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Abstract The first part of this work established the foundations of a radial
duality between nonnegative optimization problems, inspired by the work of
Renegar [38]. Here we utilize our radial duality theory to design and analyze
projection-free optimization algorithms that operate by solving a radially dual
problem. In particular, we consider radial subgradient, smoothing, and accel-
erated methods that are capable of solving a range of constrained convex and
nonconvex optimization problems and that can scale-up more efficiently than
their classic counterparts. These algorithms enjoy the same benefits as their
predecessors, avoiding Lipschitz continuity assumptions and costly orthogo-
nal projections, in our newfound, broader context. Our radial duality further
allows us to understand the effects and benefits of smoothness and growth
conditions on the radial dual and consequently on our radial algorithms.

Keywords Optimization · Projection-free Methods · Convex · Nonconvex ·
Nonsmooth · First-Order Methods · Projective Transformations

1 Introduction

The first part of this work [17] established a theory of radial duality relat-
ing nonnegative optimization problems through a projective transformation,
extending the ideas of Renegar [38] from their origins in conic programming.
We give a minimal overview here of our radial duality theory needed to be-
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2 Benjamin Grimmer

gin algorithmically benefiting from it and then a fuller but terse summary in
Section 2.3 necessary to derive our radial optimization guarantees.

For a finite dimensional Euclidean space E , our three transformations of
interest are the radial point transformation, radial set transformation, and
upper radial function transformation, which are denoted by

Γ (x, u) = (x, 1)/u,

ΓS = {Γ (x, u) | (x, u) ∈ S},
fΓ (y) = sup{v > 0 | (y, v) ∈ Γ (epi f)}

for any point (x, u) ∈ E × R++, set S ⊆ E × R++, and function f : E → R++,
respectively. Here R++ denotes the extended positive reals R++ ∪{0,+∞}. It
is immediate that the point and set transformations are dual since

ΓΓ (x, u) = Γ
(x, 1)

u
=

(x/u, 1)

1/u
= (x, u).

Central to establishing our theory of radial duality is the characterization
of exactly when this duality carries over to the function transformation. We say
a function f is upper radial if the perspective function fp(y, v) = v · f(y/v) is
upper semicontinuous and nondecreasing in v ∈ R++. Moreover, it is strictly
upper radial if it is strictly increasing in v whenever fp(y, v) ∈ R++. The
cornerstone theorem of our radial duality [17, Theorem 1] is that

f = fΓΓ ⇐⇒ f is upper radial. (1)

The duality of the radial function transformation provides a duality be-
tween optimization problems (see Section 4 of [17]). For any strictly upper
radial function f : E → R++, consider the primal problem

p∗ = max
x∈E

f(x). (2)

Then the radially dual problem is given by

d∗ = min
y∈E

fΓ (y) (3)

and has (argmax f) × {p∗} = Γ
(
(argmin fΓ )× {d∗}

)
. Thus maximizing f is

equivalent to minimizing fΓ and solutions can be converted between these
problems by applying the radial point transformation Γ or its inverse (which
is also Γ by duality).

Importantly, the two nonnegative optimization problems (2) and (3) can
exhibit very different structural properties. For example, consider maximizing
f(x) =

√
1− ‖x‖22+ which takes value zero outside the unit ball and has ar-

bitrarily large gradients and Hessians as x approaches the boundary of this
ball. Its radial dual fΓ (y) =

√
1 + ‖y‖22 has a full domain with gradients and

Hessians bounded in norm by one everywhere. Thus our radial duality theory
poses an opportunity to extend the reach of many standard optimization al-
gorithms reliant on such structure. The previous works of Renegar [38] and
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Grimmer [16] analyzing subgradient methods and Renegar [39] employing ac-
celerated smoothing techniques on a radial reformulation of the objective crit-
ically rely on the reformulation being uniformly Lipschitz continuous, which
always occurs in the special cases of the radial dual that they consider.

Our Contributions. This work leverages our radial duality theory to present
and analyze projection-free radial optimization algorithms in this newfound,
wider context than previous works were able to. Finding that a mild condi-
tion ensures the radial dual is uniformly Lipschitz continuous, we analyze a
radial subgradient method for a broad range of non-Lipschitz primal problems
with or without concavity. Observing that constraints radially transform into
related gauges, we propose a radial smoothing method that takes advantage
of this structure for concave maximization. Further, we find that our radial
transformation extends smoothness on a level set of the primal to hold globally
in the radial dual, which prompts our analysis of a radial accelerated method.
More important than these particular algorithms, this work aims to demon-
strate the breadth of applications and algorithms that can be approached using
our radial duality theory.

Outline. We begin with a motivating example of the computational bene-
fits and scalability that follow from designing algorithms based on the radial
dual (3) in Section 2. Then Section 3 formally establishes algorithmically use-
ful properties of our radial dual, namely Lipschitz continuity, smoothness, and
growth conditions. Finally, Section 4 addresses the convergence of our radial
algorithms for concave maximization and Section 5 addresses applications and
guarantees in nonconcave maximization.

2 A Motivating Setting of Polyhedral Constraints

We begin by motivating the algorithmic usefulness of our radial duality by con-
sidering optimization with polyhedral constraints. Consider any maximization
problem with upper semicontinuous objective f : Rn → R ∪ {−∞} and m
inequality constraints aTi x ≤ bi given by{

maxx f(x)

s.t. Ax ≤ b.
(4)

We assume this problem is feasible. Then without loss of generality, we have
0 ∈ int ({x | Ax ≤ b, f(x) > 0}). This can be achieved by computing any point
x0 in the relative interior of {x | Ax ≤ b, f(x) ∈ R} and then (i) translating
the problem to place x0 at the origin, (ii) adding a constant to the objective
to ensure f(0) > 0, and (iii) if needed, re-parameterizing the problem1 to only

1 Instead of using a re-parameterization, one can explicitly include equality constraints
in our model. The details of this approach are given in Section 2.2.1, where we see that
equality constraints are unaffected by the radial dual.
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consider the smallest subspace containing {x | Ax ≤ b, f(x) > 0}. Note that
doing this translation suffices to guarantee that any upper semicontinuous,
concave f will have f+(x) := max{f(x), 0} be strictly upper radial by [17,
Proposition 11]. We will only make the weaker assumption here that f+ is
strictly upper radial rather than the narrower case of it being concave. Then
this problem can be reformulated as the following nonnegative optimization
problem of our primal form (2){

maxx f+(x)

s.t. Ax ≤ b
= max

x
min
i

{
f+(x), ι̂aTi x≤bi(x)

}

where ι̂aTi x≤bi(x) =

{
+∞ if aTi x ≤ bi
0 if aTi x > bi

is a nonstandard indicator function

for each inequality constraint. Note that each ι̂aTi x≤bi is strictly upper radial

since 0 is strictly feasible and so applying [17, Proposition 12] ensures the

primal objective mini

{
f+(x), ι̂aTi x≤bi(x)

}
is strictly upper radial. Then we

can compute the radially dual optimization problem (3) using [17, Proposition
13] as

min
y

max
i

{
fΓ+ (y), aTi y/bi

}
(5)

since the radial transformation of each nonstandard indicator function is linear

ι̂ΓaTi x≤bi
(y) = sup

{
v > 0 | v · ι̂aTi x≤bi(y/v) ≤ 1

}
= sup

{
v > 0 | aTi (y/v) > bi

}
= (aTi y/bi)+.

We drop the nonnegative thresholding on aTi y/bi since fΓ+ (y) is nonnegative.
Importantly, the dual formulation (5) is unconstrained, unlike the primal,

since the primal inequality constraints have transformed into simple linear
lower bounds on the radially dual objective. This dual further profits from the
structure of its objective function as it is often globally Lipschitz continuous
(a common property among radial duals that we will show in Proposition 1)
and has the simple form of a finite maximum. This radially dual structure
gives us an algorithmic angle of attack not available in the primal problem.

2.1 Quadratic Programming

To make these benefits concrete, consider solving a generic quadratic program{
maxx 1− 1

2x
TQx− cTx

s.t. Ax ≤ b
(6)

for some Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, and b ∈ Rm++. Note this satisfies the
needed condition 0 ∈ int ({x | Ax ≤ b, f(x) > 0}) whenever b > 0 as f(0) = 1.
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We reformulate this problem as the following nonnegative optimization prob-
lem of the form (2){

maxx 1− 1
2x

TQx− cTx
s.t. Ax ≤ b

= max
x

min
i

{
(1− 1

2
xTQx− cTx)+, ι̂aTi x≤bi(x)

}
.

Whenever this primal objective is strictly upper radial, the radial dual of our
quadratic program is2

min
y

max
i

{(
cT y + 1 +

√
(cT y + 1)2 + 2yTQy

2

)
+

, aTi y/bi

}
(7)

where the first term in our maximum is set to zero if (cT y+ 1)2 + 2yTQy < 0
as can occur for nonconcave primal objectives. We find that our radial duality
holds here whenever 1

2x
TQx > −1 for all Ax ≤ b. This captures two natural

settings: (i) when the primal objective is concave (as Q is positive semidefinite)
or (ii) when the primal objective is nonconcave but has a compact feasible re-
gion (since we can rescale the objective to be 1 − λxTQx/2 − λcTx without
changing the set of maximizers but ensuring λ

2x
TQx > −1 everywhere). Sec-

tion 5.1 shows more generally that any differentiable objective with compact
constraints can be rescaled to apply our radial duality theory.

We verify that our primal objective is strictly upper radial (and so our
radial duality holds) for this upper semicontinuous objective by checking when
fp(y, ·) is strictly increasing on its domain. The partial derivative with respect
to v of the perspective function

v ·min
i

{
(1− 1

2
(y/v)TQ(y/v)− cT (y/v))+, ι̂aTi x≤bi(y/v)

}

=

v
(

1− yTQy
2v2 −

cT y
v

)
+

if A(y/v) ≤ b

0 otherwise

is 1 + yTQy
2v2 at every feasible y/v. This is always positive (and hence the

perspective function is increasing in v) exactly when every x = y/v with
Ax ≤ b has 1

2x
TQx > −1.

2 Our calculation of the radial dual of the quadratic objective follows by definition as

(1−
1

2
xTQx− cT x)Γ+(y) = sup

{
v > 0 | v

(
1−

yTQy

2v2
−
cT y

v

)
≤ 1

}
= sup{v > 0 | v2 −

1

2
yTQy − (cT y + 1)v ≤ 0}

=

(
cT y + 1 +

√
(cT y + 1)2 + 2yTQy

2

)
+

.
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2.1.1 Quadratic Programming Numerics

As previously noted, the radially dual formulation (7) is unconstrained and
Lipschitz continuous despite the primal possessing neither of these properties.
This differs from the structure found from taking a Lagrange dual [11] or gauge
dual [14]. As a result, our radial dual is well set up for the application of a
subgradient method. We consider the following radial subgradient method with
stepsizes αk > 0 defined by Algorithm 1.

