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Abstract
We present the Branch-and-Bound Performance Estimation Programming (BnB-PEP), a unified
methodology for constructing optimal first-order methods for convex and nonconvex optimiza-
tion. BnB-PEP poses the problem of finding the optimal optimization method as a nonconvex
but practically tractable quadratically constrained quadratic optimization problem and solves
it to certifiable global optimality using a customized branch-and-bound algorithm. By directly
confronting the nonconvexity, BnB-PEP offers significantly more flexibility and removes the
many limitations of the prior methodologies. Our customized branch-and-bound algorithm,
through exploiting specific problem structures, outperforms the latest off-the-shelf implementa-
tions by orders of magnitude, accelerating the solution time from hours to seconds and weeks
to minutes. We apply BnB-PEP to several setups for which the prior methodologies do not ap-
ply and obtain methods with bounds that improve upon prior state-of-the-art results. Finally,
we use the BnB-PEP methodology to find proofs with potential function structures, thereby
systematically generating analytical convergence proofs.
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1 Introduction

Since the pioneering work of Nesterov and Nemirovsky on accelerated gradient methods [60] and
information-based complexity [59, 58], finding efficient and optimal first-order methods has been
the focus in the study of large-scale optimization. Recently, renewed vitality was injected into this
classical line of research by the emergence of computer-assisted methodologies following the Perfor-
mance Estimation Problem (PEP) of Drori and Teboulle [32]. The celebrated accelerated gradient
method by Nesterov was improved by a constant factor in [43, 84, 78], and entirely novel accelera-
tion mechanisms, distinct from Nesterov’s, have been discovered [45, 42, 51, 87]. These computer-
assisted methodologies, roughly speaking, pose the problem of analyzing an efficient method as a
convex semidefinite program, and the convexity provides certain algorithmic guarantees.

However, the convexity in the formulation simultaneously serves as a limitation. The aforemen-
tioned works presented several ingenious changes of variables, relaxations, and reformulations to
retain convexity, but such efforts cover only a handful of setups. When these techniques do not
apply, the prior methodologies become inapplicable.

Contribution. This work presents the Branch-and-Bound Performance Estimation Programming
(BnB-PEP), a methodology for constructing optimal first-order methods for convex and nonconvex
optimization in a tractable and unified manner. We formulate the problem of finding the opti-
mal optimization method as a nonconvex quadratically constrained quadratic problem (QCQP).
By directly confronting the nonconvexity of the QCQPs in consideration, BnB-PEP offers signif-
icantly more flexibility and removes the many limitations of the prior PEP-based methodologies.
We then provide a customized spatial branch-and-bound algorithm that enables us to solve such
QCQPs to certifiable global optimality in a practical time scale. The customization speeds up the
branch-and-bound algorithm, compared to the latest off-the-shelf implementations, by orders of
magnitude, reducing runtimes from hours to seconds and weeks to minutes. We apply the BnB-
PEP methodology to several setups for which the prior methodologies do not apply and construct
methods with bounds improving upon prior state-of-the-art results. Finally, we use the BnB-PEP
methodology to find proofs with potential function structures, thereby systematically generating
analytical convergence proofs.

1.1 Prior work

The performance estimation methodology, initiated by Drori and Teboulle [32], formulates the
worst case-performance of an optimization method as an optimization problem itself and upper
bounds this performance through a semidefinite program (SDP) “relaxation”. Taylor, Hendrickx,
and Glineur then showed that the SDP formulation is, in fact, tight (not a relaxation) through the
notion of convex interpolation [80]. Lessard, Recht, and Packard combined the notion of the per-
formance estimation methodology with control-theoretic notions through their integral quadratic
constraints (IQC) formulation [49]. Taylor, Van Scoy, and Lessard then showed that IQCs could
be seen as a feasible solution to performance estimation problems finding optimal linear conver-
gence rate through Lyapunov functions [82]. Taylor and Bach extended this observation through
a methodology that uses the performance estimation approach to find the optimal sublinear rates
through potential functions [77].

This advancement in the the performance estimation methodology has led to the discovery of many
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novel methods and analyses. Drori and Teboulle numerically constructed the optimized gradient
method (OGM) [32] and Kim and Fessler found its analytical description [43]. OGM surpasses
Nesterov’s fast gradient method by a constant factor and Drori showed that OGM is exactly optimal
through an exact matching complexity lower bound [28]. Drori and Taylor constructed efficient
first-order methods that utilize 1D and 3D exact line searches using a span-search variant of the
performance estimation methodology [30]. Van Scoy, Freeman, and Lynch constructed the triple
momentum method, a method that surpasses the Nesterov’s fast gradient method for the strongly
convex setup by a constant factor, using the IQC methodology [84]. Taylor and Drori constructed
the information-theoretic exact method (ITEM), further improving upon the triple momentum
method [78]. Drori and Taylor showed that ITEM is exactly optimal through an exact matching
complexity lower bound [31]. Kim and Fessler constructed OGM-G, which has the best known rate
for reducing the gradient magnitude in the smooth convex setup [45]. Finally, the performance
estimation methodology has also been utilized for constructing methods with inexact evaluations
[19, 5, 25], analyzing methods in the composite minimization setup [44, 81], analyzing methods
with exact line search [24], analyzing monotone operator and splitting methods [70, 37, 51, 42], and
analyzing acceleration in the mirror descent setup [26].

Prior work constructing efficient methods based on the performance estimation methodology relies
on two conceptual stages. The first stage poses the inner problem as finding the worst-case perfor-
mance of a given method and formulates the inner problem as a convex SDP through some ingenious
change of variables and SDP duality. The second stage constructs an outer problem that minimizes
the aforementioned worst-case performance as a function of the method. An equivalent view is that
the inner problem finds a convergence proof and the outer problem finds the algorithm with the
smallest (best) guarantee established by the convergence proof of the inner problem. While the
inner optimization problem is convex, setups for which the outer minimization problem is convex
are quite rare. As we detail in §3.1.2, prior work circumvents this nonconvexity within the scope
of convex optimization through relaxations and heuristics. However, these prior techniques do not
always apply, especially when the underlying optimization problem is nonconvex. The setups of
§6.2 and §6.3 of this work are such examples.

1.2 Organization

This paper is organized as follows. In §2, we present the necessary background and describe our
problem setup. In §3, we illustrate the BnB-PEP methodology by applying it on a concrete problem
instance of constructing the optimal fixed-step first-order method for reducing the gradient of a
strongly convex and smooth function. Our discussion up to §3.1.1 follows prior approaches, and our
novel contribution starts in §3.1.2. In §4, we present customizations of the spatial branch-and-bound
algorithm that enables us to solve the QCQPs that construct optimal optimization methods in a
practical time scale. In §5, we present the generalized formulation of our methodology. In §6, we
demonstrate the effectiveness of our methodology through several applications. In §6.1, we construct
the optimal gradient method without momentum for reducing function value in the smooth convex
setup and demonstrate that it outperforms the best known method without momentum. In §6.2,
we construct the optimal method for reducing gradient norm of smooth nonconvex functions and
demonstrate that it outperforms the prior best known method [2]. In §6.3, we design an optimized
first-order method with respect to a suitable potential function for reducing the (sub)gradient norm
of nonsmooth weakly convex functions and demonstrate that it outperforms the prior best known
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method [23, Theorem 3.1]. Additionally, in §6.3.3, we present a systematic approach to generate
analytical proofs from the solutions obtained through our methodology, extending the approach of
Taylor and Bach [77] to nonconvex and nonsmooth setups.

1.3 Computational setup

For scientific reproducibility, we open-source our codes to generate all the numerical results pre-
sented in this paper at the link:

https://github.com/Shuvomoy/BnB-PEP-code

Unless otherwise specified, we performed our numerical experiments on a laptop computer running
Windows 10 Pro with Intel Core i7-8650U CPU with 16 GB of RAM. We used JuMP—a domain-
specific modeling language for mathematical optimization embedded in the open-source program-
ming language Julia [33]—to model the optimization problems. Our proposed algorithm uses
the following solvers: Mosek 9.3 [57] (free for academic use), Ipopt 3.12.11 [86] (open-source),
KNITRO 13.0.0 [16] (free for academic use), and Gurobi 10 [1] (free for academic use).

2 Background and problem setup

Write Rd for the underlying Euclidean space, even though our results and formulations extend to
the setup where the underlying setup is a Hilbert space [70]. Write ⟨· | ·⟩ and ∥ · ∥ to denote the
standard inner product and norm on Rd. For a, b ∈N, denote [a : b] = {a, a+1, a+2, . . . , b−1, b}.
Write Rm×n for the set of m × n matrices, Sn for the set of n × n symmetric matrices, and Sn+
for the set of n × n positive-semidefinite matrices. We use the standard notation ei ∈ Rd for the
unit vector having a single 1 as its i-th component. Write (· ⊙ ·) : Rd ×Rd → Rd×d to denote the
symmetric outer product, that is, for any x, y ∈ Rd:

x⊙ y =
1

2

(
xy⊤ + yx⊤

)
.

We follow standard convex-analytical definitions [14, 61, 69, 71]. A set S ⊆ Rd is convex if for any
x, y ∈ S and θ ∈ [0, 1], we have θx+ (1− θ)y ∈ S. A function f : Rd → R is convex if

f (θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

for all x, y ∈ Rd and θ ∈ (0, 1).

The abstract subdifferential of f : Rd → R at x, denoted by ∂f(x), is defined to satisfy the following
properties [7]:

(i) If f is convex, then the abstract subdifferential is the usual convex subdifferential, i.e.,

∂f(x) = {g ∈ Rn | f(y) ≥ f(x) + ⟨g | y − x⟩, ∀ y ∈ Rn}.

(ii) If f is continuously differentiable at x, then its abstract subdifferential at x just contains the
gradient ∇f(x), i.e., ∂f(x) = {∇f(x)}.

(iii) If f attains a local minimum at x, then 0 ∈ ∂f(x).
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(iv) For all y ∈ Rd and β ∈ R,

∂

(
f(·) + β

2
∥ · −y∥2

)
= ∂f(·) + β(· − y).

The Clarke–Rockafellar subdifferential [18, §1.2], Mordukhovich subdifferential [56, §1.3], and
Fréchet subdifferential [13, page 132] are all instances of the abstract subdifferential [7, page 70].
Whenever we say subdifferential in this paper, we are referring to the abstract subdifferential. Be-
cause our analyses use only the properties of the abstract subdifferential, our results apply to all
instances of the abstract subdifferential. We write f ′(x) to denote an element of ∂f(x).

We say a function f is L-smooth if it is differentiable everywhere and ∇f is L-Lipschitz continuous.
We say a function f is µ-strongly convex if f(·) − (µ/2)∥ · ∥2 is convex. We say a function f is
ρ-weakly convex if f + (ρ/2)∥ · ∥2 is convex. We say a function f has L-bounded subgradients if
∥g∥ ≤ L for all g ∈ ∂f(x) and x ∈ Rd.

2.1 Quadratically constrained quadratic program (QCQP)

A QCQP is defined as:

p⋆ =

 minimize
x∈Rq

c⊤x+ x⊤Q0x

subject to a⊤i x+ x⊤Qix ≤ bi, i ∈ [1 : m],
a⊤j x+ x⊤Qjx = bj , j ∈ [m+ 1 : p],

 (1)

where x ∈ Rq is the decision variable. The matrices Q0, Q1, . . . , Qp ∈ Rq×q are symmetric, but not
necessarily positive-semidefinite. Therefore, this problem is nonconvex.

Practical tractability of QCQPs. The QCQP problem class is NP-hard and therefore has no
known polynomial-time algorithm [12, pp. 565–567]. However, such theoretical worst-case in-
tractability does not necessarily imply that specific problem instances are not practically tractable
[10, Chapter 1].

Branch-and-bound solvers have experienced astounding speedup in the past few decades. In the
last thirty years, branch-and-bound solvers for mixed-integer optimization (MIO) problems have
achieved an algorithmic speedup of approximately 1,250,000 and a hardware speedup of approx-
imately 1,560,000, resulting in an overall speedup factor of approximately 2 trillion [10, page
5]. While these speedup factors are for MIO and not for QCQP, the speedup factors for QCQP
solvers have followed a similar trend since the recent (2019) incorporation of QCQPs in commercial
solvers [4]. For example, in less than three years, Gurobi’s spatial branch-and-bound algorithm
has achieved a machine-independent speedup factor of 175.5 [3, 1].

This remarkable speedup has rendered previously intractable problems practically tractable. Fur-
thermore, one can often significantly speed up the spatial branch-and-bound algorithm by cus-
tomizing it to exploit specific problem structure. We present such customizations for the BnB-PEP
Algorithm in §4 and §5, and demonstrate that the speedup is absolutely essential for the BnB-PEP
Algorithm to be used practically.
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Function class Notation

L-smooth Convex (0 < L < ∞) F0,L

L-smooth and µ-strongly convex (0 ≤ µ < L < ∞) Fµ,L

L-smooth Nonconvex (0 < L < ∞) F−L,L

ρ-weakly convex with L-bounded subgradients (ρ > 0, L > 0) Wρ,L

Table 1: Function classes considered in this paper.

QCQP solvers for local and global solutions. Since QCQPs have twice-continuously differentiable
objectives and constraints, one can use interior-point solvers such as KNITRO [16] or Ipopt [85] to
compute locally optimal solutions under certain regularity conditions [35, Theorem 4][50, §3.2]. On
the other hand, one can use the spatial branch-and-bound algorithm implemented in solvers such
as Gurobi [1] to find globally optimal solutions of nonconvex QCQPs and to certify their optimality
in finite time.

2.2 Problem setup

Consider the unconstrained minimization problem

minimize
x∈Rd

f(x), (2)

where f is smooth or nonsmooth, convex or nonconvex.

For the sake of simplicity, we assume that f has a global minimizer x⋆ (not necessarily unique).
Optimization problems with further structure, such as problems with constraints and problems
whose objective are sums of functions, can also be considered. However, we restrict our discussion
to this setup of unconstrained minimization for the sake of simplicity.

Function class F . An optimization method is usually designed for a specific class of functions.
In this work, we use the BnB-PEP methodology with function classes listed in Table 1. More
generally, we can use the BnB-PEP methodology with quadratically representable function classes,
a notion we further discuss in §8.1 of the appendix.

Fixed-step first-order method MN . We consider fixed-step first-order methods, which include
most subgradient methods and accelerated gradient methods [78]. A method is said to be a fixed-
step first-order method (FSFOM) with N steps if it takes in a function f and a starting point
x0 ∈ Rd as input and produces its iterates with:

xi = xi−1 −
i−1∑
j=0

si,jf
′(xj) (3)

for i ∈ [1 : N ], where f ′(xj) ∈ ∂f(xj) is a subgradient of f at xj for j ∈ [0 : N − 1]. We can
equivalently express the FSFOM (3) with

xi = x0 −
i−1∑
j=0

si,jf
′(xj),
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where {si,j}0≤j<i≤N and {si,j}0≤j<i≤N are related by

si,j =

{
si,i−1, if j = i− 1,

si−1,j + si,j , if j ∈ [0 : i− 2]
(4)

for 0 ≤ j < i ≤ N . Write s = {si,j}0≤j<i≤N and s = {si,j}0≤j<i≤N to denote the collection
of stepsizes. The stepsizes s or s may depend on the function class F and the value of N , but
are otherwise predetermined. In particular, they may not depend on function values or gradients
observed throughout the method. WriteMN to denote the set of all FSFOMs with N steps. We
will soon formulate the problem of finding an optimal FSFOM inMN as an optimization problem
itself, and the stepsizes s or s will serve as the decision variables.

The notion of fixed-step linear first-order methods extend these definitions to accommodate proxi-
mal methods and conditional gradient methods [75, pp. 118-119]. Our BnB-PEP methodology also
directly applies to these generalizations, but we restrict our discussion to FSFOMs for the sake of
simplicity.

Performance measure E and initial condition C. For notational convenience, define the index
sets

IN = {0, 1, . . . , N}, I⋆N = {0, 1, . . . , N, ⋆}.

Throughout this paper, we will use ⋆ as the index corresponding to the optimal point. Write E to
denote the performance measure that evaluates a method M ∈ MN on a specific function f ∈ F
with a starting point x0. We require that E depends only on iterates {x0, . . . , xN}, a globally optimal
solution x⋆ to (2), and the values and (sub)gradients of f at the points x0, x1, . . . , xN , x⋆. In other
words, E may depend on the solution x⋆ and zero- and first-order information the FSFOM observes,
but may not depend on other unobserved information of f . Commonly considered performance
measures are

E
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
= f(xN )− f(x⋆)

or
E
(
{xi,∇f(xi), f(xi)}i∈I⋆N

)
= ∥∇f(xN )∥2

when f is differentiable.

To obtain a meaningful rate on the methods, we impose a suitable condition on the initial iterate
x0, which we abstractly express as

C
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
≤ 0.

Commonly considered initial conditions are

C
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
= ∥x0 − x⋆∥2 −R2

or
C
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
= f(x0)− f(x⋆)−R2,

where R > 0.
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Worst-case performance R. The worst-case performance or the rate of the method M ∈MN is
obtained by maximizing E over functions in F . More formally, we define

R (M, E ,F , C)

=



maximize E
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
subject to
f ∈ F ,
x⋆ is a globally optimal solution to (2),
{xi}i∈[1:N ] is generated by FSFOM M with initial point x0,

C
(
{xi, f ′(xi), f(xi)}i∈I⋆N

)
≤ 0,


(Oinner)

where f , x0, . . . , xN , and x⋆ are the decision variables. We set x⋆ = 0 and f(x⋆) = 0, which incurs
no loss of generality because the function classes in Table 1 and the FSFOM in consideration are
closed and invariant under shifting variables and function values.

We will soon show that evaluating the worst-case performance of a given method M ∈ MN by
solving (Oinner) can be represented as a (finite-dimensional convex) semidefinite-program.

Optimal FSFOM. An optimal FSFOM M⋆
N ∈ MN for a given performance measure E over

function class F subject to the initial condition C is a solution to the following minimax optimization
problem:

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) . (Oouter)

Finding an optimal FSFOM M⋆
N ∈ MN by solving (Oouter) is, in general, a nonconvex problem.

The BnB-PEP methodology formulates (Oouter) as a (nonconvex) QCQP and solves it to certifiable
global optimality using a spatial branch-and-bound algorithm in a practically tractable manner.
In §3, we illustrate our methodology by describing it for a concrete problem instance. In §5, we
present the general form of the the methodology.

3 BnB-PEP for strongly convex smooth minimization

This section demonstrates the BnB-PEP methodology on a concrete instance for which prior
methodologies do not apply. The general BnB-PEP methodology is presented in §5.

Specifically, we find the optimal FSFOM for reducing the gradient of µ-strongly convex L-smooth
functions, with 0 ≤ µ < L ≤ ∞. In other words, we choose the function class F = Fµ,L and
performance measure E = ∥∇f(xN )∥2. Further, we choose the initial condition C = ∥x0 − x⋆∥2 −
R2 ≤ 0 with R > 0. Then, an optimal FSFOM is a solution of the following instance of (Oouter):

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) .

3.1 Optimal optimization method from BnB-PEP-QCQP

We formulate the outer problem as a (nonconvex) QCQP, which we refer to as the BnB-PEP-
QCQP, in the following two steps. In §3.1.1, we formulate the inner problem (Oinner) as a convex
SDP. This first step follows the approach of [32, 79]. Then in §3.1.2 formulates the outer problem
(Oouter) as a QCQP. This second step is is novel.
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3.1.1 Formulating the inner problem (Oinner) as a convex SDP

Infinite-dimensional inner optimization problem. By setting si,j =
hi,j

L in (3), parameterize FS-
FOMs inMN as

xi = xi−1 −
1

L

i−1∑
j=0

hi,jf
′(xj) (5)

for i ∈ [1 : N ]. Write h = {hi,j}0≤j<i≤N . Then (Oinner) becomes

R(M, E ,F , C)

=



maximize ∥∇f(xN )∥2
subject to f ∈ Fµ,L,

∇f(x⋆) = 0,

xi = xi−1 − 1
L

∑i−1
j=0 hi,j∇f(xj), i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,
x⋆ = 0, f(x⋆) = 0,

 (6)

where f, x0, . . . , xN are the decision variables. As is, f is an infinite-dimensional decision variable.

Reparametrization from Fµ,L to F0,L−µ. Next, we use the following lemma to reparameterize
(Oinner), defined with function class Fµ,L, into an equivalent problem with the (L−µ)-smooth convex
function class F0,L−µ. The benefit of the reparametrization is that the final problem becomes more
compact.

Lemma 1 (Reparametrization from Fµ,L to F0,L−µ [78, §3.2]). Consider f ∈ Fµ,L where 0 ≤ µ ≤
L ≤ ∞ with a minimizer x⋆. Consider an FSFOM with f and {hi,j}0≤j<i≤N as defined in (5).

