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Abstract
Fermat–Weber points with respect to an asymmetric tropical distance function are
studied. It turns out that they correspond to the optimal solutions of a transportation
problem. The results are applied to obtain a new method for computing consensus
trees in phylogenetics. This method has several desirable properties; e.g., it is Pareto
and co-Pareto on rooted triplets.
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1 Introduction

The following optimization problem can be studied in any metric space. Given a finite
number of points, sometimes called sites, find a point which minimizes the sum of the
distances to the sites. Such a point is called a Fermat–Weber point, and this is some
version of a geometricmedian of the sites,which is known to be robust in a certain sense
[7, §21]. Computing Fermat–Weber points is a rich topic with a remarkable history;
see [7, Chapter II]. Here we consider a specific distance function, d�, which occurs
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in tropical geometry [2, 32]. This function is asymmetric, i.e., d�(a, b) may differ
from d�(b, a). So we call d� the asymmetric tropical distance, to differentiate from
the symmetric tropical distance, which is more common [20, §5.3]. The symmetric
tropical Fermat–Weber problemwas investigated byLin et al. [28] andLin andYoshida
[29].

As our main result we prove that one (asymmetric tropical) Fermat–Weber point
can be computed by solving a transportation problem. The transportation problem is
an optimization classic, with numerous applications, both in theory and practice. For
an overview we refer to Schrijver’s monograph [40, §21.6]; see also the survey by De
Loera and Kim for the polyhedral geometry point of view [14]. Efficient methods for
solving transportation problems include algorithms by Tokuyama and Nakano [42],
Kleinschmidt and Schannath [22], and Brenner [8]. In general, Fermat–Weber points
are not unique, so one part of the present work is devoted to understanding the entire
(asymmetric tropical) Fermat–Weber set for a given set of sites. This is tightly related
to the study of tropical hyperplane arrangements and tropical convex hulls, which are
at the core of tropical combinatorics [20]. The latter subject is concerned with the rich
interplay between tropical geometry and optimization.

One motivation for studying the Fermat–Weber problem in the setting of tropical
geometry comes from phylogenetics [28, 29]. In that field, a part of computational
biology, the goal is to associate trees to input data. A typical example are trees encoding
ancestral relations among species, where the data originates from strands of DNA. In
tropical geometry spaces of metric trees with n labeled leaves occur naturally as the
tropical Grassmannians TGr(2, n); see [31, §4.3] and [20, §10.6]. In phylogenetics
many different methods are known to construct trees from a fixed data set. Since
those methods usually do not come up with the same tree, there is a need to find
the common ground. This gives rise to some consensus tree, which describes where
the several methods agree. Finding consensus trees is a topic of its own [9], and the
authors of [28] argue that “tropical convexity and tropical linear algebra . . . behave
better” than other methods. Here we show that passing from the symmetric tropical
distance function to its asymmetric sibling leads to a newmethod for computingmetric
consensus trees which is even better behaved. This is because the asymmetric tropical
Fermat–Weber sets are nicer geometrically. In particular, we show that our approach
leads to a consensus method which is regular in the sense of [10]. Such a procedure
is not known for symmetric tropical distances. For the purpose of finding a consensus
method in tree space, there is no immediate disadvantage of employing an asymmetric
distance rather than a symmetric one. In fact, asymmetric distances are common in
location theory [34].

Our paper is organized as follows. We start out with a brief summary of facts from
tropical combinatorics which are relevant for the Fermat–Weber problem. Then we
prove that the Fermat–Weber set arises as a cell in the covector decomposition of the
tropical torus induced by the sites. That covector cell is then characterized in several
ways. The first approach employs regular subdivisions of products of simplices; see
[15, §6.2]. That leads to a linear programming formulation of the Fermat–Weber
problem, and the dual linear program is a transportation problem. The latter then
provides efficient algorithms. The final chapter is devoted to computing Fermat–Weber
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Tropical medians by transportation 815

sets in spaces of equidistant trees. In addition to theoretical results we report on
computational experiments with polymake [19] and mcf [30].

Related work As an early contribution of tropical geometry to data science Gärtner
and Jaggi [18] developed a concept for “tropical support vector machines”, with appli-
cations to classification in mind. A different train of thought was developed by Pachter
and Sturmfels [35, §2.4] who related tropical geometry to phylogenetic trees. Later,
Lin et al. [28] connected these ideas to the geometry of tree spaces studied by Billera
et al. [5]. Yoshida et al. [43] proposed a method to analyze data, which they call “trop-
ical principal component analysis”. In a way, the latter may be viewed as a synthesis
of the above. A key contribution here is work of Ardila and Klivans, who saw that
spaces of equidistant trees form the Bergman fans of the graphic matroids of complete
graphs [3]. The term “tropical convexity” was coined by Develin and Sturmfels [16]
to connect tropical geometry with the older topic of (max,+)-linear algebra [11].

2 Tropical convexity

The purpose of this section is to set our notation and to collect a few facts which are
key to our methods; for the details we refer to [20]. We consider the tropical semiring
T
max = (R ∪ {−∞},⊕,�) with ⊕ = max as the tropical addition and � = + as

the tropical multiplication. The additive neutral element is −∞, and 0 is neutral with
respect to the multiplication. Usually, we abbreviate T = T

max. The set Tn inherits
the structure of a semimodule by componentwise tropical addition and tropical scalar
multiplication.

A tropical cone in T
n is a nonempty subset C which contains each tropical linear

combination λ�x ⊕ μ�y for λ,μ ∈ T and x, y ∈ C . Each tropical cone contains
the point −∞1 and the entire set R1, where 1 is the all-ones vector. Therefore it
is convenient to pass to the quotient TPn−1 := (Tn \ {−∞1})/R1, which is called
the tropical projective space. A subset of TPn−1 is tropically convex if it arises as
the image of a tropical cone under the canonical projection. A tropical polytope is a
finitely generated tropically convex set. The tropical projective torus R

n/R1 is the
subset of points in TP

n−1 with finite coordinates. We say that a tropical polytope is
bounded if it lies in Rn/R1.

Tropical convexity is intimately related to ordinary convexity, polyhedral geometry
and (linear) optimization. For instance, tropical polytopes arise as the images of ordi-
nary convex polytopes over ordered fields of real Puiseux series under the valuation
map; see [20, Observation 5.10]. Yet, here the following less algebraic description is
more relevant.

We consider an arbitrary m×n-matrix V = (vi j ) with real coefficients. Each row
vi = (vi1, . . . , vin) is a point in R

n (or Rn/R1, if we ignore the tropical scaling). So
V may be viewed as a configuration of m labeled points in R

n/R1. Technically, it is
convenient to assume that each ordinary row sum equals zero, i.e., each row lies in the
set

H = {
x ∈ R

n | x1 + x2 + · · · + xn = 0
}

.
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(3,−3, 0)

(13,−14, 1)

(11,−13, 2)

(10, 1,−11)

(14,−7,−7)

(9,−6,−3)

Fig. 1 Five sites in R
3/R1, their max-tropical convex hull, the induced min-tropical hyperplane arrange-

ment, and the unique Fermat–Weber point (marked white)

Observe that each point in R
n/R1 has a unique representative in R

n which lies in
H. So we can identify the tropical projective torus Rn/R1 with the ordinary linear
hyperplane H in R

n . This also works topologically, since the quotient vector space
R

n/R1 is homeomorphic toRn−1 (and thus withH considered as a subset ofRn). The
tropical projective space TPn−1 is a compactification of Rn/R1, where the boundary
comprises those points which have at least one infinite coordinate.

