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Abstract
For polyhedral constrained optimization problems and a feasible point x, it is shown
that the projection of the negative gradient on the tangent cone, denoted ∇Ω f (x),
has an orthogonal decomposition of the form β(x) + ϕ(x). At a stationary point,
∇Ω f (x) = 0 so ‖∇Ω f (x)‖ reflects the distance to a stationary point. Away from
a stationary point, ‖β(x)‖ and ‖ϕ(x)‖ measure different aspects of optimality since
β(x) only vanishes when the KKT multipliers at x have the correct sign, while ϕ(x)
only vanishes when x is a stationary point in the active manifold. As an application of
the theory, an active set algorithm is developed for convex quadratic programs which
adapts the flow of the algorithm based on a comparison between ‖β(x)‖ and ‖ϕ(x)‖.
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1 Introduction

We consider the problem of minimizing a nonlinear function over a polyhedron:

min f (x) subject to x ∈ Ω := {x ∈ R
n : A x = b, l ≤ x ≤ u}, (1)

where f is continuously differentiable, A = (a1, . . . , am)T ∈ R
m×n , b ∈ R

m ,
l ∈ {R ∪ {−∞}}n , and u ∈ {R ∪ {+∞}}n . Many different Gradient Projection (GP)
methods for problem (1) have been proposed in recent years that can be seen as
extension of the gradient method for unconstrained minimization. An overview of
convergence results for general constrained problems can be found in [4, 8, 9, 13, 26,
36], and in [10] where the linearly constrained case is analyzed in more detail. The
design of new GP methods was stimulated by the surprisingly good performance of
the spectral gradient methods based on the Barzilai and Borwein formulas [2].

Moving to constrained problems, a critical issue arising in GP methods is the pro-
jection of trial steps on the feasible set, which is a rather expensive task in general.
To deal with this drawback, a rather popular strategy is to combine GP with a phase
in which an unconstrained minimization is performed over faces of the polyhedron.
In such a two phase algorithm, the GP phase has the dual role of promoting global
convergence and identifying “promising active constraints” (i.e. constraints likely to
be active at the solution). The unconstrained minimization phase, on the other hand,
aims to speed up the convergence by using a superlinearly convergent method. Under
nondegeneracy assumptions, only the second phase is performed eventually, and the
asymptotic convergence speed coincides with that of the algorithm used in the second
phase.

A suitable branching rule between the two phases is a key ingredient for practical
efficiency. A sequence of GP steps should be stopped when either the active set settles
down or stagnation in the sequence is detected. Likewise, the minimization phase
needs a reliable criterion to determine the value of continued exploration of the current
face of the polyhedron; this essentially boils down to comparing the local stationarity
conditions for the current face of the polyhedron to the stationarity conditions for
problem (1).

For box-constrained optimization, effective branching rules can be stated for a
feasible point x componentwise in terms of binding variables [38] or in terms of the
relative magnitude of gradient components associated with inactive and active bound
constraints. The latter approach finds its roots in [29, 30] and in the subsequent works
[3, 31], where the optimality conditions are expressed in terms of the free gradient
and the chopped gradient; their relative magnitude is used to determine whether a
face is worth further exploration. Inspired by the work in [28], the author of [22]
introduced the concept of proportional iterates and proportioning step for the case of
bound constrained quadratic programs, which was then further exploited in [23, 24]
and, more recently, in [25, 37]. Finally, we recall that similar ideas were also exploited
in the case of general, nonquadratic bound-constrained problems by the authors in
[32], where the switch between the two phases is based on a comparison between
the optimality with respect to the full problem and the optimality with respect to the
subspace defined by the active bound constraints. In the last few years, these ideas
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On the stationarity for nonlinear... 109

have been extended to more general constrained optimization problems. In [1] the
authors analyze an active-set strategy for linearly constrained optimization problems.
The idea of proportioning has been extended to problems with quadratic separable
constraints [6, 7], to the case of problems with an additional single linear constraint
[18], and to the case of �1-regularized problems [11, 12, 14, 16]. Finally, the work in
[32] has been generalized to the case of problems subject to polyhedral constraints
[33, 35] and very recently to general nonlinearly constrained optimization problems
[19, 20].

In this paperwe show that the projection of the negative gradient on the tangent cone
at x can be expressed as a sum β(x) + ϕ(x) where β(x) and ϕ(x) are orthogonal and
generalize the definition of free gradient and chopped gradient [22, 28, 29] used within
the framework of two-phase GP algorithms for box-constrained problems. We show
that β(x) only vanishes when the multipliers associated with the active constraints
have the correct signs, while ϕ(x) only vanishes when x is a stationary point in the
active manifold. This decomposition allows us to generalize the definition of binding
variables in bound constrained optimization to the case of polyhedral constraints,
and measure complementary aspects of stationarity that can be exploited in order to
design effective switching rules in two-phase algorithms. As an example, we present
an algorithm for solving convex quadratic programs, which generalizes the P2GP
algorithm introduced in [18], and which employs a switching rule based on the theory
that we develop.

The paper is organized as follows. Section2 includes some basics about the station-
arity conditions for problem (1) and the projected gradient as defined in [10] and its
properties. In Sect. 3 the free and the chopped gradients are defined and some of their
properties are established. Section4 deals with the convex quadratic programming
problem, gives the definition of proportional iterate and shows that disproportionality
at a point guarantees that such point does not belong to the face identified by the active
set at the solution. Moreover, we introduce PSAQP, a two-phase algorithm for convex
quadratic programs which uses a proportionality-based branching rule between the
two phases. Section5 provides some insights about the implementation of PSAQP
and presents the results of some numerical experiments. Finally, in Sect. 6 we draw
some conclusions.

1.1 Notation

Throughout the paper ‖ · ‖ denotes the Euclidian norm, g(x) := ∇ f (x) (a column
vector), and ei is the i-th column of the identity matrix. The dimension of ei should
be clear from context. Given v ∈ R

n and S ⊆ {1, . . . , n}, we define

vS := (vi )i∈S ∈ R
|S|,

where |S| is the number of elements in S and vi is the i th entry of v. In a similarmanner,
given a matrix M ∈ R

m×n and the index subsets S ⊆ {1, . . . ,m} and C ⊆ {1, . . . , n},
we define
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110 D. di Serafino et al.

MSC := (
mi j

)
i∈S, j∈C ∈ R

|S|×|C|,

wheremi j the (i, j)th entry of M . The notation MT
SC denotes [MSC]T . When a matrix

has just one subscript, it refers to the columns of the matrix; that is, MC denotes the
submatrix of M corresponding to the columns j ∈ C. The null space of M is denoted
N (M). The 2-norm condition number of a matrix is denoted κ(M). If M is symmetric
and positive definite, then κ(M) is the ratio between the largest and smallest eigenvalue
of M .

PΩ denotes the Euclidian norm projection onto Ω , i.e.

