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Abstract

Minimax problems have gained tremendous attentions across the optimization and machine learning
community recently. In this paper, we introduce a new quasi-Newton method for the minimax problems,
which we call J-symmetric quasi-Newton method. The method is obtained by exploiting the J-symmetric
structure of the second-order derivative of the objective function in minimax problem. We show that
the Hessian estimation (as well as its inverse) can be updated by a rank-2 operation, and it turns
out that the update rule is a natural generalization of the classic Powell symmetric Broyden (PSB)
method from minimization problems to minimax problems. In theory, we show that our proposed quasi-
Newton algorithm enjoys local Q-superlinear convergence to a desirable solution under standard regularity
conditions. Furthermore, we introduce a trust-region variant of the algorithm that enjoys global R-
superlinear convergence. Finally, we present numerical experiments that verify our theory and show the
effectiveness of our proposed algorithms compared to Broyden’s method and the extragradient method
on three classes of minimax problems.

1 Introduction

Our problem of interest in this paper is the minimax problem (a.k.a. saddle-point problem)

min
x∈Rn

max
w∈Rm

L(x,w) , (1)

where L(x,w) is a smooth objective in both x and w, and we call x the primal variable and w the dual
variable. Minimax problem is one of the most important classes of optimization problems, with a long
research history and wide applications. The earliest motivation for minimax problems may come from
the Lagrangian form of constrained optimization problems; see [10] and the references therein. Another
major application of minimax problem is zero sum games [55]. More recently, minimax problem (1) has
regained significant attentions across the optimization and machine learning communities, mainly due to
their applications in machine learning, such as generative adversarial networks (GANs) [36], reinforcement
learning [20], robust training [46], image processing [18], and applications in classic constrained optimization,
such as linear programming [3].

Here, we develop a quasi-Newton method for the minimax problem (1). Quasi-Newton method is a successful
optimization method for minimization problems [53, Chapter 6]. While Newton’s method enjoys the fast
local quadratic convergence, the iteration cost to access the Hessian and to solve the linear equation can be
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prohibitive when solving large instances. Instead, quasi-Newton method constructs an approximate Hessian
(more often constructs an approximate inverse Hessian) and updates it with a low-rank operation at each
iteration, which can significantly reduce the iteration cost. Under proper regularity conditions, one can
show that the quasi-Newton method has local superlinear convergence or global linear convergence. Some
famous quasi-Newton updates for minimization problems include BFGS formula [13, 28, 35, 62], DFP formula
[22, 29], PSB formula [58], etc. The low cost-per-iteration and superlinear eventual convergence make the
quasi-Newton method a highly efficient algorithm. It is widely used in practice and is listed as one of the
ten algorithms with the greatest impact on the development and practice of science and engineering in the
early 21st century [1].

Surprisingly, there has been very limited research on quasi-Newton methods for minimax problems. As a
special case of nonlinear equations or as a special case of variational inequalities, one can adapt quasi-Newton
methods for these problems to solve minimax problems (1). In particular, Broyden’s (“good” or “bad”)
methods [12] are quasi-Newton methods for solving generic nonlinear equations, and we can use them to
solve the KKT system of (1). In the 1990s, Burke and Qian proposed a variable metric proximal point method
for monotone variational inequality [16, 15], where they effectively introduced a proximal point variant of
quasi-Newton method and used Broyden’s formula to update the second-order term. Broyden’s method
and Burke and Qian’s method target at a much larger class of problems, and do not utilize the structure
of minimax problems. In contrast, in this paper, we propose a new quasi-Newton method specialized for
minimax problems that utilizes the structure of the second-order derivative of minimax problems. The
utilization of such structures has the following advantages compared to existing quasi-Newton methods and
first-order methods:

• Many classic quasi-Newton methods, such as the BFGS formula and the DFP formula, target mini-
mization problems and construct symmetric and positive definite approximations of Hessian. These
methods do not directly work for minimax problems, where the second-order derivative is no longer
symmetric.

• Broyden’s formula targets at finding root of nonlinear equations and does not require any structure
on the Jacobian estimation. While it is very general, it ignores the meaningful information of the
Jacobian structure in minimax problems, and it is numerically unstable even when solving simple
bilinear minimax problems (as shown in Section 5). Furthermore, it is unclear how to properly initialize
the Jacobian estimation of Broyden’s method for minimax problems, which may lead to numerical
issues.

• Compared with first-order methods, such as EGM, quasi-Newton method enjoys a local superlinear
convergence rate and the convergence speed does not heavily rely on the condition number of the
problem.

Throughout the paper, we assume the objective function L(x,w) is third-order differentiable. For notational
convenience, we denote z = (x,w) ∈ Rm+n as the primal-dual solution pair, F (z) = [∇xL(x,w),−∇wL(x,w)]
as the gradient (more precisely gradient for the primal and negative gradient for the dual) of L(x,w). F (z)
is the cornerstone of first-order methods for minimax problems. For example, the gradient descent ascent
(GDA) method has an iteration update zk+1 = zk − sF (zk), the proximal point method (PPM) has an
iteration update zk+1 = zk − sF (zk+1), and the extragradient method (EGM) has an iteration update
z′k = zk − sF (zk), zk+1 = zk − sF (z′k).

When turning to second-order methods, we denote

∇F (z) =

[
∇xxL(x,w) ∇xwL(x,w)
−∇xwL(x,w)T −∇wwL(x,w)

]
(2)
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as the Jacobian of F (z). Then the standard Newton’s method has an iteration update

zk+1 = zk −∇F (zk)−1F (zk) .

We here focus on quasi-Newton method with an iteration update

zk+1 = zk −B−1
k F (zk) ,

where Bk is an approximation of ∇F (zk). A key observation is that ∇F (z) defined in (2) is symmetric on
the main diagonal terms and skew-symmetric on the anti-diagonal terms. This type of matrix is called J-
symmetric in the related literature [45]. A J-symmetric matrix has many desirable numerical properties, see,
for example, [8, Theorems 3.6 and 3.7] and [7, Lemma 1.1]. J-symmetric matrix naturally appears and has
been used in numerical analysis and applied mathematics. For example, [7] introduces a J-symmetric system
as a preconditioner for Krylov subspace methods for solving nonlinear equations. [63] uses J-symmetric
matrices as preconditioner when solving discrete Navier-Stokes equations in incompressible fluid mechanics.

When the minimax problem is convex-concave, ∇F (z) is J-Symmetric. Similar to the fact that posi-
tive semidefinite Hessian is the cornerstone of BFGS method for solving a minimization problems, the
J-symmetric structure is the cornerstone of our quasi-Newton update for solving minimax problems, and
the utilization of the J-symmetric structure is the major novelty of our approach over existing literature.

The major contributions of our work can be summarized as follows:

• We introduce a new quasi-Newton update for minimax problems that comes from the J-symmetric
structure of the Jacobian of the minimax objective. We show that we can efficiently update the Jacobian
estimation as well as its inverse in our method via a rank-2 update. It turns out the update rule is
a natural generalization of Powell’s symmetric Broyden (PSB) update from minimization problems to
minimax problems.

• We prove that the proposed unit-step quasi-Newton method enjoys local Q-superlinear convergence
towards a stationary point of the minimax problem via the bounded deterioration technique. Further-
more, we propose a trust-region variant of the proposed quasi-Newton method and prove its global
R-superlinear convergence. The convergence results do not require the convexity-concavity of the
objective function in the minimax problem.

• We present preliminary numerical experiments, which verifies our theory and showcases that our pro-
posed methods are more stable and faster compared to Broyden’s update when solving minimax prob-
lems. They also enjoy faster convergence compared to first-order methods such as EGM.

1.1 Applications of Minimax Problems

We here briefly discuss three applications of minimax problems.

(Linear equality-constrained convex optimization.) Consider a constrained optimization problem of
the form

min
x

f(x)

s.t. Ax = b .
(3)

This type of problem is the subproblem in sequential quadratic programming [53, Chapter 6] and arises in
computational physics [8]. The Lagrangian of is L(x,w) = f(x) + wT (Ax − b), where w is the Lagrange
multiplier and thus (3) is equivalent to

min
x

max
w

L(x,w) = min
x

max
w

f(x) + wT (Ax− b) .
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(Inequality-constrained convex optimization.) Consider a generic constrained convex optimization
problem

min
x

f(x)

s.t. g(x) ≥ 0 .

Introducing the Lagrangian multiplier w yields

min
x

max
w≥0

f(x)− wT g(x) . (4)

Notice that the dual variables are constrained to be in the non-negative orthant. We can instead consider a
logarithmic-barrier formulation with barrier parameter µ:

min
x

max
w

L(x,w;µ) := f(x)− wT g(x) + µ
∑
i

logwi . (5)

(5) with parameter µ can be viewed as the central path of the problem (4). It recovers (4) as µ→ 0. One can
potentially apply the interior-point method (IPM) to solve (4), which follows from the central path (5) by
Newton’m ethod. Here we solve (5) for a fixed µ using J-symmetric quasi-Newton algorithm. The solution
to the above minimax problem identifies an optimal solution to the original minimization problem when
µ→ 0. Indeed, as long as µ is chosen properly, it provides an approximate solution.

(Generative Adversarial Network.) Generative Adversarial Network (GAN) [36] is a recent development
in machine learning, which has many applications in image processing such as producing realistic images [39],
quality super-resolution [41] and image-to-image translation [65]. A GAN is a minimax problem of the form
(1) which is the equilibrium condition of a zero-sum two-player game. The two players are the generator
(parameterized by G) and the discriminator (parameterized by D):

min
G

max
D

E
s∼p

[logD(s)] + E
e∼q

[log(1−D(G(e)))] , (6)

where p is the data distribution and q is the latent distribution. The generator produces a sample, and the
discriminator decides whether they are real or fake data. The goal is to learn the best generator which can
produce realistic data [31]. Notice that G and D are usually represented as parameters of neural networks,
thus (6) is a nonconvex nonconcave minimax problem.

1.2 Related Literature

Minimax optimization. Minimax optimization (1) has long history and wide applications. The early
work on minimax optimization focuses on a more general problem, monotone variational inequalities. The
two classical algorithms for monotone variational inequality/minimax problems are perhaps proximal point
method (PPM) proposed by Rockafellar [60] and extragradient method (EGM) proposed by Korpelevich [40]
in 1970s. Later, Nemirovski [50] proposes the mirror prox algorithm, which generalizes EGM with Bregman
divergence and builds up the connection between EGM and PPM.

Motivated by machine learning applications, there is a renewed recent interest in developing efficient first-
order algorithms for minimax problems. [21] studies an Optimistic Gradient Descent Ascent (OGDA) with
applications in GAN. [48] presents an interesting observation that OGDA approximates PPM on bilinear
problems. [43] proposes a high-resolution ODE framework that can characterize different primal-dual
algorithms. [37] studies the landscape of PPM and presents examples showing that classic algorithms such
as PPM, EGM, gradient descent ascent, and alternating gradient descent ascent may converge to a limit
circle on a simple nonconvex-nonconcave example. See [37] for a thorough literature review on the recent
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development of minimax problems. Compared to these first-order methods, our focus is on quasi-Newton
methods, and our theoretical results do not rely on the convexity of the objective.

Quasi-Newton methods. Quasi-Newton methods are alternatives to the classical Newton’s method. The
first quasi-Newton method was developed by W.C. Davidon in 1959 and was later published in [22] in 1991.
Instead of computing the inverse Hessian at every iteration, Davidon’s method obtains a good approximation
of it using gradient differences. Soon after, Fletcher and Powell realized the efficiency of this method. They
studied and popularized Davidon’s original formula and established its convergence for convex quadratic
functions [27]. This method became known as DFP method. BFGS [35] is perhaps the most popular quasi-
Newton method [53]. It was discovered by Broyden, Fletcher, Goldfarb and Shanno independently in the
1970s. Soon after, Broyden, Dennis and Moré proved the first local and superlinear convergence results
for BFGS, DFP as well as other quasi-Newton methods [14]. Later, Powell [59] presented the first global
convergence result of BFGS with an inexact Armijo-Wolfe line search for a general class of smooth convex
optimization problems. [17] extended Powell’s result to a broader class of quasi-Newton methods.

Quasi-Newton methods for minimax problems. While minimax problems and quasi-Newton methods
are both well studied individually, there are fairly limited works on quasi-Newton methods for minimax
problems. Notice that one can solve minimax problems by finding a root of a corresponding nonlinear
equation, thus one can use the classical Broyden’s (good and bad) algorithms [12, 13] for minimax problems.
Another line of early research is to use proximal quasi-Newton methods for monotone variational inequalities
proposed in [19, 16, 15] to solve convex-concave minimax problems. However, both Broyden’s methods and
the proximal quasi-Newton methods target at a more general class of problems, without considering the
special structure of the minimax problems. As a result, these algorithms may not always be stable, even
when solving simple bilinear minimax problems, as we see in our numerical experiments. More recently,
[2, 26] proposed different quasi-Newton methods for minimax problems. However, neither of them shows the
convergence rate of their algorithms. In contrast to these works, we introduce a new quasi-Newton method
for the minimax problem and present its local/global superlinear rate.

Trust-region method. Trust-region method is another classic algorithm in numerical optimization. It first
defines a region around the current best solution, and then creates a quadratic model that can approximate
the objective function in the region and takes a step by solving a subproblem based on this quadratic model.
Quasi-Newton methods are often used together with trust-region method [53]. Unlike a line-search method,
which picks the direction first and then looks for an acceptable stepsize along that direction, a trust-region
method first picks the stepsize and then looks for an acceptable direction within that region.

