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Abstract

In this paper, we consider the problem of computing the entire sequence of the maximum
degree of minors of a block-structured symbolic matrix (a generic partitioned polynomial
matrix) A = (AapTapt?s), where A, is a 2 x 2 matrix over a field F, x,4 is an indeter-
minate, and dqg is an integer for « = 1,2,...,pand 8 =1,2,...,v, and t is an additional
indeterminate. This problem can be viewed as an algebraic generalization of the maximum
weight bipartite matching problem.

The main result of this paper is a combinatorial O(uv min{u, V}2)-time algorithm for
computing the entire sequence of the maximum degree of minors of a (2 x 2)-type generic
partitioned polynomial matrix of size 2p x 2v. We also present a minimax theorem, which
can be used as a good characterization (NP N co-NP characterization) for the computation
of the maximum degree of minors of order k. Our results generalize the classical primal-
dual algorithm (the Hungarian method) and minimax formula (Egervéry’s theorem) for the
maximum weight bipartite matching problem.

Keywords: Generic partitioned polynomial matrix, Degree of minor, Weighted
Edmonds’ problem, Weighted non-commutative Edmonds’ problem

1 Introduction

The maximum weight bipartite matching problem is one of the most fundamental problems in
combinatorial optimization, which admits a minimax theorem, called Egervary’s theorem [7],
and a primal-dual augmenting path algorithm, called the Hungarian method [27]. In particular,
the Hungarian method outputs, for all possible values of k, a matching of size k having maximum
weight among all matchings with the same size. This can be rephrased as: the Hungarian method
computes the entire sequence of the maximum degree of minors of a certain symbolic polynomial
matrix. Indeed, for a bipartite graph G = ({1,2,...,m},{1,2,...,n}; E) with edge weights d;;
for ij € E, we define the matrix A(t) by (A(t)); = z;;t% if ij € E and zero otherwise, where z;;
is a variable for each edge ij and ¢ is another variable. Then the maximum weight of a matching
of size k in G is equal to the maximum degree d;(A(t)) of the minors of order &, i.e.,

0k(A(t)) == sup{degdet B(t) | B(t): k x k submatrix of A(t)}, (1.1)

*A preliminary version of this paper [20] has appeared in the proceedings of the 22nd Conference on Integer
Programming and Combinatorial Optimization (IPCO 2021).
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where the determinant det B(t) of B(t) is regarded as a polynomial in ¢ and do(A(t)) := 0. Thus,
the entire sequence (8o(A(t)),61(A(t)), .., Ominfmn} (A(t))) of the maximum degree of minors
equals the sequence of the maximum weights of a matching of size k for k = 0,1, ..., min{m,n};
the Hungarian method computes this.

The above algebraic interpretation is generalized to weighted Edmonds’ problem?(see [14]),
which asks to compute the entire sequence of the maximum degree of minors of

A(t) = A (t)ml + Az(t).%'z +---+ Ag(t)l‘g. (1.2)

Here Ag(t) is a polynomial matrix over a field F with an indeterminate ¢, i.e., each entry of
Ag(t) is a polynomial in ¢ over F, and zj, is a different variable from ¢ for each £ = 1,2,... /.
This problem is a weighted generalization of a well-studied algebraic problem called Edmonds’
problem [6]: It asks to compute the rank of

A=Ajxy + Asxo + -+ + Ay, (1.3)

where A; is a matrix over F and z; is a variable for i = 1,2,...,¢. (Weighted) Edmonds’ problem
can capture various matching-type tractable combinatorial optimization problems including not
only the maximum (weight) bipartite matching problem but also the maximum (weight) nonbi-
partite matching, (weighted) linear matroid intersection, and (weighted) linear matroid parity
problems; see [38, 30, 2]. Although a randomized polynomial-time algorithm for (weighted) Ed-
monds’ problem is known (if |F| is large) [29, 37], a deterministic polynomial-time algorithm
is not known even for Edmonds’ problem, which is a prominent open problem in theoretical
computer science (see e.g., [26]).

In this paper, we address the problem of computing the entire sequence of the maximum
degree of minors (weighted Edmonds’ problem) of the following (2 x 2)-block-structured matrix:

Apzit™ Aprpthz o Ay zg, e
Agort®t Agpwoot®2 oo Ay xo,tt
At) = ] . ) i , (1.4)
Aulxultd“l Augxugtdﬂ s Aw,xw,tdﬂ”
where A, is a 2x2 matrix over a field F, x4 is a variable, and d,g is an integer for oo = 1,2,..., 1

and f =1,2,...,v, and ¢ is another variable. A matrix A(t) of the form (1.4) is called a (2 x 2)-
type generic partitioned polynomial matriz.

The main result of this paper is as follows, where we define d;(A(t)) as (1.1) for a (2 x 2)-type
generic partitioned polynomial matrix A(t).

Theorem 1.1. Let A(t) be a (2x2)-type generic partitioned polynomial matriz of the form (1.4).
There exists a combinatorial O(uv min{pu, V}Q)—tz'me algorithm for computing the entire sequence
(60(A(2)), 61 (A(1)), - - -, Sming2u,201 (A(t))) of the mazimum degree of minors of A(t).

Our problem and result are related to the noncommutative analog of weighted Edmonds’
problem, called weighted noncommutative Edmonds’ problem [14]. In this problem, given a
matrix A(t) of the form (1.2), in which z; and x; are supposed to be noncommutative but ¢ is
commutative for any variable x;, we are asked to compute the entire sequence of the maximum
degree of minors, where the determinant deg B(t) is replaced with the Dieudonné determinant [4,
3] (a determinant concept of a matrix over a skew field) of B(t), denoted by Det B(t). Oki [34]

#The original definition of weighted Edmonds’ problem is the computation of deg det A(t) of a square matrix
A(t) of the form (1.2). Using the valuated-bimatroid property, the problem in our definition is polynomially
equivalent to the original problem; see e.g., [33, Section 5.2.5].



developed a pseudopolynomial-time algorithm for this problem. Hirai [14] established a minimax
theorem on the degree of the Dieudonné determinant, and developed another pseudopolynomial-
time algorithm by solving the dual problem. By combining the above Hirai’s algorithm with cost
scaling and perturbation techniques, Hirai and Tkeda [15] presented a strongly polynomial-time
algorithm for weighted noncommutative Edmonds’ problem for A(¢) having the following special
form

At) = Ajzgt® 4 Agagt® + - Agzgt®, (1.5)

where A; is a square matrix over F and d; is an integer for i = 1,2,...,¢. A (2 X 2)-type generic
partitioned polynomial matrix (with noncommutative variables z,3) can be represented as (1.5).

Although the degree of the Dieudonné determinant is an upper bound of that of the deter-
minant, i.e., degdet A(t) < degDet A(t) for a matrix A(t) of the form (1.2), and in general the
inequality is strict, Hirai and Tkeda [15] also showed that the equality degdet A(t) = deg Det A(t)
holds for a (2 x 2)-type generic partitioned polynomial matrix A(t). Therefore, the strongly
polynomial-time solvability of our problem follows from that of weighted noncommutative Ed-
monds’ problem for a matrix of the form (1.5) mentioned above. Hirai-Ikeda’s algorithm is
conceptually simple but is slow and not combinatorial. Let A(t) be a (2 x 2)-type generic parti-
tioned polynomial matrix of the form (1.4). They present an O(min{x, v}°log D)-time algorithm
for the computation of degDet A(t) via a cost scaling technique, where D := log max, g |dag|-
Then, by utilizing the perturbation technique in [9] for dng so that log D is bounded by O(p*v3) in
polynomial time, they devise a strongly polynomial-time algorithm for computing deg Det A(t).
To compute the entire sequence of the maximum degree of minors, we further need to call the
above algorithm O(uv min{u, v}) times (see e.g., [33, Section 5.2.5]). Moreover, in case of F = Q,
their algorithm requires an additional procedure (used in [22]) for bounding the bit-complexity.
The minimax theorem on the degree of the Dieudonné determinant provided in [14] does not
provide a good characterization for the deg-det computation even if we restrict to the input as
a (2 x 2)-type generic partitioned polynomial matrix A(t) (explicitly described in [15]). That is,
the formula does not imply that the problem of deciding if d;(A(t)) > 6 for a given threshold 6
belongs to both NP and co-NP.

In this article, we establish a new duality theorem on the degree of the determinant of a (2x2)-
type generic partitioned polynomial matrix A(t), which is a refinement of the minimax formula
provided in [14, 15]. This plays an important role in devising our algorithm. The proposed
theorem consists of the primal concept of matching-pair and the dual concept of potential. The
former is a pair of edge subsets of a graph consisting of edges a8 with nonzero A, in A(t)
satisfying some combinatorial and algebraic conditions, and the latter is a function defined on
vector spaces that satisfies some inequalities. We show that the maximum weight of a matching-
pair of size k is equal to the minimum value of a potential with respect to k, and that they
coincide with 0 (A(t)); this is an algebraic generalization of Egervary’s theorem. Our minimax
formula can be used as a good characterization for the computation of d;(A(t)).

The proposed algorithm is a combinatorial primal-dual augmenting path algorithm, which is
an algebraic generalization of the Hungarian method. An optimal matching-pair of size k and an
optimal potential with respect to k enable us to define the auxiliary graph. If we find an augment-
ing path on it, then we can compute dx41(A(t)), particularly, we can obtain an optimal matching-
pair of size k+1 and an optimal potential with respect to k+1 by using the augmenting path. Oth-
erwise, we can verify dx41(A(t)) = —oo (or equivalently rank A(t) = k). By repeating the above
augmentations, we finally obtain the entire sequence (6o(A(t)), 81 (A(t)), -, Smingzu,201 (A(t))) of
the maximum degree of minors of A(t). The validity of the algorithm provides a constructive
proof of our minimax theorem. Our algorithm is simpler and faster than Hirai-Ikeda’s algorithm;
ours requires no perturbation of the weight and no additional care for bounding the bit size.



Related work. A line of research on the noncommutative setting of an algebraic formulation
of combinatorial optimization problems was initiated by Ivanyos, Qiao, and Subrahmanyam [18]
who introduced noncommutative Edmonds’ problem: It asks to compute the rank of a matrix of
the form (1.3), where z; and x; are supposed to be noncommutative, i.e., x;x; # x;x; for i # j.
Here the “rank” is defined via the inner rank of a matrix over a free skew field and is called
the noncommutative rank or nc-rank. The duality theorem on the nc-rank was established by
Fortin and Reutenauer [8]. The nc-rank is an upper bound of the rank, i.e., rank A < nc-rank A
for a matrix A of the form (1.3), and the inequality is generally strict. Garg, Gurvits, Oliveira,
and Wigderson [10], Ivanyos, Qiao, and Subrahmanyam [19], and Hamada and Hirai [12, 13] in-
dependently developed deterministic polynomial-time algorithms for noncommutative Edmonds’
problem. Their algorithms are conceptually different. Garg, Gurvits, Oliveira, and Wigderson
showed that Gurvits’ operator scaling algorithm [11], which is also known as the flip-flop algo-
rithm in statistics [5, 31] (see also [1, Section 4.5]), can be used as the nc-rank-computation. This
works for the case of F = Q or C. The algorithm of Ivanyos, Qiao, and Subrahmanyam is an
algebraic generalization of an augmenting-path algorithm for the maximum bipartite matching
problem, which works for an arbitrary field. Hamada and Hirai reduced the nc-rank-computation
to a geodesically-convex optimization on a CAT(0)-space; the algorithm proposed in [12] works
for an arbitrary field F provided the arithmetic operations on F can be performed in constant
time, while the bit-length may be unbounded if F = Q; in [13], the above bit-length issue is
resolved.

The block-structured matrix (without an additional indeterminate ¢) was introduced by Ito,
Iwata, and Murota [17] for representing and analyzing a physical system. In particular, its (2x2)-
restriction, called a (2 x 2)-type generic partitioned matrices, was considered in detail by Iwata
and Murota [23]. They established the minimax theorem on the rank of a (2 x 2)-type generic
partitioned matrix, which is essentially the same as the duality theorem on the nc-rank proposed
by Fortin and Reutenauer. This implies that, for a (2 x 2)-type generic partitioned matrix,
its rank and nc-rank coincide. Therefore, we can compute the rank of a (2 x 2)-type generic
partitioned matrix in polynomial time by solving noncommutative Edmonds’ problem. In the
previous paper [16], Hirai and the author devised a simpler and faster combinatorial algorithm
for the rank-computation of a (2 x 2)-type generic partitioned matrix, which is a combinatorial
enhancement of [vanyos—Qiao—Subrahmanyam’s algorithm. The proposed algorithm in this study
is a weighted generalization of this previous algorithm. We note that, in [23], Iwata and Murota
gave a block-structured matrix consisting only of 2 x 2 and 3 x 2 blocks such that its rank and
nc-rank are different. It is known [14] that the rank-computation of a general block-structured
matrix is equivalent to Edmonds’ problem; its polynomial-time solvability is still open.

The entire sequence of the maximum degree of minors plays an important role in engineering.
Such a sequence of a rational matrix determines its Smith—-McMillan form at infinity, which is
used in control theory [39], and that of a matrix pencil determines its Kronecker form, which is
used in analyzing DAEs [28]. In this literature, many combinatorial algorithms for computing
(the entire sequence of) the maximum degree of minors has been proposed for rational matri-
ces [32, 24, 36], for matrix pencils [21], and mixed polynomial matrices [25, 35]; see also [33,
Chapters 5 and 6].

Organization. The remainder of this paper is organized as follows. In Section 2, we intro-
duce the primal concepts called pseudo-matching and matching-pair and the dual concept called
potential. Then we provide a minimax theorem between the weight of a matching-pair and a
potential, which leads to a good characterization for the computation of the maximum degree of
minors of A(t). In Section 3, we introduce an augmenting path for a matching-pair and a poten-
tial, and develop an algorithm for finding an augmenting path for the current matching-pair and



potential. The rest of sections (Sections 4-8) are devoted to devising an augmenting algorithm.

Notations. For a positive integer k, we denote {1,2,...,k} by [k]. Let A(t) be a (2 x 2)-type
generic partitioned polynomial matrix of the form (1.4). The matrix A(t) is regarded as a matrix
over the field F(z,t) of rational functions with variables ¢t and x4 for a € [pu] and 8 € [v]. The
symbols «, 3, and v are used to represent a row-block index in [u], column-block index in [v],
and row- or column-block index in [u] LI [v] of A(t), respectively, where Ll denotes the direct sum.
We often drop “€ [u]” from the notation of “a € [u]” if it is clear from the context. Each o and
is endowed with the 2-dimensional F-vector space F2, denoted by U, and V3, respectively. Each
submatrix A,g is considered as the bilinear map U, x V3 — F defined by A,s(u,v) = uTAagv
for u € U, and v € V. We denote by kery,(Ay3) and kerg(Aqyg) the left and right kernels of
Aqp, respectively. Let us denote by M, and Mg the sets of 1-dimensional vector subspaces of
U, and V3, respectively.

We define the (undirected) bipartite graph G := ([u], [v]; E) by E = {af | Aqpg # O}. For
M C E, let Ap(t) denote the matrix obtained from A(t) by replacing each submatrix A,z with
afl & M by the 2 x 2 zero matrix. An edge a8 € E is said to be rank-k (k = 1,2) if rank A3 = k.
For notational simplicity, the subgraph ([u], [v]; M) for M C E is also denoted by M. For a node
v, let deg,,;(v) denote the degree of v in M, i.e., the number of edges in M incident to v. An
edge af € M is said to be isolated if deg,;(a) = deg,,(8) = 1.

2 Duality theorem

In this section, we introduce a matching concept and a potential concept suitable for a (2 x 2)-
type generic partitioned polynomial matrix A(¢) of the form (1.4). They play a central role in
devising our algorithm. We also present a minimax theorem between the weight of a “matching”
and the value related to a “potential” in our setting, which leads to a good characterization for
the computation of the maximum degree of minors of A(t).

2.1 Matching concept

We introduce a matching concept named pseudo-matching. This is a weaker concept than match-
ing of a (2 x 2)-type generic partitioned (not polynomial) matriz that introduced in the previous
work [16], because of which, it is prefixed with “pseudo.” An edge subset M C E is called a
pseudo-matching if it satisfies the following combinatorial and algebraic conditions (Deg), (Cy-

cle), and (VL):
(Deg) degjp(y) < 2 for each node v of G.

Suppose that M satisfies (Deg). Then each connected component of M forms a path or a cycle.
Thus M is 2-edge-colorable; i.e., there are two edge classes such that any two incident edges are
in different classes. An edge in one color class is called a +-edge, and an edge in the other color
class is called a —-edge.

(Cycle) Each cycle component of M has at least one rank-1 edge.

A labelingy = ({U}, U }, {VBJF, Vs }a,p is anode-labeling that assigns two distinct 1-dimensional
subspaces to each node, Ul U, € M, with U} # U for a and VB+’ Vi € Mg with VBJr # Vg
for 5. A labeling V is said to be wvalid for M if, for each edge aff € M,

Aaﬁ(UJ’ Vﬁi) = Aaﬁ(Ua_’ V5+) = {0}, (2.1)



(Ur, VE) if a8 is a rank-1 +-edge,

2.2
(Us, Vg ) if afis a rank-1 —edge. 22)

(ker,(Aag), kerr(Aag)) = {

For a, we refer to U} and U, as the +-space and —-space of a with respect to V), respectively.
The same terminology is also used for f.

(VL) M admits a valid labeling.

In the following sections, we use the symbol o as one of the signs + and —. The opposite
sign of ¢ is denoted by 7, ie., 7 =—ifc =+, and 7 =+ if 0 = —.