Algorithm 1 The Radial Subgradient Method

Require: f : E → R++, x0 ∈ dom f , T ≥ 0
1: (y0, v0) = Γ (x0, f(x0)) Transform into the radial dual
2: for k = 0 . . . T − 1 do
3: yk+1 = yk − αkζ′k, where ζ′k ∈ ∂P f

Γ (yk) Run the subgradient method
4: end for
5: (xT , uT ) = Γ (yT , f

Γ (yT )) Transform back to the primal

Further noting that the radially dual problem is a finite maximum of sim-
ple smooth Lipschitz functions, we can apply the smoothing ideas of Nes-
terov [33]. Perhaps the clearest description of these techniques is given by
Beck and Teboulle [3]. In particular, for any fixed η > 0, we consider the
smooth function given by taking a “soft-max”

gη(y) = η log

(
exp

(
cT y + 1 +

√
(cT y + 1)2 + 2yTQy

2η

)
+

m∑
i=1

exp

(
aTi y

biη

))
(8)

which approaches our radially dual objective as η → 0. Then we can minimize
the radial dual up to accuracy O(η) by minimizing this smoothed objective.
Doing so with Nesterov’s accelerated method gives the following radial smooth-
ing method defined by Algorithm 2 (a similar radial algorithm was employed by
Renegar [39] showing that the transformation of any hyperbolic programming
problem also admits a smoothing that can be efficiently minimized).

Algorithm 2 The Radial Smoothing Method

Require: f : E → R++, x0 ∈ dom f , η > 0, Lη > 0, T ≥ 0
1: (y0, v0) = Γ (x0, f(x0)) and ỹ0 = y0 Transform into the radial dual
2: Let gη(y) denote an η-smoothing of fΓ (y)
3: for k = 0 . . . T − 1 do
4: ỹk+1 = yk −∇gη(yk)/Lη Run the accelerated method

5: yk+1 = ỹk+1 + k−1
k+2

(ỹk+1 − ỹk)

6: end for
7: (xT , uT ) = Γ (yT , f

Γ (yT )) Transform back to the primal
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The per iteration cost of these radial methods is controlled by the cost of
evaluating one subgradient of the radially dual objective (7) or one gradient
of our smoothing of the radially dual objective (8). Both of these can be done
efficiently in closed form in terms of matrix-vector products with A and Q. De-
spite this low iteration cost, a feasible primal solution (xk, uk) = Γ (yk, f

Γ (yk))
is known at every iteration. Convergence guarantees for the radial subgradi-
ent and smoothing methods for concave maximization are given later in Sec-
tions 4.1 and 4.2.

Classic optimization algorithms that preserve feasibility at every iteration
tend to have much higher iteration costs. Here we compare with three of the
most standard first-order methods that enforce feasibility: projected gradient
descent (or rather, projected gradient ascent)

xk+1 = proj{x|Ax≤b} (x+∇f(x)/L) ,

an accelerated projected gradient method{
x̃k+1 = proj{x|Ax≤b} (xk +∇f(xk)/L)

xk+1 = x̃k+1 + k−1
k+2 (x̃k+1 − x̃k),

and the Frank-Wolfe method3 with stepsize sequence βk > 0{
x̃k+1 ∈ argmaxx

{
∇f(xk)Tx | Ax ≤ b

}
xk+1 = xk + βk(x̃k+1 − xk).

All three of these methods require solving a subproblem at each iteration.
The projected gradient and accelerated gradient methods require repeated
projection onto the polyhedron {x | Ax ≤ b}, which is itself an instance of (6)
specialized to Q = I. The Frank-Wolfe method requires repeatedly solving a
linear program over this polyhedron. Both of these operations are far more
expensive than the matrix-vector products required by the radial subgradient
and smoothing methods but may allow them to have a greater improvement
in objective value per iteration.

To weigh this tradeoff, we consider running these five algorithms on syn-
thetic quadratic programs given by drawing two matrices A ∈ Rm×n and
P ∈ Rn×100 and a vector c ∈ Rn with i.i.d. Guassian entries and setting
Q = PPT and all bi = 1. Then we run each algorithm for 30 minutes on
instances of size (n,m) ∈ {(400, 1600), (800, 3200), (1600, 6400)}. Our numer-
ical experiments are conducted on a four-core Intel i7-6700 CPU using Julia
1.4.1 and Gurobi 9.1.1 to solve any subproblems4. For each method, we set
x0 = 0 and use the following choice of stepsizes: the projected and accelerated
gradient methods use L = λmax(Q), the Frank-Wolfe method uses an exact

linesearch βk = min
(
∇f(xk)T (x̃k+1−xk)
‖PT (x̃k+1−xk)‖2 , 1

)
, the radial subgradient method uses

the Polyak stepsize αk = fΓ (yk)−d∗
‖ζ′k‖2

, and the radial smoothing method fixes

3 Quadratic programming was the original motivating setting for Frank-Wolfe [13].
4 The source code is available at github.com/bgrimmer/Radial-Duality-QP-Example
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Fig. 1: The minimum relative accuracy p∗−f(xk)
p∗ of (6), with sizes (n,m)

equal to (400, 1600), (800, 3200), (1600, 6400) from left to right, seen by the
projected gradient, accelerated gradient, Frank-Wolfe, radial subgradient and
radial smoothing methods over 30 minutes.

Lη = 0.1 max{‖ai/bi‖2}/η and η ∈ {10−8, 5×10−7, 10−7} for each of our three
problem sizes.

The best primal objective value seen by each method is shown in realtime
in Figure 1. First, we remark on the total number of iterations completed by
each method in the allotted half hour, shown in the following table.

(n,m) (400, 1600) (800, 3200) (1600, 6400)

Projected Gradient 16,520 iter. 3,900 iter. 152 iter.
Accelerated Gradient 16,490 iter. 3,425 iter. 70 iter.

Frank-Wolfe 1,033 iter. 216 iter. 35 iter.
Radial Subgradient 5,635,174 iter. 907,797 iter. 225,971 iter.
Radial Smoothing 3,344,776 iter. 448,785 iter. 111,871 iter.

In our largest problem setting (n,m) = (1600, 6400), which has approxi-
mately ten million nonzeros, the projected gradient, accelerated gradient, and
Frank-Wolfe methods complete 35-152 steps within our time budget whereas
our radial methods take hundreds of thousands of steps. For our smallest in-
stance (n,m) = (400, 1600), the accelerated gradient method quickly reaches
high accuracy. However, for our moderate-sized instance (n,m) = (800, 3200),
the classic methods begin to fall off with the radial smoothing method and ac-
celerated method performing comparably up to accuracy O(η). For our largest
instance (n,m) = (1600, 6400), the methods relying on orthogonal projection
and linear optimization have their progress substantially slowed due to their
high iteration cost. Our radial algorithms appear to provide a more scalable
approach. Throughout our experiments, the radial smoothing method out-
performs the radial subgradient method by a couple of orders of magnitude.
This agrees with our convergence theory showing that the radial subgradient
method converges at a O(1/ε2) rate while the smoothing technique enables
O(1/ε) convergence, presented in Sections 4.1 and 4.2, respectively.

Further comparisons can be made with customized, scalable QP solvers like
OSQP [44], which is based on ADMM and provides approximate primal and
dual solutions. In Appendix A, we outline how dual solutions can be extracted
from the radial smoothing method for the sake of comparison with OSQP.
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Fig. 2: Convergence of εprim, εdual, εcomp on a random QP of size (n,m) =
(1600, 6400).

The quality of some primal x and dual v as an approximate KKT solution can
be measured in terms of their primal feasibility εprim = max{aTi x − bi, 0},
dual feasibility εdual = ‖Qx + c + AT v‖∞, and complementary slackness
εcomp = ‖(Ax − b) · v‖∞. OSQP always has εcomp = 0 but guarantees nei-
ther primal nor dual feasibility at its iterates. Our radial smoothing method
always has a feasible primal solution εprim = 0, but guarantees neither dual
feasibility nor complementary slackness. As a result, only limited conclusions
can be drawn between these two methods. Figure 2 shows the convergence of
each OSQP and radial smoothing (with η = 10−4). Although asymptotically
OSQP appears to converge faster, throughout the experiment’s runtime it is
debatable which method’s certificates are preferable. Further numerical test-
ing and the design of radial methods/theory focused on KKT attainment are
deferred to future works. Note at each iteration, OSQP solves a linear system
rather than just relying on matrix multiplications. Numerically, this results in
OSQP completing 10, 503 steps whereas our radial smoothing method com-
pleted 113, 532.

2.2 Broader Computational Advantages from the Radially Dual Problem

We conclude this motivating section with a high-level discussion of the com-
putational advantages we see in optimizing over the radially dual problem.

2.2.1 Maintaining Primal Feasible Iterates Without Costly Projections

Here we generalize the setting of polyhedral constraints considered by (4).
After a translation, any convex constraints can be expressed as the intersection
of a convex set S ⊆ E with 0 ∈ int S and a subspace T = {x ∈ E | Ax = 0}.
Consider any primal problem with strictly upper radial objective f given by

max f(x)

s.t. x ∈ S
Ax = 0

= max
x∈E

min{f(x), ι̂S(x), ι̂T (x)}
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where ι̂S(x) =

{
+∞ if x ∈ S
0 if x 6∈ S.

Then the radially dual problem is

min
y∈E

max{fΓ (y), γS(y), γT (y)} =

{
min max{fΓ (y), γS(y)}
s.t. Ay = 0

where γS(y) = inf{λ ≥ 0 | y ∈ λS} denotes the Minkowski gauge since

ι̂ΓS (y) = sup{v > 0 | v · ι̂S(y/v) ≤ 1} = sup{v > 0 | y/v 6∈ S}
= inf{λ > 0 | y ∈ λS} = γS(y).

The last line above uses that S is convex and contains 0. Having multiple
set constraints S1 . . . Sn in the primal maxx∈S1∩···∩Sn f(x) simply adds more
terms to the dual’s maximum of miny∈E max{fΓ (y), γSi(y)}.

This formulation allows algorithms to maintain a feasible primal solution
at each iteration without requiring costly subproblems relating to S. Instead,
a primal feasible solution can be recovered from any radial dual solution y ∈
E with Ay = 0 as x = y/max{fΓ (y), γS(y)} ∈ S ∩ T since 0 ∈ S ∩ T .
Algorithmically, this replaces the need for orthogonal projections onto the
feasible region S ∩ T with the cheaper operations of orthogonally projecting
onto the subspace T and evaluating the gauge of S. This computational gain
was one of the key contributions identified by [38] and was central to the
motivation of [39,16] as well as being a motivation of this work.