PΩ(x) := argminy∈Ω‖y − x‖.

Definition 1 We define the following index sets:

Al(x) := {i : xi = li }, Au(x) := {i : xi = ui },
A(x) := Al(x) ∪ Au(x), F(x) := {1, . . . , n} \ A(x).

A(x) and F(x) are called respectively the active set and the free set at x, whileAx and
Fx are abbreviations for A(x) and F(x).

Definition 2 For any x ∈ Ω , we define the following affine spaces:

E(x) := {
v ∈ R

n : A v = b ∧ vi = xi ∀ i ∈ A(x)
}
, (2)

E0(x) := {
v ∈ R

n : A v = 0 ∧ vi = 0 ∀ i ∈ A(x)
}
. (3)

Note that the equalities associated with E(x) correspond to the affine closure of the
face determined by the active set at x and E0(x) is its support.

2 Stationarity conditions

Definition 3 x∗ ∈ Ω is a stationary point for problem (1) if and only if there exist
Lagrangian multipliers vectors θ∗ ∈ R

m and λ∗ ∈ R
n such that

g(x∗) =
n∑

i=1

λ∗
i ei +

m∑

j=1

θ∗
j a j =

n∑

i=1

λ∗
i ei + AT θ∗, (4)

λ∗
i ≥ 0 if i ∈ Al(x∗), λ∗

i ≤ 0 if i ∈ Au(x∗), λ∗
i = 0 if i ∈ F(x∗). (5)

The stationary point x∗ is nondegenerate with respect to the bound constraints if the
inequalities in (5) are strict. Otherwise, the problem is degenerate.

Since we are interested in building an estimate for the Lagrange multipliers, we
make the following assumption which guarantees their uniqueness.
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On the stationarity for nonlinear... 111

Assumption 1 (Linear Independence Constraint Qualification-LICQ) At the station-
ary point x∗ of (1), the active constraint normals

{
a j : j = 1, . . . ,m

} ∪ {
ei : i ∈ A(x∗)

}

are linearly independent.

By Assumption 1, the rows of AF∗ are linearly independent, where F∗ = F(x∗).
Since λ∗

i = 0 for all i ∈ F∗, the KKT conditions (4) and (5) are equivalent to

gi (x∗) − AT
i θ∗ = 0 if i ∈ F(x∗) (6)

λ∗
i = gi (x∗) − AT

i θ∗ ≥ 0 if i ∈ Al(x∗), (7)

λ∗
i = gi (x∗) − AT

i θ∗ ≤ 0 if i ∈ Au(x∗). (8)

When Assumption 1 holds, |A(x∗)| ≤ n − m, or equivalently, |F(x∗)| ≥ m. Since
AF∗ has full row-rank, the matrix

M = AF∗ AT
F∗ ∈ R

m×m

is invertible.
Condition (6) can be rewritten as

gF∗(x∗) = AT
F∗ θ∗.

Premultiplying by AF∗ yields

θ∗ = M−1 AF∗ gF∗(x∗) = (AF∗ AT
F∗)−1 AF∗ gF∗(x∗), (9)

which reduces to θ∗ = A−T
F∗ gF∗(x∗) when AF∗ ∈ R

m×m .
Given any point x ∈ Ω , we could utilize a modification of (6) to estimate θ∗ in

which F∗ is replaced by Fx := F(x). Even when Assumption 1 holds, the m by m
matrix AFx AT

Fx could be singular. Hence, to estimate θ∗ we use the minimum norm
solution θ(x) of the least squares problem

min
θ

‖gFx (x) − AT
Fx θ‖. (10)

If A−T
Fx is interpreted as the pseudoinverse of AT

Fx , then

θ(x) = A−T
Fx gFx (x). (11)

The first-order optimality condition for a minimizer of (10) is given by

AFx [gFx (x) − AT
Fx θ(x)] = 0. (12)
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112 D. di Serafino et al.

If the rows of AFx are linearly independent, then A−T
Fx = (AFx AT

Fx )
−1AFx . It follows

from (9) that θ(x∗) = θ∗.
Let us introduce the vectors

hω(x) := g(x) − AT (θ(x) + ω), h(x) := h0(x), (13)

where ω denotes any vector in the null space N (AT
Fx ). For ω ∈ N (AT

Fx ), hω
Fx (x) is

independent of ω since AT
Fx (θ(x) + ω) = AT

Fx θ(x). As in (6)–(8), x is a stationary
point for the optimization problem (1) if there exists ω ∈ R

m such that

hω
i (x) = 0 if i ∈ F(x), hω

i (x) ≥ 0 if i ∈ Al(x), hω
i (x) ≤ 0 if i ∈ Au(x). (14)

Motivated by (14), we define the binding set at an arbitrary x ∈ Ω as follows:

Definition 4 If x ∈ Ω , then the binding set at x associated with ω ∈ N (AT
Fx ) is given

by

Bω(x) = {
i : (

i ∈ Al(x) ∧ hω
i (x) ≥ 0

) ∨ (
i ∈ Au(x) ∧ hω

i (x) ≤ 0
)}

. (15)

The binding collection at x consists of all these sets:

B(x) = {Bω(x) : ω ∈ N (AT
Fx )}.

Note that in the definition ofBω(x), we do not require that hω
i (x) = 0 for i ∈ F(x).

In the case of bound constrained problems,hω(x) = h(x) = g(x) and (15) corresponds
to the standard definition of binding set. It is also possible to show that the quantities
introduced above provide a good estimate of the Lagrange multipliers in the case of
non-degenerate stationary points. Observe that in this case N (AT

F∗) = {0}, hence one
has hω(x∗) ≡ h(x∗).

Theorem 1 If
{
xk

}
is a sequence inΩ which converges to a non-degenerate stationary

point x∗ where Assumption 1 holds and A(xk) = A(x∗) for all k > k, then

lim
k→∞ θi (xk) = θ∗

i and lim
k→∞ hi (xk) = hi (x∗) ∀ i ∈ A(x∗),

and hi (xk) = 0 for all k > k and i ∈ F∗.

