighted Edmonds’
problem, called weighted noncommutative Edmonds’ problem [14]. In this problem, given a
matrix A(t) of the form (1.2), in which xi and xj are supposed to be noncommutative but t is
commutative for any variable xi, we are asked to compute the entire sequence of the maximum
degree of minors, where the determinant degB(t) is replaced with the Dieudonné determinant [4,
3] (a determinant concept of a matrix over a skew field) of B(t), denoted by DetB(t). Oki [34]

‡The original definition of weighted Edmonds’ problem is the computation of deg detA(t) of a square matrix
A(t) of the form (1.2). Using the valuated-bimatroid property, the problem in our definition is polynomially
equivalent to the original problem; see e.g., [33, Section 5.2.5].
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developed a pseudopolynomial-time algorithm for this problem. Hirai [14] established a minimax
theorem on the degree of the Dieudonné determinant, and developed another pseudopolynomial-
time algorithm by solving the dual problem. By combining the above Hirai’s algorithm with cost
scaling and perturbation techniques, Hirai and Ikeda [15] presented a strongly polynomial-time
algorithm for weighted noncommutative Edmonds’ problem for A(t) having the following special
form

A(t) = A1x1t
d1 +A2x2t

d2 + · · ·+Aℓxℓt
dℓ , (1.5)

where Ai is a square matrix over F and di is an integer for i = 1, 2, . . . , ℓ. A (2× 2)-type generic
partitioned polynomial matrix (with noncommutative variables xαβ) can be represented as (1.5).

Although the degree of the Dieudonné determinant is an upper bound of that of the deter-
minant, i.e., deg detA(t) ≤ degDetA(t) for a matrix A(t) of the form (1.2), and in general the
inequality is strict, Hirai and Ikeda [15] also showed that the equality deg detA(t) = degDetA(t)
holds for a (2 × 2)-type generic partitioned polynomial matrix A(t). Therefore, the strongly
polynomial-time solvability of our problem follows from that of weighted noncommutative Ed-
monds’ problem for a matrix of the form (1.5) mentioned above. Hirai–Ikeda’s algorithm is
conceptually simple but is slow and not combinatorial. Let A(t) be a (2× 2)-type generic parti-
tioned polynomial matrix of the form (1.4). They present an O(min{µ, ν}6 logD)-time algorithm
for the computation of degDetA(t) via a cost scaling technique, where D := logmaxα,β |dαβ |.
Then, by utilizing the perturbation technique in [9] for dαβ so that logD is bounded by O(µ3ν3) in
polynomial time, they devise a strongly polynomial-time algorithm for computing degDetA(t).
To compute the entire sequence of the maximum degree of minors, we further need to call the
above algorithm O(µνmin{µ, ν}) times (see e.g., [33, Section 5.2.5]). Moreover, in case of F = Q,
their algorithm requires an additional procedure (used in [22]) for bounding the bit-complexity.
The minimax theorem on the degree of the Dieudonné determinant provided in [14] does not
provide a good characterization for the deg-det computation even if we restrict to the input as
a (2× 2)-type generic partitioned polynomial matrix A(t) (explicitly described in [15]). That is,
the formula does not imply that the problem of deciding if δk(A(t)) ≥ θ for a given threshold θ
belongs to both NP and co-NP.

In this article, we establish a new duality theorem on the degree of the determinant of a (2×2)-
type generic partitioned polynomial matrix A(t), which is a refinement of the minimax formula
provided in [14, 15]. This plays an important role in devising our algorithm. The proposed
theorem consists of the primal concept of matching-pair and the dual concept of potential. The
former is a pair of edge subsets of a graph consisting of edges αβ with nonzero Aαβ in A(t)
satisfying some combinatorial and algebraic conditions, and the latter is a function defined on
vector spaces that satisfies some inequalities. We show that the maximum weight of a matching-
pair of size k is equal to the minimum value of a potential with respect to k, and that they
coincide with δk(A(t)); this is an algebraic generalization of Egerváry’s theorem. Our minimax
formula can be used as a good characterization for the computation of δk(A(t)).

The proposed algorithm is a combinatorial primal-dual augmenting path algorithm, which is
an algebraic generalization of the Hungarian method. An optimal matching-pair of size k and an
optimal potential with respect to k enable us to define the auxiliary graph. If we find an augment-
ing path on it, then we can compute δk+1(A(t)), particularly, we can obtain an optimal matching-
pair of size k+1 and an optimal potential with respect to k+1 by using the augmenting path. Oth-
erwise, we can verify δk+1(A(t)) = −∞ (or equivalently rankA(t) = k). By repeating the above
augmentations, we finally obtain the entire sequence

(

δ0(A(t)), δ1(A(t)), . . . , δmin{2µ,2ν}(A(t))
)

of
the maximum degree of minors of A(t). The validity of the algorithm provides a constructive
proof of our minimax theorem. Our algorithm is simpler and faster than Hirai–Ikeda’s algorithm;
ours requires no perturbation of the weight and no additional care for bounding the bit size.
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Related work. A line of research on the noncommutative setting of an algebraic formulation
of combinatorial optimization problems was initiated by Ivanyos, Qiao, and Subrahmanyam [18]
who introduced noncommutative Edmonds’ problem: It asks to compute the rank of a matrix of
the form (1.3), where xi and xj are supposed to be noncommutative, i.e., xixj 6= xjxi for i 6= j.
Here the “rank” is defined via the inner rank of a matrix over a free skew field and is called
the noncommutative rank or nc-rank. The duality theorem on the nc-rank was established by
Fortin and Reutenauer [8]. The nc-rank is an upper bound of the rank, i.e., rankA ≤ nc-rankA
for a matrix A of the form (1.3), and the inequality is generally strict. Garg, Gurvits, Oliveira,
and Wigderson [10], Ivanyos, Qiao, and Subrahmanyam [19], and Hamada and Hirai [12, 13] in-
dependently developed deterministic polynomial-time algorithms for noncommutative Edmonds’
problem. Their algorithms are conceptually different. Garg, Gurvits, Oliveira, and Wigderson
showed that Gurvits’ operator scaling algorithm [11], which is also known as the flip-flop algo-
rithm in statistics [5, 31] (see also [1, Section 4.5]), can be used as the nc-rank-computation. This
works for the case of F = Q or C. The algorithm of Ivanyos, Qiao, and Subrahmanyam is an
algebraic generalization of an augmenting-path algorithm for the maximum bipartite matching
problem, which works for an arbitrary field. Hamada and Hirai reduced the nc-rank-computation
to a geodesically-convex optimization on a CAT(0)-space; the algorithm proposed in [12] works
for an arbitrary field F provided the arithmetic operations on F can be performed in constant
time, while the bit-length may be unbounded if F = Q; in [13], the above bit-length issue is
resolved.

The block-structured matrix (without an additional indeterminate t) was introduced by Ito,
Iwata, and Murota [17] for representing and analyzing a physical system. In particular, its (2×2)-
restriction, called a (2 × 2)-type generic partitioned matrices, was considered in detail by Iwata
and Murota [23]. They established the minimax theorem on the rank of a (2 × 2)-type generic
partitioned matrix, which is essentially the same as the duality theorem on the nc-rank proposed
by Fortin and Reutenauer. This implies that, for a (2 × 2)-type generic partitioned matrix,
its rank and nc-rank coincide. Therefore, we can compute the rank of a (2 × 2)-type generic
partitioned matrix in polynomial time by solving noncommutative Edmonds’ problem. In the
previous paper [16], Hirai and the author devised a simpler and faster combinatorial algorithm
for the rank-computation of a (2 × 2)-type generic partitioned matrix, which is a combinatorial
enhancement of Ivanyos–Qiao–Subrahmanyam’s algorithm. The proposed algorithm in this study
is a weighted generalization of this previous algorithm. We note that, in [23], Iwata and Murota
gave a block-structured matrix consisting only of 2 × 2 and 3 × 2 blocks such that its rank and
nc-rank are different. It is known [14] that the rank-computation of a general block-structured
matrix is equivalent to Edmonds’ problem; its polynomial-time solvability is still open.

The entire sequence of the maximum degree of minors plays an important role in engineering.
Such a sequence of a rational matrix determines its Smith–McMillan form at infinity, which is
used in control theory [39], and that of a matrix pencil determines its Kronecker form, which is
used in analyzing DAEs [28]. In this literature, many combinatorial algorithms for computing
(the entire sequence of) the maximum degree of minors has been proposed for rational matri-
ces [32, 24, 36], for matrix pencils [21], and mixed polynomial matrices [25, 35]; see also [33,
Chapters 5 and 6].

Organization. The remainder of this paper is organized as follows. In Section 2, we intro-
duce the primal concepts called pseudo-matching and matching-pair and the dual concept called
potential. Then we provide a minimax theorem between the weight of a matching-pair and a
potential, which leads to a good characterization for the computation of the maximum degree of
minors of A(t). In Section 3, we introduce an augmenting path for a matching-pair and a poten-
tial, and develop an algorithm for finding an augmenting path for the current matching-pair and
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potential. The rest of sections (Sections 4–8) are devoted to devising an augmenting algorithm.

Notations. For a positive integer k, we denote {1, 2, . . . , k} by [k]. Let A(t) be a (2× 2)-type
generic partitioned polynomial matrix of the form (1.4). The matrix A(t) is regarded as a matrix
over the field F(x, t) of rational functions with variables t and xαβ for α ∈ [µ] and β ∈ [ν]. The
symbols α, β, and γ are used to represent a row-block index in [µ], column-block index in [ν],
and row- or column-block index in [µ]⊔ [ν] of A(t), respectively, where ⊔ denotes the direct sum.
We often drop “∈ [µ]” from the notation of “α ∈ [µ]” if it is clear from the context. Each α and β
is endowed with the 2-dimensional F-vector space F2, denoted by Uα and Vβ, respectively. Each
submatrix Aαβ is considered as the bilinear map Uα × Vβ → F defined by Aαβ(u, v) := u⊤Aαβv
for u ∈ Uα and v ∈ Vβ. We denote by kerL(Aαβ) and kerR(Aαβ) the left and right kernels of
Aαβ , respectively. Let us denote byMα andMβ the sets of 1-dimensional vector subspaces of
Uα and Vβ, respectively.

We define the (undirected) bipartite graph G := ([µ], [ν];E) by E := {αβ | Aαβ 6= O}. For
M ⊆ E, let AM (t) denote the matrix obtained from A(t) by replacing each submatrix Aαβ with
αβ 6∈M by the 2×2 zero matrix. An edge αβ ∈ E is said to be rank-k (k = 1, 2) if rankAαβ = k.
For notational simplicity, the subgraph ([µ], [ν];M) for M ⊆ E is also denoted by M . For a node
γ, let degM (γ) denote the degree of γ in M , i.e., the number of edges in M incident to γ. An
edge αβ ∈M is said to be isolated if degM (α) = degM (β) = 1.

2 Duality theorem

In this section, we introduce a matching concept and a potential concept suitable for a (2× 2)-
type generic partitioned polynomial matrix A(t) of the form (1.4). They play a central role in
devising our algorithm. We also present a minimax theorem between the weight of a “matching”
and the value related to a “potential” in our setting, which leads to a good characterization for
the computation of the maximum degree of minors of A(t).

2.1 Matching concept

We introduce a matching concept named pseudo-matching. This is a weaker concept than match-
ing of a (2× 2)-type generic partitioned (not polynomial) matrix that introduced in the previous
work [16], because of which, it is prefixed with “pseudo.” An edge subset M ⊆ E is called a
pseudo-matching if it satisfies the following combinatorial and algebraic conditions (Deg), (Cy-
cle), and (VL):

(Deg) degM (γ) ≤ 2 for each node γ of G.

Suppose that M satisfies (Deg). Then each connected component of M forms a path or a cycle.
Thus M is 2-edge-colorable; i.e., there are two edge classes such that any two incident edges are
in different classes. An edge in one color class is called a +-edge, and an edge in the other color
class is called a −-edge.

(Cycle) Each cycle component of M has at least one rank-1 edge.

A labeling V = ({U+
α , U−

α }, {V
+
β , V −

β })α,β is a node-labeling that assigns two distinct 1-dimensional

subspaces to each node, U+
α , U−

α ∈ Mα with U+
α 6= U−

α for α and V +
β , V −

β ∈ Mβ with V +
β 6= V −

β

for β. A labeling V is said to be valid for M if, for each edge αβ ∈M ,

Aαβ(U
+
α , V −

β ) = Aαβ(U
−
α , V +

β ) = {0}, (2.1)
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(kerL(Aαβ), kerR(Aαβ)) =

{

(U+
α , V +

β ) if αβ is a rank-1 +-edge,

(U−
α , V −

β ) if αβ is a rank-1 −-edge.
(2.2)

For α, we refer to U+
α and U−

α as the +-space and −-space of α with respect to V, respectively.
The same terminology is also used for β.

(VL) M admits a valid labeling.

In the following sections, we use the symbol σ as one of the signs + and −. The opposite
sign of σ is denoted by σ, i.e., σ = − if σ = +, and σ = + if σ = −.

Remark 2.1. Suppose that M satisfies (Deg) and that αβ is a rank-1 σ-edge in M . The
condition (2.2) determines Uσ

α and V σ
β , and the condition (2.1) determines V σ

β′ and Uσ
α′ (resp.

Uσ
α′ and V σ

β′) for α′ and β′ belonging to the path in M which starts with α (resp. β) and consists
of rank-2 edges.

Suppose further that M satisfies (Cycle). For each node in some cycle component of M , its +-
space and −-space are uniquely determined by the above argument, since every cycle component
has a rank-1 edge by (Cycle). Let C be a path component of M , which has the end nodes γ and
γ′ incident to a σ-edge and a σ′-edge, respectively. When we set the σ-space of γ and σ′-space
of γ′, the +-space and −-space of every node belonging to C are uniquely determined. �

By the argument in Remark 2.1, we can check if an edge subset M is a pseudo-matching in
polynomial time.

Let M ⊆ E be a pseudo-matching, and I a set of isolated rank-2 edges in M . We refer to
such a pair (M, I) as a matching-pair. The size of a matching-pair (M, I) is |M | + |I|. The
weight w(M, I) of (M, I) is defined by

w(M, I) :=
∑

αβ∈M

dαβ +
∑

αβ∈I

dαβ.

Let ({U+
α , U−

α }, {V
+
β , V −

β })α,β be a valid labeling for M . We say that Uσ
α (resp. V σ

β ) is matched
by (M, I) if α (resp. β) is incident to a σ-edge in M or to a σ-edge in I. That is, the set of all
spaces matched by (M, I) is representable as

⋃

σ∈{+,−}

{

Uσ
α , V

σ
β

∣

∣ αβ ∈M : σ-edge
}

∪
⋃

σ∈{+,−}

{

Uσ
α , V

σ
β

∣

∣ αβ ∈ I: σ-edge
}

. (2.3)

Thus the number of Uσ
α that are matched by (M, I) coincides with that of V σ

β , which are equal
to the size |M |+ |I| of (M, I).

2.2 Minimax formula

In this subsection, we provide a minimax formula between the maximum weight of a matching-
pair of size k and the minimum value corresponding to a potential (defined below) and k, which
coincides with δk(A(t)). This formula is an algebraic generalization of Egerváry’s theorem [7]
that is a minimax theorem for the maximum weight perfect bipartite matching problem.

For c ∈ R, a function p :
⋃

γMγ → R is called a c-potential if

• p is nonnegative, i.e., p(Z) ≥ 0 for all Z ∈
⋃

γMγ , and

• p(X)+ p(Y )+ c ≥ dαβ for all αβ ∈ E, X ∈ Mα, and Y ∈ Mβ such that Aαβ(X,Y ) 6= {0}.
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We can omit the parameter c from the notation if it is not important in the context. For a
potential p and a labeling V = ({U+

α , U−
α }, {V

+
β , V −

β })α,β , we define

p(V) :=
∑

α

(

p(U+
α ) + p(U−

α )
)

+
∑

β

(

p(V +
β ) + p(V −

β )
)

.

The following minimax formula is a generalization of Egerváry’s theorem:

Theorem 2.2. Let k be a nonnegative integer. The following values (i)–(iii) are the same:

(i) δk(A(t)).

(ii) sup{w(M, I) | (M, I): matching-pair of size k}.

(iii) inf{p(V) + kc | V: labeling, c ∈ R, p: c-potential}.

Proof. We only show the weak duality (ii) ≤ (i) ≤ (iii). The strong duality (ii) = (iii) follows
from the validity of our proposed algorithm.

In the proof, we perform the following basis transformation with respect to a labeling V =
({U+

α , U−
α }, {V

+
β , V −

β })α,β . Take nonzero vectors u+α ∈ U+
α , u−α ∈ U−

α , v+β ∈ V +
β , and v−β ∈ V −

β for

each α and β. By U+
α 6= U−

α and V +
β 6= V −

β , the 2×2 matrices Sα :=

[

u+α
u−α

]

and Tβ :=
[

v+β v−β

]

are both nonsingular. Let S and T be the block-diagonal matrices with diagonal blocks Sα and
Tβ, respectively. Then, via the basis transformation with respect to S and T , we obtain a (2×2)-
type generic partitioned polynomial matrix SA(t)T = (SαAαβxαβt

dαβTβ), in which the ασβσ′

-th
entry of SA(t)T is Aαβ(u

σ
α, v

σ′

β )xαβt
dαβ . Note that the ασβσ′

-th entry of SA(t)T is of the form

axαβt
dαβ with some a ∈ F, and it is nonzero if and only if Aαβ(U

σ
α , V

σ′

β ) 6= {0}.

(ii) ≤ (i). Take any matching-pair (M, I) of size k and valid labeling ({U+
α , U−

α }, {V
+
β , V −

β })α,β
for M . We consider the basis transformation with respect to the valid labeling. By condi-
tions (2.1) and (2.2), we have

Sα(Aαβxαβt
dαβ )Tβ =































































[

β+ β−

α+ • 0
α− 0 •

]

if αβ is rank-2, (2.4)

[

β+ β−

α+ 0 0
α− 0 •

]

if αβ is a rank-1 +-edge, (2.5)

[

β+ β−

α+ • 0
α− 0 0

]

if αβ is a rank-1 −-edge (2.6)

for each αβ ∈M , where • represents some nonzero element in F(x, t).
Define ÃM (t) := SAM (t)T . Note that δk(ÃM (t)) = δk(AM (t)). Moreover, by δk(AM (t)) ≤

δk(A(t)), it suffices to show that w(M, I) ≤ δk(ÃM (t)). Let X (resp. Y) denote the set of
ασ (resp. βσ) such that Uσ

α (resp. V σ
β ) is matched by (M, I). By |M | + |I| = k, we have

|X | = |Y| = k. Let ÃM (t)[X ,Y] denote the submatrix of ÃM (t) with row set X and column set
Y. Furthermore, let C be the set of connected components of M \ I. For each C ∈ C, we denote
XC and YC by the restrictions of X and Y to C, respectively. Then we have

det ÃM (t)[X ,Y] =
∏

αβ∈I

det ÃM (t)
[{

α+, α−
}

,
{

β+, β−
}]

·
∏

C∈C

det ÃM (t)[XC ,YC ]. (2.7)
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In the following, we prove that deg det ÃM (t)[{α+, α−}, {β+, β−}] = 2dαβ for αβ ∈ I, and
that deg det ÃM (t)[XC ,YC ] ≥

∑

αβ∈C dαβ for C ∈ C; these imply w(M, I) ≤ deg det ÃM (t)[X ,Y]

by (2.7), and hence, we obtain w(M, I) ≤ δk(ÃM (t)), as required. The former immediately
follows from (2.4) and the fact that αβ ∈ I is rank-2. For the latter, we only consider the case
where C ∈ C is a cycle component; the argument for a path component is simpler and we omit
it. Suppose that C consists of +-edges α1β1, α2β2, . . . , αkβk and −-edges β1α2, β2α3, . . . , βkα1.
By (2.4)–(2.6), we obtain

ÃM [XC ,YC ] =

β+
1 β+

2 · · · β+
k−1 β+

k β−
1 β−

2 · · · β−
k−1 β−

k




































































α+
1 ∗ •

α+
2 • ∗
...

. . .
. . .

α+
k−1 • ∗
α+
k • ∗

α−
1 • ∗

α−
2 ∗ •
...

. . .
. . .