Adding vectors tropically works coefficient-wise, and there is also tropical multi-
plication by scalars. With these notions, the max-tropical convex hull of (the rows of)
V is

tconvmax(V ) = {
λ1�v1 ⊕ · · · ⊕ λm�vm

∣∣ λi ∈ R
} + R1 ,

which is a subset of Rn/R1. The rows of the matrix V also define an arrangement of
m tropical hyperplanes inRn/R1, with respect to min as the tropical addition, and we
denote this T (V ). In this context each row arises as the apex of a min-tropical hyper-
plane. Everything that we explained above also works for the min-tropical semiring
T
min = (R ∪ {∞},min,+), which is isomorphic to Tmax as a semiring via x �→ −x .

Observe that this involution leaves the hyperplane H invariant.
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Tropical medians by transportation 817

Fig. 2 Mixed subdivision S(V )

of 5 · Δ2 for V as in Example 1.
The 21 lattice points of 5 ·Δ2 are
marked with their coordinates.
The min-tropical hyperplane
arrangement T (V ) admits a
piecewise-linear embedding
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Themin-tropical hyperplane arrangement with the rows of V as their apices induces
an ordinary polyhedral subdivision, CovDec(V ), of Rn/R1 (or, equivalently, H),
called the covector subdivision induced by (the rows of) V . Its cells, which are called
covector cells, are convex in three different senses: they are max-tropically convex,
min-tropically convex and convex in the ordinary sense (as subsets ofH). Such poly-
hedra are known as polytropes, and they may be bounded or unbounded. As ordinary
polyhedra, the polytropes are characterized by the property that their facet normal
directions are ei − e j for i, j ∈ [n] distinct. The union of the bounded covector cells
equals the tropical convex hull tconvmax(V ).

Example 1 We illustrate the various concepts from tropical convexity for the matrix
V ∈ R

5×3 whose transpose reads

V 
 =
⎛

⎝
14 13 11 10 3
−7 −14 −13 1 −3
−7 1 2 −11 0

⎞

⎠ .

The rows of V (equivalently, the columns of V 
) encode five points in R
3/R1; see

Fig. 1. The covector decomposition has 15 regions of maximal dimension 2, and six of
them are bounded. The max-tropical convex hull tconvmax(V ) consists of the union of
bounded cells, which are shaded gray; it also contains the green line segment extending
from (3,−3, 0) to the lower left.

We consider the envelope

E(V ) = {
(t, x) ∈ R

m × R
n

∣∣ ti + x j ≥ vi j
}

, (1)

which is an unbounded ordinary polyhedron. By [20, Theorem 6.14] the cells of
CovDec(V ) arise as the images of faces of E(V ) under the coordinate projection
(t, x) �→ x . Moreover, CovDec(V ) is dual to the regular subdivision, Σ(V ), of the
product of simplices Δm−1 × Δn−1 = conv

{
(ei , e j ) | i ∈ [m], j ∈ [n]} obtained
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from lifting (ei , e j ) to the height vi j . Here we take regular subdivisions induced
by upper convex hulls since max is our tropical addition. For the same reason the
inequality sign “≥” is reversed in comparison with the min-tropical version in [20,
(6.1)]. Via the Cayley trick the subdivision Σ(V ) of Δm−1 × Δn−1 corresponds to a
mixed subdivision,S(V ), of the dilated simplexm ·Δn−1; see [15, §9.2] and [20, §4.5].
For instance, this is convenient for properly visualizing Σ(V ), which is a polyhedral
complex of dimension (m − 1)(n − 1). Figure 2 shows the mixed subdivision S(V )

of 5 · Δ2 for the matrix V from Example 1.

3 Fermat–Weber sets

We examine the Fermat–Weber problem through tropical combinatorics and poly-
hedral geometry. As our first key observation we show that asymmetric tropical
Fermat–Weber sets arise as specific cells in the covector subdivisions induced by
the sites.

The asymmetric tropical distance in Rn is given by

d�(a, b) =
∑

i∈[n]
(bi − ai ) − n min

i∈[n](bi − ai ) =
∑

i∈[n]
(bi − ai ) + n max

i∈[n](ai − bi ),

(2)

where a, b ∈ R
n . Since d�(a′, b′) = d�(a, b) for a − a′ ∈ R1 and b − b′ ∈ R1, this

induces a directed distance function in the (n−1)-dimensional quotient vector space
R

n/R1. We do not distinguish between the function d� : Rn × R
n → R≥0 and the

induced function onRn/R1. The asymmetric tropical distance is a “polyhedral norm”
with respect to the standard simplex Δn−1 := conv{e1, . . . , en} + R1 in R

n/R1; see
[7, §20]. This may also be seen as a rescaled version of the “tropical Funk metric”
discussed in [1, §3.3]. More common in tropical geometry is the symmetric tropical
distance between a, b ∈ R

n (or Rn/R1). It is defined as

dist(a, b) = max
i∈[n] (ai − bi ) − min

j∈[n]
(
a j − b j

) = max
i, j∈[n](ai − bi − a j + b j );

see [20, §5.3]. We have dist(a, b) = 1
n (d�(a, b)+ d�(b, a)). Throughout this section

we fix a finite set of sites V = {v1, v2, . . . , vm} inH, which we identify with Rn/R1.

Definition 2 An (asymmetric tropical) Fermat–Weber point with respect to V is a
point inH which minimizes the sum of the asymmetric tropical distances from these
sites.

In general such a point is not unique. Hence, we let FW(V ) denote the set of
all asymmetric tropical Fermat–Weber points and call it the (asymmetric tropical)
Fermat–Weber set with respect to V . This is the asymmetric analog of the symmetric
tropical Fermat–Weber set studied in [29].
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Tropical medians by transportation 819

Fixing the site vi ∈ V , the distance function from vi , which reads

d�(vi , x) = n max
j∈[n](vi j − x j ) for x ∈ H , (3)

is convex in the ordinary sense andpiecewise linear. Its regions of linearity are precisely
the n closed sectors of the min-tropical hyperplane with apex vi ; see [20, §5.5]. Con-
sequently, the common subdivision of the regions of linearity of the sites is exactly the
covector decomposition CovDec(V ). Our first main theorem shows that the Fermat–
Weber set FW(V ) is a bounded cell of that subdivision.

For the sake of a precise formulation of that result, we pass to the regular triangula-
tion, Σ(V ), of Δm−1 × Δn−1 which is dual to the covector subdivision CovDec(V ).
The relatively open cells of Σ(V ) partition the product of the ordinary polytope
Δm−1 × Δn−1. The point

( 1
m1, 1

n1
)
is the vertex barycenter of Δm−1 × Δn−1. So

there is a unique cell, CV , which contains that
( 1

m1, 1
n1

)
in its relatively interior. This

will play an important role in our study of Fermat–Weber points.