Proof For all k > k, F(xk) = F∗ and the matrix AF∗ is full rank by Assump-
tion 1. By observing that hω(xk) ≡ h(xk), the thesis follows from the continuity of
∇ f (x). ��

Anotherway to express stationarity for problem (1) is through the projected negative
gradient of f at a point x ∈ Ω . In Calamai and Moré [10], this projection is expressed
as

∇Ω f (x) := argmin {‖v + ∇ f (x)‖ : v ∈ TΩ(x)} , (16)
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where

TΩ(x) = {
v ∈ R

n : A v = 0 ∧ vi ≥ 0 ∀ i ∈ Al(x) ∧ vi ≤ 0 ∀ i ∈ Au(x)
}

is the tangent cone to Ω at x; that is, TΩ(x) is the closure of the cone of feasible
directions at x. If ∇Ω f (x∗) = 0, then the KKT conditions for (16) imply that x∗ is a
stationary point, and conversely, if x∗ is a stationary point of (1), then ∇Ω f (x∗) = 0.
Observe that the condition ∇Ω f (x∗) = 0 can be equivalently stated as

−∇ f (x∗) ∈ TΩ(x)◦,

where TΩ(x)◦ = {
w ∈ R

n : wT v ≤ 0, ∀ v ∈ TΩ(x)
}
is the polar of the tangent cone

at x, also known as the normal cone to Ω at x.
The drawback of using (16) as measure of stationarity is that ∇Ω f (x) could be

very large, even for x ∈ Ω very close to a stationary point of (1), since the projected
gradient is only lower semicontinuous (see [10, Lemma 3.3]). On the other hand, the
projected gradient enjoys a remarkable feature which is synthesized in the following
theorem, whose proof follows the lines of that of [18, Theorem 2.3] by extending [10,
Theorem 4.1] to (possibly degenerate) stationary points that satisfy Assumption 1.

Theorem 2 If
{
xk

}
is a sequence in Ω which converges to a point x∗ and if

lim
k→∞ ‖∇Ω f (xk)‖ = 0 (17)

Then

– x∗ is a stationary point for problem (1);
– if Assumption 1 holds, then A∗

N ⊆ A(xk) for all k sufficiently large, where
A∗

N = {
i ∈ A(x∗) : λ∗

i �= 0
}
and λ∗

i is the Lagrange multiplier associated with
the i-th bound constraint.

Because of Theorem 2, an algorithm producing a sequence {xk} that satisfies (17)
is able to identify the active variables that are nondegenerate at the solution in a finite
number of steps.

Calamai andMoré [10] prove that for a sequence {xk} generated by a GP algorithm,
(17) holds if the step lengths satisfy some appropriate sufficient decrease conditions;
this is true also for two phase algorithms that can be framed under the very general
framework of Algorithm 5.3 in [10].

In a two phase algorithm for problem (1) a critical issue is splitting the violation
of the optimality conditions between free and active variables. To this end, in the
next section we extend to problems of the form (1) the definition of free and chopped
gradient originally proposed in [22] for the case of problems with box constraints.

InSect. 4, in a twophase algorithm for quadratic problems,we showhow the free and
the chopped gradient can be used to set a suitable stopping criterion in minimization
in the reduced space, and to state finite convergence for the strictly convex case, even
in case of degeneracy at the solution.
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114 D. di Serafino et al.

3 The free and the chopped gradient

We start by defining the free gradient ϕ(x) at x ∈ Ω for problem (1).

Definition 5 For any x ∈ Ω , the free gradient ϕ(x) ∈ R
n is defined by

ϕFx (x) = hFx (x), ϕAx (x) = 0. (18)

The following theorems state some properties of ϕ(x), including its relationship
with the projected gradient.

Lemma 1 If x ∈ Ω , then ϕ(x) = 0 if and only if x is a stationary point for

min f (u),

s.t. u ∈ E(x).
(19)

Proof The point x is a stationary point for (19) if there exists μ ∈ R
n and λAx such

that
g(x) = ATμ +

∑

i∈Ax

λiei . (20)

By (13) and (18), ϕ(x) = 0 if and only if

gFx (x) = AT
Fx θ(x). (21)

Thus by taking μ = θ(x) and λi = gi (x) − AT
i θ(x) for all i ∈ A(x), we see that (20)

is satisfied and x is a stationary point for (19).
On the other hand, if x is a stationary point for (19), then (20) implies that gFx (x)

lies in the range of AT
Fx , which implies that (21) holds. ��

Remark 1 Lemma 1 shows that ϕ(x) can be considered as a measure of optimality
within the reduced space determined by the active variables at x.

Lemma 2 For any x ∈ Ω , ϕ(x) is the orthogonal projection of−∇Ω f (x) onto E0(x),
where E0(x) is given in (3). Furthermore,

‖ϕ(x)‖2 = −(∇Ω f (x))Tϕ(x). (22)

Proof The definition (16) of projected gradient and the associated KKT conditions
imply that

v = ∇Ω f (x) = −g(x) + AT ν + μ, (23)

for some ν ∈ R
m and μ ∈ R

n with

μi = 0 if i ∈ F(x), μi ≥ 0 if i ∈ Al(x), μi ≤ 0 if i ∈ Au(x).

Recall that h(x) := g(x) − AT θ(x). Substituting for g(x) using (23), the equation for
h can be rewritten as

h(x) = −∇Ω f (x) + AT σ + μ, σ = ν − θ(x). (24)
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Since ϕFx (x) = hFx (x) and ϕAx = 0, (24) can be expressed

ϕ(x) = −∇Ω f (x) + AT σ + τ , (25)

where τi = μi = 0 for i ∈ F(x) and τi = μi − hi (x) otherwise. Also, note that the
condition (12) is equivalent to

Aϕ(x) = 0 (26)

since ϕFx (x) = hFx (x) = gFx (x) − AT
Fx θ(x) and ϕAx = 0. Thus by (25) and (26),

the KKT conditions for the problem

min {‖v + ∇Ω f (x)‖ : v ∈ E0(x)}

are satisfied by v = ϕ(x). This establishes the first part of the lemma. Equation (22)
follows from (24), (26), and the fact that ϕAx (x) = 0. ��
Lemma 3 If x ∈ Ω , then A(x) ∈ B(x) if and only if

ϕ(x) = −∇Ω f (x). (27)

Proof Condition (27) is equivalent to

− ϕ(x) = argmin {‖v + g‖ : v ∈ TΩ(x)} . (28)

The KKT conditions associated with the minimizer on the right side of (28) are

Av = 0, v = −g(x) + AT ν + μ, (29)

for some ν ∈ R
m and μ ∈ R

n with μi = 0 if i ∈ F(x), μi ≥ 0 if i ∈ Al(x), and
μi ≤ 0 if i ∈ Au(x). By (26), v = −ϕ(x) satisfies the first equality in (29). Moreover,
if A(x) ∈ B(x), then there exists ω ∈ N (AT

Fx ) such that hω
i (x) ≥ 0 if i ∈ Al(x),

and hω
i (x) ≤ 0 if i ∈ Au(x). Hence, the second equality in (29) is satisfied by taking

ν = θ(x) + ω, μi = hω
i (x) for i ∈ A(x), and μi = 0 for i ∈ F(x).