Remark 2.1. Suppose that M satisfies (Deg) and that af is a rank-1 o-edge in M. The

condition (2.2) determines UJ and Vi, and the condition (2.1) determines Vg, and UZ, (resp.
U?Z, and Vé’?) for o/ and ' belonging to the path in M which starts with « (resp. ) and consists
of rank-2 edges.

Suppose further that M satisfies (Cycle). For each node in some cycle component of M, its +-
space and —-space are uniquely determined by the above argument, since every cycle component
has a rank-1 edge by (Cycle). Let C be a path component of M, which has the end nodes v and
/' incident to a o-edge and a o’-edge, respectively. When we set the @-space of v and o’-space

of 7/, the +-space and —-space of every node belonging to C' are uniquely determined. |

By the argument in Remark 2.1, we can check if an edge subset M is a pseudo-matching in
polynomial time.

Let M C FE be a pseudo-matching, and I a set of isolated rank-2 edges in M. We refer to
such a pair (M,I) as a matching-pair. The size of a matching-pair (M,I) is |M| + |I|. The
weight w(M,I) of (M, 1) is defined by

w(M,I) = Z da5—|— Z daﬁ-

apeM apel

Let ({UF,U;},{VS, V5 }a,p be a valid labeling for M. We say that U7 (resp. V) is matched
by (M, I) if o (resp. f3) is incident to a g-edge in M or to a o-edge in I. That is, the set of all
spaces matched by (M, I) is representable as

U {vg, Vg | aB € M: o-edge} U U {vg,vg | aB € I: o-edge}. (2.3)
oe{+,—} oe{+,—}
Thus the number of UJ that are matched by (M, I) coincides with that of |Z8 which are equal
to the size |M| + |I] of (M, I).
2.2 Minimax formula

In this subsection, we provide a minimax formula between the maximum weight of a matching-
pair of size k and the minimum value corresponding to a potential (defined below) and k, which
coincides with dx(A(t)). This formula is an algebraic generalization of Egervary’s theorem [7]
that is a minimax theorem for the maximum weight perfect bipartite matching problem.

For ¢ € R, a function p : U'y M, — R is called a c-potential if

e p is nonnegative, i.e., p(Z) > 0 for all Z € U,Y M., and
o p(X)+p(Y)+c>dyp forallaf € E, X € M,, and Y € Mg such that A,g(X,Y) # {0}.



We can omit the parameter ¢ from the notation if it is not important in the context. For a
potential p and a labeling V = ({US, U, }, {VBJF, Vs }a,p, we define

p(V)::Z( (U +pU, +Z< VB +p(Vy ))

(0%
The following minimax formula is a generalization of Egervary’s theorem:

Theorem 2.2. Let k be a nonnegative integer. The following values (1)—(iil) are the same:
(i) 5u(A(1))-

(ii) sup{w(M,I) | (M,I): matching-pair of size k}.

(iii) inf{p(V) + kc | V: labeling, c € R, p: c-potential}.

Proof. We only show the weak duality (ii) < (i) < (iii). The strong duality (ii) = (iii) follows
from the validity of our proposed algorithm.
In the proof, we perform the following basis transformation with respect to a labeling V =
{US, Uz} AV; Vs Da,s- Take nonzero vectors ul € U, uy € Uy, vj € V7, and vy € Vy for
Jr
each  and 3. By U # U and VBJr % V., the 2 X 2 matrices S, = [ Zg } and T = [U; vg]

are both nonsingular. Let S and T be the block-diagonal matrices with diagonal blocks S, and
Tg, respectively. Then, via the basis transformation with respect to S and T', we obtain a (2 x 2)-
type generic partitioned polynomial matrix SA(t)T = (SaAagxagtdaﬁ Tj3), in which the a? 37 -th
entry of SA(t)T is Aqp(ug, vg/)xaﬁtdaﬁ. Note that the a®37 -th entry of SA(t)T is of the form
azqptles with some a € F, and it is nonzero if and only if A,s(UZ, Vé’l) # {0}.

(ii) < (i). Take any matching-pair (M, I) of size k and valid labeling ({U}, U, }, {Vg, Vs Das
for M. We consider the basis transformation with respect to the valid labeling. By condi-
tions (2.1) and (2.2), we have

- ﬁ+ /37 -
at ] . .
o | 0 e if af is rank-2, (2.4)
Bt B
A %) Tg = { ot [ 1
Sa(Aaptagt™?) T “ 8 (.) if af is a rank-1 +-edge, (2.5)
«
- ﬁ+ /B_ -
+
“ ° 0 if af is a rank-1 —-edge (2.6)
L@ | 0 0 |

for each a8 € M, where e represents some nonzero element in F(z,t).

Define Ay;(t) == SAp(t)T. Note that 05 (An(t)) = 0x(Anr(t)). Moreover, by 6(Ap (1)) <
0i(A(t)), it suffices to show that w(M,I) < 6,(Ap(t)). Let X (resp. V) denote the set of
a? (resp. B7) such that U7 (resp. V{) is matched by (M,I). By [M|+ [I| = k, we have
|X| =1|Y| =k. Let /NlM(t)[X, Y] denote the submatrix of AM(t) with row set X and column set
Y. Furthermore, let C be the set of connected components of M \ I. For each C € C, we denote
Xc and Yo by the restrictions of X and )Y to C, respectively. Then we have

detAM H detAM {a « } {ﬁ+ Ic } HdetAM Xc,yc] (27)
apfel ceC



In the following, we prove that degdet Ay (t)[{at,a™},{B, 37} = 2dus for af € I, and
that deg det AM(t)[XC,yC] > ZQBGC dap for C € C; these imply w(M,I) < degdet AM(t)[X,y]
by (2.7), and hence, we obtain w(M,I) < 8,(An(t)), as required. The former immediately
follows from (2.4) and the fact that af € I is rank-2. For the latter, we only consider the case
where C € C is a cycle component; the argument for a path component is simpler and we omit
it. Suppose that C' consists of +-edges 181, asfs,...,arfr and —edges Biag, Bf2as, ..., Braq.
By (2.4)—(2.6), we obtain

g B - B BE BT By o Bl By

[ ] *

where e represents some nonzero element in F(z,¢) and % can be a zero/nonzero element; x
is nonzero if and only if the corresponding edge is rank-2. Let CT be the set of +-edges
a1, @28, ...,a Pk in C, and C~ the set of —-edges [ag, foas,...,Lrar in C. By (Cycle),
one of * elements in (2.8) is zero; we may assume that the o 57 -th entry of Ay (t)[Xc, Yo is
zero. Hence we obtain that

det Ay (8)[Xe, Vo] = | d H Tapties | - [ d” H Taptdes 4+ a” H Toptdes
aBeC— afeC+ apeC—

for some a” € F and nonzero o’,a” € F. Thus degdet Ay (t)[Xc, Vo] > > apec- dag +

Zaﬁec+ dop = Zaﬁeo dog-
This completes the proof.

(i) < (iii). It suffices to see the case of dx(A(t)) > —oo, i.e., rank A(t) > k. Take any ¢ € R,
c-potential p, and (not necessarily valid) labeling V = ({U},U, }, {VBJF, Vs Ha,s. We consider
the basis transformation A(t) = SA(t)T with respect to V. Then 6k (A(t)) = 6, (A(t)) holds.

Suppose 6, (A(t)) = deg det A(t)[X, V] for some |X| = | V| = k, where X = {a]",a3?,...,a7"}
and Y = { Ti,ﬁgé, e ,ﬁ;:;“ } We may assume that the agiﬁf;—th entry of fl(t)[X, Y] is nonzero
(or equivalently, A, s, (U, Vﬁig) # {0}) for each i = 1,2,...,k and that degdet A(t)[X,)] =

S day- Then we have dp(A(t)) = S8 dap, < S8 <p(Ua‘7;) —{—p(VﬁUf) + C) < p(V) + k.
Here the first and second inequalities follow from the fact that p is a c-potential.
This completes the proof. O

2.3 Good characterization

The minimax formula (Theorem 2.2) states that the decision problem of whether d§x(A(t)) is
at least a threshold 6 € R belongs to NP. Indeed, a matching-pair (M, ) of size k such that
w(M,I) > 0 can be used as a proof for d;(A(t)) > 6, which is verifiable in polynomial time. In



the following, by introducing the concept of compatibility for a potential, we see that the problem
of whether 6;(A(t)) > 6 is also in co-NP by using Theorem 2.2. This implies that the minimax
theorem can be used as a good characterization for the computation of dx(A(t)).

Let (M, I) be a matching-pair of size k and V a valid labeling for M. A c-potential p is said
to be (M, I,V)-compatible if p satisfies the following conditions (Reg) and (Tight):

(Reg) For each « and §,

p(X) = max{p(U)),p(Us)} (X € Mo \{UJ, U, }),
p(Y) =max{p(V5"),p(Vz)} (Y € Mg\ {V;",V5}).

e p(Us) +p(Vy) +c if aB is a +-edge,
o Ul +p(VB+) +c if af is a —-edge,

. p(UF) +p(V5) + ¢ if af is a +-edge,
o Uy)+p(Vy)+c ifafisa —edge,

An (M, 1,V)-compatible c-potential p is said to be optimal if the equality w(M,I) = p(V) +
kc holds, namely, (M,I) and (p,V) attain the supremum of (ii) and the infimum of (iii) in
Theorem 2.2, respectively. The following theorem (Theorem 2.3) states that such an optimal
potential always exists if d;(A(t)) is bounded; its proof is given by the validity of our algorithm.

Theorem 2.3. Let k be a nonnegative integer. If 6 (A(t)) is bounded, then there are a matching-
pair (M, I) of size k, a valid labeling V for M, and an optimal (M, I,V)-compatible c-potential
p for some ¢ € R. In particular, the above p and ¢ can be chosen to be integer-valued.

By Theorem 2.3, a pair (p,V) of a c-potential p satisfying (Reg) and a valid labeling V
satisfying p(V) + ke < 6 can be used as a proof for §;(A(t)) < 6. The following shows that the
condition (Reg) enables us to check if a given nonnegative function p on U'y M., is a c-potential
in polynomial time.

Lemma 2.4. Suppose that a nonnegative function p on U,Y M., satisfies (Reg) for a labeling

(U U AV Ve Das Ip(U) +p(VE ) +¢ > dag for all af € E with Aag(UZ, V§') # {0},
then p is a c-potential.

Proof. Take arbitrary X € M, and Y € Mg with p(X) + p(Y') + ¢ < dqp. It suffices to show
that A,p(X,Y) = {0}. Here we may assume X ¢ {U;, U }; the case of Y ¢ {Vg, Vj } is similar
and we omit it. We also assume p(U;) < p(U; ) and p(V[;r) <p(Vy )

By (Reg), we obtain p(X) = p(Uy) > p(U) and p(Y') > p(V;"), implying p(U) +p(V5") +
c< p(U;)—!—p(VE)—i—c < p(X)+p(Y)+c < dop. Therefore Ayz(Uf, VBJF) = AUy, Vg) = {0},
i.e., kerg(Aap) 2 V5. Y = Vi, then we have Anap(X,Y) = {0}. If Y # V7, then p(Y) =
p(Vj) holds by (Reg), which implies the inequalities p(UJ) +p(Vy ) +¢ < p(Uy ) +p(V5 ) +c <
dap. Hence we have Aug(US,Vy) = Aas(Us, Vs ) = {0}; Agp is the zero matrix. Thus we
obtain A,g(X,Y) = {0}. O



It is known [16, Section 5] that the bit-length required for representing a valid labeling is
polynomially bounded even if F = Q. Thus the proof (p,V) for dx(A(t)) < 6 is verifiable in
polynomial time, implying the problem of whether d;(A(t)) > € is in co-NP.

We conclude this section with the observation that the optimality of an (M, I, V)-compatible
potential p can be rephrased as the condition (Zero):

(Zero) For all U and VBU/ that are unmatched by (M, I),
p(UF) = p(V§) =0.

The definitions of (Tight) and (Zero) immediately imply the following.

Lemma 2.5. Let (M,I) be a matching-pair of size k, V a wvalid labeling for M, and p an
(M, 1,V)-compatible c-potential. Then we have w(M,I) = {p(Z) | Z: matched by (M,I)}+ke.
In particular, p is optimal if and only if p satisfies (Zero).

3 Augmenting path

Our proposed algorithm is a primal-dual one. An outline of the algorithm is as follows; the
formal description is given in Section 3.3. Let (M,I) be a matching-pair of size k, V a valid
labeling for M, and p an optimal (M, I,V)-compatible c-potential. We

e verify 0j41(A(t)) = —oo (or equivalently rank A(t) = k),

e find an optimal compatible potential so that a rearrangeable component (introduced in
Section 3.1) exists in M \ I, or

e find an augmenting path (introduced in Section 3.2).

In the first case, we output the entire sequence of the maximum degree of minors as

(50(A(t))7 1 (A(t))7 st aék(A(t))v =00, ..., _OO)

and stop this procedure. The others are cases where we obtain a matching-pair (M*,I*) of size
k 4+ 1, a valid labeling V* for M*, and an optimal (M*, I*,V*)-compatible potential p*, which
implies 0x41(A(t)) = w(M*, I*). This is an augmentation in our setting.

Our augmentation is based on the auwiliary graph G(V,p): The vertex set is {a™,a™ |
a}U{Bt, B~ | B}, and the edge set, denoted by E(V, p), is {a"ﬁ"/ ‘ Anp(UZ, Vﬁ"/) # {0}, p(UZ)+

p(VB"/) +c= dag}. By (2.1), for each a3 € M, neither a8~ nor o~ 31 belongs to £(V, p).
The condition (Tight) implies that for each o-edge a8 € M, we have a®3° € £(V,p). In
addition, if af € I, then at8T,a= 3~ € £(V,p). An edge a8 € M is said to be double-tight if
atpt a= B € EWV,p), ie., af is rank-2 and p(U]) + p(V;) +c=pUY) le(,vﬁ_) + ¢ = dag-
A o-edge aff € M is said to be single-tight if it is not double-tight, i.e., a?B7 € £(V,p) and
a’B% ¢ E(V,p). Note that all edges in I are double-tight and all rank-1 edges in M are single-
tight. We refer to a? and 87 as o-vertices. We denote by G(V,p)|y the subgraph of G(V,p)
such that its edge set E(V,p)|as is {a"ﬁ"/ e &EV,p) ‘ aff € M} A o-path is a path in G(V,p)
consisting of edges a?5°.

As the initialization (k = 0), we set both M and I as the empty sets, and V as any labeling.
We define p and ¢ by p(Z) := 0 for every Z € |J, M, and ¢ := max{dap | a8 € E}, respectively.
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3.1 Rearrangement

Let C be a path component of M \ I with odd length such that the end edges of C' are o-edges.
We say that C is rearrangeable with respect to p if every o-edge in C' is double-tight.

Suppose that C' is rearrangeable with respect to p. The rearrangement of (M, I) with respect
to C'is an operation of modifying (M, I) to a matching-pair (M*, I*) of size k 4+ 1 as follows:

M* = M \ {all G-edges in C},
I" == T U{all o-edges in C}.

Since C has odd length, we have |[M*| = |M|— (|C| —1)/2 and |I*| = |I| + (|C| + 1)/2, implying
that the size of (M*, I*) is larger than that of (M, I) by one. Clearly V is still a valid labeling
for the resulting M*. Since every o-edges in C' is double-tight, p satisfies (Tight) for any newly
added edge to I. Thus p is still an (M*, I*,V)-compatible c-potential. Let o, 8 be the end nodes
of C. Then UZ, Vg are spaces that are newly matched by the resulting (M*,I*). This implies
that, if p is optimal for (M, 1,V), then so is it for (M*,I*,V) by Lemma 2.5. Therefore the
following holds.

Lemma 3.1. Let (M, I) be a matching-pair of size k, V a valid labeling for M, p an optimal
(M, 1,V)-compatible c-potential, and C a rearrangeable connected component with respect to p.
Also let (M*,I*) be the pair of edge subsets obtained from (M,I) by the rearrangement with
respect to C. Then (M*,I*) is a matching-pair of size k + 1, V is a valid labeling for M*, and
p s an optimal (M*, I*,V)-compatible c-potential.

3.2 Definition of an augmenting path

In this subsection, we introduce an augmenting path in our setting. First, we define the source set
and the target set as follows, in which nodes 87 in the former and o in the latter can be the initial
and the last nodes of an augmenting path, respectively. Let U (M, I) denote the set of all nodes
a“ and 3% such that UZ and VB"/ are unmatched by (M, I). For each v7 € U(M, ), we denote
by C(77) the connected component of G(V, p)|as containing 7. The source set S(M,1,V,p) and
the target set T(M,I1,V,p) for (M,1,V,p) are defined by

S(M,I,V,p) = U{the nodes belonging to C(87) | B° € U(M,I)},
T(M,1,V,p) = U{the nodes belonging to C(a?) | o € U(M, I)}.

We then define the components of an augmenting path. An outer path P for (M,I,V,p) is a
path in G(V,p) of the form

(B o7t ol B7, ..., Brregty)
such that
(O1) Biajt1 € E\ M for each i =0,1,...,k and a;118;+1 € I for each i =0,1,...,k — 1, and

(02) Aaiﬂﬁi(Ugle,Vg;) = {0} for each i =0,1,...,k — 1.

Note that (02) does not require Aq,,, s, (Uars, Vgk) = {0} on the last edge BrFagtit. The

ak+17
initial vertex 37° and last vertex aZ’fﬁl are denoted by B(P) and «(P), respectively.
An inner path Q for (M,1,V,p) is a path in G(V, p) of the form

(0585(17’ /Bfatlj? DRI agﬁg—i—l)’

such that
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(I1) the underlying path (cof1, f104,. .., akBk+1) of Q@ in G is included in a connected compo-
nent of M \ I, and

(12) apBy,1B2,...,arfrr1 are g-edges and [raq, Baaa, . . ., Bray are o-edges.