Definition 3 We call the unique cell of Σ(V ) which contains that
( 1

m1, 1
n1

)
in its

relatively interior the central cell ofΣ(V ), and denote it byCV . Its dual in CovDec(V )

will be called the central covector cell.

Theorem 4 The Fermat–Weber set FW(V ) agrees with the central covector cell in
CovDec(V ). In particular, FW(V ) is a bounded polytrope in H, and it is contained
in the tropical polytope tconvmax(V ).

Proof Consider the linear program

minimize n · (t1 + · · · + tm)

subject to vi j − x j ≤ ti , for i ∈ [m] and j ∈ [n]
x1 + · · · + xn = 0

(4)

with mn + 1 constraints in the m + n variables t1, t2, . . . , tm, x1, x2, . . . , xn . The
coefficients vi j are the coordinates of the sites. The constant factor n in the objective
function is not relevant here, but it does make the dual linear program (5) studied
below look more natural. If (t∗, x∗) is an optimal solution of (4), then x∗ ∈ FW(V ),
and t∗i = 1

n d�(vi , x∗). Conversely, each Fermat–Weber point arises in this way. The
constraints vi j ≤ ti + x j describe the max-tropical version of the envelope E(V ); see
[20, §6.1]. In that reference that inequality would look like “vi j ≤ −ti + x j”. Yet the
linear substitution ti �→ −ti is natural here, because (4) is a minimization problem; see
also [20, Remark 6.28]. The cells of CovDec(V ) are precisely the projections of the
faces of the unbounded ordinary polyhedron E(V ) ⊂ R

m ×R
n onto the x-coordinates;

see [20, Proposition 6.11]. Let F be the optimal face of the linear program (4). The
set FW(V ) is the projection of F .

The face F is gotten by minimizing t1 + · · · + tm , or equivalently t1 + · · · + tm +
x1 + · · · + xn , as the points x are restricted to the hyperplane H. Let D be the cell
in the triangulation of Δm−1 × Δn−1 which is dual to F . Then D contains the vector
( 1

m1, 1
n1) ∈ R

m × R
n in its relative interior. In other words, FW(V ) is dual to the

central cell CV .
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820 A. Comăneci, M. Joswig

A sublevel set of a function f : R
n/R1 → R is a set of the form

{x ∈ R
n/R1 | f (x) ≤ α} for some α ∈ R. If all of its sublevel sets are bounded, then

the set of minima is bounded. We use this property to show that FW(V ) is bounded.
The sublevel sets of d�(vi , ·) are simplices if non-empty; in particular, they are

bounded. Consequently, the function x �→ ∑
i∈[m] d�(vi , x) has bounded sublevel

sets. The latter implies that FW(V ) is bounded, as it is the set of minimizers of the
aforementioned function. The max-tropical convex hull of the rows of V equals the
union of the bounded covector cells in CovDec(V ); see [20, Corollary 6.17].

Example 5 For the matrix V from Example 1 the unique optimal solution of the primal
linear program (4) reads

t∗ = (5, 4, 5, 7, 3) and x∗ = (9,−6,−3),

with optimal value 3 ·24 = 72. We have FW(V ) = {x∗}; see Fig. 1. As gcd(5, 3) = 1,
the uniqueness is implied by Theorem 7 below. The point x∗, which is a pseudovertex
of CovDec(V ), is dual to the central cell CV = conv{113, 122, 212, 221}; see Fig. 2.
Remark 6 Theorem4 reveals a similarity to theEuclidean case: by [7, Proposition 19.1]
any Fermat–Weber point with respect to the Euclidean distance is contained in the con-
vex hull of the sites. The analogous result to Theorem 4 for the symmetric tropical
distance is [28, Proposition 26]. As shown in [28, Example 27], in general, the sym-
metric tropical Fermat–Weber set is not contained in the tropical convex hull.

Via theCayley trick, the central cellCV inΣ(V ) corresponds to the central covector
cell in CovDec(V ), which is FW(V ). The dimension of the latter is the codimension
of the former.

Theorem 7 The dimension of FW(V ) is at most gcd(m, n)−1. In particular, if m and
n are relatively prime, the Fermat–Weber point is unique.

Proof We consider the regular subdivision, Σ(V ), of Δm−1 × Δn−1 induced by the
matrix V . Let CV be the central cell. By [15, §6.2] the vertices of CV are in bijection
with the edges in a subgraph G(CV ) of the complete bipartite graph Km,n with c :=
codim(CV ) + 1 connected components; see also [20, §4.7]. We will show that c ≤
gcd(m, n). Here we may assume that V is generic, whence CV is a simplex; note that
any refinement of Σ(V ) can only increase the codimension of the cell containing a
specific point in its relative interior. If c = 1, there is nothing to prove. Hence, we
assume that c ≥ 2.

We consider a maximal simplex, U , of Σ(V ) which contains CV , and let T be the
subtree of Km,n corresponding to U . A facet, F , of U corresponds to the removal of
some edge e of T , yielding disjoint unions [m] = I ′ � I ′′ and [n] = J ′ � J ′′ such that
the connected components of T \e are the restrictions on I ′ � J ′ and I ′′ � J ′′ and e is
incident to a vertex in I ′′ and one in J ′. The hyperplane

∑
i ′∈I ′ xi ′ + ∑

j ′′∈J ′′ y j ′′ = 1
contains the facet F . If I ′ were empty, then

∑
j ′∈J ′ y j ′ = 0 for every (x, y) ∈ CV .

But CV contains the point
( 1

m1, 1
n1

)
, so J ′ must be empty as well. This contradicts

the fact that J ′ contains a vertex incident to e. Hence, I ′ �= ∅ and, similarly, J ′′ �= ∅.
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Tropical medians by transportation 821

Consequently, there exist two proper partitions [m] = I1 � I2 � · · · � Ic and [n] =
J1 � J2 � · · · � Jc such that the restriction of G(CV ) on Ii � Ji is a tree, and there
exist edges e2, . . . , ec in Km,n between a vertex of Ii and Ji−1 such that adding these
edges we obtain the tree T .

A supporting hyperplane for the facet corresponding to T \ {ei } is given by the
equation

∑

i∈I1�···�Ii−1

xi +
∑

j∈Ji �···�Jc

y j = 1,

where 2 ≤ i ≤ c. Now the point ( 1
m1, 1

n1) is contained in these hyperplanes, yielding
the c − 1 equalities

1
m

∑

k<i

|Ik | + 1
n

∑

�≥i

|J�| = 1, for 2 ≤ i ≤ c .

Multiplying with the least common multiple of m and n we obtain

n
gcd(m,n)

∑

k<i

|Ik | + m
gcd(m,n)

∑

�≥i

|J�| = lcm(m, n), for 2 ≤ i ≤ c.

Putting those relations together with
∑

k∈[c] |Ik | = m and
∑

�∈[c] |J�| = n, we
yield that |Ik | is a multiple of m/gcd(m, n) for every k ∈ [c] and |J�| is a mul-
tiple of n/gcd(m, n) for all � ∈ [c]. Further Ik �= ∅ for every k ∈ [c], and so
|Ik | ≥ m/gcd(m, n) for all k ∈ [c]. Hence

m =
∑

k∈[c]
|Ik | ≥ c · m

gcd(m,n)
,

which implies c ≤ gcd(m, n) as claimed.