Conversely, suppose that (27) holds, which is equivalent to (29) with v = −ϕ(x).
By definition, we have ϕi (x) = gi (x) − Aiθ(x) for all i ∈ F(x). Hence, by (29) with
v = −ϕ(x) it follows that AT

Fx (ν − θ(x)) = 0. This shows that ω = ν − θ(x) ∈
N (AT

Fx ). We claim that Bω(x) = A(x) ∈ B(x). For i ∈ F(x), we have

hω
i (x) = gi (x) − AT

i (θ(x) + ω) = gi (x) − AT
i ν = 0,

where the last equality is from (29). For i ∈ A(x), (29) also gives

hω
i (x) = gi (x) − AT

i ν = μi + ϕi (x) = μi

since ϕAx = 0. Since μi ≥ 0 if i ∈ Al(x), and μi ≤ 0 if i ∈ Au(x), it follows that
Bω(x) = A(x) ∈ B(x). ��
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116 D. di Serafino et al.

Inspired by the previous lemma, we give the following definition.

Definition 6 For any x ∈ Ω , the chopped gradient β(x) is defined as

β(x) := −∇Ω f (x) − ϕ(x). (30)

Remark 2 Lemma 3 implies that β(x) = 0 if and only if A(x) ∈ B(x). Therefore,
‖β(x)‖ could be used to assess whether the KKT multipliers for the inequality con-
straints have the correct sign.

Some properties of β(x) are given next.

Lemma 4 Foranyx ∈ Ω , wehave (a) β(x)Tϕ(x) = 0, (b) β(x) ∈ N (A), (c) −β(x) ∈
TΩ(x), and (d) g(x)Tβ(x) = ‖β(x)‖2.
Proof By Lemma 2, it follows that

β(x)Tϕ(x) = − (∇Ω f (x) + ϕ(x))Tϕ(x)

= −∇Ω f (x)Tϕ(x) − ϕ(x)Tϕ(x) = 0,

which gives (a). By (16), ∇Ω f (x) ∈ N (A) and by (26), ϕ(x) ∈ N (A); hence, β(x) =
−(∇Ω f (x)+ϕ(x)) ∈ N (A) and (b) holds. Since∇Ω f (x) ∈ TΩ(x) andϕ(x) ∈ E0(x),
(c) holds. By [10, Lemma 3.1], we have −g(x)T∇Ω f (x) = ‖∇Ω f (x)‖2. Substitute
in this identity, −∇Ω f (x) = β(x) + ϕ(x) and exploit (a) to obtain

g(x)T (ϕ(x) + β(x)) = ‖ϕ(x)‖2 + ‖β(x)‖2,

which is rearranged into

g(x)Tβ(x) = ‖β(x)‖2 + ϕ(x)T (ϕ(x) − g(x)). (31)

Recall that by its definition, ϕi (x) = 0 for all i ∈ A(x) and ϕi (x)− gi (x) = −AT
i θ(x)

for all i ∈ F(x). It follows that

ϕ(x)T (ϕ(x) − g(x)) = −ϕFx (x)T AT
Fx θ(x) = −ϕ(x)T AT θ(x) = 0,

where the last equality is by (26). Since the trailing term in (31) vanishes, the proof
of (d) is complete. ��

4 Proportionality-based algorithm for quadratic programs

In the previous sections it has been shown that for polyhedral constrained optimization
the projected gradient has an orthogonal decomposition of the form

∇Ω f (x) = β(x) + ϕ(x). (32)
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ϕ(x) provides a measure of stationarity within the reduced space determined by the
active variables at x, while β(x) gives a measure of bindingness of the active variables
at x.

In the remainder of this paper we restrict our attention to the Quadratic Program
(QP):

minimize f (x) := 1

2
xT H x − cT x

subject to x ∈ Ω := {x ∈ R
n : A x = b, l ≤ x ≤ u},

(33)

where H ∈ R
n×n is symmetric, c ∈ R

n , A ∈ R
m×n , b ∈ R

m , l ∈{R ∪ {−∞}}n , and
u ∈{R ∪ {+∞}}n .

Based on the theory developed in the previous sections, for Problem (33)we propose
an algorithmbased on an alternation of a gradient projection (GP) phase and a subspace
minimization phase (SM). The switch fromGP to SM is based on an heuristic criterion
checking the change of the active set and the objective value decrease. The switch
from SM to GP is, instead, based on the “proportionality criterion”. By using the
projected gradient decomposition (32) we can extend to problem (33) the definition
of proportional iterates, introduced for the bound constrained quadratic problems by
Dostál in [22]. An iterate xk is called proportional if, for a suitable constant Γ > 0,

‖β(xk)‖∞ ≤ Γ ‖ϕ(xk)‖. (34)

Although the algorithm can be defined independently from the convexity of the prob-
lem, some of the results which follow will only apply to the case of strictly convex
problems, i.e. problems in which the restriction of H on the nullspace of A is strictly
convex. In this case disproportionality of xk guarantees that the solution of (33) does
not belong to the face identified by the active variables at xk , as shown in Theorem 3.

Before proceeding we introduce the following lemma.

Lemma 5 Let us consider the problem

min w(z) := 1
2z

T K z − pT z,
s.t. R z = q,

(35)

where K ∈ R
t×t , p ∈ R

t , R ∈ R
s×t , and q ∈ R

s .
Let PN (R) be the orthogonal projection onto N (R), and U a matrix with orthonor-

mal columns spanning N (R). Assume that UT K U is positive definite, and z be the
solution of (35). Then for any solution z of Rz = q, we have

w(z) − w(z) ≤ 1

2
‖B‖‖PN (R)∇w(z)‖2, (36)

where B = (UT KU )−1.

Proof The solutions z of R z = q can be expressed as the sum of the null space N (R)

and a particular solution, denoted r. Since the columns ofU are an orthonormal basis
for N (R), this is equivalent to z = r +U y for some y.
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Thus, (35) can be reduced to

min w̃(y) := 1

2
yTUT K Uy − (pT − rT K )Uy. (37)

If y denotes the solution of (37), then z = r + U y. Since (37) is unconstrained, it
follows that ∇w̃(y) = 0. Since w̃(y) and w(z) differ by a constant when z = r+U y,
it follows that

w(z) − w(z) = w̃(y) − w̃(y). (38)

We expand the right side of (38) in a Taylor series around y and utilize the identity
∇w̃(y) = 0 to obtain

w(z) − w(z) = 1

2
(y − y)TUT KU (y − y)

= 1

2
(y − y)T (UT KU )(UT KU )−1(UT KU )(y − y). (39)

The identity ∇w̃(y) = 0 can be expressed

UT K (Uy + r) = UTp.

Exploiting this relation yields

UT KU (y − y) = UT K (Uy + r −Uy − r) = UT K z −UTp = UT∇w(z).

Since ‖UT∇w(z)‖ = ‖PN (R)∇w(z)‖, (39) completes the proof. ��
We are now in position to state the main result of this section, which extends to

problems of the form (33) the results shown for simpler quadratic programs in [22,
Theorem 3.2] (bound constraints only) and in [18, Theorem 3.8] (bound constraints
plus a single linear equality constraint).