There are different methods to solve the trust-region subproblem. The simplest way is to move along the
negative gradient direction to a point within the trust-region. The resulting solution is called Cauchy point.
Although the Cauchy point is cheap to calculate, it may perform poorly in some cases. A famous approach
to avoid this issue is the dogleg method. The dogleg method was originally introduced by Powell as hybrid
method in [57]. The dogleg point refers to a point on the boundary of the trust-region that is a linear
combination of the Cauchy point and the minimizer of the quadratic model, and it is used only when the
Cauchy point is strictly inside the trust-region and the minimizer of the quadratic model is strictly outside
the trust-region. See [53] for more details on the trust-region method.

1.3 Notations

Throughout this paper, the norm ‖ · ‖ denotes the `2 norm for a vector or the operator norm (i.e., the
`2,2 norm) for a matrix, unless specified. The norm ‖ · ‖F refers to the Frobenius norm for a matrix. As
a common notation in quasi-Newton method, sk denotes the potential step at iteration k. When sk is a
sufficient decrease step and we accept it, we have sk = zk+1 − zk. Otherwise, we reject it (equivalently, we
take a null step and set zk+1 = zk). We use yk = F (zk + sk) − F (zk) to denote the gradient difference
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between two consecutive points. We use J ∈ R(n+m)×(n+m) to represent the following block diagonal square
matrix:

J =

[
In×n 0

0 −Im×m

]
.

2 J-symmetric Update

In this section we present our J-symmetric update for minimax problems. The major idea is to construct the
estimated Jacobian by utilizing the J-symmetric structure in ∇F (z). We begin by introducing the following
notations for notational convenience:

D(z) = ∇xxL(z) , C(z) = −∇wwL(z) , A(z) = ∇xwL(z)T .

Then the Jacobian defined in (2) can be rewritten as

∇F (z) =

[
D(z) AT (z)
−A(z) C(z)

]
,

where the main diagonal terms are symmetric and the main off-diagonal terms are anti-symmetric. This

structure is called J-symmetric [7, 8]. Recall that matrix J =

[
In×n 0

0 −Im×m

]
. It is easy to check it holds

for a J-symmetric matrix M that

M = JMTJ and JM = MTJ .

The general scheme of the quasi-Newton method consists of iteration updates of the following form

zk+1 = zk −B−1
k F (zk) , (7)

where Bk denotes the approximation to the current Jacobian ∇F (zk), and we hope to obtain a better and
better approximation over time. In particular, we seek update rules from Bk to Bk+1 such that:

(a) Bk+1 is a good approximation to ∇F (zk+1).

(b) Bk+1 is a J-symmetric matrix.

(c) Bk+1 is not too far away from Bk.

(d) There is an efficient way for computing Bk+1 from Bk by a low rank update.

A common requirement to satisfy (a) is that Bk+1 should satisfy the secant condition

yk = Bk+1sk . (8)

The secant condition imposes only n+m constraints on Bk+1 and even after taking into consideration the
required J-symmetric structure, we are still left with many degrees of freedom to pick Bk+1. In addition,
we select Bk+1 such that it is the closest matrix to Bk in Frobenius norm. In summary, Bk+1 is given by
solving the following minimization problem:

min
B

1

2
‖B −Bk‖2F

s.t. Bsk − yk = 0

D = DT , C = CT and B =

[
D AT

−A C

]
.

(9)
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The last line imposes the J-symmetric structure on B. Notice that the constraint set is a convex set and
the objective is strongly convex, thus (9) is a convex optimization problem with a unique solution, and
furthermore:

Proposition 2.1. The unique solution to the constrained optimization problem (9) is given by

Bk+1 = Bk +
Jsk(yk −Bksk)TJ

sTk sk
+

(yk −Bksk)sTk
sTk sk

− (Jsk)T (yk −Bksk)Jsks
T
k

(sTk sk)2
, (10)

which is a rank-2 update.

Proof. Define E = B − Bk and r = yk − Bksk. It is easy to see then the minimization problem (9) is
equivalent to the following after changing variables

min
E

1

2
‖E‖2F (11)

s.t. Esk − r = 0 (12)

D′ = D′T , C ′ = C ′T and E =

[
D′ AT

−A C ′

]
. (13)

J-symmetry constraint (13) is equivalent to that E +ET is a block diagonal matrix, and E −ET is a block
anti-diagonal matrix. We dualize these two constraints and let ΓA,ΓD ∈ R(m+n)×(m+n) be the Lagrange
multipliers of the condition involving E + ET and E − ET , respectively. Then ΓA is a block anti-diagonal
matrix and ΓD is a block diagonal matrix. Let λ ∈ Rm+n be the Lagrange multiplier corresponding to the
secant condition (12). Then, the Lagrangian can be written as:

Φ(E; λ,ΓD,ΓA) =
1

2
Tr
(
EET

)
+ λT (Esk − r) + Tr

(
ΓD(E − ET )

)
+ Tr

(
ΓA(E + ET )

)
.

Since λT (Esk − r) = Tr
(
(Esk − r)λT

)
, then

Φ(E; λ,ΓD,ΓA) =
1

2
Tr
(
EET

)
+ Tr

(
(Esk − r)λT

)
+ Tr

(
ΓD(E − ET )

)
+ Tr

(
ΓA(E + ET )

)
.

The KKT condition requires ∂Φ/∂E = 0, whereby

E = −
(
λsTk + ΓTD − ΓD + ΓTA + ΓA

)
. (14)

Furthermore, we decompose λsTk as following

λ =

[
λ1

λ2

]
, sk =

[
s1

s2

]
, λsTk =

[
λ1s

T
1 λ1s

T
2

λ2s
T
1 λ2s

T
2

]
, (15)

where λ1, s1 ∈ Rn and λ2, s2 ∈ Rm. Note that the J-symmetry constraint (13) requires the diagonal blocks
in (14) are symmetric, so[

λ1s
T
1 0

0 λ2s
T
2

]
+ ΓTD − ΓD =

[
s1λ

T
1 0

0 s2λ
T
2

]
+ ΓD − ΓTD ,

thus

ΓTD − ΓD = −1

2

[
λ1s

T
1 − s1λ

T
1 0

0 λ2s
T
2 − s2λ

T
2

]
. (16)

Furthermore, the block anti-diagonal matrix in (14) is skew-symmetric, so[
0 λ1s

T
2

λ2s
T
1 0

]
+ ΓTA + ΓA = −

([ 0 s1λ
T
2

s2λ
T
1 0

]
+ ΓA + ΓTA

)
,
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thus

ΓTA + ΓA = −1

2

[
0 λ1s

T
2 + s1λ

T
2

λ2s
T
1 + s2λ

T
1 0

]
. (17)

Substituting (16) and (17) back into (14) and noticing (15), we obtain:

E = −1

2

[
λ1s

T
1 + s1λ

T
1 λ1s

T
2 − s1λ

T
2

λ2s
T
1 − s2λ

T
1 λ2s

T
2 + s2λ

T
2

]
= −1

2
(λsTk + Jskλ

TJ) . (18)

The rest of the proof is to compute the multiplier λ. Substituting (18) into the secant condition (12), we
obtain

(λsTk + Jskλ
TJ)sk = −2r ,

and since both sTk sk and λTJsk are scalars, it holds that

λ = − 1

sTk sk

(
2r + (sTk Jλ)Jsk

)
. (19)

Multiplying both sides with sTk J , we arrive at

sTk Jλ = −2sTk Jr + (sTk Jλ)sTk JJsk
sTk sk

,

which can be further simplified to sTk Jλ = −sTk Jr/(sTk sk) by using J2 = I. Substituting this into (19), we
obtain

λ =
sTk Jr

(sTk sk)2
Jsk −

2

sTk sk
r .

Now, by substituting λ into (18) we obtain

E = −1

2

( sTk Jr

(sTk sk)2
Jsks

T
k −

2

sTk sk
rsTk +

sTk Jr

(sTk sk)2
Jsks

T
k JJ −

2

sTk sk
Jskr

TJ
)
.

By noticing J2 = I, we conclude that the unique solution of the problem (11)-(13) is given by:

E =
1

sTk sk
rsTk +

1

sTk sk
Jskr

TJ − sTk Jr

(sTk sk)2
Jsks

T
k .

Finally by substituting E = Bk+1 −Bk into this equation we obtain the unique solution of problem (9) as:

Bk+1 = Bk +
1

sTk sk
(r − sTk Jr

sTk sk
Jsk)sTk +

Jskr
TJ

sTk sk
.

This equations reveals the update is a rank-2 update. By changing the order and plugging in r = yk −Bksk
we arrive at (10).

Next, we show that the inverse update of (10) can also be obtained by a low rank update via Sherman-
Woodbury identity.

Proposition 2.2. Let r = yk −Bksk, Hk = B−1
k and Hk+1 = B−1

k+1. The inverse update of (10) is

Hk+1 = Q−1 − Q−1Jsk(Jr)TQ−1

sTk sk + (Jr)TQ−1Jsk
, where Q−1 = Hk −

HkJPkJrs
T
kHk

sTk sk + sTkHkJPkJr
, (20)

and

Pk = I − sks
T
k

sTk sk
. (21)
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Proof. Define a = r − sTk JrJsk/(sTk sk) = JPkJr and Q = Bk + asTk /(s
T
k sk), then from (10) we have that

Bk+1 = Q+
Jsk(Jr)T

sTk sk
.

From one application of Sherman-Woodbury to Q, we obtain Q−1 and from another application to Bk+1 we
obtain Hk+1 in (20).

Algorithm 1 describes the basic J-symmetric quasi-Newton method. We initialize with a solution z0 and
an inverse Jacobian estimation H0. For every iteration, we calculate the direction sk, update the iterates,
compute the difference in F (z), and finally update the inverse Jacobian estimation via (20). The algorithm
is similar to any quasi-Newton method, and the key is the inverse Jacobian update rule (20). We will present
the local Q-superlinear convergence of Algorithm 1 in the next section, and present the global R-superlinear
convergence of a variant of Algorithm 1 in Section 4. Next, Algorithm 2 presents a simple line-search version

Algorithm 1 Unit-step J-symmetric Quasi-Newton Algorithm (J-symm)

1: Initialize with solution z0 ∈ Rm+n and inverse Jacobian estimation H0 ∈ R(m+n)×(m+n)

2: for k = 1, 2, 3, . . . , do
3: sk = −HkF (zk)
4: zk+1 = zk + sk
5: yk = F (zk+1)− F (zk)
6: update Hk+1 via (20)
7: end for

of the above algorithm. More specifically, after computing the J-symmetric direction sk = −HkF (zk) as in
Algorithm 1, we test how much improvement we can obtain by taking the step. If we see enough improvement,
we take this step, and otherwise we halve the stepsize tk, as one does in a backtracking line-search. Notice
that we start with tk = 1 at each iteration, thus Algorithm 2 recovers Algorithm 1 if we see sufficient
improvements every iteration with tk = 1. Unfortunately, we do not have theoretical guarantees on this line
search scheme, but numerical experiments in Section 5 showcases the benefits of the line-search scheme over
other schemes.

Algorithm 2 J-symmetric Quasi-Newton Algorithm with Line Search (J-symm-LS)

1: Initialize with solution z0 ∈ Rm+n, inverse Jacobian estimation H0 ∈ R(m+n)×(m+n) and linear-search
parameter c1 ∈ (0, 1/2).

2: for k = 1, 2, 3, . . . , do
3: sk = −HkF (zk)
4: tk = 1
5: while ‖F (zk)‖ − ‖F (zk + tksk)‖ < c1‖F (zk)‖ do
6: tk = tk/2
7: end while
8: zk+1 = zk + tksk
9: yk = F (zk+1)− F (zk)

10: update Hk+1 via (20)
11: end for

In the end of this section, we discuss the connections between our method and Powell symmetric Broyden
(PSB) update, and comment on the instability of Broyden’s update.

9



The traditional minimization problem can be viewed as a special case of minimax problem (1) when the
dual dimension is eliminated (namely m = 0). In such a case, our quasi-Newton update (10) recovers Powell
symmetric Broyden update

Bk+1 = Bk +
sk(yk −Bksk)T

sTk sk
+

(yk −Bksk)sTk
sTk sk

− sTk (yk −Bksk)sks
T
k

(sTk sk)2
. (PSB)

Indeed, PSB update is known to be the unique minimizer of:

min
B

1

2
‖B −Bk‖2F

s.t. Bsk − yk = 0 ,

B = BT .

Therefore, the J-symmetric update (10) is a direct generalization of PSB update (PSB).

Next, let us look at Broyden’s update for minimization problems. Broyden rank-1 update

Bk+1 = Bk +
(yk −Bksk)sTk

sTk sk
, (Broyden)

also known as good Broyden update, is the unique minimizer of the above minimization problem without
the symmetry constraint

min
B

1

2
‖B −Bk‖2F

s.t. Bsk − yk = 0 .

The inverse Hessian estimation in Broyden’s update can be written as

Hk+1 = Hk +
(sk −Hkyk)sTkHk

sTkHkyk
.

Notice that Broyden’s update can be numerically unstable, because there is no guarantee that the denomi-
nator sTkHkyk is far away from 0. Moreover, if the Hessian at the optimal solution is not full-rank, a small
perturbation of Hessian matrix would make iterates oscillate. Indeed, avoiding such numerical instability is
a major task in the historical development of quasi-Newton methods. According to a survey by Dennis and
Moré [24], the motivation which led to the derivation of PSB update and in fact later on to a whole new
class of quasi-Newton methods using Powell’s technique, was due to the fact that Symmetric Rank-1 (SR1)
update has a similar numerical instability issue. A similar issue could happen in BFGS formula, where the
update is

Bk+1 = Bk −
Bksksk

TBk
skTBksk

+
ykyk

T

ykT sk
. (BFGS)

The advantage of BFGS versus Broyden’s method is that one can guarantee the denominator sTk yk > 0 by
imposing the Wolfe condition [5]. In fact our experiment with Broyden method shows that it can be unstable
even when applied to simple bilinear problems. Additionally, another major drawback of Broyden method
is that unlike BFGS, it is not self-correcting. Bk in Broyden method depends on each Bj with j ≤ k, and it
might carry along irrelevant information for a long time [24]. Similar to BFGS, the J-symmetric update (10)
always have a non-negative denominator in the update rule, which guarantees the stability of the update.