Restricting to the one-dimensional case (i.e., n = 2), we recover the known fact
that an odd number of points have a unique median, while the median can be selected
from an interval for an even number of points. The following example shows that the
inequality in Theorem 7 is tight for all m and n; see also Example 1.

Example 8 Our example employs the matrix V = (vi j ) ∈ R
m×n with vi j = (i −

1)( j − 1). The rows are points on the tropical moment curve, and their (max-)tropical
convex hull is a tropical cyclic polytope; see [6, §4] and [20, Example 5.18]. The dual
triangulation Σ(V ) of Δm−1 × Δn−1 is the staircase triangulation; see [15, §6.2.3].
We explain the construction.

In this case, we represent the simplices as points in an m×n grid instead of sub-
graphs of Km,n . The staircase triangulation consists of all the paths in an m×n grid
starting at (1, 1) and ending at (m, n) obtained by going right or down. Figure3 por-
trays such a path. Due to its shape, it is called a staircase. We will show that in the
staircase triangulation the simplex containing

( 1
m1, 1

n1
)
lies in a cell of codimension
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822 A. Comăneci, M. Joswig

Fig. 3 Staircase in a 6 × 9 grid 1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

gcd(m, n) − 1. For improved readability, we abbreviate d = gcd(m, n), a = m/d,
and b = n/d.

If d = 1, then there is a unique maximal simplex in the staircase triangulation
containing ( 1

m1, 1
n1) in its interior. To find the precise staircase, we use the Northwest

Corner Rule [12, §8.3.1] in the standard transportation arraywithmarginal column 1
m1

and marginal row 1
n1. The visited cells form the staircase, which we call the central

staircase. Note that this method provides also barycentric coordinates for
( 1

m1, 1
n1

)

in this simplex.
When d ≥ 2, consider the partitions in d subsets [m] = I1 � · · · � Id and [n] =

J1 � · · · � Jd where Ii = {(i − 1)a + 1, (i − 1)a + 2, . . . , ia} and Ji = {(i − 1)b +
1, (i − 1)b + 2, . . . , ib}. Consider on Ii × Ji the central staircase on an a × b grid
and add the points (ia, ib + 1) for i = 1, . . . , d − 1: in Fig. 3 the blocks on Ii × Ji

correspond to the gray areas whereas the added points are those in the white area. This
staircase corresponds to a maximal simplex U in the staircase triangulation, which
contains ( 1

m1, 1
n1).

The removal of the grid point (ia, ib + 1) yields the facet defined by

∑

k≤ia

xk +
∑

�>ib

y� = 1.

Using d = m/a = n/b, we see that
( 1

m1, 1
n1

)
is contained in this facet. In total, there

are d − 1 facets of this form.
Each remaining facet of U corresponds to the removal of a grid point from some

block Ik × Jk . In particular, each facet induces a partition [m] = I ′ � I ′′ such that
I1 � · · · � Ik−1 ⊂ I ′, Ik+1 � · · · � Id ⊂ I ′′ for some k ∈ [d]; similarly, there is a
partition J ′ � J ′′ on [n]. Moreover, at least one of the intersections Ik ∩ I ′ ∩ I ′′ and
Jk ∩ J ′ ∩ J ′′ is nonempty, which implies that at least one of |I ′| and |J ′′| is not a
multiple of d. As in the proof of Theorem 7, the facet defining equation

∑

i ′∈I ′
xi ′ +

∑

j ′′∈J ′′
y j ′′ = 1
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Tropical medians by transportation 823

is not satisfied by ( 1
m1, 1

n1). Since
( 1

m1, 1
n1

)
is contained in precisely d − 1 facets of

U , the dimension of FW(V ) equals d − 1.
The staircase for U is obtained by using the Northwest Corner Rule with breaking

ties by going East. If we break the ties randomly, then 2d−1 staircases appear with
nonzero probability. These staircases are in bijection with the ordinary vertices of
FW(V ), which is a (d−1)-dimensional cube, seen as an ordinary polytope.

Remark 9 In the special case m = n − 1 computing tropical Fermat–Weber points
reduces to the tropical Cramer rule [20, §4.9]. Adding one more site, p, the new
Fermat–Weber set, F , can have higher dimension, but contains the tropical Cramer
point, c. Perturbing c in the direction of p, we obtain a point in the relative interior of F .
This also agrees with results of Gärtner and Jaggi [18, §4.1] in the context of “tropical
support vector machines” on computing a “separating hyperplane for n points”.

Remark 10 As a consequence of [20, Theorem 6.14] the Fermat–Weber set FW(V 
)

in R
m/R1 of the n columns of V is affinely isomorphic to the Fermat–Weber set

FW(V ) in Rn/R1 of the m rows.

Remark 11 Our analysis rests on the decision, in (3), to look at the distances from the
sites to the Fermat–Weber points. This leads to min-tropical hyperplane arrangements
andmax-tropical convex hulls. Reversing the direction, i.e., considering distances from
the Fermat–Weber points to the sites, amounts to exchangingmin andmax throughout.
Conceptually, the results remain the same; cf. [20, §1.3].

4 Transportation

This section comprises the algorithmic core of this paper. The basic ingredient is the
transportation problem which already occurred in Example 8.

Again let us fix a matrix V = (vi j ) ∈ R
m×n . Whenever it will suit us, we may also

view the rows of V is a m labeled points v1, . . . , vm inH or Rn/R1. The following is
the dual of the linear program (4) with variables λ and yi j for i ∈ [m] and j ∈ [n]:

maximize
∑

i∈[m]

∑

j∈[n]
vi j · yi j

subject to
∑

j∈[n]
yi j = n , for i ∈ [m]

λ +
∑

i∈[m]
yi j = 0 , for j ∈ [n]

yi j ≥ 0 , for i ∈ [m] and j ∈ [n] .

(5)

From 0 = n · λ+∑
i, j yi j = n · (λ+ m), we get λ = −m for every feasible point. By

substituting that value in (5) we obtain the standard linear programming formulation
of a transportation problem; see [40, §21.6]. The primal linear program (4) and the
envelope E(V ) are related to transportation via Hitchcock’s theorem [40, Theorem
21.13].
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Fig. 4 Spanning subtree of K5,3
encoding the covector of the
unique Fermat–Weber point
from Example 1. Column nodes
at the bottom

(3,−3, 0)

(13,−14, 1)

(11,−13, 2)

(10, 1,−11)

(14,−7,−7)

(9,−6,−3)

Fig. 5 Five sites in R
3/R1 and the unique point that evenly splits them. Each closed sector of the max-

tropical halfspace with apex (9, −6,−3) contains at least two sites

As the right hand sides are the integral constants m and n, the feasible region of (5)
is a central transportation polytope, and we denote it T (m, n). The polytope T (m, n)

is known to be integral [14, Lemma 2.13]. The nonzero entries of any vertex, which is
an m×n-matrix, defines a subgraph of Km,n by picking edges [14, Lemma 2.9]. This
is the support graph of that vertex, and this is a forest; see [40, Theorem 21.15].