2.2.2 Handling Nonconcave Objectives and Nonconvex Constraints

Our calculation of the radial dual for quadratic programming did not fun-
damentally rely on concavity as it also applies to nonconcave problems with
a bounded feasible region. Indeed one of the key insights from the first part
of this work was divorcing the idea of radial transformations from relying on
notions of convexity or concavity. In Section 5.1, we discuss several noncon-
cave primal maximization problems where radial duality holds, generalizing
the above reasoning to star-convex constraints and covering important areas
like nonconvex regularization and optimization with outliers.

2.2.3 Efficiently Evaluating Generic Radial Duals

In many structured settings, we can exactly evaluate the radial transformation
with cost comparable to a single evaluation of f . Table 1 gives formulas for
the gauge of any norm, halfspace, polynomial, or semidefinite programming
constraint. Note that the gauge of an intersection of several of these constraints
is simply the maximum of each constraint’s gauge formula. Similarly, Table 2
gives formulas for the radial dual of many common function classes.

Outside these common families, fΓ does not have a closed-form formula.
However, numerically evaluating fΓ (y) can be done by bisection whenever f
is upper radial: Note zero is a trivial lower bound on the value of fΓ (y) and



Radial Duality Part II: Applications and Algorithms 11

Set S (assumed star convex with 0 ∈ int S) γS(y) = ι̂ΓS (y)

Norm Constraints {x | ‖x‖ ≤ b} ‖y‖/b
Halfspace Constraints {x | aT x ≤ b} (aT y/b)+

Quadratic Constraints {x | 1
2
xTQx+ pT x ≤ b}

(
pT y+

√
(pT y)2+2byTQy

2c

)
+

Polynomial Constraints {x | p(x) ≤ 0} Polynomial Root Finding
Semidefinite Constraints {x | Ax−B � 0} λmax(B−1Ay)

Table 1: Common families of constraints with closed-form descriptions of their
gauge.

Function f (assumed upper radial, f(0) > 0) fΓ (y)

Norms ‖x‖ ι̂‖x‖≤1(y)

Linear Functions (aT x+ b)+ ((1− aT y)/b)+

Quadratic Functions
(
1
2
xTQx+ pT x+ b

)
+

(
1−pT y+

√
(1−pT y)2−2byTQy

2c

)
+

Polynomial Functions p(x)+ Polynomial Root Finding

Table 2: Common function classes with closed-form descriptions of their radial
dual.

an upper bound can be computed via exponential back-off, finding the first
integer i with 2i · f(y/2i) > 1 since all 2i > fΓ (y) have this property. Having
nondecreasing v · f(y, v) ensures bisection will linearly converge to the unique
intermediate value of v where vf(y/v) passes above one. This exponential
back-off and subsequent bisection will each require a logarithmic number of
function evaluations (both will reach standard machine precision within ≈ 30
steps). Consequently, even when closed-forms are not available, the radial dual
is at most only moderately more expensive to calculate than the primal. Even
if f is not upper radial, fΓ (y) may still be tractable to compute. For example,
any polynomial f has evaluation of fΓ amount to computing a polynomial’s
largest root. Once fΓ (y) has been computed, its gradient and Hessian can be
readily computed from (25) and (26).

2.2.4 Improving Conditioning and Problem Structure

As a final motivating example of the structural advantages of taking the ra-
dial dual, consider the following Poisson inverse problem. Given linear mea-
surements with Poisson distribution noise bi ∼ Poisson(aTi x), the maximum
likelihood estimator is given by maximizing

L(x) :=

{∑
i bi log(aTi x)− aTi x if all aTi x > 0

−∞ otherwise.

Then given any convex regularizer r(x) and constraint set S ⊆ Rn, we formu-
late a Poisson inverse problem as

max
x∈S
L(x)− r(x). (9)
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This type of problem arises in image processing (see [4] for a survey of applica-
tions from astronomy to medical imaging) as well as in network diffusion and
time series modeling (see the many references in [20]). Although this problem is
concave, the blow-up from the logarithmic terms prevents standard first-order
methods from being applied. Provided the regularization r and constraints S
are sufficiently simple, customized primal-dual [20] or Bregman methods [1,
30] provide a powerful tactic for solving this problem.

For generic S and r, our radial duality can be applied. Given any x0 ∈
int (dom L ∩ S) and u0 < L(x0) − r(x0), we can reformulate this objective
function to be strictly upper radial via a simple translation and truncation.
We consider the equivalent problem of

max
x∈Rn

min{(L(x+ x0)− r(x+ x0)− u0)+, ι̂S(x+ x0)}.

Then we can employ our radial duality machinery using [17, Proposition 11]
since our translated and truncated objective is concave with 0 strictly in its
domain. The radial dual here is defined everywhere dom fΓ = Rn and globally
uniformly Lipschitz continuous (see Proposition 1). Moreover if S = Rn, r(x)
is twice continuously differentiable and L−r has bounded level sets5, the radial
dual has globally Lipschitz continuous gradient (see Corollary 1). The primal
formulation is none of these. Note that different translations of the objective
(here corresponding to a different choice of (x0, u0)) produce different radial
duals, which in turn can have very different global Lipschitz and smoothness
constants.

2.3 Notation and Review

We consider functions f : E → R++, where R++ = R++ ∪ {0,+∞} denotes
the “extended positive reals”. Here 0 and +∞ are the limit objects of R++,
mirroring the roles of −∞ and +∞ in the extended reals. The effective domain,
graph, epigraph, and hypograph of such a function are

dom f := {x ∈ E | f(x) ∈ R++},
graph f := {(x, u) ∈ E × R++ | f(x) = u},

epi f := {(x, u) ∈ E × R++ | f(x) ≤ u},
hypo f := {(x, u) ∈ E × R++ | f(x) ≥ u}.

We say a function f : E → R++ is upper (lower) semicontinuous if hypo f
(epi f) is closed with respect to E × R++. Equivalently, a function is upper
semicontinuous if for all x ∈ E , f(x) = lim supx′→x f(x′) and lower semicon-
tinuous if f(x) = lim infx′→x f(x′). We say a function f : E → R++ is concave
(convex) if hypo f (epi f) is convex. The set of convex normal vectors of a set
S ⊆ E × R at some (x, u) ∈ S is denoted by

NC
S ((x, u)) := {(ζ, δ) | (ζ, δ)T ((x, u)− (x′, u′)) ≥ 0 ∀(x′, u′) ∈ S}.

5 For example, if either {ai} spans Rn or the regularizer r(x) has bounded level sets.
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Then the convex subdifferential and convex supdifferential of a function f are

∂Cf(x) := {ζ | (ζ,−1) ∈ NC
epi f ((x, f(x)))},

∂Cf(x) := {ζ | (−ζ, 1) ∈ NC
hypo f ((x, f(x)))}.

The proximal normal vectors and differentials of a set S or function f are

NP
S ((x, u)) := {(ζ, δ) | (x, u) ∈ projS((x, u) + ε(ζ, δ)) for some ε > 0},
∂P f(x) := {ζ | (ζ,−1) ∈ NP

epi f ((x, f(x)))},
∂P f(x) := {ζ | (−ζ, 1) ∈ NP

hypo f ((x, f(x)))}.

Dual Families of Functions. Most of our theory characterizing the radial trans-
formation relies on the given function being (strictly) upper radial. Recall that
[17, Proposition 6] shows an upper semicontinuous function f is upper radial
(that is, our radial duality fΓΓ = f holds) if and only if all (x, u) ∈ hypo f
and (ζ, δ) ∈ NP

hypo f ((x, u)) satisfy

(ζ, δ)T (x, u) ≥ 0. (10)

Geometrically, this corresponds to the origin lying below all of the hyperplanes
induced by proximal normal vectors of the hypograph. Similarly, [17, Proposi-
tion 8] ensures a continuously differentiable function f is strictly upper radial
if all x ∈ dom f satisfy

(∇f(x),−1)T (x, u) < 0. (11)

For concave functions, being upper radial corresponds to the origin lying in
the function’s domain. In particular, [17, Proposition 11] ensures an upper
semicontinuous concave function f is strictly upper radial if

0 ∈ int {x | f(x) > 0}. (12)

Assuming strict upper radiality holds, the following are radially dual

f is upper semicontinuous ⇐⇒ fΓ is lower semicontinuous, (13)

f is continuous ⇐⇒ fΓ is continuous, (14)

f is concave ⇐⇒ fΓ is convex, (15)

where these follow from [17, Propositions 15, 17]. We say a functions mapping
into the extended positives is k times differentiable if it is k times differentiable
at each x in dom f . For differentiable functions satisfying (11), [17, Proposition
21] shows

f is k times differentiable ⇐⇒ fΓ is k times differentiable, (16)

f is analytic ⇐⇒ fΓ is analytic. (17)
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Relating Extreme Points, (Sub)Gradients, and Hessians. We recall a few bi-
jections relating functions and their radial transformations. For any strictly
upper radial f , [17, Lemma 2] ensures

epi fΓ = Γ (hypo f). (18)

Further, [17, Lemma 3] shows for any continuous strictly upper radial function,
the following pair of bijections between graphs and domains hold

graph fΓ = Γ (graph f), (19)

y ∈ dom fΓ ⇐⇒ y/fΓ (y) ∈ dom f. (20)

Then [17, Propositions 24, 25] shows that the radial point transformation
relates the maximizers of a strictly upper radial function f to the minimizers
of fΓ as well as relates their stationary points

argmin fΓ × {inf fΓ } = Γ (argmax f × {sup f}) , (21)

{(y, fΓ (y)) | 0 ∈ ∂P fΓ (y)} = Γ{(x, f(x)) | 0 ∈ ∂P f(x)}. (22)

In particular, for any upper semicontinuous, strictly upper radial f , the convex
and proximal subgradients of its upper radial transformation are given by

∂Cf
Γ (y) =

{
ζ

(ζ, δ)T (x, u)
|
[
ζ
δ

]
∈ NC

hypo f ((x, u)), (ζ, δ)T (x, u) > 0

}
(23)

∂P f
Γ (y) =

{
ζ

(ζ, δ)T (x, u)
|
[
ζ
δ

]
∈ NP

hypo f ((x, u)), (ζ, δ)T (x, u) > 0

}
(24)

where (x, u) = Γ (y, fΓ (y)) by [17, Propositions 19, 20]. Further, if f is contin-
uously differentiable and satisfies (11), [17, Proposition 21] shows the gradient
of the upper radial transformation at y = x/f(x) is

∇fΓ (y) =
∇f(x)

(∇f(x),−1)T (x, f(x))
. (25)

If in addition we suppose f is twice continuously differentiable around x, [17,
Proposition 22] shows the Hessian of the upper radial transformation is

∇2fΓ (y) =
f(x)

(∇f(x),−1)T (x, f(x))
· J∇2f(x)JT (26)

where J = I − ∇f(x)xT
(∇f(x),−1)T (x,f(x)) .