Define f̃ := f − (µ/2)∥ · −x⋆∥2 and an array of parameters {αi,j}0≤j<i≤N

αi,j =

{
hi,i−1, if j = i− 1,

αi−1,j + hi,j − µ
L

∑i−1
k=j+1 hi,kαk,j , if j ∈ [0 : i− 2],

where i ∈ [1 : N ] and j ∈ [0 : i−1]. Then (i) f̃ ∈ F0,L−µ if and only if f ∈ Fµ,L, (ii) x⋆ ∈ argmin f̃ ,
and (iii) the FSFOM (5) is equivalent to

xi = x⋆ + (x0 − x⋆)

1− µ

L

i−1∑
j=0

αi,j

− i−1∑
j=0

αi,j

L
∇f̃(xj)

for i ∈ [1 : N ].
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Reformulated infinite-dimensional maximization problem. Using Lemma 1, we reformulate (Oinner)
as

R(M, E ,F , C)

=



maximize ∥∇f̃(xN )∥2 + µ2∥xN − x⋆∥2 + 2µ
〈
∇f̃(xN ) | xN − x⋆

〉
subject to

f̃ ∈ F0,L−µ,

∇f̃(x⋆) = 0,

xi = x0

(
1− µ

L

∑i−1
j=0 αi,j

)
− 1

L

∑i−1
j=0 αi,j∇f̃(xj), i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,

x⋆ = 0, f̃(x⋆) = 0,


where f̃ , x0, . . . , xN are the decision variables. The decision variable f̃ ∈ F0,L−µ is still infinite-
dimensional. Write α = {αi,j}0≤j<i≤N .

Interpolation argument. We now convert the infinite-dimensional optimization problem into
finite-dimensional one with the following lemma.

Lemma 2 (F0,L-interpolation [78, Theorem 2]). Let I be an index set, and let {(xi, gi, fi)}i∈I ⊆
Rd ×Rd ×R. Let L > 0. There exists f ∈ F0,L satisfying f(xi) = fi and gi ∈ ∂f(xi) for all i ∈ I
if and only if 1

fi ≥ fj + ⟨gj | xi − xj⟩+
1

2L
∥gi − gj∥2, ∀ i, j ∈ I.

Finite-dimensional maximization problem. Using Lemma 2, reformulate (Oinner) as

R(M, E ,F , C)

=



maximize ∥gN∥2 + µ2∥xN − x⋆∥2 − 2µ ⟨gN | x⋆ − xN ⟩
subject to
fi ≥ fj + ⟨gj | xi − xj⟩+ 1

2(L−µ)∥gi − gj∥
2, i, j ∈ I⋆N : i ̸= j,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0

(
1− µ

L

∑i−1
j=0 αi,j

)
− 1

L

∑i−1
j=0 αi,jgj , i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2.


(7)

Now, the decision variables are {xi, gi, fi}i∈I⋆N ⊆ R
d × Rd × R, where I⋆N = {0, 1, . . . , N, ⋆}, and

the optimization problem is finite-dimensional, although nonconvex. To clarify, we are applying
Lemma 2 on f̃ ∈ F0,L−µ, rather than f ∈ Fµ,L. However, we use the symbols {fi}i∈I⋆N , rather than
the arguably more consistent {f̃i}i∈I⋆N for the sake of notational conciseness.

1This can be viewed as a discretization of the following condition [61, Theorem 2.1.5, Equation (2.1.10)]: f ∈ F0,L

if and only if

f(y) ≥ f(x)+⟨∇f(x) | y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.

11



Grammian formulation. Next, we formulate (Oinner) as a convex SDP. Let

H = [x0 | g0 | g1 | . . . | gN ] ∈ Rd×(N+2),

G = H⊤H ∈ SN+2
+ ,

F = [f0 | f1 | . . . | fN ] ∈ R1×(N+1).

(8)

Note that rankG ≤ d. Define the following notation for selecting columns and elements of H and
F :

g⋆ = 0 ∈ RN+2, gi = ei+2 ∈ RN+2, i ∈ [0 : N ]

x0 = e1 ∈ RN+2, x⋆ = 0 ∈ RN+2,

xi = x0

1− µ

L

i−1∑
j=0

αi,j

− 1

L

i−1∑
j=0

αi,jgj ∈ RN+2, i ∈ [1 : N ]

f⋆ = 0 ∈ RN+1, fi = ei+1 ∈ RN+1, i ∈ [0 : N ].

(9)

This notation is defined so that

xi = Hxi, gi = Hgi, fi = F fi

for i ∈ I⋆N . Note that xi depends on {αi,j}j∈[0:i−1] linearly for i ∈ [1 : N ]. Furthermore, for
i, j ∈ I⋆N , define

Ai,j(α) = gj ⊙ (xi − xj) ∈ SN+2,

Bi,j(α) = (xi − xj)⊙ (xi − xj) ∈ SN+2
+ ,

Ci,j = (gi − gj)⊙ (gi − gj) ∈ SN+2
+ ,

ai,j = fj − fi ∈ RN+1.

(10)

Note that Ai,j(α) is affine and Bi,j(α) is quadratic as functions of {αi,j}i∈[1:N ],j∈[0,i−1]. This notation
is defined so that

⟨gj | xi − xj⟩ = trGAi,j(α),

∥xi − xj∥2 = trGBi,j(α),

∥gi − gj∥2 = trGCi,j ,

(11)

for i, j ∈ I⋆N .

Using this notation, formulate (Oinner) as

R(M, E ,F , C)

=


maximize trG

(
CN,⋆ + µ2BN,⋆(α)− 2µA⋆,N (α)

)
subject to
Fai,j + trGAi,j(α) +

1
2(L−µ) trGCi,j ≤ 0, i, j ∈ I⋆N : i ̸= j,

−G ⪯ 0, rank(G) ≤ d,
trGB0,⋆ ≤ R2,


where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. The equivalence relies on
the fact that given a G ∈ SN+2

+ satisfying rank(G) ≤ d, there exists a H ∈ Rd×(N+2) such that
G = H⊤H. The argument is further detailed in [80, §3.2]. This formulation is not yet a convex
SDP due to the rank constraint rank(G) ≤ d.
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SDP representation. Next, we make the following large-scale assumption.

Assumption 1. We have d ≥ N + 2.

Under this assumption, the constraint rankG ≤ d becomes vacuous, since G ∈ S(N+2)
+ . We drop

the rank constraint and formulate (Oinner) as a convex SDP

R(M, E ,F , C)

=


maximize trG

(
CN,⋆ + µ2BN,⋆(α)− 2µA⋆,N (α)

)
subject to
Fai,j + trGAi,j(α) +

1
2(L−µ) trGCi,j ≤ 0, i, j ∈ I⋆N : i ̸= j, ▷ dual var. λi,j ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0
trGB0,⋆ ≤ R2, ▷ dual var. ν ≥ 0

 (12)

where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. We denote the correspond-
ing dual variables on the right hand side of the constraints with ▷ dual var. for later use.

We emphasize that dropping the rank constraint is not a relaxation; the optimization problem
(12) and its solution is independent of the dimension d, provided that the large-scale assumption
d ≥ N + 2 holds. See [80, §3.3] for further discussion.

Dualization. Next we use convex duality to formulate (Oinner), originally a maximization problem,
as a minimization problem. Take the dual of (12) to get

R(M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α) + 2µA⋆,N (α)+∑
i,j∈I⋆N :i ̸=j λi,j

(
Ai,j(α) +

1
2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,
ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,


(13)

where ν ∈ R, λ = {λi,j}i,j∈I⋆N :i ̸=j , and Z ∈ SN+2
+ are the decision variables. (Note, we write R

rather than R here.) We call λ, ν, and Z the inner-dual variables.

By weak duality of convex SDPs, we have

R(M, E ,F , C) ≤ R(M, E ,F , C).

In convex SDPs, strong duality holds often but not always. For the sake of simplicity, we assume
strong duality holds.

Assumption 2. Strong duality holds between (12) and (13), i.e.,

R(M, E ,F , C) = R(M, E ,F , C).
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This assumption can be removed in most cases using the line of reasoning of [64, Claim 4], but
the technique is tedious. Since strong duality for convex SDPs “usually” holds, we argue there is
little utility in pursuing this direction. Nevertheless, in a strict sense, the assumption constitutes a
gap in our mathematical arguments. We detail the implication of this gap in §8.2 of the appendix.
In any case, strong duality holds for “generic” FSFOMs [80, Theorem 6], so one can safely use
the BnB-PEP methodology with confidence that the obtained FSFOM will be optimal among the
“nice” generic FSFOMs.

Now we have arrived at the end of the formulation based on prior works [32, 79], and, at this point,
our formulations diverge.

3.1.2 Formulating the outer problem (Oouter) as a QCQP

With (Oinner) formulated as a minimization problem, the outer optimization problem (Oouter)
becomes a joint minimization over the inner dual variables and the FSFOM parameters α. However,
the outer minimization problem is not convex in all of the variables, even though the inner problem
is.

Prior work circumvents this nonconvexity within the scope of convex optimization. Prior work
on OGM [32, 43], ITEM [78], ORC-F♭ [64, §4], and OBL-F♭ [64, §5.1] convexify (Oouter) into an
SDP through appropriate relaxations and changes of variables. The relaxation discards certain
inequalities, a process discussed in §4.3. Due to the relaxation, the solution FSFOM of the relaxed
SDP is not necessarily the exact optimal FSFOM. Exact optimality of OGM [28] and ITEM [31]
were proved through separate exact matching complexity lower bounds. Even though ORC-F♭

and OBL-F♭ are optimal solutions of the relaxed SDP, they are not optimal FSFOMs, as their
guarantees are worse than that of OGM. Prior work on OGM-G [45], M-OGM-G [89], OBL-G♭

[64], APPM [42, 51], and SM-APPM [65] formulate (Oouter) as bi-convex optimization problems, as
problems with bilinear matrix inequalities (BMIs), after relaxations discarding certain inequalities.
Although bi-convex problems (which are nonconvex) do not have provably efficient algorithms,
prior work have obtained FSFOMs using the alternating minimization heuristic. Exact optimality
of APPM and SM-APPM were proved through separate exact matching complexity lower bounds
[65]. OGM-G is presumed but not proven to be exactly optimal. M-OGM-G and OBL-G♭ are not
optimal FSFOMs in the usual sense as their guarantees are worse than that of OGM-G. For the
setups we consider, especially the setup of §6.2 and §6.3, these prior techniques do not apply and
the optimization over the FSFOM cannot be formulated as a convex nor a bi-convex optimization
problem (to the best of our knowledge) even after appropriate relaxations.

Formulating (Oouter) as a QCQP. The nonconvex outer optimization problem (Oouter) minimizes
over α in addition to the inner dual variables of (13). We confront the nonconvexity directly
by formulating (Oouter) as a (nonconvex) QCQP and solving it with spatial branch-and-bound
algorithms. We do not discard constraints or use any relaxation. To this end, we replace the
semidefinite constraint with a quadratic constraint via the Cholesky factorization.

Lemma 3 ([40, Corollary 7.2.9]). A matrix Z ∈ Sn is positive semidefinite if and only if it has a
Cholesky factorization PP⊤ = Z, where P ∈ Rn×n is lower triangular with nonnegative diagonals.

In raw index form, the conditions of Lemma 3, applied to the present setup, have the following
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equivalent representations:(
P is lower triangular with nonnegative diagonals,
PP⊤ = Z.

)

⇔

 Pj,j ≥ 0, j ∈ [1 : N + 2],
Pi,j = 0, 1 ≤ i < j ≤ N + 2,∑j

k=1 Pi,kPj,k = Zi,j , 1 ≤ j ≤ i ≤ N + 2.


We now formulate (Oouter), the problem of finding an optimal FSFOM, as the following QCQP

R⋆(MN , E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α) + 2µA⋆,N (α)+∑
i,j∈I⋆N :i ̸=j λi,j

(
Ai,j(α) +

1
2(L−µ)Ci,j

)
= Z,

P is lower triangular with nonnegative diagonals,
PP⊤ = Z,
ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,


(14)

where λ, ν, Z, P , and α are the decision variables. We name this optimization problem the
BnB-PEP-QCQP.

3.2 Solving the BnB-PEP-QCQP using the BnB-PEP Algorithm

We now solve the BnB-PEP-QCQP (14) to certifiable optimality in a practical time scale via the
BnB-PEP Algorithm, stated as Algorithm 1. The algorithm has 3 stages: Stage 1 finds a feasible
point, Stage 2 uses an interior-point solver to find a locally optimal solution, and Stage 3 uses a
spatial branch-and-bound solver to find a globally optimal solution.

Algorithm 1 BnB-PEP Algorithm: Given (µ,L,R), solves (14) to global optimality

Stage 1. Compute a feasible solution.
• Set αinit

i,i−1 ← 1 and αinit
i,j ← 0 for for i ∈ [1 : N ], j ̸= i− 1.

• Set α ← αinit in (13) and solve the convex SDP. Denote the computed optimal solution to
(13) by {νinit, λinit, Z init}.

• Compute Cholesky decomposition Z init = P init(P init)⊤.
Stage 2. Compute a locally optimal solution by warm-starting at Stage 1 solution.

• Warm-start (14) with {αinit, νinit, λinit, Z init, P init} and solve it to local optimality using the
nonlinear interior-point method. Denote the solution by {αlopt, νlopt, λlopt, Z lopt, P lopt}.

Stage 3. Compute a globally optimal solution by warm-starting at Stage 2 solution.
• Warm-start (14) with {αlopt, νlopt, λlopt, Z lopt, P lopt} and solve it to global optimality using
a customized spatial branch-and-bound algorithm described in §4. Denote the solution by
{α⋆, ν⋆, λ⋆, Z⋆, P ⋆} and the optimal objective value by p⋆.

Return: {α⋆, ν⋆, λ⋆, Z⋆, P ⋆} and p⋆.
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Details of the BnB-PEP Algorithm. Stage 1 computes a feasible solution of (14) by taking
advantage of the structure that (13) is a convex SDP when the FSFOM is fixed. We set the
stepsize to represent gradient descent (GD)

xi = xi−1 −
1

L
∇f(xi−1), i ∈ [1 : N ]

which is a suboptimal but reasonable algorithm. By Lemma 1, this corresponds to αinit
i,i−1 = 1 for

i ∈ [1 : N ] and αinit
i,j = 0 for j ̸= i− 1.

Stage 2 computes a locally optimal solution to (14) using an interior-point algorithm, warm-starting
at the feasible solution corresponding to GD that was produced by Stage 1. When a good warm-
starting point is provided, interior-point algorithms can quickly converge to a locally optimal so-
lution [15, 85], [35, §3.3]. If the interior-point algorithm fails to converge, we return the feasible
solution from Stage 1. Fortunately, we observe that Stage 2 consistently provides a locally optimal
solution.

Stage 3 computes a globally optimal solution using a customized spatial branch-and-bound algo-
rithm, warm-starting at the solution produced by Stage 2. We detail our BnB-PEP-QCQP-specific
customization in §4. A good warm-starting point provides a tight upper bound of the optimal value
and, therefore, significantly accelerates the spatial branch-and-bound algorithm of Stage 3. In our
experience, Stage 2 often provides an excellent, even nearly optimal, warm-starting point.

In principle, one can simply use an off-the-shelf implementation of spatial branch-and-bound algo-
rithm such as Gurobi [4] to solve (14). Spatial branch-and-bound algorithms do compute globally
optimal solutions in “finite time”, but the default implementation is impractically slow, as Table 4
illustrates. Customizing the spatial branch-and-bound algorithm with problem-specific insights is
essential, as discussed in §4.

Numerical results. We conduct numerical experiments on the computational environment de-
scribed in §1.3 with parameters µ = 0.1, L = 1, and R = 1. Due to the scale invariance discussed
in [80, §3.5], it suffices to solve the BnB-PEP-QCQP for L = 1 and R = 1 and find the correspond-
ing optimal stepsize vector α⋆ (or h⋆) and the associated optimal worst-case performance measure
∥∇f(xN )∥2. More specifically, for any other L > 0 and R > 0, the new optimal stepsize vector will
be scaled as α⋆/L (or h⋆/L) with corresponding performance measure scaled as L2R2∥∇f(xN )∥2.
The homogeneity relations for other performance measures and initial conditions can be found at
[80, §3.5] and [75, §4.2.5].2 Tables 2 and 3 present the results of the BnB-PEP Algorithm. The
optimal algorithm indeed outperforms other known algorithms in terms of the worst-case perfor-
mance measure ∥∇f(xN )∥2 with initial condition ∥x0 − x⋆∥ ≤ R2. Table 4 presents runtimes of
the BnB-PEP Algorithm. The BnB-PEP-QCQP can be solved in a practical time scale with the
BnB-PEP Algorithm, but only when we use the customized spatial branch-and-bound solver of §4.

A notable empirical observation is that the FSFOM produced by Stage 2, expected to be locally
optimal, is often globally optimal or near-optimal. In this case, Stage 3 serves mainly to certify the
global optimality of the warm-starting solution of Stage 2. This fortuitous behavior was observed
consistently in our experiments of §6 as well. Because Stages 1 and 2 tend to be faster than Stage

2The journal version of [80, §3.5] contained a typo in the homogeneity relations, which was later corrected in a
subsequent arXiv update https://arxiv.org/pdf/1502.05666.pdf.
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N
#

variables

#

constraints

Worst-case ∥∇f(xN )∥2

Optimal GD ITEM OGM-Fµ,L

1 20 33 0.1473 0.2244 0.6695 0.2122

2 36 56 0.0409 0.0893 0.3770 0.0835

3 57 85 0.0145 0.0449 0.1933 0.0378

4 83 120 0.005766 0.0257 0.0945 0.0178

5 114 161 0.002459 0.0159 0.0451 0.0085

10 410 456 4.89× 10−5 2.58× 10−3 1.03× 10−3 1.97× 10−4

25 2135 2241 5.42× 10−10 5.89× 10−5 5.5× 10−7 7.21× 10−8

Table 2: Comparison of the optimal method obtained by solving (14) with the BnB-PEP Algorithm
against other known methods.

3 and because the output of Stage 2 is often globally optimal, one can use the output of Stage 2 as
a heuristic without running Stage 3. This can be useful when the goal is to obtain a good method,
and there is no need to certify that the method is optimal.

Table 2 compares the performance of the optimal method, obtained with the BnB-PEP Algorithm,
against GD (plain gradient desent), ITEM [78], and OGM-Fµ,L [78]. (ITEM and OGM-Fµ,L are
optimal with respect to different performance measures and therefore are suboptimal when the goal
is to reduce the gradient magnitude. The stepsizes of ITEM were taken from page 21 of the first
arXiv version of [78], and the stepsizes of OGM-Fµ,L were taken from [78, §E.1].) We also show the
total number of variables and constraints of (14) that the BnB-PEP Algorithm works with after
the mathematical model described in JuMP gets converted to the MathOptInterface format [48],
which is the standard data structure for representing optimization models in JuMP.

Table 3 shows the globally optimal stepsizes found by the BnB-PEP Algorithm. To clarify, we
obtain the optimal α⋆ from the BnB-PEP Algorithm, solve for h⋆ with Lemma 1, and present h⋆

in the table.

Table 4 presents the runtimes with and without the customized spatial branch-and-bound solver of
§4. The off-the-shelf spatial branch-and-bound algorithm of Gurobi was very slow despite running
on the MIT Supercloud Computing Cluster with 24 Intel-Xeon-Platinum-8260 nodes (has 1152
cores) and 384 GB of RAM running Ubuntu 18.04.6 LTS with Linux 4.14.250-llgrid-10ms kernel
[67]. On the other hand, our BnB-PEP Algorithm ran efficiently on both a standard laptop and on
MIT Supercloud. For N = 25, we run both the BnB-PEP Algorithm and the off-the-shelf Gurobi
on the MIT Supercloud. The cases for which the off-the-shelf spatial branch-and-bound algorithm
terminated, the results agreed with the results of the BnB-PEP Algorithm.

4 Efficient implementation of the BnB-PEP Algorithm

As Table 4 illustrates, an off-the-shelf spatial branch-and-bound algorithm applied to BnB-PEP-
QCQP is very slow. In this section, we customize the spatial branch-and-bound algorithm to exploit
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N h⋆

1
[
1.3837

]
2

[
1.5018
0.0494 1.5018

]

3

 1.5308
0.0889 1.7229
0.0109 0.0889 1.5308



4


1.5403
0.1038 1.7926
0.0229 0.1751 1.7926
0.003 0.0229 0.1038 1.5403



5


1.5439
0.1097 1.8187
0.0286 0.2132 1.8842
0.0069 0.0514 0.2132 1.8187
0.0009 0.0069 0.0286 0.1097 1.5439



10



1.5465
0.1141 1.8377
0.033 0.2426 1.9488
0.0107 0.0786 0.3072 1.995
0.0036 0.0265 0.1037 0.3357 2.0122
0.0012 0.009 0.0352 0.114 0.3437 2.0122
0.0004 0.003 0.0117 0.0378 0.114 0.3357 1.995
0.0001 0.0009 0.0036 0.0117 0.0352 0.1037 0.3072 1.9488
0.0 0.0002 0.0009 0.003 0.009 0.0265 0.0786 0.2426 1.8377
0.0 0.0 0.0001 0.0004 0.0012 0.0036 0.0107 0.033 0.1141 1.5465


25 See Supplementary Information or Github repository

Table 3: Globally optimal stepsizes obtained by solving (14) with the BnB-PEP Algorithm.