Theorem 3 Let us consider problem (33), and suppose H = V T H V is positive def-
inite, where V ∈ R

n×(n−m) is a matrix with orthonormal columns spanning the null
space N (A). Let x ∈ Ω be such that ‖β(x)‖∞ > κ(H)1/2 ‖ϕ(x)‖2, and let x be the
solution of

min f (u),

s.t. u ∈ E(x),
(40)

where E(x) is defined in (2). If x ∈ Ω , then β(x) �= 0.

Proof The proof follows the lines of that of Theorem 3.8 in [18], which refers to the
simpler case m = 1. For the sake of completeness, we summarize the main steps of
the proof.

Let y = x − ‖H‖−1 β(x). By Lemma 4 part (d), the assumption that ‖β(x)‖∞ >

κ(H)1/2 ‖ϕ(x)‖2, and the identity β(x) = VV Tβ(x) (since β(x) ∈ N (A)), one can
prove that

f (y) − f (x) < −1

2
‖H−1‖ ‖ϕ(x)‖2. (41)
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Since x satisfies the KKT conditions of problem (40), i.e.,

g(x) =
∑

i∈A(x)

ηiei + AT γ ,

A x = b, xi = xi ∀ i ∈ A(x), (42)

where ηi and γ are the Lagrange multipliers, one can write

g(x)T (x − x) =
(

∑

i∈A
ηiei + AT γ

)T

(x − x) = 0, (43)

g(x)F =
[
AT γ

]

F
, (44)

where A := A(x) and F := F(x). It follows that

f (x) − f (x) = 1

2
(x − x)T H(x − x) + g(x)T (x − x)

= 1

2
(x − x)TF HFF (x − x)F.

(45)

By applying Lemma 5 with z = xF, K = HFF, p = cF − HFA xA, R = AF,
q = b − AAxA, and w(z) defined as in (35), we obtain

w(xF) − w(xF) ≤ 1

2
‖B‖ ‖PN (AF)∇w(xF)‖2, (46)

where B = (WT HFFW )−1 and W has orthonormal columns spanning N (AF). By
(12) and (18), PN (R)∇w(xF) = ϕF(x). Combining (45) and (46) gives

f (x) − f (x) ≤ 1

2
‖B‖ ‖ϕF(x)‖2. (47)

If ζmin(M) denotes the smallest eigenvalue of the symmetric matrix M , then ‖B‖ =
1/ζmin(WT HFFW ).

Observe that

ζmin(W
T HFFW ) = min{(Wz)T HFF(Wz) : ‖z‖ = 1}

= min{wT HFFw : ‖w‖ = 1,w ∈ N (AF}
= min{vT Hv : ‖v‖ = 1, vA = 0, vF ∈ N (AF)}
≥ min{vT Hv : ‖v‖ = 1, v ∈ N (A)}
= ζmin(H) > 0, (48)
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where the last inequality is since H is positive definite. By (47), one gets

f (x) − f (x) ≤ 1

2

1

ζmin(H)
‖ϕF(x)‖2 = 1

2
‖H−1‖ ‖ϕ(x)‖2. (49)

The latter inequality, together with (41) yields

0 > f (y) − f (x) > g(x)T (y − x).

By (43) and the definition of y, one gets−‖H−1‖ g(x)T β(x) = g(x)T (y−x); hence,

g(x)T β(x) > 0. (50)

For the remainder of the proof we assume that x ∈ Ω and we set F ≡ F(x). From
(44) and F ⊆ F it follows that gF = [AT γ ]F, moreover, by Lemma 1 we have that

ϕ(x) = 0. (51)

We will proceed by contradiction, and suppose that β(x) = 0. Observe that (51)
implies that x is the optimal solution of problem (33); hence

−g(x) ∈ TΩ(x)◦.

We consider two possible cases: (a) A(x) = A(x), (b) A(x) � A(x). Case (a) leads
immediately to a contradiction of (50) since −β(x) ∈ TΩ(x) and −g ∈ TΩ(x)◦.

About case (b), the optimality of x for problem (33) yields

g(x) =
∑

i∈A(x)

λiei + AT ν, λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x).

(52)

Since F(x) � F(x), by comparing (42) and (52) we get

gF(x) = [AT γ ]F = [AT ν]F,

and hence

AT
F

(γ − ν) = 0.

Because of Assumption 1, matrix AF is such that rank(AF) = m, thereforeN(AT
F

) =
{0} and γ = ν. This implies that ηi = λi for i ∈ A(x), whereas λi = 0 for i ∈
A(x)\A(x). Hence, we can write

g(x) =
∑

i∈A(x)

λiei + AT ν, λi ≥ 0 if i ∈ Al(x), λi ≤ 0 if i ∈ Au(x).
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This, by the definition of normal cone and by Farkas’ Lemma, yields −g(x) ∈
TΩ(x)◦, which leads to a contradiction as in case (a). ��

Before introducing our method, let’s briefly recall the GP algorithmic framework
as stated by Calamai and Moré in [10] that we report in Algorithm 1.

Algorithm 1 (Calamai-Moré [10], Algorithm 5.3)

Let x0 ∈ Ω and μ1 ∈ (0, 1) be given. For k ≥ 0 choose xk+1 by either (a) or (b):

(a) xk+1 = PΩ(xk − αkgk ) where αk , obtained by a backtracking procedure, is such that

f k+1 ≤ f k + μ1 (gk )T (xk+1 − xk ), (53)

(b) Choose xk+1 ∈ Ω such that

f (xk+1) ≤ f (xk ) and A(xk ) ⊆ A(xk+1).

The framework aims to combine gradient projection steps with steps leading to
better theoretical or practical performances while preserving the original identification
properties of the GP method. The key idea is that the alternative steps, apart from
leading to a decrease of the objective function, must preserve the variables currently
considered active. If a ‘suitable’ active set has been identified, one could define a
reduced problem on the complementary set of free variables, i.e., focus on the solution
of

min f (x),
s.t. x ∈ E(xk).

(54)

We introduce a general framework for the solution of problem (33) which we will
call Proportionality-based Subspace Accelerated algorithm for Quadratic Programs
(PSAQP), which generalizes the P2GP algorithm in [18]. The framework is outlined
in Algorithm 2 where ϕ(xi ), β(xi ), and f (xi ) are denoted by ϕi , β i and f i , respec-
tively. PSAQP alternates betweenGPphases, referred-to as ‘identification’ phases, and
SM phases, where an approximate solution to (54) is sought, with xk inherited from
the last identification phase. The identification phase stops if the active set remains
fixed in two consecutive iterations or no reasonable progress is made in reducing the
objective function, i.e., if

f k − f k+1 ≤ η max
m≤l<k

( f l − f l+1), (55)

where η is a suitable constant and m is the first iteration of the current identification
phase. Once the SM phase has started, the possible return to the identification phase
is determined by exploiting the proportionality criterion (34). To allow PSQAP to fit
into the general framework of Algorithm 1, a projected line-search is performed on the
direction coming from the unconstrained minimization phase, forcing the new iterate
to be in Ωk = Ω ∩ E(xk). This allows the minimization phase to add variables to
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the active set, but not to remove them. Finally, the algorithm is stopped if

‖∇Ω f k‖ = ‖ϕk + βk‖ ≤ tol. (56)

Algorithm 2 PSAQP (Proportionality-based Subspace Accelerated algorithm for
Quadratic Programming)

1: x0 ∈ Ω; tol ≥ 0; η ∈ (0, 1); Γ > 0; k = 0;
2: conv = (

∥
∥∥∇Ω f k

∥
∥∥ ≤ tol); GPphase = .true.; SMphase = .true.