α−
k−1 ∗ •
α−
k ∗ •

, (2.8)

where • represents some nonzero element in F(x, t) and ∗ can be a zero/nonzero element; ∗
is nonzero if and only if the corresponding edge is rank-2. Let C+ be the set of +-edges
α1β1, α2β2, . . . , αkβk in C, and C− the set of −-edges β1α2, β2α3, . . . , βkα1 in C. By (Cycle),
one of ∗ elements in (2.8) is zero; we may assume that the α+

1 β
+
1 -th entry of ÃM (t)[XC , YC ] is

zero. Hence we obtain that

det ÃM (t)[XC ,YC ] =



a′
∏

αβ∈C−

xαβt
dαβ



 ·



a′′
∏

αβ∈C+

xαβt
dαβ + a′′′

∏

αβ∈C−

xαβt
dαβ





for some a′′′ ∈ F and nonzero a′, a′′ ∈ F. Thus deg det ÃM (t)[XC ,YC ] ≥
∑

αβ∈C− dαβ +
∑

αβ∈C+ dαβ =
∑

αβ∈C dαβ .
This completes the proof.
(i) ≤ (iii). It suffices to see the case of δk(A(t)) > −∞, i.e., rankA(t) ≥ k. Take any t ∈ R,

c-potential p, and (not necessarily valid) labeling V = ({U+
α , U−

α }, {V
+
β , V −

β })α,β . We consider

the basis transformation Ã(t) := SA(t)T with respect to V. Then δk(Ã(t)) = δk(A(t)) holds.
Suppose δk(Ã(t)) = deg det Ã(t)[X ,Y] for some |X | = |Y| = k, where X =

{

ασ1

1 , ασ2

2 , . . . , ασk

k

}

and Y =
{

β
σ′

1

1 , β
σ′

2

2 , . . . , β
σ′

k

k

}

. We may assume that the ασi

i β
σ′

i

i -th entry of Ã(t)[X ,Y] is nonzero

(or equivalently, Aαiβi
(Uσi

αi
, V

σ′

i

βi
) 6= {0}) for each i = 1, 2, . . . , k and that deg det Ã(t)[X ,Y] =

∑k
i=1 dαiβi

. Then we have δk(Ã(t)) =
∑k

i=1 dαiβi
≤

∑k
i=1

(

p(Uσi
αi
) + p(V

σ′

i

βi
) + c

)

≤ p(V) + kc.

Here the first and second inequalities follow from the fact that p is a c-potential.
This completes the proof. �

2.3 Good characterization

The minimax formula (Theorem 2.2) states that the decision problem of whether δk(A(t)) is
at least a threshold θ ∈ R belongs to NP. Indeed, a matching-pair (M, I) of size k such that
w(M, I) ≥ θ can be used as a proof for δk(A(t)) ≥ θ, which is verifiable in polynomial time. In
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the following, by introducing the concept of compatibility for a potential, we see that the problem
of whether δk(A(t)) ≥ θ is also in co-NP by using Theorem 2.2. This implies that the minimax
theorem can be used as a good characterization for the computation of δk(A(t)).

Let (M, I) be a matching-pair of size k and V a valid labeling for M . A c-potential p is said
to be (M, I,V)-compatible if p satisfies the following conditions (Reg) and (Tight):

(Reg) For each α and β,

p(X) = max{p(U+
α ), p(U−

α )} (X ∈ Mα \ {U
+
α , U−

α }),

p(Y ) = max{p(V +
β ), p(V −

β )} (Y ∈ Mβ \ {V
+
β , V −

β }).

(Tight) For each αβ ∈M ,

dαβ =

{

p(U−
α ) + p(V −

β ) + c if αβ is a +-edge,

p(U+
α ) + p(V +

β ) + c if αβ is a −-edge,

and for each αβ ∈ I,

dαβ =

{

p(U+
α ) + p(V +

β ) + c if αβ is a +-edge,

p(U−
α ) + p(V −

β ) + c if αβ is a −-edge,

An (M, I,V)-compatible c-potential p is said to be optimal if the equality w(M, I) = p(V) +
kc holds, namely, (M, I) and (p,V) attain the supremum of (ii) and the infimum of (iii) in
Theorem 2.2, respectively. The following theorem (Theorem 2.3) states that such an optimal
potential always exists if δk(A(t)) is bounded; its proof is given by the validity of our algorithm.

Theorem 2.3. Let k be a nonnegative integer. If δk(A(t)) is bounded, then there are a matching-
pair (M, I) of size k, a valid labeling V for M , and an optimal (M, I,V)-compatible c-potential
p for some c ∈ R. In particular, the above p and c can be chosen to be integer-valued.

By Theorem 2.3, a pair (p,V) of a c-potential p satisfying (Reg) and a valid labeling V
satisfying p(V) + kc < θ can be used as a proof for δk(A(t)) < θ. The following shows that the
condition (Reg) enables us to check if a given nonnegative function p on

⋃

γMγ is a c-potential
in polynomial time.

Lemma 2.4. Suppose that a nonnegative function p on
⋃

γMγ satisfies (Reg) for a labeling

({U+
α , U−

α }, {V
+
β , V −

β })α,β . If p(U
σ
α )+p(V σ′

β )+ c ≥ dαβ for all αβ ∈ E with Aαβ(U
σ
α , V

σ′

β ) 6= {0},
then p is a c-potential.

Proof. Take arbitrary X ∈ Mα and Y ∈ Mβ with p(X) + p(Y ) + c < dαβ . It suffices to show
that Aαβ(X,Y ) = {0}. Here we may assume X /∈ {U+

α , U−
α }; the case of Y /∈ {V +

β , V −
β } is similar

and we omit it. We also assume p(U+
α ) ≤ p(U−

α ) and p(V +
β ) ≤ p(V −

β ).

By (Reg), we obtain p(X) = p(U−
α ) ≥ p(U+

α ) and p(Y ) ≥ p(V +
β ), implying p(U+

α ) + p(V +
β ) +

c ≤ p(U−
α )+p(V +

β )+c ≤ p(X)+p(Y )+c < dαβ . Therefore Aαβ(U
+
α , V +

β ) = Aαβ(U
−
α , V +

β ) = {0},

i.e., kerR(Aαβ) ⊇ V +
β . If Y = V +

β , then we have Aαβ(X,Y ) = {0}. If Y 6= V +
β , then p(Y ) =

p(V −
β ) holds by (Reg), which implies the inequalities p(U+

α )+ p(V −
β )+ c ≤ p(U−

α )+ p(V −
β )+ c <

dαβ . Hence we have Aαβ(U
+
α , V −

β ) = Aαβ(U
−
α , V −

β ) = {0}; Aαβ is the zero matrix. Thus we
obtain Aαβ(X,Y ) = {0}. �
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It is known [16, Section 5] that the bit-length required for representing a valid labeling is
polynomially bounded even if F = Q. Thus the proof (p,V) for δk(A(t)) < θ is verifiable in
polynomial time, implying the problem of whether δk(A(t)) ≥ θ is in co-NP.

We conclude this section with the observation that the optimality of an (M, I,V)-compatible
potential p can be rephrased as the condition (Zero):

(Zero) For all Uσ
α and V σ′

β that are unmatched by (M, I),

p(Uσ
α ) = p(V σ′

β ) = 0.

The definitions of (Tight) and (Zero) immediately imply the following.

Lemma 2.5. Let (M, I) be a matching-pair of size k, V a valid labeling for M , and p an
(M, I,V)-compatible c-potential. Then we have w(M, I) =

∑

{p(Z) | Z: matched by (M, I)}+kc.
In particular, p is optimal if and only if p satisfies (Zero).

3 Augmenting path

Our proposed algorithm is a primal-dual one. An outline of the algorithm is as follows; the
formal description is given in Section 3.3. Let (M, I) be a matching-pair of size k, V a valid
labeling for M , and p an optimal (M, I,V)-compatible c-potential. We

• verify δk+1(A(t)) = −∞ (or equivalently rankA(t) = k),

• find an optimal compatible potential so that a rearrangeable component (introduced in
Section 3.1) exists in M \ I, or

• find an augmenting path (introduced in Section 3.2).

In the first case, we output the entire sequence of the maximum degree of minors as

(δ0(A(t)), δ1(A(t)), . . . , δk(A(t)),−∞, . . . ,−∞)

and stop this procedure. The others are cases where we obtain a matching-pair (M∗, I∗) of size
k + 1, a valid labeling V∗ for M∗, and an optimal (M∗, I∗,V∗)-compatible potential p∗, which
implies δk+1(A(t)) = w(M∗, I∗). This is an augmentation in our setting.

Our augmentation is based on the auxiliary graph G(V, p): The vertex set is {α+, α− |

α}∪{β+, β− | β}, and the edge set, denoted by E(V, p), is
{

ασβσ′

∣

∣

∣
Aαβ(U

σ
α , V

σ′

β ) 6= {0}, p(Uσ
α )+

p(V σ′

β ) + c = dαβ

}

. By (2.1), for each αβ ∈ M , neither α+β− nor α−β+ belongs to E(V, p).

The condition (Tight) implies that for each σ-edge αβ ∈ M , we have ασβσ ∈ E(V, p). In
addition, if αβ ∈ I, then α+β+, α−β− ∈ E(V, p). An edge αβ ∈ M is said to be double-tight if
α+β+, α−β− ∈ E(V, p), i.e., αβ is rank-2 and p(U+

α ) + p(V +
β ) + c = p(U−

α ) + p(V −
β ) + c = dαβ .

A σ-edge αβ ∈ M is said to be single-tight if it is not double-tight, i.e., ασβσ ∈ E(V, p) and
ασβσ /∈ E(V, p). Note that all edges in I are double-tight and all rank-1 edges in M are single-
tight. We refer to ασ and βσ as σ-vertices. We denote by G(V, p)|M the subgraph of G(V, p)

such that its edge set E(V, p)|M is
{

ασβσ′

∈ E(V, p)
∣

∣

∣
αβ ∈ M

}

. A σ-path is a path in G(V, p)

consisting of edges ασβσ.
As the initialization (k = 0), we set both M and I as the empty sets, and V as any labeling.

We define p and c by p(Z) := 0 for every Z ∈
⋃

γMγ and c := max{dαβ | αβ ∈ E}, respectively.
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3.1 Rearrangement

Let C be a path component of M \ I with odd length such that the end edges of C are σ-edges.
We say that C is rearrangeable with respect to p if every σ-edge in C is double-tight.

Suppose that C is rearrangeable with respect to p. The rearrangement of (M, I) with respect
to C is an operation of modifying (M, I) to a matching-pair (M∗, I∗) of size k + 1 as follows:

M∗ := M \ {all σ-edges in C},

I∗ := I ∪ {all σ-edges in C}.

Since C has odd length, we have |M∗| = |M | − (|C| − 1)/2 and |I∗| = |I|+ (|C|+1)/2, implying
that the size of (M∗, I∗) is larger than that of (M, I) by one. Clearly V is still a valid labeling
for the resulting M∗. Since every σ-edges in C is double-tight, p satisfies (Tight) for any newly
added edge to I. Thus p is still an (M∗, I∗,V)-compatible c-potential. Let α, β be the end nodes
of C. Then Uσ

α , V
σ
β are spaces that are newly matched by the resulting (M∗, I∗). This implies

that, if p is optimal for (M, I,V), then so is it for (M∗, I∗,V) by Lemma 2.5. Therefore the
following holds.

Lemma 3.1. Let (M, I) be a matching-pair of size k, V a valid labeling for M , p an optimal
(M, I,V)-compatible c-potential, and C a rearrangeable connected component with respect to p.
Also let (M∗, I∗) be the pair of edge subsets obtained from (M, I) by the rearrangement with
respect to C. Then (M∗, I∗) is a matching-pair of size k + 1, V is a valid labeling for M∗, and
p is an optimal (M∗, I∗,V)-compatible c-potential.

3.2 Definition of an augmenting path

In this subsection, we introduce an augmenting path in our setting. First, we define the source set
and the target set as follows, in which nodes βσ in the former and ασ in the latter can be the initial
and the last nodes of an augmenting path, respectively. Let U(M, I) denote the set of all nodes
ασ and βσ′

such that Uσ
α and V σ′

β are unmatched by (M, I). For each γσ ∈ U(M, I), we denote
by C(γσ) the connected component of G(V, p)|M containing γσ. The source set S(M, I,V, p) and
the target set T (M, I,V, p) for (M, I,V, p) are defined by

S(M, I,V, p) :=
⋃

{the nodes belonging to C(βσ) | βσ ∈ U(M, I)},

T (M, I,V, p) :=
⋃

{the nodes belonging to C(ασ) | ασ ∈ U(M, I)}.

We then define the components of an augmenting path. An outer path P for (M, I,V, p) is a
path in G(V, p) of the form

(βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 )

such that

(O1) βiαi+1 ∈ E \M for each i = 0, 1, . . . , k and αi+1βi+1 ∈ I for each i = 0, 1, . . . , k − 1, and

(O2) Aαi+1βi
(U

σi+1
αi+1

, V σi

βi
) = {0} for each i = 0, 1, . . . , k − 1.

Note that (O2) does not require Aαk+1βk
(U

σk+1
αk+1

, V σk

βk
) = {0} on the last edge βσk

k α
σk+1

k+1 . The

initial vertex βσ0

0 and last vertex α
σk+1

k+1 are denoted by β(P) and α(P), respectively.
An inner path Q for (M, I,V, p) is a path in G(V, p) of the form

(ασ
0β

σ
1 , β

σ
1α

σ
1 , . . . , α

σ
kβ

σ
k+1),

such that
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(I1) the underlying path (α0β1, β1α1, . . . , αkβk+1) of Q in G is included in a connected compo-
nent of M \ I, and

(I2) α0β1, α1β2, . . . , αkβk+1 are σ-edges and β1α1, β2α2, . . . , βkαk are σ-edges.

The former condition implies that Q can also be viewed as a σ-path in G(V, p)|M , and the latter
implies that the σ-edges β1α1, β2α2, . . . , βkαk are double-tight (and hence rank-2). The initial
vertex ασ

0 and last vertex βσ
k+1 are denoted by α(Q) and β(Q), respectively.

We are now ready to define an augmenting path. Here, for paths P and Q in G(V, p) such
that the last node of P coincides with the first node of Q, we denote the concatenation of P and
Q by P ◦ Q. An augmenting path R for (M, I,V, p) is a path in G(V, p) such that

(A1) R is the concatenation P0 ◦Q1 ◦P1 ◦ · · · ◦Qm ◦Pm of outer paths P0,P1, . . . ,Pm and inner
paths Q1, . . . ,Qm for (M, I,V, p) in which α(Pi) = α(Qi+1) and β(Qi+1) = β(Pi+1) for
each i, and

(A2) β(P0) ∈ S(M, I,V, p) and α(Pm) ∈ T (M, I,V, p).

An augmenting path augments a matching-pair. The following provides the validity of our
augmenting procedure; Sections 4–8 are devoted to its proof.

Theorem 3.2. From a matching-pair (M, I) of size k, a valid labeling V for M , an optimal
(M, I,V)-compatible c-potential p, and an augmenting path for (M, I,V, p), we can obtain a
matching-pair (M∗, I∗) of size k + 1 and a valid labeling V∗ for M∗ such that p is an optimal
(M∗, I∗,V∗)-compatible c-potential in O(min{µ, ν}3) time.

3.3 Finding an augmenting path

In this subsection, we present an algorithm for verifying δk+1(A(t)) = −∞, finding an optimal
potential so that a rearrangeable component exists, or finding an augmenting path.

Suppose that we are given a matching-pair (M0, I0) of size k < min{2µ, 2ν}, a valid labeling
V0 for M0, and an optimal (M0, I0,V0)-compatible potential p0 as the input. Suppose further
that there is no rearrangeable component with respect to p0. (If it exists, we can argument
(M0, I0) by Lemma 3.1.) We initialize (M, I) ← (M0, I0), V ← V0, and p ← p0. In addition,
during the algorithm, we maintain a forest F in G(V, p) such that each connected component of
F has exactly one node in S(M, I,V, p); we initialize F ← S(M, I,V, p), which is nonempty by
k < min{2µ, 2ν} and Lemma 3.4 (3) below.

The algorithm consists of the primal update and the dual update. While there is an edge
βσασ′

∈ E(V, p) such that βσ ∈ F and ασ′

6∈ F , we execute the primal update. If there is no
such edge, then we execute the dual update. Here, for a vector space X ⊆ Uα, let X⊥αβ (or
X⊥βα) denote the orthogonal vector space with respect to Aαβ:

X⊥αβ (= X⊥βα) := {y ∈ Vβ | Aαβ(x, y) = 0 for all x ∈ X}.

For a vector space Y ⊆ Vβ, Y
⊥αβ (or Y ⊥βα) is analogously defined.

Primal update: We first add to F an edge βσασ′

∈ E(V, p) such that βσ ∈ F and ασ′

6∈ F .

(P1) If ασ′

∈ T (M, I,V, p), then output (M, I,V, p) and the unique path R in F from a
vertex in S(M, I,V, p) to ασ′

. Stop this procedure.

(P2) Suppose that ασ′

6∈ T (M, I,V, p) and α is incident to an edge αβ′ in I. Then update
the valid labeling V for M as

Uσ′

α ← (V σ
β )⊥αβ , V σ′

β′ ← (Uσ′

α )⊥αβ′ ,
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and add ασ′

β′σ
′

to F . Also update G(V, p) for the resulting V. (This case will be an
expansion of an outer path.)

(P3) Suppose that ασ′

6∈ T (M, I,V, p) and α belongs to a connected component of M \ I.
Let Q be the longest inner path in G(V, p)|M starting with ασ′

such that Q does not
meet F . Then add Q to F . (This case will be an addition of an inner path.)

Dual update: For each βσ ∈ F , define

εβσ := inf
{

p(Uσ′

α ) + p(V σ
β ) + c− dαβ

∣

∣

∣
ασ′

6∈ F , Aαβ(U
σ′

α , V σ
β ) 6= {0}

}

.

Let ε be the minimum value of εβσ over βσ ∈ F .

(D1) If ε = +∞, then output “δk+1(A(t)) = −∞” and stop this procedure.

(D2) If ε < +∞, then update p and c as

p(V σ
β )← p(V σ

β ) + ε if βσ /∈ F ,

p(Uσ
α )← p(Uσ

α ) + ε if ασ ∈ F ,

c← c− ε,

and adjust p so that p satisfies (Reg), that is, for each α and β,

p(X)← max{p(U+
α ), p(U−

α )} (X ∈ Mα \ {U
+
α , U−

α }),

p(Y )← max{p(V +
β ), p(V −

β )} (Y ∈ Mβ \ {V
+
β , V −

β }).

(D2-1) Suppose that there is a rearrangeable connected component C with respect to
the resulting p. Then we apply the rearrangement to (M, I). Output the resulting
(M, I,V, p) and stop this procedure.

(D2-2) Otherwise, suppose that the resulting target set T (M, I,V, p) is enlarged. In
this case, we have F ∩T (M, I,V, p) 6= ∅. Output (M, I,V, p) and a minimal path
R with respect to inclusion in F from a vertex in S(M, I,V, p) to a vertex in
F ∩ T (M, I,V, p). Stop this procedure.

(D2-3) Otherwise, update

F ← F ∪ S(M, I,V, p)

if the resulting S(M, I,V, p) is enlarged. �

The following theorem states that the above algorithm correctly works, the proof of which is
given later.

Theorem 3.3. (1) Suppose that the algorithm reaches (P1) or (D2-2). Then the output (M, I)
is a matching-pair of size k, V is a valid labeling for M , p is an optimal (M, I,V)-compatible
c-potential, and R is an augmenting path for (M, I,V, p).

(2) If the algorithm reaches (D1), then δk+1(A(t)) = −∞.

(3) Suppose that the algorithm reaches (D2-1). Then the output (M, I) is a matching-pair of
size k+1, V is a valid labeling for M , and p is an optimal (M, I,V)-compatible c-potential.

(4) The running-time of the algorithm is O(µνmin{µ, ν}).
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Theorems 3.2 and 3.3 imply Theorems 1.1, 2.2, and 2.3. Indeed, the above algorithm detects
δk+1(A(t)) = −∞ or outputs a matching-pair (M, I) of size k + 1, a valid labeling V, and an
optimal compatible potential p in O(µνmin{µ, ν}) time by Theorems 3.2 and 3.3. In the latter
case, the supremum and the infimum in the minimax formula in Theorem 2.2 are attained by
such (M, I) and (V, p). In particular, since every dαβ is integer, so is ε in the dual update (D2),
which implies that p and c are integer-valued. Thus Theorems 2.2 and 2.3 follow. Moreover,
since at most min{2µ, 2ν} augmentations occur in the algorithm, we obtain Theorem 1.1.