The former condition implies that Q can also be viewed as a o-path in G(V, p)|as, and the latter
implies that the o-edges fiaq, B2, ..., Bray are double-tight (and hence rank-2). The initial
vertex af and last vertex 87, are denoted by «(Q) and 3(Q), respectively.

We are now ready to define an augmenting path. Here, for paths P and Q in G(V,p) such
that the last node of P coincides with the first node of O, we denote the concatenation of P and
Q by P o Q. An augmenting path R for (M,1,V,p) is a path in G(V, p) such that

(A1) R is the concatenation Pyo Q1 oPjo---0Q,, 0Py, of outer paths Py, P1, ..., Py, and inner
paths Qy,...,Q,, for (M,1,V,p) in which a(P;) = a(Qit+1) and B(Qit1) = S(Pit1) for
each i, and

(A2) B(Py) € S(M,I,V,p) and «(Py,) € T(M,I,V,p).

An augmenting path augments a matching-pair. The following provides the validity of our
augmenting procedure; Sections 4-8 are devoted to its proof.

Theorem 3.2. From a matching-pair (M,I) of size k, a valid labeling V for M, an optimal
(M, 1,V)-compatible c-potential p, and an augmenting path for (M,I,V,p), we can obtain a
matching-pair (M*,I*) of size k + 1 and a valid labeling V* for M* such that p is an optimal
(M*, I*, V*)-compatible c-potential in O(min{yu,v}?) time.

3.3 Finding an augmenting path

In this subsection, we present an algorithm for verifying dx41(A(t)) = —oo, finding an optimal
potential so that a rearrangeable component exists, or finding an augmenting path.

Suppose that we are given a matching-pair (Mo, Iy) of size k < min{2u, 2v}, a valid labeling
Vo for My, and an optimal (M, Iy, Vy)-compatible potential py as the input. Suppose further
that there is no rearrangeable component with respect to pg. (If it exists, we can argument
(My, Iy) by Lemma 3.1.) We initialize (M, 1) < (Mo, Iy), V < Vo, and p < po. In addition,
during the algorithm, we maintain a forest F in G(V,p) such that each connected component of
F has exactly one node in S(M, I,V,p); we initialize F < S(M,I,V,p), which is nonempty by
k < min{2y,2r} and Lemma 3.4 (3) below.

The algorithm consists of the primal update and the dual update. While there is an edge
5"04", € £(V,p) such that 57 € F and ' ¢ F, we execute the primal update. If there is no
such edge, then we execute the dual update. Here, for a vector space X C U,, let X1e8 (or
X1sa) denote the orthogonal vector space with respect to Anp:

Xtas(= Xtoa) = {y € V5 | Aug(z,y) =0 for all z € X}.
For a vector space Y C Vj, Ytes (or Y1se) is analogously defined.
Primal update: We first add to F an edge %o € E(V,p) such that 47 € F and o’ & F.

(P1) If = T(M,I,V,p), then output (M, I,V,p) and the unique path R in F from a
vertex in S(M,I,V,p) to o . Stop this procedure.

(P2) Suppose that ' ¢ T(M,I,V,p) and « is incident to an edge a8’ in I. Then update
the valid labeling V for M as

U « (V§)tes, Vg « (U ) o,
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and add o/’/ﬁ’ol to F. Also update G(V, p) for the resulting V. (This case will be an
expansion of an outer path.)

(P3) Suppose that a’ ¢ T(M,I,V,p) and « belongs to a connected component of M \ I.
Let Q be the longest inner path in G(V, p)|ys starting with o’ such that Q does not
meet F. Then add Q to F. (This case will be an addition of an inner path.)

Dual update: For each 57 € F, define

ego =t {p(UF) + p(VF) + ¢ = dag | ' & F, AasUZ,V§) # {0} }.
Let ¢ be the minimum value of ego over 57 € F.

(D1) If € = 400, then output “dx4+1(A(t)) = —00” and stop this procedure.
(D2) If € < 400, then update p and ¢ as

p(Vi) < p(Vg) +e if 87 ¢ F,
p(U7) <+ p(Ug) +¢ ifa” € F,
c4+c—¢,

and adjust p so that p satisfies (Reg), that is, for each o and S,

p(X) « max{p(U)),pUs)} (X € Mo \{Uq.Uq }),
p(Y) < max{p(Vy"),p(Vy)} (Y € Mg\ {V;", V5 }).

(D2-1) Suppose that there is a rearrangeable connected component C' with respect to
the resulting p. Then we apply the rearrangement to (M, I). Output the resulting
(M, I,V,p) and stop this procedure.

(D2-2) Otherwise, suppose that the resulting target set 7 (M, I,V,p) is enlarged. In
this case, we have FNT (M, 1,V,p) # 0. Output (M,I,V,p) and a minimal path
R with respect to inclusion in F from a vertex in S(M,I,V,p) to a vertex in
FNT(M,I,V,p). Stop this procedure.

(D2-3) Otherwise, update

F+— FUS(M,I,V,p)
if the resulting S(M,I,V,p) is enlarged. |

The following theorem states that the above algorithm correctly works, the proof of which is
given later.

Theorem 3.3. (1) Suppose that the algorithm reaches (P1) or (D2-2). Then the output (M, I)
is a matching-pair of size k, V is a valid labeling for M, p is an optimal (M, I1,V)-compatible
c-potential, and R is an augmenting path for (M,I1,V,p).

(2) If the algorithm reaches (D1), then dg+1(A(t)) = —o0.

(3) Suppose that the algorithm reaches (D2-1). Then the output (M,I) is a matching-pair of
size k+1, V is a valid labeling for M, and p is an optimal (M, I,V)-compatible c-potential.

(4) The running-time of the algorithm is O(puv min{pu,v}).
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Theorems 3.2 and 3.3 imply Theorems 1.1, 2.2, and 2.3. Indeed, the above algorithm detects
0k+1(A(t)) = —oo or outputs a matching-pair (M, I) of size k + 1, a valid labeling V, and an
optimal compatible potential p in O(ur min{y,v}) time by Theorems 3.2 and 3.3. In the latter
case, the supremum and the infimum in the minimax formula in Theorem 2.2 are attained by
such (M, I) and (V,p). In particular, since every d,g is integer, so is € in the dual update (D2),
which implies that p and ¢ are integer-valued. Thus Theorems 2.2 and 2.3 follow. Moreover,
since at most min{2u, 2} augmentations occur in the algorithm, we obtain Theorem 1.1.

For the proof of Theorem 3.3, we present the following three lemmas (Lemmas 3.4, 3.5, and
3.6). In particular, Lemmas 3.5 and 3.6 are frequently used for the proofs of the validity of the
augmentation procedure in Sections 4-8.

Lemma 3.4. Suppose that there is no rearrangeable component in M\ I with respect to p. Then
the following hold:

(1) S(M,I,V,p) NT(M,1,V,p) =0.

(2) For each v € U(M,I), C(7y?) forms an even length o-path in G(V,p)|m which starts with

g

¥°.
(3) IS(M,1,V,p) N {B%,87 | B} — [S(M, I,V,p) N {aF,a” |a}| =2v — k.

Proof. For v7 € U(M,I), we denote by V(C(77)) the set of nodes belonging to C(v7).

(1). Suppose, to the contrary, that S(M, I,V,p)NT (M, 1,V,p) # 0. Then U yocyyar,n V(C(a?))N
Ugeer,n V(C(B7)) # 0. That is, there is a path connected component C of M \ I with odd
length of the form (Byavi, @151, . .., Brags1) such that Syaq and Bray1 are o-edges and a o-path
(B5ag,alBy, ..., B af, ) exists in G(V, p)|n. This implies that all o-edges S, Br1az, . .., Brart1
are double-tight, i.e., C' is rearrangeable, which contradicts the assumption that there is no re-
arrangeable component.

(2). We only show that, for each 7 € U(M,I), C(7) forms an even length o-path in
G(V,p)|m which starts with 57; the case for a” € U(M,I) is similar. Note that § is not incident
to an edge in I. By (2.1), C(7) consists of nodes labeled by o. Suppose, to the contrary, that
C(B7) forms an odd length o-path, ie., C(87) = (87 = fB§af,aip],...,B7aj,,). Note that
Boar and Srayi1 are o-edges. If degj (ag11) = 2, then ajyq is incident to a T-edge a118k+1
in M, and hence, the edge af_ 37, belongs to £(V,p). This implies that 57, also belongs to
Cs; a contradiction. If degy;(ag41) = 1, then the connected component C' of M \ I containing Sy
and a1 forms an odd length path component and the end edges foa; and Brayy1 are o-edges.
Thus all o-edges in C' are double-tight. This contradicts the assumption.

(3). By (2), we have [V(C(87)) N{B7,8~ | B} — [V(C(87)) N{a™,a™ || a}| = 1 for each
B2 € U(M,I). Thus we obtain |S(M,I,V,p) N{BT,B8~ | B} — |[S(M,I,V,p) n{aT,a” | a}| =
8 | B UM, 1)} = 20— k. O

Lemma 3.5. Suppose that there is an edge a’ B in E(V,p). Then the vector spaces (Vé’,)LBa
and (UZ)*e8 belong to My, and Mg, and are different from UGS and VBUI’ respectively. Moreover,

(V') oo = UZ if p(UZ) < p(UZ), and (UZ) s = Vg if p(V§') < p(V§).

Proof. We only show the statements on (Vﬁ"/)Lﬁa. By a?8% € £(V,p), we have A,5(UZ, Vﬁ"/) #
{0} and p(UZ) —i—p(VﬁU/) + ¢ = d,3. By the former, we have Vﬁ"/ ¢ kerr(Aqp). Hence (Vé’/)Lﬁa
is a 1-dimensional vector space; i.e., it belongs to Mg, and (Vé’,)lﬁa # UZ. Moreover, if
p(UZ) < p(UZ), the identity p(UZ) + p(VS') + ¢ = dag implies p(UZ) + p(VF') + ¢ < dag. Since
p is a c-potential, we have A,5(UZ, Vﬁ"/) = {0}. Thus we obtain (Vé’,)LBa =Ug. O
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Let (M, I) be a matching-pair, V = ({U},U; }, {VBJF,VB*})a,g a valid labeling for M, and
p an (M, I,V)-compatible c-potential. A labeling V = ({UJ,UJ},{VE,VB_})aﬁ is said to

be equivalent to V wiAth respect to p, denoted by V ~, V, iAf VY is a valid labeling for M and
(U, pUL) = (p(UL),p(Uy)) and (p(V5),p(Vy)) = (p(V5),p(Vy)) for each o, 5.

Lemma 3.6. Let V = ({UF, U}, {V[;L, Vﬁf})aﬁ be a labeling equivalent to V with respect to p.
Then the following hold:

(1) p is an (M, I,f/)—compatz’ble c-potential. In addition, if p is optimal for (M, I, 1>), then p
is also optimal for (M,1,V).

(2) GV.p)lmr =GV, p)lu-

(3) Suppose that US = UZ or p(US) > p(U2), and that Vﬁ(’/ = f/ﬁ(’/ or p(VB"/) > p(Vé’T). Then
the edge o 7 exists in EV,p) if and only if it exists in E(f),p).

Proof. (1) and (2) immediately follow from the definition of V ~, V. B

(3). There are four Case/s: (1A) g]g = U7 and VBU/ = Vé’_/, (i) UZ :/Ug andg(VB"/) > p(VB”,),
(iti) p(UZ) > p(UZ) and V" = Vg, and (iv) p(U7) > p(Ug) and p(Vy") > p(Vﬁ"/). We note that
p(UZ) > p(UF) = p(UF) (vesp. p(Vg') > p(V5') = p(V§")) implies UT = U (vesp. V5" = V')
by (Reg). By symmetry, it suffices to show that a’B €€ (V, p) implies a’B €€ (V,p) for each
case. )

(). It is clear that a’B7 e E(V,p) implies a’B e EV,p).

(ii) and (iii). We only consider (ii); (iii) follows from the same argument. Suppose aj’ﬁ"l €
EWV,p). Then we haVAe_p(Ua") —i—p(Vﬁ"A) +c= fliﬁ and Anp(Ug,Vy§') # {0}. By AUO‘U A:_Ug and
p(VB"I) > p(Vé’/) = p(Vﬁa/), we have p(UZ) —|—p(V50/) + ¢ < dag, which implies A,g(Ug, Vﬁ"') = {0}
since p is a c-potential. By f/é’/ # f/é”, we obtain Aaﬁ(Ug, Vé’/) # {0}. Therefore a?° belongs
to £V, p).

(iv). Suppose a?f7 € 5(1& p). By the assump‘ion and p(UZ) + p(Vé’/) + ¢ = dag, all of
p(UZ) + p(Vﬁ"/), p(U2) —i—p(VB"/), and p(UJ) + p(Vﬁ"/) are smaller than d,g. Hence we have
Anp(UZ, Vﬁal) = Ajg(Ug,Vg—’) = Anp(UZ, Vé’_/) = {0}. This implies that o is Emk-l,ﬁUg =
kerL({laB)A, z/md Vﬁa’ — kerR(Aaﬁ/)- It follows frcgm US # U2 = UZ and Vﬁa’ ”; Vﬁo' — é,—' that
Aap(UZ,Vg) # {0}. Thus a7 belongs to E(V, p). O

We are ready to prove Theorem 3.3.

Proof of Theorem 3.3. A path (85°af*, af* 87", ..., a7 Br%) in G(V, p) is called a truncated outer
path for (M, 1,V,p) if it satisfies (O1) and (O2); note that the last node is not ag'fll but g7~ Also
apath R in G(V, p) is called a truncated augmenting path for (M, 1,V p) if it is the concatenation
PooQroPio---0Q,, 0P of outer paths Py, Py, ..., Pm, inner paths Oy, ..., D, and a truncated
outer path P, where P can be empty, such that 5(Py) € S(M, I,V,p). We can easily see that, for
a truncated augmenting path R with the end node 37 and an edge 8°a” such that Sa € E \ M
and o € T(M,1,V,p), the path R o (ﬁ"of’/) forms an augmenting path for (M, 1,V,p).

We simultaneously show Theorem 3.3 (1), (2), and (3). In particular, we prove that at the
beginning of the primal/dual update phase, the following five conditions hold:

1. (M,I) = (My,1y), V is a valid labeling for M, and p is an optimal (M, I,V)-compatible
potential.
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2. F is a forest in G(V, p) such that each connected component of F has exactly one node in
S(M,I,V,p).

3. For each 87 € F, the unique path R in F from a vertex in S to 87 is a truncated augmenting
path for (M,I,V,p).

4. For each af € M with a?37 € £(V,p), o € F if and only if 87 € F.
5. |[Fn{st, 8~ |8} —|Fn{at,a” | a}| =2v—k.

These are true for the initial phase F = S(M,I,V,p) (particularly, condition 5 follows from
Lemma 3.4 (3)). We see that the primal and dual updates keep these conditions.

(Primal update). Suppose that we choose an edge oo’ € E(V,p) such that 57 € F and
o’ & F to F. Then Ba belongs to E \ M by condition 4 and g% € F ¥ a®. Let R be the
truncated augmenting path for (M, I, V, p) that ends at 47 (which uniquely exists by condition 3).

(P1). By a’ e T(M,I,V,p), the output R o (5"04"/) forms an augmenting path for
(M,I,V,p). Condition 1 implies that Theorem 3.3 (1) for (P1) holds.

(P2). Suppose that « is incident to an edge o’ in I. By Lemma 3.5, we have (Vﬁ")LO‘B e M,

and (Vﬁa)laﬁ # UZ'. Furthermore p((Vﬁ")laﬁ) = p(UZ') holds. Indeed, if p(UZ') > p(US'), then
Lemma 3.5 asserts (Vé’)laﬂ = Ug. If p(US') < p(Ug), then the inequality (V;)Laﬁ 4 U7 im-
plies p((VB")LQB) = p(US') by (Reg). Therefore, by update UJ < (VB")LQB and Vﬁ",/ — (U ) Les,
the resulting V is a valid labeling for M and is equivalent to the previous one with respect to p.
By Lemma 3.6 (1), p is an optimal (M, I,V)-compatible c-potential. Thus condition 1 holds.

The update of V can change G(V, p), particularly, the set of edges incident to a® or B 7 We
here show that F U {5"04",,04",@0,} C £(V,p), i.e., no edge in FU {5"04"/,04"/5/0,} is deleted
from E(V, p) by this update. By a3’ € I and Lemma 3.6 (2), we have o 8'",a= 8~ € E(V,p),
implying o' 3’ g (V,p). By condition 4, a®" and 8’ 7" do not belong to F, particularly, no edge
incident to 3’ " is in F. Hence it suffices to see that if there is B’ UHOL? € F for some 3" # [,
then 577 a7 € E(V,p). Suppose 5,,0//a7 € F. Then we have a® 87 € F by (P2). Since the
path in F from a vertex in S to 3 0,, whose last edge is oﬂ_;ﬁ’al, is a truncated augmenting path
by condition 3, we have U? = (Vﬁ",:/)Laﬁ”. By US # UZ and the equivalence of V, we have
Anpn (U VB‘T,:/) # {0} and p(U?") —i—p(VB"/i/) + ¢ = dupr. Thus we obtain 3" 0 € E(V, p).

We finally prove that F U {5"04"/,04"/@0,} satisfies conditions 2-5 after the update. By
condition 4 for F and o ¢ F, we have 3’ o ¢ F. Hence FU{B%a" ,a° B U,} satisfies condition 4.
By F C £(V,p), condition 2 still holds for F. In addition, a” ¢ F and ' o ¢ F immediately
imply that F U {ﬁ"oﬂ,, o' B! Ul} satisfies conditions 2 and 5. For condition 3, it suffices to see
that the unique path R o (8°a° 0 87 ) in FU{B°a ,a” 7'} from a vertex in S(M, I,V,p)
to ﬁ’a/ is a truncated augmenting path. This follows from a8’ € I and Aaﬁ(Ug, Vg) = {0} by
the update.