3 Conditioning of the Radially Dual Problem

As we have seen, the radial dual often enjoys structural properties missing from
the primal. In the following three subsections, we characterize the Lipschitz
continuity, smoothness, and growth conditions of the radially dual problem.
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3.1 Lipschitz Continuity of the Radially Dual Problem

We say a function f is uniformly M -Lipschitz continuous if for all x, x′ ∈ E ,

|f(x)− f(x′)| ≤M‖x− x′‖.

For any lower semicontinuous function f : E → R++ ∪ {∞}, M -Lipschitz con-
tinuity is equivalent to all proximal subgradients ζ ∈ ∂P f(x) having norm
bounded by M [9, Theorem 1.7.3].

Lipschitz continuity plays an important role in the analysis of many first-
order methods for nonsmooth optimization. The previous works [38,39,16]
critically rely on their radially reformulated objective being uniformly Lips-
chitz. Here we present a general characterization of when the radial transfor-
mation of a function is uniformly Lipschitz. To take advantage of the second
characterization of Lipschitz continuity above, we need to ensure fΓ maps into
R++∪{∞}. The following simple assumption is equivalent to this (by the defi-
nition of the upper radial transformation): for all y ∈ E , limv→0 v ·f(y/v) = 0.

This condition is always the case when f is bounded above as will typically
be the case for our primal maximization problem. Under this condition, we
find that the Lipschitz continuity of fΓ is controlled by the distance (measured
in E) from the origin to each hyperplane defined by a proximal normal vector:

R(f) = inf{‖x′‖ | 0 6= (ζ, δ) ∈ NP
hypo f (x, u), (ζ, δ)T ((x′, 0)− (x, u)) = 0}.

The following proposition gives the exact Lipschitz constant in terms of R(f).

Proposition 1 Consider any upper semicontinuous, strictly upper radial f
where all y ∈ E have limv→0 v · f(y/v) = 0. Then fΓ is 1/R(f)-Lipschitz
continuous.

Proof The key observation here is that for any (ζ, δ) ∈ NP
hypo f ((x, u)),

(ζ, δ)T (x, u) = inf
{
ζTx′ | (ζ, δ)T ((x′, 0)− (x, u)) = 0

}
= ‖ζ‖ inf

{
‖x′‖ | (ζ, δ)T ((x′, 0)− (x, u)) = 0

}
≥ ‖ζ‖R(f)

where the first equality is trivial and the second uses that the minimum norm
point in this hyperplane will be a multiple of ζ. Then the subgradient for-
mula (24) ensures any ζ ′ ∈ ∂P fΓ (y) must have

‖ζ ′‖ =
‖ζ‖

(ζ, δ)T (x, u)
≤ 1/R(f)

for (x, u) = Γ (y, fΓ (y)) and some (ζ, δ) ∈ NP
hypo f ((x, u)). Since every radially

dual subgradient is uniformly bounded, fΓ is uniformly Lipschitz. Considering
a sequence of (ζ, δ) ∈ NP

hypo f ((x, u)) approaching attainment of R(f) makes
this argument tight. ut



16 Benjamin Grimmer

The condition (x, u)T (ζ, δ) ≥ R(f)‖ζ‖ can be viewed as a natural way to
quantify how radial f is by strengthening (10). When f is concave, R(f) can
be simplified.

Lemma 1 For any upper semicontinuous, upper radial, concave f ,

R(f) = inf{‖x‖ | f(x) = 0}. (27)

Proof By the concavity of f , (ζ, δ)T ((x′, 0) − (x, u)) = 0 implies x′ ∈ cl {x̄ |
f(x̄) = 0}. Hence R(f) ≥ inf{‖x̄‖ | f(x̄) = 0}. Any x̄ with f(x̄) = 0 has
(x̄, 0) separated from hypo f by a supporting hyperplane with normal (ζ, δ)
at some (x, u) ∈ hypo f . Hence (ζ, δ)T ((x′, 0) − (x, u)) = 0 separates x̄ from
0. So ‖x̄‖ ≥ R(f). ut

This matches the Lipschitz constants used in the previous works [38,39,
16]. This gives a natural way to measure the extent of radiality of a concave
function by strengthening (12). From this, we see any concave maximization
problem (with a known point in the interior of its domain) can be translated
and transformed into a convex minimization problem that is uniformly Lips-
chitz continuous with constant depending on how interior the known point is
to the function’s domain.

3.2 Smoothness of the Radially Dual Problem

We say a continuously differentiable function f is uniformly L-smooth if its
gradient is L-Lipschitz continuous: for all x, x′ ∈ dom f

‖∇f(x)−∇f(x′)‖ ≤ L‖x− x′‖.

As an example, consider the radial dual of the continuously differentiable
function f(x) =

√
(1− xTQx)+, which is upper radial for any matrix Q. This

radially transforms into the similarly shaped function

fΓ (y) = sup{v > 0 | v2 − yTQy ≤ 1} =
√

(1 + yTQy)+.

Supposing Q is positive semidefinite and nonzero, our primal is concave and
differentiable on its domain but fails to have a Lipschitz gradient since ∇f(x)
blows up at the boundary of its domain. However, in this case, the radially
dual fΓ is well behaved, being convex and λmax(Q)-smooth.

For generic functions, we cannot hope to find smoothness out of thin air
(like we do in the above example or quite generically with Lipschitz continuity
in the previous section). This is due to (16) which establishes differentiability
is preserved under the radial transformation. In line with this equivalence, we
find that when f is L-smooth, fΓ is O(L)-smooth, provided the domain of f
is bounded. Let D(f) = sup{‖x‖ | x ∈ dom f} denote the norm of the largest
point in the domain of f . Note that since we are primarily taking the radial
dual of maximization problems that are bounded above and truncated below
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to be nonnegative optimization, D(f) can be viewed as bounding the level set
dom f = {x | f(x) > 0}.

The following proposition shows the operator norm of the radial transfor-
mation’s Hessian is controlled by the ratio between D(f) and R(f) and the
norm of the primal Hessian. From this, we conclude for twice differentiable
L-smooth functions, the radial dual is also O(L)-smooth.

Proposition 2 Consider any upper radial f with D(f) < ∞ and R(f) > 0
and x, y ∈ E satisfying (x, f(x)) = Γ (y, fΓ (y)). If f is twice continuously
differentiable around x, then

‖∇2fΓ (y)‖ ≤
(

1 +
D(f)

R(f)

)3

‖∇2f(x)‖.

Proof First we verify that (∇f(x),−1)T (x, f(x)) < 0 holds for all x ∈ dom f
and so the Hessian formula (26) applies: if∇f(x) = 0, (∇f(x),−1)T (x, f(x)) =
−f(x) < 0 and if ∇f(x) 6= 0, (∇f(x),−1)T (x, f(x)) ≤ −‖∇f(x)‖R(f) <
0. Then our bound on the Hessian of fΓ follows from the following pair of

inequalities. First, the matrix J = I − ∇f(x)xT
(∇f(x),−1)T (x,f(x)) has operator norm

bounded by

‖J‖ ≤ 1 +
‖∇f(x)‖‖x‖

|(∇f(x),−1)T (x, f(x))|
≤ 1 +

‖x‖
R(f)

and second, the Hessian formula’s coefficient is similarly bounded by

f(x)

(∇f(x),−1)T (x, f(x))
= 1− ∇f(x)Tx

(∇f(x),−1)T (x, f(x))

≤ 1 +
‖∇f(x)‖‖x‖

|(∇f(x),−1)T (x, f(x))|

≤ 1 +
‖x‖
R(f)

.

Bounding each term in the Hessian formula (26) gives the claimed result. ut

Corollary 1 Consider any upper radial, twice continuously differentiable f

with D(f) <∞ and R(f) > 0. If f is L-smooth, fΓ is
(

1 + D(f)
R(f)

)3
L-smooth.

Proof For a twice continuously differentiable function, having L-Lipschitz gra-
dient is equivalent to having Hessian bounded in operator norm by L. Noting
that R(f) > 0 implies f is strictly upper radial by (11), we have a bijection
between the domains of f and fΓ from (20). Hence the Hessian of fΓ is uni-

formly bounded by
(

1 + D(f)
R(f)

)3
L. ut

Although this result requires smoothness of the primal objective f to
be maximized, it still provides an algorithmically valuable tool due to the
symmetry-breaking nature of considering functions on the extended positive
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reals R++. Supposing f is bounded above, this result allows us to extend the
smoothness of f on a level set dom f = {x | f(x) > 0} to global smoothness
of the dual fΓ on dom fΓ = E .

For example, consider an unconstrained S = Rn instance of our previous
motivating example of the Poisson likelihood problem (9) which is not defined
everywhere (only on {x | aTi x > 0}) with gradients blowing up as x approaches
the boundary of this domain. However, provided the measurements {ai} span
Rn, this objective has bounded level sets. Consequently, for any twice con-
tinuously differentiable r(x), our radial duality provides a reformulation that
extends the smoothness on the level set {x | L(x)− r(x) > 0} to hold globally.

3.3 Growth Conditions in the Radially Dual Problem

For a lower semicontinuous function f : E → R++, we say the  Lojasiewicz
condition holds at a local minimum x∗ if for some constants r > 0, C > 0 and
exponent θ ∈ [0, 1), all nearby x ∈ B(x∗, r) have

dist(0, ∂P f(x)) ≥ C(f(x)− f(x∗))θ. (28)

For an upper semicontinuous function f with local maximum x∗, we instead
require all nearby x ∈ B(x∗, r) have

dist(0, ∂P f(x)) ≥ C(f(x∗)− f(x))θ. (29)

These conditions are widespread, holding for generic subanalytic functions [28,
29] and nonsmooth subanalytic convex functions [5]. These properties are
closely related to the Kurdyka- Lojasiewicz (KL) condition [24] and Hölderian
growth/error bounds used by [6,46,41,40], which are known to speed up the
convergence of many first-order methods.

Under mild conditions, the  Lojasiewicz condition is preserved by our radial
transformation. Consequently, optimization algorithms based on solving the
radially dual problem can enjoy the same improved convergence historically
expected in the primal from such conditions.

Proposition 3 Consider any upper semicontinuous, strictly upper radial func-
tion f with R(f) > 0, sup f ∈ R++ and points (y∗, fΓ (y∗)) = Γ (x∗, f(x∗)).
If f satisfies the  Lojasiewicz condition (29) at x∗ with exponent θ, then fΓ at
y∗ satisfies the  Lojasiewicz condition (28) with the same exponent θ.