Algorithm
BnB-PEP Algorithm runtime Off-the-shelf Gurobi runtime

on MIT Supercloud
Stage 1 Stage 2 Stage 3

N = 1 0.004 s 0.130 s 0.081 s 5 h 17 m

N = 2 0.007 s 0.147 s 0.110 s 1 d 3 h

N = 3 0.007 s 0.153 s 0.512 s 4 d 13 h

N = 4 0.015 s 0.192 s 4.602 s More than a week

N = 5 0.017 s 0.330 s 456.685 s More than a week

N = 10 0.26 s 2 m 37 s 1 d 22 h Does not finish in 2 weeks

N = 25 3.2 s 6 m 22 s 3 d 10 h Does not finish in 2 weeks

Table 4: This table compares the runtimes of the BnB-PEP Algorithm executed on a stan-
dard laptop with the off-the-shelf spatial branch-and-bound algorithm of Gurobi executed on MIT

Supercloud for N = 1, . . . , 5, 10. For the case N = 25, both the BnB-PEP Algorithm and off-the-
shelf Gurobi were executed on MIT Supercloud.
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specific problem structure and obtain a speedup that enables us to run the BnB-PEP Algorithm
on a laptop.

In §4.1, we briefly review the standard spatial branch-and-bound algorithm. We present the cus-
tomization that provide significant speedups in §4.2. In §4.3 we show how to compute the effective
index set of the inner-dual-variable and thereby reduce the size of the BnB-PEP-QCQP without
losing optimality.

4.1 How the spatial branch-and-bound algorithm solves QCQPs

We briefly review the standard spatial branch-and-bound algorithm [4, 52, 41, 50]. We assume the
optimization problem admits a finite optimal value, as this is the case in the setups we consider.3

The spatial branch-and-bound algorithm uses a divide-and-conquer approach to solve (1). The
algorithm starts with the presolve phase, solving a linear relaxation of (1) to obtain valid bounds
l ≤ x ≤ u, with l, u ∈ Rq, that are satisfied by optimal solutions. Then the algorithm performs
branching, partitioning the feasible region of (1) into a finite collection of subregions F1, . . . , FK

and considering the subproblems

p⋆k =


minimize

x∈Rq
c⊤x+ x⊤Q0x

subject to a⊤i x+ x⊤Qix ≤ bi, i ∈ [1 : m],
a⊤j x+ x⊤Qjx = bj , j ∈ [m+ 1 : p],

x ∈ Fk,


for k ∈ [1 : K]. The best (smallest) among the optimal values p⋆1, . . . , p

⋆
K is p⋆, by definition. The

bounding part is about how to efficiently solve these subproblems via solving relaxations and how
to split these subproblems into smaller subproblems if necessary; we discuss this next.

The central idea is that, while solving a particular subproblem (also a QCQP albeit over a smaller
region) might be as hard as solving the original problem, a lower bound and an upper bound of
that subproblem is much easier to solve via linear relaxations. Using this idea, first, at the root
node of the spatial branch-and-bound tree, a linear relaxation of (1) is constructed and solved,
which gives a lower bound on p⋆, denoted by p⋆. The tighter this relaxation, the closer p⋆ is to
p⋆. In addition to that, the user can warm-start the branch-and-bound algorithm by providing a
known initial feasible solution to (1), which gives an upper-bound on p⋆, denoted by p⋆. Efficient
warm-starting procedure that exploit the problem structure can massively speed up branch-and-
bound-solvers. The branch-and-bound algorithm during its execution keeps updating p⋆, p⋆. The
difference p⋆ − p⋆ is called the gap, and when this gap is equal to zero (or less than some tolerance
ϵ) at some point of the algorithm, we have found the globally (near-)optimal value p⋆ of (1) along
with one (approximately) optimal solution, and the algorithm is terminated. We next discuss how
the gap is improved over the course of the algorithm.

Once the subregions have been created, the algorithm picks an active subregion, say Fk (which k
to select can be arbitrary, though, in practice, it is usually done via different heuristics in modern
solvers), and constructs two linear optimization problems on Fk. These linear formulations are

3The setups of §3 and §6 satisfy p⋆ < ∞, since any FSFOM (such as the method that has all 0 stepsizes and
therefore does not move) achieves a finite performance measure, and 0 ≤ p⋆, since the objectives are nonnegative. In
general, however, there could be pathological BnB-PEPs such that p⋆ = −∞ or p⋆ = ∞.
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constructed using the McCormick envelopes [55], which provide lower and upper bounds for the
quadratic objective and constraints in (1), whereas the the linear constraints in (1) are kept un-
altered. Then three types of linear cuts are added to the linear optimization problems to remove
regions that are certain to not contain any optimal solutions [72, 62, 73]. Solving these linear
optimization problems along with the cuts provides valid lower and upper bounds on the optimal
values of (1) for the active subregion Fk. Solving these linear optimization problems on Fk leads
to one of the three possibilities below:

1. If the linear optimization problem associated with the lower bound is either infeasible or
has an objective value greater than the global upper bound p⋆, then Fk cannot contain the
optimal solution to (1). Hence, without solving the QCQP on Fk, we can discard or prune
the subregion. Such a pruned subregion becomes a permanent leaf of the branch-and-bound
tree.

2. If both the lower and upper bounds for the subregion are the same, then without directly
solving the QCQP on Fk, we have found this subproblem’s optimal solution with optimal
value p⋆k. This optimal solution on Fk is a feasible solution to the main problem (1). It
is not necessary to branch on this subregion anymore, and it becomes a permanent leaf of
the search tree. If the objective value associated with this new feasible solution leads to an
improved upper bound p⋆ compared to the current incumbent, then the feasible solution on
Fk becomes the new incumbent solution. Otherwise, updating the incumbent is not necessary
and we simply proceed with the search.

3. If 1 or 2 does not happen, then the subregion Fk is partitioned into smaller subregions by
branching again, which are then added to the list of active subregions.

In addition to that, at any point, the algorithm keeps an updated value of the lower bound on p⋆

by taking the minimum of the best objective values of all the current leaf nodes. On the other
hand, the upper bound p⋆ corresponds to the incumbent solution. As the algorithm explores the
active subregions, the gap p⋆−p⋆ keeps getting smaller, and once it is zero or smaller than a certain
tolerance ϵ, we have found the global optimal value p⋆ of (1) along with one optimal solution subject
to the tolerance, and the algorithm terminates.

4.2 Efficient implementation of the spatial branch-and-bound algorithm

We now customize the spatial branch-and-bound algorithm to efficiently exploit problem structure
of the BnB-PEP-QCQP. Our customization of Gurobi’s branch-and-bound algorithm [1] uses solver-
independent callback functions, an interface provided by JuMP [33].

Callback functions are user-defined functions provided to the optimization solver that query or mod-
ify the state of the optimization process of a solver. Examples of such callback functions include
providing custom heuristics to compute better feasible solutions, changing the default branching
decision of the branch-and-bound algorithm, or applying on-demand separators to add new con-
straints only if they are violated by the current solution.

We discuss the generalization of our customization of the spatial branch-and-bound algorithm for
arbitrary E , F , and C in §5. We first present the customizations in §4.2.1, §4.2.2, and §4.2.3, and
then discuss the observed speedups in §4.2.4.
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4.2.1 Bounds on optimal solutions

Branch and bound algorithms require bounds on the optimization variables to partition the feasible
region. If no bound information for a variable is provided in the original formulation (1), then the
solver obtains a bound by solving a generic linear relaxation during the presolve phase. However,
this bound can be of poor quality as a generic solver does not have any problem-specific insight,
and a loose bound can cause the solver to waste time in unimportant regions. We show how to
significantly speed up the branch-and-bound algorithm by exploiting the structure of (1) to obtain
tighter bounds.

Implied linear constraints. The constraint Z = PP⊤ implies that Z is symmetric positive semidef-
inite. This in turn implies

Z = Z⊤,
diag(Z) ≥ 0,

−Zi,i+Zj,j

2 ≤ Zi,j ≤ Zi,i+Zj,j

2 .

(15)

where diag(Z) ≥ 0 means the Zi,i ≥ 0 for i ∈ [1 : N + 2]. To explain, Z ⪰ 0 implies that every
1 × 1 principal submatrix of Z is positive-semidefinite [40, Observation 7.1.2], and this in turn
implies the second constraint. Also, Z ⪰ 0 implies that every the 2× 2 principal submatrix of Z is
positive-semidefinite, and this in turn implies

|Zi,j | ≤
√
Zi,iZj,j ⇔ Z2

i,j ≤ Zi,iZj,j (16)

for i, j ∈ [1 : N + 2]. Chaining the AM-GM inequality√
Zi,iZj,j ≤

Zi,i + Zj,j

2
,

we get the third constraint.

While these implied constraints are indeed mathematically redundant, they are algorithmically
indispensable as they provide crucial information that the solver cannot deduce directly. Explicitly
incorporating these implied constraints provides significant speedups. Instead of incorporating the
tighter convex second-order cone (SOC) constraint (16), we opt for the third linear constraint
(15) in our BnB-PEP-QCQP formulation. This choice avoids a slowdown in the spatial branch-
and-bound algorithm, which solves only linear relaxations at each node, as detailed in §4.1. The
linear relaxations are derived from McCormick convex envelopes, which are constructed without
considering underlying convexity and are computationally expensive [52, 41, 50]. Using the SOC
constraint (16) would result in the spatial branch-and-bound algorithm treating it as a generic
quadratic constraint and spending extra time constructing McCormick convex envelopes for it [4,
pp. 10–15]. Since the positive semi-definiteness of Z is already modeled by the quadratic constraints
Z = PP⊤, and their associated convex envelopes are tighter than the ones for SOC constraints,
the additional SOC constraints would ultimately lead to a net slowdown. Conversely, the third
constraint in (15) is linear and can be directly incorporated into the linear relaxations at the nodes
without any extra processing time. These constraints differ from those automatically generated by
the McCormick convex envelopes, ultimately resulting in a speed-up due to their low computational
cost and provision of valuable bound information that is not automatically inferred through the
McCormick convex envelopes.
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Variable bounds via SDP relaxation of (14). Next, we compute bounds Mλ, Mν , Mα, and MZ

such that
λi,j ≤Mλ, i, j ∈ I⋆N : i ̸= j,
|Zi,j | ≤MZ , i, j ∈ [1 : N + 2],
|Pi,j | ≤MP , i, j ∈ [1 : N + 2],
|αi,j | ≤Mα, i ∈ [1 : N ], j ∈ [0 : i− 1],
ν ≤Mν ,

(17)

are satisfied by global minimizers of (14).

Let w = vec(α, ν, λ) denote the column vector stacking the elements of α, ν, and λ. Let W = ww⊤.
Then we can construct a lifted nonconvex semidefinite representation of the constraint set of (14),
which includes the nonconvex rank-1 constraint W = ww⊤ [53]. The specific form is quite tedious,
so we present it in §8.3 of the appendix. We then relax the rank-1 constraint W = ww⊤ to an
implied convex constraint

W ⪰ ww⊤ ⇔
[
W w
w⊤ 1

]
⪰ 0, (18)

where we have used the Schur complement. Since any feasible (and optimal) solution of (14) must
lie in this larger relaxed convex set, we compute bounds by optimizing over this set as follows.

The feasible point provided by Stage 1 of the BnB-PEP Algorithm establishes an upper bound
ν ≤Mν = νinit, since ν is the scaled objective function. Next, solve

maximize cλMλ + cZMZ + cαMα

subject to semidefinite relaxation of (14),
constraint (18),
λi,j ≤Mλ, i, j ∈ I⋆N : i ̸= j,
|Zi,j | ≤MZ , i, j ∈ [1 : N + 2],
|αi,j | ≤Mα, i ∈ [1 : N ], j ∈ [0 : i− 1],
ν ≤ νinit,


(19)

where λ, ν, Z, α, W , Mλ ≤ ∥λ∥1, MZ ≤ trZ, and Mα ≤ ∥α∥1 are the decision variables, with

(cλ, cZ , cα) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}

to obtainMλ,MZ , andMα, respectively.
4 (Since we restrict our search to points satisfying ν ≤ νinit,

our bounds may exclude some suboptimal feasible solutions. However, all optimal solutions will
satisfy the bound.) Finally, we set MP =

√
MZ based on

P 2
i,j ≤

i∑
k=1

P 2
i,k = Zii ≤MZ (20)

for all i, j ∈ [1 : N + 2].

To clarify, this approach is a relaxation in the sense that it is guaranteed to produce variable bounds
that will include all globally optimal solutions. (However, there is no guarantee on the tightness of
the bounds, so the bounds could be very loose and not useful.)

4As a note of caution, solving (19) with (cλ, cZ , cα) = (1, 1, 1) does not provide a valid bound for all Mλ, MZ , and
Mα; maximizing Mλ +MZ +Mα may reduce one bound below a valid threshold to increase another bound.
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Besides computing valid bounds on the variables, we also investigated the quality of the solutions of
the SDP relaxations, for this setup and all other examples in this paper. Unfortunately, we found
that the solutions of the SDP relaxations to be of very poor quality in every case: the optimal value
of the SDP relaxation was far from the optimal value of the BnB-PEP-QCQP. Additionally, we
observed that the SDP relaxations failed to generate feasible solutions for the underlying BnB-PEP-
QCQPs, even when we considered a rank-1 projection of the solution matrix. In other words, it
was not possible to reconstruct valid first-order methods from the solutions of the SDP relaxations.

Heuristic bounds. However, the SDP relaxation to compute the variable bounds is quite cumber-
some. Therefore, we present a simpler alternative, a heuristic that estimates the variable bounds
based on the Stage 2 solution.

The premise of the heuristic is as follows. First, we make the informal assumption that the Stage 2
solution is near-optimal, which, again, happened very often in our experiments. In §4.3, we discuss
that optimal inner-dual variables λ = {λi,j}i,j∈I⋆N :i ̸=j and Z are sometimes not unique and that
sparse λ and low-rank Z are more valuable. Following the literature on sparse signal processing [38,
§2], we promote sparsity of λ by reducing its ℓ1-norm

∑
i,j∈I⋆N :i ̸=j λi,j and low rank of Z by reducing

its nuclear norm trZ. To do so, we need our variable bounds to include the global solutions with
the minimum ℓ1-norm of λ and minimum nuclear norm of Z.

Based on the constraint set of (13), consider the following convex SDP

maximize cλ
∑

i,j∈I⋆N :i ̸=j λi,j + cZ trZ

subject to
∑

i,j∈I⋆N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α
lopt) + 2µA⋆,N (αlopt)+∑

i,j∈I⋆N :i ̸=j λi,j

(
Ai,j(α

lopt) + 1
2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,
λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,
ν ≥ 0,
νR2 ≤ νloptR2,


(21)

where ν, λ, and Z are the decision variables, (cλ, cZ) ∈ {(1, 0), (0, 1)}, and αlopt are νlopt are set

to be values from the Stage 2 solution. Let M̃ be a user-defined parameter greater than 1. With
(cλ, cZ) = (1, 0), we maximize the ℓ1 norm of λ and get λhrstc. Set

Mλ = M̃ max
i,j∈I⋆N :i ̸=j

{λhrstci,j }.

With (cλ, cZ) = (0, 1), we maximize the nuclear norm of Z and get Zhrstc. Set

MZ = M̃ max
i∈[1:N+2]

{Zhrstc
i,i }

based on the reasoning that (15) implies that every entry of Z is bounded by the maximum of the
diagonal entries. Set MP from MZ using (20). Set

Mα = 5M̃ max
0≤j<i≤N

{αlopt
i,j }.
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A note of caution is that when the Stage 2 solution is far from optimal, it is unclear whether this
heuristic is even likely to produce a valid bound. When the Stage 2 solution is, in fact, near-optimal,
the heuristic should help the BnB-PEP Algorithm to find the globally optimal solution quickly, and
this is what we observe in our experiments.

Another note of caution is that the heuristic fails silently when it fails; there is no reliable mechanism
to detect whether the heuristic bounds include or exclude global solutions. After solving (14)
using the bounds, we verify if the solution lies within the interior of those bounds. Furthermore,
empirically we always found that the solutions computed using the heuristic-based bound were
well within the interior of the imposed bounds, though this is not a guarantee that the associated
solution is globally optimal, as there is a possibility that a strictly better global solution lies far
outside of the boundary since the BnB-PEP-QCQP is nonconvex. Finally, in all our experiments,
we additionally verified that the heuristic-based bound produced the same optimal solutions as the
SDP-based bounds.

Remark. We clarify that the heuristic bound offers no guarantee of correctness and that the SDP
relaxation, which is guaranteed to be correct, is the superior choice. However, SDP relaxations can
be cumbersome to formulate and implement. Therefore, one may first try out the heuristic bound
in a prototyping phase and then decide to implement the SDP relaxation if the preliminary results
are sufficiently interesting.

4.2.2 Tighter lower bounds via lazy callback

When an incumbent or warm-starting solution is already near-optimal, i.e., when the upper bound
is already good, the work in certifying global optimality mostly lies in improving the lower bound.
Indeed, in our experiments, Stage 2 of the BnB-PEP Algorithm consistently found near-optimal
solutions, and Stage 3 spent most of its time improving the lower bound to certify or polish the
solution of Stage 2. If we can compute a good lower bound and provide it to the spatial branch-and-
bound algorithm, Stage 3 can terminate very quickly as the number of subregions to be explored
is substantially reduced. To that goal, we compute a tighter lower bound of (14) via the lazy
constraint callback method. Unlike normal constraints, lazy constraints are not generated upfront
but are rather generated and added one by one when needed.

Consider a variant of (14), where we model Z = PP⊤ ⇔ Z ⪰ 0 equivalently as

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ RN+2.

Since this formulation uses an infinite set of linear constraints, we relax it with a finite set of linear
constraints

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ Y, (22)

where Y is initialized to be a randomly generated set of 2(N + 2)2 unit vectors in RN+2 following
the prescription of [9, §5.1]. In (14), we relax Z = PP⊤ into the constraint (22) and obtain a
simpler QCQP. Then, update Y lazily by repeating the following steps (i)–(iii) a finite number of
times (1× 106 times in our implementation):

(i) Solve the relaxation of (14), where (22) is used instead of Z = PP⊤, to obtain Z and a lower
bound.
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(ii) Find the minimum eigenvalue eigmin(Z) and corresponding normalized eigenvector u of Z. If
eigmin(Z) ≥ 0, terminate.

(iii) If eigmin(Z) < 0, then add u to Y , i.e., add the constraint tr(Zuu⊤) ≥ 0. (Note, tr(Zuu⊤) <
0. So the added constraint makes the current Z infeasible for the updated relaxation (22).)

In step (ii), if eigmin(Z) ≥ 0, then the solution Z of the relaxation (22) is in fact optimal for the
original unrelaxed problem, so we terminate. We use the lazy constraint callback interface of JuMP
to implement this scheme. After adding one additional linear constraint in step (iii), updating the
solution in step (i) is efficient since Gurobi and all modern solvers based on the simplex algorithm
can quickly update a solution when one linear constraint is added [11, pp. 205–207].

4.2.3 Improved upper bounds via SDP solves

As a heuristic to obtain improve upper bounds, we utilize the fact that the optimization of (14)
reduces to an SDP when the stepsize α is fixed. This is a structure that the branch-and-bound
solver cannot infer by itself.

When the branching process reaches a new node, we access (via a callback feature of JuMP) the
solution (αrlx, νrlx, λrlx, Zrlx, P rlx) of the relaxation and quantify its infeasibility with

merit(αrlx, νrlx, λrlx, Zrlx, P rlx)

=∥
∑

i,j∈I⋆N :i ̸=j

λrlxi,j ai,j∥∞ +
∥∥∥νrlxB0,⋆ − CN,⋆ − µ2BN,⋆(α

rlx) + 2µA⋆,N (αrlx)
∥∥∥
∞

+ |min{eigmin(Z
rlx), 0}|,

where eigmin(Z
rlx) is the minimum eigenvalue of Zrlx. If

merit(αrlx, νrlx, λrlx, Zrlx, P rlx) ≤ ϵ,

then we fix the stepsize in (13) to αrlx and solve the convex SDP. (We take ϵ = 0.01 in our
implementation.) We submit the solution to the SDP as a heuristic solution (via a callback feature
of JuMP). If the heuristic solution improves the best upper bound p⋆, then it is accepted by the
solver, else it is rejected.

4.2.4 Numerical evaluation of the customizations

In our experiments, we found that that the customization of §4.2.1 provided the largest speedups,
§4.2.2 substantial speedups, and §4.2.3 no speedups. We further describe our observations here.

Variable bounds of §4.2.1. Tables 5 and 6 show the bounds obtained through the SDP relaxation.
As an aside, we found that these valid bounds substantially improve not only the branch-and-bound
algorithm of Stage 3, but also the local solve of Stage 2.