For the proof of Theorem 3.3, we present the following three lemmas (Lemmas 3.4, 3.5, and
3.6). In particular, Lemmas 3.5 and 3.6 are frequently used for the proofs of the validity of the
augmentation procedure in Sections 4–8.

Lemma 3.4. Suppose that there is no rearrangeable component in M \ I with respect to p. Then
the following hold:

(1) S(M, I,V, p) ∩ T (M, I,V, p) = ∅.

(2) For each γσ ∈ U(M, I), C(γσ) forms an even length σ-path in G(V, p)|M which starts with
γσ.

(3) |S(M, I,V, p) ∩ {β+, β− | β}| − |S(M, I,V, p) ∩ {α+, α− | α}| = 2ν − k.

Proof. For γσ ∈ U(M, I), we denote by V (C(γσ)) the set of nodes belonging to C(γσ).
(1). Suppose, to the contrary, that S(M, I,V, p)∩T (M, I,V, p) 6= ∅. Then

⋃

ασ∈U(M,I) V (C(ασ))∩
⋃

βσ∈U(M,I) V (C(βσ)) 6= ∅. That is, there is a path connected component C of M \ I with odd
length of the form (β0α1, α1β1, . . . , βkαk+1) such that β0α1 and βkαk+1 are σ-edges and a σ-path
(βσ

0 α
σ
1 , α

σ
1β

σ
1 , . . . , β

σ
kα

σ
k+1) exists in G(V, p)|M . This implies that all σ-edges β0α1, β1α2, . . . , βkαk+1

are double-tight, i.e., C is rearrangeable, which contradicts the assumption that there is no re-
arrangeable component.

(2). We only show that, for each βσ ∈ U(M, I), C(βσ) forms an even length σ-path in
G(V, p)|M which starts with βσ; the case for ασ ∈ U(M, I) is similar. Note that β is not incident
to an edge in I. By (2.1), C(βσ) consists of nodes labeled by σ. Suppose, to the contrary, that
C(βσ) forms an odd length σ-path, i.e., C(βσ) = (βσ = βσ

0α
σ
1 , α

σ
1β

σ
1 , . . . , β

σ
kα

σ
k+1). Note that

β0α1 and βkαk+1 are σ-edges. If degM (αk+1) = 2, then αk+1 is incident to a σ-edge αk+1βk+1

in M , and hence, the edge ασ
k+1β

σ
k+1 belongs to E(V, p). This implies that βσ

k+1 also belongs to
Cβ; a contradiction. If degM (αk+1) = 1, then the connected component C of M \ I containing β0
and αk+1 forms an odd length path component and the end edges β0α1 and βkαk+1 are σ-edges.
Thus all σ-edges in C are double-tight. This contradicts the assumption.

(3). By (2), we have |V (C(βσ)) ∩ {β+, β− | β}| − |V (C(βσ)) ∩ {α+, α− || α}| = 1 for each
βσ ∈ U(M, I). Thus we obtain |S(M, I,V, p) ∩ {β+, β− | β}| − |S(M, I,V, p) ∩ {α+, α− | α}| =
|{βσ | β ∈ U(M, I)}| = 2ν − k. �

Lemma 3.5. Suppose that there is an edge ασβσ′

in E(V, p). Then the vector spaces (V σ′

β )⊥βα

and (Uσ
α )

⊥αβ belong toMα andMβ, and are different from Uσ
α and V σ′

β , respectively. Moreover,

(V σ′

β )⊥βα = Uσ
α if p(Uσ

α ) < p(Uσ
α ), and (Uσ

α )
⊥αβ = V σ′

β if p(V σ′

β ) < p(V σ′

β ).

Proof. We only show the statements on (V σ′

β )⊥βα . By ασβσ′

∈ E(V, p), we have Aαβ(U
σ
α , V

σ′

β ) 6=

{0} and p(Uσ
α ) + p(V σ′

β ) + c = dαβ . By the former, we have V σ′

β 6⊆ kerR(Aαβ). Hence (V σ′

β )⊥βα

is a 1-dimensional vector space; i.e., it belongs to Mα, and (V σ′

β )⊥βα 6= Uσ
α . Moreover, if

p(Uσ
α ) < p(Uσ

α ), the identity p(Uσ
α ) + p(V σ′

β ) + c = dαβ implies p(Uσ
α ) + p(V σ′

β ) + c < dαβ . Since

p is a c-potential, we have Aαβ(U
σ
α , V

σ′

β ) = {0}. Thus we obtain (V σ′

β )⊥βα = Uσ
α . �
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Let (M, I) be a matching-pair, V = ({U+
α , U−

α }, {V
+
β , V −

β })α,β a valid labeling for M , and

p an (M, I,V)-compatible c-potential. A labeling V̂ = ({Û+
α , Û+

α }, {V̂
+
β , V̂ −

β })α,β is said to

be equivalent to V with respect to p, denoted by V̂ ≃p V, if V̂ is a valid labeling for M and
(p(U+

α ), p(U−
α )) = (p(Û+

α ), p(Û−
α )) and (p(V +

β ), p(V −
β )) = (p(V̂ +

β ), p(V̂ −
β )) for each α, β.

Lemma 3.6. Let V̂ = ({Û+
α , Û+

α }, {V̂
+
β , V̂ −

β })α,β be a labeling equivalent to V with respect to p.
Then the following hold:

(1) p is an (M, I, V̂)-compatible c-potential. In addition, if p is optimal for (M, I, V̂), then p
is also optimal for (M, I, V̂).

(2) G(V̂ , p)|M = G(V, p)|M .

(3) Suppose that Uσ
α = Ûσ

α or p(Uσ
α ) > p(Uσ

α ), and that V σ′

β = V̂ σ′

β or p(V σ′

β ) > p(V σ′

β ). Then

the edge ασβσ′

exists in E(V, p) if and only if it exists in E(V̂ , p).

Proof. (1) and (2) immediately follow from the definition of V ≃p V̂.

(3). There are four cases: (i) Uσ
α = Ûσ

α and V σ′

β = V̂ σ′

β , (ii) Uσ
α = Ûσ

α and p(V σ′

β ) > p(V σ′

β ),

(iii) p(Uσ
α ) > p(Uσ

α ) and V σ′

β = V̂ σ′

β , and (iv) p(Uσ
α ) > p(Uσ

α ) and p(V σ′

β ) > p(V σ′

β ). We note that

p(Uσ
α ) > p(Uσ

α ) = p(Ûσ
α ) (resp. p(V σ′

β ) > p(V σ′

β ) = p(V̂ σ′

β )) implies Uσ
α = Ûσ

α (resp. V σ′

β = V̂ σ′

β )

by (Reg). By symmetry, it suffices to show that ασβσ′

∈ E(V, p) implies ασβσ′

∈ E(V̂, p) for each
case.

(i). It is clear that ασβσ′

∈ E(V, p) implies ασβσ′

∈ E(V̂ , p).
(ii) and (iii). We only consider (ii); (iii) follows from the same argument. Suppose ασβσ′

∈
E(V, p). Then we have p(Uσ

α ) + p(V σ′

β ) + c = dαβ and Aαβ(U
σ
α , V

σ′

β ) 6= {0}. By Uσ
α = Ûσ

α and

p(V σ′

β ) > p(V σ′

β ) = p(V̂ σ′

β ), we have p(Ûσ
α )+p(V̂ σ′

β )+ c < dαβ , which implies Aαβ(Û
σ
α , V̂

σ′

β ) = {0}

since p is a c-potential. By V̂ σ′

β 6= V̂ σ′

β , we obtain Aαβ(Û
σ
α , V̂

σ′

β ) 6= {0}. Therefore ασβσ′

belongs

to E(V̂ , p).
(iv). Suppose ασβσ′

∈ E(V, p). By the assumption and p(Uσ
α ) + p(V σ′

β ) + c = dαβ , all of

p(Uσ
α ) + p(V σ′

β ), p(Uσ
α ) + p(V σ′

β ), and p(Uσ
α ) + p(V σ′

β ) are smaller than dαβ . Hence we have

Aαβ(U
σ
α , V

σ′

β ) = Aαβ(U
σ
α , V

σ′

β ) = Aαβ(U
σ
α , V

σ′

β ) = {0}. This implies that αβ is rank-1, Uσ
α =

kerL(Aαβ), and V σ′

β = kerR(Aαβ). It follows from Ûσ
α 6= Ûσ

α = Uσ
α and V̂ σ′

β 6= V̂ σ′

β = V σ′

β that

Aαβ(Û
σ
α , V̂

σ′

β ) 6= {0}. Thus ασβσ′

belongs to E(V̂ , p). �

We are ready to prove Theorem 3.3.

Proof of Theorem 3.3. A path (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , ασk

k βσk

k ) in G(V, p) is called a truncated outer
path for (M, I,V, p) if it satisfies (O1) and (O2); note that the last node is not α

σk+1

k+1 but βσk

k . Also
a path R in G(V, p) is called a truncated augmenting path for (M, I,V, p) if it is the concatenation
P0 ◦Q1 ◦P1 ◦· · ·◦Qm ◦P of outer paths P0,P1, . . . ,Pm, inner paths Q1, . . . ,Qm, and a truncated
outer path P, where P can be empty, such that β(P0) ∈ S(M, I,V, p). We can easily see that, for
a truncated augmenting path R with the end node βσ and an edge βσασ′

such that βα ∈ E \M
and ασ′

∈ T (M, I,V, p), the path R ◦ (βσασ′

) forms an augmenting path for (M, I,V, p).
We simultaneously show Theorem 3.3 (1), (2), and (3). In particular, we prove that at the

beginning of the primal/dual update phase, the following five conditions hold:

1. (M, I) = (M0, I0), V is a valid labeling for M , and p is an optimal (M, I,V)-compatible
potential.
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2. F is a forest in G(V, p) such that each connected component of F has exactly one node in
S(M, I,V, p).

3. For each βσ ∈ F , the unique pathR in F from a vertex in S to βσ is a truncated augmenting
path for (M, I,V, p).

4. For each αβ ∈M with ασβσ ∈ E(V, p), ασ ∈ F if and only if βσ ∈ F .

5. |F ∩ {β+, β− | β}| − |F ∩ {α+, α− | α}| = 2ν − k.

These are true for the initial phase F = S(M, I,V, p) (particularly, condition 5 follows from
Lemma 3.4 (3)). We see that the primal and dual updates keep these conditions.

(Primal update). Suppose that we choose an edge βσασ′

∈ E(V, p) such that βσ ∈ F and
ασ′

6∈ F to F . Then βα belongs to E \M by condition 4 and βσ ∈ F 6∋ ασ′

. Let R be the
truncated augmenting path for (M, I,V, p) that ends at βσ (which uniquely exists by condition 3).

(P1). By ασ′

∈ T (M, I,V, p), the output R ◦ (βσασ′

) forms an augmenting path for
(M, I,V, p). Condition 1 implies that Theorem 3.3 (1) for (P1) holds.

(P2). Suppose that α is incident to an edge αβ′ in I. By Lemma 3.5, we have (V σ
β )⊥αβ ∈ Mα

and (V σ
β )⊥αβ 6= Uσ′

α . Furthermore p((V σ
β )⊥αβ ) = p(Uσ′

α ) holds. Indeed, if p(Uσ′

α ) > p(Uσ′

α ), then

Lemma 3.5 asserts (V σ
β )⊥αβ = Uσ′

α . If p(Uσ′

α ) ≤ p(Uσ′

α ), then the inequality (V σ
β )⊥αβ 6= Uσ′

α im-

plies p((V σ
β )⊥αβ ) = p(Uσ′

α ) by (Reg). Therefore, by update Uσ′

α ← (V σ
β )⊥αβ and V σ′

β′ ← (Uσ′

α )⊥αβ′ ,
the resulting V is a valid labeling for M and is equivalent to the previous one with respect to p.
By Lemma 3.6 (1), p is an optimal (M, I,V)-compatible c-potential. Thus condition 1 holds.

The update of V can change G(V, p), particularly, the set of edges incident to ασ′

or β′σ
′

. We

here show that F ∪ {βσασ′

, ασ′

β′σ
′

} ⊆ E(V, p), i.e., no edge in F ∪ {βσασ′

, ασ′

β′σ
′

} is deleted
from E(V, p) by this update. By αβ′ ∈ I and Lemma 3.6 (2), we have α+β′+, α−β′− ∈ E(V, p),

implying ασ′

β′σ
′

∈ E(V, p). By condition 4, ασ′

and β′σ
′

do not belong to F , particularly, no edge

incident to β′σ
′

is in F . Hence it suffices to see that if there is β′′σ
′′

ασ′

∈ F for some β′′ 6= β′,

then β′′σ
′′

ασ′

∈ E(V, p). Suppose β′′σ
′′

ασ′

∈ F . Then we have ασ′

β′σ′

∈ F by (P2). Since the

path in F from a vertex in S to β′σ′

, whose last edge is ασ′

β′σ′

, is a truncated augmenting path
by condition 3, we have Uσ′

α = (V σ′′

β′′ )
⊥αβ′′ . By Uσ′

α 6= Uσ′

α and the equivalence of V, we have

Aαβ′′(Uσ′

α , V σ′′

β′′ ) 6= {0} and p(Uσ′

α ) + p(V σ′′

β′′ ) + c = dαβ′′ . Thus we obtain β′′σ
′′

ασ′

∈ E(V, p).

We finally prove that F ∪ {βσασ′

, ασ′

β′σ
′

} satisfies conditions 2–5 after the update. By

condition 4 for F and ασ′

6∈ F , we have β′σ
′

6∈ F . Hence F∪{βσασ′

, ασ′

β′σ
′

} satisfies condition 4.

By F ⊆ E(V, p), condition 2 still holds for F . In addition, ασ′

6∈ F and β′σ
′

6∈ F immediately

imply that F ∪ {βσασ′

, ασ′

β′σ
′

} satisfies conditions 2 and 5. For condition 3, it suffices to see

that the unique path R ◦ (βσασ′

, ασ′

β′σ
′

) in F ∪ {βσασ′

, ασ′

β′σ
′

} from a vertex in S(M, I,V, p)

to β′σ
′

is a truncated augmenting path. This follows from αβ′ ∈ I and Aαβ(U
σ′

α , V σ
β ) = {0} by

the update.
(P3). Suppose that ασ′

6∈ T (M, I,V, p) and α belongs to a connected component of M \ I.
Let Q be the longest inner path in G(V, p)|M starting with ασ′

such that Q does not meet F .
Since V and p do not change in this update, condition 1 clearly holds. Condition 2 follows

from the fact that every node in Q exits F by the definition. Since Q is of the form (ασ′

=
ασ′

0 βσ′

1 , βσ′

1 ασ′

1 , . . . , ασ′

k βσ′

k+1), in which α0β1, α1β2, . . . , αkβk+1 are σ′-edges, F ∪{βσασ′

}∪Q sat-

isfies condition 5. For each βσ′

i belonging to Q, the unique path from a vertex in S to βσ′

i is
a truncated augmenting path (which does not have a truncated outer path). Thus condition 3
holds. Finally, we show that F ∪ {βσασ′

} ∪ Q satisfies the condition 4. Suppose, to the con-
trary, that there is a σ′-edge βk+1αk+1 ∈ M such that βσ′

k+1α
σ′

k+1 ∈ E(V, p) and ασ′

k+1 /∈ F .
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Then a σ′-edge αk+1βk+2 also exists in M . Indeed, otherwise Uσ′

αk+1
is unmatched by (M, I)

by degM (αk+1) = 1, which implies ασ′

0 ∈ T (M, I,V, p). This contradicts the assumption of
ασ′

0 /∈ T (M, I,V, p) on (P3). Thus ασ′

k+1β
σ′

k+2 also exists in E(V, p), since αk+1βk+2 is a σ′-edge.

By condition 4 for F and ασ′

k+1 /∈ F , we have βσ′

k+2 /∈ F . Hence Q ◦ (βσ′

k+1α
σ′

k+1, α
σ′

k+1β
σ′

k+2) also
forms an inner path for (M, I,V, p) not meeting F , which contradicts the maximality of Q.
Therefore F ∪ {βσασ′

} ∪ Q satisfies condition 4.
(Dual update). Since there is no edge between βσ and ασ′

in E(V, p) such that βσ ∈ F and
ασ′

6∈ F , the minimum value ε of εβσ over βσ ∈ F is positive by definition. For ε′ with 0 ≤ ε′ ≤ ε
and ε′ < +∞, let us define cε′ by cε′ := c− ε′ and pε′ by

pε′(V
σ
β ) :=

{

p(V σ
β ) if βσ ∈ F ,

p(V σ
β ) + ε′ if βσ 6∈ F ,

pε′(U
σ
α ) :=

{

p(Uσ
α ) + ε′ if ασ ∈ F ,

p(Uσ
α ) if ασ 6∈ F ,

and

pε′(X) := max{pε′(U
+
α ), pε′(U

−
α )} (X ∈Mα \ {U

+
α , U−

α }),

pε′(Y ) := max{pε′(V
+
β ), pε′(V

−
β )} (Y ∈ Mβ \ {V

+
β , V −

β })

for each α and β. Then the following claim holds:

Claim. The function pε′ :
⋃

γMγ → R is an optimal (M, I,V)-compatible cε′-potential and

F ⊆ E(V, pε′). In particular, if ε < +∞, then there is at least one edge βσασ′

∈ E(V, pε) such
that βσ ∈ F and ασ′

6∈ F .

Proof of Claim. We first show that pε′ is a cε′-potential. Take arbitrary Uσ
α and V σ′

β with

pε′(U
σ
α ) + pε′(V

σ′

β ) + cε′ < dαβ . We see Aαβ(U
σ
α , V

σ′

β ) = {0}. If ασ ∈ F or βσ′

/∈ F , then dαβ >

pε′(U
σ
α )+pε′(V

σ′

β )+cε′ ≥ p(Uσ
α )+p(V σ′

β )+c. Since p is a c-potential, we have Aαβ(U
σ
α , V

σ′

β ) = {0}.

If ασ 6∈ F and βσ′

∈ F , then pε′(U
σ
α ) + pε′(V

σ′

β ) + cε′ = p(Uσ
α ) + p(V σ′

β ) + c − ε′ < dαβ . By

ε′ ≤ ε ≤ εβσ and the definition of εβσ , it must hold that Aαβ(U
σ
α , V

σ′

β ) = {0}. Since pε′ satisfies
(Reg) by definition, it is a cε′-potential by Lemma 2.4.

By condition 4, for each ασβσ ∈ E(V, p)|M , we have either ασ, βσ ∈ F or ασ, βσ /∈ F , i.e.,
p(Uσ

α ) + p(V σ
β ) + c = pε′(U

σ
α ) + pε′(V

σ
β ) + cε′ . Thus we obtain E(V, p)|M ⊆ E(V, pε′)|M , which

implies that pε′ satisfies (Tight). For each Uσ
α and V σ′

β unmatched by (M, I), we have ασ ∈

T (M, I,V, p) and βσ′

∈ S(M, I,V, p). It follows from T (M, I,V, p)∩F = ∅ and S(M, I,V, p) ⊆ F
that pε′(U

σ
α ) = p(Uσ

α ) = 0 and pε′(V
σ′

β ) = p(V σ′

β ) = 0, which implies pε′ satisfies (Zero). Hence
pε′ is an optimal (M, I,V)-compatible cε′-potential by Lemma 2.5.

For each ασβσ′

∈ F , we have pε′(U
σ
α ) + pε′(V

σ
β ) + cε′ = p(Uσ

α ) + p(V σ
β ) + c = dαβ, Therefore

we obtain F ⊆ E(V, pε′).
If ε < +∞, then there are βσ ∈ F and ασ′

6∈ F such that Aαβ(U
σ′

α , V σ
β ) 6= {0} and p(Uσ′

α ) +

p(V σ
β )+c = dαβ+ε. For such βσ and ασ′

, we have pε(U
σ′

α )+pε(V
σ
β )+cε′ = p(Uσ′

α )+p(V σ
β )+c−ε =

dαβ by the definition of pε. Hence βσασ′

belongs to E(V, pε). �

We consider the case of ε = +∞, corresponding to (D1). By Claim, the function pε′ is a cε′-
potential for any ε′ ≥ 0. By condition 5, we have 2ν−|F ∩{β+, β− | β}|+ |F ∩{α+, α− | α}| = k.
Hence pε′(V) + (k + 1)cε′ = p(V) + kε′ + (k + 1)(c− ε′) = p(V) + (k + 1)c− ε′. Therefore

inf
ε′≥0
{pε′(V) + (k + 1)cε′} = −∞.