Example 12 For the 5×3-matrix V fromExample 1 the transpose of the unique optimal
solution of (5) is

(y∗
i j )


 =
⎛

⎝
3 2 0 0 0
0 0 0 3 2
0 1 3 0 1

⎞

⎠ . (6)

The support graph a spanning tree; see Fig. 4. By Theorem 15 below that tree encodes
the covector of the uniqueFermat–Weber point x∗. The degree sequence for the column
nodes is (223). This is the coarse type of x∗ and also the componentwise maximum of
the four vertices of the central cell in the mixed subdivision; cf. Example 5 and [20,
§4.5].

Assuming m ≥ n, Tokuyama and Nakano gave an algorithm (which they called
“splitter finding”) to solve a transportation problem like (5) in O(n2m log2 m) time
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[42, Theorem 3.1]. We borrow some of their ideas. For J ⊆ [n] and u ∈ H consider
the set

SJ (u) = {
x ∈ H

∣∣ max
j∈J

(x j − u j ) ≥ max
i /∈J

(xi − ui )
}
.

We have S∅(u) = ∅, and S[n](u) = H, where we use the convention that the maximum
of the empty set is−∞, the neutral element of the tropical addition. If J is a nonempty
proper subset of [n], then SJ (u) is a max-tropical halfspace with apex u; see [20, §7.1].
In the special case where J = { j} is a singleton that tropical halfspace is a closed
sector; in general, SJ (u) = ⋃

j∈J S{ j}(u).

Definition 13 We say that u ∈ H evenly splits V if for every subset J of [n] we have
n · |V ∩ SJ (u)| ≥ m · |J |.
Tokuyama and Nakano [42] call the point u a “1-splitter”, and the sectors are the
“regions split by u”. Theorem 15 below may be seen as our interpretation of their
results in the setting of tropical convexity.

Example 14 Consider the points V from Example 1. The Fermat–Weber point u =
(9,−6,−3) evenly splits them. This is illustrated in Fig. 5, where we have drawn
the max-tropical hyperplane based at u with dotted lines. In particular, we see the
subdivision of R3/R1 in three convex regions.

Theorem 15 A point u ∈ H evenly splits V if and only if u ∈ FW(V ). The support
graph of an optimal dual solution y∗ is the covector of the Fermat–Weber point u(y∗).

Proof Assume that u evenly splits V and consider ti = max j∈[n](vi j −u j ) for i ∈ [m].
Thus (u, t) is a feasible solution of the primal linear program (4). Moreover, ti +u j =
vi j if and only if vi ∈ S{ j}(u).

Now [42, Theorem 2.2] says that there exists a solution (yi j ) of the transportation
problem (5), which is dual to (4), such that (u, t) and (yi j ) satisfy the complementary
slackness condition. Indeed, if ti +u j �= vi j , then vi /∈ S{ j}(u), so the aforementioned
result gives yi j = 0. So it follows from linear programming duality that (u, t) is an
optimal solution of (4).

In particular, u is a Fermat–Weber point for V .
For the converse, we denote by φ the convex function 1

n

∑
s∈V d�(s, ·). Also, for

every subset J of [n], denote by σJ the cardinality of V ∩ SJ (u). Abbreviating f J :=
(n − |J |)∑

j∈J e j − |J | ∑i∈[n]\J ei , which is a point inH, we obtain:

– if s ∈ SJ (u), then s ∈ SJ (u − δ f J ) for any δ ≥ 0;
– if s /∈ SJ (u), then s /∈ SJ (u − δ f J ) for any δ ≥ 0 sufficiently small.

The condition s ∈ SJ (u) implies d�(s, u) = n(s j − u j ) for some j ∈ J . Therefore,
for δ > 0 sufficiently small, we obtain

– d�(s, u − δ f J ) = d�(s, u) + n · δ(n − |J |), when s ∈ SJ (u);
– d�(s, u − δ f J ) = d�(s, u) − n · δ|J |, when s /∈ SJ (u).
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Summing up and dividing by n yields

φ(u − δ f J ) = φ(u) + δ(n − |J |)σJ − δ|J |(m − σJ ) = φ(u) + δ (nσJ − m|J |)
(7)

for any δ > 0 sufficiently small. If u ∈ FW(V ), then u is aminimizer, so φ(u−δ f J ) ≥
φ(u) for any δ > 0 and J ⊆ [n]. Equation (7) implies nσJ ≥ m|J | for every J ⊆ [n],
under this assumption. Consequently, u evenly splits V .

The argument in the proof of Theorem 15 leads to the following algorithm for
obtaining a tropical Fermat–Weber point from an optimal solution y∗ of (5). By
complementary slackness each edge (i, j) of the support graph, B(y∗), imposes the
equality

ti + x j = vi j (8)

for any optimal dual solution. If we assume x j = 0 for some column node j , then we
can perform a depth-first search from j and recover all the the other values of (t, x)

using the equalities in (8). There may be more connected components, in which case
we start a depth-first search from every unvisited column node. In this way all the
values are recovered, as B(y∗) is spanning—no row or column of y∗ can be zero as its
elements must sum up to a positive number. Note that the point x obtained this way
may not lie inH. Yet, by adding (x1 + · · ·+ xn)/n to every entry of x and subtracting
the same value from every entry of t , we obtain a feasible solution (t∗, x∗) of (4) that
satisfies the equations (8). In particular, that solution is optimal, whence x∗ ∈ FW(V ).
So the method of [42] gives the following complexity result.

Corollary 16 Assuming m ≥ n, one tropical Fermat–Weber point can be computed in
O(n2m log2 m) time.

The complexity bounds of the algorithms by Kleinschmidt and Schannath [22] and
Brenner [8] are similar, but slightly different. Naturally, they carry over as well.

It is also natural to ask for explicit representations of the entire Fermat–Weber
set. A first idea could be to list the vertices of FW(V ), seen as an ordinary polytope.
Example 8 shows that cubes occur as Fermat–Weber sets, and their number of vertices
is exponential in the dimension. Yet, the polytropal structure allows for more efficient
choices. Namely, a polytrope in R

n/R1 has at most n tropical vertices and at most
n2 − n ordinary facets.

Let us start with the latter. Since we know the possible directions of the (outer)
facet normal vectors, ek − e� for k �= �, we can find the ordinary facets by solving
n2 − n linear programs like:

maximize xk − x�

subject to vi j − x j ≤ ti , for i ∈ [m] and j ∈ [n]
x1 + · · · + xn = 0
t1 + · · · + tm = p∗/n

(9)
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where p∗ is the optimal value of (4). The constraint matrix has only 0 and ±1 entries,
and so a linear program of the form (9) can be solved in strongly polynomial time [39,
Corollary 15.3a].

Each such linear program yields one tight inequality xk − x� ≤ ak,� of FW(V ),
where ak,� is the optimal value. Then, the tropical vertices can be found as Ak =
(−ak,1, . . . ,−ak,n) ∈ R

n/R1, where ak,k = 0. From Corollary 16 we thus infer the
following result.

Corollary 17 The ordinary facet description and the tropical vertices of FW(V ) can
be found in strongly polynomial time.

If the tropical vertices are known, then we can check if a given point lies in FW(V )

in O(n2) time by checking the criterion [20, Proposition 5.37].

5 Tropical median consensus trees

Phylogenetics is a branch of (computational) biology that seeks to associate trees to
mark ancestral relations among given taxa, e.g., species [41]. The taxa correspond to
the leaves. Here we show how asymmetric tropical Fermat–Weber sets give rise to
a new algorithm for finding consensus trees. Since there is no particular shortage on
consensus tree methods, we compare its features to other approaches, and we discuss
the practical applicability.