(P3). Suppose that a” ¢ T(M,I,V,p) and « belongs to a connected component of M \ I.

Let Q be the longest inner path in G(V, p)|as starting with o’ such that Q does not meet F.
Since V and p do not change in this update, condition 1 clearly holds. Condition 2 follows

from the fact that every node in Q exits F by the definition. Since Q is of the form (a"/ =
aglﬁ‘f/,ﬁf/a(f/, .. ,ag/ﬁgil), in which agB1, 152, ..., arfry1 are o’-edges, F U {ﬁ"o/’/} U Q sat-
isfies condition 5. For each 37 " belonging to Q, the unique path from a vertex in S to B " s
a truncated augmenting path (which does not have a truncated outer path). Thus condition 3
holds. Finally, we show that F U {ﬁ(’o/’l} U @ satisfies the condition 4. Suppose, to the con-

trary, that there is a o’-edge Briiaxy1 € M such that ﬁ,‘c’;lag;l € £(V,p) and ag;l ¢ F.
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is unmatched by (M, TI)

by degs(aks+1) = 1, which implies 048/ € T(M,I,V,p). This contradicts the assumption of
of ¢ T(M,I,V,p) on (P3). Thus ag;lﬂg@ also exists in £(V,p), since ayy1Bx42 is a o’-edge.
By condition 4 for F and aglﬂ ¢ F, we have 52;2 ¢ F. Hence Qo (ﬁg;lag;l,ag;lﬁg;ﬁ also
forms an inner path for (M,I,V,p) not meeting F, which contradicts the maximality of Q.
Therefore F U {#%a” } U Q satisfies condition 4.

(Dual update). Since there is no edge between 57 and a® in & (V,p) such that 87 € F and
o ¢ F, the minimum value ¢ of ego over 37 € F is positive by definition. For &’ with 0 <&’ <e¢
and ¢’ < 400, let us define ¢.s by ¢ := ¢ — &’ and p./ by

Then a ?—edge kt18k1o also exists in M. Indeed, otherwise Ug;+l

- (Vg if 57 € F, o p(UZ)+¢ ifa” € F,
pE/(Vﬁ) = ( BJ) , . " pe/(Ua) — ( U) ] .
p(V§)+¢e ifp7¢gF, p(Ug) ifa” ¢ F,

and

per(X) = maX{pe’(U;),pa’(U;)} (X e My )\ {U;L’ Uy 1),
pr(Y) = max{pel(Vg’),pE/(Vﬁ_)} (Y € Mg\ {V;, Vi

for each v and 8. Then the following claim holds:

Claim. The function p. : U7 M, — R is an optimal (M,1,V)-compatible c.-potential and
F CEW,pe). In particular, if € < 400, then there is at least one edge f7a° € E(V,p.) such
that B € F and o & F.

Proof of Claim. We first show that p. is a co-potential. Take arbitrary UJ and VB"/ with
per(UZ) + per (V') + cor < dag. We see Aqg(UZ, V') ={0}. If a” € F or 87 ¢ F, then dag >
pe/(Ug)—l—pe/(Vﬁ"/)—i—ce/ > p(Ug)—l—p(Vﬁ"/)—i—c. Since p is a c-potential, we have A,z(Ug, VB"/) = {0}.
If o ¢ F and 7 € F, then p(U2) +p5/(VBU/) + cer = p(UT) —|—p(V5°J) +c—¢ <dus By
e’ <& < ego and the definition of £g-, it must hold that A,z(UZ, VB"/) = {0}. Since p. satisfies
(Reg) by definition, it is a c.-potential by Lemma 2.4.

By condition 4, for each a?f7 € £(V,p)|m, we have either a?,8% € F or o, ¢ F, ie.,
p(US) +p(Vg) + ¢ = per(UZ) + per (V) + cor. Thus we obtain E(V,p)[m € E(V,per)|m, which
implies that p. satisfies (Tight). For each UZJ and Vé’, unmatched by (M, ), we have o €
T(M,I,V,p)and 87 € S(M,I,V,p). It follows from T (M, I,V,p)NF = 0 and S(M,I,V,p) C F
that po(UZ) = p(UZ) = 0 and pE/(VB",) = p(Vé’,) = 0, which implies p. satisfies (Zero). Hence
per is an optimal (M, I,V)-compatible c.,-potential by Lemma 2.5.

For each a”3% € F, we have p.(U?) + per (Vi) + co = p(US) + p(V§) + ¢ = dog, Therefore
we obtain F C E(V, p.).

If ¢ < 400, then there are 37 € F and o ¢ F such that A,5(UJ, Vg) # {0} and p(U) +
p(V§)+c = dag+e. For such 57 and o', we have pg(Ug/)—i—pe(Vﬁ")—i—cg/ = p(Ug/)—i—p(VB")—i—c—s =
dap by the definition of p.. Hence B7a”" belongs to E(V, pe). O

We consider the case of € = 400, corresponding to (D1). By Claim, the function p./ is a c./-
potential for any €’ > 0. By condition 5, we have 2v—|FN{8", 5~ | B} +|FNn{at,a” | a}| = k.
Hence pos (V) + (k + 1)eer = p(V) + ke + (k+ 1)(c —€') = p(V) + (k + 1)c — €’. Therefore

inf {po(V)+ (k+1)cer } = —00.
e’>0

By the weak duality in Theorem 2.2, we obtain d;41(A(t)) = —oo, which implies Theorem 3.3 (2).
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We then consider the case of ¢ < +o0, corresponding to (D2). By Claim, p. is an optimal
(M, I,V)-compatible c.-potential.

Suppose that (D2-1) occurs. Then we apply the rearrangement to (M, I') with respect to some
rearrangeable component in the algorithm; the resulting edge set pair is denoted by (M*, I*).
By Lemma 3.1, (M*, I*) is a matching-pair of size k + 1, V is a valid labeling for M*, and p; is
an optimal (M*, I*,V)-compatible c-potential. By updating (M, I) « (M*,I*) and p < p., we
obtain Theorem 3.3 (3).

In the following, we assume that there is no rearrangeable component in M \ I. By Claim, p.
is an optimal (M, I, V)-compatible c.-potential, and hence, condition 1 holds. By the definition
of p., if f7a° € E(V,p) and either B7,a° € For 87,a° ¢ F, then B’ € E(V,pe). By
S(M,I,V,p) € F and T(M,I,V,p) N F = (), we obtain S(M,I,V,p) C S(M,I,V,p.) and
T(M,1,V,p) € T(M,I,V,p:). By Lemma 3.4 (2), C(8%) forms an even length path for 57 €
UM, T). Tf S(M,I,V,p.)\ S(M,I,V,p) # 0, then there is a o-edge Sa € M such that 87 €
S(M,I1,V,p) and p7a € E(V,p:) \ E(V,p). This implies that a” ¢ F. Thus, by condition 4,
F exits S(M,1,V,p:) \ S(M,I,V,p). We consider additional two cases: (i) T(M,I,V,p:) 2
T(M,I,V,p) and (ii) T(M,I,V,p.) = T(M,I,V,p).

(i). This case corresponds to (D2-2). By T(M,I,V,p.) 2 T(M,I,V,p), there is a o-edge
Ba € M such that a® € T(M,I,V,p) and a?57 € E(V,p:) \ E(V,p). This implies that 57 €
FNOT(M,I,V,p;). Thus there is a path in F from a vertex in S(M,I,V,p)(C S(M,1,V,p:)) to
a vertex in T(M,I,V,pe).

Let R be such a minimal path in F with respect to inclusion, i.e., the first node of R
belongs to S(M,1,V,p), the last node belongs to 7(M,I,V,p.), and all intermediate nodes
exit S(M,I,V,p) UT(M,1,V,p:). Furthermore, since F exits S(M,I,V,p.) \ S(M,I,V,p),
all intermediate nodes also exit S(M,I,V,p.). We show that R is an augmenting path for
(M,1,V,p:). By Lemma 3.4 (2) and the minimality of R with respect to the inclusion, the
last node of R belongs to T (M,I,V,p.) N{a™,a™ | a}, say, a, and the last edge 87 0 of
R exits E(V,pe)|p- Since F is included in £(V, p.) by Claim, R forms an augmenting path for
(M,I1,V,p:); Theorem 3.3 (1) for (D2-2) holds.

(i1). This case corresponds to (D2-3). Since F exits S(M,I,V,p:) \ S(M,I1,V,p), F U
S(M,I,V,p.) satisfies conditions 2 and 3. Let C(87). be the connected component of G(V, p:)|ams
containing $?. By Lemma 3.4 (2), C(87). \ C(57) forms an even length o-path in G(V,p.)|m.
Hence conditions 4 and 5 hold.

(4). Onme primal or dual update can be performed in O(|€(V,p)|) = O(uv) time. By condi-
tion 5 and |{B%, 3~ | B}| < 2v, the number of nodes in {a™,a™ | a} covered with F is bounded
by k < min{u, v}. In the primal update, if the algorithm does not stop, then the number of nodes
in {a*,a” | a} covered with F increases by at least one. In the dual update, if the algorithm
does not stop, then at least one edge 87 such that 37 € F and o ¢ F appears in E(V, p) by
Claim; the next phase is primal. Thus the number of iterations of the primal/dual updates in
the algorithm is O(min{y,v}). Hence the running-time of the algorithm is O(uv min{u,v}). O

4 Preliminaries for the augmentation procedure

In this section, we introduce concepts of pseudo augmenting path (Section 4.1), front-propagation
(Section 4.2), and back-propagation (Section 4.3) for describing an augmentation procedure
and proving its validity. We also introduce two no short-cut conditions—named (Noyter) and
(Ninner)—on an augmenting path in Section 4.4. Section 4.5 is devoted to introducing two
quantities used to estimate the time complexity of the augmentation procedure. During the aug-
mentation, although an (M, I,V)-compatible c-potential p may not satisfy (Zero) (or may not
be optimal) for (M, I,V), it satisfies (Zero)' for R that is a weaker condition than (Zero). This
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is formally introduced in Section 4.6. In Section 4.7, we provide an outline of our augmentation.

We here employ several notations. For an outer path P = (37°af*, o' 87", ..., 52" aZ’fll), its
italic font P denotes the underlying walk (Spaq, @151, - .., Bxag+1) in G. Similarly, the underlying
path of an inner path Q is denoted by its italic font Q). An outer path P is said to be simple if
the underlying walk P in G is actually a path, i.e., it does not use the same edge twice. For an
outer or inner path X' = (7J°~7*, 77792, ... ,’ygk'ygﬁl) and 7, j with 0 <7 < j < k+1, we define
X[y i,*y;j ] by the subpath of./l’ from ’y; ' to 'y;j . In particular, if 47" is the initial node ~3° of
X, then we denote X [’ygo,*y;] | by X (’y;] . If ’y;] is the last node 'ygj_? of X, then we denote

X[yt by X[77%). For a component C' of G, we denote the vertex set of C by V(C).

In the following, let (M, I) denote a matching-pair of size k, V a valid labeling for M, and p
an (M, I,V)-compatible c-potential.

4.1 A pseudo augmenting path
A pseudo outer path P for (M,I,V,p) is a path in G(V,p) of the form
(B30 ol a7, ..., BTt agy)

satisfying (O1) and the following (02)":

(02) B7ai ' ¢ E(V,p) for each i =0,1,...,k — 1.

(2

That is, the condition (02) that Aq,. s (Uaift Vg') = {0} of an outer path is weakened to

417
B altt € E(V,p) in the condition (O2) of an pseudo outer path.

A pseudo augmenting path R for (M,I,V,p) is a path in G(V,p) satisfying (A2) and the
following (A1)

(A1) R is the concatenation PyoQioP;o---0Q,, 0P, of pseudo outer paths Py, Py, ..., Py, and
inner paths Qy, ..., Q,, for (M, I,V,p) in which a(P;) = a(Q;+1) and 5(Qi+1) = B(Pit1)
for each 1.

4.2 Front-propagation

Let P = (B5°af", af* By, ..., Z’“agfll) be a pseudo outer path for (M,I,V,p). The front-
propagation of P is a sequence (Yp, X1,Y1,..., Yk, Xgy1) of 1-dimensional vector spaces such
that Yy := V[% 9 and for each 1,

1s e
Xi= (Yiy) Fiei, Y= (X))t
Note here that if P is an outer path, then the front-propagation of P is

(VS UTEL Va o Vi, (Vi) o)

1)
by (02).
Suppose that we replace VB‘T)O, Ugr, Vﬁoll, . VBU? in V with Yy, X1,Y7,...,Y;, respectively; we

refer to the resulting as V(P(57']). The following holds:

Lemma 4.1. For each i = 0,1,...,k, we have V(P(5]"]) ~, V and GV (P(B]']),p) = G(V,p).
Moreover, P forms an outer path for (M,I,V(P(8.*]),p).
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Proof. Let (Yo, X1,Y1,...,Yk, Xgy1) be the front-propagation of P. For ¢« = 0,1,...,k, let
Vi = V(P(57']). We show V; ~, V and G(V;,p) = G(V,p) by induction on i. In addition, we
also show that, if p(UZ?) < p(UZ¢) then X; = UZ, and if p(Vg') < p(V;?) then Y; = V7.

The case ¢ = 0 is clear by Vo =V and Yy = V"0 Suppose 0 < ¢ —1 < k. By the induction
hypothesis of G(V;_1,p) = G(V,p), we have ﬁfllla‘” € EWi1,p) and 87707 ¢ EVi_1,p).
There are two cases: (i) p(UZf) > p(UZF) and (ii) p(UJ') < p(UJ:). Note that Yl,l is the o;_1-
space of §;_1 with respect to V;_1, and that Ugf; and V;f are the g;-space of a; and the o;-space
of B; with respect to V;_1, respectively.

(1) p(Ugsz p(UT). By a;f; € I and (Tight), we have p(Vy7) < p(V;?) It suffices to show
that X; = Ugi. Indeed, the identity X; = UJ! implies Y; = VB‘TZ, ie, Vi =V;—1. Thus V; ~, V
and G(V;,p) = G(V,p) by the induction hypothesis.

We denote by X the og;-space of a; with respect to V;_1; note that X may be different from
Ugiif af' = af for some £ < i— 1. Since p satisfies (Reg), we have p(X) = p(UZ) > p(UT:). By
501 ‘ol € E(Vi—1,p) and Lemma 3.5, we obtain X;(= (Yi_1)Fi-19) € M,,. Furthermore, it
follows from 77 af" € E(Vi—1,p) that dy,5,_, = p(X) +p(Yic1) +¢ > p(UT) +p(Yi—1) + ¢. By

BT ¢ EVii,p ), we have Ay, (U, Y- 1) = {0}. Thus we obtain X; = (Y;_1) fi-1% =
U"Z, as requlred

(ii) p(US) < p(UZ). By ;f; € I and (Tight), we have p(Vg*) > p(Vé’?) By the inductigl
hypothesis, the o;-space of a; and the o;-space of 3; with respect to V;_; are Ugi and VB‘TZ,
respectively. By 8;'7'a" € £(V;_1,p) and Lemma 3.5, we obtain X; = (Yi_l)LBi*l“i € M,, and
X; # UgJi. Since ;3; is rank-2, we also obtain Y; = (Xi)laiﬁi € Mg, and Y; # Vﬁaf‘ Hence V;
is a valid labeling for M. Since p satisfies (Reg), we have p(X;) = p(UZ') > p(UZ!) and p(Y;) =
p(Vg') > p(VB”?) Thus V; ~, V;_1. Furthermore Lemma 3.6 (3) asserts G(V;,p) = G(Vi—1,p).

In the case of i = k, P is a path in G(V, p) = G(V, p) that clearly satisfies (O1). Furthermore,

P satisfies (02) by Aq,,,8,(Xit1,Y:) = {0} for i = 0,1,...,k — 1. Therefore P is an outer path
for (M,I,V,p).
This completes the proof. ]

Let R =PyoQroPio---0Q,, 0P, be a pseudo augmenting path for (M, I,V,p). We define
V(R) by the labeling obtained from V by executing the front-propagation of P; for each i. That
is,

V(R) = V(Po(B'(Po)])(P1(B'(PL)])) - - (Pm(B'(Pum))),

where §'(P;) denotes the node adjacent to «(P;) in P;, ie., B'(P;)a(P;) is the last edge of P;.
The following proposition states that we can construct an augmenting path from a pseudo outer
path via the front-propagation.

Proposition 4.2. Let R be a pseudo augmenting path for (M,1,V,p). Then V(R) ~, V and R
forms an augmenting path for (M,I,V(R),p).

Proof. Suppose that R =Pyo Q10Pio---0Q,, 0Py, and, for each i, let

V(R)i = V(Po(B'(Po))(P1(B'(P1)])) - -~ (Pi(B'(Pi)])-

We show by induction on ¢ that V(R); ~, V and R is a pseudo augmenting path for (M, I, V(R);, p)
such that 730,731, .., P; are outer paths for (M, I,V(R);,p).