By the weak duality in Theorem 2.2, we obtain δk+1(A(t)) = −∞, which implies Theorem 3.3 (2).

17



We then consider the case of ε < +∞, corresponding to (D2). By Claim, pε is an optimal
(M, I,V)-compatible cε-potential.

Suppose that (D2-1) occurs. Then we apply the rearrangement to (M, I) with respect to some
rearrangeable component in the algorithm; the resulting edge set pair is denoted by (M∗, I∗).
By Lemma 3.1, (M∗, I∗) is a matching-pair of size k + 1, V is a valid labeling for M∗, and pε is
an optimal (M∗, I∗,V)-compatible c-potential. By updating (M, I) ← (M∗, I∗) and p ← pε, we
obtain Theorem 3.3 (3).

In the following, we assume that there is no rearrangeable component in M \I. By Claim, pε
is an optimal (M, I,V)-compatible cε-potential, and hence, condition 1 holds. By the definition
of pε, if β

σασ′

∈ E(V, p) and either βσ, ασ′

∈ F or βσ, ασ′

/∈ F , then βσασ′

∈ E(V, pε). By
S(M, I,V, p) ⊆ F and T (M, I,V, p) ∩ F = ∅, we obtain S(M, I,V, p) ⊆ S(M, I,V, pε) and
T (M, I,V, p) ⊆ T (M, I,V, pε). By Lemma 3.4 (2), C(βσ) forms an even length path for βσ ∈
U(M, I). If S(M, I,V, pε) \ S(M, I,V, p) 6= ∅, then there is a σ-edge βα ∈ M such that βσ ∈
S(M, I,V, p) and βσασ ∈ E(V, pε) \ E(V, p). This implies that ασ /∈ F . Thus, by condition 4,
F exits S(M, I,V, pε) \ S(M, I,V, p). We consider additional two cases: (i) T (M, I,V, pε) )

T (M, I,V, p) and (ii) T (M, I,V, pε) = T (M, I,V, p).
(i). This case corresponds to (D2-2). By T (M, I,V, pε) ) T (M, I,V, p), there is a σ-edge

βα ∈ M such that ασ ∈ T (M, I,V, p) and ασβσ ∈ E(V, pε) \ E(V, p). This implies that βσ ∈
F ∩T (M, I,V, pε). Thus there is a path in F from a vertex in S(M, I,V, p)(⊆ S(M, I,V, pε)) to
a vertex in T (M, I,V, pε).

Let R be such a minimal path in F with respect to inclusion, i.e., the first node of R
belongs to S(M, I,V, p), the last node belongs to T (M, I,V, pε), and all intermediate nodes
exit S(M, I,V, p) ∪ T (M, I,V, pε). Furthermore, since F exits S(M, I,V, pε) \ S(M, I,V, p),
all intermediate nodes also exit S(M, I,V, pε). We show that R is an augmenting path for
(M, I,V, pε). By Lemma 3.4 (2) and the minimality of R with respect to the inclusion, the

last node of R belongs to T (M, I,V, pε) ∩ {α
+, α− | α}, say, ασ, and the last edge β′σ

′

ασ of
R exits E(V, pε)|M . Since F is included in E(V, pε) by Claim, R forms an augmenting path for
(M, I,V, pε); Theorem 3.3 (1) for (D2-2) holds.

(ii). This case corresponds to (D2-3). Since F exits S(M, I,V, pε) \ S(M, I,V, p), F ∪
S(M, I,V, pε) satisfies conditions 2 and 3. Let C(βσ)ε be the connected component of G(V, pε)|M
containing βσ. By Lemma 3.4 (2), C(βσ)ε \ C(β

σ) forms an even length σ-path in G(V, pε)|M .
Hence conditions 4 and 5 hold.

(4). One primal or dual update can be performed in O(|E(V, p)|) = O(µν) time. By condi-
tion 5 and |{β+, β− | β}| ≤ 2ν, the number of nodes in {α+, α− | α} covered with F is bounded
by k ≤ min{µ, ν}. In the primal update, if the algorithm does not stop, then the number of nodes
in {α+, α− | α} covered with F increases by at least one. In the dual update, if the algorithm
does not stop, then at least one edge βσασ′

such that βσ ∈ F and ασ′

6∈ F appears in E(V, p) by
Claim; the next phase is primal. Thus the number of iterations of the primal/dual updates in
the algorithm is O(min{µ, ν}). Hence the running-time of the algorithm is O(µνmin{µ, ν}). �

4 Preliminaries for the augmentation procedure

In this section, we introduce concepts of pseudo augmenting path (Section 4.1), front-propagation
(Section 4.2), and back-propagation (Section 4.3) for describing an augmentation procedure
and proving its validity. We also introduce two no short-cut conditions—named (Nouter) and
(Ninner)—on an augmenting path in Section 4.4. Section 4.5 is devoted to introducing two
quantities used to estimate the time complexity of the augmentation procedure. During the aug-
mentation, although an (M, I,V)-compatible c-potential p may not satisfy (Zero) (or may not
be optimal) for (M, I,V), it satisfies (Zero)′ for R that is a weaker condition than (Zero). This
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is formally introduced in Section 4.6. In Section 4.7, we provide an outline of our augmentation.
We here employ several notations. For an outer path P = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ), its
italic font P denotes the underlying walk (β0α1, α1β1, . . . , βkαk+1) in G. Similarly, the underlying
path of an inner path Q is denoted by its italic font Q. An outer path P is said to be simple if
the underlying walk P in G is actually a path, i.e., it does not use the same edge twice. For an
outer or inner path X = (γσ0

0 γσ1

1 , γσ1

1 γσ2

2 , . . . , γσk

k γ
σk+1

k+1 ) and i, j with 0 ≤ i < j ≤ k+1, we define

X [γσi

i , γ
σj

j ] by the subpath of X from γσi

i to γ
σj

j . In particular, if γσi

i is the initial node γσ0

0 of

X , then we denote X [γσ0

0 , γ
σj

j ] by X (γ
σj

j ]. If γ
σj

j is the last node γ
σk+1

k+1 of X , then we denote

X [γσi

i , γ
σk+1

k+1 ] by X [γσi

i ). For a component C of G, we denote the vertex set of C by V (C).
In the following, let (M, I) denote a matching-pair of size k, V a valid labeling for M , and p

an (M, I,V)-compatible c-potential.

4.1 A pseudo augmenting path

A pseudo outer path P for (M, I,V, p) is a path in G(V, p) of the form

(βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 )

satisfying (O1) and the following (O2)′:

(O2)′ β
σj

i α
σi+1

i+1 6∈ E(V, p) for each i = 0, 1, . . . , k − 1.

That is, the condition (O2) that Aαi+1βi
(U

σi+1
αi+1

, V σi

βi
) = {0} of an outer path is weakened to

β
σj

i α
σi+1

i+1 6∈ E(V, p) in the condition (O2)′ of an pseudo outer path.
A pseudo augmenting path R for (M, I,V, p) is a path in G(V, p) satisfying (A2) and the

following (A1)′:

(A1)′ R is the concatenation P0◦Q1◦P1◦· · ·◦Qm◦Pm of pseudo outer paths P0,P1, . . . ,Pm and
inner paths Q1, . . . ,Qm for (M, I,V, p) in which α(Pi) = α(Qi+1) and β(Qi+1) = β(Pi+1)
for each i.

4.2 Front-propagation

Let P = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ) be a pseudo outer path for (M, I,V, p). The front-
propagation of P is a sequence (Y0,X1, Y1, . . . , Yk,Xk+1) of 1-dimensional vector spaces such
that Y0 := V σ0

β0
and for each i,

Xi := (Yi−1)
⊥βi−1αi , Yi := (Xi)

⊥αiβi .

Note here that if P is an outer path, then the front-propagation of P is

(V σ0

βi
, Uσ1

α1
, V σ1

β1
, . . . , V σk

βk
, (V σk

βk
)
⊥βkαk+1 )

by (O2).
Suppose that we replace V σ0

β0
, Uσ1

α1
, V σ1

β1
, . . . , V σi

βi
in V with Y0,X1, Y1, . . . , Yi, respectively; we

refer to the resulting as V(P(βσi

i ]). The following holds:

Lemma 4.1. For each i = 0, 1, . . . , k, we have V(P(βσi

i ]) ≃p V and G(V(P(βσi

i ]), p) = G(V, p).
Moreover, P forms an outer path for (M, I,V(P(βσk

k ]), p).
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Proof. Let (Y0,X1, Y1, . . . , Yk,Xk+1) be the front-propagation of P. For i = 0, 1, . . . , k, let
Vi := V(P(β

σi

i ]). We show Vi ≃p V and G(Vi, p) = G(V, p) by induction on i. In addition, we
also show that, if p(Uσi

αi
) ≤ p(Uσi

αi
) then Xi = Uσi

αi
, and if p(V σi

βi
) ≤ p(V σi

βi
) then Yi = V σi

βi
.

The case i = 0 is clear by V0 = V and Y0 = V σ0

β0
. Suppose 0 ≤ i − 1 < k. By the induction

hypothesis of G(Vi−1, p) = G(V, p), we have β
σi−1

i−1 ασi

i ∈ E(Vi−1, p) and β
σi−1

i−1 ασi

i /∈ E(Vi−1, p).
There are two cases: (i) p(Uσi

αi
) ≥ p(Uσi

αi
) and (ii) p(Uσi

αi
) < p(Uσi

αi
). Note that Yi−1 is the σi−1-

space of βi−1 with respect to Vi−1, and that Uσi
αi

and V σi

βi
are the σi-space of αi and the σi-space

of βi with respect to Vi−1, respectively.
(i) p(Uσi

αi
) ≥ p(Uσi

αi
). By αiβi ∈ I and (Tight), we have p(V σi

βi
) ≤ p(V σi

βi
). It suffices to show

that Xi = Uσi
αi
. Indeed, the identity Xi = Uσi

αi
implies Yi = V σi

βi
, i.e., Vi = Vi−1. Thus Vi ≃p V

and G(Vi, p) = G(V, p) by the induction hypothesis.
We denote by X the σi-space of αi with respect to Vi−1; note that X may be different from

Uσi
αi

if ασi

i = ασℓ

ℓ for some ℓ ≤ i−1. Since p satisfies (Reg), we have p(X) = p(Uσi
αi
) ≥ p(Uσi

αi
). By

β
σi−1

i−1 ασi

i ∈ E(Vi−1, p) and Lemma 3.5, we obtain Xi(= (Yi−1)
⊥βi−1αi ) ∈ Mαi

. Furthermore, it
follows from β

σi−1

i−1 ασi

i ∈ E(Vi−1, p) that dαiβi−1
= p(X) + p(Yi−1) + c ≥ p(Uσi

αi
) + p(Yi−1) + c. By

β
σi−1

i−1 ασi

i /∈ E(Vi−1, p), we have Aαiβi−1
(Uσi

αi
, Yi−1) = {0}. Thus we obtain Xi = (Yi−1)

⊥βi−1αi =
Uσi
αi
, as required.

(ii) p(Uσi
αi
) < p(Uσi

αi
). By αiβi ∈ I and (Tight), we have p(V σi

βi
) > p(V σi

βi
). By the induction

hypothesis, the σi-space of αi and the σi-space of βi with respect to Vi−1 are Uσi
αi

and V σi

βi
,

respectively. By β
σi−1

i−1 ασi

i ∈ E(Vi−1, p) and Lemma 3.5, we obtain Xi = (Yi−1)
⊥βi−1αi ∈ Mαi

and

Xi 6= Uσi
αi
. Since αiβi is rank-2, we also obtain Yi = (Xi)

⊥αiβi ∈ Mβi
and Yi 6= V σi

βi
. Hence Vi

is a valid labeling for M . Since p satisfies (Reg), we have p(Xi) = p(Uσi
αi
) > p(Uσi

αi
) and p(Yi) =

p(V σi

βi
) > p(V σi

βi
). Thus Vi ≃p Vi−1. Furthermore Lemma 3.6 (3) asserts G(Vi, p) = G(Vi−1, p).

In the case of i = k, P is a path in G(Vk, p) = G(V, p) that clearly satisfies (O1). Furthermore,
P satisfies (O2) by Aαi+1βi

(Xi+1, Yi) = {0} for i = 0, 1, . . . , k − 1. Therefore P is an outer path
for (M, I,V, p).

This completes the proof. �

Let R = P0 ◦Q1 ◦P1 ◦ · · · ◦Qm ◦Pm be a pseudo augmenting path for (M, I,V, p). We define
V(R) by the labeling obtained from V by executing the front-propagation of Pi for each i. That
is,

V(R) := V(P0(β
′(P0)])(P1(β

′(P1)])) · · · (Pm(β′(Pm)]),

where β′(Pi) denotes the node adjacent to α(Pi) in Pi, i.e., β
′(Pi)α(Pi) is the last edge of Pi.

The following proposition states that we can construct an augmenting path from a pseudo outer
path via the front-propagation.

Proposition 4.2. Let R be a pseudo augmenting path for (M, I,V, p). Then V(R) ≃p V and R
forms an augmenting path for (M, I,V(R), p).

Proof. Suppose that R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm and, for each i, let

V(R)i := V(P0(β
′(P0)])(P1(β

′(P1)])) · · · (Pi(β
′(Pi)]).

We show by induction on i that V(R)i ≃p V andR is a pseudo augmenting path for (M, I,V(R)i, p)
such that P0,P1, . . . ,Pi are outer paths for (M, I,V(R)i, p).

Let V(R)−1 := V. We consider i ≥ 0. Since Pi is a pseudo outer path for (M, I,V(R)i−1, p),
Lemma 4.1 and the induction hypothesis assert that V(R)i ≃p V(R)i−1 ≃p V, G(V(R)i, p) =
G(V(R)i−1, p) = G(V, p), and Pi is an outer path for (M, I,V(R)i, p). By G(V(R)i, p) = G(V, p),
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all P1,P2, . . . ,Pk are still pseudo outer paths for (M, I,V(R)i, p). In particular, since Pi does not
meet Pℓ with ℓ ≤ i− 1, P1,P2, . . . ,Pi−1 are still outer paths for (M, I,V(R)i, p). It follows from
G(V, p) = G(V(R)i, p) that Qj forms an inner path for (M, I,V(R)i, p) for each j, S(M, I,V, p) =
S(M, I,V(R)i, p), and T (M, I,V, p) = T (M, I,V(R)i, p). Thus R is a pseudo augmenting path
for (M, I,V(R)i, p) such that P0,P1, . . . ,Pi are outer paths for (M, I,V(R)i, p). �

4.3 Back-propagation

Let P = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ) be an outer path for (M, I,V, p). The back-propagation

of P is a sequence (Y0,X1, Y1, . . . , Yk,Xk+1) such that Xk+1 := U
σk+1
αk+1

and for each i,

Yi−1 := (Xi)
⊥αiβi−1 , Xi := (Yi)

⊥βiαi .

Lemma 4.3. Let (Y0,X1, Y1, . . . ,Xk+1) be the back-propagation of P. For each i = 0, 1, . . . , k,

Xi+1 belongs toMαi+1
and is different from U

σi+1
αi+1

, and Yi belongs toMβi
and is different from

V σi

βi
. Moreover, if p(Uσi

αi
) < p(Uσi

αi
) (resp. p(V σi

βi
) < p(V σi

βi
)), then Xi is equal to Uσi

αi
(resp. Yi is

equal to V σi

βi
).

Proof. It suffices to prove that

• if Xi+1 ∈ Mαi+1
and Xi+1 6= U

σi+1
αi+1

, then Yi ∈ Mβi
and Yi 6= V σi

βi
, and

• if p(V σi

βi
) > p(V σi

βi
), then Yi = V σi

βi
.

Indeed, by βiαi ∈ I and (Tight), the edge βiαi is rank-2, Uσi
αi

= (V σi

βi
)⊥βiαi , Uσi

αi
= (V σi

βi
)⊥βiαi ,

and p(Uσi
αi
)+p(V σi

βi
)+ c = p(Uσi

αi
)+p(V σi

βi
)+ c. Hence Yi ∈ Mβi

, Yi 6= V σi

βi
, p(V σi

βi
) > p(V σi

βi
), and

Yi = V σi

βi
immediately imply Xi ∈ Mαi

, Xi 6= Uσi
αi
, p(Uσi

αi
) < p(Uσi

αi
), and Xi = Uσi

αi
, respectively.

We show both the bullets by induction on i = k, k− 1, . . . , 0. By definition, we have Xk+1 =

U
σk+1
αk+1

, which clearly belongs toMαk+1
and is different from U

σk+1
αk+1

. Since the edge βσk

k α
σk+1

k+1 exists

in E(V, p), Lemma 3.5 asserts that Yk = (U
σk+1
αk+1

)
⊥αk+1βk belongs toMβk

and is different from V σk

βk
.

In addition, if p(V σk

βk
) > p(V σk

βk
), then we have Yk = V σk

βk
by Xk+1 = U

σk+1
αk+1

, βσk

k α
σk+1

k+1 ∈ E(V, p),
and Lemma 3.5.

Assume Xi+1 ∈ Mαi+1
and Xi+1 6= U

σi+1
αi+1

for some i < k. If αi+1βi is rank-2, then V σi

βi
=

(U
σi+1
αi+1

)⊥αi+1βi by (O2) and Yi = (Xi+1)
⊥αi+1βi . Hence we have Yi ∈ Mβi

and Yi 6= V σi

βi
. If

αi+1βi is rank-1, then Xi+1 6= U
σi+1
αi+1

= kerL(Aαi+1βi
) by the assumption and (O2), which implies

Yi = kerR(Aαi+1βi
). Moreover, we have V σi

βi
6= kerR(Aαi+1βi

) by βσi

i α
σi+1

i+1 ∈ E(V, p). Thus we
obtain Yi 6= V σi

βi
.

Assume p(V σi

βi
) > p(V σi

βi
) for some i. If p(U

σi+1
αi+1

) < p(U
σi+1
αi+1

), then Xi+1 = U
σi+1
αi+1

by the

induction hypothesis. In this case, the identity Yi = V σi

βi
follows from βσk

k α
σk+1

k+1 ∈ E(V, p) and

Lemma 3.5. Suppose that p(U
σi+1
αi+1

) ≥ p(U
σi+1
αi+1

). Then we have dαi+1βi
= p(U

σi+1
αi+1

)+ p(V σi

βi
)+ c >

p(U
σi+1
αi+1

) + p(V σi

βi
) + c ≥ p(U

σi+1
αi+1

) + p(V σi

βi
) + c; the equality follows from βσi

i α
σi+1

i+1 ∈ E(V, p).

Since p is a c-potential, it must hold that Aαi+1βi
(U

σi+1
αi+1

, V σi

βi
) = Aαi+1βi

(U
σi+1
αi+1

, V σi

βi
) = {0}. This

implies that αi+1βi is rank-1 and V σi

βi
= kerR(Aαi+1βi

). By Yi = (Xi+1)
⊥αi+1βi , Yi is equal to

V σi

βi
.
This completes the proof. �

Suppose that we replace Uσi
αi
, V σi

βi
, . . . , V σk

βk
, U

σk+1
αk+1

with Xi, Yi, . . . , Yk,Xk+1, respectively; we

refer to the resulting as V(P[ασi

i )−1).
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Lemma 4.4. If P is a simple outer path for (M, I,V, p), then V(P[ασ1

1 )−1) ≃p V and P is an
outer path for (M, I,V(P[ασ1

1 )−1), p).

Proof. Let (Y0,X1, Y1, . . . ,Xk+1) be the back-propagation of P and V ′ := V(P[ασ1

1 )−1). We first
show V ′ ≃p V. Since P is simple, for each i = 1, 2, . . . , k the σi-space and σi-space of αi with
respect to V ′ are Xi and Uσi

αi
, respectively. By Lemma 4.3, they are different. Similarly, the

σi-space and σi-space of βi with respect to V ′ are V σi

βi
and Yi, respectively, which are different.