3 Local Q-Superlinear Convergence of the J-symmetric Update

In this section we present the local Q-superlinear convergence of Algorithm 1. In the local setting, we assume
that the initial solution z0 and the initial estimate of Jacobian B0 is chosen from a close neighborhood of z∗

10



and ∇F (z∗), respectively. Here, we assume

Assumption 3.1. (Assumptions for Local Superlinear Convergence)

(a) There exists a minimax solution z∗ such that F (z∗) = 0, and ∇F (z∗) is invertible with γ = ‖∇F−1(z∗)‖.

(b) There exist a nonzero open ball of radius ε centered at z∗, Bε(z
∗) := {z|‖z − z∗‖ < ε}, such that for

any z ∈ Bε(z∗), it holds that:
‖∇F (z)−∇F (z∗)‖ ≤ Λ‖z − z∗‖ . (22)

In the local convergence, we consider a ball Bε(z
∗) around a minimax solution z∗. Assumption 3.1 (a)

assumes the non-singularity of ∇F (z∗), and (b) assumes Lipschitz continuity of ∇F (z∗) inside Bε(z
∗).

These assumptions are quite weak and only require the Jacobian of the solution ∇F (z∗) to be invertible and
Lipschitz continuous in a neighborhood. The local superlinear convergence of Algorithm 1 is formalized in
the next theorem:

Theorem 3.2. Consider Algorithm 1 for solving minimax problem (1). Suppose there exists an optimal
minimax solution z∗ that satisfies Assumption 3.1. Then for any given 0 < r < 1, there exist positive
constants ε̄ and δ such that for any z0 ∈ {‖z0 − z∗‖ < ε̄} and B0 ∈ {‖B0 −∇F (z∗)‖F < δ}, it holds that:
(a). The sequence {zk} generated by Algorithm 1 is well defined and converges to z∗, and {‖Bk‖} and
{‖B−1

k ‖} are uniformly bounded for any k ≥ 0. Additionally,

‖zk+1 − z∗‖ ≤ r‖zk − z∗‖ . (23)

(b). The iterates {zk} enjoy Q-superlinear convergence towards z∗.

Our local analysis in Theorem 3.2 is based on the bounded deterioration technique and is similar to the
analysis given in [14]. To establish Theorem 3.2, we first present two lemmas, which are used in the proof.

Lemma 3.3. Suppose Assumption 3.1 holds. Then, it holds for any small enough ε > 0 and u, v ∈ Bε(z∗):

(a)
‖F (v)− F (u)−∇F (z∗)(v − u)‖ ≤ Λ max{‖v − z∗‖, ‖u− z∗‖}‖v − u‖ . (24)

(b) There exists ρ > 0 such that

‖v − u‖
ρ

≤ ‖F (v)− F (u)‖ ≤ ρ‖v − u‖ . (25)

Proof. (a). Denote T (z) = F (z)−∇F (z∗)z, then T (z) is differentiable by noticing F (z) is differentiable and
∇T (z) = ∇F (z)−∇F (z∗). By Taylor expansion at u, we obtain

T (v) = T (u) +

∫ 1

0

∇T
(
u+ t(v − u)

)
(v − u)dt ,

thus,
‖T (v)− T (u)‖ ≤ sup

0≤t≤1
‖∇T

(
u+ t(v − u)

)
‖‖v − u‖ .

Substituting T (z) to the above inequality, we obtain

‖F (v)− F (u)−∇F (z∗)(v − u)‖ ≤ sup
0≤t≤1

‖∇F
(
u+ t(v − u)

)
−∇F (z∗)‖‖v − u‖

≤ sup
0≤t≤1

Λ‖u+ t(v − u)− z∗‖‖v − u‖

= Λ max{‖v − z∗‖, ‖u− z∗‖}‖v − u‖ ,

11



where the second inequality uses (22).

(b). It follows from (24) by triangle inequality that

‖F (v)− F (u)‖ ≤ Λ max{‖v − z∗‖, ‖u− z∗‖}‖v − u‖+ ‖∇F (z∗)(v − u)‖ ≤
(
Λε+ ‖∇F (z∗)‖

)
‖v − u‖ .

Furthermore, let σ be the smallest singular value of ∇F (z∗), then σ > 0 as ∇F (z∗) is full rank, whereby it
holds for any u, v that

σ‖v − u‖ ≤ ‖∇F (z∗)(v − u)‖ .

Therefore, it follows from (24) that

‖F (v)− F (u)‖ ≥ ‖∇F (z∗)(v − u)‖ − Λ max{‖v − z∗‖, ‖u− z∗‖}‖v − u‖ ≥ (σ − Λε)‖v − u‖ .

Now suppose ε < σ/Λ and setting ρ = max {1/(σ − Λε) , Λε+ ‖∇F (z∗)‖}, we arrive at (25).

The following lemma presents an equivalent representation of (10) that we will use later.

Lemma 3.4. Consider the Bk update rule (10). Then it holds that

Bk+1 = JPkJBkPk +
yks

T
k

sTk sk
+
Jsky

T
k J

sTk sk
Pk , (26)

where Pk is the projection matrix defined in (21). Furthermore, it holds that

‖Bk+1 −∇F (z∗)‖F ≤
√

(1− θ2
1,k)(1− θ2

2,k)‖Bk −∇F (z∗)‖F + (1 +
√
n+m− 1)

‖yk −∇F (z∗)sk‖
‖sk‖

, (27)

where

θ1,k =
‖JPkJ(Bk −∇F (z∗))sk‖
‖sk‖‖JPkJ(Bk −∇F (z∗))‖F

, and θ2,k =
‖(Bk −∇F (z∗))TJsk‖
‖sk‖‖Bk −∇F (z∗)‖F

. (28)

Proof. First note that Pk is the projection matrix onto the m+ n− 1 dimension subspace which is perpen-
dicular to sk, thus

‖Pk‖ = 1 , ‖Pk‖F =
√
m+ n− 1 . (29)

Let O be any J-symmetric matrix with proper size and let M = Bk −O and M̄ = Bk+1 −O, then we claim
that the following holds:

M̄ = JPkJMPk +
(yk −Osk)sTk

sTk sk
+
Jsk(yk −Osk)TJ

sTk sk
Pk . (30)

This is because from (10) we have

Bk+1 −O = Bk −O +
Jsk(yk −Bksk +Osk −Osk)TJ

sTk sk
+

(yk −Bksk +Osk −Osk)sTk
sTk sk

−

(Jsk)T (yk −Bksk +Osk −Osk)Jsks
T
k

(sTk sk)2
.

12



Substituting Bk+1 −O = M̄ and Bk −O = M we obtain

M̄ = M − Jsks
T
kM

TJ

sTk sk
+
Jsk(yk −Osk)TJ

sTk sk
− Msks

T
k

sTk sk
+

(yk −Osk)sTk
sTk sk

+
(Jsk)TMskJsks

T
k

(sTk sk)2
− (Jsk)T (yk −Osk)Jsks

T
k

(sTk sk)2

= M − Jsks
T
kM

TJ

sTk sk
− Msks

T
k

sTk sk
+

(Jsk)TMskJsks
T
k

(sTk sk)2
+
Jsk(yk −Osk)TJ

sTk sk
+

(yk −Osk)sTk
sTk sk

− (Jsk)T (yk −Osk)Jsks
T
k

(sTk sk)2

= M − Jsks
T
k JM

sTk sk
− Msks

T
k

sTk sk
+
Jsk(Jsk)TMsks

T
k

(sTk sk)2
+
Jsk(yk −Osk)TJ

sTk sk
+

(yk −Osk)sTk
sTk sk

− (Jsk)T (yk −Osk)Jsks
T
k

(sTk sk)2

= JPkJMPk +
(yk −Osk)sTk

sTk sk
+
Jsk(yk −Osk)TJ

sTk sk
Pk ,

where the second equality comes from rearrangement. The third equality uses the fact thatM is J-symmetric,
thus we have MTJ = JM , and the fact that (Jsk)TMsk is a scalar, thus we have (Jsk)TMskJsks

T
k =

Jsk(Jsk)TMsks
T
k . The last equality uses J2 = I and (21) thus JPkJ = I − J(sks

T
k )J/(sTk sk), and therefore

the sum of the first four terms on the third line is exactly JPkJMPk. Additionally, in the final term on the
same line, (Jsk)T (yk −Osk) is a scalar, so we can use (Jsk)T (yk −Osk)Jsks

T
k = Jsk(yk −Osk)TJsks

T
k . By

factoring out
(
Jsk(yk − Osk)TJ

)
/(sTk sk) from this term and the fifth term and recalling (21) we arrive at

(30).

Using (30) and setting O equal to zero, we obtain (26) and therefore conclude that the update rule (10) is
equivalent to (26).

To show (27), we start by bounding the first term in (30) as following:

‖JPkJMPk‖2F =
∥∥∥JPkJM

(
I − sks

T
k

sTk sk

)∥∥∥2
F

= ‖JPkJM‖2F − 2
‖JPkJMsk‖2

sTk sk
+
‖JPkJMsk‖2

sTk sk

=
(

1− ‖JPkJMsk‖2

‖sk‖2‖JPkJM‖2F

)
‖JPkJM‖2F ,

where the first equality uses (21) and the second equality follows directly from the definition of the Frobenius
norm. Furthermore,

‖JPkJM‖2F = ‖MTJPkJ‖2F =
∥∥∥MT (I − Jsk(Jsk)T

sTk sk

)∥∥∥2
F

= ‖MT ‖2F − 2
(Jsk)TMMTJsk

sTk sk
+
‖MTJsk‖2

sTk sk

= ‖M‖2F −
‖MTJsk‖2

‖sk‖2

=
(

1− ‖M
TJsk‖2

‖sk‖2‖M‖2F

)
‖M‖2F ,

where the second equality uses JPkJ = I−J(sks
T
k )J/(sTk sk) and the third equality follows directly from the

definition of the Frobenius norm. For the remainder of this proof we set O = ∇F (z∗), so we obtain

θ1,k =
‖JPkJMsk‖
‖sk‖‖JPkJM‖F

and, θ2,k =
‖MTJsk‖
‖sk‖‖M‖F

.

By Cauchy-Schwarz inequality we know ‖JPkJMsk‖/(‖sk‖‖JPkJM‖) ≤ 1 and since induced l2 norm is less
than Frobenius norm, we conclude: 0 < θ1,k ≤ 1. Similarly, we obtain ‖MTJsk‖/(‖Jsk‖‖MT ‖F ) ≤ 1 and
since‖Jsk‖ = ‖sk‖ and ‖MT ‖F = ‖M‖F , we conclude 0 < θ2,k ≤ 1. Hence, we can safely take square root
from both sides and arrive at:

‖JPkJMPk‖F =
√

(1− θ2
1,k)(1− θ2

2,k)‖M‖F . (31)
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We obtain the following equality for the norm of the second term (recall O = ∇F (z∗)) in (30):

∥∥∥∥∥
(
yk −∇F (z∗)sk

)
sTk

sTk sk

∥∥∥∥∥
F

=

√
Tr
((
yk −∇F (z∗)sk

)
sTk sk

(
yk −∇F (z∗)sk

)T)
‖sk‖2

=
‖yk −∇F (z∗)sk‖

‖sk‖
. (32)

Finally from the application of the inequality ‖AB‖F ≤ ‖A‖‖B‖F (see Lemma A.3 in the appendix), to the
third term in (30) we obtain:

∥∥∥Jsk(yk −∇F (z∗)sk
)T
J

sTk sk
Pk

∥∥∥
F
≤ ‖Pk‖F

‖Jsk
(
yk −∇F (z∗)sk

)T
J‖

‖sk‖2

≤ ‖Pk‖F
‖Jsk‖‖

(
yk −∇F (z∗)sk

)T
J‖

‖sk‖2
=
√
n+m− 1

‖yk −∇F (z∗)sk‖
‖sk‖

, (33)

where we use the fact that ‖Jq‖ = ‖q‖ for any vector q of the appropriate size and (29) in the final equality.
Combining (31),(32) and (33), and then substituting M̄ = Bk+1−∇F (z∗) and M = Bk−∇F (z∗), we obtain
(27).

Proposition 3.5. Suppose Assumption 3.1 holds. Recall that γ = ‖∇F−1(z∗)‖. For any given zk ∈ Bε(z∗)
and invertible J-symmetric matrix Bk such that ‖B−1

k ‖ < 2γ, we have zk+1 ∈ Bε(z∗), where zk+1 is obtained
from (7). Moreover, if Bk+1 is obtained from (10), we have

‖Bk+1 −∇F (z∗)‖F ≤
√

(1− θ2
1,k)(1− θ2

2,k)‖Bk −∇F (z∗)‖F (34)

+ Λ(1 +
√
n+m− 1) max{‖zk+1 − z∗‖, ‖zk − z∗‖} .

Proof. Starting from (7) we have

‖zk+1 − zk‖ = ‖B−1
k F (zk)‖ ≤ ‖B−1

k ‖‖F (zk)‖ ≤ 2γ‖F (zk)‖ .