Let V(R)_1 = V We consider i > 0. Since P; is a pseudo outer path for (M,I,V(R)i-1,p),
Lemma 4.1 and the induction hypothesis assert that V(R); ~, V(R)i—1 =~ V, G(V(R)i,p) =
GV(R)i—1,p) = G(V,p), and P; is an outer path for (M, I,V(R);,p). By GV(R)i,p) = G(V, p),
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all Py, Pa, ..., Py are still pseudo outer paths for (M, I,V(R);,p). In particular, since P; does not
meet Py with £ <i—1, Py, Pa,...,P;—1 are still outer paths for (M,I,V(R);,p). It follows from
GV, p) = G(V(R);,p) that Q; forms an inner path for (M, I,V(R);,p) for each j, S(M,I,V,p) =
S(M,1,V(R)i,p), and T(M,I,V,p) =T (M,I,V(R);,p). Thus R is a pseudo augmenting path
for (M, 1,V(R);,p) such that Py, Pi,...,P; are outer paths for (M, I,V(R)i,p). O

4.3 Back-propagation

Let P = (B5°a", o' BT, ..., BLF agfll) be an outer path for (M, I,V,p). The back-propagation
of P is a sequence (Yp, X1,Y1,. .., Yy, Xg11) such that Xy == Ust/, and for each 4,

Y1 = (Xi)Lai’Bifl, X, = (Yi)lﬂiai.

Lemma 4.3. Let (Yy, X1,Y1,..., Xgi1) be the back-propagation of P. For each i = 0,1,...,k,
Xiy1 belongs to My, and is different from Uaitt, and Y; belongs to Mg, and is different from
Vgt Moregver, if p(US) < p(U) (resp. p(Vg') <p(Vg')), then X; is equal to UZ: (resp. Y; is
equal to V).

Proof. 1t suffices to prove that

o if Xijy1 € Mq,,, and X;y1 # UL, then Y; € Mg, and Y] # Vg', and
o if p(V5') > p(V§"), then V; = V.

Indeed, by Bia; € I and (Tight), the edge (;a; is rank-2, Uz? = (Vﬁii)J—Biai, Ugi = (VB‘?)J—&%,
and p(Ug) +p(V5') +c = p(UZ) +p(V5')+c. Hence Y; € Mg, V; # V5, p(Vi) > p(Vy'), and
Y; = VE immediately imply X; € M,,, X; # UJ¢, p(UG) < p(Ug_ii), and X; = Ugi, respectively.

7

We show both the bullets by induction on ¢ = k,k—1,...,0. By definition, we have X1 =

Uayty, which clearly belongs to M, ,, and is different from Ug; 7). Since the edge 87 oy }! exists

in £(V, p), Lemma 3.5 asserts that Yy, = (Ua) T} )l“kﬂﬁk belongs to Mg, and is different from V"
In addition, if p(Vy*) > p(ng), then we have Yy, = ng by Xir1 = Uait, Brreg € EV,p),
and Lemma 3.5.

Assume X;11 € M, and X;1 # Ugﬁ for some i < k. If a;410; is rank-2, then VBU:' =
(USEH) es1% by (02) and V; = (Xjpq) *+1%. Hence we have ¥; € Mg, and ¥; # Vi’ If
@iy10; is rank-1, then X1 # Ua,t] = kerp,(Aq,,,5,) by the assumption and (02), which implies
Y; = kerr(Aa,,,p,). Moreover, we have Vi’ # kerg(Aaq,,,5,) by Bllagtit € E(V,p). Thus we
obtain Y; # V.

Assume p(Vg') > p(Vg?) for some i. If p(Uaitl) < p(USHY), then X;q1 = Ugt! by the

Q41 Q41 Qi1
induction hypothesis. In this case, the iditity Y, = VBU? follows from G;* agfll € £(V,p) and
Lemma 3.5. Suppose that p(Ua.f}) > p(Uaif}). Then we have do,,, 5, = p(Uai}) +p(Vg')+c>

p(Uait) + p(Vg?) +c > pUsi)) + p(Vg) + ¢; the equality follows from_ﬁfiagfll e EWV,p).

Since p is a c-potential, it must hold that A, g, (Ust! Vé’?) = A8 (Uat, Vﬁ(’?) = {0}. This

7+19

implies that «;110; is rank-1 and VB‘? = kerr(Aq,.5;)- By Yi = (Xi+1)l°‘i+1‘3i, Y; is equal to
&7
Vg!.

This completes the proof. O

Suppose that we replace Ug’, VBU?, e VBUE’ Ug,’jill with X;,Y;, ..., Yy, Xiy1, respectively; we
refer to the resulting as V(P[ag?)™1).
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Lemma 4.4. If P is a simple outer path for (M,I,V,p), then V(Pla')™1) ~, V and P is an
outer path for (M, I,V(P[a]')™1),p).

Proof. Let (Yy, X1,Y1,...,Xgs1) be the back-propagation of P and V' := V(P[aJ')~1). We first

show V' ~, V. Since P is simple, for each i = 1,2,...,k the o;-space and ;-space of a; with
respect to V' are X; and Ugf; , respectively. By Lemma 4.3, they are different. Similarly, the

o;-space and g;-space of 3; with respect to V' are VBUii and Y;, respectively, which are different.
By Aa,,(UZ:, V') = Aa,p(Xi, Vi) = {0}, V' is a valid labeling for M. Lemma 4.3 also asserts
that, if X; # Ug/ then p(Ug?) ép(UgZ), and if Y; # Vé’? then p(Vé’?) > p(Vg). These imply
p(X;) = p(UZ?) and p(Y;) = p(Vy?) for each i by (Reg). Hence we have V' >, V.

We then show that P is an outer path for (M, I,V p). Clearly, P satisfies (O1) and (O2);
in particular, (O2) follows from the fact that the o;-space of ; and the @;11-space of a;i1

are Vé’; " and Uq!t!, respectively. Thus it suffices to see that P is actually a path in G(V',p),
or G007 805", BT € £V p). By Xows # USL, Auyyys (USLVS) = {0}, and
Aai+15i(U§§Ll, Vﬁ"ii) # {0}, we have Aaiﬂﬁi (Xit1, Vé’ii) # {0}, implying ﬁgoa‘l’l, g2, ,ﬁgkaszll €
EV',p), as required. O

4.4 No short-cut conditions: (Nyyter) and (Nipper)

Let R = Pyo QioPyo---0Q, 0P, be an augmenting path for (M, 1,V,p), where the last
outer path Pp, is of the form (8;°af", a7 87", ..., Zkafof). A node 5;7_1' is said to be BP-
invariant with respect to P, if p(Vﬁt) # p(Vg,), or p(Vﬁt) = p(Vj,) and Vg? coincides with the
space at 37" of the back-propagation of Pp,. Through Lemma 4.3, the above condition can be
rephrased as: p(Vyg') < p(VBU? ), or p(Vg') > p(VBU? ) and VBU? coincides with the space of 8] of
the back-propagation of P,,. “BP” is an abbreviation of “back-propagation.” An outer path for
(M, 1,V,p) with the last edge B7a” is said to be proper if there is no edge between 37 and o
in £(V,p). Let Q% be the maximal inner g-path for (M, I,V,p) such that 3(Q%°) = 5J°.
The following conditions are referred to as (Noyter) and as (Ninper):

(Nouter) The last outer path P, is simple, and every ﬂfﬁ belonging to R is BP-invariant with
respect to Py,.

(Nipner) If ﬁg_o is not BP-invariant with respect to P,, and the last vertex of Py with £ < m — 2
belongs to Q7°, then Py is proper and «(Py) is a og-vertex.

4.5 Decremental quantities 6 and ¢

To estimate the time complexity of the augmentation procedure, we introduce two quantities
and ¢ at least one of which decreases during the algorithm. Let R = Pyo Qi o0Pro---0Q,, 0Py,
be an augmenting path for (M, I,V,p). Since R is a path in the bipartite graph G(V,p) and M
consists of a path or a cycle component in the bipartite graph G, we have |R| = O(min{p, v})
and |[M| = O(min{p, v}).

We define (M, I,R) by

O(M,I,R) =Y [Pi| + Ns(M,I,R),
i=0
where Ng(M,I,R) denotes the number of edges in the union of all connected components of
M \ I intersecting with (J, V(Q;) UV (Py,). Clearly, (1, R) < |R|+ |M| = O(min{u,v})
We then define . Suppose that the initial node 3(Py) of R is §;°. Since §;° belongs to
S(M,1,V,p) by (A2), there uniquely exists 37° € U(M,I) such that 57° € C(57°). Define
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No(M,I,R) as the number of edges in the path from 37° to £° in C(57°). We define p(M, I, R)
by

o(M,I,R) == [R| + No(M,I,R).

Clearly p(M,I,R) < [R|+ |S(M,I,V,p)| = O(min{u, v}).

4.6 Induction hypothesis

During augmentation, we modify a matching-pair (M, I') and a valid labeling V for M. Then, for
the resulting (M, 1,V), p is an (M, I,V)-compatible c-potential but may be no longer optimal,
or may not satisfy (Zero). We require p to satisfy a weaker condition (Zero)’' than (Zero), which
we introduce below.

Let R = PpoQioPro---0Q,,oP, be an augmenting path for (M,I,V,p). By (A2),
we have a(P,,) € T(M,I,V,p). Hence there uniquely exists a node aZ* € U(M,I) such that
a(Py,) € C(aZ*). The condition (Zero)" for R is the following:

(Zero)" For each UZ, Vé’l unmatched by (M, I) except UZ*,
p(UF) = p(V§) =0.

In the initial phase, since p is an optimal (M, I,V)-compatible c-potential, p satisfies (Zero)
by Lemma 2.5, and hence (Zero)'.

4.7 Outline

Our augmentation procedure is outlined as follows. We consider the following three cases:
e R =Py and Py is simple; it is called the base case.
e R violates (Nouter) O (Ninner)-
e R satisfies both (Noyter) and (Nipper) but is not in the base case.

In the base case, we can augment a matching-pair, i.e., we obtain a matching-pair (M*, I*) of
size k + 1 and a valid labeling V* for M* such that p is an optimal (M*, I*, V*)-compatible
c-potential in O(min{u,v}) time; we terminate the augmentation procedure. This is dealt with
in Section 6. In the second (Section 7) and third cases (Section 8), we modify (M,I,V,R) in
O(min{p, v}) time so that 6 strictly decreases, or § does not change and ¢ strictly decreases. At
the beginning of each update, we modify (M, I,V,R) in O(min{y,r}) time so that R satisfies
three additional conditions and the last outer path of R becomes as short as possible in some
sense, which is described in Section 5. Neither € nor ¢ increases by this modification.

By 6(M,I,R) = O(min{y,v}) and ¢(M,I,R) = O(min{u,r}), the number of updates is
bounded by O(min{y,»}?). Furthermore, each update takes O(min{yu,v}) time. Hence the
running-time of the procedure is bounded by O(min{u, V}3), which implies Theorem 3.2.

5 Initial stage

This section is devoted to describing the modifications of R so that R satisfies the additional three
conditions and the last outer path of R becomes shorter, which are executed at the beginning
of each update in Sections 6, 7, and 8. Let R =Pyo Q1 0P o---0 Q,, o Py, be an augmenting
path for (M, 1,V,p), where Py, = (83°a{", a7 57, ..., BpF of;fll). Let C denote the connected
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component of M \ I containing ay1, and as"*' denote the node in 2(M, I) such that C(as**")
contains aZ'fll.

In the initial stage, we execute the following:

e If C is rearrangeable, then we apply the rearrangement to (M, I) with respect to C'. Out-
put the resulting (M, I,V,p) and stop the augmentation procedure. This is described in
Section 5.1.

e Suppose that C is not rearrangeable. Then we modify (M, I) and R so that the conditions
(A3)—(A5) introduced in Section 5.2 are satisfied. In addition, we appropriately modify M
and the last outer path in R so that the last outer path in R becomes shorter, which is
described in Section 5.3. This can simplify the arguments in Sections 6, 7, and 8.

5.1 Rearrangeable case

Suppose that C' is rearrangeable with respect to p. Then we apply the rearrangement to (M, I)
with respect to C; the resulting is denoted by (M*, I*). By the same argument as in Section 3.1,
(M*,I*) is a matching-pair of size k + 1, V is a valid labeling for M, and p is an (M*, I*,V)-
compatible c-potential. Moreover, we have U(M*, I*) = U(M, 1)\ {as*™*, B7**}, where a, and
Bs are the end nodes of C. Since p satisfies (Zero)’ for (M, I,V,R), i.e., p(UJ) = p(Vé’,) =0 for
each UZ, Vﬁ"/ unmatched by (M, I) except Ua**", p satisfies (Zero) for (M*, I*,V). By Lemma 2.5,
p is optimal. We output (M*,I*,V,p), and stop this procedure.

5.2 Additional requirements

In the following sections, we assume that C is not rearrangeable. We consider the three additional
conditions (A3)—(Ab5) for R:

(A3) No intermediate vertices in R belong to S(M,I,V,p).

(A4) For each £ = 0,1,...,m — 1, the outer path P, with a(P;) = o satisfies a” ¢ C(a7*™).
In addition, if P, is not proper, then a® ¢ C(as*™).

(A5) degs(aky1) <1, and if degy (k1) = 1 then agyq is incident to a oy1-edge in M.

If R satisfies (A1) and (A2), then we can modify I, V, and R so that (A3), (A4), and (A5) also
hold as follows.

We first modify an augmenting path R so that it satisfies (A3) and (A4). If R violates (A3),
then R is updated as the minimal suffix of R satisfying (A2). One can see that the resulting R
is an augmenting path for (M, I,V,p) satisfying also (A3). Suppose that R violates (A4), i.e.,
there is an outer path P, with a(P;) = a° for some ¢ < m such that a” € C(as"*!), or P is not
proper and o € C(a3*™). Let P, be such an outer path with the minimum index ¢, and 87 o

the last edge of P,. If a” € C(as"*"), then we update R as
R+ PypoQioPio---0Q;0P,.

If P, is not proper and o € C(as**'), then we update R as
R+ PyoQioPio---0Q;0P,,

where Py is the outer path obtained from P; by replacing the last edge 87 a” with 87 a”. Clearly,
the resulting R is an augmenting path for (M, I, V, p) satisfying (A3) and (A4), and that 6 strictly
decreases. Moreover, p satisfies (Zero)' for the resulting R, since the last node of R belongs to
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C(as*"). Checking (A3) and (A4) and the update can be done in O(|R|) = O(min{y, v}) time.
We let R=PyoQi0Pyo---0Q,, oP, again by re-index.

We now assume that R satisfies (A3) and (A4). We then modify (M, I) and V so that (M, )
is a matching-pair of size k, V is a valid labeling for M, p is an (M, I,V)-compatible c-potential,
and R is an augmenting path for (M,1,V,p) satisfying (A3)-(A5). By ay}' € C(ag**"), there
is a og41-path P in G(V, p)|as from ak’““ to ag"*'. This implies that every oy 1-edge af in the
underlying path P of P is double-tight. By deleting all 311-edges in P from M and adding all
opt1-edges in P to I, the resulting (M, ) is a matching-pair of size k, V is a valid labeling for
M, pisan (M, 1,V)-compatible c-potential, and degy,(cag+1) < 1. Moreover, if deg,,;(ag+1) = 1,
then a1 is incident to a oy41-edge, i.e., (A5) holds.

We see that R forms a pseudo augmenting path for (M, 1,V,p). Since this modification
does not change S(M,I,V,p) and does not increase 7 (M,I,V,p), and ak’““ still belongs to
T(M,1,V,p), R satisfies (A2)—(A4). If R does not meet any newly appearing oy 1-edges in I,
then R clearly satisfies (A1), as required.

Otherwise, there is an outer path P; that meets a newly appearing oy 1-edge af in I. Since
a%k+1 belongs to T (M, I,V,p) before the modification, the last edge of P; must be of the form
B’ a%%+1 and P; is proper, i.e., there is no edge between 8’7 and a1 in £(V,p) by (A4). Hence
P; satisfies (02)', which implies that R is a pseudo augmenting path for (M, I,V,p). We update
V as

Y« V(R).

Then it follows from Proposition 4.2 that R is an augmenting path for (M, I,V,p). By Lemma 4.1,
G(V,p) does not change, which implies that R still satisfies (A3)—(Ab).

By this update, a7**" is deleted from ¢(M,I) and ;%' is added to U(M,I). Since ay'h' is
the last node of R, p satisfies (Zero)’ for the resulting R.

Checking (A5) and the update can be done in O(min{u,v}) time. In particular, the update
requires the front-propagation on R which takes O(|R|) = O(min{u,r}) time. Clearly this
update does not change ¢. Furthermore 6 does not increase. Indeed, Ng decreases by |P|. If
the underlying path of an inner path in the previous R meets P, then the corresponding inner
path forms a part of an outer path in the resulting R. Hence the number of edges in the union
of outer paths in the resulting R can increase, but its increment is bounded by |P|.

In Sections 6, 7, and 8, we require that the augmenting path R satisfies (A3)—(A5).

5.3 Simplification of the last outer path

Suppose that Py, [3:") is simple for some ¢* and that every ﬁfﬁ with ¢ > ¢* belonging to R is

BP-invariant with respect to Pp,. Since Py, [8:") is simple, (B =41, = +18i%+1, - - - » BreQtk11)
forms a path in G. Therefore we can redefine +- and —edges of I and +- and —-spaces of V so
that all axy18i%41, Qixy2Bi*+2, - . ., ap P are +-edges and

_ o+ + gt + +

= (B3"7" o B gy, g 4 B s - B g )

The condition (A4) verifies that deg,;(ax+1) < 1 and the edge incident to a1 in M is a +-edge
if degps(ok+1) = 1.

We define M, I, V, and R by
M:==MU Pm[ai*+1),
I= 1\ {41811, Qi= 428542, - - -,k Br},
Vi=V(Prlaf )™,
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Py

Figure 1: Modification in Section 5.3. The thick and thin lines represent edges in M and in
E(V,p), respectively. The red and blue lines represent the edges added to M, i.e., the edges in
M \ M, and the edges deleted from I, i.e., the edges in I \f , by the modification, respectively. The
thin solid/dashed paths represent subpaths of R. In particular, the dashed thin path represents
a part of R\ R.