Tighter lower bound of §4.2.2. Table 7 shows the lower-bounds for (14) computed from the
lazy constraint callback method. The customization produces a high quality lower bound, which,
combined with the near-optimal solution of Stage 2 of the BnB-PEP Algorithm, enables the branch-
and-bound algorithm to terminate quickly.
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N Mλ Mα MZ MP Mν Runtime (s)

1 1.00 2.00 1.00 1.00 0.2244 0.068

2 1.00 4.5175 1.00 1.00 0.0893 0.181

3 1.00 3.672 1.00 1.00 0.0449 0.736

4 1.00 3.5166 1.00 1.00 0.0257 3.173

5 1.00 3.7919 1.00 1.00 0.0159 11.380

Table 5: Valid bounds on the decision variables in (14) obtained via the SDP relaxation of (19).
The runtime describes to the total time spent compute all the bounds of the row.

N Mλ Mα MZ MP Mν Runtime (s)

1 0.8789 7.6105 0.4233 0.6506 0.1473 0.082

2 0.9504 8.2597 0.1934 0.4397 0.0409 0.093

3 0.9767 9.4761 0.1009 0.3177 0.0145 0.105

4 0.9853 9.8591 0.0599 0.2448 0.005766 0.114

5 0.9886 10.3633 0.0383 0.1958 0.002459 0.121

Table 6: Heuristic bounds on the decision variables in (14) with M̃ = 1.01. The runtime describes
the total time spent compute all the bounds of the row. Compared to the results of Table 5 the
bounds tend to be tighter, the runtime is faster, and the implementation is much simpler. However,
there is no theoretical guarantee that the bounds are valid.

N p⋆ p⋆ p⋆ − p⋆ Runtime (s)

1 0.1432 0.1473 0.0041 0.135

2 0.0374 0.0409 0.0035 0.232

3 0.0121 0.0145 0.0024 2.550

4 0.00178 0.005766 0.003986 72.7

5 0.000517 0.002459 0.001941 336.341

Table 7: Lower bound p⋆ of (14) computed from the lazy constraint callback method. The upper
bound p⋆ is the objective value from Stage 2 of the BnB-PEP Algorithm.
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Improved upper bound of §4.2.3. In our experiments, the submitted upper bounds were all
rejected by the solver and therefore provided no speedup. This is not surprising, as it is likely due
to the warm-starting solution from Stage 2 being near-optimal. To verify this hypothesis, we ran
Stage 3 without Stage 2. In this case, the submitted heuristic solution was often accepted by the
solver, but the overall performance was slow as Stage 3 started from a poor warm-starting solution.
We recommend that users of the BnB-PEP Algorithm always perform Stage 2 before Stage 3.
However, when the warm-starting solution is not near-optimal, we can expect this customization
to provide a speedup.

4.3 Structured inner-dual variables

The family solutions to (14) with N = 1, 2, . . . exhibits an exploitable structure: the optimal λ⋆ is
sparse and the optimal Z⋆ is low-rank. A computational benefit of this structure is that it reduces
the problem size of the BnB-PEP-QCQP. A theoretical benefit is that the structured inner-dual
variable corresponds to simpler and therefore more analytically tractable proofs, which we seek in
§6.3.

In this section, we describe a heuristic strategy for identifying such structure. The general idea
is to solve the problem exactly for smaller values of N , say N = 1, . . . , 5, and infer the pattern.
This heuristic is based on the expectation that the observed patterns will continue to hold for
N = 6, 7, . . . .

Sparsity pattern of λ. Denote the support of λ⋆ as

supp(λ⋆) = {(i, j) | i, j ∈ I⋆N , i ̸= j, λ⋆i,j > 0}.

(Note that λ⋆i,j ≥ 0 for all i, j.) If we know supp(λ⋆) in advance, then we can simplify (14) by
replacing both instances of ∑

i,j∈I⋆N :i ̸=j

λi,j(· · · )

with ∑
(i,j)∈supp(λ⋆)

λi,j(· · · )

and obtain a smaller QCQP.

First solve (14) for N = 1, . . . , 5 using the BnB-PEP Algorithm. At this point, solutions may
already reveal their pattern in supp(λ⋆). However, optimal inner-dual variables for a given FSFOM
are not always unique (see [76] or Table 8), and, if so, the solution returned by the spatial branch-
and-bound solver will likely not be a sparse one. Therefore, following the literature on sparse signal
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N Optimal λ with

minimum ℓ1 norm

Optimal λ with

maximum ℓ1 norm

1 2.642 3.594

2 2.434 3.114

3 2.369 2.925

4 2.339 2.823

5 2.320 2.757

Table 8: Solutions to (23) with minimum and maximum ℓ1-norm on optimal λ for the setup of
§3 and §4. The gap demonstrates that the optimal inner-dual variable is not unique and therefore
that the ℓ1-norm minimization is necessary for obtaining a sparse solution.

processing [38, §2], we promote sparsity of λ by reducing its ℓ1-norm
5 as follows

minimize ∥λ∥1 =
∑

i,j∈I⋆N :i ̸=j λi,j

subject to νR2 ≤ p⋆,∑
i,j∈I⋆N :i ̸=j λi,jai,j = 0,

νB0,⋆ − CN,⋆ − µ2BN,⋆(α
⋆) + 2µA⋆,N (α⋆)+∑

i,j∈I⋆N :i ̸=j λi,j

(
Ai,j(α

⋆) + 1
2(L−µ)Ci,j

)
= Z,

Z ⪰ 0,
λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,
ν ≥ 0,


(23)

where ν, λ, and Z ∈ SN+2
+ are the decision variables. The constraint set of (23) is almost identical

to (13), except we impose the constraint νR2 ≤ p⋆ and fix α⋆ to the optimal stepsize computed
with the BnB-PEP Algorithm. This way, our search is confined to the set of optimal solutions to
(14) and, with the FSFOM fixed, the problem is efficiently solved as an SDP. Denote the solution
to (23) by {ν⋆, λ⋆,sparse, Z⋆,sparse}. Hopefully, the optimal λ⋆,sparse for N = 1, . . . , 5 are sparse and
their structure reveals a pattern.

Low rank of Z. When r = rank(Z⋆) with r < n, then we can use the factorization Z = PP⊤,
where P ∈ Rn×n has n − r columns constrained to be zero. Such constraints significantly reduce
the effective size of the QCQP.

Lemma 4 ([39, Theorem 10.9]). A matrix Z ∈ Sn is positive semidefinite with rank r ≤ n if
and only if it has a Cholesky factorization Z = PP⊤, where P ∈ Rn×n is lower-triangular, has r
positive diagonal entries, and n− r columns containing all zero.

We solve (23) for N = 1, . . . , 5 and infer the rank. (In principle, one could perform a separate
nuclear norm minimization or further advanced approaches such as [34] to reduce the rank of
Z, but this was not necessary in our experiments.) In our current setup, Z⋆,sparse has rank 1,
as Table 9 indicates. Other optimized method throughout the literature such as OGM, ITEM,
OGM-G [32, 43, 78, 45] also have corresponding low-rank Z⋆.

5One could consider further advanced approaches for promoting sparsity such as [17].
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For N = 6, 7, . . . , we obtain Z⋆ and P ⋆ from Stage 2 of the BnB-PEP Algorithm. If we expect a
certain value of r = rank(Z⋆), keep r columns of P ⋆ with the largest magnitude and constrain the
remaining n− r columns to be 0 in the subsequent Stage 3.

Structured inner-dual variables represent simpler proofs. A feasible point of the dualized prob-
lem (13) can be interpreted as a convergence proof combining inequalities

fi ≥ fj + ⟨gj | xi − xj⟩+
1

2(L− µ)
∥gi − gj∥2 (24)

for i, j ∈ I⋆N , and the value of λ⋆i,j corresponds to the value used in forming a weighted combination
of the inequalities [70, §3.3]. Therefore, λ⋆i,j = 0 for some (i, j) is equivalent to not using the
corresponding inequality in the convergence proof. A sparse λ corresponds to a proof using fewer
inequalities, which tend to be simpler proofs.

On the other hand, rank(Z⋆) corresponds to the excess quadratic terms arising within a proof. For
convergence proof of FSFOMs of the form,

A ≤ B − ∥c1∥2 − . . . ∥cr∥2 ≤ B,

r = rank(Z⋆) corresponds to the number of quadratic terms {∥ci∥2}i=1,...,r, roughly speaking. Since
rank(Z⋆) corresponds to the number of excess terms to deal with in a proof, an optimal solution
Z⋆ with small rank tends to correspond to simpler proofs.

Numerical results. Table 9 presents supp(λ⋆,sparse), rank(Z⋆,sparse), and the non-zero columns of
P ⋆,sparse from solving the convex SDP (23). We use µ = 0.1, L = 1, and R = 1. From the results,
we infer the pattern

supp(λ⋆,sparse) = {(⋆, i)}i∈[0:N ] ∪ {(i, i+ 1)}i∈[0:N−1] ∪ {N, i}i∈{⋆}∪[0:N−1],

which has only 3N+2 components compared to the (N+2)(N+1) of the full index set. Furthermore,
rank(Z⋆,sparse) = 1. For N = 1, . . . , 5, we verified that there are globally optimal solutions satisfying
these patterns. For N = 6, 7, . . . , 25, we verified that there are locally optimal solutions satisfying
these patterns.

Discussion. Prior work on optimized FSFOMs such as OGM, ITEM, and OGM-G [32, 43, 78, 45]
discard certain inequalities in their formulations. The choice of which inequality to discard, which
is equivalent to identifying supp(λ⋆), was likely carried out through ad-hoc trial and error. As no
reasoning or intuition was provided behind the choice and as the set of discarded inequalities are
different from one work to another, the process is opaque. Our approach provides a systematic
process for making this choice.

To clarify, we solve the exact, unrelaxed (14) with BnB-PEP Algorithm for N = 1, . . . , 5. The
methodology for N = 6, 7, . . . is a heuristic in the sense that our solution is exactly only under the
condition that the observed sparsity pattern continues. If the pattern changes, the QCQP becomes
a relaxation, and the produced FSFOM becomes suboptimal. However, one can be reasonably
confident in the sparsity pattern as it is based on the exact solutions for N = 1, . . . , 5.
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N supp(λ⋆) Rank of

Z⋆,sparse

Index of

nonzero

column of

P ⋆,sparse

Runtime (s)

for solving

(23)

1
{(⋆, 0), (⋆, 1),
(0, 1),
(1, ⋆), (1, 0)}

1 Column # 1 0.0021

2
{(⋆, 0), (⋆, 1), (⋆, 2),
(0, 1), (1, 2),
(2, ⋆), (2, 0), (2, 1)}

1 Column # 1 0.0056

3
{(⋆, 0), (⋆, 1), (⋆, 2), (⋆, 3),
(0, 1), (1, 2), (2, 3),
(3, ⋆), (3, 0), (3, 1), (3, 2)}

1 Column # 1 0.0071

4
{(⋆, i)}i∈[0:4]∪
{(i, i+ 1)}i∈[0:3]∪
{4, i}i∈{⋆}∪[0:3]

1 Column # 1 0.0097

5
{(⋆, i)}i∈[0:5]∪
{(i, i+ 1)}i∈[0:4]∪
{5, i}i∈{⋆}∪[0:4]

1 Column # 1 0.0140

Table 9: Structure of the inner-dual variables obtained from the convex SDP (23). The last column
shows the runtime to solve (23). (Table 4 shows the runtime to solve (14), a prerequisite for solving
(23).)

5 Generalized BnB-PEP methodology

We now discuss the generalization of the BnB-PEP methodology for general E , F , and C.

Generalized BnB-PEP-QCQP. The BnB-PEP-QCQP formulation for general E , F , and C follows
steps analogous to those of §3.1.

(i) Infinite-dimensional inner optimization problem. Construct an infinite-dimensional
representation of (Oinner) analogous to (6) of §3.1. When x⋆ exists, set x⋆ = 0 and f(x⋆) = 0
without loss of generality.

(ii) Interpolation argument. Using a reparametrization (if necessary) and an interpolation ar-
gument, formulate the infinite-dimensional inner problem of (i) as a finite-dimensional prob-
lem analogous to (7) of §3.1.

(iii) Grammian formulation. By introducing Grammian matrices and using a large-scale as-
sumption, formulate the finite-dimensional inner maximization problem of (ii) as an SDP,
analogous to the problem (12) in §3.1. When the FSOM is fixed, the SDP is a convex opti-
mization problem.

(iv) Dualization. Form the dual the SDP of (iii) analogous to (13) of §3.1. Assume strong
duality.

(v) Formulating (Oouter) as a QCQP. Using Lemma 3, replace the SDP constraint Z ⪰ 0
of the dual SDP with Z = PP⊤, where P is lower triangular with nonnegative diagonals.
This formulates (Oouter) as a QCQP analogous to (14) of §3.1. When f is nonconvex, certain
cubic or trilinear terms may arise, whereas for a convex f the nonlinear terms are bilinear
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Function

class

Fixed stepsize hinit for Stage 1 of the BnB-PEP

Algorithm

F0,L hinit
i,j =

{
1/L, if j = i− 1,

0, else,
0 ≤ j < i ≤ N.

Fµ,L Same as F0,L.

F−L,L Same as F0,L.

Wρ,L hinit
i,j =

{
Rρ
L

1√
N+1

, if j = i− 1,

0, else,
0 ≤ j < i ≤ N.

Table 10: Fixed stepsize vector hinit to use in step 1 of the BnB-PEP Algorithm. For F0,∞, and
Wρ,L, R>0 is the upper bound associated with the initial condition.

or quadratic. If so, for such a nonconvex f , formulate such terms as quadratic or bilinear
constraints by introducing dummy variables, a process illustrated in §6.2 and §6.3. We call
the resultant QCQP the BnB-PEP-QCQP. The variables of the dual SDP of (iv) are present
in the BnB-PEP-QCQP, and we refer to them as the inner-dual-variables.

Generalized BnB-PEP Algorithm. We solve the BnB-PEP-QCQP to certifiable global optimality
with the following generalized BnB-PEP Algorithm, a generalization of Algorithm 1.

• Stage 1: Compute a feasible solution. Fix the stepsizes in the dual SDP of Step (iv)
of the formulation of BnB-PEP-QCQP to a reasonable hinit and solve the resultant convex
minimization problem to obtain a feasible the BnB-PEP-QCQP. Table 10 lists reasonable
stepsizes.

• Stage 2: Compute a locally optimal solution by warm-starting at Stage 1 solution.
Warm-start the BnB-PEP-QCQP with the feasible solution found in Stage 1 and solve the
problem to local optimality using a nonlinear interior-point method.

• Stage 3: Compute a globally optimal solution by warm-starting at Stage 2 so-
lution. Warm-start the BnB-PEP-QCQP with the locally optimal solution found in Stage
2 and solve the problem to global optimality using a customized spatial branch-and-bound
algorithm described in the following.

Efficient implementation of the generalized BnB-PEP Algorithm. We customize the spatial
branch-and-bound algorithm to exploit specific problem structure of the generalized BnB-PEP-
QCQP. The techniques are analogous to those described in §4. We find bounds on optimal solutions
through implied linear constraints, SDP relaxation, and a heuristic. We find tighter lower bounds
via lazy callback by replacing Z = PP⊤ with

tr
(
Zyy⊤

)
≥ 0, ∀ y ∈ Y

and lazily updating Y . We improve upper bounds via SDP solves by constructing a merit function
to measure the infeasibility at the nodes of the branch-and-bound tree and solving the convex SDP
with the stepsizes fixed when the merit function value falls below some tolerance. We exploit the
structure of the inner-dual variables by observing the sparsity and low-rank pattern for small N
(e.g., N ≤ 5) and extrapolating the patterns to larger N .
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6 Applications

In this section, we demonstrate the strength of the BnB-PEP methodology by applying it to three
setups for which the prior methodologies do not apply. Numerical experiments of this section were
performed in the computational setup described in §1.3. We empirically observed that, among the
two approaches of §4.2.1 for computing variable bounds, the heuristic-based bounds were tighter
and lead to runtimes faster by factor of 2–5 compared to using the SDP-based bounds. We report
the faster runtimes in our tables. In all instances, the two approaches produced the same optimal
solutions.

6.1 Optimal gradient method without momentum

In optimization folklore, momentum is considered essential for accelerating first-order gradient
methods. Indeed, prior FSFOMs minimizing smooth convex functions such as Nesterov’s method
[60], OGM [32, 43], ITEM [78], and many others [47, 36] all achieve accelerated rates with mo-
mentum. However, a little known fact is that simple gradient descent, without momentum, can
achieve an accelerated rate for minimizing strongly convex quadratics [88, 66]. Whether a similar
acceleration without momentum is possible for convex non-quadratic functions is not known.

In this section, we investigate whether the simple gradient descent method

xi = xi−1 −
1

L
hi−1∇f(xi−1) (GN )

with i ∈ [1 : N ] can achieve an accelerated rate for minimizing L-smooth convex functions when the
stepsize {hi}i∈[0:N−1] is chosen optimally. We denote the class of FSFOM of this form as GN ⊂MN .

As we discuss in §6.1.1, it is relatively straightforward to show that the unaccelerated O(1/k) rate
cannot be surpassed if {hi}i∈[0:N−1] stays within the “standard” range (0, 2). However, Young’s
method [88] uses long steps satisfying 1 < hi < L/µ for some i to achieve an accelerated rate for
L-smooth and µ-strongly convex quadratics. The question is whether a similar use of long steps
can provide an acceleration in the smooth convex setup.

Formally, we choose the function class

F = {f | f ∈ F0,L, f has a minimizer x⋆},

performance measure E = f(xN )−f(x⋆), and initial condition C = ∥x0−x⋆∥2−R2 ≤ 0 with R > 0.
We solve the following instance of (Oouter):

R⋆ (GN , E ,F , C) = minimize
M∈GN

R (M, E ,F , C) .

Derivation of BnB-PEP-QCQP. Following §5 Step (i), formulate the inner optimization problem
(Oinner) as

R (M, E ,F , C)

32



=



maximize f(xN )− f(x⋆)
subject to f ∈ F0,L,

∇f(x⋆) = 0,
xi = xi−1 − hi−1∇f(xi−1) i ∈ [1 : N ],
∥x0 − x⋆∥2 ≤ R2,
x⋆ = 0, f(x⋆) = 0,


where f and x0, . . . , xN are the decision variables. Write h = {hi}i∈[0:N−1]. Following §5 Step (ii),
use the interpolation argument to formulate the inner problem as

R (M, E ,F , C)

=



maximize fN − f⋆
subject to
fi ≥ fj + ⟨gj | xi − xj⟩+ 1

2L∥gi − gj∥
2, i, j ∈ I⋆N : i ̸= j,

g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0 − (1/L)
∑i−1

j=0 hjgj , i ∈ [1 : N ],

∥x0 − x⋆∥2 ≤ R2,


where {xi, gi, fi}i∈I⋆N ⊆ R

d ×Rd ×R are the decision variables. Following §5 Step (iii), implement

the Grammian transformation. Define the Grammian matrices H ∈ Rd×(N+2), G ∈ SN+2
+ , and

F ∈ R1×(N+1) using the same equations in (8), {xi,gi, fi}i∈I⋆N using the same encoding as (9),
except for {xi}i∈[1:N ], which we define as

xi = x0 − (1/L)

i−1∑
j=0

hjgj ∈ RN+2, i ∈ [1 : N ].

Note, xi is linearly parameterized by h. The matrices Ai,j , Bi,j , Ci,j , and ai,j are the same as in
(10) except that they are now parameterized by h. Under the large-scale assumption d ≥ N + 2,
we equivalently formulate the inner problem as the SDP

R (M, E ,F , C)

=


maximize Fa⋆,N
subject to
Fai,j + trGAi,j(h) +

1
2L trGCi,j ≤ 0, i, j ∈ I⋆N : i ̸= j, ▷ dual var. λi,j ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0
trGB0,⋆ ≤ R2, ▷ dual var. ν ≥ 0


where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. Following §5 Step (iv),
construct the dual:

R (M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j − a⋆,N = 0,

νB0,⋆ +
∑

i,j∈I⋆N :i ̸=j λi,j
(
Ai,j(h) +

1
2LCi,j

)
= Z,

Z ⪰ 0,
ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,


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where ν, λ, and Z are the decision variables. Assume that strong duality holds. Finally, following
§5 Step (v), use Lemma 3 to pose (Oouter) as the following BnB-PEP-QCQP:

R⋆ (GN , E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j − a⋆,N = 0,

νB0,⋆ +
∑

i,j∈I⋆N :i ̸=j λi,j
(
Ai,j(h) +

1
2LCi,j

)
= Z,

P is lower triangular with nonnegative diagonals,
PP⊤ = Z,
ν ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,


(25)

where λ, ν, Z, P , and h are the decision variables.
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Figure 1: Numerical results for computing locally optimal stepsizes by solving (25) with the first
two stages of the BnB-PEP Algorithm. Global optimality of the stepsizes are verified for N =
1, 2, . . . , 25. (Left) Worst-case performance of f(xN )− f⋆ vs. iteration count N . (Right) Runtimes
of the BnB-PEP Algorithm (including Stages 1 and 2 but excluding Stage 3).