By Aαiβi
(Uσi

αi
, V σi

βi
) = Aαiβi

(Xi, Yi) = {0}, V
′ is a valid labeling for M . Lemma 4.3 also asserts

that, if Xi 6= Uσi
αi

then p(Uσi
αi
) ≥ p(Uσi

αi
), and if Yi 6= V σi

βi
then p(V σi

βi
) ≥ p(V σ

βi
). These imply

p(Xi) = p(Uσi
αi
) and p(Yi) = p(V σi

βi
) for each i by (Reg). Hence we have V ′ ≃p V.

We then show that P is an outer path for (M, I,V ′, p). Clearly, P satisfies (O1) and (O2);
in particular, (O2) follows from the fact that the σi-space of βi and the σi+1-space of αi+1

are V σi

βi
and U

σi+1
αi+1

, respectively. Thus it suffices to see that P is actually a path in G(V ′, p),

or βσ0

0 ασ1

1 , βσ1

1 ασ2

2 , . . . , βσk

k α
σk+1

k+1 ∈ E(V
′, p). By Xi+1 6= U

σi+1
αi+1

, Aαi+1βi
(U

σi+1
αi+1

, V σi

βi
) = {0}, and

Aαi+1βi
(U

σi+1
αi+1

, V σi

βi
) 6= {0}, we have Aαi+1βi

(Xi+1, V
σi

βi
) 6= {0}, implying βσ0

0 ασ1

1 , βσ1

1 ασ2

2 , . . . , βσk

k α
σk+1

k+1 ∈
E(V ′, p), as required. �

4.4 No short-cut conditions: (Nouter) and (Ninner)

Let R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm be an augmenting path for (M, I,V, p), where the last
outer path Pm is of the form (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ). A node βσi

i is said to be BP-

invariant with respect to Pm if p(V +
βi
) 6= p(V −

βi
), or p(V +

βi
) = p(V −

βi
) and V σi

βi
coincides with the

space at βσi

i of the back-propagation of Pm. Through Lemma 4.3, the above condition can be
rephrased as: p(V σi

βi
) < p(V σi

βi
), or p(V σi

βi
) ≥ p(V σi

βi
) and V σi

βi
coincides with the space of βσi

i of
the back-propagation of Pm. “BP” is an abbreviation of “back-propagation.” An outer path for
(M, I,V, p) with the last edge βσασ′

is said to be proper if there is no edge between βσ and ασ′

in E(V, p). Let Qσ0 be the maximal inner σ0-path for (M, I,V, p) such that β(Qσ0) = βσ0

0 .
The following conditions are referred to as (Nouter) and as (Ninner):

(Nouter) The last outer path Pm is simple, and every βσi

i belonging to R is BP-invariant with
respect to Pm.

(Ninner) If βσ0

0 is not BP-invariant with respect to Pm and the last vertex of Pℓ with ℓ ≤ m− 2
belongs to Qσ0 , then Pℓ is proper and α(Pℓ) is a σ0-vertex.

4.5 Decremental quantities θ and ϕ

To estimate the time complexity of the augmentation procedure, we introduce two quantities θ
and ϕ at least one of which decreases during the algorithm. Let R = P0 ◦Q1 ◦P1 ◦ · · · ◦Qm ◦Pm
be an augmenting path for (M, I,V, p). Since R is a path in the bipartite graph G(V, p) and M
consists of a path or a cycle component in the bipartite graph G, we have |R| = O(min{µ, ν})
and |M | = O(min{µ, ν}).

We define θ(M, I,R) by

θ(M, I,R) :=
m
∑

i=0

|Pi|+NS(M, I,R),

where NS(M, I,R) denotes the number of edges in the union of all connected components of
M \ I intersecting with

⋃

i V (Qi) ∪ V (Pm). Clearly, θ(I,R) ≤ |R|+ |M | = O(min{µ, ν})
We then define ϕ. Suppose that the initial node β(P0) of R is βσ0

0 . Since βσ0

0 belongs to
S(M, I,V, p) by (A2), there uniquely exists βσ0

∗ ∈ U(M, I) such that βσ0

0 ∈ C(βσ0
∗ ). Define
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N0(M, I,R) as the number of edges in the path from βσ0

0 to βσ0
∗ in C(βσ0

∗ ). We define ϕ(M, I,R)
by

ϕ(M, I,R) := |R|+N0(M, I,R).

Clearly ϕ(M, I,R) ≤ |R|+ |S(M, I,V, p)| = O(min{µ, ν}).

4.6 Induction hypothesis

During augmentation, we modify a matching-pair (M, I) and a valid labeling V for M . Then, for
the resulting (M, I,V), p is an (M, I,V)-compatible c-potential but may be no longer optimal,
or may not satisfy (Zero). We require p to satisfy a weaker condition (Zero)′ than (Zero), which
we introduce below.

Let R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm be an augmenting path for (M, I,V, p). By (A2),
we have α(Pm) ∈ T (M, I,V, p). Hence there uniquely exists a node ασ∗

∗ ∈ U(M, I) such that
α(Pm) ∈ C(ασ∗

∗ ). The condition (Zero)′ for R is the following:

(Zero)′ For each Uσ
α , V

σ′

β unmatched by (M, I) except Uσ∗

α∗
,

p(Uσ
α ) = p(V σ′

β ) = 0.

In the initial phase, since p is an optimal (M, I,V)-compatible c-potential, p satisfies (Zero)
by Lemma 2.5, and hence (Zero)′.

4.7 Outline

Our augmentation procedure is outlined as follows. We consider the following three cases:

• R = P0 and P0 is simple; it is called the base case.

• R violates (Nouter) or (Ninner).

• R satisfies both (Nouter) and (Ninner) but is not in the base case.

In the base case, we can augment a matching-pair, i.e., we obtain a matching-pair (M∗, I∗) of
size k + 1 and a valid labeling V∗ for M∗ such that p is an optimal (M∗, I∗,V∗)-compatible
c-potential in O(min{µ, ν}) time; we terminate the augmentation procedure. This is dealt with
in Section 6. In the second (Section 7) and third cases (Section 8), we modify (M, I,V,R) in
O(min{µ, ν}) time so that θ strictly decreases, or θ does not change and ϕ strictly decreases. At
the beginning of each update, we modify (M, I,V,R) in O(min{µ, ν}) time so that R satisfies
three additional conditions and the last outer path of R becomes as short as possible in some
sense, which is described in Section 5. Neither θ nor ϕ increases by this modification.

By θ(M, I,R) = O(min{µ, ν}) and ϕ(M, I,R) = O(min{µ, ν}), the number of updates is
bounded by O(min{µ, ν}2). Furthermore, each update takes O(min{µ, ν}) time. Hence the
running-time of the procedure is bounded by O(min{µ, ν}3), which implies Theorem 3.2.

5 Initial stage

This section is devoted to describing the modifications ofR so thatR satisfies the additional three
conditions and the last outer path of R becomes shorter, which are executed at the beginning
of each update in Sections 6, 7, and 8. Let R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm be an augmenting
path for (M, I,V, p), where Pm = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ). Let C denote the connected
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component of M \ I containing αk+1, and α
σk+1

∗ denote the node in U(M, I) such that C(α
σk+1

∗ )
contains α

σk+1

k+1 .
In the initial stage, we execute the following:

• If C is rearrangeable, then we apply the rearrangement to (M, I) with respect to C. Out-
put the resulting (M, I,V, p) and stop the augmentation procedure. This is described in
Section 5.1.

• Suppose that C is not rearrangeable. Then we modify (M, I) and R so that the conditions
(A3)–(A5) introduced in Section 5.2 are satisfied. In addition, we appropriately modify M
and the last outer path in R so that the last outer path in R becomes shorter, which is
described in Section 5.3. This can simplify the arguments in Sections 6, 7, and 8.

5.1 Rearrangeable case

Suppose that C is rearrangeable with respect to p. Then we apply the rearrangement to (M, I)
with respect to C; the resulting is denoted by (M∗, I∗). By the same argument as in Section 3.1,
(M∗, I∗) is a matching-pair of size k + 1, V is a valid labeling for M , and p is an (M∗, I∗,V)-
compatible c-potential. Moreover, we have U(M∗, I∗) = U(M, I) \ {α

σk+1

∗ , β
σk+1

∗ }, where α∗ and
β∗ are the end nodes of C. Since p satisfies (Zero)′ for (M, I,V,R), i.e., p(Uσ

α ) = p(V σ′

β ) = 0 for

each Uσ
α , V

σ′

β unmatched by (M, I) except U
σk+1
α∗

, p satisfies (Zero) for (M∗, I∗,V). By Lemma 2.5,
p is optimal. We output (M∗, I∗,V, p), and stop this procedure.

5.2 Additional requirements

In the following sections, we assume that C is not rearrangeable. We consider the three additional
conditions (A3)–(A5) for R:

(A3) No intermediate vertices in R belong to S(M, I,V, p).

(A4) For each ℓ = 0, 1, . . . ,m − 1, the outer path Pℓ with α(Pℓ) = ασ satisfies ασ /∈ C(α
σk+1

∗ ).
In addition, if Pℓ is not proper, then ασ /∈ C(α

σk+1

∗ ).

(A5) degM (αk+1) ≤ 1, and if degM (αk+1) = 1 then αk+1 is incident to a σk+1-edge in M .

If R satisfies (A1) and (A2), then we can modify I, V, and R so that (A3), (A4), and (A5) also
hold as follows.

We first modify an augmenting path R so that it satisfies (A3) and (A4). If R violates (A3),
then R is updated as the minimal suffix of R satisfying (A2). One can see that the resulting R
is an augmenting path for (M, I,V, p) satisfying also (A3). Suppose that R violates (A4), i.e.,
there is an outer path Pℓ with α(Pℓ) = ασ for some ℓ < m such that ασ ∈ C(α

σk+1

∗ ), or Pℓ is not
proper and ασ ∈ C(α

σk+1

∗ ). Let Pℓ be such an outer path with the minimum index ℓ, and βσ′

ασ

the last edge of Pℓ. If α
σ ∈ C(α

σk+1

∗ ), then we update R as

R← P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qi ◦ Pℓ.

If Pℓ is not proper and ασ ∈ C(α
σk+1

∗ ), then we update R as

R← P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qi ◦ P
′
ℓ,

where P ′
ℓ is the outer path obtained from Pi by replacing the last edge βσ′

ασ with βσ′

ασ. Clearly,
the resultingR is an augmenting path for (M, I,V, p) satisfying (A3) and (A4), and that θ strictly
decreases. Moreover, p satisfies (Zero)′ for the resulting R, since the last node of R belongs to
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C(α
σk+1

∗ ). Checking (A3) and (A4) and the update can be done in O(|R|) = O(min{µ, ν}) time.
We let R = P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm again by re-index.

We now assume that R satisfies (A3) and (A4). We then modify (M, I) and V so that (M, I)
is a matching-pair of size k, V is a valid labeling for M , p is an (M, I,V)-compatible c-potential,
and R is an augmenting path for (M, I,V, p) satisfying (A3)–(A5). By α

σk+1

k+1 ∈ C(α
σk+1

∗ ), there

is a σk+1-path P in G(V, p)|M from α
σk+1

k+1 to α
σk+1

∗ . This implies that every σk+1-edge αβ in the
underlying path P of P is double-tight. By deleting all σk+1-edges in P from M and adding all
σk+1-edges in P to I, the resulting (M, I) is a matching-pair of size k, V is a valid labeling for
M , p is an (M, I,V)-compatible c-potential, and degM (αk+1) ≤ 1. Moreover, if degM (αk+1) = 1,
then αk+1 is incident to a σk+1-edge, i.e., (A5) holds.

We see that R forms a pseudo augmenting path for (M, I,V, p). Since this modification
does not change S(M, I,V, p) and does not increase T (M, I,V, p), and α

σk+1

k+1 still belongs to
T (M, I,V, p), R satisfies (A2)–(A4). If R does not meet any newly appearing σk+1-edges in I,
then R clearly satisfies (A1), as required.

Otherwise, there is an outer path Pi that meets a newly appearing σk+1-edge αβ in I. Since
ασk+1 belongs to T (M, I,V, p) before the modification, the last edge of Pi must be of the form
β′σασk+1 and Pi is proper, i.e., there is no edge between β′σ and ασk+1 in E(V, p) by (A4). Hence
Pi satisfies (O2)′, which implies that R is a pseudo augmenting path for (M, I,V, p). We update
V as

V ← V(R).

Then it follows from Proposition 4.2 thatR is an augmenting path for (M, I,V, p). By Lemma 4.1,
G(V, p) does not change, which implies that R still satisfies (A3)–(A5).

By this update, α
σk+1

∗ is deleted from U(M, I) and α
σk+1

k+1 is added to U(M, I). Since α
σk+1

k+1 is
the last node of R, p satisfies (Zero)′ for the resulting R.

Checking (A5) and the update can be done in O(min{µ, ν}) time. In particular, the update
requires the front-propagation on R which takes O(|R|) = O(min{µ, ν}) time. Clearly this
update does not change ϕ. Furthermore θ does not increase. Indeed, NS decreases by |P |. If
the underlying path of an inner path in the previous R meets P , then the corresponding inner
path forms a part of an outer path in the resulting R. Hence the number of edges in the union
of outer paths in the resulting R can increase, but its increment is bounded by |P |.

In Sections 6, 7, and 8, we require that the augmenting path R satisfies (A3)–(A5).

5.3 Simplification of the last outer path

Suppose that Pm[β
σi∗

i∗ ) is simple for some i∗ and that every βσi

i with i > i∗ belonging to R is
BP-invariant with respect to Pm. Since Pm[β

σi∗

i∗ ) is simple, (βi∗αi∗+1, αi∗+1βi∗+1, . . . , βkαk+1)
forms a path in G. Therefore we can redefine +- and −-edges of I and +- and −-spaces of V so
that all αi∗+1βi∗+1, αi∗+2βi∗+2, . . . , αkβk are +-edges and

Pm = (βσ0

0 ασ1

1 , . . . , β
σi∗

i∗ α+
i∗+1, α

+
i∗+1β

+
i∗+1, . . . , β

+
k α

+
k+1).

The condition (A4) verifies that degM (αk+1) ≤ 1 and the edge incident to αk+1 in M is a +-edge
if degM (αk+1) = 1.

We define M̂ , Î, V̂, and R̂ by

M̂ := M ∪ Pm[αi∗+1),

Î := I \ {αi∗+1βi∗+1, αi∗+2βi∗+2, . . . , αkβk},

V̂ := V(Pm[α+
i∗+1)

−1),
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· · ·

Figure 1: Modification in Section 5.3. The thick and thin lines represent edges in M and in
E(V, p), respectively. The red and blue lines represent the edges added to M , i.e., the edges in
M̂ \M , and the edges deleted from I, i.e., the edges in I\Î , by the modification, respectively. The
thin solid/dashed paths represent subpaths of R. In particular, the dashed thin path represents
a part of R \ R̂.

R̂ := P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm(α+
i∗+1];

see Figure 1. Then the following holds.

Proposition 5.1. (M̂ , Î) is a matching-pair of size k such that U(M̂, Î) = U(M, I) \ {α+
k+1} ∪

{α+
i∗+1}, V̂ is a valid labeling for M̂ , p is an (M̂ , Î, V̂)-compatible c-potential, and R̂ is a pseudo

augmenting path for (M̂, Î , V̂, p) satisfying (A3)–(A5).

Proof. If Pm is of the form (βσ0

0 ασ1

1 , . . . , β
σi∗

i∗ α+
i∗+1), then (M̂ , Î) = (M, I), V̂ = V, and R̂ = R; the

statement clearly holds. In the following, we assume Pm = (βσ0

0 ασ1

1 , . . . , β
σi∗

i∗ α+
i∗+1, α

+
i∗+1β

+
i∗+1, . . . , β

+
k α

+
k+1)

for some k > i∗.
We first show that (M̂ , Î) is a matching-pair of size k and V̂ is a valid labeling for M̂ . Clearly,

M̂ satisfies (Deg) and (Cycle). Since Pm[β
σi∗

i∗ ) is a simple outer path, V̂ is a valid labeling for
M by Lemma 4.4. Let (Xi∗+1, Yi∗+1,Xi∗+2, . . . ,Xk+1) be the back-propagation of Pm[α+

i∗+1).

Then, for i ≥ i∗, Xi is the +-space of αi and Yi is the −-space of βi with respect to V̂. By
the definition of the back-propagation, Aαi+1βi

(Xi+1, Yi) = {0} and Aαiβi
(Xi, Yi) = {0} for each

i ≥ i∗. Thus V̂ is also a valid labeling for M̂ , which implies that M̂ is a pseudo-matching.
Since Î consists of isolated rank-2 edges in M̂ , (M̂, Î) is a matching-pair. Since the number
of edges in M̂ increases by k − i∗ and that of edges in Î decreases by k − i∗, its size is equal
to k. Since αi∗+1βi∗+1 is a +-edge in M̂ , U+

αi∗+1
is unmatched by (M̂ , Î). Thus we obtain

U(M̂ , Î) = U(M, I) \ {α+
k+1} ∪ {α

+
i∗+1}.

We then show that p is an (M̂, Î , V̂)-compatible potential. By Lemma 4.4, V is equivalent to
V̂ with respect to p, and Pm is an outer path for (M, I, V̂ , p). By the former and Lemma 3.6 (1)
and (2), p satisfies (Reg) for V̂ and the edges α−

i∗+1β
−
i∗+1, . . . , α

−
k β

−
k exist in E(V̂ , p), where

αi∗+1βi∗+1, αi∗+2βi∗+2, . . . , αkβk are +-edges in M̂ . It follows from the latter that the edges
β+
i∗+1α

+
i∗+2, β

+
i∗+2α

+
i∗+3, . . . , β

+
k α

+
k+1 exist in E(V̂, p), where βi∗+1αi∗+2, βi∗+2αi∗+3, . . . , βkαk+1 are

−-edges in M̂ . Thus p satisfies (Tight) for (M̂, Î , V̂), which implies that p is (M̂, Î , V̂)-compatible.
We finally show that R̂ is a pseudo augmenting path for (M̂ , Î, V̂ , p) satisfying (A3)–(A5). It

clearly holds that S(M, I,V, p) = S(M̂ , Î, V̂ , p). ThusR satisfies (A3) and β(P0) ∈ S(M̂ , Î, V̂ , p).
By α+

i∗+1 ∈ U(M̂ , Î), we have α+
i∗+1 ∈ T (M̂ , Î, V̂ , p). Therefore R̂ satisfies (A2). Since deg

M̂
(αi∗+1) =

1 and αi∗+1βi∗+1 is a +-edge, we have (A5).
To prove (A1)′ and (A4), we show the following claim:
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Claim. R̂ is a path in G(V̂ , p). Moreover, for any βσασ′

∈ R̂ such that α is incident to an edge

in I, there is no edge between βσ and ασ′

in E(V̂ , p).

Proof of Claim. The difference between V̂ and V can only be in the +-space of αi and the −-
space of βi for i

∗ + 1 ≤ i ≤ k. Since Pm meet α+
i∗+1β

+
i∗+1, . . . , α

+
k β

+
k and R is a path in G(V, p),

R̂ does not have any of α+
i∗+1β

+
i∗+1, . . . , α

+
k β

+
k . Therefore, for each βσασ′

∈ R̂, we obtain the
following observations.

• The σ′-space of α with respect to V̂ is Uσ′

α .

• If β is different from βi∗+1, . . . , βk, then the σ-space of β with respect to V̂ is V σ
β .

• If β is one of βi∗+1, . . . , βk, say, βi, then βσ = β−
i , and either p(V −

βi
) > p(V +

βi
) or the −-space

of βi with respect to V̂ is V −
βi
.