3: while (¬ conv) do � Main loop
4: m = k;
5: while (GPphase) do � Identification Phase
6: xk+1 = PΩ(xk−αkgk )withαk obtained by a backtracking linesearch procedure on the projection

arc;

7: conv = (

∥∥∥∇Ω f k+1
∥∥∥ ≤ tol);

8: GPphase = (Ak+1 �= Ak ) ∧ ( f k − f k+1 > η max
m≤l<k

( f l − f l+1)) ∧ (¬ conv);
9: k = k + 1;
10: end while
11: if (conv) then
12: SMphase = . false.;
13: end if
14: while (SMphase) do � Minimization Phase
15: Compute an approximate solution dk to

min
{
f (xk+ d) s.t. A d = 0, di = 0 if i ∈ Ak

}
;

16: xk+1 = P
Ωk (xk + αkdk ) with αk such that f k+1 ≤ f k and Ωk = Ω ∩ E(xk )

17: conv = (

∥∥
∥∇Ω f k+1

∥∥
∥ ≤ tol);

18: Compute Lagrange multiplier estimate and build ϕk+1 and βk+1;
19: SMphase = (‖βk+1‖∞ ≤ Γ ‖ϕk+1‖2) ∧ (¬ conv);
20: k = k + 1;
21: end while
22: GPphase = .true.; SMphase = .true.;
23: end while
24: return xk

In the following we report some results on the identification and convergence
properties of PSAQP which easily follow from results previously established in the
literature. For this reason we will omit their proofs.

The first result is a consequence of Theorem 5.2 in [10]. It was previously stated
as Theorem 4.2 in [18] for quadratic programs subject to bound constraints and a
single linear constraint. It is also stated here since it applies to general, polyhedral
constrained quadratic programs.

Theorem 4 Let
{
xk

}
be a sequence generated by applying PSAQP to problem (33).

Assume that the set

KGP =
{
k ∈ N : xk+1 is generated by step 6 of Algorithm 2

}
,
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i.e., the set of GP iterations, is infinite. If some subsequence
{
xk

}
k∈K , with K ⊆ KGP,

is bounded, then

lim
k∈K , k→∞

∥∥∥∇Ω f (xk+1)

∥∥∥ = 0. (57)

Moreover, any limit point of
{
xk

}
k∈KGP

is a stationary point for problem (33).

Since the minimization steps can only add variables to the active set, the identi-
fication properties of the GP steps are extended to the whole sequence generated by
PSAQP. We state the following result which extends Lemma 4.3 in [18] to polyhe-
dral constrained QPs. It is worth noting that we fixed the statement by adding the
assumption that the set of GP iterations is infinite so that Theorem 4 is applicable.
Furthermore, we note that the second part of the statement, which we added to the
Lemma for the sake of conciseness, can be derived by the discussion following the
related result in [18].

Lemma 6 Let us assume that problem (33) is strictly convex with optimal solution x∗.
If

{
xk

}
is a sequence in Ω generated by PSAQP applied to (33) and the set of GP

iterations is infinite, then for all k sufficiently large

A∗
N ⊆ Ak ⊆ A∗

where A∗
N is defined in Theorem 2.

Moreover, if x∗ is a nondegenerate stationary point, then for all k sufficiently large

Ak = A∗.

The latter result implies that, in case of nondegeneracy, the solution of (33) reduces
to the solution of an unconstrained problem in a finite number of iterations. In case
of degeneracy Lemma 6 implies that only the nondegenerate active constraints at the
solution are identified in a finite number of steps. Nevertheless, in both cases finite
convergence can be proved for the PSAQP algorithm, in case of exact minimization
steps, provided that a sufficiently large value for Γ in (34) is chosen. These results are
stated in the following theorem,which extends to the PSAQPalgorithm for problems of
the form (33) the properties proved in [18, Theorem 4.4] for P2GP, suited for problems
subject to bound constraint and a single linear constraint. The proof follows the lines
of that of Theorem 4.4 in [18]. We report the main steps for the sake of completeness.

Theorem 5 Let us assume that problem (33) is strictly convex with optimal solution
x∗. Let

{
xk

}
be a sequence in Ω generated by PSAQP applied to (33), in which the

minimization phase is performed by any algorithm that is exact for strictly convex
quadratic programming. If one of the following conditions holds:

(i) x∗ is nondegenerate,
(ii) x∗ is degenerate and Γ ≥ κ(H)1/2, where H is defined in Theorem 3,

then xk = x∗ for k sufficiently large.
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Proof Case (i) trivially follows from Lemma 6.
For case (ii) we first observe that, according to Lemma 6, in a finite number of steps

the active nondegenerate variables and the free variables are identified by PSAQP.
Hence, it exists k such that for k ≥ k the solution of

min f (x),
s.t. x ∈ E(xk),

(58)

coincides with x∗, solution of (33).
Thanks to Theorem 3 it is easy to prove that this implies the proportionality of all

the iterates starting from k. Hence, after iteration k PSAQP will always use the (exact)
minimization phase to determine the next iterate. Thefinite convergence results follows
by observing that at each given iterate either the new point is the solution to (33) or
nondegenerate variables are added to the active set and the latter can only happen a
finite number of times. ��

ForAlgorithm2, a critical issue is how the approximate solutiondk is computed.The
approximation should be generated so that the iterates do not get trapped in SM phase,
thus jeopardizing the algorithm convergence. On the other hand, when the objective is
strongly convex over N (A) and dk is the minimizer of the SM phase quadratic, finite
convergence to the minimum occurs under the assumptions of Theorem 5.

5 Numerical experiments

We implemented in MATLAB a version of the PSAQP algorithm introduced in the
previous section. In order to assess its performanceswe tested it on synthetic problems,
generated with the aim of building test cases with varying characteristics, such as Hes-
sian condition number, number of equality constraints, number of active constraints
at the solution, and the degree of degeneracy.

5.1 Implementation details

Here we discuss some implementation details for Algorithm 2.

5.1.1 Projections

An efficient way of computing projections onto polyhedra is essential for the perfor-
mance of PSAQP. Indeed, apart from the standard projections onto Ω (see Line 6),
the algorithm requires at each iteration also projections onto Ωk = Ω ∩ E(xk) (see
Line 16) and onto the tangent cone TΩ(xk) for the computation of ∇Ω f (x). We per-
form these projection by the PPROJ algorithm proposed in [34].