Proof Let r, C, θ satisfy the  Lojasiewicz condition of f at x∗ and denote the
radially dual point as y∗ = x∗/f(x∗). Since f is bounded above, fΓ is 1/R(f)-
Lipschitz continuous by Proposition 1. Then every 0 < r′ < fΓ (y∗)R(f) has
y ∈ B(y∗, r′) map to x = y/fΓ (y) with

‖x− x∗‖ =

∥∥∥∥ y

fΓ (y)
− y∗

fΓ (y∗)

∥∥∥∥
≤
∥∥∥∥y − y∗fΓ (y)

∥∥∥∥+

∥∥∥∥ y∗

fΓ (y)
− y∗

fΓ (y∗)

∥∥∥∥
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=
‖y − y∗‖
fΓ (y)

+
‖y∗‖|fΓ (y)− fΓ (y∗)|

fΓ (y)fΓ (y∗)

≤ r′

fΓ (y)
+

‖y∗‖r′

R(f)fΓ (y)fΓ (y∗)

≤ r′

fΓ (y∗)− r′/R(f)
+

‖y∗‖r′

R(f)(fΓ (y∗)− r′/R(f))fΓ (y∗)
.

Therefore selecting small enough r′ guarantees that all of the dual points near
y∗ map back to primal points x = y/fΓ (y) in the ball B(x∗, r) where the
 Lojasiewicz condition holds. Further, the Lipschitz continuity of the radial
dual allows us to guarantee that all of these primal points have f(x) bounded
below by nearly f(x∗) as

f(x) = fΓΓ (x) ≥ 1/fΓ (y) ≥ 1/(fΓ (y∗)−r′/R(f)) = (f(x∗)−1+(R(f)/r′)−1)−1.

Combining this with the assumed upper semicontinuity of f , we have f(x)→
f(x∗) as y → y∗ (despite not assuming continuity of the primal function f).

Then all that remains is to show the  Lojasiewicz supgradient norm lower
bound from the primal extends to lower bound the norm of the radially dual
subgradients. For every y ∈ B(y∗, r′), the formula (24) ensures every ζ ′ ∈
∂P f

Γ (y) has ζ ′ = ζ/(ζ, δ)T (x, u) where (x, u) = Γ (y, fΓ (y)) and (ζ, δ) ∈
NP

hypo f ((x, u)). First, suppose δ 6= 0. Then u = f(x) and −ζ/δ ∈ ∂P f(x) is
a primal supgradient. Consequently, radially dual subgradients have size of at
least

‖ζ ′‖ =
‖ζ/δ‖

(ζ/δ, 1)T (x, f(x))

≥ ‖ζ/δ‖
‖ζ/δ‖‖x‖+ f(x)

≥ C(f(x∗)− f(x))θ

C(f(x∗)− f(x))θ‖x‖+ f(x)

≥ Cfθ(x)fθ(x∗)

C(f(x∗)− f(x))θ‖x‖+ f(x)

(
fΓ (y)− fΓ (y∗)

)θ
where the final inequality uses that f(x) ≥ 1/fΓ (y) and f(x∗) = 1/fΓ (y∗).
Recalling that as y → y∗, the related primal point x = y/fΓ (y) → x∗ and
f(x)→ f(x∗), the coefficient above must converge to a positive constant

Cfθ(x)fθ(x∗)

C(f(x∗)− f(x))θ‖x‖+ f(x)
→ Cf2θ(x∗)

C0θ‖x∗‖+ f(x∗)
.

The boundary case of horizontal normal vectors with δ = 0 follows from the
same argument above by passing to a sequence of points (xi, f(xi))→ (x, f(x))
and proximal normal vectors (ζi, δi) ∈ NP

hypo f ((xi, f(xi))) with (ζi, δi) →
(ζ, δ) and δi 6= 0. The existence of such a sequence is guaranteed by the
Horizontal Approximation Theorem [9, Page 67]. ut
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The case of θ = 0 above is the important special case of sharpness. If this
condition holds globally, (28) and (29) correspond to the global error bounds

f(x) ≥ f(x∗) + C‖x− x∗‖ (30)

and
f(x) ≤ (f(x∗)− C‖x− x∗‖)+ (31)

respectively. This condition has a long history in nonsmooth optimization (see
Burke and Ferris [7] as a classic reference establishing the prevalence of sharp
minima). The two global sharp error bounds (31) and (30) are dually related.

Proposition 4 For any upper semicontinuous, strictly upper radial f with
points (y∗, fΓ (y∗)) = Γ (x∗, f(x∗)) satisfying (31) at x∗ ∈ E with constant C,
then fΓ satisfies (30) at y∗ with constant C/(C‖x∗‖+ f(x∗)).

Proof Denote the assumed upper bound on f from sharpness as h(x) :=
f(x∗) − C‖x − x∗‖. Then h+ must be strictly upper radial due to (12) since
h is concave with h(0) = 2h(x∗/2)− h(x∗) ≥ 2f(x∗/2)− f(x∗) > 0 where the
first equality uses that h is linear on the segment [0, x∗], the inequality uses
that h(x∗/2) ≥ f(x∗/2), and the strict inequality uses that f is strictly upper
radial. The upper radial transformation hΓ+ is lower bounded by our claimed
sharpness lower bound for any y ∈ E

hΓ+(y) ≥ 1

f(x∗)
+
C ‖y − x∗/f(x∗)‖
f(x∗) + C‖x∗‖

= fΓ (y∗) +
C ‖y − y∗‖

f(x∗) + C‖x∗‖

since hp+(y, v) at v = 1
f(x∗) + C‖y−x∗/f(x∗)‖

f(x∗)+C‖x∗‖ is at most(
1

f(x∗)
+

C ‖y − y∗‖
f(x∗) + C‖x∗‖

)
f(x∗)− C

∥∥∥∥y − ( 1

f(x∗)
+

C ‖y − y∗‖
f(x∗) + C‖x∗‖

)
x∗
∥∥∥∥

≤ 1 +
C ‖y − y∗‖

f(x∗) + C‖x∗‖
f(x∗)− C ‖y − y∗‖+

C2 ‖y − y∗‖ ‖x∗‖
f(x∗) + C‖x∗‖

= 1 + C ‖y − y∗‖
(

f(x∗)

f(x∗) + C‖x∗‖
− 1 +

C‖x∗‖
f(x∗) + C‖x∗‖

)
= 1

where y∗ = x∗/f(x∗) and the inequality uses the reverse triangle inequality.
Using [17, Lemma 4], f ≤ h+ implies fΓ ≥ hΓ+, completing our proof. ut

4 Radial Algorithms for Concave Maximization

Now we turn our attention to understanding the primal convergence guaran-
tees that follow from algorithms minimizing the radial dual. In this section,
we consider concave maximization problems where being strictly upper radial
and having R(f) > 0 hold without loss of generality via a simple translation.

We first remark on the natural measure of optimality in the primal that
arises from considering the radial dual. Recall the set of fixed points of Γ are
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exactly the horizontal line at height one {(y, 1) | x ∈ E} = Γ{(x, 1) | x ∈ E}.
Consequently, a natural way to relate nearly optimal solutions between the
primal and radial dual comes from considering when sup f = inf fΓ = 1. In
this case, finding a dual point with accuracy fΓ (yk) − inf fΓ ≤ ε implies a
relative accuracy primal guarantee of

sup f − f(xk)

f(xk)
≤ ε.

using that 1/fΓ (yk) ≤ fΓΓ (xk) = f(xk) for xk = yk/f
Γ (yk) on any up-

per radial f . Following this, we state all of our radial algorithm convergence
guarantees in relative terms.

Secondly, we remark on the meaning of finding a radially dual solution
minimized to zero objective value fΓ (y) = 0. In this case, y certifies that the
primal maximization is unbounded as the ray (y, 1)/v ∈ epi f for all v > 0.
Note the converse of this is not true: for example, the strictly radial function
f(x) =

√
(x+ 1)+ is unbounded above, but has fΓ (y) > 0 everywhere.

4.1 Radial Subgradient Method

We begin by considering the radial subgradient method previously defined in
Algorithm 1. This method simply takes the radial dual, applies the classic
subgradient method to the resulting minimization problem, and then takes
the radial dual again to return a primal solution. Importantly this method
is projection-free since any primal constraint set S appears in the radial dual
objective through its gauge γS . This method is very similar to those considered
in [38,16] which also apply a subgradient method to a radial reformulation.
However, those methods include additional steps periodically rescaling their
radial objective. Our algorithm omits such steps while matching the improved
convergence guarantees of [16].

The standard subgradient method analysis shows the radial subgradient it-
erates yk converge in terms of radial dual optimality at a rate controlled by the
radially dual Lipschitz constant. Recall that translating a point in the interior
of hypo f to the origin ensures R(f) > 0 (by Lemma 1) and so the radial dual
is Lipschitz continuous (by Proposition 1). Consequently, no structure needs
to be assumed beyond concavity to analyze the radial subgradient method.

Theorem 1 Consider any upper semicontinuous, concave f with R(f) > 0
and p∗ = sup f ∈ R++ attained on some nonempty set X∗ ⊆ E. Then the
radial subgradient method (Algorithm 1) with stepsizes αk has primal solutions
xk = yk/f

Γ (yk) satisfy

min
k<T

{
p∗ − f(xk)

f(xk)

}
≤

dist(p∗y0, X
∗)2 +

∑T−1
k=0 (p∗αk/R(f))2

2
∑T−1
k=0 p

∗αk
.
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Selecting x0 = 0 and αk = εfΓ (yk)/‖ζ ′k‖2 for any ε > 0 ensures

T ≥ dist(x0, X
∗)2

R(f)2ε2
=⇒ 1

T

T−1∑
k=0

p∗ − f(xk)

p∗
≤ ε.

Proof Having R(f) > 0 ensures f is strictly upper radial by (12). Then fΓ is
convex by (15) and has minimum value d∗ = 1/p∗ attained on Y ∗ := X∗/p∗

by (21). The classic convex convergence analysis of subgradient methods fol-
lows from the fact that: for any y∗ ∈ Y ∗,

‖yk+1 − y∗‖2 = ‖yk − y∗‖2 − 2αkζ
′T
k (yk − y∗) + α2

k‖ζ ′k‖2

≤ ‖yk − y∗‖2 − 2αk(fΓ (yk)− d∗) + α2
k‖ζ ′k‖2

and so inductively,

T−1∑
k=0

αk(fΓ (yk)− d∗) ≤
‖y0 − y∗‖2 +

∑T−1
k=0 α

2
k‖ζ ′k‖2

2
. (32)

Noting (xk, uk) = Γ (yk, f
Γ (yk)), the primal iterates have f(xk) ≥ 1/fΓ (yk).

Then multiplying through by (1/d∗)2, which equals (p∗)2, yields

T−1∑
k=0

αk
d∗

(
p∗ − f(xk)

f(xk)

)
=

T−1∑
k=0

αk
(d∗)2

(
1

f(xk)
− 1

p∗

)

≤
‖y0/d∗ − y∗/d∗‖2 +

∑T−1
k=0 (αk/d

∗)2‖ζ ′k‖2

2
.