5.1 Equidistant trees

We recall known facts about ultrametrics and equidistant trees to fix our notation; see
[41, §7.2] and [20, §10.9]. A dissimilarity map is a symmetric n×n-matrix D = (di j )

with zero diagonal. It is called an ultrametric if D is nonnegative, and the ultrametric
inequality

dik ≤ max(di j , d jk) (10)

holds for all i, j, k ∈ [n]. Since the (zero) diagonal is implicit, and the matrix is

required to be symmetric, we may view a dissimilarity map as an element of R
(n
2

)
.

A rooted metric tree with n labeled leaves is equidistant if the distance from any
leaf to the root is the same. It is known that the ultrametrics are precisely the distance
functions among the leaves in an equidistant tree; see [41, Theorem 7.2.5]. Note that
the all-ones vector 1 of length

(n
2

)
is an ultrametric. The corresponding equidistant

tree has interior edges of length zero, while each leaf edge has length 1
2 .

Ardila and Klivans [3, Theorem 3] showed that a dissimilarity map is an ultrametric
if and only if it corresponds to a point on the Bergman fan B̃(Kn) of the complete
graph Kn . The Bergman fan of a matroid is a special case of a tropical linear space,
i.e., with constant coefficients. The ultrametric inequality (10) is a tropical convexity
condition with respect to max. From a dissimilarity map D and any real constant c
we can construct the dissimilarity map D + c1. Moreover, if D is an ultrametric,
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and D + c1 is nonnegative, then it is an ultrametric, too. In this way, we may view

B̃(Kn) as a max-tropical linear space in the tropical projective torus R
(n
2

)
/R1; see

[28, Proposition 16] and [43, Theorem 3]. We abbreviate Tn := B̃(Kn)/R1 and call it
the space of equidistant trees on n labeled leaves. Now we can apply our results from
Sects. 3 and 4 to points in Tn . Our first observation says that Fermat–Weber points of
equidistant trees are again equidistant trees.

Theorem 18 Let V ⊂ Tn be a finite set of equidistant trees on n leaves. Then the
tropical polytope FW(V ) is contained in Tn. Moreover, any two trees in FW(V ) share
the same tree topology.

Proof According to Theorem 4 the set FW(V ) is contained in the max-tropical convex
hull of V . The space of equidistant trees Tn is amax-tropical linear space and thusmax-
tropically convex; see [20, Proposition 10.33]. This is the first claim. Page, Yoshida
and Zhang showed [36, Theorem 3.2] that the trees in any relatively open cell of the
covector decomposition of V in Tn share the same tree topology.With this observation
the second claim follows also from Theorem 4.

Aswe know, Fermat–Weber points are not unique, in general. Here is amore precise
statement.

Corollary 19 Let V ⊂ Tn be a set of m equidistant trees on n leaves. Then

dim FW(V ) ≤ min
(

n − 1, gcd(m,
(n
2

)
)
) − 1 .

Proof This follows from Theorem 7 and the fact that the graphic matroid of Kn has
rank n − 1, so dim Tn = n − 2.

5.2 Consensus trees

Our goal now is to employ the results obtained so far to study the consensus prob-
lem for metric trees. Formally, a consensus method on equidistant trees, with n taxa,
is a function c : T ∗

n → Tn where T ∗
n = ⋃

m≥1 T m
n . For surveys on the subject

see [9] and, for a more recent account, [10]. We say that a consensus method c
is tropically convex if c(D1, . . . , Dm) ∈ tconvmax(D1, . . . , Dm) for every m ≥ 1
and every D1, . . . , Dm ∈ Tn . Theorem 18 says that selecting an arbitrary tree in
FW(D1, . . . , Dm) yields a consensus method which is tropically convex. Recall that

FW(D1, . . . , Dm) is a polytrope in R

(n
2

)
/R1, which thus has at most

(n
2

)
tropical

vertices.

Definition 20 We define the tropical median consensus tree of D1, . . . , Dm ∈ Tn as
the ordinary average of the tropical vertices of FW(D1, . . . , Dm).

That ordinary average is the barycenter of the ordinary simplex spanned by the
tropical vertices. As polytropes are convex in the ordinary sense, the tropical median
consensus tree method is tropically convex. By Corollary 17, the tropical vertices of
the Fermat–Weber set can be found in strongly polynomial time and hence also their
ordinary average.

123



Tropical medians by transportation 829

A B C D E F G H I0

1

2

3

4

5

6

7

8

IHGFEDC BA0

1

2

3

4

5

6

7

8

)b()a(

IHGFEDC BA0

1

2

3

4

5

6

7

8

A B C D E F G H I0

1

2

3

4

5

6

7

8

eertsusnesnoC)d()c(

Fig. 6 Three trees (a,b,c) and their tropical median consensus tree (d)

Example 21 The first three equidistant trees on n = 9 taxa in Fig. 6, called (a), (b),
(c), are taken from [21, Chapter 7]. Since the trees in that reference are not metric,
here we choose weights that are compatible with the graphical representation in [21,
Fig. 7.1]. The tropical median consensus tree is depicted in Fig. 6 as (d). This is the
unique Fermat–Weber point of the three input trees in T9. This can be verified using
version 4.9 of polymake [19].

The Newick format is a standard for encoding phylogenetic trees [17, p. 590];
it is supported by polymake. A tree is represented as a string, where leaves are
given by their (text) labels, and internal nodes correspond to matching pairs of
parentheses. Recursively, such a pair of parentheses encloses the Newick represen-
tation of the subtree rooted at that internal node. Further, each node is followed
by a numerical value, after a colon, and this denotes the length of the edge
between the node and its parent. For example, the Newick representation of (a) is
(A:8,((B:2,(C:1,D:1):1):5,((E:1,F:1):3,(G:2,(H:1,I:1):1)
:2):3):1).

Bryant et al. [10] impose three conditions for a consensus method to be regular:
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(U) The consensus of any number of copies of the same tree, T , is T ;
(A) the consensus does not depend on the ordering of the trees;
(N) permuting the taxa in the input trees results in the same permutation of the taxa in

the consensus.

These properties are called unanimity, anonymity, and neutrality, respectively. For the
tropical median consensus all of them are immediate: Unanimity is due to fact that d�
is definite; anonymity follows from the commutativity of the addition; neutrality is a
consequence of the invariance of d� under the action of the symmetric group. It then
follows from [10, Theorem 3] that the tropical median consensus is not “extension
stable”.

Our next step is to investigate properties of arbitrary tropically convex consensus
methods. To this end, let i, j, k ∈ [n] be pairwise distinct taxa in some equidistant tree
such that the lowest common ancestor of i and j is a proper descendant of the lowest
common ancestor of i , j , and k. Then we say that these taxa form a rooted triplet,
and we denote it by i j |k. If D = (di j ) is its ultrametric distance, then i j |k is a rooted
triplet if and only if di j < dik . Note that the ultrametric property implies d jk = dik ,
so we also have di j < d jk . We denote by r(D) the set of rooted triplets of the tree.
A consensus method is called Pareto on rooted triplets if

⋂
�∈[m] r(D�) ⊆ r(D);

it is called co-Pareto on rooted triplets if r(D) ⊆ ⋃
�∈[m] r(D�); here D1, . . . , Dm

correspond to the input trees, and D represents the consensus tree. These are desirable
properties for consensus methods; see [9, §3].