In particular, the third follows from the BP-invariance of β−
i . Thus every βσασ′

∈ R̂ belongs to

E(V̂ , p) by Lemma 3.6 (3) and βσασ′

∈ E(V, p). This implies that R̂ is a path in G(V̂ , p). If α
is incident to an edge in Î , then α is different from αi∗+1, . . . , αk. Hence the σ′-space of α with

respect to V̂ is equal to Uσ′

α . If α is incident to an edge in I \ Î, then α is one of αi∗+1, . . . , αk,
say, αi. In this case, ασ′

= α−
i and either p(U+

αi
) > p(V −

βi
) or the +-space of αi with respect to V̂

is U+
αi
; the latter follows from the BP-invariance of β−

i . By Lemma 3.6 (3) and βσασ′

/∈ E(V, p),

we obtain βσασ′

/∈ E(V̂, p). �

Claim immediately verifies that every Qℓ in R forms an inner path for (Î , V̂ , p) and every Pℓ
intersecting with none of α−

i∗+1β
−
i∗+1, . . . , α

−
k β

−
k forms an outer path for (Î , V̂, p).

Suppose that Pℓ meets some of α−
i∗+1β

−
i∗+1, . . . , α

−
k β

−
k . Then we see that Pℓ ◦ Qℓ+1 is rep-

resentable as the concatenation of several pseudo outer paths and inner paths for (Î , V̂ , p),
which implies that R̂ satisfies (A1)′. By Claim, all edges in Pℓ belong to E(V̂, p). Let P− :=
(α−

i∗+1β
−
i∗+1, β

−
i∗+1α

−
i∗+2, . . . , β

−
k α

−
k+1). The intersection of Pℓ and P

− is the disjoint union of the

subpath of P− having the form Pℓ[α
−
i , β

−
j ] with i∗ + 1 ≤ i ≤ j ≤ k or the form Pℓ[α

−
i ) with

i∗ + 1 ≤ i ≤ k. That is, Pℓ can be represented as

Pℓ(α
−
i1
] ◦ P−[α−

i1
, β−

i2
] ◦ Pℓ[β

−
i2
, α−

i3
] ◦ · · · ◦ P−[α−

ip
, β−

ip+1
] ◦ Pℓ[β

−
ip+1

)

or

Pℓ(α
−
i1
] ◦ P−[α−

i1
, β−

i2
] ◦ Pℓ[β

−
i2
, α−

i3
] ◦ · · · ◦ Pℓ[β

−
ip
, α−

ip+1
] ◦ P−[α−

ip+1
),

where i∗ + 1 ≤ iq ≤ iq+1 ≤ k for each q.
Since αiβi is a +-edge in M̂ for i∗ + 1 ≤ i ≤ k, the subpath Pℓ[α

−
iq
, β−

iq
] forms an inner path

for (M̂ , Î, V̂ , p). Moreover, Pℓ[α
−
ip+1

) ◦ Qℓ+1 is also an inner path for (M̂, Î , V̂, p) in the latter

case. By Claim, if Pℓ has an edge βσασ′

such that α is incident to an edge in Î, there is no
edge between βσ and ασ′

in E(V̂ , p). This implies that the remaining parts of Pℓ, which are
Pℓ(α

−
i1
], Pℓ[β

−
iq
, α−

iq+1
], and Pℓ[β

−
ip+1

), are pseudo outer paths for (M̂, Î , V̂, p). Thus Pℓ ◦Qℓ+1 can

be viewed as the concatenation of several pseudo outer paths and inner paths for (M̂, Î , V̂, p).
We finally show that P satisfies (A4). Since C(α+

i∗+1) is the union of C(α+
k+1) in G(V, p) and

Pm[α+
i∗+1), it suffices to see that, if Pℓ has β′σα−

i , α
−
i β

−
i for some i∗ + 1 ≤ i ≤ k, then there is

no edge between β′σ and α+
i in G(V̂ , p); this follows from Claim. Hence P satisfies (A4).

This completes the proof. �

By this update, θ does not increase and ϕ strictly decreases.
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Lemma 5.2. θ(M̂, Î, R̂) ≤ θ(M, I,R) and ϕ(M̂ , Î , R̂) < ϕ(M, I,V).

Proof. The difference of θ follows from the fact that NS increases by |Pm[α+
i∗+1)| and the number

of edges in the union of outer paths decreases at least by |Pm[α+
i∗+1])|. Thus we have θ(M̂, Î , R̂) ≤

θ(M, I,R). Clearly N0 does not change and |R̂| = |R|−|Pm[α+
i∗+1)|, which implies ϕ(M̂ , Î , R̂) =

ϕ(M, I,V) − |Pm[αi∗+1)| < ϕ(M, I,V). �

We update

M ← M̂, I ← Î , V ← V̂(R).

This update can be done in O(|R|) = O(min{µ, ν}) time. By Propositions 4.2 and 5.1, the
resulting (M, I) is a matching-pair of size k, V a valid labeling for M , p an (M, I,V)-compatible
c-potential, andR an augmenting path for (M, I,V, p) satisfying (A3)–(A5). Moreover, p satisfies
(Zero)′ for R by α+

i∗+1 ∈ U(M, I) 6∋ α+
k+1 (in Proposition 5.1).

In Sections 6, 7, and 8, we appropriately execute this modification of the last outer path as
the preprocessing to simplify the update in each phase.

6 Base case: R = P0 and P0 is simple

Suppose that R consists only of a single outer path P0. Then R clearly satisfies (Nouter). By
applying the simplification in Section 5.3 to P0, we can assume that P0 consists of a single edge
in E(V, p). We first redefine +- and −-edges of M and +- and −-spaces of V so that

P0 = (β+
0 α

+
1 ).

By (A5), degM (α1) ≤ 1 and an edge incident to αk+1 in M is a +-edge if it exists. Moreover, we
modify (M, I) so that degM (β0) ≤ 1 and an edge incident to β0 in M is a +-edge if it exists; it
can be done by the same procedure as in Section 5.2 for (A5). By this modification and (Zero)′,
we have

p(Uσ
α ) = p(V σ′

β ) = 0 (6.1)

for any unmatched spaces Uσ
α , V

σ′

β by (M, I) except U+
α1

and V +
β0
.

Let Cβ0
be the connected components of M \I containing β0, and Pβ0

be the maximal rank-2
path in Cβ0

which start with β0. We let Pβ0
:= {β0} if β0 is incident to no edge or a rank-1 edge.

For a vector space Y ∈ Mβ0
with Y 6= V +

β0
, let V(Cβ0

;Y ) be the labeling obtained from V by

replacing V −
β0

with Y and by setting the −-space of β and the +-space of α for α, β belonging to

Cβ0
so that (2.1) and (2.2) hold. Clearly we have V(Cβ0

;V −
β0
) = V. One can observe that V and

V(Cβ0
;Y ) can be different only in the −-space of β and the +-space of α for α, β ∈ V (Pβ0

), and
that V(Cβ0

;Y ) is a valid labeling for M . For α1, we similarly define Cα1
, Pα1

, and V(Cα1
;X)

for X ∈ Mα1
with X 6= U+

α1
.

Lemma 6.1. (1) If p(V −
β0
) ≥ p(V +

β0
) (resp. p(V −

β0
) > p(V +

β0
)), then we have p(V −

β ) ≥ p(V +
β )

and p(U+
α ) ≥ p(U−

α ) (resp. p(V −
β ) > p(V +

β ) and p(U+
α ) > p(U−

α )) for each α, β ∈ V (Pβ0
).

Also if p(U−
α1
) ≥ p(U+

α1
) (resp. p(U−

α1
) > p(U+

α1
)), then we have p(U−

α ) ≥ p(U+
α ) and

p(V +
β ) ≥ p(V −

β ) (resp. p(U−
α ) > p(U+

α ) and p(V +
β ) > p(V −

β )) for each α, β ∈ V (Pα1
).

(2) If p(V −
β0
) ≥ p(V +

β0
), then V(Cβ0

;Y ) ≃p V for each Y ∈ Mβ0
with Y 6= V +

β0
. Also if

p(U−
α1
) ≥ p(U+

α1
), then V(Cα1

;X) ≃p V for each X ∈ Mα1
with X 6= U−

α1
.
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Proof. We only show the case for β0; the case for α1 is similar.
(1). If Pβ0

= {β0}, we are done. Suppose that Pβ0
has of the form (β0α0, α0β−1, . . . ). Since

β0α0 is rank-2, we have Aα0β0
(U+

α0
, V +

β0
) 6= {0}. Since p is a c-potential satisfying (Tight) and

β0α0 is a +-edge, we have p(U+
α0
)+p(V +

β0
)+c ≥ dα0β0

= p(U−
α0
)+p(V −

β0
)+c. By combining it with

p(V −
β0
) ≥ p(V +

β0
), we have p(U+

α0
) ≥ p(U−

α0
). By a similar argument, we obtain p(V −

β ) ≥ p(V +
β )

and p(U+
α ) ≥ p(U−

α ) for each α, β ∈ V (Pβ0
). By replacing ≥ with > in the above argument, we

obtain p(V −
β ) > p(V +

β ) and p(U+
α ) > p(U−

α ) for each α, β ∈ V (Pβ0
).

(2). Recall that V and V(Cβ0
;Y ) can be different only in the −-space of β and the +-space of α

for α, β ∈ V (Pβ0
). Suppose p(V −

β0
) ≥ p(V +

β0
). Then, by (1), p(V −

β ) ≥ p(V +
β ) and p(U+

α ) ≥ p(U−
α )

hold for each α, β ∈ V (Pβ0
). Since V(Cβ0

;Y ) is a valid labeling for M , for each β ∈ V (Pβ0
) the

−-space of β with respect to V(Cβ0
;Y ), denoted by Y ′, is different from the +-space of β with

respect to V(Cβ0
;Y ), which is V +

β . Thus, by (Reg), we have p(Y ′) = p(V −
β ) ≥ p(V +

β ). Similarly,

for α ∈ V (Pβ0
), we have p(X ′) = p(U+

α ) ≥ p(U−
α ), where X ′ is the +-space of α with respect to

V(Cβ0
;Y ). Thus V(Cβ0

;Y ) ≃p V. �

Let us define M∗ and V∗ by

M∗ := M ∪ {β0α1}, V∗ := V
(

Cα1
; (V +

β0
)⊥β0α1

)(

Cβ0
; (U+

α1
)⊥α1β0

)

.

Then the following holds:

Proposition 6.2. (M∗, I) is a matching-pair of size k+1, V∗ is a valid labeling for M∗, and p
is an optimal (M∗, I,V∗)-compatible c-potential.

Proof. By degI(β0) ≤ 1 and degI(α1) ≤ 1, the resulting M∗ satisfies (Deg). Let C∗ be the union
of Cβ0

, Cα1
, and β0α1, which is a connected component of M∗ \ I. Suppose, to the contrary,

that M∗ does not satisfy (Cycle), or equivalently, C∗ is a cycle consisting of rank-2 edges. It can
happen only when Cβ0

and Cα1
coincide, Cβ0

forms a rank-2 path in M , and β0α1 is rank-2. In
this case, we have Aαβ(U

+
α , V +

β ) 6= {0} 6= Aαβ(U
−
α , V −

β ) for each αβ ∈ Cβ0
.

For each +-edge αβ ∈ Cβ0
, there is α−β− ∈ E(V, p). Hence we have p(U−

α ) + p(V −
β ) ≤

p(U+
α ) + p(V +

β ). In addition, since Cβ0
is not rearrangeable, Cβ0

has at least one single-tight
+-edge. For such an edge, the above inequality is strict. Thus we have

∑

α,β∈V (Cβ0
)

(

p(U−
α ) + p(V −

β )
)

<
∑

α,β∈V (Cβ0
)

(

p(U+
α ) + p(V +

β )
)

. (6.2)

Similarly, for each −-edge αβ ∈ Cβ0
, there is α+β+ ∈ E(V, p). Moreover, the edge β+

0 α
+
1 exists

in E(V, p). Hence

∑

α,β∈V (Cβ0
)

(

p(U−
α ) + p(V −

β )
)

≥
∑

α,β∈V (Cβ0
)

(

p(U+
α ) + p(V +

β )
)

also holds, which contradicts (6.2).
We then show that V∗ is a valid labeling forM∗ and p is an (M∗, I,V∗)-compatible c-potential.

In particular, the former implies that (M∗, I) is a matching-pair.
Suppose that C∗ is a path component of M∗ \ I or C∗ is a cycle component such that

Cβ0
(= Cαk+1

) has a rank-1 edge. Then Pβ0
and Pα1

are disjoint, particularly, Pβ0
does not

contain α1 and Pα1
does not contain β0. Hence the +-spaces of β0 and α1 with respect to V∗

are V +
β0

and U+
α1
, respectively. By Lemma 3.5 and β+

0 α
+
1 ∈ E(V, p), we have (V +

β0
)⊥β0α1 6= U+

α1

and (U+
α1
)⊥α1β0 6= V +

β0
. Hence V∗ is a valid labeling for M . In addition, p(U−

α1
) ≥ p(U+

α1
)
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if (V +
β0
)⊥β0α1 6= U−

α1
, and p(V −

β0
) ≥ p(V +

β0
) if (U+

α1
)⊥α1β0 6= V −

β0
. Thus we have V̂ ≃p V by

Lemma 6.1 (2). Therefore, by Lemma 3.6 (1), p is an (M, I,V∗)-compatible potential. In
particular, p satisfies (Reg) for V∗ and (Tight) for all edges in M .

The remaining is to show that the conditions (2.1) and (2.2) hold for the edge β0α1 and that
(Tight) holds for β0α1, which implies that V∗ is a valid labeling for M∗ and p is an (M∗, I,V∗)-
compatible potential. The former follows from the fact that (V +

β0
)⊥β0α1 and (U+

α1
)⊥α1β0 are

the −-spaces of α1 and of β0 with respect to V∗, respectively, and Aα1β0
((V +

β0
)⊥β0α1 , V +

β0
) =

Aα1β0
(U+

α1
, (U+

α1
)⊥α1β0 ) = {0}. Since the edge β0α1 is a −-edge in M∗ and β+

0 α
+
1 exists in

E(V∗, p) by Lemma 3.6 (3), the latter holds.
Suppose that C∗ is a cycle component such that Cβ0

consists of rank-2 edges. In this case,
Pβ0

and Pα1
coincide; they are the same as Cβ0

. Since M∗ satisfies (Cycle), β0α1 must be rank-1.
If p(U−

α1
) < p(U+

α1
), then (V +

β0
)⊥β0α1 = U−

α1
by Lemma 3.5. Hence V∗ = V(Cβ0

; (U+
α1
)⊥α1β0 ),

implying that the +-space of β with respect to V∗ is V +
β . Lemmas 3.5 and 6.1 (2) assert that

V∗ is a valid labeling for M and p is (M, I,V∗)-compatible. Furthermore, since β0α1 must
be rank-1, we have (V +

β0
)⊥β0α1 (= U−

α1
) = kerL(Aα1β0

) and (U+
α1
)⊥α1β0 = kerR(Aα1β0

). Thus

Aα1β0
((V +

β0
)⊥β0α1 , V +

β0
) = Aα1β0

(U+
α1
, (U+

α1
)⊥α1β0 ) = {0} holds, implying that V∗ is also a valid

labeling for M∗. By Lemma 3.6 (3), the edge β+
0 α

+
1 exists in E(V∗, p). Therefore p is an

(M∗, I,V∗)-compatible potential.
If p(U−

α1
) ≥ p(U+

α1
), then p(V −

β0
) ≤ p(V +

β0
) by Lemma 6.1 (1). Moreover, since Cβ0

has a

single-tight edge, the above inequality is strict, i.e., p(V −
β0
) < p(V +

β0
). Thus (U+

α1
)⊥α1β0 = V −

β0
by

Lemma 3.5. By a similar argument to the case of p(U−
α1
) < p(U+

α1
), V∗ is also a valid labeling

for M∗ and p is an (M∗, I,V∗)-compatible potential.
Clearly (M∗, I) is a matching-pair of size k + 1 such that U(M∗, I) = U(M, I) \ {β+

0 , α
+
1 }.

By the condition (6.1), p satisfies (Zero) for (M∗, I,V∗). Thus, by Lemma 2.5, p is optimal.
This completes the proof. �

This update can be done inO(|M |) = O(min{µ, ν}) time. We output the resulting (M∗, I,V∗, p)
and stop the augmentation procedure.

Remark 6.3. In the proof of Proposition 6.2, the condition that Cβ0
is not rearrangeable is

used only when the union C∗ of Cβ0
, Cα1

, and β0α1 forms a cycle component in M∗. Hence, in
the case where C∗ is a path component in M∗, then the statement of Proposition 6.2 holds even
if Cβ0

is rearrangeable. �

Remark 6.4. Let C∗ be the union of Cβ0
, Cα1

, and β0α1 as in Remark 6.3. The proof of
Proposition 6.2 implies that for each α ∈ V (C∗), the +-space or −-space of α with respect to V∗

is U+
α or U−

α , respectively, even when C∗ forms a cycle. The same holds for β ∈ V (C∗). �

7 R violates (Nouter) or (Ninner)

In this section, we consider the case where R violates (Nouter) or (Ninner). Let R = P0 ◦Q1 ◦P1 ◦
· · ·◦Qm◦Pm be an augmenting path for (M, I,V, p), in which Pm = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , βσk

k α
σk+1

k+1 ).

7.1 R violates (Nouter)

Suppose that R violates (Nouter), i.e., Pm is not simple or R meets some βσi

i that is not BP-
invariant with respect to Pm.

Let i∗ be the minimum index such that Pm[αi∗+1) forms a path in G. That is, if Pm is simple
then i∗ = 0, and otherwise Pm is of the form

Pm = (β0α1, α1β1, . . . , αi∗βi∗ , βi∗αi∗+1, . . . , αj∗βj∗ , βj∗αj∗+1, . . . , βkαk+1),
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where αi∗βi∗ = αj∗βj∗ and βi∗αi∗+1, αi∗+1βi∗+1, . . . , βkαk+1 are distinct. Note that, in the latter

case, we have ασi∗

i∗ βσi∗

i∗ = α
σj∗

j∗ β
σj∗

j∗ .

There are two cases: (Case 1) R meets some βσi

i with i > i∗ that is not BP-invariant with
respect to Pm and (Case 2) all βσi

i with i > i∗ which R meets are BP-invariant with respect to
Pm.

(Case 1) R meets some βσi

i with i > i∗ that is not BP-invariant with respect to Pm.
Choose such βσi

i with the maximum index i. By i > i∗ and the choice of βσi

i , Pm[βσi

i ) is a simple

outer path and every β
σj

j with j > i belonging to R is BP-invariant with respect to Pm. Hence,
by executing the simplification in Section 5.3 to Pm[βσi

i ), we can assume that

Pm = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , ασi

i βσi

i , βσi

i α+
i+1).

Since βσi

i is not BP-invariant and the space at βσi

i of the back-propagation of Pm is (U+
αi+1

)⊥αi+1βi ,

we have p(V +
βi
) = p(V −

βi
) and V σi

βi
is different from (U+

αi+1
)⊥αi+1βi . This implies p(U+

αi+1
)+p(V σi

βi
)+

c = dαi+1βi
and Aαi+1βi

(U+
αi+1

, V σi

βi
) 6= {0}. Thus the edge βσi

i α+
i+1 exists in E(V, p).

Let Pℓ be the outer path in R that meets βσi

i . We update

R ← P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Pℓ(β
σi

i ] ◦ (βσi

i α+
i+1).

It is clear that the resultingR is an augmenting path for (M, I,V, p). Since the number of edges in
the union of outer paths decreases, so does θ. This update can be done in O(|R|) = O(min{µ, ν})
time. Return to the initial stage (Section 5).

(Case 2) All βσi

i with i > i∗ which R meets are BP-invariant with respect to Pm.

Since R fails (Nouter), Pm is not simple, i.e., i∗ > 0 and there is j∗ > i∗ such that β
σi∗

i∗ = β
σj∗

j∗ .

The assumption says that Pm[β
σj∗

j∗ ) is simple, β
σj∗

j∗ is BP-invariant with respect to Pm, and every

β
σj

j with j > j∗ belonging to R is also BP-invariant. Hence we may assume that

Pm = (βσ0

0 ασ1

1 , ασ1

1 βσ1

1 , . . . , ασi∗

i∗ βσi∗

i∗ , βσi∗

i∗ α
σi∗+1

i∗+1 , . . . , α
σj∗

j∗ β
σj∗

j∗ , β
σj∗

j∗ α+
j∗+1)

by executing the simplification in Section 5.3 to Pm[β
σj∗

j∗ ).
We first delete αi∗βi∗(= αj∗βj∗) from M and I; the resulting edge sets are denoted by

M ′ and I ′. We then redefine +- and −-edges of M ′ and +- and −-spaces of V so that all
αi∗+1βi∗+1, αi∗+2βi∗+2, . . . , αj∗−1βj∗−1 are −-edges and

Pm = (. . . , α+
i∗β

−
i∗ , β

−
i∗α

−
i∗+1, . . . , β

−
j∗−1α

−
j∗, α

−
j∗β

+
j∗, β

+
j∗α

+
j∗+1).