Since F (z∗) = 0 it follows from (25) that ‖F (zk)‖ ≤ ρ‖zk − z∗‖, so, ‖zk+1 − zk‖ ≤ 2ργ‖zk − z∗‖. By further
restricting zk such that

‖zk − z∗‖ < min
{
ε/2 ,

ε/2

2ργ

}
,

we obtain ‖zk+1 − z∗‖ ≤ ‖zk+1 − zk‖ + ‖zk − z∗‖ < ε, and therefore it holds that zk+1 ∈ Bε(z∗). Applying
(24), we obtain

‖F (zk+1)− F (zk)−∇F (z∗)(zk+1 − zk)‖ ≤ Λ max{‖zk+1 − z∗‖, ‖zk − z∗‖}‖zk+1 − zk‖
‖yk −∇F (z∗)sk‖

‖sk‖
≤ Λ max{‖zk+1 − z∗‖, ‖zk − z∗‖} .

We arrive at (34) by substituting the above inequality into (27).

Now we are ready to prove Theorem 3.2:

Proof of Theorem 3.2. Set

δ =
r

γ(r + 1)
(

1−r
1+
√
m+n−1

+ 2
) , (35)

and

ε̄ = min
{ (1− r)δ

Λ(1 +
√
m+ n− 1)

, ε
}
, (36)
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then it holds that:
γ(r + 1)

(
Λε̄+ 2δ

)
≤ r . (37)

We prove part (a) by induction. We begin with k = 0.
From ‖B0 − ∇F (z∗)‖F < δ we know ‖B0 − ∇F (z∗)‖ < δ < 2δ, and recall ‖∇F−1(z∗)‖ = γ. Notice that
(37) implies γ2δ < r/(r + 1) < 1. So, we can apply Banach Perturbation Lemma (see Lemma A.2 in the
appendix) to the matrices ∇F (z∗) and B0, and obtain

‖B−1
0 ‖ ≤

γ

1− r/(1 + r)
= γ(r + 1) . (38)

To prove (23), recall that F (z∗) = 0, and since ‖z0 − z∗‖ < ε̄, Lemma 3.3 applies. From (7) we have

‖z1 − z∗‖ = ‖B−1
0 F (z0)− (z0 − z∗)‖

= ‖B−1
0 F (z0)−B−1

0 ∇F (z∗)(z0 − z∗) +B−1
0 ∇F (z∗)(z0 − z∗)− (z0 − z∗)‖

≤ ‖B−1
0 ‖

(
‖F (z0)− F (z∗)−∇F (z∗)(z0 − z∗)‖+ ‖∇F (z∗)−B0‖‖z0 − z∗‖

)
≤ γ(r + 1)(Λε̄+ 2δ)‖z0 − z∗‖ ,

where in the final inequality we use (38) and (24). By applying (37) to this inequality we obtain

‖z1 − z∗‖ ≤ r‖z0 − z∗‖ . (39)

This implies ‖z1 − z∗‖ < ε̄ ≤ ε and hence z1 ∈ Bε(z
∗). Now we prove the claims for k = K, assuming

(38) and (39) hold for k = 0, . . . ,K − 1. Notice that (38) implies ‖B−1
K−1‖ ≤ 2γ and hence we can apply

Proposition 3.5 and by (34) together with ‖zK − z∗‖ ≤ r‖zK−1 − z∗‖ conclude that

‖BK −∇F (z∗)‖F ≤ ‖BK−1 −∇F (z∗)‖F + Λ
(
1 +
√
n+m− 1

)
‖zK−1 − z∗‖ .

Summing up from k = 0 to k = K − 1 we have

‖BK −∇F (z∗)‖F ≤ ‖B0 −∇F (z∗)‖F + Λ
(
1 +
√
n+m− 1

)
ε̄
1− rK

1− r
. (40)

From (36) we have Λ
(
1 +
√
n+m− 1

)
ε̄/(1− r) ≤ δ and recalling ‖B0 −∇F (z∗)‖F < δ, we conclude:

‖BK −∇F (z∗)‖F < 2δ .

Using this inequality and γ = ‖∇F−1(z∗)‖, via Banach Perturbation Lemma and with the same exact proof
as we did for k = 0, we conclude

‖B−1
K ‖ ≤ γ(r + 1) . (41)

Now let us prove (23) for k = K. Notice

‖zK+1 − z∗‖ = ‖B−1
K F (zK)− (zK − z∗)‖

≤ ‖B−1
K ‖

(
‖F (zK)− F (z∗)−∇F (z∗)(zK − z∗)‖+ ‖∇F (z∗)−BK‖‖zK − z∗‖

)
≤ γ(r + 1)

(
Λε̄+ 2δ

)
‖zK − z∗‖ .

Thus, we get ‖zK+1 − z∗‖ ≤ r‖zK − z∗‖, which completes the proof of part (a) by induction.

Next we move to part (b) to show (7) is Q-superlinearly convergent. As a result of part (a), Proposition

3.5 applies for all k. In (34) define θ̄k = (θ2
1,k + θ2

2,k)/2 and since
√

(1− θ2
1,k)(1− θ2

2,k) ≤ 1 − θ̄k , together

with (23), we deduce

θ̄k‖Bk −∇F (z∗)‖F ≤ ‖Bk −∇F (z∗)‖F − ‖Bk+1 −∇F (z∗)‖F + Λ(1 +
√
n+m− 1)‖zk − z∗‖ .
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Summing up for k = 0, . . . ,∞ we obtain
∑∞
k=0 θ̄k‖Bk −∇F (z∗)‖F in the L.H.S. and since we know that the

R.H.S. is bounded above (see (40)) we conclude

lim
k→∞

θ̄k‖Bk −∇F (z∗)‖F =
1

2
lim
k→∞

(θ2
1,k + θ2

2,k)‖Bk −∇F (z∗)‖F = 0 .

Since both θ1,k and θ2,k are positive, we conclude: limk→∞ θ2
1,k‖Bk −∇F (z∗)‖F = 0 and limk→∞ θ2

2,k‖Bk −
∇F (z∗)‖F = 0. Substituting θ2,k from (28) followed by replacing (Bk −∇F (z∗))

T
J = J (Bk −∇F (z∗)) we

obtain

lim
k→∞

∥∥∥J(Bk −∇F (z∗)
)
sk

∥∥∥2

‖sk‖2‖Bk −∇F (z∗)‖F
= 0 .

From Theorem 3.2 (a), ‖Bk‖ are uniformly bounded and thus there exists a constant c > 0 such that

1

‖Bk −∇F (z∗)‖F
>

1

c
.

Hence it holds that

lim
k→∞

∥∥∥J(Bk −∇F (z∗)
)
sk

∥∥∥
‖sk‖

= 0 .

Recalling that ‖Jq‖ = ‖q‖ for any vector q ∈ Rn+m, we conclude

lim
k→∞

∥∥∥(Bk −∇F (z∗)
)
sk

∥∥∥
‖sk‖

= 0 .

This is Dennis-Moré characterization identity for Q-superlinear convergence (see Theorem A.5 in the ap-
pendix) and therefore the proof is finished.

4 A Globally Convergent J-symmetric quasi-Newton Method

The previous section establishes the local superlinear convergence of the J-Symmetric quasi-Newton method.
In this section, we present a trust-region J-symmetric quasi-Newton method (Algorithm 3), and show its
global superlinear convergence guarantees. To present our algorithm, we first introduce a merit function
minimization problem:

min
z∈Rn+m

1

2
‖F (z)‖2 . (42)

Note that (42) is generally non-convex, directly apply conventional quasi-Newton on this minimization
problem can get stuck at local minimas. Despite the non-convexity, it is straight-forward to see that the
global minimizers to (42) are exactly the same as the saddle points to (1). Furthermore, we define mk(s) as
the quadratic model of the merit function at zk:

mk(s) :=
1

2
‖F (zk)‖2 + gTk s+

1

2
sTBTk Bks , (43)

where
gk = ∇F (zk)TF (zk) ,

is the gradient of the merit function and Bk is the estimation of the Jacobian ∇F (zk) (see the below update
rule (49)). Then, mk(s) is an approximated second order expansion of the merit function around zk. Here we
would like to highlight that (i) while the calculation of gk involves ∇F (zk), it can be performed efficiently by
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using fast Hessian-vector product for many applications [56, 61]; (ii) similar to other quasi-Newton methods,
we can store B−1

k in memory and update B−1
k+1 by a low-rank operation. As a result, calculating the minimizer

of the quadratic model (43) only involves matrix-vector multiplication, in contrast to Newton’s method which
involves solving linear equations. In other words, it has the same order of cost-per-iteration as a first-order
method in general.

Algorithm 3 presents our Trust-region J-Symmetric Algorithm. We initialize with solution z0, Jacobian
estimation B0, trust-region radius upper bound R0, initial trust-region radius ∆0 ∈ (0, R0], and valid step
(sufficient decrease) parameter ζ ∈ (0, 10−3). In the k-th iteration of the algorithm, there are three potential
valid steps (i) the quasi-Newton step pBk , (ii) the Cauchy point step pCk , and (iii) the dogleg step pDk , as
defined below:

(Quasi-Newton step pBk ). The quasi-Newton point pBk is defined as the global minimizer of mk(s), namely

pBk = −B−1
k (B−1

k )T gk . (44)

(Cauchy point step pCk ). The Cauchy point is defined as the minimizer of mk(s) over the trust-region
along the negative gradient direction:

pCk := −τk(∆k/‖gk‖)gk ,

where τk := arg min0≤τ≤1 mk

(
τ∆kgk/‖gk‖

)
. The Cauchy point has the following closed-form solution

pCk = −min
{
‖gk‖2/(gkTBTk Bkgk) , ∆k/‖gk‖

}
gk . (45)

(Dogleg step pDk ). When the Cauchy point is strictly inside the trust-region (‖pCk ‖ < ∆k) and the Quasi-

Newton step pBk is strictly outside the trust-region (‖pBk ‖ > ∆k), that is when pCk = −
(
‖gk‖2/(gkTBTk Bkgk)

)
gk,

we then define the dogleg point as
pDk = pCk + α(pBk − pCk ) , (46)

where α ∈ (0, 1) is the unique solution that satisfies ‖pCk + α(pBk − pCk )‖ = ∆k .

To update the iterate solution, we first calculate the quasi-Newton step pBk . If pBk is inside the trust-region,
we take the quasi-Newton step. Otherwise, we calculate the Cauchy point step pCk . If the Cauchy point step
is on the boundary of the trust-region, we take the Cauchy point step, otherwise, we compute and take the
dogleg step pDk . In summary, we set the step sk as

sk =


pBk if ‖pBk ‖ ≤ ∆k ,

pCk if ‖pBk ‖ > ∆k and ‖pCk ‖ = ∆k ,

pDk if ‖pBk ‖ > ∆k and ‖pCk ‖ < ∆k .

(47)

Then it is obvious that the step sk is always within the trust-region, namely, ‖sk‖ ≤ ∆k.

Next, we compute the ratio between the actual decay and the predicted decay of the merit function ρk as

ρk :=
‖F (zk)‖2/2− ‖F (zk + sk)‖2/2

mk(0)−mk(sk)
. (48)

If the ratio ρk is reasonably large (i.e., ρk > 0.5), the step sk provides sufficient decay on the merit function,
and we safely expand the trust-region radius (recall R0 is the maximal trust-region radius specified by the
user):

∆k+1 = min{2∆k, R0} ,
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Algorithm 3 J-symmetric Quasi-Newton Method with Trust-region (J-symm-Tr)

1: Initialize with solution z0 ∈ Rm+n, Jacobian estimation B0 ∈ R(m+n)×(m+n), maximum allowed trust-
region radius R0 > 0, initial trust-region radius ∆0 ∈ (0, R0], parameter β̂ = 0.9, sufficient decrease
threshold ζ ∈ (0, 10−3) and iteration counter k = 0.

2: for k = 1, 2, 3, . . . , do
3: compute pBk via (44)
4: if ‖pBk ‖ ≤ ∆k then
5: sk = pBk
6: else
7: compute pCk via (45)
8: if ‖pCk ‖ = ∆k then
9: sk = pCk

10: else
11: compute pDk via (46)
12: set sk = pDk
13: end if
14: end if
15: evaluate ρk from (48)
16: if ρk ≤ 0.5 then
17: ∆k+1 = ∆k/2
18: else
19: ∆k+1 = min{2∆k , R0}
20: end if
21: if ρk ≥ ζ then
22: zk+1 = zk + sk
23: else
24: zk+1 = zk
25: end if
26: yk = F (zk + sk)− F (zk)

27: update Bk+1 via (49) with βk uniformly randomly chosen from [1− β̂, 1 + β̂]
28: k = k + 1
29: end for

otherwise, we reduce the trust-region radius:

∆k+1 = ∆k/2 .

Moreover, if ρk is not too small (i.e., ρk ≥ ζ ∈ (0, 10−3)), we update the iterate solution by accepting the
step zk+1 = zk + sk, and call it a valid step; otherwise we reject the update and take a null step by setting
zk+1 = zk .

Finally, we update the Jacobian estimation Bk+1 by a slightly modified version of (10) in order to guarantee
the non-singularity of Bk+1:

Bk+1 = Bk + βk
Jsk(yk −Bksk)TJ + (yk −Bksk)sTk

sTk sk
− β2

k

(Jsk)T (yk −Bksk)Jsks
T
k

(sTk sk)2
, (49)

where for any given β̂ ∈ (0, 1) we pick 1− β̂ ≤ βk ≤ 1 + β̂ such that Bk+1 is nonsingular for any k. Indeed,
suppose Bk is nonsingular, then there only exists finite number of βk such that Bk+1 is singular, thus Bk+1 is
nonsingular with probability 1 if we randomly pick βk uniformly from the range [1− β̂, 1 + β̂]. This strategy
dates back to Powell [58].
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In the rest of this section, we present the global convergence and local superlinear convergence of Algorithm
3. First, we define the level set of the merit function as S = {z | ‖F (z)‖2/2 ≤ ‖F (z0)‖2/2}, and the extended
level set as

S(R0) := {z + s | ‖s‖ < R0 for some z ∈ S} .