Ri=PyoQioPio-0Qy0 P (ah 1
see Figure 1. Then the following holds.

Proposition 5.1. (M, 1) is a matching-pair of size k such that UM, 1) = U(M,I)\ {O‘;ﬂ} U
{a;-';ﬂ}, V is a valid labeling for M, p is an (M, I, f/)—compatz’ble c-potential, and R is a pseudo
augmenting path for (]\Zf,f,ﬁ,p) satisfying (A3)—(Ab).

Proof. If Py, is of the form (85°a", ..., B3 ajfi . 1), then (M, I) = (M, 1),V =V, and R = R; the
statement clearly holds. In the following, we assume P, = (8°ag*, ..., 8" ozitﬂ, ait+1ﬁ;£+1, . ,ﬁ:azﬂ)
for some k > i*.

We first show that (M , I ) is a matching-pair of size k and Vis a valid labeling for M. Clearly,
M satisfies (Deg) and (Cycle). Since P,,[3%") is a simple outer path, V is a valid labeling for
M by Lemma 4.4. Let (X1, Y41, Xixq2,..., Xp11) be the back-propagation of P, [c; +1)
Then, for i > i*, X; is the 4+-space of a; and Y; is the —-space of §; with respect to V. By
the definition of the back-propagation, A, s, (XZ+1, ;) = {0} and Aazﬁl (X;,Y;) = {0} for each
i > ¢*. Thus V is also a valid labeling for M, which implies that M is a pseudo- matching.
Since I consists of isolated rank-2 edges in M , (M ,f ) is a matching-pair. Since the number
of edges in M increases by k — ¢* and that of edges in I decreases by k — ¢*, its size is equal
to k. Since «qj+y18+41 is a +-edge in M UJ*H is unmatched by (M,f) Thus we obtain
UL ) = UM D\ {0} U fof ).

We then show that p is an (M I V) compatible potentlal By Lemma 4.4, V is equivalent to
YV with respect to p, and P, is an outer path for (M, I, 1% ,p). By the former and Lemma 3.6 (1)
and (2), p satisfies (Reg) for V and the edges Q1 Bieyqs -y By, exist in E(f),p), where
Q1B 41, Qx4 285 42, . . . ,akﬂk are +-edges in M. It follows from the latter that the edges
ﬁ;rJrloz 25 5@ +20%++3a . ,ﬁk ozk“ exist in 5(9 p), where Bix 1% 12, Bix 12Qi% 13, . . ., Bt are
—-edges in M. Thus p satisfies (Tight) for (M I V) which implies that p is (M I f/) compatible.

We finally show that R is a pseudo augmenting path for (M IV, p) satisfying (A3) (A5). Tt
clearly holds that S(M, I, V, p) S(M,I,V, p). Thus R satisfies (A3) and B(P) € S(M,I,v,p).
Byaji,, € U(M, I), we have o i1 € T(M,I,V,p). Therefore R satisfies (A2). Since deg y (qvix41) =
1 and ay+418;+41 is a +-edge, we have (A5).

To prove (A1) and (A4), we show the following claim:
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Claim. R is a path in Q(f),p). Moreover, for any B°a” € R such that o is incident to an edge
in I, there is no edge between B and o in E(V,p).

Proof of Claim. The difference between Y and V can only be in the +-space of a; and the —-
space of 3; for i* +1 < i < k. Since P,, meet aitﬂﬁitﬂ, - ,a;:ﬂlj and R is a path in G(V,p),
R does not have any of ait+15¢t+17 . ,a,i‘ﬂ,:'. Therefore, for each 87a° € R, we obtain the
following observations.

e The o'-space of o with respect to VY is Ug,.

e If 3 is different from f;«y1,..., Bk, then the o-space of 3 with respect to Vs Vi

o If Bisoneof B y1,..., Bk, say, Bi, then 57 = 3., and either p(VB_i) > p(Vﬁt) or the —-space
of B; with respect to Vs VB:_.

In particular, the third follows from the BP-invariance of 3;. Thus every B7a’ e R belongs to
E(f),p) by Lemma 3.6 (32 and %o € £(V,p). This implies that R is a path in Q(f/,p). If
is incident to an edge in I, then « is different from ay=11,...,ar. Hence the o/-space of o with
respect to Vs equal to Ug?. If « is incident to an edge in I\ f, then « is one of a;xy1,. .., ak,
say, . In this case, o = o; and either p(U}) > p(Vj,) or the +-space of a; with respect to 1%
is UJ ; the latter follows from the BP-invariance of 3;". By Lemma 3.6 (3) and Boa’ ¢ E(V,p),
we obtain 8%a° ¢ E(V,p). O

Claim immediately verifies that every Qp in R forms an inner path for (f , 1}, p) and every Py
intersecting with none of a8 ,..., a5 B, forms an outer path for (f, f/,p).

Suppose that Py meets some of a8 ..., B . Then we see that Py o Qi is rep-
resentable as the concatenation of several pseudo outer paths and inner paths for (f Y, D),
which implies that R satisfies (A1). By Claim, all edges in P; belong to £(V,p). Let P~ :=
(e 1B 115 Bie g1 195 -+ By oy ). The intersection of Py and P~ is the disjoint union of the
subpath of P~ having the form Pg[a;,ﬂj_] with * +1 < ¢ < j < k or the form Pyla; ) with
" +1 <1 < k. That is, P, can be represented as

Pe(og,] 0 P [ag,, B3] 0 PelByy, ] 0 0 P [y, B ToPulBy )

or

oP [«

Pﬁ(o‘;] ° P_[O‘;’ﬁi;] © Pf[ﬁi;’ai;] o Opg[ﬂi;’ai:a+1] ip+1)’

where ¢* + 1 < iy <441 <k for each g.
Since «;f; is a +-edge in M for i* + 1 < ¢ < k, the subpath Pg[ai;,ﬁ;q] forms an inner path

for (M,f,v,p). Moreover, Pyla;

ipt1
case. By Claim, if P, has an edge B°a” such that « is incident to an edge in I, there is no
edge between 3% and o in & (V,p). This implies that the remaining parts of Py, which are
Pele, ], PelB;,, o, 1, and Py[B; ), are pseudo outer paths for (M, I,V,p). Thus Pro Qi1 can

2g+1 p+1
be viewed as the concatenation of several pseudo outer paths and inner paths for (M , I , V, D).
We finally show that P satisfies (A4). Since C(avf ;) is the union of C(azﬂ) in G(V,p) and
P [azt_H), it suffices to see that, if Py has f'7a; ,a; B; for some i* +1 < ¢ < k, then there is
no edge between 37 and o in G(V, p); this follows from Claim. Hence P satisfies (A4).
This completes the proof. O

) 0 Qpy1 is also an inner path for (M,I,V,p) in the latter

By this update, 6 does not increase and ¢ strictly decreases.
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Lemma 5.2. (M, I,R) < 0(M,I,R) and o(M,I,R) < o(M,I,V).

Proof. The difference of @ follows from the fact that Ng increases by |P,[a +1)| and the number
of edges in the union of outer paths decreases at least by [P, [a;-, ])|. Thus we have O(M,I,R) <
O(M,I,R). Clearly Ny does not change and |R| = |R|— [Py [ ot ,1)|, which implies o(M,I,R) =
(M, 1,V) = |Pmloi=11)| < (M, 1,V). 0

We update
M« M, I+1I, V<VR).

This update can be done in O(|R|) = O(min{y,v}) time. By Propositions 4.2 and 5.1, the
resulting (M, I) is a matching-pair of size k, V a valid labeling for M, p an (M, I,V)-compatible
c-potential, and R an augmenting path for (M, I, V), p) satisfying (A3)—(A5). Moreover, p satisfies
(Zero)' for R by ajt,, € U(M,I) % O‘l:tl (in Proposition 5.1).

In Sections 6, 7, and 8, we appropriately execute this modification of the last outer path as
the preprocessing to simplify the update in each phase.

6 Base case: R =Py and P, is simple

Suppose that R consists only of a single outer path Py. Then R clearly satisfies (Noyter). By
applying the simplification in Section 5.3 to Py, we can assume that Py consists of a single edge
in £(V,p). We first redefine +- and —-edges of M and +- and —-spaces of V so that

Po = (85 af).

By (A5), degs(a1) <1 and an edge incident to a4 in M is a +-edge if it exists. Moreover, we
modify (M, I) so that deg;;(8p) < 1 and an edge incident to Sy in M is a +-edge if it exists; it
can be done by the same procedure as in Section 5.2 for (A5). By this modification and (Zero)’,
we have

p(UZ) =p(V§') =0 (6.1)

for any unmatched spaces Ug, V " by (M, I) except U, and VB—E'

Let Cs, be the connected components of M \ I containing fy, and Pg, be the maximal rank-2
path in Cg, which start with y. We let Pg, := {fo} if f is incident to no edge or a rank-1 edge.
For a vector space Y € Mg, with Y # VBJg, let V(Cs,;Y) be the labeling obtained from V by
replacing VB; with Y and by setting the —-space of 8 and the +-space of « for «, 5 belonging to
Cp, so that (2.1) and (2.2) hold. Clearly we have V(Cj,;Vy ) = V. One can observe that V and
V(Cp,;Y) can be different only in the —-space of 5 and the +-space of « for a, 8 € V(Pg,), and
that V(Cpg,;Y) is a valid labeling for M. For oy, we similarly define Cy,, Py,, and V(Cq,; X)
for X € Mg, with X # U

Lemma 6.1. (1) If p(V,) > p(VﬁO) (resp. p(Vﬁo) > p(Vﬁo)) then we have p(Vy') > (VB )
and p(Ug) = p(Uy) (resp p(Vy) > p(Vy) and p(UoT) > p(Uy)) for each a, B € V(P )
Also if p(Uy,) > p(UF) (resp. p(Uy,) > p(Uf.)), then we have p(Uy) > p(US) a
p(Vy) 2 p(Vy) (resp. P(Us) > p(US) and P(Vg )> p(Vy)) for each o, B € V(Py,).

(2) If p(Vg,) = p(VﬁJg), then V(Cgy;Y) ~p V for each Y € Mg, with Y # Vﬁt. Also if
p(Uy,) = p(U), then V(Cay; X) 2, V for each X € Mg, with X # U,
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Proof. We only show the case for §y; the case for oy is similar.

(1). If Pg, = {fo}, we are done. Suppose that Pg, has of the form (Bpag, ®of-1,...). Since
Bocy is rank-2, we have Aq,g,(Ug,, Vﬁ‘;) # {0}. Since p is a c-potential satisfying (Tight) and
Boay is a +-edge, we have p(U;rO)—i-p(Vgg)—i-c > doopy = P(Uqy) +0(Vg,)+c. By combining it with
p(Vg,) = p(Vﬁt), we have p(US ) > p(U,, ). By a similar argument, we obtain p(Vy) = p(VﬁJr)
and p(US) > p(Uy) for each a, 8 € V(Pg,). By replacing > with > in the above argument, we
obtain p(V,") > p(VB+) and p(US) > p(Uy) for each o, 8 € V(Pg,).

(2). Recall that V and V(Cpg,;Y") can be different only in the —-space of § and the +-space of a
for a, B € V(Pg,). Suppose p(Vj,) > p(Vj ). Then, by (1), p(V;) > p(V5") and p(UF) > p(Uy)
hold for each o, 8 € V(Pg,). Since V(Cp,;Y) is a valid labeling for M, for each § € V(Pg,) the
—-space of § with respect to V(Cpg,;Y), denoted by Y, is different from the +-space of 3 with
respect to V(Cpg,;Y"), which is VBJF. Thus, by (Reg), we have p(Y') = p(V;") > p(Vg). Similarly,
for v € V(Pg,), we have p(X') = p(UT) > p(Uy ), where X' is the +-space of o with respect to

V(Cs,;Y). Thus V(Cp,;Y) ~p V. O

Let us define M* and V* by
M* = M U{Bpa}, V=V <Ca1; (VﬁJg)LﬁofH) <C’50; (U;Ll)la130> .

Then the following holds:

Proposition 6.2. (M*,I) is a matching-pair of size k + 1, V* is a valid labeling for M*, and p
is an optimal (M™*, I,V*)-compatible c-potential.

Proof. By deg;(5p) <1 and deg;(aq) < 1, the resulting M* satisfies (Deg). Let C* be the union
of Cg,, Cq,, and Ppai, which is a connected component of M*\ I. Suppose, to the contrary,
that M* does not satisfy (Cycle), or equivalently, C* is a cycle consisting of rank-2 edges. It can
happen only when Cg, and C,, coincide, Cg, forms a rank-2 path in M, and fpaq is rank-2. In
this case, we have A,3(U;, V5+) # {0} # Aap(Uy , Vg ) for each af € Cg,.

For each +-edge aff € Cp,, there is a™ 87 € £(V,p). Hence we have p(Uy) + p(Vy) <
p(UT) + p(VﬁJr). In addition, since Cg, is not rearrangeable, Cg, has at least one single-tight
+-edge. For such an edge, the above inequality is strict. Thus we have

> (pun+rv)) < > (U V). (6.2)

Oé,BEV(C[gO) a7ﬁ€V(C,80)

Similarly, for each —edge a8 € Cg,, there is a8+ € £(V, p). Moreover, the edge BaLozf exists
in £(V,p). Hence

S (D +pv)) = S (pUH +pv)

Oé,BEV(C[gO) a7ﬁ€V(CBO)

also holds, which contradicts (6.2).

We then show that V* is a valid labeling for M* and p is an (M*, I, V*)-compatible c-potential.
In particular, the former implies that (M*,I) is a matching-pair.

Suppose that C* is a path component of M* \ I or C* is a cycle component such that
Cpy(= Cq,,,) has a rank-1 edge. Then Pg, and P,, are disjoint, particularly, Pg, does not
contain oy and P,, does not contain 3. Hence the +-spaces of 5y and «; with respect to V*
are VBJg and Uo‘fl, respectively. By Lemma 3.5 and ﬂaLozf € £(V,p), we have (Vﬁt)lﬂoal # U;'l

and (Uf )terfo o Vﬁt. Hence V* is a valid labeling for M. In addition, p(Uy,) > p(Uf)

aq

29



if (V*)iﬁoal # Ug,, and p(Vy ) > p(VBJg) if (Uf)teaso £ Vy,- Thus we have V ~, V by
Lemma 6.1 (2). Therefore, by Lemma 3.6 (1), p is an (M, I, V*)-compatible potential. In
particular, p satisfies (Reg) for V* and (Tight) for all edges in M.

The remaining is to show that the conditions (2.1) and (2.2) hold for the edge Syc; and that
(Tight) holds for By, which implies that V* is a valid labeling for M* and p is an (M*, I, V*)-
compatible potential. The former follows from the fact that (VB—E)J‘BOO‘I and (U(jl)lalﬁo are
the —-spaces of a3 and of [y with respect to V*, respectively, and Aalﬁo((Vﬁt)Lﬁoal,Vﬁt) =
Aay g (UL, (U ) Fe10) = {0}. Since the edge Byar is a —-edge in M* and S of exists in
E(V*,p) by Lemma 3.6 (3), the latter holds.

Suppose that C* is a cycle component such that Cg, consists of rank-2 edges. In this case,
Pg, and P, coincide; they are the same as Cg,. Since M* satisfies (Cycle), fpa; must be rank-1.

If p(Uy,) < p(UZ,), then (V%)Lﬁoal = U, by Lemma 3.5. Hence V* = V(Cg,; (U ) e150),
implying that the 4+-space of 8 with respect to V* is VE. Lemmas 3.5 and 6.1 (2) assert that
V* is a valid labeling for M and p is (M, I,V*)-compatible. Furthermore, since Sy must
be rank-1, we have (Vﬁ‘g)lﬂoal(— Us,) = kerp,(Aq,p,) and (U;‘l)lalﬁo = kerg(Aa,8,). Thus
Aalﬁo((vgt)lﬁoahvgt) = Aa,g (U, (UF)Fere0) = {0} holds, implying that V* is also a valid
labeling for M*. By Lemma 3.6 (3), the edge 3o exists in £(V*,p). Therefore p is an
(M*,I,V*)-compatible potential.

It p(Us) > p(UZ,), then p(Vy) < p(V) by Lemma 6.1 (1).
single-tight edge, the above inequality is strict, i.e., p(Vj) < (V5+) Thus (UZ, ) o180 = Vi, by
Lemma 3.5. By a similar argument to the case of p(Ug,) < p(Uf.), V* is also a valid labeling
for M* and p is an (M*,I,V*)-compatible potential.

Clearly (M*,I) is a matching-pair of size k + 1 such that U(M*,I) = U(M,I) \ {85, }.
By the condition (6.1), p satisfies (Zero) for (M*,1,V*). Thus, by Lemma 2.5, p is optimal.

This completes the proof. O

Moreover, since Cpg, has a

This update can be done in O(|M|) = O(min{y, v}) time. We output the resulting (M*, I, V*,p)
and stop the augmentation procedure.

Remark 6.3. In the proof of Proposition 6.2, the condition that Cg, is not rearrangeable is
used only when the union C* of Cg,, C,,, and Bya; forms a cycle component in M*. Hence, in
the case where C* is a path component in M*, then the statement of Proposition 6.2 holds even
if Cp, is rearrangeable. [

Remark 6.4. Let C* be the union of Cg,, Cy,, and Sy as in Remark 6.3. The proof of
Proposition 6.2 implies that for each o € V(C*), the +-space or —space of a with respect to V*
is U or UJ, respectively, even when C* forms a cycle. The same holds for 3 € V(C*). [

7 R violates (Nouter) O (Ninner)

In this section, we consider the case where R violates (Noyter) OF (Nipner). Let R = Pyo Q0P 0
--0Q,;, 0Py, be an augmenting path for (M, I,V, p), in which P, = (65°af*, o' 67", ..., B« Zﬁ_*ll)

7.1 R violates (Noyter)

Suppose that R violates (Noyter), i-€., Py, is not simple or R meets some ﬁf_i that is not BP-
invariant with respect to P,,.