Numerical results. Tables 11 and 12 present the results of solving (25) with L = 1, R = 1,
N = 1, . . . , 5, 10, 25 using the BnB-PEP Algorithm. We compare the optimal stepsize with the
constant normalized stepsize hi = 1 for all i, which is known to be optimal among hi ∈ (0, 1] [27,
Corollary 2.8, Theorem 2.9], and constant normalized stepsize h satisfying

1

2Nh+ 1
= (1− h)2N , (26)

which is conjectured by Taylor, Hendrickx, and Glineur to be the optimal constant normalized
stepsize [80, §4.1.1]. The stepsizes presented in Table 12 are certified to be globally optimal.
Interestingly, we observe that the locally optimal stepsizes obtained at Stage 2, denoted by hlopt,
were already near-optimal.

This observation motivates us to apply just the first two stages of the BnB-PEP Algorithm for N
upto 50. In Figure 1, we again compare the performance guarantees of the locally optimal stepsizes
hlopt with that of the constant normalized stepsizes hi = 1 and the constant normalized stepsizes
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N
#

variables

#

constraints

Worst-case f(xN )− f(x⋆) Runtime of the

BnB-PEP

Algorithm
Optimal

For stepsize

in [80, §4.1.1]
For stepsize

hi = 1

1 20 33 0.125 0.125 0.1667 0.03 s

2 34 56 0.065946 0.067355 0.1 0.252 s

3 54 85 0.042893 0.045364 0.0714 0.375 s

4 77 120 0.03117 0.033976 0.0555 17.602 s

5 104 161 0.024071 0.0270701 0.0454 86.904 s

10 365 456 0.010622 0.0132692 0.0238 1 d 18 h

25 1835 2241 0.0034757 0.0051754 0.0098 2 d 20 h

Table 11: Comparison between the performances of the optimal method obtained by solving (25)
with the BnB-PEP Algorithm, the method with constant normalized stepsize hi = 1, and the
method with constant normalized stepsize hi prescribed in [80, §4.1.1]. The BnB-PEP Algorithm
was executed on a standard laptop for N = 1, 2, . . . , 10, and on MIT Supercloud for N = 25.

N h⋆

1
[
1.5

]
2

[
1.414214
1.876768

]

3

 1.414215
2.414207
1.500001



4


1.414214
1.601232
3.005144

1.5



5


1.414214

2.0
1.414214
3.557647

1.5


10 See Supplementary Information or Github repository

25 See Supplementary Information or Github repository

Table 12: Globally optimal stepsizes obtained by solving (25) with the BnB-PEP Algorithm.
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hi satisfying (26). We verified global optimality of these stepsizes hlopt for N = 1, . . . , 25. While
hlopt for N = 26, . . . , 50 are not certifiably globally optimal (although we suspect that they are
near-optimal), their computed performances are certifiably accurate.

Figure 1 shows that the computed stepsizes hlopt outperforms both constant stepsizes. Figure 2
presents a linear fit of the rate in the log-log scale. The fit 0.156/N1.178 indicates that the asymptotic
rate may be faster than O(1/k).

Figure 3 shows hlopt for N = 5, 10, 25, 50. The optimal stepsizes hlopt for N = 1, 2, . . . , 50 (global
optimality verified for N = 1, 2, . . . , 25) are provided as Supplementary Information and as a data
file at:

https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/stpszs.jl

However, finding an analytical form of the computed stepsizes seems difficult. Therefore, we leave
inconclusive the question of whether acceleration without momentum is possible.
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Figure 2: Fitting the worst-case performance of f(xN ) − f⋆ corresponding to the locally optimal
stepsizes obtained by solving (25) with the first two stages of the BnB-PEP Algorithm yields
0.156/N1.178. The asymptotic rate may be faster than O(1/k).

6.1.1 Acceleration is impossible without long steps

Consider the univariate functions

f1(x) =

{
LR

2Nh+1 |x| −
LR2

2(2Nh+1)2
if |x| ≥ R

2Nh+1
L
2 x

2 otherwise

f2(x) =
L

2
x2,

which are L-smooth convex functions minimized at x⋆ = 0.

Consider gradient descent xi = xi−1 − (hi−1/L)∇fj(xi−1) where for j = 1, 2 and i ∈ [1 : N ] with
starting point x0 = R. For the sake of simplicity, consider the constant stepsize hi = h for all
i ∈ [0 : N − 1]. It is straightforward to check that the objective values at iteration N are

f1(xN ) =
LR2

2

1

2Nh+ 1
(for 0 ≤ h ≤ 2)
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Figure 3: Locally optimal stepsizes hlopt vs. iteration number for N = 5, 10, 25, 50 with L = 1.
These optimized methods utilize long steps hi > 2/L for some i, much alike how Young’s method
[88] uses long steps satisfying 1 < hi < L/µ for some i to achieve an accelerated rate for L-smooth
and µ-strongly convex quadratics.
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f2(xN ) =
LR2

2
(1− h)2.

The analysis of f1 shows that acceleration, if possible, would require the algorithm to take long
steps exceeding the range h < 2. On the other hand, the analysis of f2 shows that the constant-step
gradient descent cannot use a stepsize exceeding h < 2 as otherwise one gets divergence.

For the general case when hi is not constant, a similar line of reasoning with f1 shows that accel-
eration without momentum is possible only if {hi}i∈[0:N−1] exceeds hi < 2 for some i ∈ [0 : N − 1].
The reasoning and the counter examples f1 and f2 are based on [32, Theorem 2] and [80, §4.1.1].

6.2 Optimal method for reducing gradient of smooth nonconvex functions

In this section, we construct an optimal FSFOM for decreasing the gradient of L-smooth nonconvex
functions. Formally, we choose the function class

F = {f | f ∈ F−L,L, f has a global minimizer x⋆},

performance measure6

E = min
i∈[0:N ]

∥∇f(xi)∥2,

and initial condition C = f(x0) − f(x⋆) − (1/2)R2 ≤ 0 with R > 0. We parameterize FSFOMs in
MN as

xi = xi−1 −
i−1∑
j=0

hi,j
L
∇f(xj) = x0 −

i−1∑
j=0

hi,j
L
∇f(xj), (27)

for i ∈ [1 : N ]. We solve the following instance of (Oouter):

R⋆ (MN , E ,F , C) = minimize
M∈MN

R (M, E ,F , C) .

Derivation of BnB-PEP-QCQP. Following §5 Step (i), formulate the inner optimization problem
(Oinner) as

R (M, E ,F , C)

=



maximize mini∈[0:N ] ∥∇f(xi)∥2
subject to f ∈ F−L,L

f(x) ≥ f(x⋆), for all x ∈ Rd,

xi = x0 − 1
L

∑i−1
j=0 hi,j∇f(xj) i ∈ [1 : N ],

f(x0)− f(x⋆) ≤ R2,
x⋆ = 0, f(x⋆) = 0,


where f and x0, . . . , xN are the decision variables. Write h = {hi,j}0≤j<i≤N . To follow the inter-
polation argument of §5 Step (ii), we use the following interpolation result.

6In the nonconvex setup, performance measures such as f(xN ) − f(x⋆) or ∥∇f(xN )∥2 may not converge to zero
as N → ∞ [23, page 3, paragraph 2][29, Remark after Theorem 1].
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Lemma 5 (Interpolation inequality for F−L,L). Let I be a finite index set, and let {(xi, gi, fi)}i∈I∪{⋆} ⊆
Rd × Rd × R. Let L > 0. There exists f ∈ F−L,L satisfying f(x) ≥ f(x⋆) = f⋆ for all x ∈ Rd,
f(xi) = fi for all i ∈ I, and gi = ∇f(xi) for all i ∈ I if and only if 7

fi ≥ fj −
L

4
∥xi − xj∥2 +

1

2
⟨gi + gj | xi − xj⟩+

1

4L
∥gi − gj∥2, ∀ i, j ∈ I ∪ {⋆},

f⋆ ≤ fi −
1

2L
∥gi∥2, ∀ i ∈ I,

g⋆ = 0.

Proof. The result follows from translating [29, Theorem 7] into the form of [79, Theorem 3.10].
(Note that journal version of [79, Theorem 3.10] has a sign error that was corrected in its updated
arXiv version.)

Now formulate the inner problem as

R (M, E ,F , C)

=



maximize t
subject to
t ≤ ∥∇f(xi)∥2, i ∈ [0 : N ],

fi ≥ fj − L
4 ∥xi − xj∥

2 + 1
2 ⟨gi + gj | xi − xj⟩+ 1

4L∥gi − gj∥
2, i, j ∈ I⋆N : i ̸= j,

f⋆ ≤ fi − 1
2L∥gi∥

2, i ∈ [0 : N ],
g⋆ = 0, x⋆ = 0, f⋆ = 0,

xi = x0 − 1
L

∑i−1
j=0 hi,j∇f(xj), i ∈ [1 : N ],

f0 − f⋆ ≤ R2,


where {xi, gi, fi}i∈IN ⊆ Rd × Rd × R and t ∈ R are the decision variables. Following §5 Step
(iii), implement the Grammian transformation. Define the Grammian matrices H ∈ Rd×(N+2),
G ∈ SN+2

+ , and F ∈ R1×(N+1) using the same equations in (8), {xi,gi, fi}i∈I⋆N using the same
encoding as (9), except for {xi}i∈[1:N ], which we define as

xi = x0 −
1

L

i−1∑
j=0

hi,jgj ∈ RN+2, i ∈ [1 : N ].

Note, xi is linearly parameterized by h. The matrices Bi,j , Ci,j , and ai,j are the same as in (10)
except that they are now parameterized by h. For i, j ∈ I⋆N , define

Ãi,j(h) = (gi + gj)⊙ (xi − xj),

so that
trGÃi,j(h) = ⟨gi + gj | xi − xj⟩

7The first condition can be viewed as a discretization of the following condition [79, Theorem 3.10]: f ∈ F−L,L if
and only if

f(y) ≥ f(x)− L

4
∥x− y∥2 + 1

2
⟨∇f(x) +∇f(y) | y − x⟩+ 1

4L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.
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holds. Under the large-scale assumption d ≥ N + 2, we equivalently formulate the inner problem
as the SDP:

R (M, E ,F , C)

=



maximize t
subject to
t ≤ trGCi,⋆, i ∈ [0 : N ] ▷ dual var. ηi ≥ 0

Fai,j − L
4 trGBi,j(h) +

1
2 trGÃi,j(h) +

1
4L trGCi,j ≤ 0, i, j ∈ I⋆N : i ̸= j, ▷ dual var. λi,j ≥ 0

Fai,⋆ +
1
2L trGCi,⋆ ≤ 0, i ∈ [0 : N ], ▷ dual var. τi ≥ 0

−G ⪯ 0, ▷ dual var. Z ⪰ 0
Fa⋆,0 ≤ R2, ▷ dual var. ν ≥ 0


where F ∈ R1×(N+1) and G ∈ R(N+2)×(N+2) are the decision variables. Following §5 Step (iv),
construct the dual:

R (M, E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j +

∑
i∈I⋆N

τiai,⋆ + νa⋆,0 = 0,

−
∑

i∈[0:N ] ηiCi,⋆ +
∑

i,j∈I⋆N :i ̸=j λi,j

(
−L

4Bi,j(h) +
1
2Ãi,j(h) +

1
4LCi,j

)
+ 1

2L

∑
i∈[0:N ] τiCi,⋆ = Z,∑

i∈[0:N ] ηi = 1,

Z ⪰ 0,
ν ≥ 0, τi ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,
ηi ≥ 0, i ∈ [0 : N ],


where ν, λ, η, τ, and Z are the decision variables. Assume that strong duality holds. Finally,
following §5 Step (v), use Lemma 3 to pose (Oouter) as the following BnB-PEP-QCQP:

R⋆ (MN , E ,F , C)

=



minimize νR2

subject to∑
i,j∈I⋆N :i ̸=j λi,jai,j +

∑
i∈I⋆N

τiai,⋆ + νa⋆,0 = 0,

−
∑

i∈[0:N ] ηiCi,⋆ +
∑

i,j∈I⋆N :i ̸=j λi,j

(
−L

4Θi,j +
1
2Ãi,j(h) +

1
4LCi,j

)
+ 1

2L

∑
i∈[0:N ] τiCi,⋆ = Z,∑

i∈[0:N ] ηi = 1,

P is lower triangular with nonnegative diagonals,
PP⊤ = Z,

Θi,j = Bi,j(h), i, j ∈ I⋆N : i ̸= j,
ν ≥ 0, τi ≥ 0, λi,j ≥ 0, i, j ∈ I⋆N : i ̸= j,
ηi ≥ 0, i ∈ [0 : N ],



(28)

where ν, λ, η, τ , Z, P , and {Θi,j}i,j∈I⋆N :i ̸=j are the decision variables. Note that {Θi,j}i,j∈I⋆N :i ̸=j is

introduced as a separate decision variable to formulate the cubic constraints arising from Bi,j(h)
as quadratic constraints.
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Numerical results. Tables 13 and 14 present the results of solving (28) with L = 1, R = 1, and
N = 1, . . . , 5 using the BnB-PEP Algorithm. We compare the computed optimal FSFOM with the
FSFOMs defined by

hi,j =

{
1/L if j = i− 1,

0 if j ∈ [0 : i− 2],
(GD)

which is gradient descent and

hi,j =

{
2/(
√
3L) if j = i− 1,

0 if j ∈ [0 : i− 2],
(AKZ)

which was proposed by Abbaszadehpeivasti, de Klerk, and Zamani and has the prior state-of-the-
art rate [2]. To clarify, the stepsizes h = {hi,j}0≤j<i≤N and h = {hi,j}0≤j<i≤N are as defined in

(27). We obtain the optimal h
⋆
from the BnB-PEP Algorithm, solve for h⋆ with (4), and present h⋆

in the table. The stepsizes presented in Table 14 are certified to be globally optimal by Stage 3. We

again observe that the stepsizes obtained at Stage 2, denoted by h
lopt

, were already near-optimal.

Figure 4(a) shows that the computed stepsizes h⋆ outperforms (AKZ) on the worst-case guarantee
of mini∈[0:N ] ∥∇f(xi)∥2. To ensure the comparison is precise, we set the precision of the solver to
10−10. We observe in Figure 4(a) that the performance improvement diminishes as N increases,
which suggests that it will go to zero as N → ∞. This observation leads conjecture that (AKZ)
has the exact optimal constant for the leading order term.

Conjecture 1. The optimal FSFOM for reducing gradient of smooth nonconvex functions satisfies

min
i∈[0:N ]

∥∇f(xi)∥2 ≤
6
√
3L(f(x0)− f⋆)
8N + 3

√
3

+ o(1/N)

where the leading term corresponds to the rate for (AKZ) [2, Theorem 2].

Also, Figure 4(b) shows the solution time to compute the locally optimal stepsizes hlopt.

Momentum form of optimal FSFOM. An interesting observation is that the optimal FSFOM
computed by the BnB-PEP Algorithm can be equivalently written in the “momentum form”:

yi+1 = xi −
1

L
∇f(xi)

xi+1 = yi+1 + ζi+1(yi+1 − yi) + ηi+1(yi+1 − xi)
(29)

for i ∈ [0 : N−1], with coefficients {ζi}i∈[1:N ] and {ηi}i∈[1:N ]. Table 15 shows the equivalent optimal
coefficients.

The class of FSFOMs in momentum form is a strict subset of the class of FSFOMs [80, §4.2].
Nesterov’s fast gradient method is expressed in the momentum form (29) with ηi = 0 for all i.
Many other accelerated gradient methods such as OGM [32, 43], OGM-G [45], Simple-OGM and
SC-OGM [63], FISTA [8], FISTA-G [47], EAG [87, 83], TMM [84, 47], ITEM [78], ORC-F♭, OBL-F♭,
and OBL-G♭ [64], and M-OGM-G [89, 47] can all be expressed in the momentum form (29).

Furthermore, we observe that the optimal FSFOMs for N = 6, . . . , 25 also admit momentum
forms. The list of the stepsizes in the momentum form coefficients {ζ⋆i }i∈[1:N ] and {η⋆i }i∈[1:N ] for
N = 6, . . . , 25 are provided as Supplementary Information and also as a data file at:
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N
#

variables

#

constraints

Worst-case mini∈[0:N ] ∥∇f(xi)∥2 Runtime of the

BnB-PEP Algorithm
Optimal GD AKZ

1 60 70 0.7875254 0.8 0.7875254 0.04 s

2 162 177 0.4902031 0.5 0.4902920 0.41 s

3 365 386 0.3558535 0.363636 0.3559478 9.79 s

4 723 751 0.2793046 0.285714 0.2793919 69.2 s

5 1302 1338 0.2298589 0.235294 0.2299378 607.52 s

10 4138 4128 0.1219308 0.125 0.1219809 2 d 15 h

25 118653 118433 0.0506221 0.051948 0.0506457 4 d 18 h

Table 13: Comparison between the performances of the optimal method obtained by solving
(28) with the BnB-PEP Algorithm, (GD), and (AKZ). The BnB-PEP Algorithm was executed
on a standard laptop for N = 1, 2, . . . , 10, and on MIT Supercloud for N = 25. The performance
difference between the optimal method and (AKZ), while small, is genuine, as the difference is
greater than precision of the solver, set to 10−10.

N h⋆

1 [1.154700]

2

[
1.157583
0.023142 1.146857

]

3

 1.15762
0.023577 1.149576
0.003462 0.021945 1.146719



4


1.15762
0.023584 1.149611
0.003535 0.022356 1.149436
0.000549 0.003276 0.021922 1.146717



5


1.15762
0.023586 1.149611
0.003546 0.02236 1.149469
0.00061 0.003334 0.022329 1.149433
0.000149 0.000527 0.003263 0.02192 1.146717


10 See Supplementary Information or Github repository

25 See Supplementary Information or Github repository

Table 14: Globally optimal stepsizes obtained by solving (28) with the BnB-PEP Algorithm.
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Figure 4: Numerical results associated with the stepsizes by solving (28) with the BnB-PEP
Algorithm. (Left) Improvement in the worst-case guarantee of mini∈[0:N ] ∥∇f(xi)∥2 vs. iteration
count N . (Right) Runtimes of the BnB-PEP Algorithm to compute locally optimal solutions
(including Stages 1 and 2 but excluding Stage 3).

N ζ⋆ η⋆

1 [0.0] [0.1547]

2 [0.0, 0.146858] [0.157583, 0]

3 [0.0, 0.149583, 0.146717] [0.157619, 0, 0]

4 [0.0, 0.149626, 0.149426, 0.146702] [0.15762, 0, 0, 0]

5 [0.0, 0.149622, 0.149464, 0.149417, 0.146707] [0.15762, 0, 0, 0, 0]

Table 15: Momentum form coefficients {ζ⋆i }i∈[1:N ] and {η⋆i }i∈[1:N ] for (29) of the optimal method
obtained by solving (28) with the BnB-PEP Algorithm.

43



https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/zetaeta.jl

6.3 Efficient first-order method with respect to a potential function in weakly convex
setup

Consider the problem of constructing an FSFOM that efficiently reduces the subgradient magnitude
of ρ-weakly convex functions with L-bounded subgradients. Formally, we choose the function class

F = {f | f ∈ Wρ,L, f has a global minimizer x⋆}.

Consider FSFOMs of the form

xi+1 = xi −
h

ρ
f ′(xi) (30)

for i ∈ [0 : N ], where f ′(xi) ∈ ∂f(xi) and h ∈ R is the stepsize to be determined. Let L̃ = L/ρ.
Since f ∈ Wρ,L ⇔ f/ρ ∈ W

1,L̃
, consider f ∈ W

1,L̃
and set ρ = 1 without loss of generality.

In this section, we show how to construct an efficient FSFOM by obtaining potential function
analyses of FSFOMs and minimizing the guarantee. Unlike in previous sections, our goal here
is not to construct an optimal FSFOM but rather is to construct an efficient FSFOM with an
analytically tractable potential function analysis.

Using optimization to find potential function analyses of FSFOMs has been studied by Lessard,
Recht, and Packard [49] and Taylor, Van Scoy, and Lessard [82] and the philosophy goes further
back to the classical Lyapunov stability problem of control theory [54]. Our approach, in particular,
closely follows and generalizes the work of Taylor and Bach [77, Appendix C], which finds potential
function analyses of FSFOMs and optimize a certain span-search based relaxation of the FSFOMs.
The relaxation retains convexity of the optimization, but it is restricted to the convex minimization
setup with performance measure f(xN )−f(x⋆). Our proposed methodology removes this restriction;
we can construct efficient FSFOMs in the convex and nonconvex setup with various performance
measures. The concrete instance of this section illustrates our methodology and improves upon the
prior state-of-the-art rate of Davis and Drusvyatskiy in [22, 21, 23].

6.3.1 Measuring stationarity via Moreau envelope

In the nonsmooth nonconvex setup, performance measures commonly used in the convex setup,
such as f(xN )− f(x⋆) or dist(0; ∂f(xN )), may not go to zero as N →∞ [23, page 3, paragraph 2].
Therefore, we define a notion of approximate stationarity via the Moreau envelope.