The following assumptions are needed to develop the global convergence results of Algorithm 3:

Assumption 4.1. (Assumptions for Global Convergence)

(a) For any R0 > 0, F (z) and ∇F (z) are Lipschitz continuous in S(R0) namely, there exist constants γ1

and γ2 such that it holds for any z, z + s ∈ S(R0) that

‖F (z)− F (z + s)‖ ≤ γ1‖s‖ and ‖∇F (z)−∇F (z + s)‖ ≤ γ2‖s‖ .

(b) There exists at least one z∗ such that F (z∗) = 0. Furthermore, ∇F (z∗) is invertible for all saddle point
z∗, and there exists γ such that γ ≥ ‖∇F−1(z∗)‖ .

(c) The sequence of vectors {sk} is uniformly linearly independent 1.

We here examine Assumption 4.1. Part (a) impose regularity conditions on the function L (or equivalently
on the function F ). Since F (z) is twice continuously differentiable and if the level set S is bounded, then (a)
automatically holds. Part (b) assumes the existence of (at least one) saddle point z∗, and furthermore, the
saddle point z∗ is non-degenerate (i.e., ∇F (z∗) is invertible). Part (c) implies that every n+m consecutive
steps in the sequence {sk/‖sk‖} span the entire Rn+m. The non-degenerate assumption (b) and the uniformly
linearly independent assumption (c) are the classic assumptions for obtaining the global convergence of a
quasi-Newton method for a minimization problem. As an example see [53, Theorem 6.2] which requires such
conditions in order for SR1 update to generate a good Hessian approximation. We here extend them to
minimax problems.

Our main theoretical results are presented in the following two theorems:

Theorem 4.2. Consider Algorithm 3 to solve the minimax problem (1). Under Assumption 4.1, it holds
that the sequence {gk} generated by Algorithm 3 converges to 0, that is

lim
k→∞

‖gk‖ = 0 . (50)

Theorem 4.2 states that under Assumption 4.1 Algorithm 3 generate iterates such that the gradient gk
converges to 0. As a direct consequence of Theorem 4.2, we know that if ∇F (zk) is nonsingular and
bounded, then F (zk) converges to 0 by noticing gk = ∇F (zk)TF (zk). Furthermore, if the saddle point
solution z∗ is unique, Theorem 4.2 implies zk → z∗. Similar arguments appear in Powell’s hybrid algorithm
for minimization problem [57].

Now we assume {zk} converges to a stationary solution, then the next theorem states that (1) {Bk} must
converge to ∇F (z∗), namely Bk eventually provides a good approximation of the Jacobian; (2) states that
Algorithm 3 is R-superlinearly convergent, which showcases the global convergence property of Algorithm 3.

Theorem 4.3. Consider Algorithm 3 to solve the minimax problem (1). Suppose Assumption 4.1 holds,
{zk} converges to a saddle point z∗ such that F (z∗) = 0 and {sk} converges to zero, then it holds that

1. {Bk} converges to ∇F (z∗) .

2. Algorithm 3 is R-superlinearly convergent to z∗.

1see Definition A.6 in the appendix for a formal definition of uniform linear independence.
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We comment that we assume {sk} converges to zero in Theorem 4.3 just to simplify the proof. Actually,
this does not impose any additional assumptions. The reason is that suppose all steps are valid steps, then
zk → z∗ implies ‖sk‖ = ‖zk+1− zk‖ → 0. Otherwise, suppose there is any null step k, we can instead rescale
sk so that its norm is the previous valid step norm, and the proof of Theorem 4.3 keeps valid for a scaler
change on sk in the null steps.

In the remainder of this section, we present proofs for the above two theorems. We start with presenting
three simple facts:

Fact 4.4. As a direct consequence of Assumption 4.1 we have ‖∇F (z)‖ ≤ γ1 and ‖∇2F (z)‖ ≤ γ2 .

Fact 4.5. Let D0 = ‖z0 − z∗‖. Then for any z ∈ S(R0), ‖F (z)‖ is upper-bounded as

‖F (z)‖ ≤ γ1(D0 +R0) .

Proof. Since z ∈ S(R0), there exist z̄ ∈ S such that ‖z − z̄‖ < R0. Then, ‖F (z̄)‖ ≤ ‖F (z0)‖. So

‖F (z)‖ ≤ ‖F (z)− F (z̄)‖+ ‖F (z̄)‖ ≤ γ1‖z − z̄‖+ ‖F (z0)‖ ≤ γ1(R0 +D0) ,

the second inequality comes from Assumption 4.1 (a).

Fact 4.6. Denote µ = γ2γ1(D0 +R0) + γ2
1 . Then it holds for any z ∈ S,and ‖s‖ ≤ R0 that

‖∇F (z)TF (z)−∇F (z + s)TF (z + s)‖ ≤ µ‖s‖ . (51)

Proof. It holds that

‖∇F (z)TF (z)−∇F (z + s)TF (z + s)‖

=

∥∥∥∥(∇F (z)−∇F (z + s)
)T
F (z) +∇F (z + s)T

(
F (z)− F (z + s)

)∥∥∥∥
≤ γ2‖F (z)‖‖s‖+ γ2

1‖s‖

≤
(
γ2γ1(D0 +R0) + γ2

1

)
‖s‖ ,

the first equality comes from adding and subtracting ∇F (z + s)TF (z), the following inequality comes from
the Lipschitz-continuity of F (z) and ∇F (z), and finally the last inequality uses Fact 4.5.

The proof of theorem 4.2 heavily relies on the following two propositions. Proposition 4.7 shows that ‖Bk‖
is always upper-bounded. Proposition 4.8 shows that mk(s) has sufficient decay in Algorithm 3.

Proposition 4.7. Suppose Assumption 4.1 holds. Then there exists ν2 such that it holds for any k ≥ 0 that
‖Bk‖ ≤ ν2 .

Proposition 4.8. Algorithm 3 generates steps sk such that for all k we have:

mk(0)−mk(sk) ≥ ‖gk‖
2

min
{

∆k ,
‖gk‖
ν2

2

}
.

Remark 4.9. As a direct consequence of Proposition 4.8, Algorithm 3 is a nonincreasing algorithm in
‖F (zk)‖, namely, ‖F (zk+1)‖ ≤ ‖Fk‖ for all iterate k. This is because (i) if the k-th step is a null step, then
zk+1 = zk thus it is a nonincreasing step; (ii) if the k-th step is a valid step, then

‖F (zk)‖2/2− ‖F (zk+1)‖2/2 ≥ ζ
(
mk(0)−mk(sk)

)
≥ 0 ,

where the last inequality is from Proposition 4.8. Furthermore, if gk 6= 0, then Proposition 4.8 shows that a
valid step of Algorithm 3 provides sufficient decay in the merit function ‖F (z)‖2/2. This observation is the
cornerstone of the convergence results of Algorithm 3.
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To show Proposition 4.7 and Proposition 4.8, we first establish two simple lemmas to better understand the
update rule of Bk.

Lemma 4.10. Let

Qk = I − βk
sks

T
k

sTk sk
. (52)

Then it holds that ‖Qk‖ ≤ 1. Furthermore, under Assumption 4.1, there exists a constant θ ∈ (0, 1) and an
index K such that for k ≥ K we have: ∥∥∥ k+n+m∏

j=k+1

Qj

∥∥∥ ≤ θ .
Proof. Notice that it holds for any vector v ∈ Rm+n that ‖Qkv‖2 = ‖v‖2 − βk(2 − βk)(vT sk)2/‖sk‖2, and

since 0 < 1 − β̂ ≤ βk ≤ 1 + β̂ < 2, then, ‖Qkv‖ ≤ ‖v‖. Hence, ‖Qk‖ ≤ 1. Furthermore, the existence
of such K and θ ∈ (0, 1) is from Theorem A.7 in the appendix, following the uniform linear independence

assumption of {sk/‖sk‖} and |1− βk| ≤ β̂.

Lemma 4.11. For any J-symmetric matrix O ∈ R(n+m)×(n+m), let Mk = Bk −O and Mk+1 = Bk+1 −O,
then it holds that

Mk+1 = JQkJMkQk + βk
(yk −Osk)sTk

sTk sk
+ βk

Jsk(yk −Osk)TJ

sTk sk
Qk , (53)

and in particular, we obtain the following equivalent representation of (49) by letting O = 0:

Bk+1 = JQkJBkQk + βk
yks

T
k

sTk sk
+ βk

Jsky
T
k J

sTk sk
Qk , (54)

where Qk is defined in (52).

Proof. Notice that we can write (49) as

Bk+1 −O = Bk −O +
Jsk(yk −Bksk +Osk −Osk)TJ

(sTk sk)/βk
+

(yk −Bksk +Osk −Osk)sTk
(sTk sk)/βk

−

(Jsk)T (yk −Bksk +Osk −Osk)Jsks
T
k(

(sTk sk)/βk
)2 .

The rest of the proof follows the same steps of Lemma 3.4 by replacing (sTk sk)/βk with sTk sk.

Now we are ready to prove Proposition 4.7 and Proposition 4.8.

Proof of Proposition 4.7. First, notice that ‖yk‖ = ‖F (zk + sk) − F (zk)‖ ≤ γ1‖sk‖, where we utilize the
fact that F is γ1-Lipschitz continuous in S(R0), zk ∈ S and ‖sk‖ ≤ R0. By expanding Bj+1 using (54) for
j = k + n+m we obtain

‖Bj+1‖ =

∥∥∥∥∥JQjJBjQj + βj
yjs

T
j

sTj sj
+ βj

Jsjy
T
j J

sTj sj
Qj

∥∥∥∥∥
≤ ‖JQjJ‖‖BjQj‖+ βj

‖yj‖
‖sj‖

+ βj
‖Jyj‖
‖sj‖

≤ ‖BjQj‖+ 4γ1 ,
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where the first inequality uses Cauchy-Schwarz followed by ‖Jsj‖ = ‖sj‖ and ‖Qj‖ ≤ 1, the second inequality
uses ‖J‖ = 1, ‖Qj‖ ≤ 1, βj < 2, ‖Jyj‖ = ‖yj‖, and ‖yj‖ ≤ γ1‖sj‖. Expanding Bj in the R.H.S. of the
inequality ‖Bj+1‖ ≤ ‖BjQj‖ + 4γ1 recursively for n + m − 1 times, using (54) and in the same way as we
did for Bj+1, we obtain:

‖Bk+n+m+1‖ ≤ ‖Bk+1Qk+1 . . . Qk+n+m−1Qk+n+m‖+ 4(n+m)γ1 .

It follows from Lemma 4.10 that there exists a constant θ ∈ (0, 1) and index K such that ‖
∏k+n+m
j=k+1 Qj‖ ≤ θ

for any k ≥ K, thus

‖Bk+n+m+1‖ ≤ θ‖Bk+1‖+ 4(n+m)γ1 .

We now apply Lemma A.8 in the appendix and conclude since 4(n + m)γ1 is upper-bounded, then so is
{‖Bk‖} for k ≥ K + n+m+ 1 . Thus there exists ν2 such that {‖Bk‖} ≤ ν2 for all k.

Proof of Proposition 4.8. We prove the lemma by the following two steps:
(a) mk(pCk ) ≥ mk(sk),

(b) mk(0)−mk(pCk ) ≥ ‖gk‖2 min{∆k ,
‖gk‖
ν2
2
}.

To show part (a), it follows from (47) that the step sk takes values from {pBk , pCk , pDk }. Notice that pBk is the
global minimizer of mk(s), thus mk(pCk ) ≥ mk(pBk ). Then we just need to show that mk(pDk ) ≤ mk(pCk ) under
the condition that ‖pBk ‖ > ∆k and ‖pCk ‖ < ∆k, in which case we have pCk = −‖gk‖2/(gkTBTk Bkgk)gk. Recall
that pDk = pCk + α(pBk − pCk ), thus we just need to show that h(α) := mk

(
pCk + α(pBk − pCk )

)
is monotonically

nonincreasing in α, by noticing h(0) = mk(pCk ). This is because h(α) is differentiable with derivative

h′(α) = gTk (pBk − pCk ) + (pBk − pCk )TBTk Bkp
C
k + α(pBk − pCk )TBTk Bk(pBk − pCk )

= (pBk − pCk )T
(
gk +BTk Bkp

B
k −BTk BkpBk +BTk Bkp

C
k + αBTk Bk(pBk − pCk )

)
= (pBk − pCk )T

(
gk +BTk Bkp

B
k − (1− α)BTk Bk(pBk − pCk )

)
= (pBk − pCk )T

(
0− (1− α)BTk Bk(pBk − pCk )

)
≤ 0 ,

where the first equality comes from substituting sk = pCk + α(pBk − pCk ) into the definition of mk in (43),
the second equality and the third equality come from rearrangement, the fourth equality is a result of the
definition of pBk = −B−1

k (B−1
k )T gk, and finally the inequality comes from noticing that BTk Bk is positive

definite and 0 < α < 1. This shows part (a).