It is worth noting that the backtracking linesearch procedures at Line 6 and Line 16
could be replaced by linesearches on the line segment connecting xk and PS(xk −αdk)
(with S = Ω and S = Ωk , respectively, and dk the moving direction) where α

is the starting steplength in the original linesearch (resulting in a smaller number

123



On the stationarity for nonlinear... 125

of projections required). Nevertheless, an advantage of the linesearch considered in
this paper over the above-mentioned linesearch on the line segment is that the active
constraints are identified in accordance with Theorem 2 and Lemma 6.

5.1.2 Minimization phase

Setting d = u − x, the solution to (40) can be found by solving

min
1

2
dT H d + gTd,

s.t. A d = 0,
di = 0, i ∈ Al ,

di = 0, i ∈ Au,

(59)

which can be equivalently rewritten as

min
v∈R|F|

1

2
vT HFFv + gTFv,

s.t. AF v = 0.
(60)

Problem (60) can be recast as an unconstrained QP problem as follows. Suppose
that rank(AF) = r and a Rank-Revealing QR factorization of AT

F is available. This
means that, by assuming without loss of generality that the first r rows of AF are a
maximal set of linearly independent rows, one can write

AT
F = QR = Q

(
R11 R12
0 0

)
, (61)

with Q ∈ R
|F|×|F| orthogonal, R11 ∈ R

r×r upper triangular, and R12 ∈ R
r×(m−r).

By applying the variable change v = Qy, problem (60) becomes

min
y∈R|F|

1

2
yT Gy + rT y,

s.t. RT y = 0,
(62)

with G = QT HFFQ and r = QT gF. Observe that, since RT
11 is lower triangular, the

constraints

RT y =
(
RT
11 0

RT
12 0

)

y = 0

are satisfied if and only if yi = 0 for i = 1, . . . , r . This allows one to find a solution
to (62) by solving the unconstrained quadratic problem

min
ỹ∈R|F|−r

1

2
ỹT G̃ỹ + r̃T ỹ, (63)
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where, by defining T = {r + 1, . . . , |F|}, we set

ỹ = yT, G̃ = GTT, r̃ = rT .

Remark 3 Since matrix G̃ is derived from H by a similarity transformation (Q being
orthogonal) and a submatrix extraction, it can be proved that

κ(G̃) ≤ κ(H).

It is worth noting that previous discussion implies the availability of a full QR
factorization which, however, would require a computational cost of O(m · |F|2) and
a storage cost of O(|F|2), which may be prohibitive when |F| is large. Although one
could opt for a thin QR factorization and reduce both costs by the factor |F|

m , the latter
does not allow to control the subproblem conditioning. Indeed, although a thin factor
Q̂ can be used to build an orthogonal projection operator P over the null set of AF, P
is not invertible and the Hessian spectrum won’t be preserved. In our implementation
we use a modified thin QR factorization in which, instead of building Q̂, we store in a
matrix W ∈ R

|F|×m the m vectors used to generate the Householder transformations
producing R, hence storing Q in a factorized form. This allows us to preserve the
theoretical advantages of using a full QR factorization with the computational and
storage complexity of a thin one.

Thanks to the presence of the proportionality criterion, one can relax the stopping
criterion in the solution of problem (63). In our experiments wemonitor the progress in
reducing the objective function, i.e. we stop the minimization-phase solver whenever

p̃(̃z j ) − p̃(̃z j+1) ≤ ξ max
1≤l< j

{
p̃(̃zl) − p̃(̃zl+1)

}
, (64)

where ξ ∈ (0, 1). This choice follows [38] and [18]. Observe that if PSAQP will use
the minimization phase also in the subsequent step and the active set has not changed,
the minimization method continues its iterations as the previous call had not been
stopped.

5.1.3 Lagrangemultipliers estimate

We observe that the computation of Lagrange multiplier estimates is only needed
at Line 18 of Algorithm 2 to decompose the projected gradient into ϕk+1 and βk+1.
Therefore, assuming again that the first r rows of AF constitute amaximal independent
set, one can exploit the QR factorization (61) computed for the minimization phase
and consider thematrix Ã = RT

11Q
T . Amultiplier estimate θ(x) can then be computed

by setting
θR(x) = R−1

11 QT gF, (65)

with R = {1, . . . , r}, and setting the other Lagrange multipliers to 0.
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5.2 Test problems and results

We compared PSAQPwith the basic gradient projection method (referred to as GP), to
show the effectiveness of the proposed acceleration strategy. Moreover, we compared
it with the IP-PMM interior point method introduced in [39], which has been shown
to be highly efficient in the solution of quadratic and nonquadratic problems arising
from various data analysis task [15]. All the tests were run with MATLAB R2021b on
the magicbox server operated by the Department of Mathematics and Physics at the
University of Campania “L. Vanvitelli”. We run the tests using an Intel Xeon Platinum
8168 CPU with 192 GB of RAM. The elapsed times reported for the MATLAB codes
were measured by using the tic and toc commands.

To test the three algorithms we built convex random QP problems by modifying
the procedure for generating problems of the same form with m = 1 used in [18]. We
first compute a point x∗ and then build a problem of type (33) having x∗ as stationary
point. We built a set of 270 problems with the following parameters:

– n, number of variables, in {10000, 20000};
– m, number of constraints, in {2, 5, 10, 20, 50};
– ncond, log10 of the Hessian condition number, in {4, 5, 6};
– naxsol, fraction of active variables at x∗, in {0.1, 0.5, 0.9};
– ndeg, − log10 of the magnitude of the Lagrange multipliers associated with the
bound constraints (near-degeneracy measure), in {0, 1, 3}.

For all the problemswegenerated a random feasible starting point to be used byPSAQP
and GP. The methods were compared by using the performance profiles proposed by
Dolan and Moré [21].

5.2.1 Comparison with GP

Both in GP and in the identification phase of PSAQP, the initial steplength for the line-
search is determined by the Alternate BB rule ABBmin proposed in [27] and analyzed
in [17], i.e. at each step the steplength is chosen as

αk
ABBmin

=
⎧
⎨

⎩
min

{
α
j
BB2 : j = max{1, k − s}, . . . , k

}
, if

αk
BB2

αk
BB1

< τ,

αk
BB1, otherwise,

(66)

where s is a non-negative integer, τ ∈ (0, 1), and αk
BB1 and αk

BB2 are the well-know
Barzilai-Borwein steplengths introduced in [2]. We point out that, while for PSAQP
we used τ = 0.2 and s = 3, in GP we obtained better performances when using the
alternative procedure described in [5], in which τ is adapted at each iteration, with
τ = 0.5 as starting value. About the proportionality condition (34), a choice made
according to Theorem 3 requires a knowledge which is usually unknown about the
spectrum of H . We used the adaptive strategy for updating Γ introduced in [18] with
starting value equal to 1.
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Fig. 1 Performance profiles of PSAQP and GP on strictly convex QPs in terms of elapsed time. Top left:
all problems; top right: naxsol= 0.9; bottom left: naxsol= 0.5; bottom right: naxsol= 0.1

We set tol = 10−5‖ϕ0+β0‖; each algorithm could run only for 120s for each prob-
lem, and was allowed at most 30000 matrix–vector products and 30000 projections.
We declared failures if these limits were achieved without satisfying the tolerance.