Note here that the resulting V is no longer a valid labeling for M , since Aαi∗βi∗
(U−

αi∗
, V +

βi∗
) 6=

{0} 6= Aαi∗βi∗
(U+

αi∗
, V −

βi∗
) (corresponding to the edges α+

i∗β
−
i∗ and α−

j∗β
+
j∗ in Pm). On the other

hand, V is a valid labeling for M ′, since it does not have αi∗βi∗ . Here (M
′, I ′) is a matching-pair

of size k − 2.
Let Cαj∗+1

be the connected component of M ′ \ I ′ containing αj∗+1, and Y be the +-space

of βj∗ with respect to V(Pm[β−
i∗ , α

−
j∗ ]

−1). We define M̂ , Î, and V̂ by

M̂ := M ′ ∪ Pm[βi∗ , αj∗ ] ∪ {βj∗αj∗+1},

Î := I ′ \ {αi∗+1βi∗+1, αi∗+2βi∗+2, . . . , αj∗−1βj∗−1},

V̂ := V(Pm[β−
i∗ , α

−
j∗ ]

−1)(Pm[βi∗ , αj∗ ]; (U
+
αj∗+1

)
⊥αj∗+1βj∗ )(Cαj∗+1

;Y
⊥βj∗αj∗+1 ),

where Pm[βi∗ , αj∗ ] denotes the subpath of Pm from βi∗ to αj∗ ; see Figure 2. Then the following
holds.
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· · ·

Figure 2: Modification in Case 2 in Section 7.1; the definitions of all solid thick lines and paths
are the same as in Figure 1. The dashed thick lines represent the edges deleted from M by the
modification, i.e., the edges in M \ M̂ .

Proposition 7.1. (M̂, Î) is a matching-pair of size k such that U(M̂, Î) = U(M, I) \ {α+
j∗+1} ∪

{α+
j∗}, V̂ is a valid labeling for M̂ , and p is an (M̂ , Î, V̂)-compatible potential.

Proof. Let M ′′ := M ′ ∪Pm[βi∗ , αj∗ ]. We first show that (M ′′, Î) is a matching-pair of size k− 1,
V(Pm[β−

i∗ , α
−
j∗ ]

−1) is a valid labeling for M ′′, and p is an (M ′′, Î ,V(Pm[β−
i∗ , α

−
j∗ ]

−1))-compatible
c-potential.

Since both βi∗ and αj∗ are incident to no edge in M ′, β−
i∗ and α−

j∗ belong to S(M ′, I ′,V, p)

and T (M ′, I ′,V, p), respectively. Hence Pm[β−
i∗ , α

−
j∗ ] forms an augmenting path for (M ′, I ′,V, p),

which is in the base case (Section 6). One can easily see that (M ′′, Î) and V(Pm[β−
i∗ , α

−
j∗ ]

−1) are

the resulting pair and labeling, respectively, by the augmentation of (M ′, I ′) via Pm[β−
i∗ , α

−
j∗ ].

Thus (M ′′, Î) is a matching-pair of size k − 1, V(Pm[β−
i∗ , α

−
j∗ ]

−1) is a valid labeling for M ′′, and

p is an (M ′′, Î,V(Pm[β−
i∗ , α

−
j∗ ]

−1))-compatible potential by Proposition 6.2.

We then show that the edge β+
j∗α

+
j∗+1 exists in G(V(Pm[β−

i∗ , α
−
j∗ ]

−1), p). Recall here that Y is

the +-space of βj∗ with respect to V(Pm[β−
i∗ , α

−
j∗ ]

−1). By p(Y ) = p(V +
βj∗

) and β+
j∗α

+
j∗+1 ∈ E(V, p),

we have p(U+
αj∗+1

) + p(Y ) + c = dαj∗+1βj∗
. Thus it suffices to show that Aαj∗+1βj∗

(U+
αj∗+1

, Y ) 6=

{0}.
If p(V +

βj∗
) < p(V −

βj∗
), then Lemma 4.3 asserts Y = V +

βj∗
. Thus we obtain Aαj∗+1βj∗

(U+
αj∗+1

, Y ) =

Aαj∗+1βj∗
(U+

αj∗+1
, V +

βj∗
) 6= {0}. If p(V +

βj∗
) ≥ p(V −

βj∗
), then it follows from the BP-invariance of β−

j∗

that V −
βj∗

is the space at β−
j∗ of the back-propagation of Pm. Hence Aαj∗+1βj∗

(U+
αj∗+1

, V −
βj∗

) = {0}.

Since Y is different from V −
βj∗

, we obtain Aαj∗+1βj∗
(U+

αj∗+1
, Y ) 6= {0}.

We finally show the statement of Proposition 7.1. Clearly, we have U(M̂, Î) = U(M, I) \
{α+

j∗+1}∪{α
+
j∗}. We can see that (β+

j∗α
+
j∗+1) forms an augmenting path for (M ′′, Î,V(Pm[β−

i∗ , α
−
j∗ ]

−1), p),

which is in the base case. Furthermore, the connected component of M̂ \ Î containing βj∗αj∗+1

forms a path. By Proposition 6.2 and Remark 6.3, we can argument (M ′′, Î) via (β+
j∗α

+
j∗+1),

and (M̂ , Î) and V̂ can be seen as the resulting pair and labeling, respectively. Thus (M̂ , Î) is a
matching-pair of size k, V̂ is a valid labeling for M̂ , and p is an (M̂, Î , V̂)-compatible c-potential.
�

Let k∗ be the minimum index with i∗+1 ≤ k∗ ≤ j∗ such that (α+
k∗β

+
k∗ , β

+
k∗α

+
k∗+1, . . . , β

+
j∗−1α

+
j∗)

forms a subpath of Pm. We define

R̂ := P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Qm ◦ Pm(α+
k∗ ].
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Figure 2 also describes R̂. The following holds; the proof is given at the end of this section.

Proposition 7.2. R̂ is a pseudo augmenting path for (M̂, Î , V̂, p).

In this case, θ strictly decreases.

Lemma 7.3. θ(M̂, Î, R̂) < θ(M, I,R).

Proof. The number of edges in the union of outer paths decreases by |Pm[α+
k∗)| ≥ |Pm[β−

i∗ , α
−
j∗ ]|+

2, and NS increases at most by |Pm[β−
i∗ , α

−
j∗ ]|+ 1. Hence θ decreases at least by 1. �

We update

M ← Î , I ← Î , V ← V̂(R̂), R← R̂.

This update can be done in O(|R|) = O(min{µ, ν}) time. By Propositions 4.2, 7.1, and 7.2, the
resulting (M, I) is a matching-pair of size k, V a valid labeling for M , p an (M, I,V)-compatible
c-potential, and R is an augmenting path for (M, I,V, p). Moreover, since α+

j∗+1 is deleted from

U(M, I) and α+
j∗ is added to U(M, I) in this update (by Proposition 7.1) and α+

k∗ ∈ C(α
+
j∗), p

satisfies (Zero)′ for R. Return to the initial stage (Section 5).
The proof of Proposition 7.2 requires Lemma 7.4 below; Lemma 7.4 (1) is also used in the

proofs of Propositions 8.1 and 8.6. Let Pαj∗+1
be the maximal rank-2 path in Cαj∗+1

that starts
with αj∗+1, where Pαj∗+1

:= {αj∗+1} if αj∗+1 is incident to no edge or a rank-1 edge.

Lemma 7.4. (1) For each β ∈ V (Pαj∗+1
), it holds that p(V +

β ) > p(V −
β ), the +-space of β

with respect to V̂ is V +
β , or p(V +

β ) = p(V −
β ) and β+ ∈ C(α+

j∗+1). Similarly, for each

α ∈ V (Pαj∗+1
), it holds that p(U−

α ) > p(U+
α ), the −-space of α with respect to V̂ is U−

α , or

p(U−
α ) = p(U+

α ) and α+ ∈ C(α+
j∗+1).

(2) If R̂ meets α+
i for some i with i∗ < i ≤ j∗, then p(U+

αi
) > p(U−

αi
) or the +-space of αi

with respect to V̂ is U+
αi
. Similarly, if R̂ meets β+

i for some i with i∗ < i < j∗, then

p(V +
βi
) > p(V −

βi
) or the +-space of βi with respect to V̂ is V +

βi
.

Proof. (1). If p(U−
αj∗+1

) < p(U+
αj∗+1

), then it follows from β+
j∗α

+
j∗+1 ∈ E(V̂, p) and Lemma 3.5

that Y
⊥βj∗αj∗+1 = U−

αj∗+1
. Hence, for each α, β ∈ V (Pαj∗+1

), the −-space of α and the +-space

of β with respect to V̂ coincide with those with respect to V, i.e., U−
α and V +

β , respectively.

Suppose p(U−
αj∗+1

) ≥ p(U+
αj∗+1

). By Lemma 6.1 (1), we have p(U−
α ) ≥ p(U+

α ) and p(V +
β ) ≥

p(V −
β ) for each α, β ∈ V (Pαj∗+1

). Moreover, if p(V +
β ) = p(V −

β ) (resp. p(U+
α ) = p(U−

α )) then

p(U−
αj∗+1

) = p(U+
αj∗+1

) and the subpath of Pαj∗+1
from αj∗+1 to β (resp. α) consists of double-

tight edges. Hence there is an α+
j∗+1-β

+ +-path (resp. an α+
j∗+1-α

+ +-path) in G(V, p)|M , which

implies that β+ (resp. α+) belongs to C(α+
j∗+1).

(2). There are two cases: (i) p(U+
αj∗

) ≥ p(U−
αj∗

) and (ii) p(U+
αj∗

) < p(U−
αj∗

).

(i) p(U+
αj∗

) ≥ p(U−
αj∗

). By βj∗αj∗ ∈ I and (Tight), we have p(V +
βj∗

) ≥ p(V −
βj∗

). By the

BP-invariance of β−
j∗ , V −

βj∗
is the space at β+

j∗ of the back-propagation of Pm, i.e., V −
βj∗

=

(U+
αj∗+1

)
⊥αj∗+1βj∗ . Thus we obtain

V̂ = V(Pm[β−
i∗ , α

−
j∗ ]

−1)(Pm[βi∗ , αj∗ ]; (U
+
αj∗+1

)
⊥αj∗+1βj∗ )(Cαj∗+1

;Y
⊥βj∗αj∗+1 )

= V(Pm[β−
i∗ , α

−
j∗ ]

−1)(Cαj∗+1
;Y

⊥βj∗αj∗+1 ).
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That is, for each j = i∗, i∗+1, . . . , j∗−1, the −-space of βj and the +-space of αj+1 with respect
to V̂ are V −

βj
and U+

αj+1
, respectively. In particular, the +-space of αj∗ with respect to V̂ is U+

αj∗
,

and if R̂ meets α+
i for some i with i∗ < i ≤ j, then the +-spaces of αi with respect to V̂ is U+

αi
.

Since V −
βj∗

is the space at β+
j∗ of the back-propagation of Pm and U−

αj∗
= (V −

βj∗
)
⊥βj∗αj∗ ,

U−
αj∗

is the space of α−
j∗ of the back-propagation of Pm. Therefore, the back-propagation of

Pm[β−
i∗ , α

−
j∗ ] coincides with the restriction of the back-propagation of Pm to Pm[β−

i∗ , α
−
j∗ ]. That

is, for j = i∗, i∗ + 1, . . . , j∗ − 1, the −-space of αj+1 and the +-space of βj with respect to V̂
are the spaces at α−

j+1 and at β−
j of the back-propagation of Pm, respectively. Suppose that

R̂ meets β+
i for some i with i∗ < i < j. Then, by the BP-invariance of β+

i , we obtain that

p(V +
βi
) > p(V −

βi
), or that the +-space of βi with respect to V̂ is V +

βi
.

(ii) p(U+
αj∗

) < p(U−
αj∗

). In this case, we have p(V +
βj∗

) < p(V −
βj∗

). It suffices to show that

• if R̂ meets α+
i for some i with i∗ < i ≤ j∗ and p(U+

αi
) ≤ p(U−

αi
), then the +-space of αi

with respect to V̂ is U+
αi
, and

• if R̂ meets β+
i for some i with i∗ < i < j∗ and p(V +

βi
) ≤ p(V −

βi
), then the +-space of βi

with respect to V̂ is the space at β−
i of the back-propagation of Pm.

We show the former bullet. Suppose that R̂ meets α+
i for some i with i∗ < i ≤ j and

p(U+
αi
) ≤ p(U−

αi
). Then the subpath Pm[βi∗ , αi] of Pm[βi∗ , αj∗ ] has a rank-1 edge; otherwise

p(U+
αi
) > p(U−

αi
) holds by p(V +

βj∗
) < p(V −

βj∗
) and Lemma 6.1 (1), a contradiction. Thus the

+-space of αi with respect to V̂ coincides with that with respect to V, i.e., U+
αi
.

We then prove the latter bullet. Suppose that R̂ meets β+
i for some i with i∗ < i < j

and p(V +
βi
) ≤ p(V −

βi
). Then the subpath Pm[βi, αj∗ ] of Pm[βi∗ , αj∗ ] has a rank-1 edge; otherwise

p(V +
βi
) > p(V −

βi
) holds by p(U+

αj∗
) < p(U−

αj∗
) and Lemma 6.1 (1), a contradiction. Thus the

+-space of βi with respect to V̂ coincides with the space at β−
i of the back-propagation of Pm.

This completes the proof. �

We are ready to prove Proposition 7.2.

Proof of Proposition 7.2. Clearly the initial node β(P0) of R̂ belongs to S(M̂, Î , V̂ , p). We see
that the last node α+

k∗ of R̂ belongs to T (M̂ , Î, V̂ , p) as follows, which implies that R̂ satisfies

(A2). Since βj∗−1αj∗ is a +-edge in M̂ , we have α+
j∗ ∈ U(M̂ , Î). Since the path Pm[α+

k∗ , α
+
j∗ ]

and Pm[α−
k∗ , α

−
j∗ ] form subpaths of the outer path Pm in G(V, p), we have Aαi+1βi

(U−
αi+1

, V +
βi
) =

Aαi+1βi
(U+

αi+1
, V −

βi
) = {0} for each i = k∗, . . . , j∗−1 by (O2). Thus αk∗βk∗ , βk∗αk∗+1, . . . , βj∗−1αj∗

are rank-2. This implies that αk∗βk∗ , βk∗αk∗+1, . . . , βj∗−1αj∗ are double-tight with respect to
(V̂ , p), and hence, the +-path from α+

j∗ to α+
k∗ exists in E(V̂, p)|

M̂
. Thus we have α+

k∗ ∈ C(α
+
j∗) ⊆

T (M̂, Î , V̂, p).
The proof strategy for (A1)′ is similar to the proof of Proposition 5.1. Since we do not require

that R̂ satisfies (A3)–(A5), several arguments in the proof of Proposition 5.1 can be omitted.
We first show the following claim.

Claim. R̂ is a path in G(V̂ , p). Moreover, for any βσασ′

∈ R̂ such that α is incident to an edge

in Î, there is no edge between βσ and ασ′

in E(V̂ , p).

Proof of Claim. Take any βσασ′

∈ R̂. Then we can see that p(V σ
β ) > p(V σ

β ) or the σ-space of

β with respect to V̂ is V σ
β . Indeed, if β /∈ V (Pα∗

j+1) ∪ V (Pm[βi∗ , αj∗ ]), or β ∈ V (Pα∗

j+1) and

σ = −, then the σ-space of β with respect to V̂ is V σ
β . If β ∈ V (Pα∗

j+1) and σ = +, then
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by Lemma 7.4 (1) and (A4), p(V σ
β ) > p(V σ

β ) or the σ-space of β with respect to V̂ is V σ
β . If

β ∈ V (Pm[βi∗ , αj∗ ]), then σ = +, and hence by Lemma 7.4 (2), p(V σ
β ) > p(V σ

β ) or the σ-space

of β with respect to V̂ is V σ
β . Note that R̂ does not have any of β+

i∗ and β−
i∗ .

Suppose that α exits Pαj∗+1 and Pm[βi∗ , αj∗ ]; note that this includes the case where α is

incident to an edge in Î. Then the +-space and −-space of α with respect to V̂ are U+
α and U−

α ,
respectively. By Lemma 3.6 (3), the edge βσασ′

exists in E(V̂, p). In particular, if α is incident

to an edge in Î, then it is also incident to an edge in I and βσασ′

/∈ E(V, p). In this case, we also

obtain βσασ′

/∈ E(V̂ , p) by Lemma 3.6 (3).
If α belongs to Pm[βi∗ , αj∗ ], then σ′ = +. Hence by Lemma 7.4 (2), p(U+

αi
) > p(U+

αi
) or the

+-space of αi with respect to V̂ is U+
αi
. Lemma 3.6 (3) asserts that the edge βσασ′

exists in

E(V̂ , p).
Suppose that α belongs to Pαj∗+1. Note that the +-space of α with respect to V̂ is U+

α . Hence,

if σ′ = +, then we have βσασ′

∈ E(V̂ , p) by Lemma 3.6 (3). If σ′ = −, then p(U−
α ) > p(U+

α ),
the −-space of α with respect to V̂ is U−

α , or p(U−
α ) = p(U+

α ) and α+ ∈ C(α+
j∗+1). In the first or

second case, Lemma 3.6 (3) verifies βσα− ∈ E(V̂ , p).
In the last case, there is no edge between βσ and α+ in E(V, p) by the condition (A4).

By p(U−
α ) = p(U+

α ) and βσα− ∈ E(V, p), we obtain p(U+
α ) + p(V σ

β ) + c = dαβ, which implies

Aαβ(U
+
α , V σ

β ) = {0}. Moreover, by βσα− ∈ E(V, p), we have U−
α 6⊆ kerL(Aαβ) and V σ

β 6⊆

kerR(Aαβ). Let X and Y denote the −-space of α and the σ-space of β with respect to V̂,
respectively. Note that X and Y are different from U+

α and V σ
β , respectively. By Lemma 3.6 (3),

we have βσα+ /∈ E(V̂ , p), implying Aαβ(U
+
α , Y ) = {0}. If p(V σ

β ) ≤ p(V σ
β ), then the σ-space of

β with respect to V̂ is V σ
β , i.e., Y = V σ

β . Hence we obtain Aαβ(X,V σ
β ) 6= {0} by X 6= U+

α . If

p(V σ
β ) > p(V σ

β ), then one can see that αβ is rank-1, U+
α = kerL(Aαβ), and V σ

β = kerR(Aαβ). By

Y 6= V σ
β and X 6= U+

α , we obtain Aαβ(X,Y ) 6= {0}. Thus the edge βσασ′

exists in E(V̂ , p). �

By Claim, we have Qℓ ⊆ E(V̂ , p) and Pℓ ⊆ E(V̂ , p) for each ℓ. The former immediately implies

that Qℓ forms an inner path for (M̂, Î , V̂, p). By βσασ′

/∈ E(V̂, p) if βσασ′

∈ Pℓ and α is incident
to an edge in Î, Pℓ that does not meet α+

i∗+1β
+
i∗+1, . . . , α

+
j∗−1β

+
j∗−1 forms a pseudo outer path for

(M̂ , Î, V̂ , p). Also, if Pℓ meets some of α+
i∗+1β

+
i∗+1, . . . , α

+
j∗−1β

+
j∗−1, where we recall that αiβi is a

−-edge in M̂ for i∗ + 1 ≤ i ≤ j∗ − 1, then Pℓ is the concatenation of several pseudo outer paths
and inner paths for (M̂, Î , V̂, p) as seen in the proof of Proposition 5.1. Thus R̂ satisfies (A1)′.
This completes the proof. �

7.2 R satisfies (Nouter) but violates (Ninner)

Suppose that R satisfies (Nouter) but violates (Ninner). We can assume that Qm is an inner
+-path, i.e., the last node of Qm is β+

0 . Since R satisfies (Nouter), we can additionally assume
that Pm = (β+

0 α
σ1

1 ) by executing the simplification in Section 5.3 to Pm. Recall that Q− is the
maximal inner −-path such that β(Q−) = β−

0 . Since R violates (Ninner), β
−
0 is not BP-invariant

with respect to Pm and there is Pℓ with ℓ ≤ m− 2 such that the last node of Pℓ belongs to Q−

and α(Pℓ) is a −-vertex or Pℓ is not proper.
Consider such Pℓ with the minimum index ℓ. We denote by βσασ′

the last edge of Pℓ. By
the assumption, the edge βσα− exists in E(V, p) and α− belongs to Q−. Let P ′

ℓ be the path
obtained from Pℓ by replacing βσασ′

with βσα− in G(V, p).
Since β−

0 is not BP-invariant with respect to Pm, we have p(V +
β0
) = p(V −

β0
) and V −

β0
is different

from the space at β+
0 of the back-propagation of Pm; the latter implies Aα1β0

(Uσ1
α1
, V −

β0
) 6= {0}.
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Hence there exists β−
0 α

+
1 in E(V, p). We update R as

R̂ := P0 ◦ Q1 ◦ · · · ◦ Qℓ ◦ P
′
ℓ ◦ Q

−[α−, β−
0 ] ◦ (β

−
0 α

σ1

1 ). (7.1)

This update can be done in O(min{µ, ν}) time. By the choice of Pℓ, no outer path Pℓ′ with
ℓ′ < ℓ meets Q−[α−, β−

0 ]. Hence R forms a path in G(V, p). It is clear that P ′
ℓ and (β−

0 α
σ1

1 )
are outer paths for (M, I,V, p), and that Q−[α−, β−

0 ] is an inner path for (M, I,V, p). Thus the
resulting R is an augmenting path for (M, I,V, p). Clearly p satisfies (Zero)′ for R and θ strictly
decreases. Return to the initial stage (Section 5).