Consider f ∈ W
1,L̃

and let ρ̂ > 1. The proximal operator and Moreau envelope of f are respectively
defined as

prox(1/ρ̂)f (x) = argmin
y∈Rn

{
f(y) +

ρ̂

2
∥y − x∥2

}
, f(1/ρ̂)(x) = min

y∈Rn

{
f(y) +

ρ̂

2
∥y − x∥2

}
.

The Moreau envelope f(1/ρ̂) is global underestimator of f that is continuously differentiable: with
y = prox(1/ρ̂)f (x), we have

x− y =
1

ρ̂
∇f(1/ρ̂)(x) ∈ ∂f(y)
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[68, (2.13), (2.17)]. If x⋆ is a global minimizer of f , then f(1/ρ̂)(x⋆) = f(x⋆) and ∥∇f(1/ρ̂)(x⋆)∥ =
0. The gradient of the Moreau envelope serves as a measure of suboptimality since, with y =
prox(1/ρ̂)f (x), we have

∥y − x∥ = 1

ρ̂
∥∇f(1/ρ̂)(x)∥,

f(y) ≤ f(x),
dist(0, ∂f(y)) ≤ ∥∇f(1/ρ̂)(x)∥,

for any x ∈ Rd [23, page 4]. In other words, if ∥∇f(1/ρ̂)(x)∥ is small, then x is near some point y
that is nearly stationary for f .

We set ρ̂ = 2, the simplest choice. For a given sequence of iterates {xi}i∈[0:N ]∪{⋆}, define

yi = prox(1/2)f (xi)

f ′(yi) = 2(xi − yi).
(31)

Choose the performance measure

E =
1

N + 1

N∑
i=0

∥∇f(1/2)(xi)∥2 =
1

N + 1

N∑
i=0

∥f ′(yi)∥2,

which was also used in [23]. Note that

min
i∈[0:N ]

∥∇f(1/2)(xi)∥2 ≤
1

N + 1

N∑
i=0

∥∇f(1/2) (xi) ∥2,

so any guarantee on E translates to a guarantee on mini∈[0:N ] ∥∇f(1/2)(xi)∥2.

Finally, we provide a few points of clarification. The parameter ρ̂ is not used in the method (30) and
only appears in the analysis of the algorithm. Since ρ̂ is strictly larger than 1, the weak convexity
parameter, y = prox(1/ρ̂)f (x) is defined as a minimizer of a strongly convex function and therefore
uniquely exists. While f ′(xi) ∈ ∂f(xi) is chosen arbitrarily in the method (30) (the i-th iteration
of the method may use any subgradient at xi) the choice of f ′(yi) ∈ ∂f(yi) (used in the analysis)
is specified by (31) and therefore is not arbitrary.

6.3.2 Potential function analysis via BnB-PEP

Consider the potential function

ψk = bk
(
f(1/2)(xk)− f(1/2)(x⋆)

)
= bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
, k ∈ [0 : N + 1],

where x⋆ is a global minimizer of f , {bk}k∈[0:N+1] are parameters to be determined, and {yk}k∈[0:N+1]

are as defined in (31). Choose the initial condition C as

f(1/2)(x0)− f(1/2)(x⋆) = f(y0)− f(x⋆) + ∥x0 − y0∥2 ≤ R2.

Again, let x⋆ = 0 and f(x⋆) = 0 without loss of generality. If we show

∥f ′(yk)∥2 + ψk+1 − ψk ≤ ck∥f ′(xk)∥2 (32)
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for k ∈ [0 : N ], where {bk}k∈[0:N+1] and {ck}k∈[0:N ] are nonnegative parameters to be determined,
then a telescoping sum provides the rate

1

N + 1

N∑
i=0

∥f ′(yi)∥2 ≤
1

N + 1

(
L̃2

N∑
i=0

ci + ψ0 − ψN+1

)

≤ 1

N + 1

(
L̃2

N∑
i=0

ci + b0R
2

)
.

In a potential function analysis, we effectively choose to be oblivious to how xk was generated
and to the method’s prior evaluations of f ; we establish the potential function inequality (32) one
iteration at a time. Due to this restriction, our efficient FSFOM is not expected to be optimal, but
it is expected to have a simpler analytically tractable analysis.

Potential function analysis. Let

Vk(h) =
{
(bk+1, bk, ck) | ∥f ′(yk)∥2 + ψk+1 ≤ ψk − ck∥f ′(xk)∥2, ∀xk ∈ Rd, f ∈ W

1,L̃

}
,

where xk+1 = xk−hf ′(xk), yk = xk−1
2f

′(yk), and yk+1 = xk+1−1
2f

′(yk+1), be the set of (bk+1 , bk, ck)
such that (32) holds for all xk ∈ Rd and f ∈ W

1,L̃
. Then, one could consider optimizing the FSFOM

by solving (
minimize 1

N+1

(
L̃2
∑N

i=0 ci + b0R
2
)

subject to (bk+1, bk, ck) ∈ Vk(h), k ∈ [0 : N + 1],

)
(33)

where {bi}i∈[0:N+1], {ci}i∈[0:N ], and h ∈ R are the decision variables.

However, checking (bk+1 , bk, ck) ∈ Vk(h) is difficult and (33) is difficult to solve, because W
1,L̃

is a

function class without a known interpolation result. In the following, we find Ṽk(h) ⊆ Vk(h) such
that membership with respect to Ṽk(h) is easy to check. Then we optimize the FSFOM by solving(

minimize (1/(N + 1))
(
L̃2
∑N

i=0 ci + b0R
2
)

subject to (bk+1, bk, ck) ∈ Ṽk(h), k ∈ [0 : N + 1]

)
(34)

where {bi}i∈[0:N+1], {ci}i∈[0:N ], and h ∈ R are the decision variables. Note, (33) is upper bounded

by (34), since Vk(h) ⊇ Ṽk(h).

In the following, we show that each constraint (bk+1, bk, ck) ∈ Vk(h) in (34) k ∈ [0 : N + 1] can be
formulated into a QCQP feasibility problem. We then apply the feasibility problem formulations
k ∈ [0 : N + 1] to obtain the BnB-PEP-QCQP (42).
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Sufficient SDP for potential function inequality. Note, (bk+1, bk, ck) ∈ Vk(h) if and only if the
optimal value of the following problem is less than or equal to 0:

maximize ∥f ′(yk)∥2 + bk+1

(
f(yk+1)− f(x⋆) + ∥xk+1 − yk+1∥2

)
−bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
− ck∥f ′(xk)∥2

subject to xk+1 = xk − hf ′(xk)
yk = xk − 1

2f
′(yk)

yk+1 = xk+1 − 1
2f

′(yk+1),
f ′(x⋆) = 0, x⋆ = 0, f(x⋆) = 0,
f(w) ≥ f(x⋆), w ∈ {xk, xk+1, yk, yk+1},
f ∈ W

1,L̃
,


(35)

where f ∈ W
1,L̃

and xk, xk+1, yk, yk+1 ∈ Rd are the decision variables.

Define V̂k(h) ⊆ Vk(h) such that (bk+1, bk, ck) ∈ V̂k(h) if and only if the optimal value of the following
problem is less than or equal to 0:

maximize ∥f ′(yk)∥2 + bk+1

(
f(yk+1)− f(x⋆) + ∥xk+1 − yk+1∥2

)
−bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
− ck∥f ′(xk)∥2

subject to xk+1 = xk − hf ′(xk)
yk = xk − 1

2f
′(yk)

yk+1 = xk+1 − 1
2f

′(yk+1),
f ′(x⋆) = 0, x⋆ = 0, f(x⋆) = 0,
f(w) ≥ f(x⋆), w ∈ {xk, xk+1, yk, yk+1},
f(w′) ≥ f(w) + ⟨f ′(w) | w′ − w⟩ − 1

2∥w
′ − w∥2,

w, w′ ∈ {xk, xk+1, yk, yk+1},
∥f ′(w)∥2 ≤ L̃2, w ∈ {xk, xk+1, yk, yk+1},


(36)

where f , xk, xk+1, yk, and yk+1 are the decision variables. Since the constraints of (35) imply the
constraints of (36), the optimal value of (35) is upper bounded by (36) and Vk(h) ⊇ V̂k(h). (Since
W

1,L̃
is a function class with no known interpolation result, two optimal values and the sets are

not necessarily equal.) For notational convenience, define

(x⋆, f
′(x⋆), f(x⋆)) = (w⋆, g⋆, f⋆),

(xk, f
′(xk), f(xk)) = (w0, g0, f0),

(xk+1, f
′(xk+1), f(xk+1)) = (w1, g1, f1),

(yk, f
′(yk), f(yk)) = (w2, g2, f2),

(yk+1, f
′(yk+1), f(yk+1)) = (w3, g3, f3).
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Then we can express (36) equivalently as

maximize ∥g2∥2 + bk+1

(
f3 − f⋆ + ∥w1 − w3∥2

)
−(bk

(
f2 − f⋆ + ∥w0 − w2∥2

)
− ck∥g0∥2

subject to w1 = w0 − hg0
w2 = w0 − 1

2g2,
w3 = w1 − 1

2g3,
(w⋆, g⋆, f⋆) = (0, 0, 0),
f(wi) ≥ f(x⋆), i ∈ [0 : 3],
fi ≥ fj + ⟨gj | wi − wj⟩ − 1

2∥wi − wj∥2, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

∥gi∥2 ≤ L̃2, i ∈ [0 : 3] ∪ {⋆},


(37)

where {wi, gi, fi}i∈[0:3]∪{⋆} are the decision variables.

Next, we use the Grammian formulation to formulate (37) as an SDP. For k ∈ [0 : N ], let

H [k] = [w0 | g0 | g1 | g2 | g3] ∈ Rd×5,

G[k] = H [k]⊤H [k] ∈ S5+,
F [k] = [f0 | f1 | f2 | f3] ∈ R1×4.

(38)

Note that rankG[k] ≤ d. Define the following notation for selecting columns and elements of H [k]

and F [k]:
g⋆ = 0 ∈ R5,gi = ei+2 ∈ R5, i ∈ [0 : 3],

f⋆ = 0 ∈ R4, fi = ei+1 ∈ R4, i ∈ [0 : 3],

w⋆ = 0 ∈ R5,

w0 = e1 ∈ R5,

w1 = w0 − hg0 ∈ R5,

w2 = w0 −
1

2
g2 ∈ R5,

w3 = w1 −
1

2
g3 ∈ R5.

Furthermore, define
Ai,j(h) = gj ⊙ (wi −wj),

Bi,j(h) = (wi −wj)⊙ (wi −wj),

Ci,j = (gi − gj)⊙ (gi − gj),

ai,j = fj − fi,

for i, j ∈ [0 : 3]∪{⋆}. Note that Ai,j(h) and Bi,j(h) are affine and quadratic as functions of h. This
notation defined so that

wi = H [k]wi, gi = H [k]gi, fi = F [k]fi,

⟨gj | wi − wj⟩ = trG[k]Ai,j(h),

∥wi − wj∥2 = trG[k]Bi,j(h), and

∥gi − gj∥2 = trG[k,]Ci,j .
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for i, j ∈ [0 : 3] ∪ {⋆}. Finally, define

Q[k] = Q[k](h, bk+1, bk, ck) = C2,⋆ + bk+1B1,3(h)− bkB0,2(h)− ckC0,⋆,

q[k] = q[k](bk+1, bk) = bk+1a⋆,3 − bka⋆,2

for k ∈ [0 : N ]. Assume the large-scale assumption d ≥ 5. Using the new notation, equivalently
formulate (37) as

maximize trG[k]Q[k] + F [k]q[k]

subject to F [k]ai,⋆ ≤ 0, i ∈ [0 : 3], ▷ dual var. τ
[k]
i ≥ 0

F [k]ai,j + trG[k]
(
Ai,j(h)− 1

2Bi,j(h)
)
≤ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, ▷ dual var. λ

[k]
i,j ≥ 0

trG[k]Ci,⋆ ≤ L̃2 i ∈ [0 : 3] ∪ {⋆}, ▷ dual var. η
[k]
i ≥ 0

−G[k] ⪯ 0, ▷ dual var. Z ⪰ 0


(39)

where G[k] ∈ S5+ and F [k] ∈ R1×4 are the decision variables.

Next, we dualize. Define Ṽk(h) ⊆ Vk(h) such that (bk+1, bk, ck) ∈ Ṽk(h) if and only if the optimal
value of the following problem is less than or equal to 0:

minimize L̃2
∑

i∈[0:3]∪{⋆} η
[k]
i

subject to −Q[k] +
∑

i,j∈[0:3]∪{⋆}:i ̸=j λ
[k]
i,j

(
Ai,j(h)− 1

2Bi,j(h)
)
+
∑

i∈[0:3]∪{⋆} ηiCi,⋆ = Z [k],

−q[k] +
∑

i∈[0:3] τ
[k]
i ai,⋆ +

∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,jai,j = 0,

λ
[k]
i,j ≥ 0, η

[k]
i ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

τ
[k]
i ≥ 0, i ∈ [0 : 3],

Z [k] ⪰ 0,


(40)

where {η[k]}i∈[0:3]∪{⋆}, {λ
[k]
i,j}i,∈[0:3]∪{⋆}:i ̸=j , {τ

[k]
i }i∈[0:3], and Z [k] ∈ S5+ are the decision variables. By

weak duality, the optimal value of (39) is upper bounded by (40) and V̂k(h) ⊇ Ṽk(h). (While we
expect strong duality to usually hold, we do not need to assume it.) Observe that for the optimal
value of (40) to be less than equal to zero, we must have η[k] = 0. Hence, (40) simplifies into the
feasibility problem

minimize 0

subject to −Q[k] +
∑

i,j∈[0:3]∪{⋆}:i ̸=j λ
[k]
i,j

(
Ai,j(h)− 1

2Bi,j(h)
)
= Z [k],

−q[k] +
∑

i∈[0:3] τ
[k]
i ai,⋆ +

∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,jai,j = 0,

λ
[k]
i,j ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j,

τ
[k]
i ≥ 0, i ∈ [0 : 3],

Z [k] ⪰ 0


(41)

for k ∈ [0 : N ].

Optimizing potential function analysis. We have shown that existence of a feasible point for (41)
implies (bk+1, bk, ck) ∈ Ṽk(h), which in turn implies (32) holds. Finally, use Lemma 3 to formulate
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(34) as the following BnB-PEP-QCQP:

minimize L̃2
[

1
N+1

(∑N
i=0 ci +

R2

L̃2
b0

)]
subject to −Q[k] +

∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,j

(
Ai,j(h)− 1

2Θ
[k]
i,j

)
= Z [k], k ∈ [0 : N ],

−q[k] +
∑

i∈[0:3] τ
[k]
i ai,⋆ +

∑
i,j∈[0:3]∪{⋆}:i ̸=j λ

[k]
i,jai,j = 0, k ∈ [0 : N ],

λ
[k]
i,j ≥ 0, i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, k ∈ [0 : N ],

τ
[k]
i ≥ 0, i ∈ [0 : 3], k ∈ [0 : N ],

P [k] is lower triangular with nonnegative diagonals, k ∈ [0 : N ],

P [k](P [k])⊤ = Z [k], k ∈ [0 : N ],

Θ
[k]
i,j = Bi,j(h), i, j ∈ [0 : 3] ∪ {⋆} : i ̸= j, k ∈ [0 : N ],


(42)

where the decision variables are {bk}k∈[0:N+1], {ck}k∈[0:N ], {λ[k]}k∈[0:N ], {τ [k]}k∈[0:N ], {Z [k]}k∈[0:N ],

{P [k]}k∈[0:N ], {Θ[k]}k∈[0:N ], and h. We call λ[k], τ [k], and Z [k] the inner-dual variables. Note that

{Θ[k]}k∈[0:N ] is introduced as a separate decision variable to formulate the cubic constraints arising
from Bi,j(h) as quadratic constraints. A feasible solution of (42) provides a performance guarantee
on the FSFOM defined by the stepsize h.

6.3.3 Numerical results and analytical convergence proofs

Tables 16 and 17 shows the results of solving (42) with L̃ = 1, R = 0.1 and N = 1, . . . , 5, 10, 25
using the BnB-PEP Algorithm. Similar to our previous experiments, we empirically observe that
the locally optimal stepsizes obtained at Stage 2, denoted by hlopt, were already near-optimal. This
motivates us to apply just the first two stages of the BnB-PEP Algorithm for N = 26, . . . , 100.
In Figure 5, we compare the locally optimal stepsizes hlopt with the stepsize h = R/(L̃

√
(N + 1))

reported in the proof of [23, Theorem 3.1].

In the following, we use the numerical results to obtain an analytical form of the stepsize and its
convergence proof.

Structured inner-dual variables. To find an analytical proof of an FSFOM defined by h, i.e., to
find a feasible solution of (42), we use the methodology of §4.3 to we find the following pattern of
the optimal inner-dual variables λ⋆[k], τ⋆[k], and Z⋆[k] for all k ∈ [0 : N ]:

• Only λ
⋆[k]
2,3 , λ

⋆[k]
2,0 , and λ

⋆[k]
0,2 are nonzero. Furthermore, λ

⋆[k]
2,0 = λ

⋆[k]
0,2 .

• Only τ
⋆[k]
2 is nonzero.

• Only Z
⋆[k]
2,2 , Z

⋆[k]
4,2 = Z

⋆[k]
2,4 , Z

⋆[k]
5,2 = Z

⋆[k]
2,5 , Z

⋆[k]
5,4 = Z

⋆[k]
4,5 , Z

[k]
4,4, and Z

[k]
5,5 are nonzero. Furthermore,

Z
⋆[k]
5,2 = −Z⋆[k]

4,2 , Z
⋆[k]
4,4 = Z

⋆[k]
5,5 , and Z

⋆[k]
4,4 = −Z⋆

5,4.

Since the pattern is the same for all k, we enforce this pattern for a given k in the constraint set of
(42). This leads to a system of equations, and after some tedious but elementary calculations, we
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Figure 5: Numerical results for the locally optimal stepsizes by solving (42) the BnB-PEP Al-
gorithm. We have verified global optimality of the locally optimal stepsizes for N = 1, 2, . . . , 25.
(Left) Objective value L̃2[(

∑N
i=0 ci + (R2/L̃2)b0)/(N + 1)] for h = R/(L̃

√
(N + 1)) (as prescribed

by [23]) and for the stepsizes computed by the BnB-PEP Algorithm vs. iteration count N . (Right)
Runtimes of the BnB-PEP Algorithm (including Stages 1 and 2 but excluding Stage 3).

N
#

variables

#

constraints

Worst-case L̃2[(
∑N

i=0 ci + (R2/L̃2)b0)/(N + 1)] Runtime of the

BnB-PEP Algorithm
Optimal h = R

(L̃
√

(N+1))

1 735 780 0.0398 0.04717 0.01 s

2 1102 1170 0.0396 0.04837 0.22 s

3 1469 1560 0.0394 0.048415 0.34 s

4 1836 1950 0.0392157 0.0480887 0.81 s

5 2203 2340 0.039026 0.0476315 2.6 s

10 4038 4290 0.038113 0.0451378 8 h 40 m

25 9543 10140 0.035692 0.0397182 19 h 15 m

Table 16: Comparison between the performances of the optimal method obtained by solving (42)

with the BnB-PEP Algorithm and the method with h = R/(L̃
√
(N + 1)) as prescribed by [23].

The BnB-PEP Algorithm was executed on a standard laptop for N = 1, 2, . . . , 10, and on MIT

Supercloud for N = 25.
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N h⋆

1 0.01

2 0.0099664

3 0.0099331

4 0.0099

5 0.00986714

10 0.0097061

25 0.0092553

Table 17: Globally optimal stepsize obtained by solving (42) with the BnB-PEP Algorithm.

get the simplified form
4 + (1− 2h)bk+1 = bk,

λ
[k]
2,3 = bk+1,

λ
[k]
2,0 = λ

[k]
0,2 = 2hbk+1,

τ
[k]
2 = bk − bk+1,

(43)

for all k ∈ [0 : N ]. We share Mathematica code for calculating (43) symbolically as follows:

https://github.com/Shuvomoy/BnB-PEP-code/blob/main/Misc/potential.nb

The solution numerically produced by BnB-PEP Algorithm have bN+1 = 0, so we use that terminal
value. Furthermore, from the numerical results, we also empirically observe that c⋆k, h

⋆, and b⋆k+1

follow the relationship ck = h2bk+1 for all k ∈ [0 : N ].

