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THE MAXIMUM MEASURE OF NON-TRIVIAL 3-WISE
INTERSECTING FAMILIES

NORIHIDE TOKUSHIGE

Abstract. Let G be a family of subsets of an n-element set. The family G is called non-
trivial 3-wise intersecting if the intersection of any three subsets in G is non-empty, but
the intersection of all subsets is empty. For a real number p ∈ (0, 1) we define the measure
of the family by the sum of p|G|(1− p)n−|G| over all G ∈ G. We determine the maximum
measure of non-trivial 3-wise intersecting families. We also discuss the uniqueness and
stability of the corresponding optimal structure. These results are obtained by solving
linear programming problems.

1. Introduction

We determine the maximum measure of non-trivial 3-wise intersecting families, and
discuss the stability of the optimal structure. To make the statement precise let us start
with some definitions.

Let n ≥ t ≥ 1 and r ≥ 2 be integers. For a finite set X let 2X denote the power set of
X . We say that a family of subsets G ⊂ 2X is r-wise t-intersecting if |G1 ∩ · · · ∩Gr| ≥ t
for all G1, . . . , Gr ∈ G. If t = 1 then we omit t and say an r-wise intersecting family to
mean an r-wise 1-intersecting family.

Let 0 < p < 1 be a real number and let q = 1 − p. For G ⊂ 2X we define its measure
(or p-measure) µp(G : X) by

µp(G : X) :=
∑

G∈G
p|G|q|X|−|G|.

We mainly consider the case X = [n], where [n] := {1, 2, . . . , n}. In this case we just write
µp(G) to mean µp(G : [n]).

We say that an r-wise t-intersecting family G ⊂ 2[n] is non-trivial if |⋂G| < t, where
⋂G :=

⋂

G∈G G. Let us denote the maximum p-measure of such families by M t
r(n, p), that

is,

M t
r(n, p) := max{µp(G) : G ⊂ 2[n] is non-trivial r-wise t-intersecting}.

If a family G ⊂ 2[n] is non-trivial r-wise t-intersecting, then so is

G ′ := G ⊔ {G ⊔ {n+ 1} : G ∈ G} ⊂ 2[n+1].
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2 THE MAXIMUM MEASURE OF NON-TRIVIAL 3-WISE INTERSECTING FAMILIES

Since G and G ′ have the same p-measure, the function M t
r(n, p) is non-decreasing in n for

fixed r, t, p, and we can define

M t
r(p) := lim

n→∞
M t

r(n, p).

For simplicity if t = 1 then we just write Mr(n, p) and Mr(p).
What is generally known about Mr(n, p) and Mr(p)? For the case r = 2 we have the

following.

M2(p) =

{

p if 0 < p ≤ 1
2
,

1 if 1
2
< p < 1.

Indeed it is easy to see that M2(n,
1
2
) = 1

2
, and it is known from [1] that M2(n, p) < p for

p < 1
2
. Thus M2(p) ≤ p for p ≤ 1

2
. On the other hand we construct a non-trivial r-wise

intersecting family by F := ({F ∈ 2[n] : 1 ∈ F}\{{1}})∪{[2, n]}, where [i, j] := [j]\[i−1].
Then we have µp(F) = p− pqn−1+ qpn−1 → p as n → ∞. Thus M2(p) = p for p ≤ 1

2
. For

the case p > 1
2
we construct a non-trivial r-wise intersecting family G := {F ∈ 2[n] : |F | >

n/2}. Then µp(G) =
∑

k>n/2

(

n
k

)

pkqn−k → 1 as n → ∞, and so M2(p) = 1 for p > 1
2
.

The case p = 1
2
(and arbitrary r ≥ 2) is also known. Brace and Daykin [5] determined

the maximum size of non-trivial r-wise intersecting families. In other words, they deter-
mined Mr(n,

1
2
). To state their results we define a non-trivial r-wise intersecting family

BDr(n) by

BDr(n) := {F ∈ 2[n] : |F ∩ [r + 1]| ≥ r}.
Then µp(BDr(n)) = (r + 1)prq + pr+1.

Theorem 1 (Brace and Daykin [5]). For r ≥ 2 we have Mr(n,
1
2
) = µ 1

2
(BDr(n)). If

r ≥ 3 then BDr(n) is the only optimal family (up to isomorphism) whose measure attains
Mr(n,

1
2
).

Here two families F ,G ⊂ 2[n] are isomorphic if there is a permutation τ on [n] such that
F = {{τ(g) : g ∈ G} : G ∈ G}. In this case we write F ∼= G.

The other thing we know is about the case p close to 1
2
. In this case we can extend

Theorem 1 if r ≥ 8 as follows.

Theorem 2 ([20]). Let r ≥ 8. Then there exists ǫ = ǫ(r) > 0 such that Mr(n, p) =
µp(BDr(n)) for |p− 1

2
| < ǫ, and BDr(n) is the only optimal family (up to isomorphism).

In [20] it is conjectured the same holds for r = 6 and 7 as well. On the other hand there
is a construction showing that if r ≤ 5 then Mr(n, p) > µp(BDr(n)) for p close to 1/2.

In this paper we focus on the case r = 3. We determine M3(p) for all p.

Theorem 3. For non-trivial 3-wise intersecting families we have

M3(p) =



















p2 if p ≤ 1
3
,

4p3q + p4 if 1
3
≤ p ≤ 1

2
,

p if 1
2
< p ≤ 2

3
,

1 if 2
3
< p < 1.
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Figure 1. The graph of M3(p)

In case M2(p) there is a jump at p = 1
2
. In case M3(p) there are two jumps at p = 1

2

and p = 2
3
as in Figure 1, and M3(p) is continuous at p = 1

3
but not differentiable at this

point. We also note that µp(BD3(n)) = 4p3q + p4.
The most interesting part is the case 1

3
≤ p ≤ 1

2
. In this case we determine M3(n, p)

and the corresponding optimal structure.

Theorem 4. Let 1
3
≤ p ≤ 1

2
. Then we have M3(n, p) = µp(BD3(n)). Moreover, BD3(n)

is the only optimal family (up to isomorphism), that is, if F ⊂ 2[n] is a non-trivial 3-wise
intersecting family with µp(F) = M3(n, p) then F ∼= BD3(n).

We also consider the stability of the optimal family for 1
3
≤ p ≤ 1

2
. Roughly speaking

we will claim that if a non-trivial 3-wise intersecting family has measure close to M3(n, p)
then the family is close to BD3(n) in structure. A similar result is known for 2-wise
t-intersecting families. For comparison with our case let 1

3
< p < 2

5
and t = 2. Note

that BD3(n) is a 2-wise 2-intersecting family. If F ⊂ 2[n] is a 2-wise 2-intersecting family,
then it follows from the Ahlswede–Khachatrian theorem (see Theorem 11) that µp(F) ≤
µp(BD3(n)). Moreover, if µp(F) is close to µp(BD3(n)) then F is close to BD3(n). This
follows from a stability result (corresponding to Theorem 11) proved by Ellis, Keller, and
Lifshitz. Here we include a version due to Filmus applied to the case 1

3
< p < 2

5
and t = 2.

Theorem 5 (Ellis–Keller–Lifshitz [6], Filmus [7]). Let 1
3
< p < 2

5
. There is a constant

ǫ0 = ǫ0(p) such that the following holds. If F ⊂ 2[n] is a 2-wise 2-intersecting family with
µp(F) = µp(BD3(n)) − ǫ, where ǫ < ǫ0, then there is a family G ∼= BD3(n) such that
µp(F△G) = O(ǫ), where the hidden constant depends on p only.

We note that the condition µp(F△G) = O(ǫ) in Theorem 5 cannot be replaced with the
condition F ⊂ G. To see this, consider a 2-wise 2-intersecting family

F = (BD3(n) \ {{1, 3, 4}, {2, 3, 4}})∪ {[n] \ {3, 4}}.(1)

Then µp(F) = µp(BD3(n)) − 2p3qn−3 + p2qn−2 → µp(BD3(n)) as n → ∞, but F is not
contained in BD3(n) (or any isomorphic copy of BD3(n)).
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Note that a non-trivial r-wise t-intersecting family is necessarily an (r−1)-wise (t+1)-
intersecting family. (Otherwise there are r−1 subsets whose intersection is of size exactly
t, and so all subsets contain the t vertices to be r-wise t-intersecting, which contradicts the
non-trivial condition.) Thus Theorem 5 also holds if we replace the assumption that F is a
2-wise 2-intersecting family with the assumption that F is a non-trivial 3-wise intersecting
family. We also note that the family F defined by (1) is 2-wise 2-intersecting, but not
3-wise intersecting. This suggests a possibility of a stronger stability for non-trivial 3-wise
intersecting families than 2-wise 2-intersecting families.

Conjecture 1. Let 1
3
< p ≤ 1

2
. There is a constant ǫ0 = ǫ0(p) such that the following

holds. If F ⊂ 2[n] is a non-trivial 3-wise intersecting family with µp(F) = µp(BD3(n))−ǫ,
where ǫ < ǫ0, then there is a family G ∼= BD3(n) such that F ⊂ G.

We verify the conjecture for the case 2
5
≤ p ≤ 1

2
provided that the family is shifted.

Here we say that a family F ⊂ 2[n] is shifted if F ∈ F and {i, j} ∩ F = {j} for some
1 ≤ i < j ≤ n, then (F \ {j}) ∪ {i} ∈ F . The following is our main result in this paper.

Theorem 6. Let 2
5
≤ p ≤ 1

2
, and let F ⊂ 2[n] be a shifted non-trivial 3-wise intersecting

family. If F 6⊂ BD3(n) then µp(F) < µp(BD3(n))− 0.0018.

For the proof of Theorem 6 we divide the family into some subfamilies. These subfam-
ilies are not only 3-wise intersecting, but also satisfy some additional intersection condi-
tions. To capture the conditions we need some more definitions. We say that r families
F1, . . . ,Fr ⊂ 2[n] are r-cross t-intersecting if |F1∩· · ·∩Fr| ≥ t for all F1 ∈ F1, . . . , Fr ∈ Fr.
If moreover Fi 6= ∅ for all 1 ≤ i ≤ r, then the r families are called non-empty r-cross
t-intersecting. As usual we say r-cross intersecting to mean r-cross 1-intersecting. The
following result is used to prove Theorem 6.

Theorem 7. Let 1
3
≤ p ≤ 1

2
. If F1,F2,F3 ⊂ 2[n] are non-empty 3-cross intersecting

families, then

µp(F1) + µp(F2) + µp(F3) ≤ 3p.(2)

Suppose, moreover, that 1
3
< p ≤ 1

2
, all Fi are shifted, and

⋂

F = ∅, where the intersection
is taken over all F ∈ F1 ∪ F2 ∪ F3. Then,

µp(F1) + µp(F2) + µp(F3) ≤ 3p− ǫp,(3)

where ǫp = (2− 3p)(3p− 1).