Since fΓ is 1/R(f)-Lipschitz (by Proposition 1), every radially dual subgradi-
ent is uniformly bounded by ‖ζ ′k‖ ≤ 1/R(f). Then selecting y∗ = projY ∗(y0)
gives our claimed primal convergence rate. Observe that setting x0 = 0 sets
y0 = x0/f(x0) = 0 as well. Then plugging αk = εfΓ (yk)/‖ζ ′k‖2 into (32) yields

dist(x0, X
∗)2

2
=

dist(y0/d
∗, X∗)2

2
≥
T−1∑
k=0

αk
d∗

(
fΓ (yk)− d∗

d∗
− 1

2

(αk
d∗

)
‖ζ ′k‖2

)

≥
T−1∑
k=0

ε

(
fΓ (yk)

d∗‖ζ ′k‖

)2(
p∗ − f(xk)

p∗
− ε

2

)

≥
T−1∑
k=0

εR(f)2
(
p∗ − f(xk)

p∗
− ε

2

)

where the last line bounds 1/‖ζ ′k‖2 below by R(f)2 and fΓ (yk)/d∗ below by
one. Rearranging this completes our proof. ut
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Recall for concave f the formula for R(f) can be simplified to inf{‖x‖ | f(x) =
0}, which quantifies how interior the origin is to the set {x | f(x) > 0}. In this
light, the constants in this rate agree with those in the guarantees of [16], up
to small constants.

The classic convergence rates of the subgradient method improve in the
presence of growth conditions like (28) or (30). For example growth with ex-
ponent θ = 1/2 corresponds to the case of quadratic growth (generalizing
strong convexity) and leads to faster O(1/ε) convergence, see [25] as a simple
example. When θ = 0, sharp growth enables the classic subgradient method to
converge linearly, as shown by Polyak [36,37] more than 50 years ago. Recalling
that these quantities are preserved from primal to radial dual (Propositions 3
and 4), we find the same improvements to hold for our radial subgradient
method. The following two theorems establish this speed up when θ = 0 and
θ > 0, using the radially dual Polyak stepsize αk = (fΓ (yk)− d∗)/‖ζ ′k‖2.

Theorem 2 Consider any upper semicontinuous, concave f with R(f) > 0
and p∗ = sup f ∈ R++ attained at x∗ ∈ E. Fixing αk = (fΓ (yk)−d∗)/‖ζ ′k‖2, if
f satisfies the sharp growth condition (31), then the radial subgradient method
(Algorithm 1) has xk = yk/f

Γ (yk) satisfy

T ≥ 4

(
p∗ + C‖x∗‖
CR(f)

)2

log2

(
p∗ − f(x0)

f(x0)ε

)
=⇒ min

k<T

{
p∗ − f(xk)

f(xk)

}
≤ ε.

Proof Plugging the stepsize choice αk = (fΓ (yk)−d∗)/‖ζ ′k‖2 into (32) implies

T−1∑
k=0

(fΓ (yk)− d∗)2

2
≤ ‖y0 − y

∗‖2

2R(f)2
(33)

where y∗ = x∗/p∗ and Proposition 1 is used to bound ‖ζ ′k‖ ≤ 1/R(f). Then
the radially dual sharpness bound from Proposition 4 guarantees ‖y0 − y∗‖ ≤
p∗+C‖x∗‖

C (fΓ (y0)− d∗). Hence

1

T

T−1∑
k=0

(fΓ (yk)− d∗)2 ≤ (p∗ + C‖x∗‖)2(fΓ (y0)− d∗)2

C2R(f)2T
.

Therefore some k ≤ 4
(
p∗+C‖x∗‖
CR(f)

)2
has halved the dual objective gap, fΓ (yk)−

d∗ ≤ (fΓ (y0)− d∗)/2. Repeatedly applying this, we conclude that

T ≥ 4

(
p∗ + C‖x∗‖
CR(f)

)2

log2

(
fΓ (y0)− d∗

ε′

)
implies mink<T

{
fΓ (yk)− d∗

}
≤ ε′ for any ε′ > 0. Considering ε′ = ε/p∗ gives

the claimed linear convergence rate. ut

This generalizes the linear convergence results of [38] for linear programming.
To the best of our knowledge, this is the first first-order method linear con-
vergence guarantee for generic non-Lipschitz, sharp convex optimization.
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Theorem 3 Consider any upper semicontinuous, concave f with R(f) > 0
and p∗ = sup f ∈ R++ attained at x∗ ∈ E. Fixing αk = (fΓ (yk)−d∗)/‖ζ ′k‖2, if
f satisfies the  Lojasiewicz condition (29) with exponent θ > 0, then the radial
subgradient method (Algorithm 1) has xk = yk/f

Γ (yk) satisfy

T ≥ O
(
1/ε2θ

)
=⇒ min

k<T

{
p∗ − f(xk)

f(xk)

}
≤ ε.

Proof By Proposition 3, the  Lojasiewicz condition (28) holds at the dual min-
imizer y∗ = x∗/p∗ for some constants r′, C ′ with the same exponent θ. Inte-
grating this condition (as done in [6, Theorem 5]) ensures every y ∈ B(y∗, r′)
has the following local error bound

fΓ (y)− d∗ ≥ (C ′(1− θ)‖y − y∗‖)1/(1−θ) . (34)

The subgradient method must have some yk0 in the ball B(y∗, r′) with

k0 ≤

(
‖y0 − y∗‖

(C ′(1− θ)r′)1/(1−θ)R(f)

)2

since (33) ensures the average iterate has objective gap squared at most

(C ′(1− θ)r′)2/(1−θ). Notice that the Polyak stepsize ensures the distance from
the iterates yk to y∗ is nonincreasing as

‖yk+1 − y∗‖2 = ‖yk − y∗‖2 − 2αkζ
′T
k (yk − y∗) + α2

k‖ζ ′k‖2

≤ ‖yk − y∗‖2 − 2αk(fΓ (yk)− d∗) + α2
k‖ζ ′k‖2

≤ ‖yk − y∗‖2 −
(fΓ (yk)− d∗)2

‖ζ ′k‖2
≤ ‖yk − y∗‖2.

Hence all k ≥ k0 have yk ∈ B(y∗, r′) as well. Then our claimed convergence
rate follows by bounding the number of iterations required to ensure the ob-
jective gap halves fΓ (yk0+k)−d∗ ≤ (fΓ (yk0)−d∗)/2. Applying the local error
bound (34) to (33) initialized at yk0 implies

1

T

T−1∑
k=0

(fΓ (yk0+k)− d∗)2 ≤ (C ′(1− θ))2(fΓ (yk0)− d∗)2(1−θ)

R(f)2T
.

Thus at some k1 ≤ k0+4
(
C′(1−θ)
R(f)

)2
/(fΓ (yk0)−d∗)2θ, the radially dual objec-

tive gap must have halved. Inductively, let ki+1 ≤ ki+4
(
C′(1−θ)
R(f)

)2
/(fΓ (yki)−

d∗)2θ denote an iteration with half the dual objective value of ki. Let kj+1 de-
note the first of these iterations with fΓ (ykj+1

)−d∗ less than a target accuracy
ε′ > 0. Then fΓ (yki)− d∗ ≥ 2j−iε′ for all i ≤ j. Inductively applying the defi-
nition of ki implies

kj+1−k0 ≤
j∑
i=0

4

(
C ′(1− θ)
R(f)

)2
1

(2j−iε′)2θ
≤ 4

1− 2−2θ

(
C ′(1− θ)
R(f)

)2(
1

ε′

)2θ

.
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Setting ε′ = ε/p∗ ensures
p∗−f(xkj+1

)

f(xkj+1
) ≤ ε. ut

The previous pair of convergence theorems relied on using a Polyak step-
size, which requires the often impractical knowledge of d∗. This can be reme-
died by replacing the simple subgradient method in Algorithm 1 with a more
sophisticated stepping scheme like [22] or restarting scheme like [46,41,40]
which all attain similar convergence guarantees.

4.2 Radial Smoothing Method

Now we turn our attention to the radial smoothing method previously defined
as Algorithm 2 in the context of smoothing the radial dual of our quadratic pro-
gram. More generally, we consider maximizing a minimum of several smooth
concave functions fj : E → R∪{−∞} with bounded level sets over polyhedral
constraints Ax ≤ b. Translating any known strictly feasible x0 in the interior
of the domain of fj , we have fj(0) > 0 and b > 0. Then we consider the
equivalent nonnegative primal maximization problem

p∗ =

{
maxx min{(fj)+(x) | j = 1, . . . ,m1}
s.t. aTi x ≤ bi for i = 1, . . . ,m2

(35)

which has R((fj)+) ≥ R > 0 and D((fj)+) ≤ D <∞ and each bi > 0.
Further, since each fj has bounded level sets, fj is L-smooth on the level

set {x | fj(x) > 0} for some sup{‖∇2fj(x)‖ | f(x) > 0} ≤ L < ∞. This
objective is strictly upper radial with radial dual

d∗ = min
y∈E

max
{
fΓj (x), (ai/bi)

T y | j ∈ {1, . . . ,m1}, i ∈ {1, . . . ,m2}
}
. (36)

Then we consider the smoothing of this objective for any η > 0 given by

gη(y) = η log

m1∑
j=1

exp

(
(fj)

Γ
+(y)

η

)
+

m2∑
i=1

exp

(
aTi y

biη

) . (37)

Our radial smoothing method (Algorithm 2) proceeds by minimizing this
smoothing with Nesterov’s accelerated method to produce a radially dual so-
lution with accuracy O(η). Nearly any other fast iterative method could be
employed here instead, which could then avoid needing knowledge of problem
constants. Converting this radial dual guarantee back to the primal problem
gives the following primal convergence theorem.

Theorem 4 Consider any problem of the form (35). Fixing Lη = (1+D/R)3L+
max{1/R2,‖ai/bi‖}

η and x0 = 0, the radial smoothing method (Algorithm 2) has

xk = yk/max{(fj)Γ+(yk), (ai/bi)
T yk} feasible with

p∗ −min{fj(xk)}
min{fj(xk)}

≤ 2Lη(1 + ηp∗ log(m1 +m2))2D2

p∗(k + 1)2
+ ηp∗ log(m1 +m2).
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Setting η = ε/2 log(m1 +m2) ensures the following O(1/ε) convergence rate

k + 1 ≥ 2(1 + p∗ε/2)D

√
(1 +D/R)3L

p∗ε
+

2 max{1/R2, ‖ai/bi‖2} log(m1 +m2)

p∗ε2

=⇒ p∗ −min{fj(xk)}
min{fj(xk)}

≤ p∗ε.