Figure 1 shows the performance profiles, π(χ), of the two methods on the whole
set of problems. The profiles corresponding to all the problems (top left) and to those
with naxsol= 0.9 (top right), naxsol= 0.5 (bottom left), and naxsol= 0.2
(bottom right) are reported. We note that PSAQP failed to satisfy the tolerance only
once, on a problem with naxsol= 0.1. PG had, instead, 41 failures: 9 on problems
with naxsol= 0.1, 16 on problems with naxsol= 0.5, and 16 on problems with
naxsol= 0.9. We see that PSAQP has the best performance in all the cases. The
plots show that the gap between PSAQP and GP is reduced as the number of active
constraints at the solution increases. This suggests that the advantages of the use of
the minimization phase are reduced when the size of subproblem (63) is larger.

To have a clearer overview on the comparison between the two algorithmswe report
in Fig. 2 the performance profiles for the number of matrix–vector products and the
number of projections. We see that PSAQP always performs the smallest number of
projections and it is in general more efficient and robust in terms of the number of
Hessian-vector products. By looking at the plots one can see that the performance of
GP with respect to PSAQP improve as the number of active constraints at the solution
increases (for naxsol= 0.1 – last row – it is more efficient in terms of Hessian-vector
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products). Since in this case matrix vector products can be computed with aO(n) cost,
however, the performance of themethods in terms of elapsed time appears to bemainly
affected by the number of calls to the projection routine. It is also worth pointing out
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Fig. 2 Performance profiles of PSAQP and GP on strictly convex QPs in terms of number of Hessian-vector
products (left) and number of projections (right). First row: all problems; second row: naxsol= 0.9; third
row: naxsol= 0.5; fourth row: naxsol= 0.1
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that the average number of QR factorizations performed by PSAQP is around 118 and
it increases as naxsol increases (100 for naxsol= 0.1, 120 for naxsol= 0.5,
136 for naxsol= 0.9). As for the number of Hessian-vector products, this does not
appear to have an effect on the comparison in terms of elapsed time, suggesting that
the cost of computing the QR decompositions is negligible with respect to the cost of
projections.

5.2.2 Comparison with IP-PMM

We here report the results of the comparison performed between our implementation
of PSAQP and the MATLAB implementation of IP-PMM.1 To deal with the matrix-
free nature of the synthetic test problems, we equipped IP-PMM with the MATLAB
MINRES implementation by Page and Saunders,2 with a block-diagonal precondi-
tioner similar to the one used in [15, Section 5.1] to solve the KKT system for both
the predictor and the corrector step at each iteration. Since for each problem we know
the solution x∗, we ran both PSAQP and IP-PMM with a stop condition of the form

f (x∗) − f (xk) ≤ tol_ f | f (x∗)|

with tol_ f = 10−6. To obtain comparable solutions, for IP-PMM we coupled the
stopping condition with a condition on the primal feasibilty of xk , i.e., an absolute
tolerance 10−4 on the satisfaction of the problem constraints (we observe that in all
the cases the absolute feasibility error for PSAQP is below 10−8). IP-PMM was run
using 2 different tolerance values τMR for MINRES, 10−5 and 10−8 with a mixed
absolute/relative stopping criterion; in both cases MINRES was allowed to perform a
maximum of 200 iteration at each call. PSAQPwas able to reach the desired tolerances
in all the cases, whereas the two versions of IP-PMMwere able to satisfy the required
tolerance just for 94 (35% – τMR = 10−5) and 167 (62% – τMR = 10−8) problems,
respectively. It is worth mentioning that the average number of iterations for IP-PMM
in the successful istances was around 21 and that the algorithm performed an average
number of 51 and 110MINRES iterations at each call, respectively for the case τMR =
10−5 and the case τMR = 10−8.

We report in Figs. 3 and 4 performance profiles for the comparison with PSAQP,
restricted to the set of problems for which IP-PMM was able to reach the desired
solution. The plots show that PSAQP outperforms IP-PMM for problems with the
number of linear constraints between 2 and 20, while IP-PMM is always faster in the
instances with 50 linear equality constraints. This suggests that the proposed PSAQP
implementation is competitive for problems with a small number of linear constraints
while it struggles in the solution of problems with larger constraint matrices. This
is potentially due to the use of QR factorizations (which can become expensive for
larger matrices) for the construction of the reduced problems and the computation
of the Lagrange multipliers estimate. This also suggests that to expand the range
of applicability of the proposed strategy, a future efficient C-based implementation,

1 https://github.com/spougkakiotis/IP_PMM.
2 https://web.stanford.edu/group/SOL/software/minres.
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Fig. 3 Performance profiles of PSAQP and IP-PMM (τMR = 10−5 on 97 strictly convex QPs in terms of
elapsed time. Top: all problems; bottom left: m= 2, 5, 10, 20; bottom right: m= 50

which is out of the scope of this paper, should resort to different strategies for the
multiplier estimate and the minimization phase, and exploit quantities computed in
the identification phase.

6 Conclusions

We have shown that for polyhedral constrained optimization, at a feasible point x the
projection ∇Ω f (x) of the negative gradient on the tangent cone has an orthogonal
decomposition of the form ∇Ω f (x) = β(x) + ϕ(x), where ϕ(x) and β(x) measure
different aspects of stationarity. From a practical point of view, within active set algo-
rithms that alternate two phases, one to identify “promising faces” of the polyhedron
to be explored, one to accelerate the function reduction, ϕ(x) and β(x) can be used to
give suitable rules for switching between the two phases.

As an example of this, we have introduced an active-set algorithm for the solution
of convex quadratic programs, and proved its finite convergence in the case of possibly
degenerate strictly convexproblems.Numerical experiments on syntheticQPproblems
with a small number of dense constraints show the efficiency of the proposed strategy
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Fig. 4 Performance profiles of PSAQP and IP-PMM (τMR = 10−8 on 167 strictly convex QPs in terms of
elapsed time. Top: all problems; bottom left: m= 2, 5, 10, 20; bottom right: m= 50

over the gradient projection method and over a tailored interior point method in the
case of number of constraints between 2 and 20. Future work will deal with the
implementation of an efficient C-based version of the PSAQPmethod and its extension
to the non-quadratic case.
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