The first inequality (2) is an easy consequence of a recent result on r-cross t-intersecting
families obtained by Gupta, Mogge, Piga, and Schülke [13], while the second inequality
(3) is proved by solving linear programming (LP) problems. We mention that equality
holds in (2) only if |⋂F∈F1∪F2∪F3

F | = 1 unless p = 1
3
. This fact will not be used for the

proof of Theorem 6, but it follows easily from (3) and Lemma 1.
Here we outline the proof of Theorem 6. This is done by solving LP problems as

follows. First we divide F into subfamilies, say, F = F1 ∪F2 ∪ · · · ∪ Fk. Let xi = µp(Fi).
These subfamilies satisfy some additional conditions, which give us (not necessarily linear)
constraints on the variables xi. Under the constraints we need to maximize µp(F) =
∑k

i=1 xi. In principle this problem can be solved by the method of Lagrange multipliers,
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but in practice it is not so easy even if concrete p is fixed. To overcome the difficulty
we first replace non-linear constraints with weaker piecewise linear constraints. In this
way the problem turns into an LP problem with the parameter p, which can be solved
efficiently provided p is given. Next, instead of solving this primal problem, we seek a
feasible solution to the dual LP problem with the parameter. Finally the desired upper
bound for µp(F) is obtained by the weak duality theorem. As to related proof technique
we refer [24] for application of LP methods to some other extremal problems, and also
[18, 19] for SDP methods.

In the next section we gather tools we use to prove our results. Then in Section 3 we
deduce Theorem 3 and Theorem 4 from Theorem 6. In Section 4 we prove Theorem 7,
whose proof is a prototype of the proof of Theorem 6. In Section 5 we prove our main
result Theorem 6. Finally in the last section we discuss possible extensions to non-trivial
r-wise intersecting families for r ≥ 4, and a related k-uniform problem. In particular
we include counterexamples to a recent conjecture posed by O’Neill and Versträete [17]
(c.f. Balogh and Linz [4]).

2. Preliminaries

2.1. Shifting. For 1 ≤ i < j ≤ n we define the shifting operation σi,j : 2
[n] → 2[n] by

σi,j(G) := {Gi,j : G ∈ G},
where

Gi,j :=

{

(G \ {j}) ⊔ {i} if (G \ {j}) ⊔ {i} 6∈ G,
G otherwise.

By definition µp(G) = µp(σi,j(G)) follows. We say that G is shifted if G is invariant under
any shifting operations, in other words, if G ∈ G then Gi,j ∈ G for all 1 ≤ i < j ≤ n. If
G is not shifted then

∑

G∈G
∑

g∈G g >
∑

G′∈σi,j(G)
∑

g′∈G′ g′ for some i, j, and so starting

from G we get a shifted G ′ by applying shifting operations repeatedly finitely many times.
It is not difficult to check that if G is r-wise t-intersecting, then so is σi,j(G). Therefore if
G is an r-wise t-intersecting family, then there is a shifted r-wise t-intersecting family G ′

with µp(G ′) = µp(G). It is also true that if G1, . . . ,Gr are r-cross t-intersecting families,
then there are shifted r-cross t-intersecting families G ′

1, . . . ,G ′
r with µp(Gi) = µp(G ′

i) for all
1 ≤ i ≤ r.

For the proof of Theorem 4 we use the fact that if σi,j(G) ∼= BD3(n) then G ∼= BD3(n).
More generally the following holds.

Lemma 1. Let n, a, b be positive integers with a ≥ 1, b ≥ 0, and n ≥ a + 2b, and let
F = {F ⊂ [n] : |F ∩ [a+ 2b]| ≥ a + b}. If G ⊂ 2[n] satisfies σi,j(G) = F then G ∼= F .

The above result is well-known, see, e.g., Lemma 6 in [16] for a proof and a history.
We note that the condition σi,j(G) = F can be replaced with σi,j(G) ∼= F . Indeed if
σi,j(G) = F ′ and F ′ ∼= F , then by Lemma 1 (and by renaming the vertices) we have
G ∼= F ′, and so G ∼= F . By choosing a = r− 1 and b = 1, we see that if σi,j(G) ∼= BDr(n)
then G ∼= BDr(n).

For G,H ⊂ [n] we say that G shifts to H , denoted by G H , if G = ∅, or if |G| ≤ |H|
and the ith smallest element of G is greater than or equal to that of H for each i ≤ |G|.
Note that the relation is transitive, and this fact will be used later (Claims 16 and 17).
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We say that G is inclusion maximal if G ∈ G and G ⊂ H imply H ∈ G. Since we are
interested in the maximum measure of non-trivial 3-wise intersecting families, we always
assume that families are inclusion maximal. If G is shifted and inclusion maximal, then
G ∈ G and G H imply H ∈ G.
2.2. Duality in linear programming. For later use we briefly record the weak duality
theorem in linear programming. See e.g., chapter 6 in [12] for more details.

A primal linear programming problem (P) is formalized as follows.

maximize: cTx,
subject to: Ax ≤ b and x ≥ 0.

The corresponding dual programming problem (D) is as follows.

minimize: bTy,
subject to: ATy ≥ c and y ≥ 0.

Theorem 8 (Weak duality). For each feasible solution x of (P) and each feasible solution
y of (D) we have cTx ≤ bTy.

2.3. Tools for the proof of Theorem 7. Let n, t, a be fixed positive integers with
t ≤ a ≤ n. Define two families A and B by

A = {F ⊂ [n] : |F ∩ [a]| ≥ t},
B = {F ⊂ [n] : [a] ⊂ F}.

Then µp(A) = 1−∑t−1
j=0

(

a
j

)

pjqa−j , and µp(B) = pa. Let F1 = A, F2 = · · · = Fr = B. Then
F1, . . . ,Fr are r-cross t-intersecting families with

∑r
i=1 µp(Fi) = µp(A) + (r − 1)µp(B).

The next result is a special case of Theorem 1.4 in [13], which states that the above
construction is the best choice to maximize the sum of p-measures of non-empty r-cross
t-intersecting families provided p ≤ 1

2
.

Theorem 9 (Gupta–Mogge–Piga–Schülke [13]). Let r ≥ 2 and 0 < p ≤ 1
2
. If F1, . . . ,Fr ⊂

2[n] are non-empty r-cross t-intersecting families, then

r
∑

i=1

µp(Fi) ≤ max

{(

1−
t−1
∑

j=0

(

a

j

)

pjqa−j

)

+ (r − 1)pa : t ≤ a ≤ n

}

.

We need the non-empty condition to exclude the case F1 = ∅, F2 = · · · = Fr = 2[n].

Lemma 2. Let 0 < p ≤ 1
2
. Suppose that F1,F2 ⊂ 2[n] are 2-cross intersecting families.

(i) µp(F1) + µp(F2) ≤ 1.
(ii) µp(F1)µp(F2) ≤ p2.

Proof. (i) If one of the families is empty, then the inequality clearly holds. So suppose
that both families are non-empty. Then, by Theorem 9, we have

µp(F1) + µp(F2) ≤ max{(1− qa) + pa : 1 ≤ a ≤ n}.
Thus it suffices to show that 1− qa + pa ≤ 1, or equivalently, pa ≤ (1− p)a for all a ≥ 1.
Indeed this follows from the assumption p ≤ 1

2
.

(ii) This is proved in [21] as Theorem 2. �
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Lemma 3. Let 0 < p ≤ 1
2
, and t ≥ 2. If F1,F2,F3 ⊂ 2[n] are non-empty 3-cross

t-intersecting families, then µp(F1) + µp(F2) + µp(F3) ≤ 1.

Proof. Note that if t ≥ 2 then 3-cross t-intersecting families are 3-cross 2-intersecting
families. Thus, using Theorem 9, it suffices to show that

f(p, a) := (1− qa − apqa−1) + 2pa ≤ 1

for a ≥ t. This inequality follows from the fact that f(p, a) is increasing in p, and f(1
2
, a)

is non-decreasing in a for a = 2, 3, . . ., and lima→∞ f(1
2
, a) = 1. �

2.4. Random walk. Here we extend the random walk method to deal with p-measures
of r-cross t-intersecting families possibly with different p-measures. The method was
originally introduced by Frankl in [9].

Let r ≥ 2 be a positive integer. For 1 ≤ i ≤ r let pi be a real number with 0 < pi < 1− 1
r
,

and let qi = 1− pi. Let α(pi) ∈ (0, 1) be a unique root of the equation

X = pi + qiX
r,(4)

and let β = β(p1, . . . , pr) ∈ (0, 1) be a unique root of the equation

X =

r
∏

i=1

(pi + qiX).(5)

Consider two types of random walks, Ai and B, in the two-dimensional grid Z
2. Both

walks start at the origin, and at each step it moves from (x, y) to (x, y+1) (one step up),
or from (x, y) to (x+ 1, y) (one step to the right). For every step the type Ai walk takes
one step up with probability pi, and one step to the right with probability qi. On the other
hand, at step j, the type B walk takes one step up with probability pi, and one step to
the right with probability qi, where i = j mod r. Let Lj denote the line y = (r− 1)x+ j.

Claim 1. Let r ≥ 2 and t ≥ 1 be integers. Then we have

P(the type Ai walk hits the line Lt) = α(pi)
t,

P(the type B walk hits the line Lrt) = β(p1, . . . , pr)
t.

Proof. Let xi(t) denote the probability that the walk Ai hits the line Lt. After the first
step of the walk, it is at (0, 1) with probability pi, or at (1, 0) with probability qi. From
(0, 1) the probability for the walk hitting Lt is xi(t − 1), and from (1, 0) the probability
is xi(t− 1 + r). Therefore we have

xi(t) = pixi(t− 1) + qixi(t− 1 + r).(6)

Let aj be the number of walks from (0, 0) to Pj := (j, (r − 1)j + t) which touch Lt only
at Pj. (It is known that aj = t

rj+t

(

rj+t
j

)

, but we do not need this fact.) Then we have

xi(t) =
∑

j≥0 ajp
(r−1)j+t
i qji . If a walk touches the line Lt+1, then the walk needs to hit

Lt somewhere, say, at Pj for the first time. Then the probability that the walk hit Lt+1

starting from Pj is equal to xi(1). Thus we have

xi(t + 1) =
∑

j≥0

(ajp
(r−1)j+t
i qji ) xi(1) = xi(t)xi(1),
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and so we can write xi(t) = zt, where z := xi(1). Substituting this into (6) and dividing
both sides by zt−1 we see that z is a root of the equation (4). Let f(X) := pi + qiX

r −X .
Then we have f(0) = pi > 0, f(1) = 0, f ′(1) = qir−1 > 0, and f ′′(X) = qir(r−1)Xr−2 >
0. Thus the equation f(X) = 0, or equivalently, (4) has precisely two roots in [0, 1], that
is, α(pi) and 1. We claim that z 6= 1. Indeed we have limt→∞ xi(t) = limt→∞ zt = 0
because a step in the type Ai walk reduces, on average, y− (r− 1)x by (r− 1)− rpi > 0.
Consequently we have z = α(pi), and so xi(t) = α(pi)

t.
Next let y(t) denote the probability that the walk B hits the line Lrt. After the first r

steps, it is at (x, r − x) for some 0 ≤ x ≤ r with probability
∑

J∈([r]x )

∏

i∈[r]\J
pi
∏

j∈J
qj.