Proof Observe that all of them1+m2 functions defining gη are convex (by (15)),
max{1/R, ‖ai/bi‖}-Lipschitz continuous (by Proposition 1) and (1+D/R)3L-
smooth (by Corollary 1). Then [3, Proposition 4.1] ensures gη is convex, is

(1 +D/R)3L+ max{1/R2,‖ai/bi‖}
η -smooth, and closely follows the radially dual

objective with every y ∈ E satisfying

0 ≤ gη(y)−max
{

(fj)
Γ
+(y), (ai/bi)

T y
}
≤ η log(m1 +m2). (38)

Note that for any s > 0, the related primal super-level set is bounded by

sup{‖x‖ | fj(x) ≥ s, aTi x ≤ bi} ≤ D.

Recalling epi fΓ = Γ (hypo f) from (18) bounds every dual sub-level set by

sup{‖y‖ | fΓj (y) ≤ 1/s, (ai/bi)
T y ≤ 1/s} ≤ D/s.

In particular, considering s = p∗ = 1/d∗ shows every radial dual minimizer
has norm bounded by d∗D. Then the upper bound from (38) ensures the
d∗ + η log(m1 + m2) sub-level set of gη is nonempty and the lower bound
from (38) allows us to bound this level set by

sup{‖y‖ | gη(y) ≤ d∗ + η log(m1 +m2)} ≤ (d∗ + η log(m1 +m2))D

Therefore the distance from y0 = 0 to a minimizer of gη is at most (d∗ +
η log(m1 +m2))D.

Since gη is smooth and has a minimizer, applying the standard acceler-
ated method convergence guarantee [32] guarantees the iterates of our radial
smoothing method have

gη(yk)− inf gη ≤
2Lη(d∗ + η log(m1 +m2))2D2

(k + 1)2
.

Converting this guarantee in terms of our radially dual objective, (38) ensures

max
{

(fj)
Γ
+(yk), (ai/bi)

T yk
}
− d∗

≤ 2Lη(d∗ + η log(m1 +m2))2D2

(k + 1)2
+ η log(m1 +m2).

Stating this to be in terms of xk = yk/max{(fj)Γ+(yk), (ai/bi)
T yk} yields

p∗ −min{fj(xk)}
min{fj(xk)}

≤ 2Lη(1 + ηp∗ log(m1 +m2))2D2

p∗(k + 1)2
+ ηp∗ log(m1 +m2).

ut
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Renegar [39] uses the same general technique to give accelerated convergence
guarantees for solving the broad family of hyperbolic programming problems
(which includes semidefinite programming) where the radial dual also admits
a natural smoothing. The restarting schemes of [41] and [40] both explicitly
consider restarting smoothing methods to attain improved convergence when
growth conditions like the  Lojasiewicz condition (28) hold. Due to Proposi-
tion 3, applying these more sophisticated methods to solve the radially dual
problem will give rise to radial algorithms that enjoy the same improved con-
vergence. The analysis of such a method should follow similarly to Theorem 3.

4.3 Radial Accelerated Method

Motivated by our example transforming the Poisson likelihood problem (9),
algorithms can be designed to take advantage of the radial transformation ex-
tending smoothness on a level set to hold globally. Consider maximizing any
twice differentiable concave function f : E → R ∪ {−∞} with bounded level
sets. Then, without loss of generality, we have 0 ∈ int {x | f(x) > 0} and so
f+ is strictly upper radial. Letting L = sup{‖∇2f(x)‖ | f(x) > 0}, Corol-
lary 1 ensures fΓ+ is (1 +D(f)/R(f))3L-smooth on all of E . Hence fΓ+ can be
minimized directly using Nesterov’s accelerated method, giving the following
radial accelerated method defined by Algorithm 3. This radial algorithm inher-
its the primal accelerated method’s O(

√
Ldist(x0, X∗)2/ε) rate, only requiring

L-smoothness on the level set {x | f(x) > 0}.

Algorithm 3 The Radial Accelerated Method

Require: f : E → R++, x0 ∈ dom f , L > 0, T ≥ 0
1: (y0, v0) = Γ (x0, f(x0)) and ỹ0 = y0 Transform into the radial dual
2: for k = 0 . . . T − 1 do
3: ỹk+1 = yk −∇fΓ (y)/(1 +D(f)/R(f))3L Run the accelerated method

4: yk+1 = ỹk+1 + k−1
k+2

(ỹk+1 − ỹk)

5: end for
6: (xT , uT ) = Γ (yT , f

Γ (yT )) Transform back to the primal

Theorem 5 Consider any twice differentiable, concave f with R(f) > 0,
D(f) < ∞, and p∗ = sup f ∈ R++ attained on X∗ ⊆ E. Fixing x0 = 0,
the radial accelerated method (Algorithm 3) has for any ε > 0,

k + 1 ≥ (1 +D(f)/R(f))3/2

√
2Ldist(x0, X∗)2

p∗ε
=⇒ p∗ − f(xk)

f(xk)
≤ ε.

Proof Recall the fΓ is convex by (15) and is (1 + D(f)/R(f))3L-smooth by
Corollary 1. Then Nesterov’s classic analysis [32] ensures

fΓ (yk)− d∗ ≤ 2(1 +D(f)/R(f))3Ldist(y0, Y
∗)2

(k + 1)2
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where Y ∗ = X∗/p∗. Letting (xk, uk) = Γ (yk, vk) yields primal iterates with
f(xk) ≥ 1/fΓ (yk). Then multiplying through by 1/d∗ = p∗ produces

p∗ − f(xk)

f(xk)
≤ 2(1 +D(f)/R(f))3Ldist(y0/d

∗, X∗)2

p∗(k + 1)2
.

Noting that y0/d
∗ = x0 = 0, this gives the claimed convergence guarantee. ut

A few remarks on this convergence result. The additional coefficient of (1 +
D(f)/R(f))3/2 is quite pessimistic as many of the examples we have con-
sidered have radial dual smoother than the primal, but Corollary 1 fails to
capture this potential upside in its O(L) bound. For particular applications,
we expect much tighter bounds on the radially dual smoothness are possible.
The proposed radial accelerated method unrealistically relies on knowledge of
our smoothness constant upper bound (1 +D(f)/R(f))3L. However, this can
be remedied by including a linesearch/backtracking as done in [2,34].

Under growth conditions, the convergence of accelerated methods also im-
proves. For example, applying the adaptive accelerated gradient method of [27]
to solve the radially dual problem would give a radial method that speeds up
in the presence of primal growth conditions by Proposition 3. The analysis of
such a method should follow similarly to that of Theorem 3.

5 Radial Algorithms for Nonconcave Maximization

Our radial duality theory applies beyond concave maximization problems, ap-
plying to the broader family of nonconcave but upper radial maximization.
Section 5.1 outlines several families of nonconvex settings where upper ra-
diality holds and then Section 5.2 presents a performance guarantee for the
radial subgradient method when maximizing a collection of such upper radial
nonconcave functions.

5.1 Examples of Radial Duality with Nonconvex Objectives or Constraints

We say that a set S ⊆ E is star-convex with respect to the origin if every
x ∈ S has the line segment λx ∈ S for all 0 ≤ λ ≤ 1. Geometrically, upper
radial functions all have a star-convex-like hypograph with respect to the ori-
gin [17, Lemma 1], meaning that all (y, v) ∈ hypo f have λ(y, v) ∈ hypo f for
all 0 < λ ≤ 16. Star-convexity has been considered throughout the optimiza-
tion literature. The structure of optimizing over star-convex constraint sets
has been considered as early as [43]. In general, even linear optimization over
star-convex bodies is NP-hard [8]. Efficient global optimization of star-convex
objectives is possible if star-convexity holds with respect to a global optimizer
(see [35,18,26,19,21]).

6 Note this hypograph is not actually star convex since (0, 0) 6∈ hypo f .
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Star-Convex Constraints. Star convexity w.r.t. the origin is exactly the condi-

tion needed to ensure the nonstandard indicator ι̂S(x) =

{
+∞ if x ∈ S
0 if x 6∈ S.

is

strictly upper radial7. Then the radial dual of such a star-convex set’s indicator
function is given by the gauge

ι̂ΓS (y) = sup{v > 0 | v · ι̂S(y/v) ≤ 1} = sup{v > 0 | y/v 6∈ S} = γS(y).

Importantly, the gauge γS(y) is convex if and only if S is convex. As a result,
algorithms utilizing the radial dual of star-convex constraints avoid needing
difficult nonconvex orthogonal projections, replacing them with evaluating a
nonconvex gauge function appearing in the objective.

One important example where star-convex sets arises comes from consid-
ering chance constraints [23,31,48]. Given some distribution over potential
constraint sets Sξ ⊆ E , a robust problem formulation may ensure that the
constraint is satisfied with probability Λ ∈ [0, 1]. Then the chance-constrained
feasible region is S = {x | P(x ∈ Sξ) ≥ Λ}. If each potential constraint set is
convex with 0 ∈ Sξ, then S is star-convex w.r.t. the origin.

Optimization over Compact Sets. Now we generalize our previous example
from Section 2 where we saw that any nonconcave quadratic program with a
compact polyhedral feasible region could be rescaled for our radial duality to
apply. Consider maximizing any continuously differentiable function f over a
compact set S that is star-convex w.r.t. the origin. Supposing f(0) > 0, this
is equivalent to the following maximization problem of the primal form (2)

max
y∈E

min{(1 + λf(x))+, ι̂S(x)}

for any λ > 0. We check when this objective is strictly upper radial by con-
sidering whether its perspective function is strictly increasing on its domain:

v ·min
i
{(1 + λf(y/v))+, ι̂S(y/v)} =

{
(v + λvf(y/v))+ if y/v ∈ S
0 otherwise.

The partial derivative of this with v at any y/v ∈ S ∩ dom (1 + λf)+ is

1− λ(∇f(y/v),−1)T (y/v, f(y/v)).

Noting that (∇f(x),−1)T (x, f(x)) is a continuous function on the compact
set S ∩ dom (1 + λf)+, we can select λ > 0 small enough to always have

1− λ(∇f(y/v),−1)T (y/v, f(y/v)) > 0.

Doing so makes our objective strictly upper radial and so radial duality applies.

7 This is essentially by definition as v · ι̂S(y/v) is nondecreasing in v if and only if S is
star-convex w.r.t. the origin. Then it is simple to check this function is upper semicontinuous
and is vacuously strictly increasing on its effective domain dom ι̂S = ∅, which is empty.
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Nonconvex Regularization. Many optimization tasks take the additive com-
posite form maxy∈E f(x)− r(x) where f is an upper semicontinuous, concave
function with f(0) > 0 and r(x) is an added (or rather subtracted since we
are maximizing) regularization term. Many sparsity-inducing regularization
penalties decompose as a sum over the x’s coordinates r(x) =

∑n
i=1 σ(xi) for

some simple nonconvex function σ : R → R. For example, `q-regularization
sets σ(t) = λ|t|q for some 0 < q < 1, bridging the gap between `0 and `1-
regularization. Many more regularizers are of this form, like SCAD regulariza-
tion [12], MCP [49], and firm thresholding [15]. See [45] for a wide survey.