Proposition 22 Any tropically convex consensus method is Pareto and co-Pareto on
rooted triplets.

Proof We consider the set of equidistant trees containing the rooted triplet i j |k, which
we denote

Tn(i j |k) = {
D ∈ Tn | di j < dik

}
.

The key observation is that this set is tropically convex: it arises as the intersection of
Tn with an open tropical halfspace. Note that, therefore, the complement in Tn is also
tropically convex.

Now let D1, . . . , Dm be ultrametrics and D any point in their max-tropical convex
hull. We need to verify the Pareto and co-Pareto properties. If the rooted triplet i j |k
belongs to

⋂
� r(D�), then D� ∈ Tn(i j |k) for every � ∈ [m]. As Tn(i j |k) is tropically

convex, we have D ∈ Tn(i j |k). Thus, i j |k also belongs to r(D), showing that a
tropically convex consensus method is Pareto on rooted triplets.

Conversely, if i j |k does not belong to
⋃

�∈[m] r(Di ), then the input ultrametrics
D1, . . . , Dm lie in the complement Tn \ Tn(i j |k). Again, the latter set of tropically
convex, and thus D /∈ Tn(i j |k). We infer that i j |k /∈ r(D), and we conclude that a
tropically convex consensus method is co-Pareto on rooted triplets.

Before we continue to study our tropical median consensus method, we look at
other ideas.
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Fig. 7 Pointwise maximum of
the three trees from Example 23
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Example 23 A particularly simple way to produce a tropically convex consensus tree
method is the following. For given ultrametrics D1, . . . , Dm ∈ Tn , we can consider the
pointwise maximum c(D1, . . . , Dm) = D1 ⊕ · · · ⊕ Dm . See Fig. 7 for the pointwise
maximumof the three trees fromExample 23 andFig. 6.The tropicalmedian consensus
tree (d) in Fig. 6 partially resolves the maximum consensus tree from Fig. 7.

Note that the above definition depends on the representatives of D1, . . . , Dm mod-
ulo R1. For the output in Fig. 7, we used the representatives displayed in Fig. 6.
However, we could have chosen the representatives lying on the hyperplane H in

R

(n
2

)
/R1; the corresponding pointwise maximum represents the center of the smallest

ball with respect to d� that contains the points D1, . . . , Dm . Alternatively, considering
representatives with a fixed entry equal to 0, we obtain the tropical barycenter from
[1, §3.2].

Whatever convention we may fix for the representatives, the pointwise maximum
exhibits a drawback. To exemplify it, consider the trees (a), (b), and one million copies
of the tree (c) from Fig. 6. Then, the pointwise maximum consensus is still the one
fromFig. 7, whereas the tropicalmedian consensus tree looks like (c). So the pointwise
maximum consensus is highly sensitive to outliers. In contrast, the tropical median
consensus is robust.

Most known consensus tree methods deal with unweighted phylogenetic trees, so
they may be seen as discrete analogues of our approach. For instance, unweighted
“median consensus trees” were defined by Bathélémy and McMorris [4], and the
asymmetric case was analyzed by Phillips and Warnow [38]. Bryant [9] presents only
one consensus method for rooted trees that takes the edge lengths into considera-
tion: the “average consensus tree” of Lapointe and Cucumel [24]. In [9, §2.4.2] two
drawbacks of the average consensus tree method are explicitly mentioned: no efficient
algorithm is known, and the (co-)Pareto properties are unclear. The average consen-
sus method involves the Euclidean distance, and the unconstrained optima might lie
outside the tree space Tn . Therefore, ultrametric conditions must be imposed to the
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832 A. Comăneci, M. Joswig

solution, making it difficult to obtain a regular consensus method; see [24] for details.
Further, Lapointe and Cucumel [25] show that the procedure proposed is NP-hard,
and the solution may not be unique. A similar complexity result exists for the median
consensus method developed by Lavasseur and Lapointe [26]; see [13].

In the remainder of this section we compare the tropical median consensus method
to algorithms proposed by Lin and Yoshida [29]. In fact, our approach is very similar
and was inspired by that article. Lin et al. [28] studied the Fermat–Weber problem
for the symmetric tropical distance function, with a focus on the tree space. Crucially,
the symmetric tropical Fermat–Weber points may lie outside the max-tropical convex
hull; see [28, Example 27].

Example 24 Symmetric tropical Fermat–Weber sets may be surprisingly complicated.
Consider the trees

T1 = (D : 10, (C : 4, (B : 2,A : 2) : 2) : 6) and

T2 = (A : 10, (B : 4, (C : 2,D : 2) : 2) : 6) (11)

from [27, Fig. 5]; here and below we employ the Newick format discussed in Exam-
ple 21. The symmetric Fermat–Weber set of T1 and T2, denoted FWsym(T1, T2),
contains the tropical segment between them, which exhibits seven distinct tree topolo-
gies, four of which are binary. In contrast, the asymmetric setting is trivial: the tropical
median is (A : 10,D : 10, (B : 4,C : 4) : 6), and this is the unique asymmetric trop-
ical Fermat–Weber point.

In view of [36, Lemma 3.5] the symmetric tropical distance function might lead to
a robust tropical consensus method. However, examples like the above form a chal-
lenge to defining a method which is globally consistent. The next case shows more
differences between the symmetric and the asymmetric distances.

Example 25 With T1 and T2 defined as in (11), we consider two copies of T1, two
copies of T2, and the tree T3 = (A : 10, ((B : 4,C : 4) : 3,D : 7) : 3). That is to
say, with multiplicities, we have five trees altogether. The unique asymmetric tropical
Fermat–Weber point of these five trees is the tree (A : 10,D : 10, (B : 4,C : 4) : 6).
On the other hand, T3 is the unique symmetric tropical Fermat–Weber point, by [29,
Lemma 8]. Both Fermat–Weber points are unique, but they differ.

Remark 26 The max-tropical convexity of the tropical median consensus method
ultimately rests on the specific formulation of the Fermat–Weber problem in (3).
Exchanging the arguments in the asymmetric tropical distance function gives the min-
tropical analog.