From (x, r − x) the probability for the walk hitting Lrt is y(x+ t− 1). This yields

y(t) =

r
∑

x=0

y(x+ t− 1)
∑

J∈([r]x )

∏

i∈[r]\J
pi
∏

j∈J
qj .(7)

Let bs be the number of walks from (0, 0) to Qs := (s, (r− 1)s+ rt) which touch Lrt only
at Qs. Then we have

y(t) =
∑

s≥0

bs
∑

J∈([r(s+t)]
s )

∏

i∈[r(s+t)]\J
pi
∏

j∈J
qj .

If a walk touches the line Lr(t+1), then the walk needs to hit Lrt somewhere, say, at Qs

for the first time. Then the probability that the walk hit Lr(t+1) starting from Qs is equal
to y(1). Thus we have

y(t+ 1) =
∑

s≥0

bs
∑

J∈([r(s+t)]
s )

∏

i∈[r(s+t)]\J
pi
∏

j∈J
qj y(1) = y(t)y(1),

and so y(t) = wt, where w := y(1). Substituting this into (7) and dividing both sides by
wt−1 we have

w =

r
∑

x=0

wx
∑

J∈([r]x )

∏

i∈[r]\J
pi
∏

j∈J
qj =

r
∏

i=1

(pi + qiw).

Thus w is a root of the equation (5). Let g(X) :=
∏r

i=1(pi + qiX) − X . Then we have
g(0) =

∏

i pi > 0, g(1) = 0, g′(1) =
∑

i qi > 0, and g′′(X) > 0. Thus the equation
g(X) = 0, or equivalently, (5) has precisely two roots in [0, 1], that is, β and 1. But we
can exclude the possibility w = 1 in the same way as in the previous case. Thus we have
w = β and so y(t) = βt. �

Claim 2. Let F1, . . . ,Fr ⊂ 2[n] be shifted r-cross t-intersecting families. Then, for all
(F1, . . . , Fr) ∈ F1×· · ·×Fr, there exists j = j(F1, . . . , Fr) ∈ [n] such that

∑r
i=1 |Fi∩ [j]| ≥

t+ (r − 1)j.

This is Proposition 8.1 in [9]. We include a simple proof for convenience.
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Proof. Suppose the contrary. Then there exist an r-tuple of a counterexample (F1, . . . , Fr) ∈
F1 × · · · × Fr, which we choose |F1 ∩ · · · ∩ Fr| minimal. Let j be the t-th element of
F1 ∩ · · · ∩ Fr. Then we have

r
∑

i=1

|Fi ∩ [j]| < t + (r − 1)j = |F1 ∩ · · · ∩ Fr ∩ [j]|+ (r − 1)|[j]|.

Thus there exist some i ∈ [j − 1] such that i is not contained in (at least) two of the r
subsets, say, i 6∈ F1 ∪ F2. By the shiftedness we have F ′

1 := (F \ {j}) ∪ {i} ∈ F1. Then
|F1∩ [j]| = |F ′

1∩ [j]| and so (F ′
1, F2, . . . , Fr) is also a counterexample. But this contradicts

the minimality because |F ′
1 ∩ F2 ∩ · · · ∩ Fr| < |F1 ∩ F2 ∩ · · · ∩ Fr|. �

Let F1, . . . ,Fr ⊂ 2[n] be families of subsets. For each (F1, . . . , Fr) ∈ F1 × · · · × Fr we
define a vector w by

w = w(F1, . . . , Fr) := (w
(1)
1 , w

(1)
2 , . . . , w(1)

r , . . . , w
(n)
1 , w

(n)
2 , . . . , w(n)

r ) ∈ {0, 1}rn,
where

w
(j)
i =

{

1 if j ∈ Fi,

0 if j 6∈ Fi.

We can view w as an rn-step walk whose k-th step is up (resp. right) if the k-th entry of
w is 1 (resp. 0) for 1 ≤ k ≤ rn.

Claim 3. Let F1, . . . ,Fr ⊂ 2[n] be shifted r-cross t-intersecting families. Then, for all
(F1, . . . , Fr) ∈ F1 × · · · × Fr, the walk w(F1, . . . , Fr) hits the line Lrt.

Proof. Let j = j(F1, . . . , Fr) be from Claim 2, and let w = w(F1, . . . , Fr) be the corre-
sponding walk. In the first rj steps of w there are at least t + (r − 1)j up steps, and so
at most rj − (t+ (r − 1)j) = j − t right steps. This means that the walk w hits the line
Lrt within the first rj steps. �

Theorem 10. Let p1, . . . , pr be positive real numbers less than 1− 1
r
, and let F1, . . . ,Fr ⊂

2[n] be r-cross t-intersecting families. Then we have
∏r

i=1 µpi(Fi) ≤ βt, where β is the
root of the equation (5).

Proof. Since the shifting operation preserves r-cross t-intersecting property and p-measures,
we may assume that all Fi are shifted. We have

r
∏

i=1

µpi(Fi) =
r
∏

i=1

∑

Fi∈Fi

p
|Fi|
i q

n−|Fi|
i =

∑

(F1,...,Fr)∈F1×···×Fr

r
∏

i=1

p
|Fi|
i q

n−|Fi|
i .

Using Claim 3 the RHS is

≤ P(type B walk hits Lrt in the first rn steps) ≤ P(type B walk hits Lrt) = βt,

where the last equality follows from Claim 1. �

By comparing (4) and (5) it follows that if p1 = · · · = pr =: p then β(p, . . . , p) = α(p)r.
If r = 3 then it is not so difficult to verify that β(p1, p2, p3) ≤ α(p1)α(p2)α(p3), see [15]
for more details, and we have the following.
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Lemma 4. Let 0 < p1, p2, p3 < 2
3
and t be a positive integer. If F1,F2,F3 ⊂ 2[n] are

3-cross t-intersecting, then

µp1(F1)µp2(F2)µp3(F3) ≤ (α(p1)α(p2)α(p3))
t,

where

α(p) :=
1

2

(
√

1 + 3p

1− p
− 1

)

.(8)

2.5. Tools for the proof of Theorem 6. Let 0 < p1 < p2 < 1 be fixed. Let R
[p1,p2]

denote the set of real-valued functions defined on the interval [p1, p2] := {x ∈ R : p1 ≤
x ≤ p2}. We will bound a convex function g ∈ R

[p1,p2] by a linear function connecting
(p1, g(p1)) and (p2, g(p2)). To this end, define an operator Lp1,p2 : R

[p1,p2] → R
[p1,p2] by

(Lp1,p2(g))(p) :=
g(p2)− g(p1)

p2 − p1
(p− p1) + g(p1).

By definition we have the following.

Claim 4. Let g ∈ R
[p1,p2] be a convex function. Then g(p) ≤ (Lp1,p2(g))(p) for p ∈ [p1, p2].

The function α = α(p) defined by (8) is convex because ∂2α(p)
∂p2

= 6p
(1+3p)2q2

(

1+3p
q

)1/2
> 0.

Thus by Claim 4 we have the following.

Claim 5. For 2
5
≤ p ≤ 1

2
it follows that α(p) ≤ α̃(p), where

α̃(p) := (L 2
5
, 1
2
(α))(p) = (−3− 12

√
5 + 5

√
33)/6 + (30

√
5− 10

√
33)p/6

≈ −0.185 + 1.60607p.

Let AK(n, t, p) denote the maximum p-measure µp(G) of 2-wise t-intersecting families
G ⊂ 2[n].

Theorem 11 (Ahlswede and Khachatrian [2]). Let

i

t+ 2i− 1
≤ p ≤ i+ 1

t+ 2i+ 1
.

Then AK(n, t, p) = µp(A(n, t, i)), where

A(n, t, i) = {A ⊂ [n] : |A ∩ [t+ 2i]| ≥ t+ i}.
Moreover, if i

t+2i−1
< p < i+1

t+2i+1
(resp. p = i

t+2i−1
) then µp(G) = AK(n, t, p) if and only

if G ∼= A(n, t, i) (resp. G ∼= A(n, t, i− 1) or G ∼= A(n, t, i)).

Let
ft(p) := lim sup

n→∞
AK(n, t, p).

By Katona’s t-intersection theorem we have ft(
1
2
) = 1

2
. For p < 1

2
, by Theorem 11, we

have AK(n, t, p) = max{µp(A(n, t, i)) : i ≤ n−t
2
}, and AK(n, t, p) is non-decreasing in n.

In this case we have

ft(p) = lim
n→∞

AK(n, t, p) =

t+2i
∑

j=t+i

(

t + 2i

j

)

pjqt+2i−j,
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where i =
⌊

(t−1)p
1−2p

⌋

. The function ft(p) is left-continuous at p = 1
2
.

Claim 6. Let t ≥ 2 be fixed. Then ft(p) is a convex function in p.

Proof. First suppose that i
t+2i−1

< p < i+1
t+2i+1

. Then ft(p) =
∑t+2i

t+i

(

t+2i
j

)

pjqt+2i−j =: g(p),

and we have

∂2

∂p2
ft(p) =

(2i+ t)!

(i+ t− 1)! i!
pt−2+iqi−1(i+ t− 1− (2i+ t− 1)p) > 0.

Next let p0 =
i

t+2i−1
. If p is slightly larger than p0 then we have the same ft(p) = g(p) as

above, and if p is slightly smaller than p0 then ft(p) =
∑t+2i−2

t+i−1 pjqt+2i−2 =: h(p). Since
h(p) < g(p) for p > p0 and h(p) > g(p) for p < p0, we see that the left derivative of ft(p)
at p = p0 is smaller than that of the right derivative. �

By Claim 4 and Claim 6 we have the following.

Claim 7. For 2
5
≤ p ≤ 1

2
it follows that AK(n, t, p) ≤ ãt(p), where ãt = L 2

5
, 1
2
(ft).