To show part (b), recall the formulation of Cauchy point pCk (45). If pCk = −∆kgk/‖gk‖, then it must hold
that

∆k/‖gk‖ ≤ ‖gk‖2/(gkTBTk Bkgk) . (55)

Therefore,

mk(0)−mk(pCk ) = ∆k‖gk‖ −
1

2

∆2
k

‖gk‖2
gTk B

T
k Bkgk

= ∆k‖gk‖ −
1

2
∆k‖gk‖

∆kg
T
k B

T
k Bkgk

‖gk‖3

≥ 1

2
‖gk‖∆k ,

where the inequality is from (55).
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Otherwise, we have pCk = −‖gk‖2/(gkTBTk Bkgk)gk, thus

mk(0)−mk(pCk ) =
‖gk‖2

gkTBTk Bkgk
‖gk‖2 −

1

2

( ‖gk‖2

gkTBTk Bkgk

)2

gTk B
T
k Bkgk

=
‖gk‖4

2gkTBTk Bkgk
≥ ‖gk‖2

2‖Bk‖2
≥ ‖gk‖

2

2ν2
2

,

where the last inequality uses Proposition 4.7.

Putting the last two inequalities together we conclude the claim in part (b).

Next, we present the proof of Theorem 4.2. The proof of Theorem 4.2 is inspired by [53, Theorems 4.5-4.6].

Proof of Theorem 4.2. We prove the theorem in two steps:
(a). First we show lim infk→∞ ‖gk‖ = 0.
(b). Next we prove limk→∞ ‖gk‖ = 0.
We first prove (a). by contradiction. Suppose that there exists ε > 0 and a positive index K such that
‖gk‖ ≥ ε for all k ≥ K. It follows from the mean value theorem on the one-dimensional function f(t) =
‖F (zk + tsk)‖2/2 that

‖F (zk + sk)‖2/2 = ‖F (zk)‖2/2 + F (zk + tsk)T∇F (zk + tsk)sk,

for some 0 < t < 1. By the definition of mk(sk), we obtain∣∣mk(sk)− ‖F (zk + sk)‖2/2
∣∣ =

∣∣F (zk)T∇F (zk)sk + (sTkB
T
k Bksk)/2− F (zk + tsk)T∇F (zk + tsk)sk

∣∣
≤ (µ+ ν2

2/2)‖sk‖2 ≤ (µ+ ν2
2/2)∆2

k ,
(56)

where the first inequality comes from Fact 4.6 and Proposition 4.7, and the second inequality uses sk ≤ ∆k.
Thus, it holds for any k ≥ K that

|ρk − 1| =
∣∣mk(sk)− ‖F (zk + sk)‖2/2

∣∣
|mk(0)−mk(sk)|

≤ (µ+ ν2
2/2)∆2

k

ε
2 min

{
∆k ,

ε
ν2
2

} , (57)

where the inequality comes from the Proposition 4.8 and (56) by noticing ‖gk‖ ≥ ε.

Define ∆̄ := min
{ ε/2
µ+ν2

2/2
, R0

}
and then ∆̄ < ε

ν2
2

. We here first show by induction that the trust-region

radius is lower bounded:

∆k ≥ min

{
∆K ,

∆̄

4

}
for any k ≥ K . (58)

Apparently, (58) holds for k = K. Now suppose (58) holds for k. If ∆k < ∆̄/2, (so then ∆k = min
{

∆k ,
ε
ν2
2

}
),

it follows from (57) that

|ρk − 1| ≤ (µ+ ν2
2/2)∆2

k
ε
2∆k

≤ ∆k

∆̄
<

1

2
.

Therefore, we have ρk > 1/2, and as a result, the trust-region increases in the next iteration: ∆k+1 =
min{2∆k, R0} ≥ ∆k, thus (58) holds for k + 1 by induction. Otherwise, we have ∆k ≥ ∆̄/2, and it follows
from the fact that the trust-region in one iteration can only contract by a factor of 2 that ∆k+1 ≥ ∆̄/4, thus
(58) holds for k + 1. Combining the above two cases, we prove (58) by induction.

Next, if we have an infinite increasing subsequence {ki} ⊆ {K,K + 1,K + 2...} such that ρki > 1/2, then
we deduce from (48) that

‖F (zki)‖2/2− ‖F (zki+1)‖2/2 ≥ ρki (mki(0)−mki(ski)) ≥
ε

4
min

{
∆ki ,

ε

ν2
2

}
≥ ε

4
min

{
∆K , ∆̄/4 ,

ε

ν2
2

}
,
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where the second inequality uses Proposition 4.8 and ‖gki‖ ≥ ε, and the last inequality is from (58). There-
fore, noticing ‖F (zk)‖2/2 is monotonically nonincreasing, and summing up the above inequality, we have

‖F (zK)‖2/2− ‖F (zki+1)‖2/2 ≥
i∑

j=1

‖F (zkj )‖2/2− ‖F (zkj+1)‖2/2 ≥ iε

4
min

{
∆K , ∆̄/4 ,

ε

ν2
2

}
.

This cannot happen for a large enough i since ‖F (zki+1)‖2/2 ≥ 0 is lower bounded.

Otherwise, if there is no such infinite subsequence {ki}, then there exists K ′ ≥ K such that ρk ≤ 1/2 for all
k ≥ K ′. As a result, the trust-region radius contracts at each iteration after K ′, thus limk→∞∆k = 0, which
contradicts with (58). Combining the above two cases, we conclude that our original assumption cannot
hold and therefore lim infk→∞ ‖gk‖ = 0.

Now we turn to (b). We first present the high-level ideas of the proof. We will show (b). by contradiction.
Suppose (b). does not hold, namely, there exists ε > 0 and an infinite increasing subsequence {ti}∞i=1 of
{1, 2, ...} such that ‖gti‖ ≥ ε. Then we will show that there exists a constant C > 0 and an increasing
subsequence {ui}∞i=1 of {ti}∞i=1 such that ‖F (zui)‖2/2 − ‖F (zui+1)‖2/2 ≥ C. Thus by the monotonicity of
‖F (zk)‖2/2, we have ‖F (zui)‖2/2 → −∞ as i → ∞, which contradicts with the fact that ‖F (zui)‖2/2 ≥ 0.
In the rest of this proof we construct the sequence {ui}∞i=1 by induction.

For initialization, we set u1 = t1. Next, for a given ui, we show how to build ui+1. Consider the point zui

and a close ball B(zui
, R) = {z | ‖z − zui

‖ ≤ R} with center zui
and radius R, where

R := min{ε/(2µ) , R0} .

Notice that for any zk ∈ B(zui
, R), we have from (51) that

‖gk − gui
‖ ≤ µ‖zk − zui

‖ ≤ µR ≤ ε/2 ,

and thus
‖gk‖ ≥ ‖gui

‖ − ‖gui
− gk‖ ≥ ε− ε/2 = ε/2 .

Recall from (a). that there is a subsequence of {‖gk‖}
∞

k=0 that converges to 0, thus there exists at least
one solution in the sequence {zk}k≥ui that leaves B(zui , R). Let zl+1 be the first of such iterates. Then
‖zk − zui‖ ≤ R for k = ui + 1, ..., l, and it holds that

‖F (zui)‖2/2− ‖F (zl+1)‖2/2 =

l∑
k=ui

‖F (zk)‖2/2− ‖F (zk+1)‖2/2

=
∑

k=ui,...,l,zk 6=zk+1

‖F (zk)‖2/2− ‖F (zk+1)‖2/2

≥ ζ
∑

k=ui,...,l,zk 6=zk+1

mk(0)−mk(sk)

≥ ζ

2

∑
k=ui,...,l,zk 6=zk+1

‖gk‖min
{

∆k ,
‖gk‖
ν2

2

}
≥ ζε

4

∑
k=ui,...,l,zk 6=zk+1

min
{

∆k ,
ε

2ν2
2

}
,

(59)

where the second equality considers only the valid steps (namely ignores the null steps), the first inequality
utilizes the criteria of a valid step, the second inequality uses Proposition 4.8, and the third inequality is
implied from ‖gk‖ ≥ ε/2 since zk ∈ B(zui

, R).

Next we present a lower bound for (59). There are only two possibilities:
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(i). Suppose there exists k in the summation in the R.H.S. of (59) that ∆k > ε/(2ν2
2), then we

obtain by noticing ‖F (zk)‖2/2 is monotonically nonincreasing that

‖F (zui)‖2/2− ‖F (zl+1)‖2/2 ≥ ζε

4

ε

2ν2
2

.

(ii). Otherwise, ∆k ≤ ε/(2ν2
2) for all of k in the summation in the R.H.S. of (59). Notice that

zl+1 is outside B(zui , R), thus

R ≤ ‖zl+1 − zui‖ ≤
l∑

k=ui

‖zk+1 − zk‖ =
∑

k=ui,...,l,zk 6=zk+1

‖zk+1 − zk‖ ≤
∑

k=ui,...,l,zk 6=zk+1

∆k ,

where the last inequality uses ‖zk+1− zk‖ = ‖sk‖ ≤ ∆k for a valid step. Therefore, it holds from
(59) that

‖F (zui
)‖2/2− ‖F (zl+1)‖2/2 ≥ ζε

4

∑
k=ui,...,l,zk 6=zk+1

∆k ≥
ζε

4
R =

ζε

4
min{ε/(2µ) , R0} .

Combining (i) and (ii), we arrive at

‖F (zui
)‖2/2− ‖F (zl+1)‖2/2 ≥ ζε

4
min

{
ε/(2µ) , R0 , ε/(2ν

2
2)
}
.

Now choose ui+1 to be the first index in the infinite sequence {ti}∞i such that ui+1 ≥ l + 1, then such ui+1

exists, because {ti}∞i has infinite values and

‖F (zui
)‖2/2− ‖F (zui+1

)‖2/2 ≥ ‖F (zui
)‖2/2− ‖F (zl+1)‖2/2 ≥ ζε

4
min

{
ε/(2µ) , R0 , ε/(2ν

2
2)
}
,

where the first inequality uses the monotonicity of ‖F (zk)‖2/2. As a result, let C = (ζε/4) min
{
ε/(2µ), R0, ε/(2ν

2
2)
}
>

0, then we have that ‖F (zui)‖2/2 ≤ ‖F (zu1)‖2/2 − (i − 1)C → −∞ when i → ∞, which contradicts with
the fact that ‖F (zui)‖2/2 ≥ 0. This finishes the proof by contradiction.

Finally, we prove Theorem 4.3:

Proof of Theorem 4.3 part (1). Define δk := sup0≤t≤1 ‖∇F (zk + tsk) − ∇F (z∗)‖ . Then it follows from
zk → z∗, sk → 0 and the continuity of ∇F (z) that δk → 0. Let T (z) = F (z) − ∇F (z∗)z, then ∇T (z) =
∇F (z)−∇F (z∗). Thus, it holds that

‖yk −∇F (z∗)sk‖ = ‖F (zk + sk)− F (zk)−∇F (z∗)sk‖ = ‖T (zk + sk)− T (zk)‖
≤ sup

0≤t≤1
‖∇T

(
zk + tsk

)
‖‖sk‖ = δk‖sk‖ . (60)

The rest of the proof is very similar to the proof of Proposition 4.7. Applying Lemma 4.11 with O = ∇F (z∗)
we expand Mj+1 using (53) for j = k + n+m in the following way:

‖Mj+1‖ =

∥∥∥∥∥JQjJMjQj + βj

(
yj −∇F (z∗)sj

)
sTj

sTj sj
+ βj

Jsj
(
yj −∇F (z∗)sj

)T
J

sTj sj
Qj

∥∥∥∥∥
≤ ‖JQjJ‖‖MjQj‖+ 2βjδj ≤ ‖MjQj‖+ 4δj ,
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where the first inequality utilizes ‖Qj‖ ≤ 1, (60) and the fact ‖Jq‖ = ‖q‖ for any vector q of the appropriate
size, the second inequality comes from ‖J‖ = 1, ‖Qj‖ ≤ 1 and βj < 2. Expanding Mj recursively for
n + m − 1 times in the R.H.S. of the inequality ‖Mj+1‖ ≤ ‖MjQj‖ + 4δj , using (53) and in the same way
as we did for Mj+1 we obtain:

‖Mk+n+m+1‖ ≤ ‖Mk+1Qk+1 . . . Qk+n+m−1Qk+n+m‖+ 4

k+m+n∑
j=k+1

δj .

It follows from Lemma 4.10 that there exists a constant θ ∈ (0, 1) and index K such that ‖
∏k+n+m
j=k+1 Qj‖ ≤ θ

for any k ≥ K, thus

‖Mk+n+m+1‖ ≤ θ‖Mk+1‖+ 4

k+m+n∑
j=k+1

δj .

We now apply Lemma A.8 in the appendix and conclude since 4
∑k+m+n
j=k+1 δj → 0, then ‖Mk‖ → 0 as k →∞.

Recalling Mk = Bk −∇F (z∗), the proof is complete.

To prove part (2) of Theorem 4.3, we first present two lemmas.

Lemma 4.12. Under the assumptions stated in Theorem 4.3 part (1), it holds that ‖B−1
k ‖ is upper-bounded,

that is, there exists a positive value ν1 such that

‖B−1
k ‖ ≤ ν1 .

Proof. Recall from the construction that Bk is invertible and from Assumption 4.1 that∇F (z∗) is nonsingular
with ‖∇F−1(z∗)‖ ≤ γ. Notice that Theorem 4.3 part (1) shows that ‖Bk − ∇F (z∗)‖ → 0, whereby there
exists K such that ‖Bk−∇F (z∗)‖ ≤ 1/(2γ) for any k ≥ K. We can now apply Banach Perturbation Lemma
(Lemma A.2 in the appendix) to the matrices ∇F (z∗) and Bk (note γ/(2γ) = 0.5 < 1) and obtain:

‖B−1
k ‖ ≤

γ

1− 0.5
≤ 2γ ,

and as a result it holds for all k:

‖B−1
k ‖ ≤ max

{
‖B−1

0 ‖, ‖B
−1
1 ‖, ..., ‖B

−1
K−1‖, 2γ

}
:= ν1 .