Let i* be the minimum index such that P,,[c+41) forms a path in G. That is, if P, is simple
then ¢* = 0, and otherwise P,, is of the form

Py, = (Boar, 1B, - ., 0B, Bir g1, - . oy s B, Bir ey o Byt )
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where a8« = aj B+ and Bi<oye g1, 41841, - - -, Brog41 are distinet. Note that, in the latter

case, we have ol f7" = aji*ﬁjf*.
There are two cases: (Case 1) R meets some ﬁfﬁ with ¢ > ¢* that is not BP-invariant with
respect to P, and (Case 2) all 8% with ¢ > ¢* which R meets are BP-invariant with respect to

P

(Case 1) R meets some ﬁ? with 7 > i* that is not BP-invariant with respect to P,,.
Choose such 5;7_1' with the maximum index ¢. By ¢ > ¢* and the choice of Bf_i, Pr[B7") is a simple
outer path and every ﬁ;j with 5 > i belonging to R is BP-invariant with respect to P,,. Hence,
by executing the simplification in Section 5.3 to Py,[37"), we can assume that

m = (5800/171,041 BT, aal z+1)
Since ﬁa_i is not BP-invariant and the space at 5;” of the back-propagation of Py, is (U} - )Lai+16i7
we have p(Vﬁ ) =p(Vs,) and V‘77 is different from (U, )Laiﬂﬁi This implies p(U} ) p(VB‘?)%—

Q41

c=da,, 5 and Ag,, 5, (UL VUZ) # {0}. Thus the edge 57, exists in E(V, p).

Q41

Let Py be the outer path in R that meets ﬁf’. We update
R+ PooQioPro---oPy(B]o (B ai,).

It is clear that the resulting R is an augmenting path for (M, I, V), p). Since the number of edges in
the union of outer paths decreases, so does 6. This update can be done in O(|R|) = O(min{u, v})
time. Return to the initial stage (Section 5).

(Case 2) All ﬁf_" with ¢ > ¢* which R meets are BP-invariant with respect to P,,.
Since R fails (Nouter), Prm is not simple, i.e., i* > 0 and there is j* > ¢* such that 5" = 5;3*.

The assumption says that P, [ﬁ;ﬁ ") is simple, ﬁ;T is BP-invariant with respect to P,,, and every

5577 with 7 > 5% belonging to R is also BP-invariant. Hence we may assume that
- ik O
m_(/ﬁo al )alﬁ * /82‘0’}, ;T* ai*+ﬁla"'a '* * ?5 )

by executing the simplification in Section 5.3 to P, [ﬁ;ﬁ ).

We first delete a+fi(= aj«f;+) from M and I; the resulting edge sets are denoted by
M’ and I'. We then redefine +- and —-edges of M’ and +- and —-spaces of V so that all
Qx4 1B 41, Q128 42, - ., a1 Bj+—1 are —edges and

P = (-, O B, By -+ B 105, a5 B, B ad ).
Note here that the resulting V is no longer a valid labeling for M, since A, .. (Ua s Vﬁt*) #*
{0} # Aapp. (UL, Vs.. ) (corresponding to the edges o 3;. and ozjiﬁ]t in Pp,). On the other
hand, V is a valid labeling for M’, since it does not have «;«3;=. Here (M’,I’) is a matching-pair

of size k — 2.

Let C,, .41 be the connected component of M’ \ I' containing aj-11, and Y be the +-space

of B« with respect to V(P [8;x, aj.]” 1). We define M, I, and V by

M = MU Pm[ﬂi*,aj*] U {ﬂj*@j*.ﬂ},

I=r \ {@i*+1ﬂi*+17ai*+2ﬁi*+2,... Oéj*—lﬁj*_1},
| J‘O"* j* Sk Ok
V= V(P Z*,Oc] N 1)( m[Bix s i (Ut +1) 15 )(C +17Y Lojnay +1),

where P, [+, a;+] denotes the subpath of P, from f;« to a;«; see Figure 2. Then the following
holds.
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Figure 2: Modification in Case 2 in Section 7.1; the definitions of all solid thick lines and paths
are the same as in Figure 1. The dashed thick lines represent the edges deleted from M by the
modification, i.e., the edges in M \ M.

Proposition 7.1. (M,I) is a matching-pair of size k such that U(M,T) =U(M,I)\ {a;+1} U
{a;ﬁ}, V is a valid labeling for M, and p is an (M,f, ﬁ)—compatible potential.

Proof. Let M" .= M'U P,,[8;+, a;+]. We first show that (M”, I) is a matching- pair of size k — 1,
V(Pml| i_*,aj_*]*l) is a valid labeling for M"”, and p is an (M", I, V(Pm[B;, an]” 1))-compatible
c-potential.

Since both ;= and a;« are incident to no edge in M’, 5. and aj. belong to S(M’,I",V,p)
and T(M',I',V, p), respectively. Hence Pp,[B;:, o
which is in the base case (Section 6). One can easily see that (M”, 1) and V(Pp[B;:, ]~ 1) are
the resulting pair and labeling, respectively, by the augmentation of (M’,I") via P, i*,aj*].
Thus (M", ) is a matching-pair of size k — 1, V(P [, o a:.]71) is a valid labeling for M”, and
pis an (M, 1,V(Pp[5;, a}]_l))—compatible potential by Proposition 6.2.

We then show that the edge ﬁ+ atH exists in G(V (P (B, aju] ™ 1), p). Recall here that Y is
the +-space of 8+ with respect to V(P [Bis ] ™ . By p(Y) = (VBJ;*) and ﬁ+ 1 €EEW, D),
we have p(Uo‘f*H) +pY)+c=d, . Thus it suffices to show that Aaj*ﬂﬁj* (U(j‘j*ﬂ,Y) #

0}.
{ }pr(VﬁJr ) < p(Vﬁ;* ), then Lemma 4.3 asserts Y = VBJ;*. Thus we obtain Aq ., 3,. (UOZ*H,Y)
Adju 180 (UJr ‘i1 'JF*) # {0}. pr(Vﬁ‘r_*) > p(Vﬁ}), then it follows from the BP-invariance of 3.
that Vﬁ;* is the space at 3. of the back-propagation of Py,. Hence A, ., 5. (Us . B ) ={0}.
Since Y is different from Vﬁ;*’ we obtain Aq ., 5. Ut, ,Y)#£{0}.

Cl{*+1’

We finally show the statement of Proposition 7.1. Clearly, we have U (M I) = UM, I)\
{o] *H}U{oﬁ }. We can see that (5 o . 1) forms an augmenting path for (M”, LYV(PulB;, a o)™ . p),

which is in the base case. Furthermore, the connected component of M \ I containing Bjxax41
forms a path. By Proposition 6.2 and Remark 6.3, we can argument (M”,I) via (ﬁ+ a;L 1)

a.] forms an augmentlng path for (M', ')V, p),

j* 185

and (M I ) and V can be seen as the resulting pair and labeling, respectively. Thus (M I ) is a
matching-pair of size k, VY is a valid labeling for M and p is an (M I V) compatible c-potential.
]

Let £* be the minimum index with i*+1 < k* < j* such that (azﬂ ﬁlj; , ﬁlj; a;,url, . ,5;2_104;2)
forms a subpath of P,,. We define

7%::7300@107310 -0 Q0P (ak*]

32



Figure 2 also describes R. The following holds; the proof is given at the end of this section.
Proposition 7.2. R is a pseudo augmenting path for (M, I, f/,p).

In this case, 6 strictly decreases.
Lemma 7.3. 0(M,I,R) < 0(M,I,R).

Proof. The number of edges in the union of outer paths decreases by |Pp[as)| > [P [Bix, o]

_l’_
2, and Ng increases at most by |Pp[8;-, o .|| + 1. Hence 6 decreases at least by 1. O

We update
M« 1, I+ 1, YV« V(R), R+ R.

This update can be done in O(|R|) = O(min{y,v}) time. By Propositions 4.2, 7.1, and 7.2, the
resulting (M, I) is a matching-pair of size k, V a valid labeling for M, p an (M, I,V)-compatible
c-potential, and R is an augmenting path for (M, I,V p). Moreover, since ozj* 41 is deleted from
U(M,I) and o, is added to U(M,I) in this update (by Proposition 7.1) and a;. € C(a;r*), D
satisfies (Zero)" for R. Return to the initial stage (Section 5).

The proof of Proposition 7.2 requires Lemma 7.4 below; Lemma 7.4 (1) is also used in the
proofs of Propositions 8.1 and 8.6. Let P, be the maximal rank-2 path in C’a]. that starts

41 *+1
with a«11, where P, 1 = {aj«41} if =41 is incident to no edge or a rank-1 edge.

Lemma 7.4. (1) For each 8 € V(P,.,

),

41
) = p(Vy) and BT € Cla o Y1) Similarly, for each

o € V(Pa,._,), it holds that p(Uy ) > p(U), the —-space of o with respect to V is U,

pUs) = p(US) and o+ € Cla..y).

it holds that p(V+) > p(Vy), the +-space of
with respect to V is Vg, or p(VEL

(2) If R meets of for some i with i* < i < j*, then p(US) > p(Ug,) or the +-space of a;
with respect to V is Uoj:. Similarly, if R meets ﬁj for some i with i* < i < j*, then
p(Vﬁt) > p(Vj,) or the +-space of B; with respect to V is Vﬁt.

Proof. (1). If p(U, .. ) < p(Uf. ), then it follows from ﬁ]toz;r*_ﬂ € £(V,p) and Lemma 3.5

[e% 41 « j* 41
that Y9+ = Uoj* . Hence, for each «, 5 € V(P,, *+1) the —-space of o and the +-space

of B8 with respect to V coincide with those with respect to V, i.e., U, and VBJF, respectively.
Suppose p(Us.. ) = p(Uy.,,,). By Lemma 6.1 (1), we have p(U;) = p(Us) and p(Vy) >
p(Vy) for each o, € V(Pa,.,,). Moreover, if p(VBJr) = p(Vy ) (resp. p(U}) = p(U])) then

p(Uojj*H) (U+ ) and the subpath of P,

o from a«y1 to B (resp. «) consists of double-

.
tight edges. Hence there is an atﬂ—ﬁ +- patjh+(resp. an a;.t“-oﬁ +-path) in G(V, p)|ar, which
implies that 8T (resp. a™) belongs to C(« o T

(2). There are two cases: (i) p (U;FJ) > p(Us,.) and (ii) p (U;LJ*) <p(Us,.)-

(i) p(U;[j*) > p(UOj]) By Bjaj- € I and (Tight), we have p(Vﬁt_*) > p(VB;*). By the
BP-invariance of BJZ, VB;* is the space at ﬁ]t of the back-propagation of P,,, i.e., VB;* =

1 Sk % .
(U&L* ) +1%*  Thus we obtain
41

1%

4 Loy . .
V(PrlBie, 03] ) (PrlBir s e s (U, )19 ) (Caye 3 Y0797 40)
V(P8 05] ) (Caye 3 Y 05705740).
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That is, for each j = ¢*,4*+1,...,j* — 1, the —-space of 3; and the +-space of a1 with respect
to V are V and U}S 1 respectively. In particular, the +-space of a;« with respect to V is U;Lj Y
and if R meets aj for some i with i* < i < j, then the +-spaces of a; with respect to V is U;ji.

Since Vﬁ;* is the space at Bjt of the back-propagation of P, and U(;j ., = (VB;*)J_BJ*QJ*’
U(;j . is the space of A of the back-propagation of P,,. Therefore, the back-propagation of
Prn[Bix Oéj_*] coincides with the restriction of the back-propagation of P, to Py, 0 O .]. That
is, for j = ¢*,%* +1,...,j" — 1, the —space of a;;1 and the +-space of 3; with respect to 1%
are the spaces at o and at 5 of the back-propagation of P,,, respectively. Suppose that
R meets B+ for some ¢ with i* < ¢ < j. Then, by the BP-invariance of ﬁ , we obtain that

(Vﬁi) > p(V& ), or that the +-space of §; with respect to Vs Vﬁi'

(ii) p(UOZ*) < p(U(;j* ). In this case, we have p(Vﬁ—;*) < p(VB;*). It suffices to show that

e if R meets o for some i with i* < i < j* and p(UJ) < p(U,), then the +-space of o
with respect to V is U4, and

e if R meets B for some i with i* < i < j* and p(VB':) < p(VB:), then the +-space of S3;
with respect to V is the space at 3, of the back-propagation of P,,.

We show the former bullet. Suppose that R meets a;L for some ¢ with ¢* < ¢ < j and
p(US) < p(Ug,). Then the subpath P, [Bi<, ;] of Py[Bi+,a +] has a rank-1 edge; otherwise

67

p(US) > p(Ug,) holds by p(VBJ;*) < p(VB;*) and Lemma 6.1 (1), a contradiction. Thus the

+-space of «; with respect to V coincides with that with respect to V), i.e., U;‘i.

We then prove the latter bullet. Suppose that R meets B;r for some i with i* < i < j
and p(Vﬁt) < p(Vs,). Then the subpath P, [f;, aj«] of P8+, aj«] has a rank-1 edge; otherwise
p(VBT) > p(Vj,) holds by p(U;[j*) p(Us,.) and Lemma 6.1 (1), a contradiction. Thus the

+-space of 3; with respect to V coincides Wlth the space at 3;” of the back-propagation of P,.
This completes the proof. ]

We are ready to prove Proposition 7.2.

Proof of Proposition 72 Clearly the initial node B(Py) of R belongs to S(M IV, p) We see
that the last node o, of R belongs to T(M,I,V,p) as follows, which implies that R satisfies

(A2). Since Bj+_ja; is a 4+-edge in M, we have a;ﬁ € U(M,I). Since the path P,, [ak*,oﬁ]
and Pp[ay., a;.] form subpaths of the outer path Py, in G(V,p), we have Aai+1ﬁz(Uoz+1’Vﬁi)
Aaiﬂﬁz(U;H, 61) = {0} foreachi = k*,...,j* =1 by (02). Thus o+ fi+, Bk Qs 41, - - -, Bjr—10j+
are rank-2. This implies that ag«B«, Brxpri1,...,Bj+—1a;+ are double-tight with respect to
(V,p), and hence, the +-path from oz;i to aj. exists in £(V,p)|,;. Thus we have o, € C(a;r*) -
T(M,1,V,p).

The proof strategy for (A1)’ is similar to the proof of Proposition 5.1. Since we do not require
that R satisfies (A3)—(A5), several arguments in the proof of Proposition 5.1 can be omitted.
We first show the following claim.

Claim. R is a path in g(fi,p). Moreover, for any Boa’ e R such that o is incident to an edge
in I, there is no edge between B and o in E(V,p).

Proof of Claim. Take any °a° € R. Then we can see that p(Vg) > p(Vg) or the o-space of
B with respect to V is V. Indeed, if 8 ¢ V(Pa*+1) U V(PnlBi, <)), or B € V(Pa;f_H) and
o = —, then the o-space of 3 with respect to V is Vg If p e V(P ot +11) and 0 = 4+, then
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by Lemma 7.4 (1) and (A4), p(V§) > p(V§) or the g-space of 3 with respect to Vs vg. If
B € V(Pn[Bi, aj+]), then o = +, and hence by Lemma 7.4 (2), p(V§) > p(Vy) or the o-space
of B with respect to V is V. Note that R does not have any of B;Z and S3,..

Suppose that a exits Paj*Jrl and Py, [Bs, oj«]; note that this includes the case where « is
incident to an edge in I. Then the +-space and —-space of a with respect to Y are U, Tand U,
respectively. By Lemma 3.6 (3), the edge B7a°" exists in € (f), p). In particular, if « is incident
to an edge in I, then it is also incident to an edge in I and 50@7 ¢ E(V,p). In this case, we also
obtain 80 ¢ £(V,p) by Lemma 3.6 (3).

If a belongs to Py, [f+, aj«], then o’ = +. Hence by Lemma 7.4 (2), p(U}) > p(UJ) or the
+-space of a; with respect to Y is UO‘Z_. Lemma 3.6 (3) asserts that the edge B7a° exists in
EW,p). .

Suppose that a belongs to Po,.+1. Note that the +-space of o with respect to V' is U. Hence,
if ¢/ = +, then we have %o fo(f),p) by Lemma 3.6 (3). If o/ = —, then p(U,) > p(U),
the —-space of o with respect to V is Uy , or p(Uy) = p(Ug) and o € C(af. ;). In the first or
second case, Lemma 3.6 (3) verifies 7a™ € E(V, p).