For convenience we record the ãt which will be used to prove Theorem 6.

ã2(p) =
1
2
+ (401(p− 1

2
))/125 ≈ −1.104 + 3.208p,

ã3(p) =
1
2
+ (1565029(p− 1

2
))/390625 ≈ −1.50324 + 4.00647p,

ã4(p) =
1
2
+ (5391614441(p− 1

2
))/1220703125 ≈ −1.70841 + 4.41681p,

ã5(p) =
1
2
+ (17729648464189(p− 1

2
))/3814697265625 ≈ −1.82386 + 4.64772p.

3. Proof of Theorem 3 and Theorem 4

In this section we deduce Theorem 3 from Theorem 4, and then deduce Theorem 4
from Theorem 6 whose proof is given in the next section.

Proof of Theorem 3. Let F ⊂ 2[n] be a non-trivial 3-wise intersecting family with µp(F) =
M3(n, p). We may assume thatF is shifted and inclusion maximal. Since F is non-trivially
3-wise intersecting, it is also 2-wise 2-intersecting, and so M3(n, p) ≤ AK(n, 2, p).

Claim 8. If p < 1
3
then M3(p) = p2.

Proof. Let p < 1
3
be fixed. Then we have µp(F) = M3(n, p) ≤ AK(n, 2, p) = p2. Moreover

G ∼= A(n, 2, 0) is the only 2-wise 2-intersecting family with µp(G) = p2. Since A(n, 2, 0)
is not non-trivial 3-wise intersecting, we get M3(n, p) < p2.

On the other hand we can construct a non-trivial 3-wise intersecting family F1 by

F1 = {F ∈ [n] : [2] ⊂ F, F ∩ [3, n] 6= ∅} ⊔ {[n] \ {1}} ⊔ {[n] \ {2}}.
Then it follows that

µp(F1) = p2(1− qn−2) + 2pn−1q → p2 as n → ∞.

Thus we have M3(p) = p2 for p < 1
3
. �

Claim 9. If 1
3
≤ p ≤ 1

2
then M3(p) = 4p3q + p4.

Proof. This is an immediate consequence of Theorem 4. �
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Claim 10. If 1
2
< p ≤ 2

3
then M3(p) = p.

Proof. Let 1
2
< p ≤ 2

3
be fixed. It is known from [8, 10, 22] that 3-wise intersecting families

G have p-measure at most p for p ≤ 2
3
, and moreover if µp(G) = p then |⋂G| = 1 for

p < 2
3
. Thus we have M(n, p) < p for 1

2
< p < 2

3
and M(n, 2

3
) ≤ 2

3
.

On the other hand, let us define a non-trivial 3-wise intersecting family F2 by

F2 = {F ∈ [n] : 1 ∈ F, |F ∩ [2, n]| ≥ n/2} ⊔ {[2, n]}.
Then it follows that, for fixed p,

µp(F2) = p
∑

k≥n/2

(

n− 1

k

)

pkqn−1−k + qpn−1 → p as n → ∞.

Thus we have M(p) = p for 1
2
< p ≤ 2

3
. �

Claim 11. If 2
3
< p < 1 then M3(p) = 1.

Proof. Let 2
3
< p < 1 be fixed. Clearly we have M(n, p) ≤ 1 and M(p) ≤ 1. Let us define

a non-trivial 3-wise intersecting family F3 by

F3 = {F ⊂ [n] : |F | > 2
3
n}.

Then µp(F3) =
∑

i> 2
3
n

(

n
i

)

piqn−i → 1 as n → ∞. Thus we have M(p) = 1 for p > 2
3
. �

This completes the proof of Theorem 3 assuming Theorem 4. �

Proof of Theorem 4. Let F ⊂ 2[n] be a non-trivial 3-wise intersecting family.
First suppose that 1

3
≤ p < 2

5
. Note that F is 2-wise 2-intersecting, and A(n, 2, 1) =

BD3(n). Thus it follows from Theorem 11 that µp(F) ≤ µp(BD3(n)). Moreover equality
holds if and only if F ∼= BD3(n) for p > 1

3
. If p = 1

3
then µp(F) = µp(BD3(n)) if and only

if F ∼= BD3(n) or A(n, 2, 0), but the latter is not non-trivial 3-wise intersecting, and so
F ∼= BD3(n) must hold.

Next suppose that 2
5
≤ p ≤ 1

2
. If F is shifted then by Theorem 6 we have µp(F) ≤

µp(BD3(n)) with equality holding if and only if F = BD3(n). The same inequality holds
without assuming that F is shifted (see the first paragraph in Section 2). In this case, by
Lemma 1, we have µp(F) = µp(BD3(n)) if and only if F ∼= BD3(n). �

4. Proof of Theorem 7

4.1. Proof of (2) of Theorem 7. Let 1
3
≤ p ≤ 1

2
, and let F1,F2,F3 be non-empty 3-cross

intersecting families. By Theorem 9 with r = 3 we have
∑3

i=1 µp(Fi) ≤ max{(1−qa)+2pa :
a ∈ [n]}. So we need to show that f(p, a) ≥ 0, where

f(p, a) := 3p− (1− qa)− 2pa,

for all 1
3
≤ p ≤ 1

2
and all 1 ≤ a ≤ n.

If a = 1 then f(p, 1) = 3p− (1− q)− 2p = 0, and we are done. So we may assume that
2 ≤ a ≤ n, and we show that f(p, a) > 0.
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If p = 1
3
then f(1

3
, a) = 1 − 1 + (2

3
)a − 2(1

3
)a = (1

3
)a(2a − 2) > 0. We claim that f(p, a)

is increasing in p, which yields f(p, a) ≥ f(1
3
, a) > 0 (for a ≥ 2). We have

∂f

∂p
(p, a) = 3− aqa−1 − 2apa−1.(9)

Fix p and let g(a) denote the RHS of (9). We have g(2) = 1 − 2p > 0 for 1
3
≤ p < 1

2
.

Next we show that g(a) is increasing in a. For this we have

g(a+ 1)− g(a) = (ap− q)qa−1 + 2(aq − p)pa−1,

and we need to show that the RHS is positive. Since aq − p ≥ ap− q it suffices to show
that ap− q ≥ 0, or equivalently, a ≥ 1−p

p
. Indeed a ≥ 2 ≥ 1−p

p
because p ≥ 1

3
. Thus g(a)

is increasing in a, and g(a) ≥ g(2) > 0 as needed. �

4.2. Proof of (3) of Theorem 7. Recall that, for i < j, we write [i, j] := {i, i +
1, . . . , j} = [j] \ [i− 1].

We divide Fi = {{1} ⊔A : A ∈ Ai} ∪ Bi, where

Ai := {F \ {1} : 1 ∈ F ∈ Fi} ⊂ 2[2,n],

Bi := {F : 1 6∈ F ∈ Fi} ⊂ 2[2,n].

Since Fi 6= ∅ is shifted, we have Ai 6= ∅. Let ai = µp(Ai : [2, n]) > 0 and bi = µp(Bi :

[2, n]) ≥ 0. Then
∑3

i=1 µp(Fi) =
∑3

i=1(pai + qbi). Without loss of generality we may
assume that b1 ≥ b2 ≥ b3. If b1 = 0 then Bi = ∅ for all i. In this case 1 ∈ ⋂

F , where the
intersection is taken over all F ∈ F1 ∪ F2 ∪ F3, a contradiction. So we may assume that
b1 6= 0, that is, B1 6= ∅.
Claim 12. Let {i, j, k} = [3].

(1) If {Ai,Aj,Bk} are all non-empty, then they are 3-cross intersecting, and ai+aj +
bk ≤ 3p.

(2) If {Ai,Bj ,Bk} are all non-empty, then they are 3-cross 2-intersecting, and ai +
bj + bk ≤ 1.

Proof. The item (1) follows from the assumption that Fi,Fj,Fk are 3-cross intersecting,
and (2) of Theorem 7.

To show (2), suppose, to the contrary, that there exist three subsets Ai ∈ Ai, Bj ∈ Bj ,
Bk ∈ Bk, and x ∈ [2, n] such that {x} ⊃ Ai ∩ Bj ∩ Bk. By definition we have Fi :=
{1}∪Ai ∈ Fi and Fk := Bk ∈ Fk. By the shiftedness we have Fj := (Bj \{x})∪{1} ∈ Fj.
Then Fi ∩ Fj ∩ Fk = ∅, a contradiction. Thus {Ai,Bj ,Bk} are 3-wise 2-intersecting, and
the inequality follows from Lemma 3. �

Now we will show that
∑3

i=1 µp(Fi) ≤ 3p− ǫp, where ǫp = (2− 3p)(3p− 1).

4.2.1. Case B2 = B3 = ∅. Since {B1,A2,A3} are 3-cross intersecting, any two of them are
2-cross intersecting. Then, by (2) of Theorem 7 and Lemma 2, we have the following.

Claim 13. (1) b1 + a2 + a3 ≤ 3p,
(2) b1 + a2 ≤ 1,
(3) b1 + a3 ≤ 1.
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We solve the following linear programming problem:

maximize:
∑3

i=1 µp(Fi) = p(a1 + a2 + a3) + qb1,
subject to: (1)–(3) in Claim 13, and 0 ≤ ai ≤ 1 for all i, 0 ≤ b1 ≤ 1.

The corresponding dual problem is

minimize: 3py1 +
∑7

i=2 yi,
subject to: y4 ≥ p, y1 + y2 + y5 ≥ p, y1 + y3 + y6 ≥ p, y1 + y2 + y3 + y7 ≥ q, and

yi ≥ 0 for all i.

Table 1. Case B2 = B3 = ∅

a1 a2 a3 b1
y1 1 1 1 3p
y2 1 1 1
y3 1 1 1
y4 1 1
y5 1 1
y6 1 1
y7 1 1

p p p q

A feasible solution is given by y1 = 3p − 1, y2 = y3 = 1 − 2p, y4 = p, y5 = y6 = y7 = 0,
and the corresponding value of the objective function is

3p(3p− 1) + 2(1− 2p) + p = 2− 6p+ 9p2 = 3p− ǫp.

Then it follows from Theorem 8 (weak duality) that the same bound applies to the primal
problem, and so

∑3
i=1 µp(Fi) ≤ 3p− ǫp.

4.2.2. Case B2 6= ∅, B3 = ∅. In this case {A1,B2,A3} and {B1,A2,A3} are both 3-cross
intersecting, and {B1,B2,A3} are 3-cross 2-intersecting. Thus we have the following.

Claim 14. (1) b1 + a2 + a3 ≤ 3p,
(2) a1 + b2 + a3 ≤ 3p,
(3) b1 + b2 + a3 ≤ 1,
(4) b1 + a2 ≤ 1,
(5) a1 + b2 ≤ 1.