Convergence proof 1: Analytical solution to the BnB-PEP QCQP We restrict8 our consider-
ation to h ∈ (0, 1/2]. The recursive relationship 4 + (1 − 2h)bk+1 = bk of (43) with the terminal
condition bN+1 = 0 implies

bk =
2

h

(
1− (1− 2h)N+1−k

)
for k ∈ [0 : N + 1]. (44)

This formula and the resulting values from (43) indeed make {bk}k∈[0:N+1], {ck}k∈[0:N ], {λ[k]}k∈[0:N ],

and {τ [k]}k∈[0:N ] non-negative. Plugging values from (43) and ck = h2bk+1 into (42) we get

− q[k] +
∑

i∈[0:3]

τ
[k]
i ai,⋆ +

∑
i,j∈[0:3]∪{⋆}:i ̸=j

λ
[k]
i,jai,j = 0,

−Q[k] +
∑

i,j∈[0:3]∪{⋆}:i ̸=j

λ
[k]
i,j

(
Ai,j(h)−

1

2
Bi,j(h)

)
= Z [k],

8While unlikely, it is possible that a stepsize h /∈ (0, 1/2] achieves a better performance for some parameter values.
(Our numerical experiments indicate that this is not the case.) If so, our choice of h ∈ (0, 1/2] excludes this better
choice. Regardless, our resulting choice of h and its performance guarantee are valid.
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Z [k] =


0 0 0 0 0
0 1

2h
2bk+1 0 −1

4hbk+1
1
4hbk+1

0 0 0 0 0
0 −1

4hbk+1 0 1
8bk+1 −1

8bk+1

0 1
4hbk+1 0 −1

8bk+1
1
8bk+1


for all k ∈ [0 : N ]. The eigenvalues of Z [k] are {0, 0, 0, 0, (1/4)(1+ 2h2)bk+1}, so Z [k] ⪰ 0. Thus the
values of {b, c, λ, τ} defined by (43) and (44) is a feasible solution of (42), and we have proved the
following theorem.

Theorem 1. Let N ∈ N. Let f ∈ W
1,L̃

have a global minimizer x⋆. Let R > 0, and let x0 ∈ Rd

satisfy the initial condition f(y0)− f(x⋆) + ∥x0 − y0∥2 ≤ R2. Consider the method

xk+1 = xk − hf ′(xk)

for k ∈ [0 : N ], where f ′(xk) is an arbitrary subgradient of f at xk. Let yk = prox(1/2)f (xk) and

ψk = bk
(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
for k ∈ [0 : N +1]. If h ∈ (0, 1/2], 4+(1−2h)bk+1 = bk for k ∈ [0 : N ], bN+1 = 0, and ck = h2bk+1

for k ∈ [0 : N ], then
∥f ′(yk)∥2 + ψk+1 − ψk ≤ ck∥f ′(xk)∥2

for all k ∈ [0 : N ], and

1

N + 1

N∑
i=0

∥∇f(1/2) (xi) ∥2 ≤
1

N + 1

(
L̃2

N∑
i=0

ci + b0R
2

)
.

To find the optimal h⋆, one can minimize the bound of Theorem 1. For notational simplicity, define
κ = R/L. With (44), the analytical performance measure minimizes is

L̃2

N + 1

(
N∑
i=0

ci + κ2b0

)

=
L̃2

N + 1

[
−1 + (1− 2h)N+1 + 2h(N + 1) + κ2

2

h

(
1− (1− 2h)N+1

)]
. (45)

As an aside, one can directly verify the nonnegativity of (45) with Bernoulli’s lower bound inequal-
ity, which states that (1+x)r ≥ 1+ rx for any positive integer r ≥ 1 and any real x ≥ −1 [46, page
1]. Plotting (45) for different values κ and N reveals that it has a unique minimum in h. Hence,
the optimal h⋆ can be found by setting the derivative equal to zero:

2κ2
(
(1− 2h)N − 1

)
h2

+
4κ2N(1− 2h)N

h
− 2(N + 1)

(
(1− 2h)N − 1

)
= 0.

However, this equation does not seem to admit a simple algebraic solution.
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To find a simpler analytical stepsize, we construct an upper bound of (45) that does admits a
closed-form minimizer:

L̃2

N + 1

[
−1 + (1− 2h)N+1 + 2h(N + 1) + κ2

2

h

(
1− (1− 2h)N+1

)]
a)
<

L̃2

N + 1

[
−1 + 1

2(N + 1)h+ 1
+ 2h(N + 1) + κ2

2

h

]
b)
<

L̃2

N + 1

[
−1 + 1

2(N + 1)h
+ 2h(N + 1) + κ2

2

h

]
=

L̃2

N + 1

[
−1 + 1

2h

(
1

N + 1
+ 4κ2

)
+ 2h(N + 1)

]
. (46)

Here, a) uses 1− (1− 2h)N+1 < 1 and

(1− 2h)N+1 ≤ 1

2(N + 1)h+ 1
,

that follows from Bernoulli’s upper bound inequality (1+a)r ≤ 1/(1−ra) for a ∈ [−1, 0], r ∈N [46,
page 1] along with h ∈ (0, 1/2] and b) uses 1/ (2(N + 1)h+ 1) < 1/ (2(N + 1)h). The minimum of
(46) is achieved at

h⋆ub =

√
4κ2(N + 1) + 1

2(N + 1)
.

Plugging this back into (46), we have the following analytical performance guarantee:

L̃2

N + 1

(
−1 + 1

2h⋆ub

(
1

N + 1
+ 4κ2

)
+ 2h⋆ub(N + 1)

)
=
L̃2
(
2
√

4κ2(N + 1) + 1− 1
)

N + 1
.

We have proved the following corollary.

Corollary 1. In the setup of Theorem 1, the choice

h =

√
4κ2(N + 1) + 1

2(N + 1)
,

yields the rate

1

N + 1

N∑
i=0

∥∇f(1/2)(xi)∥2 ≤
L̃2
(
2
√

4κ2(N + 1) + 1− 1
)

N + 1
.

The result of Corollary 1 strictly improves upon the prior state-of-the-art rate [23, Theorem 3.1]

1

N + 1

N∑
i=0

∥∇f(1/2)(xi)∥2 ≤ L̃2 4κ√
N + 1

for large enough N satisfying N > (9 − 64κ2)/(64κ2). (This stated rate is obtained by plugging
the stepsize found in the proof of [23, Theorem 3.1] into [23, Equation 3.4] in the noiseless setup.
The claimed rate [23, Equation 3.5] has an error in the constant.)
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Convergence proof 2: Classical analytical proof While the previous analytical proof is rigorous,
its reliance on the BnB-PEP-QCQP formulation makes it inaccessible to those who do not already
understand the PEP methodology. Therefore, we translate the proof into a classical form that does
not depend on the PEP methodology.

To clarify, the discovery of the previous proof was assisted by numerical solutions, but its correctness
can be verified by humans without the aid of any numerical solvers. The benefit of the following
alternate proof is its accessibility; the previous equivalent proof was equally correct and rigorous.

Alternate proof of Theorem 1. The proof forms nonnegative combinations of valid inequalities and
organizes the terms to establish the stated result. The arguably mysterious weights of the nonneg-
ative combinations correspond to the values of the inner-dual-variables listed in (43).

Note that

f(yk+1)− f(yk) +
〈
f ′(yk+1) | yk − yk+1

〉
− 1

2
∥yk − yk+1∥2 ≤ 0,

f(xk)− f(yk) +
〈
f ′(xk) | yk − xk

〉
− 1

2
∥yk − xk∥2 ≤ 0,

f(yk)− f(xk) +
〈
f ′(yk) | xk − yk

〉
− 1

2
∥xk − yk∥2 ≤ 0,

by weak convexity of f , and
f(x⋆)− f(yk) ≤ 0

by the assumption that x⋆ is a global minimizer. Multiplying the last four inequalities with the
nonnegative weights bk+1, 2hbk+1, 2hbk+1, and bk − bk+1 = 4− 2hbk+1 (nonnegativity follows from
(44)), respectively, and then adding them together, we obtain

0 ≥bk+1

(
f(yk+1)− f(yk) +

〈
f ′(yk+1) | yk − yk+1

〉
− 1

2
∥yk − yk+1∥2

)
+

2hbk+1

(
f(xk)− f(yk) +

〈
f ′(xk) | yk − xk

〉
− 1

2
∥yk − xk∥2

)
+

2hbk+1

(
f(yk)− f(xk) +

〈
f ′(yk) | xk − yk

〉
− 1

2
∥xk − yk∥2

)
+

(4− 2hbk+1) (f(x⋆)− f(yk))
a)
=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))+
1

8
bk+1

[
− 4∥f ′(xk)∥2h2 − 2

〈
f ′(yk) | 2hf ′(xk) + f ′(yk+1)

〉
+ 4

〈
f ′(xk) | f ′(yk+1)

〉
h+ (4h− 1)∥f ′(yk)∥2 + 3∥f ′(yk+1)∥2

]
=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+
1

4
bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
+

bk+1

[1
8

(
− 4∥f ′(xk)∥2h2 − 2

〈
f ′(yk) | 2hf ′(xk) + f ′(yk+1)

〉
+ 4

〈
f ′(xk) | f ′(yk+1)

〉
h+ (4h− 1)∥f ′(yk)∥2 + 3∥f ′(yk+1)∥2

)
−
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1

4

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

) ]
=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+
1

4
bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
+

1

8
∥2hf ′(xk)− f ′(yk) + f ′(yk+1)∥2

b)

≥bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆))

+
1

4
bk+1

(
∥f ′(yk+1)∥2 − 4h2∥f ′(xk)∥2 − (1− 2h)∥f ′(yk)∥2

)
c)
=bk+1(f(yk+1)− f(x⋆))− bk(f(yk)− f(x⋆)) + ∥f ′(yk)∥2

+
bk+1

4
∥f ′(yk+1)∥2 −

bk
4
∥f ′(yk)∥2 − ck∥f ′(xk)∥2

=∥f ′(yk)∥2 + bk+1

(
f(yk+1)− f(x⋆)∥+ ∥yk+1 − w1∥2

)
− bk

(
f(yk)− f(x⋆) + ∥xk − yk∥2

)
− ck∥f ′(xk)∥2

d)
=∥f ′(yk)∥2 + ψk+1 − ψk − ck∥f ′(xk)∥2,

where a) uses (43) and

yk − yk+1 = hf ′(xk)−
1

2
f ′(yk) +

1

2
f ′(yk+1),

xk − yk =
1

2
f ′(yk),

b) removes the non-negative term in the previous line (the last term), c) uses (43), and d) uses the
definition of ψk.

Remark. The convergence proof above nowhere utilizes the assumption that x⋆ exists; it only
requires that f⋆ = infx f(x) > −∞. There was no a priori guarantee that we would get such a
proof since the BnB-PEP-QCQP was allowed to use the existence of x⋆. However, BnB-PEP-QCQP
chose not use that assumption in producing an optimal solution.

7 Conclusion

The contribution of the BnB-PEP methodology is threefold. First, BnB-PEP poses the problem of
finding the optimal fixed-step first-order method for convex or nonconvex, smooth or nonsmooth
optimization as a nonconvex but practically tractable QCQP called BnB-PEP-QCQP. Second,
our methodology presents the BnB-PEP Algorithm that solves the BnB-PEP-QCQP to certifiable
global optimality. Through exploiting specific problem structures, the BnB-PEP Algorithm outper-
forms the latest off-the-shelf implementations by orders of magnitude, reducing the solution-time
from hours to seconds and weeks to minutes. Third, we test the BnB-PEP methodology on a
variety of problem setups for which the prior methodologies failed and obtain first-order methods
with bounds, some numerical and some analytical, that improve upon prior state-of-the-art results.

As the BnB-PEP offers significantly more flexibility compared to the prior performance estimation
methodologies, we expect there to be many fruitful future directions of work utilizing the BnB-PEP
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methodology. In particular, using the BnB-PEP to analyze and generate composite optimization
methods [79, 81, 44], randomized and stochastic methods [74, 77], monotone operator and splitting
methods [70, 37, 51, 42], mirror descent methods [26], and adaptive methods [6] are all interesting
directions of future work. Recently, novel worst-case convergence rates for nonlinear conjugate
gradient methods were established in [20] using the BnB-PEP methodology.
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[6] M. Barré, A. Taylor, and A. d’Aspremont. Complexity guarantees for Polyak steps with
momentum. Conference on Learning Theory, 2020.

[7] H. H. Bauschke, W. M. Moursi, and X. Wang. Generalized monotone operators and their
averaged resolvents. Mathematical Programming, 189(1–2):55–74, 2021.

[8] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

[9] H. Y. Benson and R. J. Vanderbei. Solving problems with semidefinite and related con-
straints using interior-point methods for nonlinear programming. Mathematical Programming,
95(2):279–302, 2003.

[10] D. Bertsimas and J. Dunn. Machine Learning Under a Modern Optimization Lens. Dynamic
Ideas LLC, 2019.

[11] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization, volume 6. Athena
Scientific Belmont, MA, 1997.

57

https://www.gurobi.com/products/gurobi-optimizer/whats-new-current-release/
https://www.gurobi.com/products/gurobi-optimizer/whats-new-current-release/
https://cdn.gurobi.com/wp-content/uploads/2020/12/Non-Convex-MIQCP-in-Gurobi-9.1-New-Advances.pdf
https://cdn.gurobi.com/wp-content/uploads/2020/12/Non-Convex-MIQCP-in-Gurobi-9.1-New-Advances.pdf
https://cdn.gurobi.com/wp-content/uploads/2020/12/Non-Convex-MIQCP-in-Gurobi-9.1-New-Advances.pdf
https://www.gurobi.com/resource/non-convex-quadratic-optimization/
https://www.gurobi.com/resource/non-convex-quadratic-optimization/


[12] D. Bertsimas and R. Weismantel. Optimization Over Integers, volume 13. Dynamic Ideas
Belmont, MA, 2005.

[13] J. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization, 2nd Edition.
Springer, New York, 2006.

[14] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[15] R. H. Byrd, G. Liu, and J. Nocedal. On the local behavior of an interior point method for
nonlinear programming. Numerical Analysis, 1997:37–56, 1997.

[16] R. H. Byrd, J. Nocedal, and R. A. Waltz. KNITRO: An integrated package for nonlinear
optimization. In G. D. Pillo and M. Roma, editors, Large-Scale Nonlinear Optimization, pages
35–59. Springer, 2006.

[17] E. J. Candès, M. B. Wakin, and S. P. Boyd. Enhancing sparsity by reweighted ℓ1 minimization.
Journal of Fourier Analysis and Applications, 14(5):877–905, 2008.

[18] F. H. Clarke. Optimization and Nonsmooth Analysis. SIAM, 1990.

[19] S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard. A robust accelerated optimization algorithm
for strongly convex functions. American Control Conference, 2018.

[20] S. Das Gupta, R. M. Freund, X. A. Sun, and A. B. Taylor. Nonlinear conjugate gradi-
ent methods: worst-case convergence rates via computer-assisted analyses. arXiv preprint
arXiv:2301.01530, 2023.

[21] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex func-
tions. arXiv preprint arXiv:1803.06523, 2018.

[22] D. Davis and D. Drusvyatskiy. Stochastic subgradient method converges at the rate o(k−1/4)
on weakly convex functions. arXiv preprint arXiv:1802.02988, 2018.

[23] D. Davis and D. Drusvyatskiy. Stochastic model-based minimization of weakly convex func-
tions. SIAM Journal on Optimization, 29(1):207–239, 2019.

[24] E. de Klerk, F. Glineur, and A. B. Taylor. On the worst-case complexity of the gradient
method with exact line search for smooth strongly convex functions. Optimization Letters,
11(7):1185–1199, 2017.

[25] E. de Klerk, F. Glineur, and A. B. Taylor. Worst-case convergence analysis of inexact gradi-
ent and Newton methods through semidefinite programming performance estimation. SIAM
Journal on Optimization, 30(3):2053–2082, 2020.

[26] R.-A. Dragomir, A. B. Taylor, A. d’Aspremont, and J. Bolte. Optimal complexity and certifi-
cation of Bregman first-order methods. Mathematical Programming, 194(1–2):41–83, 2022.

[27] Y. Drori. Contributions to the Complexity Analysis of Optimization Algorithms. PhD thesis,
Tel-Aviv University, Tel Aviv, Israel, 2014.

[28] Y. Drori. The exact information-based complexity of smooth convex minimization. Journal of
Complexity, 39:1–16, 2017.

58



[29] Y. Drori and O. Shamir. The complexity of finding stationary points with stochastic gradient
descent. International Conference on Machine Learning, 2020.

[30] Y. Drori and A. B. Taylor. Efficient first-order methods for convex minimization: A construc-
tive approach. Mathematical Programming, 184(1):183–220, 2020.

[31] Y. Drori and A. B. Taylor. On the oracle complexity of smooth strongly convex minimization.
Journal of Complexity, 68:101590, 2022.

[32] Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimization:
A novel approach. Mathematical Programming, 145(1-2):451–482, 2014.

[33] I. Dunning, J. Huchette, and M. Lubin. JuMP: A modeling language for mathematical opti-
mization. SIAM Review, 59(2):295–320, 2017.

[34] M. Fazel, H. Hindi, and S. Boyd. Log-det heuristic for matrix rank minimization with appli-
cations to Hankel and Euclidean distance matrices. American Control Conference, 2003.

[35] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Min-
imization Techniques. SIAM, 1990.

[36] B. Goujaud, D. Scieur, A. Dieuleveut, A. B. Taylor, and F. Pedregosa. Super-acceleration with
cyclical step-sizes. International Conference on Artificial Intelligence and Statistics, 2022.

[37] G. Gu and J. Yang. Tight sublinear convergence rate of the proximal point algorithm for
maximal monotone inclusion problems. SIAM Journal on Optimization, 30(3):1905–1921,
2020.

[38] T. Hastie, R. Tibshirani, and M. Wainwright. Statistical Learning with Sparsity: The Lasso
and Generalizations. Chapman and Hall/CRC, 2019.

[39] N. J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, 2002.

[40] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 2012.

[41] R. Horst and H. Tuy. Global Optimization: Deterministic Approaches. Springer Science &
Business Media, 2013.

[42] D. Kim. Accelerated proximal point method for maximally monotone operators. Mathematical
Programming, 190(1–2):57–87, 2021.

[43] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization.
Mathematical Programming, 159(1):81–107, 2016.

[44] D. Kim and J. A. Fessler. Another look at the fast iterative shrinkage/thresholding algorithm
(FISTA). SIAM Journal on Optimization, 28(1):223–250, 2018.

[45] D. Kim and J. A. Fessler. Optimizing the efficiency of first-order methods for decreasing
the gradient of smooth convex functions. Journal of Optimization Theory and Applications,
188(1):192–219, 2021.

[46] L. Kozma. Useful Inequalities. 2021. https://www.lkozma.net/inequalities_cheat_shee
t/ineq.pdf.

59

https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf
https://www.lkozma.net/inequalities_cheat_sheet/ineq.pdf


[47] J. Lee, C. Park, and E. K. Ryu. A geometric structure of acceleration and its role in making
gradients small fast. Neural Information Processing Systems, 2021.

[48] B. Legat, O. Dowson, J. D. Garcia, and M. Lubin. MathOptInterface: A data structure for
mathematical optimization problems. INFORMS Journal on Computing, 2021.

[49] L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

[50] L. Liberti. Introduction to global optimization. Ecole Polytechnique, 2008.

[51] F. Lieder. On the convergence rate of the halpern-iteration. Optimization Letters, 15(2):405–
418, 2021.

[52] M. Locatelli and F. Schoen. Global Optimization: Theory, Algorithms, and Applications.
SIAM, 2013.

[53] Z.-Q. Luo, W.-K. Ma, A. M.-C. So, Y. Ye, and S. Zhang. Semidefinite relaxation of quadratic
optimization problems. IEEE Signal Processing Magazine, 27(3):20–34, 2010.

[54] A. M. Lyapunov. The general problem of the stability of motion. Communications of the
Mathematical Society of Kharkov, 1892.

[55] G. P. McCormick. Computability of global solutions to factorable nonconvex programs: Part
I—Convex underestimating problems. Mathematical Programming, 10(1):147–175, 1976.

[56] B. S. Mordukhovich. Variational Analysis and Generalized Differentiation I: Basic Theory.
Springer, 2006.

[57] MOSEK ApS. MOSEK Optimizer API for C 9.3.6, 2019.

[58] A. Nemirovski. Information-based complexity of convex programming. Lecture Notes, Tech-
nion - Israel Institute of Technology, 1995.

[59] A. Nemirovsky. Information-based complexity of linear operator equations. Journal of Com-
plexity, 8(2):153–175, 1992.

[60] Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

[61] Y. Nesterov. Lectures on Convex Optimization, volume 137. second edition, 2018.

[62] M. Padberg. The boolean quadric polytope: some characteristics, facets and relatives. Math-
ematical Programming, 45(1):139–172, 1989.

[63] C. Park, J. Park, and E. K. Ryu. Factor-
√
2 acceleration of accelerated gradient methods.

Applied Mathematics & Optimization, 2023.

[64] C. Park and E. K. Ryu. Optimal first-order algorithms as a function of inequalities. arXiv
preprint arXiv:2110.11035, 2021.

[65] J. Park and E. K. Ryu. Exact optimal accelerated complexity for fixed-point iterations. In-
ternational Conference on Machine Learning, 2022.

60



[66] F. Pedregosa. On the link between optimization and polynomials: acceleration without Mo-
mentum. 2021. http://fa.bianp.net/blog/2021/no-momentum/.

[67] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, M. Jones, A. Klein, L. Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee,
and P. Michaleas. Interactive supercomputing on 40,000 cores for machine learning and data
analysis. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pages 1–6.
IEEE, 2018.