The next Lemma provides a lower bound on the amount of predicted decrease:

Lemma 4.13. Under the assumptions stated in Theorem 4.3 part (1), it holds for any k that

mk(0)−mk(sk) ≥ ‖s
2
k‖
2

min

{
1

ν2
1

,
1

ν4
1ν

2
2

}
. (61)

Proof. It follows from (44) and Lemma 4.12 that ‖pBk ‖ ≤ ν2
1‖gk‖. Furthermore, recall that in Algorithm 3

we set sk = pBk if ‖pBk ‖ ≤ ∆k and otherwise we have ‖sk‖ = ∆k, thus in either case we have ‖sk‖ ≤ ‖pBk ‖.
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Hence, it holds that ‖gk‖/‖sk‖ ≥ 1/ν2
1 . Then, it follows from Proposition 4.8 that

mk(0)−mk(sk) ≥ ‖gk‖
2

min
{

∆k ,
‖gk‖
ν2

2

}
= ‖sk‖

‖gk‖
2

min
{ ∆k

‖sk‖
,
‖gk‖
‖sk‖ν2

2

}
≥ ‖sk‖

‖gk‖
2

min
{

1 ,
1

ν2
1ν

2
2

}
≥ ‖sk‖

2

2
min

{ 1

ν2
1

,
1

ν4
1ν

2
2

}
,

where the second inequality is from ∆k/‖sk‖ ≥ 1 and ‖gk‖/‖sk‖ ≥ 1/ν2
1 , and the third inequality uses

‖gk‖/‖sk‖ ≥ 1/ν2
1 again.

Proof of Theorem 4.3 part (2). We give proofs for the following two claims:
(a). There exists a constant K such that it holds for all k ≥ K that ‖pBk ‖ ≤ ∆k, so sk = pBk and
zk+1 = zk + sk. This shows that after a finite number of steps, we always take quasi-Newton step, and the
quasi-Newton step is a valid step.
(b). The rate of the convergence of Algorithm 3 is R-superlinear, that is, limk→∞ ‖zk − z∗‖1/k = 0.
To see (a). we begin by defining

ηk = sup
0≤t≤1

‖ ∇F (zk + tsk)−Bk‖ .

Since zk → z∗, sk → 0 and as we showed in part (1), ‖Bk −∇F (z∗)‖ → 0, as k → ∞, and since ∇F (z) is
continuous around z∗, we conclude ηk → 0 .

Consider now the one-dimensional function f(t) = ‖F (zk + tsk)‖2/2, and then by second-order mean value
theorem we know there exists 0 < t < 1 such that

‖F (zk + sk)‖2/2 =‖F (zk)‖2/2 + F (zk)T∇F (zk)sk+

sTk
(
∇F (zk + tsk)T∇F (zk + tsk)

)
sk/2 +∇2F (zk + tsk) (F (zk + tsk)/2, sk, sk) ,

(62)

where ∇2F (zk+tsk) is a 3-dimensional tensor and F (zk+tsk) (F (zk + tsk), sk, sk) refers to the tensor-vector
product. Furthermore, notice that F (z) is γ1-Lipschitz and ∇F (z) is γ2-Lipschitz, thus

∇2F (zk + tsk)
(
F (zk + tsk), sk, sk

)
/2 ≤ γ2‖F (zk + tsk)‖‖sk‖2/2 ≤ γ2γ1 (‖zk − z∗‖+ ‖sk‖) ‖sk‖2/2 .

Substituting this inequality to (62) and recalling gTk = F (zk)T∇F (zk) we obtain

‖F (zk+sk)‖2/2 ≤ ‖F (zk)‖2/2+gTk sk+sTk∇F (zk+tsk)T∇F (zk+tsk)sk/2+γ2γ1 (‖zk − z∗‖+ ‖sk‖) ‖sk‖2/2.

Denote by Ak = ∇F (zk + tsk) − Bk and clearly ‖Ak‖ ≤ ηk. It holds by recalling the definition of mk(sk)
that

‖F (zk + sk)‖2/2−mk(sk)

≤sTk∇F (zk + tsk)T∇F (zk + tsk)sk/2 + γ2γ1 (‖zk − z∗‖+ ‖sk‖) ‖sk‖2/2− sTkBTk Bksk/2

=sTk

(
(Bk +Ak)T (Bk +Ak)

)
sk/2 + γ2γ1 (‖zk − z∗‖+ ‖sk‖) ‖sk‖2/2− sTkBTk Bksk/2

=sTk

(
BTk Ak +ATkBk +ATkAk

)
sk/2 + γ2γ1 (‖zk − z∗‖+ ‖sk‖) ‖sk‖2/2

≤
(

2ηkν2 + η2
k + γ2γ1 (‖zk − z∗‖+ ‖sk‖)

)
‖sk‖2/2 ,

27



where the final inequality uses ‖Bk‖ ≤ ν2 and ‖Ak‖ ≤ ηk. Recalling the definition of ρk and combining (61)
and this inequality we arrive at

|1− ρk| =
|‖F (zk + sk)‖2/2−mk(sk)|

mk(0)−mk(sk)
≤ 2ηkν2 + η2

k + γ2γ1 (‖zk − z∗‖+ ‖sk‖)

min
{

1
ν2
1
, 1
ν4
1ν

2
2

} .

We have zk → z∗, sk → 0 and ηk → 0 as k → ∞. Thus, in the R.H.S. of the above inequality the
numerator goes to 0 and the denominator is a constant. Therefore, there exists K1 such that |1− ρk| ≤ 0.5,
thus ρk > 0.5 for all k ≥ K1. This means that for k ≥ K1, we always expand the trust-region radius:
∆k+1 = min{2∆k, R0}. As such, there exists K2 such that ∆k = R0 for all k ≥ K2. Furthermore, it
follows from Lemma 4.12 that ‖pBk ‖ ≤ ν2

1‖gk‖, thus ‖pBk ‖ → 0 as k →∞, whereby there exists K3 such that
‖pBk ‖ ≤ R0 for all k ≥ K3. Let K = max{K2,K3}, then we have ‖pBk ‖ ≤ R0 = ∆k for all k ≥ K. This
finishes the proof of (a). and we conclude eventually all steps are valid and they are quasi-Newton steps.

To see (b). notice that R-superlinear convergence studies the eventual behavior of the algorithm as the
iteration count k → ∞. It follows from part (a). that eventually (i.e., when k ≥ K) we always take quasi-
Newton step, i.e., sk = pBk and the step is a valid step, i.e., zk+1 = zk + sk = zk + pBk . It then follows
from the definition of pBk and gk that sk = pBk = −B−1

k B−Tk ∇F (zk)TF (zk). Reusing the notation, denote by
Ak = ∇F (zk)−Bk and clearly ‖Ak‖ ≤ ηk, further let Nk = Bk+1 −Bk, so, ‖Nk‖ → 0 as k →∞. We have

‖F (zk+1)‖ = ‖F (zk) +Bk+1sk‖
= ‖F (zk)−Bk+1B

−1
k B−Tk ∇F (zk)TF (zk)‖

≤ ‖I −Bk+1B
−1
k B−Tk ∇F (zk)T ‖‖F (zk)‖

=

∥∥∥∥I − (Bk +Nk)B−1
k

(
(Bk +Ak)B−1

k

)T∥∥∥∥ ‖F (zk)‖

= ‖I − (I +NkB
−1
k )(I +AkB

−1
k )T ‖‖F (zk)‖

≤
(
‖B−1

k ‖‖Nk‖+ ‖B−1
k ‖‖Ak‖+ ‖Nk‖‖Ak‖‖B−1

k ‖
2
)
‖F (zk)‖

≤ ν1 (‖Nk‖+ ηk + ‖Nk‖ηkν1) ‖F (zk)‖ ,

where the first equality comes from the secant condition (8), the first and the second inequalities utilize
Cauchy-Schwarz inequality, and the last inequality uses ‖B−1

k ‖ ≤ ν1 and ‖Ak‖ ≤ ηk. Since both ηk → 0
and ‖Nk‖ → 0 as k → ∞, then, for any arbitrary 0 < ε < 1, there exists iteration K̄ ≥ K such that
ν1(‖Nk‖+ ηk + ‖Nk‖ηkν1) ≤ ε for all k ≥ K̄. Therefore, it holds for k ≥ K̄ that ‖F (zk)‖ ≤ εk−K̄‖F (zK̄)‖,
and

lim
k→∞

‖F (zk)‖1/k ≤ lim
k→∞

(
εk−K̄‖F (zK̄)‖

)1/k

= lim
k→∞

ε
(‖F (zK̄)‖

εK̄

)1/k

= ε .

Notice that the above inequality holds for any 0 < ε < 1. Together with ‖F (zk)‖ ≥ 0, we conclude that
limk→∞ ‖F (zk)‖1/k = 0. Furthermore, recall that F (z∗) = 0, ∇F (z∗) is nonsingular and∇F (z) is continuous
around z∗, thus we can obtain limk→∞ ‖zk − z∗‖1/k = 0 as follows.

By Taylor’s expansion, we have

F (zk) = F (zk)− F (z∗) =

∫ 1

0

∇F (z∗ + t(zk − z∗))dt · (zk − z∗) .

Note that for large enough k, ∇F (z∗ + t(zk − z∗)) is nonsingular and thus

zk − z∗ =

(∫ 1

0

∇F (z∗ + t(zk − z∗))dt
)−1

F (zk) .
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Recalling the boundedness of

∥∥∥∥(∫ 1

0
∇F (z∗ + t(zk − z∗))dt

)−1
∥∥∥∥ for large enough k we achieve

lim
k→∞

‖zk − z∗‖1/k ≤ lim
k→∞

∥∥∥∥∥
(∫ 1

0

∇F (z∗ + t(zk − z∗))dt
)−1

∥∥∥∥∥
1/k

‖F (zk)‖1/k = 0 .

This finishes the proof.

5 Numerical Experiments

In this section, we present numerical experiments of J-symmetric quasi-Newton algorithms and compare
them with classical algorithms for minimax problems. We perform the experiments on four sets of minimax
problems: quadratic convex-concave minimax problems, two player bilinear zero-sum game, analytic center,
and a nonconvex-nonconcave minimax problem. The source code is available at https://github.com/

azamasl/Jsymm.

We compare the behaviors of the following five algorithms:

• EGM: The extra-gradient algorithm [40, 50] with fixed stepsize;

• Broyden: Broyden’s good method [12, 13] with a fixed stepsize;

• J-symm: J-symmetric quasi-Newton Algorithm (Algorithm 1) with a fixed stepsize;

• J-symm-LS: J-symmetric quasi-Newton Algorithm with line-search (Algorithm 2);

• J-symm-Tr: J-symmetric quasi-Newton Algorithm with trust-region (Algorithm 3).

For all quasi-Newton methods, we initialize the Jacobian estimation H0 = I for J-symm, J-symm-LS, and
J-symm-Tr. Notice that H0 = I would often introduce numerical issue for Broyden’s method, thus we
initialize the Jacobian estimation H0 for Broyden’s method as a diagonal matrix with each entry coming
from an uniform distribution U(0, 1).

The step-size plays an important rule in the behaviors for EGM, Broyden and J-symm. For the instances in
Section 5.2 and Section 5.3, we choose the best step-size from {0.0008, 0.004, 0.008, 0.04, 0.08} in performance.
The reason to select a small step-size is because these real instances are often ill-conditioned, and a large
stepsize may quickly blow up the solutions due to the bad initial estimation of the Jacobian. For the
synthetic quadratic minimax problem in Section 5.1, we start with stepsize 0.01, and then stepsize 1 after
‖F (z)‖ becomes small. For the nonconvex example in Section 5.4, we use a constant step-size 0.01 to
showcase the trajectory of the algorithm.

5.1 Quadratic Minimax Problem

We here consider quadratic convex-concave minimax problems of the form

L(x,w) =
1

2
(x− x∗)TD(x− x∗) + (w − w∗)TA(x− x∗)− 1

2
(w − w∗)TC(w − w∗) , (63)
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where C and D are positive semidefinite matrices. Notice that any function around its optimal solution
(x∗, y∗) behaves similarly to a quadratic minimax problem (63) due to Taylor expansion. Thus, the behaviors
of different algorithms on quadratic functions showcase the asymptotical behaviors for general problems.

In this experiment, we generate synthetic data with different strong convexity value. More specifically, we
choose D ∈ R500×500, C ∈ R500×500 and A ∈ R500×500 in the following way. The entries of A are drawn
randomly from a normal distribution N (0, 1/

√
500). To generate a random positive definite matrix D, we

first create a random matrix S ∈ R500×500 with entries drawn from N (0, 1/
√

500), and then we symmetrise
the matrix by S = (S + ST )/2. Next, we shift the matrix using a scaled identity matrix to make it positive
definite S = S + (|λmin| + 1)I, where λmin is the minimal eigenvalue of S (which is usually negative), and
the identity matrix guarantees the 1-strong-convexity-strong-concavity of the matrix S. Finally, we set
D = αS, with α taking values from {0, 10−4, 10−2, 1}. We set the matrix C by the same procedure and
with a different random seed. The value α measures the scale ratio between the diagonal terms and the
off-diagonal terms, and it turns out to be the critical parameter to characterize the performance of different
algorithms. When α = 0, the problem is a bilinear convex-concave minimax problem. When α > 0, the
problem is strongly-convex-strongly-concave.