We solve the following linear programming problem:

maximize:
∑3

i=1 µp(Fi) = p(a1 + a2 + a3) + q(b1 + b2),
subject to: (1)–(5) in Claim 14, and 0 ≤ ai ≤ 1 for all i, 0 ≤ bj ≤ 1 for all j.

The corresponding dual problem is

minimize: 3p(y1 + y2) +
∑10

i=3 yi,
subject to: y2+y5+y6 ≥ p, y1+y4+y7 ≥ p, y1+y2+y3+y8 ≥ p, y1+y3+y4+y9 ≥ q,

y2 + y3 + y5 + y10 ≥ q, and yi ≥ 0 for all i.
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Table 2. Case B2 6= ∅,B3 = ∅

a1 a2 a3 b1 b2
y1 1 1 1 3p
y2 1 1 1 3p
y3 1 1 1 1
y4 1 1 1
y5 1 1 1
y6 1 1
y7 1 1
y8 1 1
y9 1 1
y10 1 1

p p p q q

A feasible solution is given by y1 = y6 = y7 = y8 = y9 = y10 = 0, y2 = 3p − 1,
y3 = y5 = 1− 2p, y4 = p, and the corresponding value of the objective function is

3p(3p− 1) + 2(1− 2p) + p = 3p− ǫp.

Thus, by the weak duality, we have
∑3

i=1 µp(Fi) ≤ 3p− ǫp.

4.2.3. Case B2 6= ∅, B3 6= ∅. Let {i, j, k} = [3]. Then families {Ai,Aj,Bk} are 3-cross
intersecting, and families {Ai,Bj ,Bk} are 3-cross 2-intersecting. Thus we have the follow-
ing.

Claim 15. (1) b1 + a2 + a3 ≤ 3p,
(2) a1 + b2 + a3 ≤ 3p,
(3) a1 + a2 + b3 ≤ 3p,
(4) a1 + b2 + b3 ≤ 1,
(5) b1 + a2 + b3 ≤ 1,
(6) b1 + b2 + a3 ≤ 1.

We solve the following linear programming problem:

maximize:
∑3

i=1 µp(Fi) = p(a1 + a2 + a3) + q(b1 + b2 + b3),
subject to: (1)–(6) in Claim 15, and 0 ≤ ai ≤ 1 for all i, 0 ≤ bj ≤ 1 for all j.

The corresponding dual problem is

minimize: 3p(y1 + y2 + y3) +
∑12

i=4 yi,
subject to: y2 + y3 + y4 + y7 ≥ p, y1 + y3 + y5 + y8 ≥ p, y1 + y2 + y6 + y9 ≥ p,

y1 + y5 + y6 + y10 ≥ q, y2 + y4 + y6 + y11 ≥ q, y3 + y4 + y5 + y12 ≥ q, and yi ≥ 0
for all i.

A feasible solution is given by y1 = 3p− 1, y2 = y3 = y7 = y8 = y9 = y10 = y11 = y12 = 0,
y4 = p, y5 = y6 = 1− 2p, and the corresponding value of the objective function is

3p(3p− 1) + p+ 2(1− 2p) = 3p− ǫp.

Thus we have
∑3

i=1 µp(Fi) ≤ 3p− ǫp.
This complete the proof of (3) of Theorem 7. �
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Table 3. Case B2 6= ∅,B3 6= ∅

a1 a2 a3 b1 b2 b3
y1 1 1 1 3p
y2 1 1 1 3p
y3 1 1 1 3p
y4 1 1 1 1
y5 1 1 1 1
y6 1 1 1 1
y7 1 1
y8 1 1
y9 1 1
y10 1 1
y11 1 1
y12 1 1

p p p q q q

5. Proof of Theorem 6

Let 2
5
≤ p ≤ 1

2
, and let F ⊂ 2[n] be a non-trivial 3-wise intersecting family. Suppose

that F is shifted, inclusion maximal, and F 6⊂ BD3(n). We may also assume that F is
size maximal (with respect to 3-wise intersection condition), that is, for every G 6∈ F , the
larger family F ∪ {G} is no longer 3-wise intersecting. Our goal is to show that

µp(F) < µp(BD3(n))− 0.0018.

For I ⊂ [3] define FI ⊂ 2[n] and GI ⊂ 2[4,n] by

FI = {F ∈ F : F ∩ [3] = I},
GI = {F \ [3] : F ∈ FI}.

Let xI = µp(GI : [4, n]). Then we have

µp(FI) = p|I|q3−|I|xI ,

and

µp(F) =
∑

I⊂[3]

p|I|q3−|I|xI .(10)

For simplicity we often write GI or xI without braces and commas, e.g., we write G12 to
mean G{1,2}. Let Ī denote [3] \ I.
Claim 16. If I, J ⊂ [3] satisfy I  J then GI ⊂ GJ and xI ≤ xJ .

Proof. Suppose that G ∈ GI . Then I ∪ G ∈ FI . Since F is shifted, inclusion maximal,
and I  J , we have that J ∪G ∈ FJ , and so G ∈ GJ . Thus GI ⊂ GJ , and so xI ≤ xJ . �

Applying Claim 16 to the diagram in Figure 2, we get Claim 17.

Claim 17. We have x∅ ≤ x3 ≤ x2 ≤ x1 ≤ x13 ≤ x12 ≤ x123, and x2 ≤ x23 ≤ x13.
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∅  {3} {2}
 

 

{1}

{2, 3}

 

 

{1, 3} {1, 2} {1, 2, 3}

Figure 2. Poset induced by shifting and inclusion

Let I1, I2, I3 ⊂ [3]. Define a 3× 3 matrix M = M(I1, I2, I3) = (mi,j) by

mi,j =

{

1 if j ∈ Ii,

0 if j 6∈ Ii.

Then I1 ∩ I2 ∩ I3 = ∅ if and only if every column of M contains (at least one) 0. In this
case we say that M is acceptable, and let τ := 7− s, where s is the total sum of mi,j.

Claim 18. Let M(I1, I2, I3) be acceptable. If {GI1,GI2 ,GI3} are all non-empty, then they
are 3-cross τ -intersecting, and any two of them are 2-cross τ -intersecting.

Proof. Let us start with two concrete examples.
First example is the case I1 = I2 = {1}, I3 = {2, 3}, and so s = 1 + 1 + 2 = 4,

τ = 7−4 = 3. We show that {G1,G1,G23} are 3-cross 3-intersecting. Suppose the contrary.
Then there are G1, G

′
1 ∈ G1, G23 ∈ G23 and x, y ∈ [4, n] such that G1 ∩G′

1 ∩G23 ⊂ {x, y}.
Let F12 = {1, 2}∪ (G1 \ {x}), F13 = {1, 3}∪ (G′

1 \ {y}), and F23 = {2, 3}∪G23 ∈ F23. By
the shiftedness we have F12 ∈ F12 and F13 ∈ F13. But F12∩F13∩F23 = ∅, a contradiction.

Next example is the case I1 = I2 = I3 = ∅, and so τ = 7. We show that {G∅,G∅,G∅}
are 3-cross 7-intersecting, that is, G∅ is 3-wise 7-intersecting. Suppose the contrary. Then
there are F, F ′, F ′′ ∈ F∅ and x1, . . . , x6 ∈ [4, n] such that F ∩ F ′ ∩ F ′′ ⊂ {x1, . . . , x6}.
Let F12 := (F \ {x1, x2}) ∪ {1, 2} ∈ F12, F ′

13 := (F ′ \ {x3, x4}) ∪ {1, 3} ∈ F13, and
F ′′
23 := (F ′ \ {x5, x6}) ∪ {2, 3} ∈ F23. Then we have F12 ∩ F ′

13 ∩ F ′′
23 = ∅, a contradiction.

The following proof for the general case is given by one of the referees. We assume by
contradiction that there are sets Gi ∈ GI such that |G1 ∩ G2 ∩ G| ≤ τ − 1 = 6 − s. The
matrix M has s “taken” places out of 9. “Reserve” one empty spot in each column (these
are available since the matrix is acceptable). We are left with 6 − s empty spots, say ri
in row i. Shift ri elements from Gi to the empty spots on row i to construct a new set Fi,
no longer belonging to GIi. By construction, F1, F2, F3 have empty intersection. �

5.1. Case G1 = ∅. In this case, by Claim 17, we have G∅ = G3 = G2 = G1 = ∅.
First suppose that G23 6= ∅. If

⋂

G 6= ∅, where the intersection is taken over all
G ∈ G12 ∪ G13 ∪ G23, then since the family is shifted, 4 ∈ ⋂

G. Since F ⊂ F23 ∪ F13 ∪
F12 ∪ F123, we have |F ∩ [4]| ≥ 3 for every F ∈ F . This means that F ⊂ BD3(n),
which contradicts our assumption. Therefore we have

⋂

G = ∅. Moreover, the families
G12,G13,G23 are 3-cross intersecting by Claim 18. Thus we can apply (3) of Theorem 7
with min{ǫp : 2

5
≤ p ≤ 1

2
} = 4

25
to get

x12 + x13 + x23 ≤ 3p− ǫp ≤ 3p− 0.16.
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Next suppose that G23 = ∅. By Lemma 2 we have x12+x13+x23 = x12+x13 ≤ 1 ≤ 3p−0.2.
Thus in both cases we have x12 + x13 + x23 ≤ 3p− 0.16. Then it follows from (10) that

µp(F) = p2q(x12 + x13 + x23) + p3x123

≤ p2q(3p− 0.16) + p3

= 4p3q + p4 − 0.16p2q.

Noting that µp(BD3(n)) = 4p3q + p4 and p2q ≥ 12
125

= 0.96 for 2
5
≤ p ≤ 1

2
, we have

µp(F) ≤ 4p3q + p4 − 0.16 · 0.96 < µp(BD3(n))− 0.01,

as needed.

5.2. Case G1 6= ∅ and G2 = ∅. If G23 = ∅ then [2, n] 6∈ F . This means that there are
F, F ′ ∈ F such that F ∩ F ′ = {1}. (Otherwise all F, F ′ ∈ F intersect on [2, n] and
we could add [2, n] to F , which contradicts the assumption that F is size maximal.) In
this case all subsets in F must contain 1, which contradicts the assumption that F is
non-trivial. So we may assume that G23 6= ∅. Then both F1 and F23 are non-empty, and
so the families F13,F12,F123 are also non-empty by Claim 17.

By Claim 18 we have the following.