[68] R. T. Rockafellar. Characterizing firm nonexpansiveness of prox mappings both locally and
globally. Journal of Nonlinear and Convex Analysis, 22(5), 2021.

[69] R. T. Rockafellar and R. J.-B. Wets. Variational Analysis. Springer Science & Business Media,
2009.

[70] E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson. Operator splitting performance
estimation: Tight contraction factors and optimal parameter selection. SIAM Journal on
Optimization, 30(3):2251–2271, 2020.

[71] E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge
University Press, 2022.

[72] H. D. Sherali and W. P. Adams. A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems. SIAM Journal on Discrete
Mathematics, 3(3):411–430, 1990.

[73] H. D. Sherali and B. M. Fraticelli. Enhancing RLT relaxations via a new class of semidefinite
cuts. Journal of Global Optimization, 22(1):233–261, 2002.

[74] Z. Shi and R. Liu. Better worst-case complexity analysis of the block coordinate descent
method for large scale machine learning. International Conference on Machine Learning and
Applications, 2017.

[75] A. B. Taylor. Convex Interpolation and Performance Estimation of First-Order Methods for
Convex Optimization. PhD thesis, Catholic University of Louvain, Louvain-la-Neuve, Belgium,
2017.

[76] A. B. Taylor. Computer-aided analyses in optimization. 2020. https://francisbach.com/

computer-aided-analyses/.

[77] A. B. Taylor and F. Bach. Stochastic first-order methods: Non-asymptotic and computer-aided
analyses via potential functions. Conference on Learning Theory, 2019.

[78] A. B. Taylor and Y. Drori. An optimal gradient method for smooth strongly convex minimiza-
tion. Mathematical Programming, pages 1–38, 2022.

[79] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance of first-order
methods for composite convex optimization. SIAM Journal on Optimization, 27(3):1283–1313,
2017.

61

http://fa.bianp.net/blog/2021/no-momentum/
https://francisbach.com/computer-aided-analyses/
https://francisbach.com/computer-aided-analyses/


[80] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and exact
worst-case performance of first-order methods. Mathematical Programming, 161(1–2):307–345,
2017.

[81] A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case convergence rates of the
proximal gradient method for composite convex minimization. Journal of Optimization Theory
and Applications, 178(2):455–476, 2018.

[82] A. B. Taylor, B. Van Scoy, and L. Lessard. Lyapunov functions for first-order methods: Tight
automated convergence guarantees. International Conference on Machine Learning, 2018.

[83] Q. Tran-Dinh. The connection between Nesterov’s accelerated methods and Halpern fixed-
point iterations. arXiv preprint arXiv:2203.04869, 2022.

[84] B. Van Scoy, R. A. Freeman, and K. M. Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters,
2(1):49–54, 2017.
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8 Appendix

8.1 Function class

The BnB-PEP methodology applies to quadratically representable function classes. We say F is
quadratically representable if the membership f ∈ F is defined by an inequality of the form

c0f(y) ≥ c1f(x) + q(x, y, u, v), ∀u ∈ ∂f(x), v ∈ ∂f(y), x, y ∈ Rd,

where

q(x, y, u, v) ≜ c2 ⟨x | x⟩+ c3 ⟨y | y⟩+ c4 ⟨u | u⟩+ c5 ⟨v | v⟩+ c6 ⟨x | y⟩+ c7 ⟨x | u⟩
+ c8 ⟨x | v⟩+ c9 ⟨y | u⟩+ c10 ⟨y | v⟩+ c11 ⟨u | v⟩+ c12,
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with ci ∈ R for i ∈ [0 : 12] along with an optional inequality of the form

∥u∥2 ≤M, ∀u ∈ ∂f(x), x ∈ Rd,

for some M > 0. Many of the commonly considered the function classes are quadratically repre-
sentable, and we list a few in the following. The class of L-smooth convex functions F0,L satisfies
[61, Theorem 2.1.5, Equation (2.1.10)]

f(y) ≥ f(x) + ⟨∇f(x) | y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.

(L-smooth functions are differentiable everywhere.) The class of L-smooth µ-strongly convex func-
tions Fµ,L satisfies [78, Theorem 1]

f(y) ≥ f(x) + ⟨∇f(x) | y − x⟩+ 1

2(L− µ)
∥∇f(x)−∇f(y)∥2

+
Lµ

2(L− µ)
∥x− y∥2 − µ

2(L− µ)
⟨∇f(x)−∇f(y) | x− y⟩ , ∀x, y ∈ Rd.

The class of L-smooth nonconvex functions F−L,L satisfies [29, Theorem 6]

f(y) ≥ f(x)+⟨∇f(x) | y − x⟩+ 1

2L
∥∇f(x)−∇f(y)∥2−L

4
∥x−y− 1

L
(∇f(x)−∇f(y))∥2, ∀x, y ∈ Rd.

which is also equivalent to [79, Theorem 3.10]

f(y) ≥ f(x)− L

4
∥x− y∥2 + 1

2
⟨∇f(x) +∇f(y) | y − x⟩+ 1

4L
∥∇f(x)−∇f(y)∥2, ∀x, y ∈ Rd.

The class of ρ-weakly convex functions Wρ,∞ is satisfies [23, Lemma 2.1]

f(y) ≥ f(x) + ⟨u | y − x⟩ − ρ

2
∥x− y∥2, ∀u ∈ ∂f(x), x, y ∈ Rd.

The class of nonsmooth convex functions with L-bounded subgradient FL
0,∞ satisfies [79, Definition

3.1]

f(y) ≥ f(x) + ⟨u | y − x⟩ , ∀u ∈ ∂f(x), x, y ∈ Rd,

∥u∥2 ≤ L, ∀u ∈ ∂f(x), x ∈ Rd.

The class of ρ-weakly convex functions with L-bounded subgradients Wρ,L satisfies [23, Lemma
2.1], [79, §3.1 (c)]

f(y) ≥ f(x) + ⟨u | y − x⟩ − ρ

2
∥x− y∥2, ∀u ∈ ∂f(x), x, y ∈ Rd,

∥u∥2 ≤ L, ∀u ∈ ∂f(x), x ∈ Rd.

Some, but not all, of the quadratically representable functions classes have interpolation results
analogous to Lemma 2. In particular, F0,L, Fµ,L, F−L,L, Wρ,∞, and FL

0,∞ have interpolation
results ([80, Theorem 4], [79, Theorem 3.10], [79, Theorem 3.5]), while Wρ,L does not. We can still
use the BnB-PEP methodology without an interpolation condition, as we do in §6.3, but we loose
the tightness guarantee.
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8.2 Discussion on the strong duality assumption

Consider the setup of §3, and let us not assume strong duality. Then, by weak duality, we have

R(M(α), E ,F , C) ≤ R(M(α), E ,F , C),

where R is as given by (12), R is as defined in (13), and M(α) is the FSFOM parameterized by
the stepsize list α = {αi,j}0≤j<i≤N .

Strong duality does provably hold generically. Let

Anice = {α |αi,i−1 ̸= 0, ∀ i = 1, . . . , N}

be the set of “nice” stepsize lists.

Lemma 6. [80, Theorem 6] If α ∈ Anice, then strong duality holds, i.e.,

R(M(α), E ,F , C) = R(M(α), E ,F , C), ∀α ∈ Anice.

Note that α is an N(N + 1)/2-dimensional and the set of α /∈ Anice is lower-dimensional. In this
sense, strong duality holds generically. When we solve the BnB-PEP-QCQP, we find

α⋆ ∈ argmin
α
R(M(α), E ,F , C).

In all of our experiments, we observe, a posteriori, that α⋆ ∈ Anice. So

R(M(α⋆), E ,F , C) = R(M(α⋆), E ,F , C).

However, the actual problem we wish to solve is

minimize
α

R(M(α), E ,F , C) ,

and it is possible that α⋆ /∈ R(M(α), E ,F , C). This would be the case if there is α⋆,true /∈ Anice such
that

R(M(α⋆,true), E ,F , C) < R(M(α⋆,true), E ,F , C) (47)

R(M(α⋆,true), E ,F , C) < R(M(α⋆), E ,F , C) (48)

R(M(α⋆), E ,F , C) ≤ R(M(α⋆,true), E ,F , C) (49)

Condition(47) states that for α⋆,true, the duality gap is positive. Condition (48) states that α⋆,true

has a better performance than α⋆. Condition (49) reaffirms that α⋆ is optimal for dual problem.
Figure 6 illustrates this circumstance. While this pathology is probably extremely unlikely, its
possibility is a consequence of the gap in the reasoning.

One can rigorously exclude this pathology in most well-behaved setups using the arguments of Park
and Ryu [64, Claim 4]:

(i) Prove R(M(α), E ,F , C) is a continuous function of α.
(ii) Observe, a posteriori, that α⋆ ∈ Anice.
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Figure 6: Illustration of R(M(α), E ,F , C) and R(M(α), E ,F , C) in a pathological setup. Even if
α⋆ ∈ argminR(M(α), E ,F , C) satisfies α⋆ ∈ Anice, it is possible that α⋆ /∈ argminR(M(α), E ,F , C).

(One need not show that strong duality holds for α /∈ Anice.) Then, we have

inf
α∈RN(N+1)/2

R(M(α), E ,F , C) (a)
= inf

α∈Anice
R(M(α), E ,F , C)

(b)
= inf

α∈Anice
R(M(α), E ,F , C)

(c)
= inf

α∈RN(N+1)/2
R(M(α), E ,F , C)

(d)
= R(M(α⋆), E ,F , C).

where (a) follows from continuity of R(M(α), E ,F , C) and denseness of Anice ⊆ RN(N+1)/2, (b)
follows from strong duality on Anice, and (c) and (d) follows from the a posteriori observation that
α⋆ ∈ Anice. In this case, we would have α⋆ ∈ argminR(M(α), E ,F , C), even if there is a duality
gap, as illustrated in Figure 7. Showing that R(M(α), E ,F , C) is a continuous function of α can be
done by carefully arguing that, for the particular setup, the performance continuously depends on
the FSFOM’s stepsize.

8.3 Exact rank-1 nonconvex semidefinite representation of the BnB-PEP-QCQP

In this section, we derive the exact rank-1 nonconvex semidefinite representation of (14). For the
other BnB-PEP-QCQPs, the steps to construct such a nonconvex semidefinite representation are
identical.

First, we define:
w = vec(α, ν, λ), (50)
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Figure 7: Illustration of R(M(α), E ,F , C) and R(M(α), E ,F , C) when R(M(α), E ,F , C) is contin-
uous. If α⋆ ∈ argminR(M(α), E ,F , C) satisfies α⋆ ∈ Anice, then α⋆ ∈ argminR(M(α), E ,F , C),
even if there is a duality gap.

which stacks the elements of α, ν, λ in a column vector w, and denote its number of elements by
|w|. Then we can define an one-to-one and onto index selector function ι(·) that takes αi,j , ν, or
λi,j as an input, and provides the unique index of that element in w with the range {1, 2, . . . , |w|}
i.e.,

αi,j = wι(αi,j), ν = wι(ν), λi,j = wι(λi,j).

Next, define W = ww⊤ ∈ S|w|. For notational convenience define, |x0| = N + 2. Defining the
map ι mathematically can be quite tedious and does not provide any insight, but it very easy to
implement through the Julia packages OrderedCollections and JuMP. Recall that for i ∈ [1 : N ],
we have:

xi = x0

1− (µ/L)
i−1∑
j=0

αi,j

− (1/L)
i−1∑
j=0

αi,jgj

=

I|x0|×|x0| |
−1
L

 i−1∑
j=0

(µx0 + gj)e
⊤
ι(αi,j)


︸ ︷︷ ︸

J[i]∈R|x0|×(|x0|+|w|)

[
x0

w

]

Also, define J[⋆] = 0|x0|×(|x0|+|w|), and J[0] = [I|x0|×|x0| | 0|x0|×|w|]. Then, for all i ∈ I⋆N , we have:

xi = J[i]
[
x0

w

]
.
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Hence, we have for any i, j ∈ I⋆N ,

xi − xj = (J[i] − J[j])

[
x0

w

]

=

 G[i,j]︸ ︷︷ ︸
∈R|x0|×|x0|

| H[i,j]︸︷︷︸
∈R|x0|×|w|

[x0

w

]
= G[i,j]x0 + H[i,j]w

=

g[i,j][k]⊤x0︸ ︷︷ ︸
c[i,j][k]

+h[i,j][k]⊤w

|x0|

k=1

=
[
c[i,j][k] + h[i,j][k]⊤w

]|x0|

k=1
,

where h[i,j][k]⊤ and g[i,j][k]⊤ correspond to the k-th rows of H[i,j] and G[i,j], respectively. Thus, for
any i, j ∈ I⋆N , k, ℓ ∈ [1 : |x0|] :

[Bi,j(α)]k,ℓ = [(xi − xj)⊙ (xi − xj)]k,ℓ

= [xi − xj ]k [xi − xj ]ℓ

=
[
G[i,j]x0 + H[i,j]w

]
k

[
G[i,j]x0 + H[i,j]w

]
ℓ

=
[
c[i,j][k] + h[i,j][k]⊤w

] [
c[i,j][ℓ] + h[i,j][ℓ]⊤w

]
= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ (h[i,j][k]⊤w)(h[i,j][ℓ]⊤w)

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+

|w|∑
ĩ=1

|w|∑
j̃=1

h
[i,j][k]

ĩ
h
[i,j][ℓ]

j̃
wĩwj̃

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ w⊤H [i,j][k,ℓ]w

= c[i,j][k]c[i,j][ℓ] + c[i,j][k]h[i,j][ℓ]⊤w + c[i,j][ℓ]h[i,j][k]⊤w

+ tr
(
H [i,j][k,ℓ]W

)
, (51)

where H [i,j][k,ℓ] ∈ S|w| with its entries defined by

H
[i,j][k,ℓ]

ĩ,̃j
=

1

2

(
h
[i,j][k]

ĩ
h
[i,j][ℓ]

j̃
+ h

[i,j][k]

j̃
h
[i,j][ℓ]

ĩ

)
,

for ĩ, j̃ ∈ [1 : |w|]. Also, for i, j ∈ I⋆N , and k, ℓ ∈ [1 : |x0|] :

[Ai,j(α)]k,ℓ = [gj ⊙ (xi − xj)]k,ℓ

=

[
1

2
gj(xi − xj)

⊤ +
1

2
(xi − xj)g

⊤
j

]
k,ℓ
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=
1

2
[gj ]k [xi − xj ]ℓ +

1

2
[xi − xj ]k [gj ]ℓ

=
1

2
[gj ]k (c

[i,j][ℓ] + h[i,j][ℓ]⊤w) +
1

2
(c[i,j][k] + h[i,j][k]⊤w) [gj ]ℓ

=
1

2

[
c[i,j][ℓ] [gj ]k + c[i,j][k] [gj ]ℓ

]
+

1

2
[gj ]k (h

[i,j][ℓ]⊤w) +
1

2
(h[i,j][k]⊤w) [gj ]ℓ

=

=c̃[i,j][k,ℓ]︷ ︸︸ ︷
1

2

[
c[i,j][ℓ] [gj ]k + c[i,j][k] [gj ]ℓ

]
+

|w|∑
ĩ=1

(
1

2
[gj ]k h

[i,j][ℓ]

ĩ
+

1

2
[gj ]ℓ h

[i,j][k]

ĩ

)
wĩ

= c̃[i,j][k,ℓ] +

|w|∑
ĩ=1

(
1

2
[gj ]k h

[i,j][ℓ]

ĩ
+

1

2
[gj ]ℓ h

[i,j][k]

ĩ

)
︸ ︷︷ ︸

=q̃
[i,j][k,ℓ]

ĩ

wĩ

= c̃[i,j][k,ℓ] +

|w|∑
ĩ=1

q̃
[i,j][k,ℓ]

ĩ
wĩ.

Next, denoting eι(λi,j) = d̃[i,j], we have for k, ℓ ∈ [1 : |x0|]

λi,j [Ai,j(α)]k,ℓ

= (d̃[i,j]⊤w)

c̃[i,j][k,ℓ] + |w|∑
ĩ=1

q̃
[i,j][k,ℓ]

ĩ
wĩ


= c̃[i,j][k,ℓ](d̃[i,j]⊤w) +

 |w|∑
j̃=1

d̃
[i,j]

j̃
wj̃

 |w|∑
ĩ=1

q̃
[i,j][k,ℓ]

ĩ
wĩ


= c̃[i,j][k,ℓ](d̃[i,j]⊤w) +

|w|∑
ĩ=1

|w|∑
j̃=1

[
d̃
[i,j]

j̃
q̃
[i,j][k,ℓ]

ĩ

]
wĩwj̃

= c̃[i,j][k,ℓ](d̃[i,j]⊤w) + w⊤S[i,j][k,ℓ]w

= c̃[i,j][k,ℓ](d̃[i,j]⊤w) + tr
(
S[i,j][k,ℓ]W

)
, (52)

where: S[i,j][k,ℓ] ∈ S|w| with its entries defined by

S[i,j][k,ℓ] [̃i, j̃] =
1

2

([
d̃
[i,j]

j̃
q̃
[i,j][k,ℓ]

ĩ

]
+
[
d̃
[i,j]

ĩ
q̃
[i,j][k,ℓ]

j̃

])
,

for ĩ, j̃ ∈ [1 : |w|]. Hence, we have

∑
i,j∈I⋆N :i ̸=j

λi,j [Ai,j(α)]k,ℓ =

 ∑
i,j∈I⋆N :i ̸=j

c̃[i,j][k,ℓ]d̃[i,j]⊤

w + tr

 ∑
i,j∈I⋆N

S[i,j][k,ℓ]

W.
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Using (51) and (52), we have the following nonconvex semidefinite representation of (14):

R⋆ (MN , E ,F , C)

=



minimize νR2

subject to∑
(i,j)∈I⋆N

λi,jai,j = 0,

ν [B0,⋆] k,ℓ − [CN,⋆] k,ℓ − µ2 [BN,⋆(α)] k,ℓ+
2µ [A⋆,N (α)] k,ℓ +

∑
(i,j)∈I⋆N

λi,j [Ai,j(α)]k,ℓ+
1

2(L−µ)

∑
(i,j)∈I⋆N

λi,j [Ci,j ] k,ℓ = Zk,ℓ, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

[BN,⋆(α)] k,ℓ = c[N,⋆][k]c[N,⋆][ℓ] + c[N,⋆][k]h[N,⋆][ℓ]⊤w + c[N,⋆][ℓ]h[N,⋆][k]⊤w+

tr
(
H [N,⋆][k,ℓ]W

)
, k ∈ [1 : |x0|], ℓ ∈ [1 : k],∑

i,j∈I⋆N :i ̸=j λi,j [Ai,j(α)]k,ℓ =
(∑

i,j∈I⋆N :i ̸=j c̃
[i,j][k,ℓ]d̃[i,j]⊤

)
w+

tr
(∑

i,j∈I⋆N
S[i,j][k,ℓ]

)
W, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

Z ⪰ 0,
W = ww⊤,
(∀i, j ∈ I⋆N ) λi,j ≥ 0, ν ≥ 0,



(53)

where λ, ν, Z, and W are the decision variables, and w = vec(α, ν, λ) as defined in (50). The
constraint W = ww⊤ is nonconvex, but if we replace this constraint with the implied constraint
W ⪰ ww⊤, then by using Schur complement, a convex semidefinite relaxation of (14) is given by:



minimize νR2

subject to∑
i,j∈I⋆N

λi,jai,j = 0,

ν [B0,⋆] k,ℓ − [CN,⋆] k,ℓ − µ2 [BN,⋆(α)] k,ℓ+
2µ [A⋆,N (α)] k,ℓ +

∑
(i,j)∈I⋆N

λi,j [Ai,j(α)]k,ℓ+
1

2(L−µ)

∑
(i,j)∈I⋆N

λi,j [Ci,j ] k,ℓ = Zk,ℓ, k ∈ [1 : |x0|], ℓ ∈ [1 : k],

[BN,⋆(α)] k,ℓ = c[N,⋆][k]c[N,⋆][ℓ] + c[N,⋆][k]h[N,⋆][ℓ]⊤w + c[N,⋆][ℓ]h[N,⋆][k]⊤w+

tr
(
H [N,⋆][k,ℓ]W

)
, k ∈ [1 : |x0|], ℓ ∈ [1 : k],∑

i,j∈I⋆N :i ̸=j λi,j [Ai,j(α)]k,ℓ =
(∑

i,j∈I⋆N :i ̸=j c̃
[i,j][k,ℓ]d̃[i,j]⊤

)
w+

tr
(∑

i,j∈I⋆N
S[i,j][k,ℓ]

)
W k ∈ [1 : |x0|], ℓ ∈ [1 : k],

Z ⪰ 0,[
W w
w⊤ 1

]
⪰ 0,

(∀i, j ∈ I⋆N ) λi,j ≥ 0, ν ≥ 0,



(54)

where λ, ν, Z, and W are the decision variables. The optimal objective value of (54) will provide a
lower bound to (53).
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