Figure 1 plots ‖F (z)‖ on logarithmic scale versus the number of iterations for the five algorithms and different
α values α ∈ {0, 10−4, 10−2, 1}. Some observations in sequence: First, we can clearly see the advantage of
J-symm methods compared to Broyden’s methods, in particular for those instances with small α. Second,
as the value of α increases, all five methods have better performance. Third, J-symm-LS (magenta line) has
the best performance in this set of experiments because of its adaptive step-size choice. Finally, J-symm-Tr
(blue line) turns out to be too conservative, in particular for the case with small α value.

5.2 Bilinear Zero-sum Games

Recently, solving bilinear zero-sum games has attracted a great deal of attention in both the optimization
community and the machine learning community, as the first step in understanding more complicated ap-
plications [4, 30, 32, 47, 44]. Surprisingly, the most natural algorithm, gradient descent-ascent (GDA), does
not converge and hence many first-order methods (FOMs) tailored for minimax problem have been proposed
[25, 42, 21]. In this subsection, we aim at demonstrating that J-symmetric quasi-Newton has competitive
performance with other methods on bilinear zero-sum games.

Bilinear zero-sum games can be formulated as the following minimax optimization problem:

min
x∈Rn

max
y∈Rm

yTAx . (64)

The set of all saddle points is
{(x, y) : Ax = 0, AT y = 0} .

In this experiment, we use the constraint matrices of the root-node LP relaxation from MIPLIB. The number
of iterations of different methods to find a solution with ‖F (z)‖ ≤ 10−4 are presented Table 1. We can
clearly see that J-symm and J-symm-LS significantly outperform Broyden’s method and EGM.

Figure 2 presents ‖F (z)‖ on a logarithmic scale versus the number of iterations for five different algorithms
on two real instances, enlight hard and 22433, to showcase the typical behaviors of different algorithms.
As we can see, J-symm-LS (magenta line) exhibits much faster convergence than the other four methods.
Furthermore, we can observe the superlinear convergence of Broyden (red line) and J-symm (black) with
fixed stepsize. J-symm-Tr (blue line) sometimes can be too conservative.
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Figure 1: Plots showing ‖F (z)‖ in log scale versus the number of iterations of EGM (yellow), Broyden’s method (red), J-
symmetric method with fixed stepsize (black), J-symmetric method with line-search (magenta) and J-symmetric method with
trust-region (blue) for solving the quadratic convex-concave problems (63). The four figures are with α = 0 (top-left), α = 10−4

(top-right), α = 10−2 (bottom-left) and α = 1 (bottom-right), respectively.

5.3 Analytic Center of Polytope

Analytic center is one way to define the geometric center of a polytope, and it has numerous applications,
for example, in barrier methods [52], cutting plane methods [34, 51, 64, 6] and MIP solvers [9]. Consider a
polytope given by linear inequalities:

aTi x ≤ bi , i = 1, . . .m ,

where x ∈ Rn, ai ∈ Rn, and bi ∈ R for i = 1, . . . ,m. The analytic center of the polytope is the minimizer of
the following problem [11, p. 141]:

min
x

−
m∑
i=1

log(bi − aTi x) . (65)

The classical algorithm for finding the analytic center (65) is infeasible-start Newton method [33]. Here we
focus on quasi-Newton methods, which avoid linear equation solving and can be used for larger instances.
Notice that it can be nontrivial to identify a feasible solution to (65). We instead consider an equivalent
formulation of (65):

min
x,y
−

m∑
i=1

log yi

s.t. y = b−Ax ,
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Figure 2: Plots showing ‖F (z)‖ in log scale versus the number of iterations of EGM (yellow), Broyden’s method (red), J-
symmetric method with fixed stepsize (black), J-symmetric method with line-search (magenta) and J-symmetric method with
trust-region (blue) for solving the bilinear zero-sum problem (64).

Instance EGM Broyden J-symm J-symm-LS J-symm-Tr
22433 - 940 220 67 51
23588 - 773 220 162 -

assign1-5-8 - 1157 272 169 311
b-ball - 231 87 24 65
enlight8 - 277 225 68 63
enlight9 - 327 178 77 58

enlight hard - 536 206 67 51
gr4x6d - 150 119 60 837
neos5 - 262 88 14 33
prod1 - 1346 590 588 1356
prod2 - 1083 512 373 -

ran13x13 - 736 402 241 390

Table 1: Number of iterations for different methods to find an approximate solution with ‖F (z)‖ ≤ 10−4 for the bilinear zero
sum game. “-” refers to the algorithm fails to terminate within 2000 iterations.

where A = [a1, . . . , am]T and b = [b1, . . . , bm], and then we dualize the linear constraints to consider the
minimax problem:

min
x,y

max
w

L(x, y, w) = −
m∑
i=1

log yi + wT (Ax− b+ y) . (66)

Now we have a minimax problem of the form (1), and we can apply our J-symmetric methods.

In this experiment, we utilize the same MIPLIB instances as in the bilinear zero sum game. We do not
perform J-symm-Tr, because of the inherent constraint of y ≥ 0, which prevents an efficient trust-region
solve. The number of iterations of different methods to find a solution with ‖F (z)‖ ≤ 10−4 are presented
Table 2. Again, we can clearly see that J-symm and J-symm-LS significantly outperform Broyden’s method
and EGM.

Figure 3 presents ‖F (z)‖ in log scale versus the number of iterations for five different algorithms on two
real instances, enlight hard and 22433, to showcase the typical behaviors of different algorithms. For these
two instances, we can observe that both J-symm-LS (magenta line) and J-symm (black line) exhibit fast
convergence and an eventual superlinear rate on both instances. J-symm-LS stays in a plateau for a while
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Instance EGM Broyden J-symm J-symm-LS
22433 - - 712 612
23588 - - - 449

assign1-5-8 - - - 1610
b-ball - 450 374 214
enlight8 - - 1566 409
enlight9 - 1951 1687 234

enlight hard - - 359 297
gr4x6d - 1773 1889 124
neos5 - - 1786 394
prod1 - - - 923
prod2 - - - 703

ran13x13 - - - 395

Table 2: Number of iterations for different methods to find an approximated solution with ‖F (z)‖ ≤ 10−4 for the analytic
center problem. “-” refers to the algorithm fails to terminate within 2000 iterations.

to construct meaningful Jacobian estimation, and then enjoys a local superlinear convergence. For Broyden
(red line), it converges on the smaller instance enlight hard but is numerically unstable on 22433.

Figure 3: Plots showing ‖F (z)‖ in log scale versus the number of iterations of Broyden’s method (red), J-symmetric method
with fixed stepsize (black) and J-symmetric method with line-search (magenta) for solving the analytic center problem (66).

5.4 A Nonconvex-Nonconcave Example

Many algorithms for minimax problems assume the problem to be convex-concave. For example, the proximal
quasi-Newton methods proposed by Burke and Qian [16, 15] only work for monotone operators; thus, do
not work for the nonconvex-nonconcave case. However, recent emerging applications in machine learning
stimulate a surge of interest in nonconvex-nonconcave setting. It is a well-known fact that many classical
first-order methods fail to converge when applied to nonconvex-nonconcave problems [37]. On the contrary,
our J-symm algorithms and their analysis do not rely on convexity assumptions, implying the potential of
J-symm methods on solving nonconvex-nonconcave problems.

In this section, we examine the behaviors of our quasi-Newton algorithms on a two-dimensional nonconvex-
nonconcave example:

min
x

min
y
L(x, y) = (x2 − 1)(x2 − 9) + xAy − (y2 − 1)(y2 − 9) , (67)
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Figure 4: Plots showing the trajectories of five algorithms from twelve different initial solutions.
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where A is a scalar measuring the interaction term in the minimax problem. (67) is perhaps the simplest non-
trivial nonconvex-nonconcave example, and it has been used in [37] to illustrate the landscape of first-order
methods for minimax problems.

Figure 4 presents the trajectories of five algorithms, EGM, Broyden’s method, J-symmetric quasi-Newton
method with fixed stepsize (Algorithm 1), J-symmetric quasi-Newton method with line-search (Algorithm
2), and J-symmetric quasi-Newton method with trust-region (Algorithm 3), for solving (67). For each
algorithm, we consider four interaction levels A ∈ {1, 10, 100, 1000}, and we start with twelve different initial
solutions (−4 , −2), (−4 , 0), (−4 , 2), (−2 , −4), (−2 , 4), (0 , −4), (0 , 4), (2 , −4), (2 , 4), (4 , −2), (4 , 0)
and (4 , 2). Different color in Figure 4 represents different initialization.

When the interaction term A is small (i.e. A = 1 as shown in the first column), all five methods converge
to local minimax solutions. Furthermore, we can clearly see that quasi-Newton methods have a faster
convergence compared to first-order methods such as EGM. When the interaction is medium (i.e. A = 10 as
in the second column), EGM converges to an attractive limit circle, while the four quasi-Newton methods
converge quickly to some solutions. It turns out that Algorithm 3 converges to a local minimizer of ‖F (z)‖,
i.e., gk = ∇F (zk)F (zk) = 0, which is consistent with our Theorem 4.2. As the interaction A increases,
we move to the third column (i.e., A = 100). While EGM still converges to a limit circle, quasi-Newton
methods quickly converge to some solution. In particular, both J-symm-LS and J-symm-Tr converge to the
unique global first-order Nash equilibrium (0, 0) within a few iterations. J-symm and Broyden’s methods
both converge to local solutions, but compared to J-symm, Broyden’s method is less stable since it moves
further away in the beginning. Lastly, when the interaction term is sufficiently large (i.e., A = 1000 as in
the fourth column), EGM converges to the unique stationary point (0, 0). Again, J-symm-Tr converges to
(0, 0) within a few steps. However, while for some initial solutions, J-symm-LS has rapid convergence to
(0, 0), for others (namely those with one dimension equal to 0, such as (0, 4)), it converges extremely slowly.
This is because the line-search step chooses a very small stepsize. J-symm and Broyden’s method both take
a large step first, and move back slowly afterwards. The initial large step is because the stepsize choice 0.01
is initially too large for the case where A = 1000. The slow convergence is because the step size 0.01 is small
once we construct a reasonable Jacobian.

Overall, in contrast to first-order methods, quasi-Newton methods can avoid the undesirable limit circle for
this nonconvex-nonconcave example. The trust-region method J-symm-Tr shows its advantages over the
others, and indeed it is the only method with global theoretical guarantees. J-symm-LS performs well in
most of the cases, but it may have slow convergence when the interaction term is large. Broyden’s method
and J-symm have similar behaviors, but J-symm may be more stable in the medium interaction regimes.
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A Existing Definitions and Results Used in the Proofs.

Lemma A.1 (Sherman-Woodbury Formula). ([38, page 19]) Suppose A ∈ Rn×n is an invertible matrix and
vectors u, v ∈ Rn. Then A+ uvT is invertible if and only is 1 + vTA−1u 6= 0. In this case,

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u
.

Lemma A.2 (Banach Perturbation Lemma). ([54, page 45]) Consider square matrices A,B ∈ Rd×d. Sup-
pose that A is invertible with ‖A−1‖ ≤ a. If ‖A−B‖ ≤ b and ab < 1, then B is also invertible and

‖B−1‖ ≤ a

1− ab
.

Lemma A.3. ([24, Eq. (1.2)]) Consider square matrices A,B ∈ Rd×d. Then

‖AB‖F ≤ min{ ‖A‖F ‖B‖ , ‖A‖‖B‖F } .

Definition A.4 (R-superlinear and Q-superlinear Convergence Rates [49]). We say the sequence {zk} is
converging to z∗ R-superlinearly, if

lim
k→∞

‖zk − z∗‖1/k = 0 ,

and {zk} is converging to z∗ Q-superlinearly, if there exists a sequence {qk} converging to zero such that

lim
k→∞

‖zk+1 − z∗‖
‖zk − z∗‖

≤ qk .

Theorem A.5 (Dennis-Moré Q-superlinear Characterization Identity). ([23, Theorem 2.2]) Let the mapping
F be differentiable in the open convex set D and assume that for some z∗ ∈ D, ∇F is continuous at z∗

and ∇F (z∗) is invertible. Let {Bk} be a sequence of invertible matrices and suppose {zk}, with zk+1 =
zk−B−1

k F (zk), remains in D and converges to z∗. Then {zk} converges Q-superlinearly to z∗ and F (z∗) = 0
iff

lim
k→∞

∥∥∥(Bk −∇F (z∗)
)
(zk+1 − zk)

∥∥∥
‖zk+1 − zk‖

= 0 .
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Definition A.6 (Uniform Linear Independence). ([49, Definition 5.1.]) A sequence of unit vectors {uj} in
Rn+m is uniformly linearly independent if there is β > 0, k0 ≥ 0 and t ≥ n + m, such that for k ≥ k0 and
‖x‖ = 1, we have:

max
{∣∣〈x , uj〉∣∣ : j = k + 1, . . . , k + t

}
≥ β .

Theorem A.7. ([49, Theorem 5.3.]) Let {uk} be a sequence of unit vectors in Rn+m. Then the following
options are equivalent.

• The sequence {uk} is uniformly linearly independent.

• For any β̂ ∈ [0, 1) there is a constant θ ∈ (0, 1) such that if |βj − 1| ≤ β̂ then:

∥∥∥ k+t∏
j=k+1

(
I − βjujuTj

)∥∥∥ ≤ θ, for k ≥ k0 and t ≥ n+m .

Lemma A.8. ([49, Lemma 5.5.]) Let {φk} and {δk} be sequences of nonnegative numbers such that
φk+t ≤ θφk + δk for some fixed integer t ≥ 1 and θ ∈ (0, 1). If {δk} is bounded then {φk} is also bounded,
and if in addition, {δk} converges to zero, then {φk} converges to zero.
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