Claim 19. (1) {G1,G1,G23} are 3-cross 3-intersecting, and so G1 is 2-wise 3-intersecting.
(2) {G12,G13,G23} are 3-cross intersecting, and so {G12,G13} are 2-cross intersecting.
(3) {G1,G23,G123} are 3-cross intersecting, and so both {G1,G123} and {G23,G123} are

2-cross intersecting.
(4) {G1,G12,G23} are 3-cross 2-intersecting.
(5) {G1,G23,G23} are 3-cross 2-intersecting, and so G23 is 2-wise 2-intersecting.

Claim 20. (1) min{x1, x23} ≤ α̃3 (see Claim 5 for the definition of α̃).

(2) x12 + cx13 ≤ p(c+ 1), where c = 1
2p
(1 +

√

1− 4p2).

(3) x1 + x123 ≤ 1.
(4) x23 + x123 ≤ 1.
(5) x1 + x12 + x23 ≤ 1.
(6) x23 ≤ ã2 (see Claim 7 for the definition of ãt).
(7) x1 ≤ ã3.

Proof. Item (1): By Lemma 4 with (1) of Claim 19, we have x2
1x23 ≤ α9. Then, using

α ≤ α̃ from Claim 5, we get (min{x1, x23})3 ≤ x2
1x23 ≤ α9 ≤ α̃9.

Item (2): By (i) of Lemma 2 with (2) of Claim 19, we have x13 + x12 ≤ 1. Moreover,
by (ii) of Lemma 2 with x13 ≤ x12 from Claim 17, we have x2

13 ≤ x13x12 ≤ p2 and
x13 ≤ p. By solving x13x12 = p2 and x13 + x12 = 1 with x13 ≤ x12 we get (x13, x12) =

(1
2
(1 −

√

1− 4p2), 1
2
(1 +

√

1− 4p2)) = (1 − cp, cp). Also, by solving x13x12 = p2 and
x13 = x12 we get (x13, x12) = (p, p). Thus (x13, x12) exists only under the line connecting
these two points, that is, x12 ≤ c(p− x13) + p. (See Figure 3)

Items (3) and (4): These follow from (i) of Lemma 2 with (3) of Claim 19.
Items (5): This follows from Lemma 3 with (4) of Claim 19.
Items (6): This follows from Claim 7 with (5) of Claim 19.
Items (7): This follows from Claim 7 with (1) of Claim 19. �
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x13x12 = p2

x12 = c(p− x13) + p

Figure 3. Item (2) of Claim 20: (x13, x12) is included in the gray area

Recall from (10) that µp(F) = pq2x1 + p2q(x12 + x13 + x23) + p3x123.

5.2.1. Subcase x1 ≤ x23. We solve the following linear programming problem:

maximize: pq2x1 + p2q(x12 + x13 + x23) + p3x123,
subject to: x1 − x23 ≤ 0, (1)–(6) in Claim 20, and xI ≥ 0 for all I.

The corresponding dual problem is

minimize: α̃3y1 + p(c+ 1)y2 + y3 + y4 + y5 + ã2y6,
subject to: y0+y1+y3+y5 ≥ pq2, −y0+y4+y5+y6 ≥ p2q, cy2 ≥ p2q, y2+y5 ≥ p2q,

y3 + y4 ≥ p3, and yi ≥ 0 for all i.

Table 4. Subcase x1 ≤ x23

x1 x23 x13 x23 x123

y0 1 −1 0
y1 1 α̃3

y2 c 1 p(c+ 1)
y3 1 1 1
y4 1 1 1
y5 1 1 1 1
y6 1 ã2

pq2 p2q p2q p2q p3

A feasible solution is given by y0 = y6 = 0, y1 = pq2 − p2q(1 − 2
c
) − p3, y2 = y4 = p2q

c
,

y3 = p3 − p2q
c
, y5 = p2q(1− 1

c
), and the corresponding value of the objective function is

p
(

p+ p2 − p3 + α̃3(1− 3p+ p2)
)

− 1

c
p2q(1− 2α̃3 − p).(11)
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By the Taylor expansion of 1
c
at p = 2

5
it follows that 1

c
> d(p), where d(p) = 1375p2

216
−

325p
108

+ 37
54

for 2
5
≤ p ≤ 1

2
. Since 1− 2α̃3 − p > 0 in this interval, the value (11) satisfies

< p
(

p+ p2 − p3 + α̃3(1− 3p+ p2)
)

− d(p)p2q(1− 2α̃3 − p) =: f(p)

≈ −0.00633167p+ 0.490037p2 + 3.71975p3 − 8.76595p4

+ 21.3084p5 − 61.7755p6 + 95.9036p7 − 52.7438p8.

Let g(p) := (4p3q + p4 − 0.00194) − f(p), and let g(i)(p) denote the i-th derivative. Let
2
5
≤ p ≤ 1

2
. We have g(6)(p) ≈ 1063314.937p2−483354.3468p+44478.39041 and g(6)(p) > 0.

Thus g(4)(p) is convex. Since g(4)(2
5
) < −213 < 0 and g(4)(1

2
) < −112 < 0, we have

g(4)(p) < 0. Thus g(3)(p) is decreasing in p. Since g(3)(2
5
) < −7 < 0 we have g(3)(p) < 0.

Thus g′(p) is concave. Since g′(2
5
) > 0.23 > 0 and g′(1

2
) > 0.34 > 0, we have g′(p) > 0

and g(p) is increasing in p. Finally we have g(2
5
) > 3 × 10−6 > 0, and so g(p) > 0. This

means that the value (11) is less than 4p3q + p4 − 0.00194.
Then by the weak duality theorem we have µp(F) < 4p3q + p4 − 0.00194.

5.2.2. Subcase x23 ≤ x1. We solve the following linear programming problem:

maximize: pq2x1 + p2q(x12 + x13 + x23) + p3x123,
subject to: x23 − x1 ≤ 0, (1)–(5) and (7) in Claim 20, and xI ≥ 0 for all I.

The corresponding dual problem is

minimize: α̃3y1 + p(c+ 1)y2 + y3 + y4 + y5 + ã3y7,
subject to: −y0+y3+y5+y7 ≥ pq2, y0+y1+y4+y5 ≥ p2q, cy2 ≥ p2q, y2+y5 ≥ p2q,

y3 + y4 ≥ p3, and yi ≥ 0 for all i.

Table 5. Subcase x23 ≤ x1

x1 x23 x13 x23 x123

y0 −1 1 0
y1 1 α̃3

y2 c 1 p(c+ 1)
y3 1 1 1
y4 1 1 1
y5 1 1 1 1
y7 1 ã3

pq2 p2q p2q p2q p3

A feasible solution is given by y0 = y4 = 0, y1 = y2 = p2q(1− 1
c
), y3 = p3, y5 = p2q(1− 1

c
),

y7 = pq2−p2q(1− 1
c
)−p3. Noting that c+ 1

c
= p, the corresponding value of the objective

function is

p3
(

−α̃3 + ã3 − 1
)

+ p2
(

α̃3 − 3ã3 + 2
)

+ ã3p−
1

c
p2q

(

α̃3 − ã3 + 2p+ 1
)

.
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Then, using α̃3 − ã3 + 2p + 1 > 0 and 1
c
> d(p) (see the previous subsection), the above

value satisfies

< −1.50324p+ 8.79901p2 − 3.86493p3 − 26.8212p4

+ 30.6062p5 + 12.8608p6 − 47.9518p7 + 26.3719p8 =: f(p).

Let g(p) := (4p3q + p4 − 0.00182)− f(p). Let J1 = {p ∈ R : 2
5
≤ p ≤ 9

20
}, J2 = {p ∈ R :

9
20

≤ p ≤ 1
2
}, and J = J1 ∪ J2. We need to show that g(p) > 0 for p ∈ J .

First we show that g(4)(p) > 0 for p ∈ J1. We have g(7)(p) < 0 for p ∈ J . Thus g(5)(p)
is concave. Since g(5)(2

5
) > 0 and g(5)( 9

20
) > 0 we have g(5)(p) > 0 for p ∈ J1. Thus g

4(p)

is increasing in p ∈ J1. Since g(4)( 9
20
) < 0, we have g(4)(p) < 0 for p ∈ J1.

Next we show that g(4)(p) > 0 for p ∈ J2. Since g(7)(p) < 0, g(6)(p) is decreasing in
p. Since g(6)( 9

20
) < 0, g(4)(p) is concave for p ∈ J2. Let h(p) = 481.064p − 381.36 be

the tangent to g(4)(p) at p = 9
20
. Then we have g(4)(p) ≤ h(p) ≤ h(1

2
) for p ∈ J2. Since

h(1
2
) < 0, we have g(4)(p) < 0 for p ∈ J2.

Let p ∈ J . We have shown that g(4)(p) > 0. Then g(2)(p) is concave. Since g(2)(2
5
) > 0

and g(2)(1
2
) > 0, we have g(2)(p) > 0. Thus g′(p) is increasing in p. Since g′(2

5
) > 0, we

have g′(p) > 0 and g(p) is increasing in p. Since g(2
5
) > 0, we have g(p) > 0 as needed.

Thus it follows from the weak duality theorem that µp(F) < 4p3q + p4 − 0.0018.

5.3. Case G2 6= ∅, G3 = ∅. Using Claim 18 we have the following.

Claim 21. (1) {G1,G1,G2} are 3-cross 4-intersecting, and so G1 is 2-wise 4-intersecting.
(2) {G2,G13,G13} are 3-cross 2-intersecting, and so G13 is 2-wise 2-intersecting.
(3) {G2,G13,G123} are 3-cross intersecting, and so {G13,G123} are 2-cross intersecting.
(4) {G2,G12,G13} are 3-cross 2-intersecting.
(5) {G1,G2,G123} are 3-cross 2-intersecting.

Claim 22. (1) x1 ≤ ã4.
(2) x13 ≤ ã2.
(3) x2 ≤ α̃4.
(4) x13 + x123 ≤ 1.
(5) x1 + x12 + x23 ≤ 1.
(6) x2 + x12 + x13 ≤ 1.
(7) x1 + x2 + x123 ≤ 1.

Proof. Item (3): By Lemma 4 with (1) of Claim 21, we have x2
1x2 ≤ α12. Then, using

x2 ≤ x1 from Claim 17 and Claim 5, we get x3
2 ≤ x2

1x2 ≤ α12 ≤ α̃12.
Item (5) is from Claim 20. Indeed all inequalities in Claim 20 are still valid in this case.
The other items follow from Claim 21, Claim 7, Lemma 2, and Lemma 3. �

We solve the following linear programming problem:

maximize: pq2(x1 + x2) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(7) in Claim 22, and xI ≥ 0 for all I.