In the last case, there is no edge between 37 and o' in £(V,p) by the condition (A4).
By p(Uy) = p(Uf) and g7a™ € E(V,p), we obtain p(U;) + p(V§) + ¢ = dap, which implies
Aap(US, V) = {0}. Moreover, by f%a~ € E(V,p), we have U, ¢ kerp,(Aap) and VJ§ AQ
kerg(Aqp). Let X and Y denote the —-space of a and the o-space of § with respect to V,
respectively. Note that X and Y are different from U and Vg , respectively. By Lemma 3.6 (3),
we have 87at ¢ EAOA),p), implying Aas(Us,Y) = {0}. If p(V7) < p(V), then the o-space of
B with respect to V is VJ, i.e., Y = V7. Hence we obtain Ans(X,Vf) # {0} by X # Ur. If
p(Vg) > p(Vg), then one can see that o is rank-1, U} = kery,(4,p), and Vg = kerg (A4q3). By
Y # V7 and X # U, we obtain A,s(X,Y) # {0}. Thus the edge B7a% exists in E(V,p). O

By Claim, we have Q, C E(V,p) and Py C E(V,p) for each ¢. The former immediately implies
that Qp forms an inner path for (M, I, V,p). By B"a? ¢ E(f),p) if 37a°" € P, and « is incident
to an edge in I, Py that does not meet ait+1ﬁ;£+1, e ,oz;i_lﬁ]t_l forms a pseudo outer path for
(M,f, 1>,p). Also, if Py meets some of aitﬂﬁ;iﬂ, e ,a;rblﬂ;f_l, where we recall that «;f3; is a
—-edge in M for i* + 1<i< j* — 1, then Py is the concatenation of several psepdo outer paths
and inner paths for (M, I,V,p) as seen in the proof of Proposition 5.1. Thus R satisfies (A1)’
This completes the proof. ]

7.2 R satisfies (Nouer) but violates (Nijper)

Suppose that R satisfies (Noyter) but violates (Nipper). We can assume that Q,, is an inner
+-path, i.e., the last node of Q,, is ﬁ; . Since R satisfies (Noyter), we can additionally assume
that P, = (ﬁaL af') by executing the simplification in Section 5.3 to Pp,. Recall that Q™ is the
maximal inner —-path such that 3(Q~) = ;. Since R violates (Ninner), B, is not BP-invariant
with respect to P, and there is Py with ¢ < m — 2 such that the last node of P, belongs to Q~
and «a(Py) is a —-vertex or Py is not proper.

Consider such P, with the minimum index £. We denote by 5%a? the last edge of P;. By
the assumption, the edge 37~ exists in £(V,p) and o~ belongs to Q. Let P, be the path
obtained from P, by replacing a’ with 87a~ in G(V, p).

Since f; is not BP-invariant with respect to P,,, we have p(Vﬁj(L)) = p(Vp,) and Vj is different
from the space at 3 of the back-propagation of P,,; the latter implies A,, 8 (UL, Vﬁ_o) # {0}.
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Hence there exists af in £(V,p). We update R as
ﬁ;:pooglo...oggopéoQ_[a_,ﬂa]o(aa‘fl). (7.1)

This update can be done in O(min{y,v}) time. By the choice of Py, no outer path Py with
0" < £ meets Q [a~, B, ]. Hence R forms a path in G(V,p). It is clear that P; and (8, of")
are outer paths for (M, 1,V,p), and that Q" [a™, B, ] is an inner path for (M, 1,V,p). Thus the
resulting R is an augmenting path for (M, I,V,p). Clearly p satisfies (Zero)' for R and 6 strictly
decreases. Return to the initial stage (Section 5).

8 R satisfies both (Nyyer) and (Niyey) but is not in the base case

Suppose that R satisfies both (Noyter) and (Ninner) but is not in the base case. We can assume
that Q,, forms an inner —-path, where the last node 3(Q,,) of QO is B, . Let C be the connected
component of M \ I containing Q,,. We consider two cases:

e (' is a cycle component.
e (' is a path component.

The first and second are discussed in Sections 8.1 and 8.2, respectively.

8.1 (' is a cycle component

We denote by a_; 3, the last edge of Q,,. Let
M/ =M \ {04_150}.

We can easily see that (M’,I) is a matching-pair of size k — 1, V is a valid labeling for M’ and
for the resulting (M',I1,V), p is an (M’,I,V)-compatible c-potential.

Since C' is a cycle component, the last node of P, exits C. Hence we can assume that
Pm = (B a7 ) by executing the simplification in Section 5.3 for P,,. Let Cg, and C,, be the
connected component of M’ \ I containing By and a1, respectively; note that Cg, is equal to

C\{a-1bo}. .
We define M, V, and R by
M == M U{Byon},
V= V(Cay; (Vg 021)(Cy; (Uyy ) T1%0),
Ri=PyoQioP1o- 0Py 1.

Proposition 8.1. (M,I) is a matching-pair of size k such that U(M,I) = U(M,I) \ {a7} U
{a:l}, V is a valid labeling for M, p is an (M, I,f/)—compatz’ble c-potential, and R is a pseudo
augmenting path for (M,I, f),p).

The proof of Proposition 8.1 requires the following lemma, which is also used in the proof

of Proposition 8.6 in Section 8.2. Let Pg, be the maximal rank-2 path in Cpg, starting from gy,
where Pg, := {fo} if (o is incident to a rank-1 edge.

Lemma 8.2. If R meets at BT for some aff € Pg,, then p(V[;L) > p(Vy') or the +-space of B
with respect to V is V5+. If7A2 meets a~ 3~ for some a3 € Pg,, then p(Uy) > p(UT), the —-space
of o with respect to V is U, , or p(U}) = p(U, ) and o™ belongs to Q.

«
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Proof. 1f (U;l)Lalﬁo = VBJg, then we have V = V(Cy, ; (Vﬁg)lﬁoal ). That is, for each a, 8 belonging
to Pg,, the 4+-space of 8 and the —-space of o with respect to V coincide with those with respect
to V), i.e., VE and U], respectively.

In the following, we assume that (U] 1)Lalﬁo # Vgg. Then it follows from f;a; € E(V,p)
and Lemma 3.5 that p(Vﬁ‘;) > p(Vg,). By Lemma 6.1 (1), we obtain p(Vﬁ‘L) > p(Vy) and
p(Uy) > p(US) for each «, 8 belonging to Pg,.

If R meets ot Bt for some a8 € V(Pg,), then we have p(Vg) > p(Vy ). Indeed, suppose
to the contrary that p(VB+) = p(Vy ). Then p(VBJg) = p(Vj,) and the subpath of Pg, from Sy
to 5 consists of double-tight edges. The former with (UOTI)J‘O‘M’O #* VBJg implies that ﬂaL is not
BP-invariant with respect to P,,. The latter implies that there is a +-path from Bar to ot in
G(V,p)|um, i-e., at belongs to QT. This contradicts that R satisfies (Nipner)- R

By a similar argument, if p(U}) = p(U, ), then a™ belongs to Q. Thus, if R meets o~ 3~
for some af8 € Pg,, then p(Uy) > p(UF) or p(Uf) = p(U; ) and o™ belongs to Q. O

We are ready to show Proposition 8.1.

Proof of Proposition 8.1. Since 3, and «; belong to S(M’,1,V,p) and T(M',1,V,p), respec-
tively, (8, o ) forms an augmenting path for (M’,I,V,p). Furthermore, the connected compo-
nent of M containing Bpay forms a path. Thus, by Proposition 6.2 and Remark 6.3, (M ,I)is a
matching-pair of size k such that U(M,I) = U(M,I)\ {a7}u{aZ,}, V is a valid labeling for
M, and p is an (M I, 1>)—compatible c-potential (even if Cg, is rearrangeable in M’).

We then show that R is a pseudo augmenting path for (M LV, p). Since C is a cycle
component in M, the initial node of Py does not belong to C'. Therefore the initial node B(Pp)
of Py belongs to S(M, I,f/,p). We can see that the last node of R, which is a(Pp—1), belongs
to T(M,I, f),p) as follows. Clearly degy, (a—1) =1 and a1 is incident to a —edge. Moreover,
by Lemma 3.6 (2), the —-path from a(Py,_1) to aZ; (the reverse of Qp, \ {aZ,8; }) exists in
Q(V,p)|M. Thus we obtain a(P,,_1) € C(a—,) € T(M,I,V,p). Hence R satisfies (A2).

Take any 500/7/ eR. By the same argument as in the proof of Proposition 7.2 (or Proposi-
tion 5.1), it suffices to show that B’ €& (f/, p) and that if « is incident to an edge in I, there
is no edge between 87 and o’ in £(V,p). By Lemma 7.4 (1) and Lemma 8.2, p(Vg) > p(Vg) or
the o-space of 8 with respect to V is Vﬁ" .

Suppose « ¢ V(P,,)UV (Pg,). Then the 4+-space and —-space of o with respect to VY are U7
and U, respectively. By Lemma 3.6 (3) and 87a% € £(V,p), the edge 8% exists in E(V, p).
In particular, if o is incident to an edge in I, then 37a% ¢ £(V,p). In this case, we also obtain
B7a ¢ £(V,p) by Lemma 3.6 (3).

Suppose that a belongs to Pg,. If ¢/ = +, then the +-space of a with respect to Vs Ur.
Hence Lemma 3.6 (3) asserts that the edge f7a™ exists in E(V,p). If o/ = —, then by Lemma 8.2,
it holds that p(U;) > p(U7), the —-space of a with respect to V is US, or p(U) = p(U7) and
a™ belongs to Q1. In the first or second case, Lemma 3.6 (3) verifies 37a~ € E(V,p).

Otherwise the —-space of o with respect to V is different from U7, p(U}) = p(Uy ), and ot
belongs to Q. Then one can see that ﬂaL is not BP-invariant with respect to P,,. Hence, by
(Ninner ), there is no edge between 37 and o™ in £(V,p). By p(US) = p(U, ) and B°a~ € E(V, p),
we obtain p(U}) + p(V§) + ¢ = dap, which implies A (U, Vg) = {0}. Moreover, by f7a~ €
E(V,p), we have Uy & kerp,(Aqnp) and V§ € kerr(Aqap). Let X and Y denote the —-space of
« and the o-space of 3 with respect to V, respectively. Note here that the +-space of a with
respect to V is U}. By Lemma 3.6 (3), we have 8%a* ¢ £(V, p), implying A,s(Ut,Y) = {0}.
If p(Vﬁ") < p(Vg), then the o-space of 8 with respect to V is Vi, le, Y = V7. Hence we
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obtain A,z(X, VBJ) # {0} by X £U}. If p(Vg) > p(Vg), then one can see that «f is rank-1,
Ut = ker,(Aqp), and Vg = kerg(Aqp). By X #UF and Y # Vg, we obtain A,3(X,Y) # {0}.
Thus the edge 8%~ exists in E(f),p).

If « belongs to P,,, then by the same argument as in the proof of Proposition 7.2 and
Lemma 7.4 (1), we obtain Boa €& (f/, p). This completes the proof. O

By this update, 6 does not increase and ¢ strictly decreases.
Lemma 8.3. 0(M,1,R) < 0(M,I,R) and p(M,I,R) < o(M,I,R).

Proof. By M = M\ {a_180} U {Boa}, Ns does not change. The edge 85 aj is removed from
the union of the resulting outer paths, and only 5, o] can be newly added to the union of the
resulting outer paths, implying that the number of edges in the union of outer paths does not
increase. Thus 0(M,1,R) < 6(M,I,R) holds.

We obtain |R| = |R| — |Qm| — |Pm| and No(M,I,R) = No(M,I,R). Thus ¢(M,I,R) <
©(M,I,R) holds. O

We update
M« M, V+<V(R), R+TR

This update can be done in O(min{u, v}) time. By Propositions 4.2 and 8.1, the resulting (M, I)
is a matching-pair of size k, V a valid labeling for M, p an (M, I,V)-compatible c-potential, and
R is an augmenting path for (M, I,V,p). Moreover, since oy is deleted from U(M,I) and o~ is
added to U(M, I) in this update (by Proposition 8.1) and a(P,—1) € C(aZ,), p satisfies (Zero)’
for R. Return to the initial stage (Section 5).

8.2 (' is a path component
We denote by a”; 3, the last edge of Q,,. Let

M/ =M \ {047150}.

We then redefine +- and —edges of M’ and +- and —-spaces of V so that all edges in M' N P,
are +-edges, [y is incident to a +-edge if deg;; (5y) = 1, and Py, forms a +-path. Note that
the last edge of Q,, (or the last edge of Q~) becomes a:lﬁg. The resulting V is no longer a
valid labeling for M, since Aa_lgo(UOj_l,VB'g) # {0} (corresponding to the edge a~; 7 in Q).
On the other hand, V is a valid labeling for M’, since M’ does not have «_15y. Here (M’ I)
is a matching-pair of size k — 1. We can easily see that, for the resulting (M’,1,V), p is an
(M',1,V)-compatible c-potential.

By applying the simplification in Section 5.3 to Py, we can assume that P, = (85 «a]).
Moreover, B; and of belong to S(M',1,V,p) and T(M’,I,V,p), respectively. Hence (85 )
forms an augmenting path for (M',I,V,p). Let C,, be the connected component of M’ \ I
containing «1. We define M and V by

M =M U{Byon},
V= V(Cay; (Vi) ooe1 ) (Cy; (U, ) Fore0);

a1
see Figure 3.

If the connected component of M containing Syc; forms a cycle, i.e., a1 belongs to Cpg,, then
Cp, is not rearrangeable in M’. Indeed, otherwise we have a(Pp,—1) € C(a; ), which contradicts
(A4). Thus, by Proposition 6.2 and Remark 6.3, we obtain the following:
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Figure 3: Modification in Section 8.2; the definitions of all lines and paths are the same as in
Figures 1 and 2.

Proposition 8.4. (M,I) is a matching-pair of size k such that U(M,I) = U(M,I) \ {ai} U
{a:l}, VY is a valid labeling for M, and p is an (M, I,f/)—compatz’ble c-potential.

By deleting a_15y from M, it can happen that 8(Py) ¢ S(M,I,V,p). The following states
that, in such a case, f3; belongs to S(M,I,V,p) and there is a path from By to B(Po) in G(V,p)
that is the concatenation of an outer path and an inner path for (M 1LV, p). Here we denote by
Q the maximal inner +-path in g(l},p)|M that starts with a*; Figure 3 also describes Q.

Lemma 8.5. If 3(Py) ¢ S(M,I,f),;q), then B(Py) belongs to Q, f, € S(M,I,V,p), and the
path (By a™y) o Q(B(Po)] exists in G(V,p).

Proof. Assume that 3(Py) = 37 does not belong to S(M,I,f},p). It follows from M = M\
{Boa—1} U {Boas1} that degy,(3) = degy,(B) for each 3. Since 3 belongs to S(M,I,V,p), we
have degM(B) > 1 and ° € Cp+, where 3, is an end node of some connected component of
M \ I incident to a o-edge. Indeed, otherwise deg M(B) = degM(B) = 0, which implies that 57
belongs to S (M , f/, p). This is a contradiction to the assumption. We denote by P the o-path
in G(V,p)|a from B2 to 37.

We can easily observe 8¢ € U (M ,I). Thus the assumption Jid ¢S (M 1LV, p) implies that
there is an edge in P not belonging to E(V,p)|M. We then show that such an edge is 3; a™;. By
Proposition 8.4, V is a valid labeling for M and p is an (M , f/)—compatible c-potential. Hence
V is also a valid labeling for M’ = M \ {Boc1} and p is also an (M’ I, f))—compatible c-potential.
By Lemma 3.6 (2), we obtain E(V,p)|y = E(f),p)\M/. By M\M =M\ M = {Bpa_1}, we have

E(Vap)|M \ 5({),]))

B {{ﬁo a:l} if Bya_1 is single-tight, (8.1)

M {BfaTy, Byaty )t if Boa_y is double-tight.

Since By ¢ S(M, I,V,p) by (A3), the edge in P not belonging to S(fi,p)\M must be 85 o’ (and
Boc—1 must be double-tight).
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It follows from S o, € P that S, is an end node of Cj, incident to a —-edge, o is equal
to —, and P is the concatenation of the —path from By to 8y, By aty, and Q(8(Py)]. Hence

B(Py) belongs to Q. By E(V, p)|lawr = E(V, Pl G(V,p) contains the —-path from S, to 85 and
Q(B(Po)]- In particular, we have 8, € S (M,I,V, p) by the existence of the —-path. Moreover we
have By at, € € (V p). Indeed, the —-space (U*) 180 of [, with respect to V is different from
VE; by Lemma 3.5, and the +-space of a_; with respect to Vs Ul _,- Since Ao g, (US i Vﬁo)

{0}, Boa_1 is rank-2, and (U )Fe1fo £ Vi, we have A, 5, (U, (UF)Fe180) # {0}, implying
Byat, € £(V,p). Hence the path (85 at;) o Q(B(Py)] exists in G(V, p). O

We define R by
7%‘_ POOQloplo"'O m—1 lf/B(PO)GS(M7[7)>7p)7
- Brat) o QB(P) o Pyo QioPro--oPyy if B(Py) & S(M,1,V,p).
Proposition 8.6. R is a pseudo augmenting path for (M, I,f/,p).

Proof. This follows from Lemma 7.4 (1) and Lemma 8.2 as in the proof of Proposition 8.1.
In particular, even when the connected component of M containing fyaq forms a cycle, i.e.,
Cg, = Ca,, Remark 6.4 enables us to follow the same argument in the proof of Proposition 8.1.
O

By this update, 6 does not increase and ¢ strictly decreases.
Lemma 8.7. (M, I,R) < 0(M,I,R) and o(M,I,R) < o(M,I,R).

Proof. By the same argument as in the proof of Lemma 8.3, we obtain G(M, 1, 7@) <O(M,I,R),
and (M, I,R) < o(M,I,R) if B(Py) € S(M LV,p).

Suppose B(Po) ¢ S(M,I,V,p). Then |R| = [R| — Q| — [Pml| + (55 o) © Q(B(Po)]| and
No(M,I,R) = No(M,I,R)—|(8y at,) 0 Q(B(Py)]| by Lemma 8.5. Thus we obtain p(M, I, R) <
o(M,I,R) — |Qm| < p(M,I,R). O

We update
M+ M, YV« V(R), R« R.

This update can be done in O(min{u,v}) time. By Propositions 4.2, 8.4, and 8.6, the resulting
(M, I) is a matching-pair of size k, V a valid labeling for M, p an (M, I,V)-compatible c-potential,
and R is an augmenting path for (M, I,V,p). Moreover, since o is deleted from U (M, ) and
a_ is added to U(M, I) in this update (by Proposition 8.1) and o(Pp,—1) € C(a_,), p satisfies
(Zero)' for R. Return to the initial stage (Section 5).
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