These regularizers are all continuous and have r(y/v) nonincreasing in v.
These two simple properties suffice to guarantee subtracting r from f will not
break its upper radiality since

v(f(y/v)− r(y/v))+ = max{vf(y/v)− vr(y/v), 0}

is a sum of two upper semicontinuous, nondecreasing functions in v. As a re-
sult, our radial duality applies to the nonconcave primal (f(x)− r(x))+.

Optimization with Outliers. Many learning problems take the form of minimiz-
ing a stochastic loss function Eξ [f(x, ξ)] using a finite sample approximation
with f( : , ξ) : E → R ∪ {∞}. Given i.i.d. samples ξ1, . . . , ξs, this problem can
be formulated as

max
x∈E

1

s

s∑
i=1

−f(x, ξi).

If each −f(·, ξi) is concave and a point is known in the interior of each func-
tion’s domain, a translation can ensure −f(0, ξi) > 0 for all i. Hence their sum
is concave with a positive value at zero and so 1

s (
∑s
i=1−f(x, ξi))+ is upper

radial. Hence our radial duality can be applied. In the presence of t outliers in
the s samples ξ1, . . . , ξs, this finite sample approximation could be improved
to only consider the loss function on the best s− t samples

max
x∈E

max

 1

s− t

(∑
i∈S
−f(x, ξi)

)
+

, | S ⊆ {1...s}, |S| = s− t

 .

These partial sums are also concave with positive value at zero and hence this
whole objective is upper radial by [17, Corollary 2] and so our radial duality
applies. The minimax formulation of [47] exactly corresponds to this problem
formulation at its equilibrium. By the same corollary, our radial duality also
applies to maximizing the (s − t)th largest element of {−f(x, ξi)}si=1. Such
an optimization problem captures the classic idea of least median of squares
regression [42].
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5.2 Example Nonconcave Guarantee for the Radial Subgradient Method

In this concluding section, we demonstrate the style of results possible from
applying our radial duality to upper radial nonconcave maximization. In par-
ticular, we consider the nonconcave, nonsmooth primal problem of maximizing
the minimum of a set of twice continuously differentiable, strictly upper radial
fj over some convex set S ⊆ E

p∗ =

{
maxx min{fj(x) | j = 1, . . . ,m}
s.t. x ∈ S

= max
x∈E

min{fj(x), ι̂S(x)} (39)

where each fj has R(fj) ≥ R > 0 and bounded level sets D(fj) ≤ D <∞ and
the origin lies in the constraints with B(0, R) ⊆ S. Let L ≥ sup{‖∇2fj(x)‖ |
fj(x) > 0, x ∈ S} bound the smoothness of each fj on this compact level set.

This primal is strictly upper radial since each function defining the mini-
mum is strictly upper radial. Then the radial dual of this problem is

d∗ = min
y∈E

max{fΓj (y), γS(y)}. (40)

Note each fΓj (y) is convex if and only if fj is concave by (15). Hence if our
primal (39) is nonconcave, our radial dual (40) will be nonconvex. Regardless,
our previously proposed radial subgradient method (Algorithm 1) can still be
applied and analyzed.

Recently, convergence theory for subgradient methods without convexity
has been developed. Particularly, consider minimizing a nonconvex, nonsmooth
function g : E → R that is bounded below. Then [10, Theorem 3.1] ensures
that provided g is uniformly M -Lipschitz and ρ-weakly convex (defined as
g + ρ

2‖ · ‖
2 being convex), the subgradient method yk+1 = yk − αζk for ζk ∈

∂P g(yk) has some yk that is nearly stationary on the Moreau envelope of g.
In particular, [10, (3.9)] this implies that proper selection8 of α ensures some
yk has a nearby y that is nearly stationary

T ≥
⌈

16ρM2(g(y0)− inf g)

ε4

⌉
=⇒ min

k<T
{‖y − yk‖} ≤ 2ρε with dist(0, ∂P g(y)) ≤ ε. (41)

Applying this to the radial dual allows us to ensure a nearly stationary
point y near a dual iterate yk exists. Then converting this guarantee back to the
primal preserves the above O(1/ε4) rate despite not assuming the primal (39) is
either Lipschitz or weakly convex (instead assuming it is strictly upper radial).

8 Namely, given the method will be run for T steps, the example analysis of [10] shows

selecting α =
√
g(y0)−inf g

ρM2(T+1)
suffices to give the claimed rate. Alternative stepsizes could be

analyzed by the same proof technique proposed therein resulting in different assumptions
on which parameters are known.
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Theorem 6 Consider any problem of the form (39) with p∗ ∈ R++. Fixing
x0 = 0 and αk = ε/‖ζ ′k‖2, the radial subgradient method (Algorithm 1) with
properly chosen constant stepsize αk = α has xk = yk/max{fΓj (yk), γS(yk)}
satisfy

T ≥
⌈

16(1 +D/R)3L(min{fj(x0)} − p∗)
R2 min{fj(x0)}p∗ε4

⌉
=⇒ min

k<T
{‖x− xk‖} ≤ 2p∗(1 +D/R)4Lε

with dist(0, ∂P min{fj , ι̂S}(x)) ≤ p∗ε

1− εD

for some nearby x ∈ E provided 0 < ε < 1/D.

Proof Observe that each function in the maximum defining the radial dual (36)
is 1/R-Lipschitz (by Proposition 1) and each fΓj is (1 + D/R)3L-smooth (by

Corollary 1). Then the whole radially dual objective max{fΓj (y), γS(y)} is 1/R-

Lipschitz and (1 + D/R)3L-weakly convex. Hence even though our primal is
not assumed to be either Lipschitz or weakly convex, these two properties
occur in the radial dual due to each fi having R(fi) > 0 and smoothness on
the level set {x | fj(x) > 0} respectively. Then we can apply (41) implying

that whenever T ≥
⌈

16(1+D/R)3L(min{fΓj (y0)}−d∗)
R2ε4

⌉
, a nearby y has

min
k<T
{‖y − yk‖} ≤ 2(1 +D/R)3Lε

and dist(0, ∂P max{fΓj , γS}(y)) ≤ ε.

First, we show the nearby radial dual solution y maps to a primal solu-
tion x = y/max{fΓj (y), γS(y)} that is near the primal iterates. Having dual

distance ‖y − yk‖ ≤ 2(1 +D/R)3Lε ensures ‖x− xk‖ is bounded by∥∥∥∥∥ y

max{fΓj (y), γS(y)}
− yk

max{fΓj (yk), γS(yk)}

∥∥∥∥∥
≤ ‖y − yk‖

max{fΓj (y), γS(y)}
+

∥∥∥∥∥ yk
max{fΓj (y), γS(y)}

− yk
max{fΓj (yk), γS(yk)}

∥∥∥∥∥
=

‖y − yk‖
max{fΓj (y), γS(y)}

+ ‖xk‖

∣∣∣∣∣max{fΓj (yk), γS(yk)}
max{fΓj (y), γS(y)}

− 1

∣∣∣∣∣
≤ ‖y − yk‖

max{fΓj (y), γS(y)}
+

D‖y − yk‖/R
max{fΓj (y), γS(y)}

≤ p∗(1 +D/R)‖y − yk‖ ≤ 2p∗(1 +D/R)4Lε

where the first inequality uses the triangle inequality and the second uses the
bounded primal level sets and the radially dual 1/R-Lipschitz continuity, and
the third uses that d∗ = 1/p∗ ∈ R++.
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We complete our proof by relating the stationarity of y to that of x. Let
v = max{fΓj (y), γS(y)}, u = 1/v and ζ ′ ∈ ∂P max{fΓj , γS}(y) denote a radially
dual subgradient with ‖ζ ′‖ ≤ ε. Then we can bound

(ζ ′,−1)T (y, v) ≤ ‖ζ ′‖‖y‖ − v ≤ ε‖x‖/u− 1/u ≤ −(1− εD)/p∗ < 0

using that u ≤ f(xk) ≤ p∗. Note epi max{fΓj , γS} = Γ (hypo min{fj , ι̂S})
by (18). Then the normal (ζ ′,−1) ∈ NP

epi max{fΓj ,γS}
(y, v) corresponds to the

primal normal (ζ ′, (ζ ′,−1)T (y, v)) ∈ NP
hypo min{fj ,ι̂S}(x, u) by [17, Proposition

5]. Hence ζ := ζ ′/(ζ ′,−1)T (y, v) ∈ ∂P min{fj , ι̂S}(x) is a primal subgradient
with norm at most O(ε) as

‖ζ‖ =

∥∥∥∥ ζ ′

(ζ ′,−1)T (y, v)

∥∥∥∥ =
‖ζ ′‖

|(ζ ′,−1)T (y, v)|
≤ p∗ε

1− εD
. ut
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A LogSumExp Gradients and QP Optimality Certificates

In our quadratic programming example (8) and our generalized setting (37), we consider
smoothings of a finite maximum. Given a smooth convex functions fi : E → R, we considered
the smoothing of max{fi} with parameter η > 0 given by fη(x) := η log

(∑n
i=0 exp(fi(x)/η)

)
.

Its gradient is given by ∇fη(x) =
∑
λi∇fi(x) where λi = exp(fi(x)/η)/

∑
j exp(fj(x)/η).

Computationally evaluating this requires mild care to avoid precision issues with expo-
nentiating potentially larger numbers. It is numerically stable to instead compute these
coefficients via the equivalent formula

λi =
exp((fi(x)−max{fk(x)})/η)∑
j exp((fj(x)−max{fk(x)})/η)

.

Next, we specialize this formula to the setting of quadratic programming for gη in (8).
Observe the gradient of the objective component is given by

∇
(
cT y + 1 +

√
(cT y + 1)2 + 2yTQy

2

)
+

(y) =
Qx+ c

1− 1
2
xTQx

where x = y/

(
cT y+1+

√
(cT y+1)2+2yTQy

2

)
+

by using the gradient formula (25). The gra-

dients of the transformed constraints are simply ∇aTi y/bi = ai/bi. Then the gradient of the
smoothing overall is given by

∇gη(y) = λ0
Qx+ c

1− 1
2
xTQx

+

n∑
i=1

λiai/bi .

This gradient can be computed using two matrix multiplications with A: Ay is needed to
compute the coefficients λi, then AT [λ1/b1 . . . λn/bn] is needed for the summation above.

This gradient formula indicates a reasonable selection of dual multipliers vi =
λi(1− 1

2
xTQx)

λ0bi

as we then have gη(y) proportional to Qx+ c+AT v.
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