The corresponding dual problem is

minimize: ã4y1 + ã2y2 + α̃4y3 + y4 + y5 + y6 + y7,
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subject to: y3 + y6 + y7 ≥ pq2, y1 + y5 + y7 ≥ pq2, y5 ≥ p2q, y2 + y4 + y6 ≥ p2q,
y5 + y6 ≥ p2q, y4 + y7 ≥ p3, and yi ≥ 0 for all i.

Table 6. Case G2 6= ∅

x2 x1 x23 x13 x23 x123

y1 1 ã4
y2 1 ã2
y3 1 α̃4

y4 1 1 1
y5 1 1 1 1
y6 1 1 1 1
y7 1 1 1 1

pq2 pq2 p2q p2q p2q p3

A feasible solution is given by y1 = pq(1−2p), y2 = p2(1−2p), y3 = pq2, y4 = p3, y5 = p2q,
y6 = y7 = 0. Then the corresponding value of the objective function is

ã4pq(1− 2p) + ã2p
2(1− 2p) + α̃4pq2 + p2

≈ −1.70723p+ 9.39501p2 − 10.639p3 − 1.74811p4

+ 13.3146p5 − 16.3729p6 + 6.6536p7

< 4p3q + p4 − 0.00436,

and so µp(F) < 4p3q + p4 − 0.004.

5.4. Case G3 6= ∅, G∅ = ∅. Using Claim 18 we have the following.

Claim 23. (1) {G3,G12,G12} are 3-cross 2-intersecting, and so G12 is 2-wise 2-intersecting.
(2) {G3,G12,G123} are 3-cross intersecting, and so {G12,G123} are 2-cross intersecting.

Claim 24. (1) x1 ≤ ã4.
(2) x12 ≤ ã2.
(3) x2 ≤ α̃4.
(4) x12 + x123 ≤ 1.
(5) x1 + x12 + x23 ≤ 1.
(6) x2 + x12 + x13 ≤ 1.
(7) x1 + x2 + x123 ≤ 1.
(8) x3 − x2 ≤ 0.
(9) x23 − x13 ≤ 0.

(10) x13 − x12 ≤ 0.

Proof. Items (1), (3), (6), and (7) are from Claim 21. Items (2) and (4) follow from
Claim 23, Claim 7, and Lemma 2. Item (5) is from Claim 19. The other items are from
Claim 17. �

We solve the following linear programming problem:

maximize: pq2(x1 + x2 + x3) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(10) in Claim 24, and xI ≥ 0 for all I.
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The corresponding dual problem is

minimize: ã4y1 + ã2y2 + α̃4y3 + y4 + y5 + y6 + y7,
subject to: y8 ≥ pq2, y3 + y6 + y7 − y8 ≥ pq2, y1 + y5 + y7 ≥ pq2, y5 + y9 ≥ p2q,

y6− y9+ y10 ≥ p2q, y2+ y4+ y5+ y6 − y10 ≥ p2q, y4+ y7 ≥ p3, and yi ≥ 0 for all i.

Table 7. Case G3 6= ∅

x3 x2 x1 x23 x13 x23 x123

y1 1 ã4
y2 1 ã2
y3 1 α̃4

y4 1 1 1
y5 1 1 1 1
y6 1 1 1 1
y7 1 1 1 1
y8 1 −1 0
y9 1 −1 0
y10 1 −1 0

pq2 pq2 pq2 p2q p2q p2q p3

We distinguish the following two subcases.

5.4.1. Subcase 2
5
≤ p ≤ 0.453264. A feasible solution is given by y1 = pq2, y2 = p2(3−4p),

y3 = 2pq2, y4 = p3, y5 = y6 = y7 = 0, y8 = pq2, y9 = p2q, y10 = 2p2q, and the
corresponding value of the objective function is

p
(

ã4q
2 + ã2(3− 4p)p+ 2α̃4q2 + p2

)

≈ −1.70606p+ 4.43558p2 + 5.72241p3 − 16.7467p4

+ 26.6293p5 − 32.7457p6 + 13.3072p7

< 4p3q + p4 − 0.00404377.

Thus µp(F) < 4p3q + p4 − 0.004.

5.4.2. Subcase 0.453264 ≤ p ≤ 1
2
. A feasible solution is given by y1 = y6 = y9 = 0,

y2 = p(1 − 2p), y3 = pq, y4 = p(3p − p2 − 1), y5 = y10 = p2q, y7 = pq(1 − 2p), y8 = pq2,
and the corresponding value of the objective function is

p
(

ã2(1− 2p) + α̃4q + p
)

≈ −1.10283p+ 6.37415p2 − 5.84563p3 − 3.59536p4 + 9.71927p5 − 6.6536p6

< 4p3q + p4 − 0.00404377.

Thus µp(F) < 4p3q + p4 − 0.004.
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5.5. Case G∅ 6= ∅. Using Claim 18 we have the following.

Claim 25. (1) {G∅,G∅,G∅} are 3-cross 7-intersecting, that is, G∅ is 3-wise 7-intersecting.
(2) {G1,G1,G∅} are 3-cross 5-intersecting, and so G1 is 2-wise 5-intersecting.
(3) {G∅,G123,G123} are 3-cross intersecting, and so {G123,G123} are 2-cross intersecting.

Claim 26. (1) x∅ ≤ α̃7.
(2) x2 ≤ α̃4.
(3) x1 ≤ ã5.
(4) x123 ≤ p.
(5) x1 + x12 + x23 ≤ 1.
(6) x3 − x2 ≤ 0.
(7) x23 − x13 ≤ 0.
(8) x13 − x12 ≤ 0.
(9) x12 − x123 ≤ 0.

Proof. Items (1), (3), and (4) follow from Claim 25, Lemma 4, Claim 5, Claim 7, and
Lemma 2. Items (2) and (5) are from Claim 22 and Claim 20, respectively. The other
items are from Claim 17. �

We solve the following linear programming problem:

maximize: q3x∅ + pq2(x1 + x2 + x3) + p2q(x12 + x13 + x23) + p3x123,
subject to: (1)–(9) in Claim 26, and xI ≥ 0 for all I.

The corresponding dual problem is

minimize: α̃7y1 + α̃4y2 + ã5y3 + py4 + y5,
subject to: y1 ≥ q3, y6 ≥ pq2, y2 − y6 ≥ pq2, y3 + y5 ≥ pq2, y5 + y7 ≥ p2q,

−y7 + y8 ≥ p2q, y5 − y8 + y9 ≥ p2q, y4 − y9 ≥ p3, and yi ≥ 0 for all i.

Table 8. Case G∅ 6= ∅

x∅ x3 x2 x1 x23 x13 x23 x123

y1 1 α̃7

y2 1 α̃4

y3 1 α̃3

y4 1 p
y5 1 1 1 1
y6 1 −1 0
y7 1 −1 0
y8 1 −1 0
y9 1 −1 0

q3 pq2 pq2 pq2 p2q p2q p2q p3

We distinguish the following two subcases.

5.5.1. Subcase 2
5
≤ p ≤ 0.424803. A feasible solution is given by y1 = q3, y2 = 2pq2,

y3 = y6 = pq2, y4 = p2(3 − 2p), y5 = 0, y7 = p2q, y8 = 2p2q, y9 = 3p2q, and the
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corresponding value of the objective function is

α̃7q3 + 2α̃4pq2 + ã5pq
2 + p3(3− 2p)

≈ −27.5644p10 + 104.919p9 − 157.051p8 + 132.065p7 − 82.6061p6 + 39.2544p5

− 7.70344p4 − 6.68845p3 + 8.19629p2 − 1.82104p− 7.41682 · 10−6

< 4p3q + p4 − 0.004322.

Thus µp(F) < 4p3q + p4 − 0.004.

5.5.2. Subcase 0.424803 ≤ p ≤ 1
2
. A feasible solution is given by y1 = q3, y2 = 2pq2,

y3 = pq(1 − 2p), y4 = p2, y5 = y8 = y9 = p2q, y6 = pq2, y7 = 0, and the corresponding
value of the objective function is

α̃7q3 + 2α̃4pq2 + ã5pq(1− 2p) + p2

≈ −27.5644p10 + 104.919p9 − 157.051p8 + 132.065p7 − 82.6061p6 + 39.2544p5

− 1.05572p4 − 16.16p3 + 11.0202p2 − 1.82104p− 7.41682 · 10−6

< 4p3q + p4 − 0.004322.

Thus µp(F) < 4p3q + p4 − 0.004.

This completes the proof of Theorem 6. �

6. Concluding remarks

In this section we discuss possible extensions and related problems.

6.1. Non-trivial r-wise intersecting families for r ≥ 4. We have determined M2(p)
and M3(p) for all p. Let us consider Mr(p) for the general case r ≥ 4. Some of the facts
we used for the cases r = 2, 3 can be easily extended for the other cases as follows.

Proposition 1. Let r ≥ 2.

(1) For s = 0, 1, . . . , r − 1 we have Mr(p) ≥ ps for p > r−s−1
r−s

.

(2) Mr(p) = pr−1 for 0 < p ≤ 1
r
.

(3) Mr(p) = p for r−2
r−1

< p ≤ r−1
r
.

(4) Mr(p) = 1 for r−1
r

< p < 1.

Proof. Item (1): We construct a non-trivial r-wise intersecting family

Fr(n, s) := {{[s] ∪G : G ⊂ [s+ 1, n], |G| ≥ r−s−1
r−s

n}} ∪ {[n] \ {i} : 1 ≤ i ≤ s}.
Then µp(Fr(n, s)) → ps as n → ∞, cf. [11].

Item (2): By item (1) with s = r − 1 we have Mr(p) ≥ pr−1. On the other hand, a
non-trivial r-wise intersecting family is 2-wise (r − 1)-intersecting, and by Theorem 11
the p-measure of the family is at most pr−1 if p ≤ 1

r
.

Item (3): By item (1) with s = 1 we have Mr(p) ≥ p. On the other hand, it is known
from [8, 10, 22] that r-wise intersecting family has p-measure at most p if p ≤ r−1

r
.

Item (4): By item (1) with s = 0 we have Mr(p) ≥ 1, and so Mr(p) = 1 by definition
of Mr(p). �
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Even for the case r = 4 the exact value of M4(p) is not known for 1
4
< p ≤ 2

3
. In this

case Proposition 1 and Theorem 1 give us the following. For simplicity here we write
bdr(p) = limn→∞ µp(BDr(n)) and fr(p, s) = limn→∞ µp(Fr(n, s)).

Fact 1. For non-trivial 4-wise intersecting families we have the following:

M4(p)















































= f4(p, 3) = p3 if 0 < p ≤ 1
4
,

≥ bd4(p) = 5p4q + p5 if 1
4
≤ p < 1

2
,

= bd4(p) = 5p4q + p5 if p = 1
2
,

≥ f4(p, 2) = p2 if 1
2
< p ≤ 1+

√
17

8
,

≥ bd4(p) = 5p4q + p5 if 1+
√
17

8
< p ≤ 2

3
,

= f4(p, 1) = p if 2
3
< p ≤ 3

4
,

= 1 if 3
4
< p < 1.