8 R satisfies both (Nouter) and (Ninner) but is not in the base case

Suppose that R satisfies both (Nouter) and (Ninner) but is not in the base case. We can assume
that Qm forms an inner −-path, where the last node β(Qm) of Qm is β−

0 . Let C be the connected
component of M \ I containing Qm. We consider two cases:

• C is a cycle component.

• C is a path component.

The first and second are discussed in Sections 8.1 and 8.2, respectively.

8.1 C is a cycle component

We denote by α−
−1β

−
0 the last edge of Qm. Let

M ′ := M \ {α−1β0}.

We can easily see that (M ′, I) is a matching-pair of size k − 1, V is a valid labeling for M ′, and
for the resulting (M ′, I,V), p is an (M ′, I,V)-compatible c-potential.

Since C is a cycle component, the last node of Pm exits C. Hence we can assume that
Pm = (β−

0 α
−
1 ) by executing the simplification in Section 5.3 for Pm. Let Cβ0

and Cα1
be the

connected component of M ′ \ I containing β0 and α1, respectively; note that Cβ0
is equal to

C \ {α−1β0}.
We define M̂ , V̂, and R̂ by

M̂ := M ′ ∪ {β0α1},

V̂ := V(Cα1
; (V −

β0
)⊥β0α1 )(Cβ0

; (U−
α1
)⊥α1β0 ),

R̂ := P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Pm−1.

Proposition 8.1. (M̂, I) is a matching-pair of size k such that U(M̂, I) = U(M, I) \
{

α−
1

}

∪
{

α−
−1

}

, V̂ is a valid labeling for M̂ , p is an (M̂ , I, V̂)-compatible c-potential, and R̂ is a pseudo

augmenting path for (M̂, I, V̂ , p).

The proof of Proposition 8.1 requires the following lemma, which is also used in the proof
of Proposition 8.6 in Section 8.2. Let Pβ0

be the maximal rank-2 path in Cβ0
starting from β0,

where Pβ0
:= {β0} if β0 is incident to a rank-1 edge.

Lemma 8.2. If R̂ meets α+β+ for some αβ ∈ Pβ0
, then p(V +

β ) > p(V −
β ) or the +-space of β

with respect to V̂ is V +
β . If R̂ meets α−β− for some αβ ∈ Pβ0

, then p(U−
α ) > p(U+

α ), the −-space

of α with respect to V̂ is U−
α , or p(U+

α ) = p(U−
α ) and α+ belongs to Q+.
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Proof. If (U−
α1
)⊥α1β0 = V +

β0
, then we have V̂ = V(Cα1

; (V −
β0
)⊥β0α1 ). That is, for each α, β belonging

to Pβ0
, the +-space of β and the −-space of α with respect to V̂ coincide with those with respect

to V, i.e., V +
β and U−

α , respectively.

In the following, we assume that (U−
α1
)⊥α1β0 6= V +

β0
. Then it follows from β−

0 α
−
1 ∈ E(V, p)

and Lemma 3.5 that p(V +
β0
) ≥ p(V −

β0
). By Lemma 6.1 (1), we obtain p(V +

β ) ≥ p(V −
β ) and

p(U−
α ) ≥ p(U+

α ) for each α, β belonging to Pβ0
.

If R̂ meets α+β+ for some αβ ∈ V (Pβ0
), then we have p(V +

β ) > p(V −
β ). Indeed, suppose

to the contrary that p(V +
β ) = p(V −

β ). Then p(V +
β0
) = p(V −

β0
) and the subpath of Pβ0

from β0

to β consists of double-tight edges. The former with (U−
α1
)⊥α1β0 6= V +

β0
implies that β+

0 is not

BP-invariant with respect to Pm. The latter implies that there is a +-path from β+
0 to α+ in

G(V, p)|M , i.e., α+ belongs to Q+. This contradicts that R satisfies (Ninner).
By a similar argument, if p(U+

α ) = p(U−
α ), then α+ belongs to Q+. Thus, if R̂ meets α−β−

for some αβ ∈ Pβ0
, then p(U−

α ) > p(U+
α ) or p(U+

α ) = p(U−
α ) and α+ belongs to Q+. �

We are ready to show Proposition 8.1.

Proof of Proposition 8.1. Since β−
0 and α−

1 belong to S(M ′, I,V, p) and T (M ′, I,V, p), respec-
tively, (β−

0 α
−
1 ) forms an augmenting path for (M ′, I,V, p). Furthermore, the connected compo-

nent of M̂ containing β0α1 forms a path. Thus, by Proposition 6.2 and Remark 6.3, (M̂, I) is a
matching-pair of size k such that U(M̂, I) = U(M, I) \

{

α−
1

}

∪
{

α−
−1

}

, V̂ is a valid labeling for

M̂ , and p is an (M̂ , I, V̂)-compatible c-potential (even if Cβ0
is rearrangeable in M ′).

We then show that R̂ is a pseudo augmenting path for (M̂, I, V̂ , p). Since C is a cycle
component in M , the initial node of P0 does not belong to C. Therefore the initial node β(P0)
of P0 belongs to S(M̂, I, V̂ , p). We can see that the last node of R̂, which is α(Pm−1), belongs
to T (M̂, I, V̂ , p) as follows. Clearly deg

M̂
(α−1) = 1 and α−1 is incident to a −-edge. Moreover,

by Lemma 3.6 (2), the −-path from α(Pm−1) to α−
−1 (the reverse of Qm \

{

α−
−1β

+
0

}

) exists in

G(V̂ , p)|
M̂
. Thus we obtain α(Pm−1) ∈ C(α

−
−1) ⊆ T (M̂, I, V̂ , p). Hence R̂ satisfies (A2).

Take any βσασ′

∈ R̂. By the same argument as in the proof of Proposition 7.2 (or Proposi-
tion 5.1), it suffices to show that βσασ′

∈ E(V̂ , p) and that if α is incident to an edge in I, there

is no edge between βσ and ασ′

in E(V̂ , p). By Lemma 7.4 (1) and Lemma 8.2, p(V σ
β ) > p(V σ

β ) or

the σ-space of β with respect to V̂ is V σ
β .

Suppose α /∈ V (Pα1
)∪V (Pβ0

). Then the +-space and −-space of α with respect to V̂ are U+
α

and U−
α , respectively. By Lemma 3.6 (3) and βσασ′

∈ E(V, p), the edge βσασ′

exists in E(V̂ , p).

In particular, if α is incident to an edge in I, then βσασ′

/∈ E(V, p). In this case, we also obtain

βσασ′

/∈ E(V̂ , p) by Lemma 3.6 (3).
Suppose that α belongs to Pβ0

. If σ′ = +, then the +-space of α with respect to V̂ is U+
α .

Hence Lemma 3.6 (3) asserts that the edge βσα+ exists in E(V̂, p). If σ′ = −, then by Lemma 8.2,
it holds that p(U−

α ) > p(U+
α ), the −-space of α with respect to V̂ is U−

α , or p(U+
α ) = p(U−

α ) and
α+ belongs to Q+. In the first or second case, Lemma 3.6 (3) verifies βσα− ∈ E(V̂, p).

Otherwise the −-space of α with respect to V̂ is different from U−
α , p(U+

α ) = p(U−
α ), and α+

belongs to Q+. Then one can see that β+
0 is not BP-invariant with respect to Pm. Hence, by

(Ninner), there is no edge between βσ and α+ in E(V, p). By p(U+
α ) = p(U−

α ) and βσα− ∈ E(V, p),
we obtain p(U+

α ) + p(V σ
β ) + c = dαβ , which implies Aαβ(U

+
α , V σ

β ) = {0}. Moreover, by βσα− ∈

E(V, p), we have U−
α 6⊆ kerL(Aαβ) and V σ

β 6⊆ kerR(Aαβ). Let X and Y denote the −-space of

α and the σ-space of β with respect to V̂, respectively. Note here that the +-space of α with
respect to V̂ is U+

α . By Lemma 3.6 (3), we have βσα+ /∈ E(V̂ , p), implying Aαβ(U
+
α , Y ) = {0}.

If p(V σ
β ) ≤ p(V σ

β ), then the σ-space of β with respect to V̂ is V σ
β , i.e., Y = V σ

β . Hence we
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obtain Aαβ(X,V σ
β ) 6= {0} by X 6= U+

α . If p(V σ
β ) > p(V σ

β ), then one can see that αβ is rank-1,

U+
α = kerL(Aαβ), and V σ

β = kerR(Aαβ). By X 6= U+
α and Y 6= V σ

β , we obtain Aαβ(X,Y ) 6= {0}.

Thus the edge βσα− exists in E(V̂ , p).
If α belongs to Pα1

, then by the same argument as in the proof of Proposition 7.2 and
Lemma 7.4 (1), we obtain βσασ′

∈ E(V̂ , p). This completes the proof. �

By this update, θ does not increase and ϕ strictly decreases.

Lemma 8.3. θ(M̂, Î, R̂) ≤ θ(M, I,R) and ϕ(M̂ , Î , R̂) < ϕ(M, I,R).

Proof. By M̂ = M \ {α−1β0} ∪ {β0α1}, NS does not change. The edge β−
0 α

−
1 is removed from

the union of the resulting outer paths, and only β−
0 α

−
1 can be newly added to the union of the

resulting outer paths, implying that the number of edges in the union of outer paths does not
increase. Thus θ(M̂, Î, R̂) ≤ θ(M, I,R) holds.

We obtain |R̂| = |R| − |Qm| − |Pm| and N0(M̂ , I, R̂) = N0(M, I,R). Thus ϕ(M̂ , I, R̂) <
ϕ(M, I,R) holds. �

We update

M ← M̂, V ← V̂(R), R← R̂.

This update can be done in O(min{µ, ν}) time. By Propositions 4.2 and 8.1, the resulting (M, I)
is a matching-pair of size k, V a valid labeling for M , p an (M, I,V)-compatible c-potential, and
R is an augmenting path for (M, I,V, p). Moreover, since α−

1 is deleted from U(M, I) and α−
−1 is

added to U(M, I) in this update (by Proposition 8.1) and α(Pm−1) ∈ C(α
−
−1), p satisfies (Zero)′

for R. Return to the initial stage (Section 5).

8.2 C is a path component

We denote by α−
−1β

−
0 the last edge of Qm. Let

M ′ := M \ {α−1β0}.

We then redefine +- and −-edges of M ′ and +- and −-spaces of V so that all edges in M ′ ∩ Pm

are +-edges, β0 is incident to a +-edge if degM ′(β0) = 1, and Pm forms a +-path. Note that
the last edge of Qm (or the last edge of Q−) becomes α−

−1β
+
0 . The resulting V is no longer a

valid labeling for M , since Aα−1β0
(U−

α−1
, V +

β0
) 6= {0} (corresponding to the edge α−

−1β
+
0 in Qm).

On the other hand, V is a valid labeling for M ′, since M ′ does not have α−1β0. Here (M ′, I)
is a matching-pair of size k − 1. We can easily see that, for the resulting (M ′, I,V), p is an
(M ′, I,V)-compatible c-potential.

By applying the simplification in Section 5.3 to Pm, we can assume that Pm = (β+
0 α

+
1 ).

Moreover, β+
0 and α+

1 belong to S(M ′, I,V, p) and T (M ′, I,V, p), respectively. Hence (β+
0 α

+
1 )

forms an augmenting path for (M ′, I,V, p). Let Cα1
be the connected component of M ′ \ I

containing α1. We define M̂ and V̂ by

M̂ := M ′ ∪ {β0α1},

V̂ := V(Cα1
; (V +

β0
)⊥β0α1 )(Cβ0

; (U+
α1
)⊥α1β0 );

see Figure 3.
If the connected component of M̂ containing β0α1 forms a cycle, i.e., α1 belongs to Cβ0

, then
Cβ0

is not rearrangeable in M ′. Indeed, otherwise we have α(Pm−1) ∈ C(α
+
1 ), which contradicts

(A4). Thus, by Proposition 6.2 and Remark 6.3, we obtain the following:
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Figure 3: Modification in Section 8.2; the definitions of all lines and paths are the same as in
Figures 1 and 2.

Proposition 8.4. (M̂, I) is a matching-pair of size k such that U(M̂, I) = U(M, I) \
{

α+
1

}

∪
{

α−
−1

}

, V̂ is a valid labeling for M̂ , and p is an (M̂ , I, V̂)-compatible c-potential.

By deleting α−1β0 from M , it can happen that β(P0) /∈ S(M̂ , Î, V̂ , p). The following states
that, in such a case, β−

0 belongs to S(M̂ , I, V̂ , p) and there is a path from β−
0 to β(P0) in G(V̂ , p)

that is the concatenation of an outer path and an inner path for (M̂, I, V̂ , p). Here we denote by
Q the maximal inner +-path in G(V̂ , p)|

M̂
that starts with α+

−1; Figure 3 also describes Q.

Lemma 8.5. If β(P0) 6∈ S(M̂, I, V̂ , p), then β(P0) belongs to Q, β−
0 ∈ S(M̂, I, V̂ , p), and the

path (β−
0 α

+
−1) ◦ Q(β(P0)] exists in G(V̂ , p).

Proof. Assume that β(P0) = β̂σ does not belong to S(M̂, I, V̂ , p). It follows from M̂ = M \
{β0α−1} ∪ {β0α1} that degM (β) = deg

M̂
(β) for each β. Since β̂σ belongs to S(M, I,V, p), we

have degM (β̂) ≥ 1 and β̂σ ∈ Cβ∗ , where β∗ is an end node of some connected component of

M \ I incident to a σ-edge. Indeed, otherwise degM (β̂) = deg
M̂
(β̂) = 0, which implies that β̂σ

belongs to S(M̂, I, V̂ , p). This is a contradiction to the assumption. We denote by P the σ-path
in G(V, p)|M from βσ

∗ to β̂σ.
We can easily observe βσ

∗ ∈ U(M̂, I). Thus the assumption β̂σ /∈ S(M̂ , I, V̂ , p) implies that
there is an edge in P not belonging to E(V̂ , p)|

M̂
. We then show that such an edge is β−

0 α
+
−1. By

Proposition 8.4, V̂ is a valid labeling for M̂ and p is an (M̂ , I, V̂)-compatible c-potential. Hence
V̂ is also a valid labeling for M ′ = M̂ \{β0α1} and p is also an (M ′, I, V̂)-compatible c-potential.
By Lemma 3.6 (2), we obtain E(V, p)|M ′ = E(V̂, p)|M ′ . By M \M̂ = M \M ′ = {β0α−1}, we have

E(V, p)|M \ E(V̂, p)|M̂ =

{

{

β+
0 α

−
−1

}

if β0α−1 is single-tight,
{

β+
0 α

−
−1, β

−
0 α

+
−1

}

if β0α−1 is double-tight.
(8.1)

Since β+
0 /∈ S(M, I,V, p) by (A3), the edge in P not belonging to E(V̂ , p)|

M̂
must be β−

0 α
+
−1 (and

β0α−1 must be double-tight).

39



It follows from β−
0 α

+
−1 ∈ P that β∗ is an end node of Cβ0

incident to a −-edge, σ is equal
to −, and P is the concatenation of the −-path from β−

∗ to β−
0 , β

−
0 α

+
−1, and Q(β(P0)]. Hence

β(P0) belongs to Q. By E(V, p)|M ′ = E(V̂ , p)|M ′ , G(V̂ , p) contains the −-path from β−
∗ to β−

0 and
Q(β(P0)]. In particular, we have β−

0 ∈ S(M̂, I, V̂ , p) by the existence of the −-path. Moreover we
have β−

0 α
+
−1 ∈ E(V̂, p). Indeed, the −-space (U+

α1
)⊥α1β0 of β0 with respect to V̂ is different from

V +
β0

by Lemma 3.5, and the +-space of α−1 with respect to V̂ is U+
α−1

. Since Aα−1β0
(U+

α−1
, V +

β0
) =

{0}, β0α−1 is rank-2, and (U+
α1
)⊥α1β0 6= V +

β0
, we have Aα−1β0

(U+
α−1

, (U+
α1
)⊥α1β0 ) 6= {0}, implying

β−
0 α

+
−1 ∈ E(V̂ , p). Hence the path (β−

0 α
+
−1) ◦ Q(β(P0)] exists in G(V̂ , p). �

We define R̂ by

R̂ :=

{

P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Pm−1 if β(P0) ∈ S(M̂, I, V̂ , p),

(β−
0 α

+
−1) ◦ Q(β(P0)] ◦ P0 ◦ Q1 ◦ P1 ◦ · · · ◦ Pm−1 if β(P0) /∈ S(M̂, I, V̂ , p).

Proposition 8.6. R̂ is a pseudo augmenting path for (M̂, I, V̂ , p).

Proof. This follows from Lemma 7.4 (1) and Lemma 8.2 as in the proof of Proposition 8.1.
In particular, even when the connected component of M̂ containing β0α1 forms a cycle, i.e.,
Cβ0

= Cα1
, Remark 6.4 enables us to follow the same argument in the proof of Proposition 8.1.

�

By this update, θ does not increase and ϕ strictly decreases.

Lemma 8.7. θ(M̂, I, R̂) ≤ θ(M, I,R) and ϕ(M̂ , I, R̂) < ϕ(M, I,R).

Proof. By the same argument as in the proof of Lemma 8.3, we obtain θ(M̂, I, R̂) ≤ θ(M, I,R),
and ϕ(M̂ , I, R̂) < ϕ(M, I,R) if β(P0) ∈ S(M̂, I, V̂ , p).

Suppose β(P0) /∈ S(M̂, I, V̂ , p). Then |R̂| = |R| − |Qm| − |Pm| + |(β
−
0 α

+
−1) ◦ Q(β(P0)]| and

N0(M̂, I, R̂) = N0(M, I,R)−|(β−
0 α+

−1)◦Q(β(P0)]| by Lemma 8.5. Thus we obtain ϕ(M̂ , I, R̂) <
ϕ(M, I,R) − |Qm| < ϕ(M, I,R). �

We update

M ← M̂, V ← V̂(R), R← R̂.

This update can be done in O(min{µ, ν}) time. By Propositions 4.2, 8.4, and 8.6, the resulting
(M, I) is a matching-pair of size k, V a valid labeling forM , p an (M, I,V)-compatible c-potential,
and R is an augmenting path for (M, I,V, p). Moreover, since α+

1 is deleted from U(M, I) and
α−
−1 is added to U(M, I) in this update (by Proposition 8.1) and α(Pm−1) ∈ C(α

−
−1), p satisfies

(Zero)′ for R. Return to the initial stage (Section 5).
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subspaces of matrices of low rank. Séminaire Lotharingien de Combinatoire, 52:B52f, 2004.
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