5.3 Computational experiments

We compare running times for experiments concerning Fermat–Weber sets in tree
space with respect to the symmetric and the asymmetric tropical distance functions.
As input data we take random trees which were produced using the function rmtree
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Table 2 Timings (in s) for computing asymmetric tropical Fermat–Weber sets of equidistant trees. Each
entry is the average running time from 100 individual experiments, which show only very small variance

Leaves\Trees 1 2 3 4 5 6 7 8 9 10

4 0.01 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.04 0.05

5 0.01 0.01 0.02 0.03 0.04 0.05 0.07 0.10 0.14 0.19

6 0.02 0.02 0.03 0.05 0.09 0.14 0.20 0.29 0.41 0.55

7 0.03 0.04 0.07 0.12 0.21 0.33 0.52 0.76 1.08 1.48

8 0.04 0.06 0.13 0.25 0.44 0.73 1.14 1.70 2.53 3.48

9 0.06 0.11 0.24 0.49 0.91 1.55 2.52 3.76 5.90 8.83

10 0.09 0.19 0.44 0.94 1.82 3.20 5.32 8.64 13.78 19.93

from the R library ape [37]. This is similar to the experiment reported in [43, Example
8]. Most of the trees generated are not equidistant, so we adjust the lengths of the
leaf edges to make them equidistant. In this way we get any number of trees in Tn ,
for various values of n, the number of taxa. Recall that, by [28, Proposition 26], the
symmetric tropical Fermat–Weber set FWsym(T1, . . . , Tm) of trees Ti ∈ Tn is a convex

polytope in R

(n
2

)
/R1. The asymmetric tropical Fermat–Weber set FW(T1, . . . , Tm)

is a polytrope, and thus a polytope, too; cf. Theorem 4. All timings are obtained with
polymake, version 4.9, running on a quad core Intel Core i5-4590 processor (6599.89
bogomips), openSUSE Leap 15.3 (Linux 6.1.0). For details see our data repository
at https://github.com/micjoswig/TropicalDataAnalysis/tree/main/Tropical_medians_
by_transportation.

Entire Fermat–Weber sets. First, we compute exact facet descriptions of the poly-
topes FWsym(T1, . . . , Tm) and FW(T1, . . . , Tm), where Ti ∈ Tn , for various values
of m and n. While the trees are generated with edge lengths given by floating point
numbers, we convert them to exact rationals. We are not aware of a published imple-
mentation for computing symmetric tropical Fermat–Weber sets, so we implemented
it in polymake. The algorithm suggested by [28, Proposition 26] allows for an
improvement by exploiting properties of polyhedral L-convex functions in the sense
of Murota [33, §7.8]. In this way, a facet description of FWsym(T1, . . . , Tm) can be
obtained from solving n(n − 1) linear programs similar to those in (9). The timings
for up to ten trees on up to ten leaves are given in Table 1. Lin and Yoshida report
about computations of symmetric tropical Fermat–Weber sets in [29, §4]; however,
they do not give timings. The parameters leading to [29, Table 1] are much smaller
than the parameters in our Table 1. The combinatorial description of the asymmetric
tropical Fermat–Weber set FW(T1, . . . , Tm) via optimal dual variables of a transporta-
tion problem allows us to exploit complementary slackness. So we can compute the
description of FW(T1, . . . , Tm) in terms of its ordinary facets much faster than its
symmetric counterpart; see Table 2.

Tropical median consensus trees. Our most interesting experiment is concerned with
computing tropical median consensus trees of m trees in Tn , again for various values
of m and n. This time we use mcf [30] (through our polymake interface), which
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Table 3 Timings (in s) for
computing tropical median
consensus trees using mcf [30]

Leaves\Trees 50 100 150 200 250 300

5 0.04 0.06 0.07 0.08 0.09 0.11

10 0.11 0.16 0.23 0.26 0.31 0.36

15 0.33 0.45 0.57 0.69 0.79 0.91

20 0.87 1.08 1.29 1.50 1.70 1.92

25 4.13 16.55 50.81 11.15 3.89 382.89

Fig. 8 Number of trees versus
time in seconds for up to 299
trees on 25 leaves
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Tropical median consensus on trees with 25 leaves

is a standard implementation of the network simplex algorithm, using floating point
computations. Table 3 has the timings for up to 25 trees on up to 300 leaves.

The last row of Table 3, for m = 25 trees, is particularly interesting. Observe that
the timings in that row, with an increasing number of leaves, are not monotone. The
most likely explanation comes from Corollary 19, which gives an upper bound for
the dimension of FW(T1, . . . , Tm); the critical contribution is gcd(m,

(n
2

)
). We have

(25
2

) = 300, and the running times are almost proportional to gcd(m, 300).
In order to seewhat is going on, we conducted amore refined experiment for n = 25

taxa, trying all values of m in the set {1, 2, . . . , 299}. The results are shown in Fig. 8.
The timing for m = 300, being more than 380s, has been omitted for better readabil-
ity of the other results. There are only ten computations which last more than four
seconds. These are the values m ∈ {50, 60, 75, 100, 120, 150, 200, 225, 240, 300};
all are integers with gcd(m, 300) ≥ 50. A more detailed analysis is beyond the scope
of the present article.

To the best of our knowledge, no regular consensus method arising from the sym-
metric tropical distance function on tree space has been proposed. So there is no direct
way to make a comparison.

Apicomplexa gene trees. For our final experiment we consider an existing dataset
of m = 268 trees with n = 8 leaves, which was already studied by Page, Yoshida
and Zhang [36, §6.2]. Via simulated annealing, the latter authors generate three trees
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whose tropical convex hull fits best the input data; then they project the input trees on
this tropical triangle and display the result in [36, Fig. 6]. So this line of research is
more about dimension reduction techniques for analyzing data rather than obtaining
location statistics; see also [43]. In particular, this does not seem to lead to a regular
consensus method in the sense of [10]. Nonetheless, our method applies to their data.

The trees discussed in [36, §6.2] have been reconstructed by Kuo, Wares and
Kissinger [23] from 268 orthologous sequences with eight species of protozoa. Seven
species among the taxa are Babesia bovis (Bb), Cryptosporidium parvum (Cp), Eime-
ria tenella (Et), Plasmodium falciparum (Pf), Plasmodium vivax (Pv), Theileria
annulata (Ta) and Toxoplasma gondii (Tg). The eighth taxon is Tetrahymena ther-
mophila (Tt), which forms the outgroup. For this data we obtain the tropical median
consensus tree

(Cp:0.570333,Et:0.570333,Tg:0.570333,Tt:0.570333,

(Pf:0.43862,Pv:0.43862):0.131713,(Bb:0.57033,Ta:0.57033):

0.000003),

which is displayed in Fig. 9. Only two cherries are resolved; the outgroup was not
detected. So our method is quite conservative, making an effort to avoid false positive
results. Thismay be an advantage, in particular since the 268 input treeswere generated
by a diverse range of methods.

6 Conclusion

There is a considerable amount of work on the tropical metric geometry of the space
of equidistant trees [27–29, 36, 43]. This is quite natural, because the symmetric
tropical distance between two equidistant trees can be interpreted naturally, as the cost
of changing one tree into the other along a tropical line segment, where the cost is
measured in the �∞ norm; see [27] for details. Here we study the asymmetric tropical
distance, which has a similar interpretation, but for the �1 norm. What makes the
asymmetric tropical distance attractive is the fact that it leads to a regular consensus
method, while this is not known to exist in the symmetric case. Further, the tropical
median consensus method is robust and fast in practice; it can be applied to hundreds
of trees with dozens of taxa. The robustness is computationally valuable as it makes
floating-point computations reliable.

The tropical median consensus method seems to be rather conservative, in the sense
that our consensus trees sometimes show little resolution. This is not necessarily bad.
For instance, the apicomplexa gene trees studied in Sect. 5 come from a diverse mix of
tree building methods, which should probably make it difficult to find a fully resolved
consensus; cf. Fig. 9.
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Fig. 9 The tropical median
consensus of the apicomplexa
data

Tt Cp Et Tg Pf Pv Bb Ta
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