Conjecture 2. For r ≥ 2 it holds that Mr(p) = bdr(p) for
1
r
≤ p ≤ 1

2
.

It is known that Mr(p) = bdr(p) if r ≥ 13 and 1
2
≤ p ≤ 1

2
+ ǫr for some ǫr > 0, see [11].

Note also that M5(p) ≥ f5(p, 3) > bd5(p) for
1
2
< p < 1+

√
21

10
.

Problem 1. Let 0 < p ≤ r−1
r
, and let F ⊂ 2[n] be a non-trivial r-wise intersecting family.

Is it true that
Mr(p) ≤ max{bdr(p), fr(p, 1), . . . , fr(p, r − 1)} ?

6.2. Uniform families. One can consider non-trivial r-wise intersecting k-uniform fam-
ilies, that is, families in

(

[n]
k

)

:= {F ⊂ [n] : |F | = k}, and ask the maximum size. Let
us construct some candidate families to address this problem. For 1 ≤ s ≤ r − 1 and

r− s+ 1 ≤ y ≤ k− s+ 1, let j0 := ⌈ (r−s−1)y+1
r−s

⌉. Note that j0 < y and j0 is the minimum
integer j satisfying (r − s)j ≥ (r − s− 1)y + 1. Let Fr(n, k, s, y) := A ∪ B, where

A := {A ∈
(

[n]
k

)

: [s] ⊂ A, |A ∩ [s+ 1, s+ y]| ≥ j0},
B := {B ∈

(

[n]
k

)

: |B ∩ [s]| = s− 1, [s + 1, s+ y] ⊂ B}.
Then the family {A \ [s] : A ∈ A} is (r − s)-wise intersecting due to the choice of j0 and
y. Thus Fr(n, k, s, y) is a k-uniform non-trivial r-wise intersecting family. In particular,

Fr(n, k, 1, r) = BDr(n) ∩
(

[n]
k

)

(j0 = r − 1),

and Fr(n, k, r − 1, k − r + 2) (j0 = 1) is the so-called Hilton–Milner family. Note that
different parameters may give the same family, e.g., Fr(n, k, 1, r) = Fr(n, k, s, r − s + 1)
for all 1 ≤ s ≤ r − 1.

Conjecture 3 (O’Neill and Versträete [17]). Let k > r ≥ 2 and n ≥ kr/(r − 1). Then

the unique extremal non-trivial r-wise intersecting families in
(

[n]
k

)

are Fr(n, k, 1, r) and
Fr(n, k, r − 1, k − r + 2) (up to isomorphism).

O’Neill and Versträete proved the conjecture if n ≥ r + e(k22k)2
k

(k − r). This bound
can be reduced to n > (1+ r

2
)(k−r+2) using the Ahlswede–Khachatrian theorem for non-

trivial 2-wise t-intersecting families in [3] with the fact that an r-wise intersecting family
is 2-wise (r − 1)-intersecting, see [4] for more details. The case r = 2 in the conjecture is
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known to be true as the Hilton–Milner theorem [14]. The case r = 3 is studied in [23], and
a k-uniform version of Theorem 3 is obtained, from which it follows that the conjecture
fails if n and k are sufficiently large and roughly 1

2
< k

n
≤ 2

3
. In this case F3(n, k, 1, k− 1)

or F3(n, k, 1, k) has size larger than F3(n, k, 1, 3) and F3(n, k, 2, k − 1) (see Theorem 4
in [23]). Balogh and Linz [4] verified that F3(11, 7, 1, 7) is indeed a counterexample to
the conjecture. They constructed the families Fr(n, k, 1, (r − 1)i + 1) (i ≤ ⌊k−1

r−1
⌋), and

suggested that the largest family of them could be a counterexample if n ≈ kr/(r − 1).
Here we show that Conjecture 3 fails if r ≥ 3, and n and k are sufficiently large and k/n
is roughly in ( r−2

r−1
, r−1

r
). More precisely we prove the following. Let Mr(n, k) denote the

maximum size of a non-trivial r-wise intersecting family in
(

[n]
k

)

.

Theorem 12. Let r ≥ 3. For every ǫ > 0 and every δ > 0, there exists n0 ∈ N such that
for all integers n and k with n > n0 and r−2

r−1
+ ǫ < k

n
< r−1

r
− ǫ, we have

(1− δ)

(

n− 1

k − 1

)

≤ Mr(n, k) <

(

n− 1

k − 1

)

.

Before proving this result, let us check that it gives counterexamples to the conjecture.
To this end, suppose that k

n
= p, and n and k are sufficiently large. Then we have

|Fr(n, k, r, 1)| = (r + 1)

(

n− r − 1

k − r

)

+

(

n− r − 1

k − r − 1

)

≈
(

(r + 1)pr−1q + pr
)

(

n

k

)

,

|Fr(n, k, r − 1, k − r + 2)| =
(

n− r + 1

k − r + 1

)

−
(

n− k − 1

k − r + 1

)

+ r − 1 ≈ pr−1

(

n

k

)

.

If p > 1
r
then (r + 1)pr−1q + pr > pr−1. Indeed if k > r and n ≤ r(k − r + 2), then

|Fr(n, k, r, 1)| > |Fr(n, k, r − 1, k − r + 2)|. If moreover p = k
n
≤ r−1

r
, then

lim
n,k→∞

|Fr(n, k, r, 1)|/
(

n− 1

k − 1

)

= (r + 1)prq + pr ≤ 8

9
,

where equality holds if and only if r = 3 and p = 2
3
. This implies that under the

assumptions in Theorem 12 we have max{|Fr(n, k, 1, r)|, |Fr(n, k, r − 1, k − r + 2)|} <
(1− δ)

(

n−1
k−1

)

for 0 < δ < 1
9
.

Proof of Theorem 12. The upper bound Mr(n, k) <
(

n−1
k−1

)

was proved by Frankl in [9].
We prove the lower bound. Let r be fixed, and let ǫ > 0 and δ > 0 be given. Let

r−2
r−1

< p < r−1
r
, and k = pn. Let c > 0 be a constant depending on r only (specified later),

and let

Jn,p = {j ∈ N : |j − p2n| ≤ c
√
n}.

For j ∈ Jn,p let

θj(n, p) =

(

pn
j

)(

n−pn
pn−j

)

(

n
pn

) =

(

k
j

)(

n−k
k−j

)

(

n
k

) .

Let erf(z) denote the error function, that is,

erf(z) =
2√
π

∫ z

0

exp(−x2) dx.
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Then, by Lemma 5 of [23], we have

lim
n→∞

∑

j∈Jn,p

θj(n, p) = erf

(

3c√
2p

)

.

The RHS is a function decreasing in p (for fixed c), and we have

min
p∈[ r−2

r−1
, r−1

r
]
erf

(

3c√
2p

)

= erf

(

3rc√
2(r − 1)

)

.

Then the RHS is a function increasing in c and approaching 1. Thus we can choose c > 0

so that erf
(

3rc√
2(r−1)

)

> 1− δ
3
, and we fix c.

We will show that |Fr(n, k, 1, k)| > (1 − δ)
(

n−1
k−1

)

. Let j0 = ⌈ (r−2)k+1
r−1

⌉. Choose n1 so
that if n > n1 then

∑

j∈Jn,p

θj(n, p) > 1− δ

2
(12)

for all p with r−2
r−1

≤ p ≤ r−1
r
. Next choose n2 so that if r−2

r−1
+ ǫ < p < r−1

r
− ǫ, n > n2,

and k = pn, then j0 < pk − c
√
n and pk + c

√
n < k − 1. Then we have Jn,p ⊂ [j0, k − 1].

Finally choose n3 so that if n > n3 then p− c
q
√
n
> (1− δ

2
)p, and let n0 := max{n1, n2, n3}.

We have

|Fr(n, k, 1, k)| ≥
k−1
∑

j=j0

(

k

j

)(

n− k − 1

k − j − 1

)

>
∑

j∈Jn,p

(

k

j

)(

n− k − 1

k − j − 1

)

.

The summands in the RHS is
(

k
j

)(

n−k−1
k−j−1

)

= k−j
n−k

(

k
j

)(

n−k
k−j

)

. For j ∈ Jn,p we have j <

p2n + c
√
n and

k − j

n− k
=

p− j
n

1− p
>

1

q

(

p− p2 − c√
n

)

= p− c

q
√
n
>

(

1− δ

2

)

p,

where we used n > n3 in the last inequality. We then have

(

k

j

)(

n− k − 1

k − j − 1

)

>

(

1− δ

2

)

p

(

k

j

)(

n− k

k − j

)

.
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The RHS can be rewritten as
(

1− δ
2

) (

n−1
k−1

)

θj(n, p) because
(

k
j

)(

n−k
k−j

)

= θj(n, p)
(

n
k

)

and

p
(

n
k

)

=
(

n−1
k−1

)

. Finally we have

Mr(n, k) ≥ |Fr(n, k, 1, k)|

>
∑

j∈Jn,p

(

k

j

)(

n− k − 1

k − j − 1

)

>

(

1− δ

2

)(

n− 1

k − 1

)

∑

j∈Jn,p

θj(n, p)

>

(

1− δ

2

)2(
n− 1

k − 1

)

(by (12))

> (1− δ)

(

n− 1

k − 1

)

,

and this is the lower bound we needed. �

Fact 1 suggests that the conjecture could be false even if k
n
< r−2

r−1
. For example we

have |F4(41, 26, 2, 25)| > |F4(41, 26, 1, 4)| > |F4(41, 26, 3, 24)|. Noting that 1+
√
17

8
≈ 0.64

we can expect F4(n, k, 2, k − 1) is larger than F4(n, k, 1, 4) if 1
2
< k

n
< 0.64 and n, k

sufficiently large. Indeed we have

|F4(1000, 514, 2, 513)|/|F4(1000, 514, 1, 4)| ≈ 1.03254,

|F4(1000, 630, 2, 629)|/|F4(1000, 630, 1, 4)| ≈ 1.0165,

|F4(1000, 650, 2, 649)|/|F4(1000, 650, 1, 4)| ≈ 0.98655.

Problem 2. Let k > r ≥ 2 and n ≥ kr/(r− 1), and let F ⊂
(

[n]
k

)

be a non-trivial r-wise
intersecting family. Is it true that

|F| ≤ max{|Fr(n, k, s, y)| : 1 ≤ s ≤ r − 1, r − s+ 1 ≤ y ≤ k − s+ 1} ?
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